research

A probabilistic approach to reducing the algebraic complexity of computing Delaunay triangulations

Abstract

Computing Delaunay triangulations in Rd\mathbb{R}^d involves evaluating the so-called in\_sphere predicate that determines if a point xx lies inside, on or outside the sphere circumscribing d+1d+1 points p0,,pdp_0,\ldots ,p_d. This predicate reduces to evaluating the sign of a multivariate polynomial of degree d+2d+2 in the coordinates of the points x,p0,,pdx, \, p_0,\, \ldots,\, p_d. Despite much progress on exact geometric computing, the fact that the degree of the polynomial increases with dd makes the evaluation of the sign of such a polynomial problematic except in very low dimensions. In this paper, we propose a new approach that is based on the witness complex, a weak form of the Delaunay complex introduced by Carlsson and de Silva. The witness complex Wit(L,W)\mathrm{Wit} (L,W) is defined from two sets LL and WW in some metric space XX: a finite set of points LL on which the complex is built, and a set WW of witnesses that serves as an approximation of XX. A fundamental result of de Silva states that Wit(L,W)=Del(L)\mathrm{Wit}(L,W)=\mathrm{Del} (L) if W=X=RdW=X=\mathbb{R}^d. In this paper, we give conditions on LL that ensure that the witness complex and the Delaunay triangulation coincide when WW is a finite set, and we introduce a new perturbation scheme to compute a perturbed set LL' close to LL such that Del(L)=wit(L,W)\mathrm{Del} (L')= \mathrm{wit} (L', W). Our perturbation algorithm is a geometric application of the Moser-Tardos constructive proof of the Lov\'asz local lemma. The only numerical operations we use are (squared) distance comparisons (i.e., predicates of degree 2). The time-complexity of the algorithm is sublinear in W|W|. Interestingly, although the algorithm does not compute any measure of simplex quality, a lower bound on the thickness of the output simplices can be guaranteed.Comment: 24 page

    Similar works