687 research outputs found

    Joint Centrality Distinguishes Optimal Leaders in Noisy Networks

    Full text link
    We study the performance of a network of agents tasked with tracking an external unknown signal in the presence of stochastic disturbances and under the condition that only a limited subset of agents, known as leaders, can measure the signal directly. We investigate the optimal leader selection problem for a prescribed maximum number of leaders, where the optimal leader set minimizes total system error defined as steady-state variance about the external signal. In contrast to previously established greedy algorithms for optimal leader selection, our results rely on an expression of total system error in terms of properties of the underlying network graph. We demonstrate that the performance of any given set of leaders depends on their influence as determined by a new graph measure of centrality of a set. We define the joint  centralityjoint \; centrality of a set of nodes in a network graph such that a leader set with maximal joint centrality is an optimal leader set. In the case of a single leader, we prove that the optimal leader is the node with maximal information centrality. In the case of multiple leaders, we show that the nodes in the optimal leader set balance high information centrality with a coverage of the graph. For special cases of graphs, we solve explicitly for optimal leader sets. We illustrate with examples.Comment: Conditionally accepted to IEEE TCN

    Relative controllability of multiagent systems with pairwise different delays in states

    Get PDF
    In this manuscript, relative controllability of leader–follower multiagent systems with pairwise different delays in states and fixed interaction topology is considered. The interaction topology of the group of agents is modeled by a directed graph. The agents with unidirectional information flows are selected as leaders, and the others are followers. Dynamics of each follower obeys a generic time-invariant delay differential equation, and the delays of agents, which satisfy a specified condition, are different one another because of the degeneration or burn-in of sensors. With a neighbor-based protocol steering, the dynamics of followers become a compact form with multiple delays. Solution of the multidelayed system without pairwise matrices permutation is obtained by improving the method in the references, and relative controllability is established via Gramian criterion. Further rank criterion of a single delay system is dealt with. Simulation illustrates the theoretical deduction

    Distributed formation tracking control of multiple car-like robots

    Get PDF
    In this thesis, distributed formation tracking control of multiple car-like robots is studied. Each vehicle can communicate and send or receive states information to or from a portion of other vehicles. The communication topology is characterized by a graph. Each vehicle is considered as a vertex in the graph and each communication link is considered as an edge in the graph. The unicycles are modeled firstly by both kinematic systems. Distributed controllers for vehicle kinematics are designed with the aid of graph theory. Two control algorithms are designed based on the chained-form system and its transformation respectively. Both algorithms achieve exponential convergence to the desired reference states. Then vehicle dynamics is considered and dynamic controllers are designed with the aid of two types of kinematic-based controllers proposed in the first section. Finally, a special case of switching graph is addressed considering the probability of vehicle disability and links breakage

    Leadership and Path Characteristics during Walks Are Linked to Dominance Order and Individual Traits in Dogs

    Get PDF
    Movement interactions and the underlying social structure in groups have relevance across many social-living species. Collective motion of groups could be based on an “egalitarian” decision system, but in practice it is often influenced by underlying social network structures and by individual characteristics. We investigated whether dominance rank and personality traits are linked to leader and follower roles during joint motion of family dogs. We obtained high-resolution spatio-temporal GPS trajectory data (823,148 data points) from six dogs belonging to the same household and their owner during 14 30–40 min unleashed walks. We identified several features of the dogs' paths (e.g., running speed or distance from the owner) which are characteristic of a given dog. A directional correlation analysis quantifies interactions between pairs of dogs that run loops jointly. We found that dogs play the role of the leader about 50–85% of the time, i.e. the leader and follower roles in a given pair are dynamically interchangable. However, on a longer timescale tendencies to lead differ consistently. The network constructed from these loose leader–follower relations is hierarchical, and the dogs' positions in the network correlates with the age, dominance rank, trainability, controllability, and aggression measures derived from personality questionnaires. We demonstrated the possibility of determining dominance rank and personality traits of an individual based only on its logged movement data. The collective motion of dogs is influenced by underlying social network structures and by characteristics such as personality differences. Our findings could pave the way for automated animal personality and human social interaction measurements

    Distributed leader following of an active leader for linear heterogeneous multi-agent systems

    Get PDF
    This paper considers a leader-following problem for a group of heterogeneous linear time invariant (LTI) followers that are interacting over a directed acyclic graph. Only a subset of the followers has access to the state of the leader in specific sampling times. The dynamics of the leader that generates its sampled states is unknown to the followers. For interaction topologies in which the leader is a global sink in the graph, we propose a distributed algorithm that allows the followers to arrive at the sampled state of the leader by the time the next sample arrives. Our algorithm is a practical solution for a leader-following problem when there is no information available about the state of the leader except its instantaneous value at the sampling times. Our algorithm also allows the followers to track the sampled state of the leader with a locally chosen offset that can be time-varying. When the followers are mobile agents whose state or part of their state is their position vector, the offset mechanism can be used to enable the followers to form a transnational invariant formation about the sampled state of the leader. We prove that the control input of the followers to take them from one sampled state to the next one is minimum energy. We also show in case of the homogeneous followers, after the first sampling epoch the states and inputs of all the followers are synchronized with each other. Numerical examples demonstrate our results

    Controllability of multi-agent systems with input and communication delays

    Get PDF
    Distributed cooperative control of multi-agent systems is broadly applied in artificial intelligence in which time delay is of great concern because of its ubiquitous. This paper considers the controllability of leader-follower multi-agent systems with input and communication delays. For the first-order systems with input delay, neighbor-based protocol is adopted to realize the interactions among agents, yielding a system with delay existed in state and control input. New notions of interval controllability and interval structural controllability for the system are defined. Algebraic criterion is established for interval controllability, and graph-theoretic interpretation is put forward for the interval structural controllability. Results imply that input delay of the multi-agent systems has significant influence on the interval controllability and interval structural controllability. Corresponding conclusions are generalized to the first-order systems and the high-order ones with communication delays, respectively. Example is attached to illustrate the work
    • …
    corecore