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Abstract. In this manuscript, relative controllability of leader–follower multiagent systems with 
pairwise different delays in states and fixed i nteraction t opology i s c onsidered. T he interaction 
topology of the group of agents is modeled by a directed graph. The agents with unidirectional 
information flows are selected as leaders, and the others are followers. Dynamics of each follower 
obeys a generic time-invariant delay differential equation, and the delays of agents, which satisfy 
a specified condition, are different one another because of the degeneration or burn-in of sensors. 
With a neighbor-based protocol steering, the dynamics of followers become a compact form with 
multiple delays. Solution of the multidelayed system without pairwise matrices permutation is 
obtained by improving the method in the references, and relative controllability is established via 
Gramian criterion. Further rank criterion of a single delay system is dealt with. Simulation illustrates 
the theoretical deduction.

Keywords: multiagent systems, relative controllability, multiple time delays, solution.

1 Introduction

The cluster behaviors of multiagent systems are hot topics because of the wide appli-
cations of them, such as unmanned air vehicles, satellite formation, underwater robot, 
etc. Cooperative control of distributed multiagent systems is concerning with the control 
and operate capabilities with limited processing abilities, locally sensed information, and 
limited intercomponent communications achieving a collective goal [29]. Consensus of 
multiagent systems, which relies on a neighbor-based protocol to achieve a common 
interesting objective [9, 14, 31, 38, 40], is a typical instance of cooperative control. The
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factors like time delays [8, 28, 36, 37] and switching topology [6, 25], widely existing in
the application of formation control [3,39], flocking [1], and others, are considered while
dealing with the consensus of multiagent systems.

An inevitable problem of multiagent systems is the controllability, which determines
whether we can control and operate the multiagent systems by assigning suitable leaders
in the group of agents. Tanner [33] derives the controllability criterion of multiagent
systems with a leader and reveals the relation between the communication topology and
the controllability. Liu and Chu [16] present the controllability of multiagent systems with
switching topology and point out the relationship between the controllability and connec-
tivity. Ji and Wang [12] generalize the control problems into the system with time delays
in state and switching topology. Tian et al. [34] deal with the controllability of multiagent
systems with periodically switching topologies and switching leaders who reveal that
the switching-leader controllability is equivalent to multiple-leaders controllability. Other
literature is paying attention to the reflection of graph-theoretic notions on the properties
of multiagent systems (see [27] etc.).

Structural controllability firstly defined and researched by Lin [15] is introduced into
the multiagent systems by Liu [20] who proves that the multiagent systems with switching
topology is structurally controllable if and only if the union graph of interaction topology
is connected. More literatures around the controllability of multiagent systems it is sug-
gested referring to [10, 11, 17–19, 21, 32, 35].

Time delay is ubiquitous in intelligent network, digital communication, unmanned
aerial vehicle, etc. (see more in [5, 8, 12, 19]). Comparing with the classical controllabil-
ity, it is more appropriate to consider the relative controllability for time-delay systems
because the latter can exactly describe the influence of the delay on the controllability (see
more in [13]). We call the leader–follower multiagent systems relatively controllable if,
for an arbitrary initial function on the delayed interval, there exist piecewise continuous
control functions, which adjust the leaders’ trajectories such that the states of the followers
can be steered to any terminal ones in a finite time.

For relative controllability, there is abundant literature (see in [2, 13, 26]). Khusainov
[13] presents a solution of the delayed system by constructing the delayed exponential
matrix and establishes the rank criterion of relative controllability. Pospíšil [26] investi-
gates the relative controllability of linear delayed neutral differential system by using the
Legendre polynomials.

Relative controllability of multiagent systems with two delays in state is considered
in [30] in which Gramian and rank criteria are established, respectively. With reference
to [30], this paper considers the relative controllability of multiagent systems with pair-
wise different delays in states and fixed communication topology. Some agents with
unidirectional information flows are selected as leaders, which act as external steering
inputs. With a neighbor-based protocol steering, the multiagent systems are transformed
into a system with multiple delays. Further, the solution of this system without pair-
wise matrices permutation is obtained by improving the method in [22, 24]. Based on
this, Gramian and rank criteria are established, respectively. An example is dealt with
to illustrate the theorem deduction. The contribution of this paper lies in establishing
a framework of judging the controllability of multiagent systems with multiple delays.
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One of the difficulties lies in constructing the solution of the multidelayed system without
matrices pairwise permutations.

This paper is organized as follows. In Section 2, we present some basic knowledge
of graph theory. In Section 3, we formulate the problems and explore the solution of
multiagent systems. Controllability is tackled in Section 4, and simulation is shown in
Section 5, respectively.

2 Preliminaries

Denote by G = (V, E ,G) a weighted digraph of N nodes, V the set of nodes vi with
i = 1, . . . , N , E the set of the directed edges with E ⊆ V×V , and G a weighted adjacency
matrix. A directed edge εij ∈ E is an ordered pair of nodes (vi, vj) with vi and vj called
parent and child nodes, respectively. In a digraph G, εij ∈ E means that node vj can
obtain information from vi but might not inversely. The elements of the adjacency matrix
G = [aij ] are defined by aij > 0 if εij ∈ E or zero otherwise. The set of neighbors of
node vi is denoted by Ni = {vj ∈ V: εij ∈ E}. The Laplacian matrix L ∈ RN×N is
defined by

L = (Lij)N×N , Lij =

{∑N
j 6=i aij , i = j,

−aij , i 6= j.

More properties of the Laplacian matrix L can be found in [7].
In what follows, we denote by N and L the positive integers, Θ, I , and θ the corre-

sponding dimensional zero matrix, unit matrix, and zero vector, respectively, and Rn the
n-dimensional Euclidean space.

3 Formulation

In some application the dynamics of agents may exhibit different time delays because
the degeneration or burn-in of sensors. With reference to [30], in what follows, we will
continuous to consider the relative controllability of a group of agents with pairwise
different delays in states and directly fixed interaction topology.

Suppose that the multiagent systems are consisting of N + L agents, and interaction
topology of the systems is modeled by a weighted digraph G, each node of the graph
representing an agent and the set of nodes represented by V = {v1, . . . , vN , . . . , vN+L}.
Further, suppose that vN+1, . . . , vN+L, information flows of which are unidirectional,
are selected as leaders. The rest labeled by v1, . . . , vN are followers. Dynamics of the
followers obey the following generic time-invariant delay differential equations:

ẋi(t) = Aixi(t) +Bixi(t− τi) + Ciui(t), i = 1, . . . , N, (1)

where xi ∈ Rn, Ai, Bi, and Ci are the parameter matrices of appropriate dimensions, ui
is the steering input, i = 1, . . . , N , and τj is corresponding delay of vj , which satisfies
τj < τj+1 < τj + τ1, j = 1, . . . , N − 1. Whereas dynamics of the leaders are assumed in
any form as long as they are controllable. Interactions among agents are realized through
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the following relative protocol:

ui(t) = K
∑
vk∈Ni

wik
(
xi(t)− xk(t)

)
+ P

L∑
k=1

aikδik
(
yk(t)− xi(t)

)
, i = 1, . . . , N, (2)

where K and P are the gain matrices of appropriate dimensions, Ni is the neighbour
of vi, wik is the coupled weight of followers and their neighbors, yk(t) = xN+k(t),
k = 1, . . . , L, is the output of leaders, which acts as exogenous control input of followers,
aik is the coupled weight of leader and follower, and δik is equal to one if the leader
vN+k has information flow towards the follower vi directly or zero else, k = 1, . . . , L.
Under (2), (1) becomes

ẋ(t) = Ãx(t) + B̃1x(t− τ1) + B̃2x(t− τ2) + · · ·+ B̃Nx(t− τN ) + C̃u(t), (3)

where x(t) = (xT
1 (t), . . . , xT

N (t))T, u(t) = (yT
1 (t), . . . , yT

L(t))T, Ã = Ã1+Ã2−Ã3 with

Ã1 =

A1

. . .
AN

 , Ã2 =

 l11C1K · · · l1NC1K
...

. . .
...

lN1CNK · · · lNNCNK


and

Ã3 =


∑L
k=1 a1kδ1kC1P

. . . ∑L
k=1 aNkδNkCNP

 ,

C̃ =

 a11δ11C1P · · · a1Lδ1LC1P
...

. . .
...

aN1δN1CNP · · · aNLδNLCNP

 ,
and B̃i is a block matrix with the ith block of main diagonal being Bi or zero else.

Remark 1. System (3) contains multiple delays and does not enjoy the matrices pairwise
permutable. It is a hot topic around the well-posedness and controllability of the delay
differential equations (see in [13, 22, 23]). Khusainov et al. [13] present the explicit solu-
tion of the linear delay system by constructing a delayed matrix exponential function and
establish a criterion for the relative controllability of the system with pure delay. Mah-
mudov [22] presents a delayed perturbation of Mittag-Leffler-type matrix function and
solves the linear nonhomogeneous fractional delay system. Medved’ et al. [23] generate
the results of Khusainov and Shuklin and establish a multidelayed exponential function
to solve the multidelayed system with pairwise matrices permutation. With reference
to [30], we will construct the solution of (3) without matrices pairwise permutations by
improving the methods in [22, 23].
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3.1 Solution

With reference to [22, 23], firstly, we introduce the following matrix sequence:

Q0(s) = Qk(−τ1) = Θ,

Q1(0) = I,

Qk+1(s) = ÃQk(s) + B̃1Qk(s− τ1),

(4)

where k = 0, 1, . . . , s = jτ1, j = 0, 1, . . . . Further, introduce the following matrix
function:

X1(t) =


Θ, −∞ < t < −τ1,
Θ, −τ1 6 t < 0,∑∞
i=0

∑p−1
j=0 Qi+1(jτ1) (t−jτ1)i

Γ(i+1) , (p− 1)τ1 6 t < pτ1,

(5)

where p is a positive integer, and Γ(·) is the gamma function defined by

Γ(x) =

+∞∫
0

tx−1e−t dt (x > 0).

If 0 6 t 6 τ1, we have

X1(t) =

∞∑
i=0

Ãiti

Γ(i+ 1)
=: eÃt.

With reference to [23], for i = 2, . . . , N , construct the following function:

Φτi(t) =



Θ, −∞ < t < −τi,
Xi−1(t+ τi), −τi 6 t < 0,

Xi−1(t+ τi) +
∫ t

0
Xi−1(t− s1)B̃iXi−1(s1) ds1

+
∫ t
τi

∫ s1
τi
Xi−1(t− s1)B̃iXi−1(s1 − s2)B̃iXi−1(s2 − τi) ds2 ds1

+ · · ·+
∫ t

(k−1)τi

∫ s1
(k−1)τi

· · ·
∫ sk−1

(k−1)τi
Xi−1(t− s1)B̃iXi−1(s1 − s2)

×B̃i · · ·Xi−1(sk−1 − sk)B̃iXi−1(sk − (k − 1)τi) dsk · · · ds2 ds1,

(k − 1)τi 6 t < kτi,

(6)

where Xj−1(t) = Φτj−1
(t − τj−1), j = 3, . . . , N + 1, and X1(t) is equal to (5). For

Xj(t) with j = N , we have the following lemma hold.

Lemma 1. XN (t) is a solution of the following matrix equation:

ẊN (t) = ÃXN (t) + B̃1XN (t− τ1) + B̃2XN (t− τ2)

+ · · ·+ B̃NXN (t− τN )

with

XN (0) = I,XN (t) = Θ, t ∈ [−τN , 0).
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Proof. With reference to [22,30], Xi(t) = Φτi(t− τi), i = 1, 2, is the respective solution
of

Ẋ1(t) = ÃX1(t) + B̃1X1(t− τ1),

Ẋ2(t) = ÃX2(t) + B̃1X2(t− τ1) + B̃2X2(t− τ2),

which satisfies Xi(0) = I , Xi(t) = Θ, i = 1, 2, t ∈ [−τ2, 0).
Suppose that Xi(t) = Φτi(t− τi), 2 < i 6 N − 1, is a solution of

Ẋi(t) = ÃXi(t) + B̃1Xi(t− τ1) + B̃2Xi(t− τ2) + · · ·+ B̃iXi(t− τi)

with Xi(0) = I , Xi(t) = Θ, t ∈ [−τi, 0). Based on (6), we know that for t < 0,
t − τi+1 < −τi+1, Xi+1(t) = Φτi+1

(t − τi+1) = Θ, and Xi+1(0) = Φτi+1
(−τi+1) =

Xi(0) = I . For 0 < t < τi+1, we have

Xi+1(t) = Φτi+1(t− τi+1) = Xi(t).

Thus, it holds that

Ẋi+1(t) = Ẋi(t) = ÃXi(t) + B̃1Xi(t− τ1) + B̃2Xi(t− τ2) + · · ·
+ B̃iXi(t− τi)

= ÃXi+1(t) + B̃1Xi+1(t− τ1) + B̃2Xi+1(t− τ2) + · · ·
+ B̃iXi+1(t− τi).

Further, for −τi+1 < t− τi+1 < 0, we have

Xi+1(t− τi+1) = Φτi+1
(t− 2τi+1) = Θ.

Thus, it holds for 0 < t < τi+1.
For kτi+1 6 t < (k + 1)τi+1, take the derivative of Xi+1 and arrange it to get

Ẋi+1(t) = ÃXi+1(t) + B̃1X̂1(t) + · · ·+ B̃iX̂i(t) + B̃i+1X̂i+1(t),

where

X̂j(t) = Xi(t− τj) +

t−τi+1∫
0

Xi(t− τi+1 − s1 − τj)B̃i+1Xi(s1) ds1 + · · ·

+

t−τi+1∫
(k−1)τi+1

s1∫
(k−1)τi+1

· · ·
sk−1∫

(k−1)τi+1

Xi(t− τi+1 − s1 − τj)

× B̃i+1Xi(s1 − s2) · · · B̃i+1Xi(sk−1 − sk)

× B̃i+1Xi

(
sk − (k − 1)τi+1

)
dsk · · · ds2 ds1, j = 1, . . . , i,

https://www.journals.vu.lt/nonlinear-analysis
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and

X̂i+1(t) = Xi(t− τi+1) +

t−τi+1∫
τi+1

Xi(t− τi+1 − s1)B̃i+1Xi(s1 − τi+1) ds1 + · · ·

+

t−τi+1∫
(k−1)τi+1

s1∫
(k−1)τi+1

· · ·
sk−2∫

(k−1)τi+1

Xi(t− τi+1 − s1)

× B̃i+1Xi(s1 − s2) · · · B̃i+1Xi(sk−2 − sk−1)B̃i+1

×Xi

(
sk−1 − (k − 1)τi+1

)
dsk−1 · · · ds2 ds1.

From jτi+1 6 s1 6 t−τi+1 we have−τr 6 t−τi+1−s1−τr 6 t−τi+1−jτi+1−τr.
From kτi+1 6 t < (k+ 1)τi+1 we have (k− j− 1)τi+1− τr 6 t− τi+1− jτi+1− τr <
(k − j)τi+1 − τr. Thus, we obtain that −τr 6 t − τi+1 − s1 − τr 6 t − τi+1 −
jτi+1 − τr < (k− j)τi+1 − τr, j = 0, 1, . . . , k− 1, r = 1, 2, . . . , i. Further, we have for
−τr 6 t−τi+1−s1−τr < 0, t−τi+1−τr < s1 6 t−τi+1,Xi(t−τi+1−s1−τr) = Θ,
r = 1, 2, . . . , i. For 0 6 t − τi+1 − s1 − τr 6 t − τi+1 − jτi+1 − τr, jτi+1 6 s1 6
t− τi+1− τr, Xi(t− τi+1− s1− τr) 6= Θ, j = 0, 1, . . . , k−1, r = 1, 2, . . . , i+ 1. Thus,
we simplify X̂j(t) as

X̂j(t) = Xi(t− τj) +

t−τi+1−τj∫
0

Xi(t− τi+1 − s1 − τj)B̃i+1Xi(s1) ds1 + · · ·

+

t−τi+1−τj∫
(k−1)τi+1

s1∫
(k−1)τi+1

· · ·
sk−1∫

(k−1)τi+1

Xi(t− τi+1 − s1 − τj)B̃i+1Xi(s1 − s2) · · ·

× B̃i+1Xi(sk−1 − sk)B̃i+1Xi

(
sk − (k − 1)τi+1

)
dsk · · · ds2 ds1

= Xi+1(t− τj), j = 1, . . . , i.

Further, making a change of variable s′j = sj − τi+1, j = 1, . . . , k − 1, we have

X̂i+1(t) = Xi(t− τi+1) +

t−2τi+1∫
0

Xi(t− 2τi+1 − s1)B̃i+1Xi(s1) ds1 + · · ·

+

t−2τi+1∫
(k−2)τi+1

s1∫
(k−2)τi+1

· · ·
sk−2∫

(k−2)τi+1

Xi(t− 2τi+1 − s1)B̃i+1Xi(s1 − s2) · · ·

× B̃i+1Xi(sk−2 − sk−1)B̃i+1Xi

(
sk−1 − (k − 2)τi+1

)
dsk−1 · · · ds2 ds1

= Xi+1(t− τi+1).
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Thus, we have

Ẋi+1(t) = ÃXi+1(t) + B̃1Xi+1(t− τ1) + · · ·+ B̃iXi+1(t− τi)
+ B̃i+1Xi+1(t− τi+1),

which implies the assumption is held and the proof is completed.

Lemma 2. The homogeneous problem

ẋ(t) = Ãx(t) + B̃1x(t− τ1) + B̃2x(t− τ2) + · · ·
+ B̃Nx(t− τN ), (7)

x(t) = ϕ(t), t ∈ [−τN , 0], (8)

has a solution of the form

x(t) = XN

(
t+ τ1 + δ(t)

)
ϕ
(
−τ1 − δ(t)

)
+

0∫
−τ1

XN

(
t− s+ δ(t)

)(
ϕ′
(
s− δ(t)

)
− Ãϕ

(
s− δ(t)

))
ds, (9)

where

δ(t) =



0, t ∈ [−τ1,∞),

τ1, t ∈ [−τ2,−τ1),

. . . ,

τN−1, t ∈ [−τN ,−τN−1),

0, t ∈ (−∞,−τN ).

Proof. From Lemma 1 it is obtained that (9) solves (7). Next, we verify that (9) satis-
fies (8). For−τi+1 6 t < −τi, i = 0, 1, 2, . . . , N−1, δ(t) = τi. Thus,−τi+1 +τ1 +τi 6
t+ τ1 + δ(t) < τ1. From τi 6 τi+1 6 τ1 + τi we further arrive at 0 6 −τi+1 + τ1 + τi 6
t + τ1 + δ(t) < τ1 and −τj 6 −τi+1 + τ1 + τi − τj 6 t + τ1 + δ(t) − τj < τ1 − τj ,
j = 2, 3, . . . , N . Thus

XN

(
t+ τ1 + δ(t)

)
= ΦτN (t+ τ1 + τi − τN ) = XN−1

(
t+ τ1 + δ(t)

)
= · · ·
= X2(t+ τ1 + τi) = Φτ2(t+ τ1 + τi − τ2)

= X1(t+ τ1 + τi) = eÃ(t+τ1+τi).

Besides, from −τ1 6 s 6 0, t + τi 6 t − s + δ(t) 6 t + τ1 + τi. Again, from
−τi+1+τi 6 t+τi < 0 we have−τi+1+τi 6 t+τi 6 t−s+δ(t) 6 t+τ1+τi < τi. For
t+ τi 6 t− s+ δ(t) < 0, t+ τi 6 s 6 0, XN (t− s+ δ(t)) = Θ. For −τ1 6 s 6 t+ τi,
XN (t− s+ δ(t)) = eÃ(t−s+τi).

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Relative controllability of multiagent systems 297

Thus, we obtain that

x(t) = eÃ(t+τ1+τi)ϕ(−τ1 − τi)

+

t+τi∫
−τ1

eÃ(t−s+τi)ϕ′(s− τi) ds−
t+τi∫
τ1

eÃ(t−s+τi)Ãϕ(s− τi) ds

= eÃ(t+τ1+τi)ϕ(−τ1 − τi) + ϕ(t)− eÃ(t+τ1+τi)ϕ(−τ1 − τi)
= ϕ(t).

The proof is completed.

Lemma 3. System (3) with x(t) = θ, t ∈ [−τN , 0], has a solution of the following form:

x̃(t) =

t∫
0

XN (t− s)C̃u(s) ds.

Proof. Suppose (3) with x(t) = θ, t ∈ [−τN , 0], has a solution of the form

x̃(t) =

t∫
0

XN (t− s)g(s) ds. (10)

Taking the derivative of (10) with respect to t and following from Lemma 1 to yield

˙̃x(t) = g(t) + Ã

t∫
0

XN (t− s)g(s) ds+ B̃1

t∫
0

XN (t− s− τ1)g(s) ds

+ · · ·+ B̃N

t∫
0

XN (t− s− τN )g(s) ds.

For 0 6 s 6 t, we have−τi 6 t−s−τi 6 t−τi, i = 1, . . . , N . Thus, for s ∈ (t−τi, t],
x̃(t− s− τi) = θ. For s ∈ [0, t− τi], x̃(t− s− τi) 6= θ, i = 1, . . . , N . Further, we obtain

˙̃x(t) = g(t) + Ã

t∫
0

XN (t− s)g(s) ds+ B̃1

t−τ1∫
0

XN (t− s− τ1)g(s) ds

+ · · ·+ B̃N

t−τN∫
0

XN (t− s− τN )g(s) ds

= g(t) + Ãx̃(t) + B̃1x̃(t− τ1) + · · ·+ B̃N x̃(t− τN ).

Comparing it with (3), we obtain g(t) = C̃u(t). This completes the proof.
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Lemma 4. System (3) with initial data (8) has a solution of the form

x(t) = XN

(
t+ τ1 + δ(t)

)
ϕ
(
−τ1 − δ(t)

)
+

0∫
−τ1

XN (t− s+ δ(t))
(
ϕ′
(
s− δ(t)

)
− Ãϕ(s− δ(t))

)
ds

+

t∫
0

XN (t− s)C̃u(s) ds. (11)

Proof. It follows from Lemmas 2–3 that solution of (3) with initial data (8) is (11). This
completes the proof.

4 Controllability

In this section, relative controllability of multiagent systems will be considered. Firstly,
we present the definition of it.

Definition 1. System (3) is called relatively controllable if, for any initial vector function
ϕ(t), t ∈ [−τN , 0], and final state x1, there exists a terminal time t1 > 0 and a measurable
function u∗(t) such that system (3) has a solution x∗(t) on [−τN , t1], which satisfies
x∗(t1) = x1 and x∗(t) ≡ ϕ(t), t ∈ [−τN , 0].

4.1 Gramian criterion

Given some t1 > 0, construct the following matrix:

G(0, t1) =

t1∫
0

XN (t1 − s)C̃C̃TXT
N (t1 − s) ds. (12)

Denote

η = XN (t1 + τ1)ϕ(−τ1) +

0∫
−τ1

XN (t1 − s)
(
ϕ′(s)− Ãϕ(s)

)
ds. (13)

For the controllability of (3), we have the following theorem hold.

Theorem 1. System (3) is relatively controllable if and only if there exists a t1 > 0 such
that (12) is nonsingular.

Proof. Sufficiency. Suppose that (12) is nonsingular for some t1 > 0. For any terminal
state x1 and any initial function x(t) = ϕ(t), t ∈ [−τN , 0], construct the following control
input:

u∗(s) = C̃TXT
N (t1 − s)G−1(0, t1)(x1 − η).
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From Lemmas 2–4 the solution of (3) always has the form of (11), which automatically
satisfies the initial condition, thus we have

x∗(t1) = η +

t1∫
0

XN (t1 − s)C̃C̃TXT
N (t1 − s) dsG−1(0, t1)(x1 − η)

= η +G(0, t1)G−1(0, t1)(x1 − η) = x1,

which implies that system (3) is relatively controllable.
Necessity. Suppose that system (3) is relatively controllable, but (12) is singular.
There exists a nonzero vector x̃ such that x̃TG(0, t1)x̃ = 0. Thus, we have that

t1∫
0

∥∥x̃TXN (t1 − s)C̃
∥∥2

ds =

t1∫
0

x̃TXN (t1 − s)C̃C̃TXT
N (t1 − s)x̃ds

= x̃TG(0, t1)x̃ = 0.

Further, we arrive at

x̃TXN (t1 − s)C̃ = θ, s ∈ [0, t1].

System (3) being relatively controllable, we know that for an arbitrary initial function
x(t) = ϕ(t), t ∈ [−τN , 0], and the given terminal states x̃ and θ, there exist measurable
control functions such that

x∗(t1) = η +

t1∫
0

XN (t1 − s)C̃u∗1(s) ds = x̃,

x∗(t1) = η +

t1∫
0

XN (t1 − s)C̃u∗2(s) ds = θ.

Thus, we obtain
t1∫

0

XN (t1 − s)C̃
(
u∗1(s)− u∗2(s)

)
ds = x̃.

Further, it yields

x̃Tx̃ =

t1∫
0

x̃TXN (t1 − s)C̃
(
u∗1(s)− u∗2(s)

)
ds = 0,

which implies that x̃ = θ. This contradicts with the assumption that x̃ is a nonzero vector.
Thus, (12) is nonsingular. The proof is completed.

4.2 Rank criterion

Next, we consider the rank criterion of relative controllability for the system with single
delay.
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For τ1 = τj , j = 2, . . . , N , system (3) degenerates into

ẋ(t) = Ãx(t) + B̄x(t− τ1) + C̃u(t), (14)

where B̄ is the sum of B̃j , j = 1, . . . , N . With reference to [22], solution of (14) with
initial data (8) is degenerated into the form

x(t) = X1(t+ τ1)ϕ(−τ1) +

t∫
0

X1(t− s)C̃u(s) ds

+

0∫
−τ1

X1(t− s)
(
ϕ′(s)− Ãϕ(s)

)
ds,

where X1(·) is defined by (5) with the matrix sequence (4) replaced by

Qk+1(s) = ÃQk(s) + B̄Qk(s− τ1). (15)

In what follows, we will use Y (·) to replace X1(·) for the simplicity of notation.

Lemma 5. The derivative of Y (·) up to any kth order can be represented as

Y (k)(t) =

k∑
j=0

Qk+1(jτ1)Y (t− jτ1). (16)

Proof. It is trivial for k = 1. Suppose that (16) holds for any integer k. Then for k + 1,
we have

Y (k+1)(t) =

k∑
j=0

Qk+1(jτ1)
(
AY (t− jτ1) + B̄Y (t− jτ1 − τ1)

)
= Qk+1(0)ÃY (t) +Qk+1(kτ1)B̄Y (t− kτ1 − τ1)

+

k∑
j=1

(
Qk+1(jτ1)Ã+Qk+1(jτ1 − τ1)B̄

)
Y (t− jτ1)

=

k+1∑
j=0

Qk+2(jτ1)Y (t− jτ1),

which implies that (16) holds for any positive integer k, and the proof is completed.

Next, we present the result of the rank criterion for system (14) without matrices
pairwise permutation.

Theorem 2. If rank(Q̂) = Nn, then system (14) is relatively controllable for some t1,
where

Q̂ =
[
Q1(0)C̃, Q2(0)C̃, . . . , QNn+1(0)C̃,

Q2(τ1)C̃, Q3(τ1)C̃, . . . , QNn+1(τ1)C̃, . . . , QNn+1(Nnτ1)C̃
]
. (17)
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Proof. Assume that rank(Q̂) = Nn, whereas system (14) is uncontrollable. Then from
Theorem 1 we know there exists a nonzero vector x̄ such that

x̄TY (t)C̃ = θ, t ∈ [0, t1]. (18)

Taking the derivative of Y (·) in (18) up to any order and from Lemma 5 we have

x̄TY (k)(t)C̃ =

k∑
j=0

x̄TQk+1(jτ1)Y (t− jτ1)C̃ = θ, t ∈ [0, t1]. (19)

Taking t = 0 in (19), we have

x̄TQk+1(0)C̃ = θ, k = 0, 1, 2, . . . . (20)

Continuous take t = (j − 1)τ1 and suppose that

x̄TQk+1((j − 1)τ1)C̃ = θ (21)

holds, where j = 1, 2, . . . , k. For t = jτ1, we have

x̄TY (k)(jτ1)C̃

=

∞∑
i=0

x̄TQk+1(0)Qi+1(0)C̃
(jτ1)i

Γ(i+ 1)

+

∞∑
i=0

x̄T
(
Qk+1(0)Qi+1(τ1) +Qk+1(τ1)Qi+1(0)

)
C̃

((j − 1)τ1)i

Γ(i+ 1)
+ · · ·

+

∞∑
i=0

x̄T
(
Qk+1(0)Qi+1

(
(j − 1)τ1

)
+Qk+1(τ1)Qi+1

(
(j − 2)τ1

)
+ · · ·

+Qk+1

(
(j − 1)τ1

)
Qi+1(0)

)
C̃

τ i1
Γ(i+ 1)

+ x̄TQk+1(jτ1)C̃

= θ.

From the definition of the matrix sequence in (15) we know thatQk+1(jτ1) is nothing but
a combination of Ã and B̄ in a stack with k positions, where j matrices B̄ are inserted
into j positions, and k−j matrices Ã are inserted into k−j positions, total ways of which
are Cjk = k!/(j!(k − j)!). Thus, forQk+i+1(jτ1), we regard it as a combination of Ã and
B̄ in a stack with k + i positions: we separate the stack into two parts with the former
part being k positions, and the latter one being i positions. The first way is that all the j
matrices B̄ are inserted into the latter i positions, and the k − j matrices Ã are inserted
into the remained k − j positions. The second way is that j − 1 matrices B̄ are inserted
into the latter i positions, the remained one B̄ is inserted into the former k positions, and
the k− j matrices Ã are inserted into the k− j positions. Following this process until the
j matrices B̄ are all inserted into the former k positions, we obtain that

Qk+i+1(jτ1) = Qk+1(0)Qi+1(jτ1) +Qk+1(τ1)Qi+1

(
(j − 1)τ1

)
+ · · ·

+Qk+1(jτ1)Qi+1(0)
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by using the stepwise principle of combination, where j = 1, 2, . . . , k + i. Thus, we
further arrive at

x̄TY (k)(jτ1)C̃ =

∞∑
i=0

x̄TQk+i+1(0)C̃
(jτ1)i

Γ(i+ 1)

+

∞∑
i=0

x̄TQk+i+1(τ1)C̃
((j − 1)τ1)i

Γ(i+ 1)
+ · · ·

+

∞∑
i=0

x̄TQk+i+1(jτ1)C̃
τ i1

Γ(i+ 1)
+ x̄TQk+1(jτ1)C̃

= θ.

From the assumption we obtain that x̄TQk+1(jτ1)C̃ = θ, which implies that (21) holds.
Rearrange (20) and (21) to yield

x̄T
[
Q1(0)C̃, Q2(0)C̃, . . . , Q2(τ1)C̃, Q3(τ1)C̃, . . . ,

Qk+1(kτ1)C̃, . . .
]

= θ, (22)

which implies that

x̄T
[
Q1(0)C̃, Q2(0)C̃, . . . , Qk+1(0)C̃,Q2(τ1)C̃, Q3(τ1)C̃, . . . ,

Qk+1(τ1)C̃, . . . , Qk+1(kτ1)C̃
]

=: x̄TQ̄ = θ (23)

for any finite integer k > Nn because the solution of (22) is a solution of (23). This
implies that Q̄ is row linearly dependent, thus we have rank(Q̄) < Nn, which contra-
dicts with the assumption. Thus, for the relative controllability of system (14), we need
rank(Q̂) = Nn.

Remark 2. If ÃB̄ = B̄Ã, then (17) is degenerated into

Q̂ =
[
C̃, ÃC̃, . . . , ÃNnC̃, B̄C̃, ÃB̄C̃, . . . , ÃNn−1B̄C̃,

B̄2C̃, ÃB̄2C̃, . . . , ÃNn−2B̄2C̃, . . . , B̄NnC̃
]
.

Further, if B̄ = Θ, then (17) is degenerated into

Q̂ =
[
C̃, ÃC̃, . . . , ÃNnC̃

]
;

if Ã = Θ, then (17) is degenerated into

Q̂ =
[
C̃, B̄C̃, . . . , B̄NnC̃

]
.

5 Simulation

In this section an example of leader–follower multiagent systems will be considered to
verify the theorem deduction. To simplify the problem, we assume that the system consists
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of 4 agents, and we show the interaction topology in Fig. 1, where the one labeled by 0 is
assigned as leader, and the others are followers. The dynamics of the followers obey the
following delay differential equations:

ẋ1(t) = a1x1(t) + b1x1(t− τ1) + c1u1(t),

ẋ2(t) = a2x2(t) + b2x2(t− τ2) + c2u2(t),

ẋ3(t) = a3x3(t) + b3x3(t− τ3) + c3u3(t),

(24)

where xi ∈ R, i = 1, 2, 3. Taking values as τ1 = 2, τ2 = 3, τ3 = 4, t1 = 10, and x1 =
[−100,−50,−40]T, we know that the delays of each agent satisfy the condition in (1).
Thus, for an initial vector function x(t) = [10 cos(5t),−40 sin(πt), 50 exp(−2t)]T and
protocol (2), system (24) always has a solution in the form of (11). Denote that δ̃(t) =
t1 − τ3 − t. From Theorem 1 we know if (12) is nonsingular, system (24) is relative
controllable. For 0 6 t < τ3, the control input function is

u∗(t) = C̃TXT
2 (t1 − t)G−1(0, t1)(x1 − η),

where η is defined by (13). For τ3 6 t < 2τ3, the control input is

u∗(t) = C̃TXT
2 (t1 − t)G−1(0, t1)(x1 − η)

+ C̃T

δ̃(t)∫
0

XT
2 (s1)B̃T

3 X
T
2

(
δ̃(t)− s1

)
ds1G

−1(0, t1)(x1 − η).

For 2τ3 6 t < 3τ3, the control input is

u∗(t) = C̃TXT
2 (t1 − t)G−1(0, t1)(x1 − η)

+ C̃T

δ̃(t)∫
0

XT
2 (s1)B̃T

3 X
T
2

(
δ̃(t)− s1

)
ds1G

−1(0, t1)(x1 − η)

+ C̃T

δ̃(t)∫
τ3

s1∫
τ3

XT
2 (s2 − τ3)B̃T

3 X
T
2 (s1 − s2)B̃T

3 X
T
2

(
δ̃(t)− s1

)
ds1

×G−1(0, t1)(x1 − η).

Other parameters are taken values as: a1 = 0.2, a2 = 0.5, a3 = 0.8, b1 = 0.18,
b2 = 0.3, b3 = 0.5, c1 = 0.8, c2 = 0.1, c3 = 0.7, w12 = 1.2, w13 = 0.21, w21 = 1.8,
w32 = 0.12, p10 = 0.24, p20 = 0.2. We have that (12) is nonsingular, thus system (24) is
relative controllable. Results of simulation are presented in Figs. 2–4.

From Figs. 2–4 we know that all the trajectories of the followers achieve the given
terminal state x1 in a finite time under the steering of leader, which verifies the theory
deduction.
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Figure 1. The communication topology of
multiagent systems.
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Figure 2. State of the first agent.
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Figure 3. State of the second agent.
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Figure 4. State of the third agent.

6 Conclusion

This paper considers the relative controllability of multiagent systems with pairwise dif-
ferent delays in states. Based on a neighbor-based interaction protocol, the multiagent
systems are transformed into a multidelayed system, and solution of it is obtained by
improving the methods in [22, 23] without the pairwise matrices permutation. Following
from the solution, Gramian criterion of relative controllability is established, and rank
criterion is also yielded for the single-delayed system without pairwise matrices permu-
tation. This work guarantees that we can further explore the iterative learning control of
the delayed multiagent systems (see more in [4]).
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