14 research outputs found

    On the Impact of Network Topology on Systemic Risk: Network Reconstruction, Stress Testing and Control

    Get PDF
    In this thesis I undertake four projects that investigate the influence of network topology on financial contagion. In the first project I study the ability of three net- work models to reconstruct the topology and contagion dynamics of a real interbank network. This allows me to identify the main topological properties of networks that affect financial contagion. In the third and fourth projects I develop a framework to reverse stress test interbank networks. Based on this framework I propose a strategy to reduce systemic losses and I test the strategy in interbank networks with different topologies. I develop the methodological background to the reverse stress testing framework in the second project. In this project I study network control theory, to investigate the influence of network topology on the cost of managing the dynamics of networks

    Node dynamics on graphs: dynamical heterogeneity in consensus, synchronisation and final value approximation for complex networks

    Get PDF
    Here we consider a range of Laplacian-based dynamics on graphs such as dynamical invariance and coarse-graining, and node-specific properties such as convergence, observability and consensus-value prediction. Firstly, using the intrinsic relationship between the external equitable partition (EEP) and the spectral properties of the graph Laplacian, we characterise convergence and observability properties of consensus dynamics on networks. In particular, we establish the relationship between the original consensus dynamics and the associated consensus of the quotient graph under varied initial conditions. We show that the EEP with respect to a node can reveal nodes in the graph with increased rate of asymptotic convergence to the consensus value as characterised by the second smallest eigenvalue of the quotient Laplacian. Secondly, we extend this characterisation of the relationship between the EEP and Laplacian based dynamics to study the synchronisation of coupled oscillator dynamics on networks. We show that the existence of a non-trivial EEP describes partial synchronisation dynamics for nodes within cells of the partition. Considering linearised stability analysis, the existence of a nontrivial EEP with respect to an individual node can imply an increased rate of asymptotic convergence to the synchronisation manifold, or a decreased rate of de-synchronisation, analogous to the linear consensus case. We show that high degree 'hub' nodes in large complex networks such as Erdős-Rényi, scale free and entangled graphs are more likely to exhibit such dynamical heterogeneity under both linear consensus and non-linear coupled oscillator dynamics. Finally, we consider a separate but related problem concerning the ability of a node to compute the final value for discrete consensus dynamics given only a finite number of its own state values. We develop an algorithm to compute an approximation to the consensus value by individual nodes that is ϵ close to the true consensus value, and show that in most cases this is possible for substantially less steps than required for true convergence of the system dynamics. Again considering a variety of complex networks we show that, on average, high degree nodes, and nodes belonging to graphs with fast asymptotic convergence, approximate the consensus value employing fewer steps.Open Acces

    Structural controllability of temporal networks

    Get PDF
    The control of complex systems is an ongoing challenge of complexity research. Recent advances using concepts of structural control deduce a wide range of control related properties from the network representation of complex systems. Here, we examine the controllability of systems for which the timescale of the dynamics we control and the timescale of changes in the network are comparable. We provide analytical and computational tools to study controllability based on temporal network characteristics. We apply these results to investigate the controllable subnetwork using a single input. For a generic class of model networks, we witness a phase transition depending upon the density of the interactions, describing the emergence of a giant controllable subspace. We show the existence of the two phases in real-world networks. Using randomization procedures, we find that the overall activity and the degree distribution of the underlying network are the main features influencing controllability.Bundesministerium für Bildung und Forschung 10.13039/501100002347German Academic Exchange Service 10.13039/501100001655Peer Reviewe

    Structural engineering of evolving complex dynamical networks

    Get PDF
    Networks are ubiquitous in nature and many natural and man-made systems can be modelled as networked systems. Complex networks, systems comprising a number of nodes that are connected through edges, have been frequently used to model large-scale systems from various disciplines such as biology, ecology, and engineering. Dynamical systems interacting through a network may exhibit collective behaviours such as synchronisation, consensus, opinion formation, flocking and unusual phase transitions. Evolution of such collective behaviours is highly dependent on the structure of the interaction network. Optimisation of network topology to improve collective behaviours and network robustness can be achieved by intelligently modifying the network structure. Here, it is referred to as "Engineering of the Network". Although coupled dynamical systems can develop spontaneous synchronous patterns if their coupling strength lies in an appropriate range, in some applications one needs to control a fraction of nodes, known as driver nodes, in order to facilitate the synchrony. This thesis addresses the problem of identifying the set of best drivers, leading to the best pinning control performance. The eigen-ratio of the augmented Laplacian matrix, that is the largest eigenvalue divided by the second smallest one, is chosen as the controllability metric. The approach introduced in this thesis is to obtain the set of optimal drivers based on sensitivity analysis of the eigen-ratio, which requires only a single computation of the eigenvector associated with the largest eigenvalue, and thus is applicable for large-scale networks. This leads to a new "controllability centrality" metric for each subset of nodes. Simulation results reveal the effectiveness of the proposed metric in predicting the most important driver(s) correctly.     Interactions in complex networks might also facilitate the propagation of undesired effects, such as node/edge failure, which may crucially affect the performance of collective behaviours. In order to study the effect of node failure on network synchronisation, an analytical metric is proposed that measures the effect of a node removal on any desired eigenvalue of the Laplacian matrix. Using this metric, which is based on the local multiplicity of each eigenvalue at each node, one can approximate the impact of any node removal on the spectrum of a graph. The metric is computationally efficient as it only needs a single eigen-decomposition of the Laplacian matrix. It also provides a reliable approximation for the "Laplacian energy" of a network. Simulation results verify the accuracy of this metric in networks with different topologies. This thesis also considers formation control as an application of network synchronisation and studies the "rigidity maintenance" problem, which is one of the major challenges in this field. This problem is to preserve the rigidity of the sensing graph in a formation during motion, taking into consideration constraints such as line-of-sight requirements, sensing ranges and power limitations. By introducing a "Lattice of Configurations" for each node, a distributed rigidity maintenance algorithm is proposed to preserve the rigidity of the sensing network when failure in a sensing link would result in loss of rigidity. The proposed algorithm recovers rigidity by activating, almost always, the minimum number of new sensing links and considers real-time constraints of practical formations. A sufficient condition for this problem is proved and tested via numerical simulations. Based on the above results, a number of other areas and applications of network dynamics are studied and expounded upon in this thesis

    Structural controllability of temporal networks

    Get PDF
    The control of complex systems is an ongoing challenge of complexity research. Recent advances using concepts of structural control deduce a wide range of control related properties from the network representation of complex systems. Here, we examine the controllability of systems for which the timescale of the dynamics we control and the timescale of changes in the network are comparable. We provide analytical and computational tools to study controllability based on temporal network characteristics. We apply these results to investigate the controllable subnetwork using a single input. For a generic class of model networks, we witness a phase transition depending upon the density of the interactions, describing the emergence of a giant controllable subspace. We show the existence of the two phases in real-world networks. Using randomization procedures, we find that the overall activity and the degree distribution of the underlying network are the main features influencing controllability

    Social Shaping for Multi-Agent Systems

    Get PDF
    Multi-agent systems have gained attention due to advances in automation, technology, and AI. In these systems, intelligent agents collaborate through networks to achieve goals. Despite successes, multi-agent systems pose social challenges. Problems include agents finding resource prices unacceptable due to efficient allocation, interactions being cooperative/competitive, leading to varying outcomes, and sensitive data being at risk due to sharing. Problems are: 1. Price Acceptance; 2. Agent Cooperation and Competition; 3. Privacy Risks. For Price Acceptance, we address decentralized resource allocation systems as markets. We solve price acceptance in static systems with quadratic utility functions by defining allowed quadratic ranges. For dynamic systems, we present dynamic competitive equilibrium computation and propose a horizon strategy for smoothing dynamic pricing. Concerning Agent Cooperation and Competition, we study the well-known Regional Integrated Climate-Economy model (RICE). It's a dynamic game. We analyze cooperative and competitive solutions, showing impact on negotiations and consensus for regional climate action. Regarding Privacy Risks, we infer network structures from linear-quadratic game best-response dynamics to reveal agent vulnerabilities. We prove network identifiability tied to controllability conditions. A stable, sparse system identification algorithm learns network structures despite noise. Lastly, we contribute privacy-aware algorithms. We address network games where agents aggregate under differential privacy. Extending to network games, we propose a Laplace linear-quadratic functional perturbation algorithm. A tutorial example demonstrates meeting privacy needs through tuning. In summary, this thesis solves social challenges in multi-agent systems: Price Acceptance, Agent Cooperation and Competition, and Privacy Risks

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page
    corecore