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Abstract 
 

   Networks are ubiquitous in nature and many natural and man-made systems can be 

modelled as networked systems. Complex networks, systems comprising a number of nodes 

that are connected through edges, have been frequently used to model large-scale systems from 

various disciplines such as biology, ecology, and engineering. Dynamical systems interacting 

through a network may exhibit collective behaviours such as synchronisation, consensus, 

opinion formation, flocking and unusual phase transitions. Evolution of such collective 

behaviours is highly dependent on the structure of the interaction network. Optimisation of 

network topology to improve collective behaviours and network robustness can be achieved by 

intelligently modifying the network structure. Here, it is referred to as “Engineering of the 

Network”. 

   Although coupled dynamical systems can develop spontaneous synchronous patterns if 

their coupling strength lies in an appropriate range, in some applications one needs to control 

a fraction of nodes, known as driver nodes, in order to facilitate the synchrony. This thesis 

addresses the problem of identifying the set of best drivers, leading to the best pinning control 

performance. The eigen-ratio of the augmented Laplacian matrix, that is the largest eigenvalue 

divided by the second smallest one, is chosen as the controllability metric. The approach 

introduced in this thesis is to obtain the set of optimal drivers based on sensitivity analysis of 

the eigen-ratio, which requires only a single computation of the eigenvector associated with 

the largest eigenvalue, and thus is applicable for large-scale networks. This leads to a new 

“controllability centrality” metric for each subset of nodes. Simulation results reveal the 

effectiveness of the proposed metric in predicting the most important driver(s) correctly.  

    Interactions in complex networks might also facilitate the propagation of undesired 

effects, such as node/edge failure, which may crucially affect the performance of collective 

behaviours. In order to study the effect of node failure on network synchronisation, an 

analytical metric is proposed that measures the effect of a node removal on any desired 

eigenvalue of the Laplacian matrix. Using this metric, which is based on the local multiplicity 

of each eigenvalue at each node, one can approximate the impact of any node removal on the 

spectrum of a graph. The metric is computationally efficient as it only needs a single eigen-

decomposition of the Laplacian matrix. It also provides a reliable approximation for the 

“Laplacian energy” of a network. Simulation results verify the accuracy of this metric in 

networks with different topologies. 
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    This thesis also considers formation control as an application of network 

synchronisation and studies the “rigidity maintenance” problem, which is one of the major 

challenges in this field. This problem is to preserve the rigidity of the sensing graph in a 

formation during motion, taking into consideration constraints such as line-of-sight 

requirements, sensing ranges and power limitations. By introducing a “Lattice of 

Configurations” for each node, a distributed rigidity maintenance algorithm is proposed to 

preserve the rigidity of the sensing network when failure in a sensing link would result in loss 

of rigidity. The proposed algorithm recovers rigidity by activating, almost always, the 

minimum number of new sensing links and considers real-time constraints of practical 

formations. A sufficient condition for this problem is proved and tested via numerical 

simulations.  

Based on the above results, a number of other areas and applications of network dynamics 

are studied and expounded upon in this thesis.    

 

Keyword: Complex networks, collective behaviours, synchronisability, pinning control, 

Laplacian spectrum, fault tolerance. 
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Chapter 1  

Introduction 

 
 

1.1 Network science 

Networks of dynamical units, modelling many natural and human-made systems, may 

exhibit cooperative phenomena through diverse interactions. Many real systems can be 

modelled as networks, ranging from biology to ecology, information and technology (Newman 

2010). For example, the World Wide Web (WWW) represents an information network. 

Transportation systems are terminals or stations connected over a network of roads, railways 

or air. The brain is a network of neurons interacting with each other to process information 

received from sensing inputs. Social networks are networks of people connected to each other 

as friends, colleagues or followers. Networks among animals form food chains. The new 

critical enabler concept of smart grids refers to electricity networks that can intelligently 

integrate the behaviour and actions of all stakeholders to deliver electricity efficiently, 

sustainably and economically. 

Historically, the study of networks has been mainly a branch of applied mathematics 

known as graph theory (Boccaletti et al. 2006). The root of this theory dates back to 1736 with 

the problem known as the “Seven Bridges of Königsberg” which was proposed by the Swiss 

mathematician Leonhard Euler (Euler 1741). This is a problem of seven bridges over four areas 

in a town as shown in Fig. 1.1. It required finding a round trip for a citizen to pass through the 

town in such a way that each bridge would be crossed exactly once. Although Euler 

mathematically proved that such a path does not exist, it was the first time that graphs were 
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applied to solve a problem. Since then, graph theory has witnessed massive progress. Many 

practical problems have been solved via graph theory, such as the maximum flow from a source 

to a sink in a network of pipes. Parallel with graph theory, network science has emerged as a 

multidisciplinary field of science in recent years.  

 

Fig. 1.1. Konigsberg bridge problem (Euler 1741) 

 

In recent decades, network science has gained ever-increasing popularity thanks to 

massive developments in data processing capabilities and availability of real-world data. Tools 

borrowed from graph theory have been applied on networks constructed from data collected 

from real systems. Network science was initiated within the society of Physics by introducing 

small-world and scale-free network models in two seminal publications by Watts and Strogatz 

in Nature (Watts and Strogatz 1998) and by Barabási and Albert in Science (Barabasi and 

Albert 1999). The discovery of small-world and scale-free properties in many real complex 

systems in different disciplines has attracted a great deal of interest. In a network with small-

world features, there is a relatively short path between any two nodes despite their large size. 

In contrast, there are many networks in nature in which most nodes have very few connections 

and yet some nodes are hubs, attracting most of the connections; these networks show scale-

free properties.  

Many real-world complex systems contain nodes with internal dynamics. An example is 

power grids, where the individual nodes have certain dynamics. An interesting collective 

behaviour occurs in networks of coupled dynamical agents when they are all doing the same 

thing at the same time. This is called synchronisation or consensus.  
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1.2 Synchronisation as a collective behaviour    

Synchronisation processes, as a major collective behaviour observed in coupled dynamical 

systems, has been extensively studied in different domains, such as biology, ecology, 

climatology, sociology, technology, and arts (Pikovsky et al. 2003, Yu et al. 2014, Liu and Pan 

2015). It has been experimentally shown that synchronisation plays an important role in the 

pathogenesis of several neurological diseases, such as Parkinson’s and Alzheimer’s diseases 

and essential tremor (Uhlhaas and Singer 2006). It is known that synchrony is rooted in human 

life from the metabolic processes in our cells to the highest cognitive tasks being performed as 

a group of individuals. For example, the effect of synchrony has been described in experiments 

of people communicating in a background of shared, non-directive conversation, song or 

rhythm, or of groups of children interacting to an unconscious beat (Winfree 1967, Arenas et 

al. 2008).  

Study of the synchronisation phenomena is rooted in the discovery of an odd kind of 

sympathy in two pendulum clocks suspended side by side of each other (Arenas et al. 2008). 

The Huygens’ pendulum clocks swung with exactly the same frequency and 180 degrees out 

of phase even if they were perturbed. Wiener and Winfree contributed in this field by studying 

the question of “How is it that thousands of neurons or fireflies or crickets can suddenly fall 

into step with one another, all firing or flashing or chirping at the same time, without any leader 

or signal from the environment?” (Wiener 1965). Their contribution was applicable only for 

all-to-all connected networks which limited its application to large real-world networks. The 

introduction of Small-World (SW) networks by Watts and Strogatz in 1998 was a revolution 

for synchronisation theory (Watts and Strogatz 1998). 

Synchronisation, also known as consensus or pinning control in engineering applications, 

has many applications in engineering systems. Power grid networks need to attain 

synchronisation to guarantee a sound operation of the smart grid in the steady state (Machowski 

et al. 2011). Pinning control pins the states of all nodes to a desired trajectory by controlling 

only a small subset of nodes, called driver nodes. Classic stability analysis methods, widely 

studied by the control community, often fail to handle large complex networks. Inspired by the 

Lyapunov stability theory, the master stability function concept has been proposed to study the 

local stability of synchronisation in a complex network (Pecora and Carroll 1998). This 

formalism proposes a sufficient condition for synchronisability and decouples topology and 

dynamics. Based on this, a topology-dependant metric was suggested for ranking dynamical 

networks with identical nodes based on their synchronisability (Sorrentino et al. 2007).   
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Recent research results reveal that synchronisation is highly dependent on the structure of 

the interaction network as well as dynamics of agents (Porfiri and di Bernardo 2008, Rad et al. 

2008, Wu et al. 2009, Posfai et al. 2013, Orouskhani et al. 2016). This has initiated much 

research on stability and stabilisability of synchronised systems as well as on the optimisation 

of interaction topology, when possible (Pecora and Carroll 1998, Sorrentino et al. 2007, Jalili 

et al. 2015). This thesis is inspired by the role of network topology on collective behaviours in 

complex networks.   

 

1.3 Failure tolerant complex networks 

   Systems are always subject to faults. For a long time, Fault Detection (FD) and Fault 

Tolerant Control (FTC) have been interesting research fields in the control community. The 

main approach is to detect a pre-defined class of faults in the system and to accommodate them 

by performing modification or re-structuring of controllers. This can preserve the performance 

of the faulty system still in an acceptable region. Distributed FD and FTC has a long history in 

control systems (Staroswiecki and Amani 2015). However, there is still a big gap in 

implementing these algorithms in real-world complex systems with thousands of nodes.  

   Because complex networks are interconnected, any local fault can easily propagate 

through them thereby affecting the performance of their collective behaviours. Although many 

complex systems display a surprising degree of tolerance against faults (Albert et al. 2000), 

cascading failures have occurred in major infrastructures such as computer and power 

networks, and will continue to impact our everyday life. Many of these failures work like an 

avalanche mechanism, triggered by a small initial shock in one point of the system. In addition 

to failure events in nodes or interconnections, the distributed nature of many complex systems 

makes them extremely vulnerable to attacks. It has been shown that heterogeneous networks, 

for instance, are particularly vulnerable to these attacks (Motter and Lai 2002). Robustness 

against failures and attacks has been an active field of research in recent decades. 

    When attempting to design complex networks tolerant against failures or attacks, 

important questions should be addressed, such as “Which components are the most vulnerable 

points for collective behaviour in a complex network?” or “How can one reduce the failure 

propagation speed (or even stop it) in a complex network?”. Answering these questions 

requires combining mathematical graph theory with recent advances in control theory. 

Although many research results have been reported to address these problems, there is still a 
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lack of computationally efficient but nevertheless sufficiently accurate methods for working 

with complex networks. Also, in some applications, such as large-scale power networks, 

techniques fulfilling real-time requirements of online operation has not been well addressed 

yet.  

   

1.4 Objectives and contributions 

The first objective of this thesis is to derive easily computable and accurate enough metrics 

to rank nodes of a network based on their influence on collective behaviours. This problem is 

studied in the case when these nodes are supposed to be drivers of the network and also when 

they are subject to failure. Metrics should be computationally efficient, i.e. easily applicable to 

large networks, and also suitable for networks with different topologies. The second objective 

is to develop an online algorithm to prevent the propagation of failure of nodes in a complex 

network.  

The main contributions of this thesis are: 

1) A centrality measure based on sensitivity analysis of the topology of the connection 

graph which finds (with some approximation) the most influential driver node(s) in 

pinning control strategy i.e. the strategy for which synchronisation of the whole 

network to the reference state is attained over the widest range of the coupling 

parameter. The proposed metric is computationally efficient as it requires only a single 

eigen-decomposition of the Laplacian matrix of the graph. The metric shows sub-

modularity feature so that the best driver set of any size can be derived from the 

eigenvector associated with the largest eigenvalue of the Laplacian matrix of the 

network (Moradi Amani et al. 2017, Moradi Amani et al. 2018). 

2) A new metric is proposed to identify the spectral impact of node removal in a complex 

network. This metric is based on the concept of “local multiplicity” and can measure 

the impact of the removal of any node on any desired eigenvalue of the Laplacian 

matrix. It is computationally efficient, accurate and applicable to networks with 

different topologies. Using this metric, the most vulnerable node in the consensus of 

complex networks are identified as an example (Moradi Amani et al. 2018). It also 

works accurately in finding vital nodes for the spectral gap and the Laplacian energy.  

3) An online algorithm is proposed to recover rigidity of the sensing graph in the formation 

of agents, as an engineering application of synchronisation. Using this algorithm, the 
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collective behaviour (formation) remains stable if failure of a sensing link makes the 

sensing graph non-rigid (Moradi Amani et al.). This is a distributed algorithm which 

satisfies the real-time requirements of this application and recovers the rigidity by 

adding a minimum number of links. 

 

 

1.5 Organisation of the thesis 

This thesis consists of three main sections as well as this introduction chapter, a chapter 

on literature review and a conclusion chapter. Chapters 3 and 4 form section I in which 

contribution 1 is addressed. Contributions 2 and 3 are addressed in Chapters 5 and 6, 

respectively forming section II of this thesis. In each chapter, theoretical achievements are first 

stated and are then supported by simulations.  

In Chapter 3, the problem of controllability of complex networks using a set of driver 

nodes is first formulated. Then, based on sensitivity analysis, a new metric is proposed to find 

the best driver node. It requires a single eigen-decomposition of the Laplacian matrix of the 

graph. Simulations on a number of synthetic networks show that the proposed metric is accurate 

for large networks and outperforms heuristics in finding the best driver node. This metric is 

then extended to find the best driver set of nodes, which again results in a computationally 

efficient and accurate metric for this unsolved problem of the network community (Moradi 

Amani et al. 2017, Moradi Amani et al. 2018). Application of these theories to solve problems 

in distributed generation systems and dementia networks have also been published in various 

publications I co-authored (Moradi Amani et al. 2017) and (Tahmassebi et al. 2018), 

respectively.  These results are reported in Chapter 4.  

Chapter 5 focuses on the spectral impact of node removal in a graph. That is when a node 

(and all its adjacent links) is removed from a network, to what extent will the eigenvalues of 

the Laplacian matrix change. Immediate application of this problem is to study the effect of 

node removal on the performance of some collective behaviours, such as the speed of 

convergence in consensus. The local multiplicity concept, which is indeed a generalisation of 

the algebraic (or geometric) multiplicity when the graph is seen from a specific node, is applied 

to address this problem. A new metric is introduced to rank nodes of the network based on the 

impact of their removal on any desired eigenvalue of the Laplacian matrix. It is applicable to 

networks with repeated eigenvalues and requires only a single eigen-decomposition; thus, easy 

to calculate. Simulation results corroborate the accuracy of this metric and demonstrate its 
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advantage over heuristic techniques. Preliminary studies of this chapter have been reported in 

(Moradi Amani et al. 2018) while the main contribution has been submitted.  

Chapter 6 address the problem of how to prevent the propagation of node/link failure. 

This chapter focuses on the formation control problem where stability is achieved using 

distance-based local control actions in agents over a minimally rigid sensing graph. Failure in 

a link results in loss of rigidity in the sensing graph and instability of the formation. An online 

distributed rigidity recovery technique using “lattice of configurations” is proposed to solve 

the rigidity maintenance problem in the case of link breakage. This approach satisfies the real-

time requirements of the problem and is not computationally complicated. Another technique 

based on the combination of sensing and communication networks is proposed for formation 

recovery in the case of emergency. Results of this chapter have been submitted for publication. 

Finally, the thesis concludes with Chapter 7 where some future directions are proposed.  
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   The study of collective behaviours in complex networks requires knowledge about the 

structure of the interaction network as well as the dynamics of agents (M. Profiri and M. di 

Bernardo 2008, Rad et al. 2008, Wu et al. 2009, Posfai et al. 2013, Gates and Rocha 2016, 

Orouskhani et al. 2016). Mathematical graph theory is a powerful tool to study these aspects 

from a structural perspective. In addition, dynamical behaviours, such as synchronisability, can 

be addressed from the control theory point of view. In this chapter, research results on 

synchronisation and synchronisability of complex networks are reviewed in the context of 

graph and control theories. 

 

2.1 Complex networks and graph theory  

      Many networked systems can be modelled as a collection of nodes interacting over a maze 

of connections, appropriately referred to as a complex network. In the context of graph theory, 

a complex network is modelled as a graph with a set of nodes V connected over a set of edges 

E ⊂ V⨯V and is given the notation G = (V, E). Nodes can have either static or dynamical 

behaviours. The set of links E establishes a network among agents, which contains 

directed/undirected or weighted/unweighted links. The topology of this network can be either 
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static or evolving over time. Complex network methodology is flexible enough to cover 

different types of networked systems.  

The study of real-world systems requires mathematical models of networks with different 

structures. One way of modelling that has received considerable attention, is through “random 

graphs”. This approach lies at the intersection of graph theory and probability theory and 

considers a set of random edges placed between the nodes of a graph. In the late 1950’s, two 

mathematicians, Paul Erdős and Alfréd Rényi described a network with complex topology by 

this random graph methodology (Erdős and Rényi 1960). They proposed a model for 

homogenous networks where nodes are connected to each other with probability p. Although 

it was clear that many real-world complex networks have neither regular nor completely 

random topologies, the Erdős-Rényi random model dominated scientific thinking for some 50 

years, because of lack of precise models or computational facilities for large-scale real-world 

networks (Wang and Chen 2003).  

In recent decades, to uncover generic properties of different kinds of complex networks, 

it was discovered that many real-world networks show small-world effect or scale-free feature 

(as formally defined below). Some real-world networks, such as social networks and power 

systems, have the small-world feature in which any two nodes are connected through a path 

containing only a small number of nodes. In other words, in small-world networks, there is 

always a short path between any two nodes regardless of the size of the network (Cui et al. 

2010). In order to address these networks, Watts and Strogatz introduced the concept of small-

world networks in 1998 (Watts and Strogatz 1998). Their proposed model covers networks 

from a completely regular to completely random topology by changing a rewiring probability 

p (Fig. 2.1). They showed that as p increases, networks start to demonstrate small-world 

features such as high clustering coefficient, a phenomenon observed in many real systems.   

 

Fig. 2.1. Regular, small-world and random networks for a set of 20 nodes  (Watts and Strogatz 1998).  
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Although networks with Watts-Strogatz (WS) topology is often more realistic than the 

Erdős-Rényi (ER) model, both of them show almost the same degree distribution. In graph 

theory, the degree of a node is defined as the number of its connections. The degree 

distributions of both WS and ER networks peak at an average value and decays exponentially 

(Wang and Chen 2003). This means that many of the nodes have almost the same number of 

connections which is the feature observed in homogenous networks. However, many real 

networks, such as the World Wide Web and the Internet, in which the number of nodes grows 

over time, do not follow such a degree distribution. In order to address these heterogeneous 

networks, Barabasi and Albert proposed a model resulting in networks with power-law degree 

distribution (Barabasi and Albert 1999). These networks are often called Scale-Free (SF) 

networks. In these networks, nodes with higher degrees have more chance to receive new 

connections than those with lower degrees.    

2.1.1 Graph theory notation and terminology 

  Here, some basic concepts and terminology of graph theory are reviewed.  

Definition 2.1: A graph G = (V, E) is a non-empty finite set of N nodes or vertices, denoted 

by the set V = {v1, v2, …,vN}, and a set of edges E⊂V⨯V, i.e. a subset of pairs of elements of N. 

 Two nodes connected by an edge are referred to as adjacent or neighbouring nodes. For 

example, the pair (i, j) or aij denotes the edge between nodes i and j. The order of pairs matters 

to the structure in directed graphs (digraphs), i.e. aij ≠ aji, but not in undirected ones. If there is 

a directed edge from vi to vj, vi and vj are called “parent” and “child”, respectively. In addition 

to binary networks, i.e. those with aij ∈ {0,1}, there are weighted networks in which, the edge 

(i, j) is labelled with the weight wij ∈ ℝ+. This weight can be applied to quantify the amount of 

different types of interactions between nodes, such as distance, force and impedance. Figure 

2.2 displays the graphical representation of three graphs that are (a) undirected, (b) directed, 

and (c) weighted.  
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Fig. 2.2. A graphical representation of (a) undirected, (b) directed and (c) weighted undirected. 
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In directed graphs, the in-degree and out-degree of a node are numbers of links pointing 

to or from the node, respectively. In undirected networks, the number of links divided by the 

total number of nodes, i.e. 2×E/N, is the average degree of the graph. The distance between 

two nodes of a graph is the number of edges along the shortest path connecting them. When 

there is a path between any pair of nodes, an undirected (directed) graph is called “connected” 

(“strongly connected”). A directed graph is “weakly connected” if it is connected when all links 

are converted to undirected. One of the basic concepts in graph theory is reachability. Node j 

is reachable from node i if there is a path from node i to j. The concept of connectivity can be 

defined based on the reachability of nodes.  

A graph in which all nodes have the same degree is called “regular”. A graph is called 

“complete” if there is an edge between every pair of distinct nodes. A walk from node i to node 

j is a series of nodes and edges which starts with node i and finishes with node j. The length of 

the walk is defined as the number of edges in it. A walk with the minimum number of edges 

between two nodes is referred to as the shortest path. The average shortest path is one of the 

important properties of a complex network and demonstrates how well information flows 

throughout the network globally (Wasserman and Faust 1994, Scott 2017). 

Existence of closed walks or the cycle structure in a network is conveyed by the “clustering 

coefficient”. The clustering coefficient shows the presence of triangles or loops in a network 

and quantifies the efficiency of the network in transferring information locally. It can be 

calculated by (Costa et al. 2007): 

𝐶 =
3𝑁Δ

𝑁3
  

where C is the clustering coefficient, NΔ and N3 are the number of triangles and the number of 

triple combinations of nodes of the network, respectively, which can be calculated as   

𝑁Δ = ∑ 𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘𝑘>𝑗>𝑖   

𝑁3 = ∑ (𝑎𝑖𝑗𝑎𝑖𝑘 + 𝑎𝑗𝑖𝑎𝑗𝑘 + 𝑎𝑘𝑖𝑎𝑘𝑗)𝑘>𝑗>𝑖   

   

The clustering coefficient is also known as a measure of fault tolerance of a network, i.e. 

the lower the clustering coefficient is, the more fault vulnerable the network will be. In other 

words, networks with small clustering coefficients indicate poor local connectivity and any 

fault in one of the nodes may dramatically affect their communication performance (Latora and 

Marchiori 2001). 
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Although flexible enough to model many real-world networks, the presence of these 

interactions in complex networks has raised important questions which have been neglected in 

the studies of traditional disciplines (Wang and Chen 2003). For example, how do social 

networks mediate the transmission of disease? How does a failure propagate through a large 

power network or a global financial network? Is a network with a pre-defined topology robust 

enough against failures? What is the most efficient network topology in a networked system? 

These questions have led scholars to some important research problems concerning how the 

network structure facilitates or constrains the network dynamical behaviour. 

 

2.1.2 Network models 

In this thesis, synthetic scale-free, small-world and Erdős-Rényi networks are considered 

to support the theoretical achievements. Scale-free networks are constructed using the static 

model proposed in (Goh et al. 2001). In this algorithm, starting with a fully connected core for 

the graph, at each step a new node is added to the network and creates a number of connections 

as follows. The edges for the new nodes are linked to an old node i with a probability 

proportional to (ki+B)/∑j(kj+B), where ki is the degree of the node i and B is a constant to control 

the heterogeneity of the network; as B increases, heterogeneity of the network decreases 

(Chavez et al. 2005).  

Scale-free networks have heterogeneous node degrees. In order to construct networks with 

almost homogeneous degrees, the model proposed by Watts and Strogatz in their seminal work   

(Watts and Strogatz 1998) is used. The network construction algorithm is as follows. First, a 

regular graph is considered in which each node is connected to its m-nearest neighbours (each 

node has 2m connections). Then, the links are rewired with probability p, provided that self-

loops and multiple connections are avoided. For some medium values of the rewiring 

probability, one obtains a network that has both small-world property (the average path length 

scales logarithmically with the network size), and a rather high clustering coefficient (or 

transitivity). Watts and Strogatz showed that many real networks (including power grids) have 

this property (Watts and Strogatz 1998). Degree-homogeneous networks can also be 

constructed using the model proposed by Erdős and Rényi (Erdős and Rényi 1960). In this 

model, the nodes are connected with probability p. In other words, random probability values 

are assigned to all link in a complete network; then links with probabilities less than p are 

removed. 
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2.1.3 Spectral Graph theory 

Graph theory is the mathematical framework of complex networks in which matrix 

representation has been always of interest (Amaral and Ottino 2004, Barabasi and Oltvai 2004, 

Bornholdt and Schuster 2006). A graph G = (V, E) with N nodes and m edges can be described 

by an adjacency matrix or an incidence matrix.  

Definition 2.2. The adjacency matrix for a graph G is an N⨯N square matrix A = [aij] in 

which aij = 1 (i, j = 1, 2,…,N) whenever there is a link from node i to j and zero otherwise (aij 

= wij ∈ ℝ+ for weighted graphs).  

Definition 2.3. A Graph G can be represented by an N⨯m matrix H = [hik] called incidence 

matrix where hik equals to 1 whenever node i is incident with edge k.  

If G is a simple graph, i.e. an undirected and unweighted graph containing no self-loops 

and no multiple edges, then the eigenvalues αi (i = 1,2, …, N) of its adjacency matrix A satisfies 

∑i αi = 0 and ∑i αi
2 = 2m. In general, ∑i αi

l counts the number of closed walks of length l. 

Perron-Frobenius theorem: If an n × n matrix has nonnegative entries, then it has a 

nonnegative real eigenvalue λ, which has maximum absolute value among all eigenvalues. This 

eigenvalue λ has a nonnegative real eigenvector. 

The Perron–Frobenius Theorem immediately implies that if G is connected, then the 

largest eigenvalue αmax of its adjacency matrix is real and has multiplicity 1 (Lovasz 2007). 

2.1.3.1 The Laplacian matrix and its properties  

Another important matrix which has outstanding properties and is heavily used in graph 

theory is the Laplacian matrix. The Laplacian matrix brings important information on the 

connectivity properties of a graph.  

Definition 2.4. The Laplacian matrix L associated with a graph G is defined as L = D − A 

in which A is the adjacency matrix of the graph and D = [dij] is a diagonal matrix for which dii 

= ∑jaij and dij = 0 for i ≠ j.  

The Laplacian matrix can be also represented using the incidence matrix.  For an edge l 

connecting nodes i and j of the undirected graph G = (V, E), one can define hli = 1 and hlj = −1. 

Then the Laplacian matrix is 

𝐿 = 𝐻𝐻𝑇 =∑ℎ𝑙ℎ𝑙
𝑇

𝑚

𝑖=1
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where m is the number of edges and hl refers to the lth column of the incidence matrix H. 

Definition 2.5. The set sp(L) = {λ1
m1, λ2

m2,…, λd
md} in which λi (i = 1, 2, …, d) is the ith 

eigenvalue of L with multiplicity mi, is called spectrum of the Laplacian matrix.  

The Laplacian matrix of an undirected graph is a symmetric matrix; thus all its eigenvalues 

are real and have non-negative values according to the Gershgorin circle theorem (Gershgorin 

1931). In other words, The Laplacian matrix of an undirected graph is a positive semi-definite 

matrix. In addition, all its eigenvectors are real and orthogonal. Since the Laplacian matrix has 

a zero-row sum, it always admits λ1 = 0 as the lowest eigenvalue and corresponding eigenvector 

v1= (1,1,…,1). Therefore, the spectrum of a connected simple graph, i.e. a graph with non-

repetitive Laplacian eigenvalues, is of the form of sp(L) = {λ1, λ2,…, λN} where 0 = λ1 < λ2 

≤…≤ λN. 

 Definition 2.6. The second smallest eigenvalue of the Laplacian matrix, λ2, is known as 

the algebraic connectivity (Fiedler 1973) with the corresponding normalized eigenvector 

referred to as the Fiedler vector.  

Algebraic connectivity shows how well-connected the graph is since λ2(L) is monotone 

increasing in the edge set, i.e. if G1 = (V, E1) and G = (V, E2) are such that E1 ⊆ E2, then λ2(L1) 

≤ λ2(L2) (Fiedler 1973). It means that the smaller the λ2 is, the closer the graph is to 

disconnection. Another important property of the Laplacian eigenvalues is the number of zero 

eigenvalues. Multiplicities of zero eigenvalues are proved to be the number of isolated 

components of a graph (Boccaletti et al. 2006). The maximum eigenvalue λN is real from 

Perron-Frobenius theorem and is called the spectral gap. 

 

2.2 Controlling complex networks 

Control theory, an interdisciplinary branch of engineering and mathematics, has been 

studied for a long time to influence dynamical systems towards better performances. 

Traditionally, the control design process has been based on mathematical models of dynamical 

systems in the form of state-space equations. Extensive research in this area has promoted 

advanced control systems, such as optimal, robust and adaptive control algorithms. However, 

with increasing complexity and the distributed nature of complex networked systems, the 

traditional methodologies may not satisfy real-time constraints required for real systems. This 
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has started a paradigm shift in which network structure is also considered when dealing with a 

control problem (Yu et al. 2011).  

Complex networks methodology provides a promising addition to existing control theories 

in order to deal with networked dynamical systems. It essentially studies structural and 

dynamical aspects of a collection of nodes and links without heavy dependence on the system 

dimension. Therefore, it may reduce the computational cost of traditional control 

methodologies applied to networked systems. Here, we briefly overview recent progress in the 

field of networks synchronisation and control. 

 

2.2.1 Controllability of dynamical systems 

Controllability is one of the fundamental concepts in the mathematical control theory. The 

notion of controllability of a dynamical system was first introduced in (Kalman et al. 1963). 

Definition 2.7. State (output) controllability of a dynamical system is defined as the 

possibility of driving states (outputs) of the system from an arbitrary initial condition to any 

desired value in a finite time by applying appropriate control signals (Kailath 1980).  

The classic and famous method to ensure state controllability of a dynamical system states 

that the system 

𝒙̇(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡)  

𝒚(𝑡) = 𝐶𝒙(𝑡) + 𝐷𝒖(𝑡)    (2.1) 

is full state controllable if and only if Kalman’s controllability matrix [B, AB, …, An-1B] has a 

full rank (Kailath 1980). x ∈ ℝn and u ∈ ℝp are state and input signals, respectively and A, B, 

C and D are matrices with appropriate dimensions where A and B are called state and input 

matrices, respectively. 

There are important relationships between controllability and stabilisability of both finite- 

and infinite-dimensional linear control systems. A linear dynamical system is stabilisable if its 

unstable modes are controllable (Chen 1998). Controllability is also strongly related to the 

theory of minimal realization and canonical forms of dynamical systems, which have been 

developed by Kalman, Jordan and Luenberger (Kailath 1980). The problem of minimum 

energy control for many classes of linear and time-delay systems is also related to the concept 

of controllability (Klamka 2013).  
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Although control theory is a mathematically developed branch of engineering, 

fundamental questions pertaining to the controllability of complex networks make the 

applicability of traditional approaches questionable. Traditional controllability conditions 

should be updated considering a new player; that is the network topology. In addition, 

computationally efficient measures are required to study real-world large-scale complex 

dynamical networks. These difficulties have been the root of recent research in controllability 

of complex networks.    

 

2.2.2 Controllability of complex networks 

The classic controllability analysis method is often inapplicable in the context of complex 

networks due to the system dimension (Pasqualetti et al. 2014). It has also been shown that 

network control fails in practice if the controllability Gramian is ill-conditioned, which can 

occur even when the corresponding Kalman’s controllability matrix is well conditioned (Sun 

and Motter 2013). Therefore, a new paradigm is required for controllability studies of complex 

networks. The fact that the field of complex networks originated from mathematical graph 

theory motivates a graph-inspired understanding of controllability rather than the traditional 

matrix-theoretical one. 

The structural controllability concept (Lin 1974) has been studied in the context of 

complex networks (Liu et al. 2011) in order to identify a driver set with the minimum number 

of nodes to control the network. Although the proposed method is simple and easy to 

implement, it does not consider internal dynamics of nodes. Later, (Cowan et al. 2012) showed 

that deriving only one node is enough to control the whole network if internal nodal dynamics 

are considered. Clearly, control of a large network by driving only a single node requires huge 

amount of energy to be injected into that node, which is impractical, if not impossible, in most 

real-world applications. Therefore, new metrics are required to identify the best set driver nodes 

in a complex network.  

Controllability of complex networks has been also studied from an energy perspective. 

The trade-off between control energy and the number of control (driver) nodes is characterised 

in (Pasqualetti et al. 2014). They also proposed a decoupled control strategy for controlling 

stable complex networks, which is based on network partitioning. The first step requires 

extracting the least controllable cluster based on the minimum eigenvalue of the controllability 

Gramian and then calculating the second smallest eigenvalue of its Laplacian matrix. This 
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process should be repeated m time (m being the number of driver nodes) resulting in a 

computationally complicated process. The controllability Gramian has also been applied to 

derive the lower and upper energy bounds in control of complex networks (Yan et al. 2012). 

Metrics based on controllability and observability Gramians are also studied for sensor and 

actuator placement problems (Summers et al. 2016). 

 

2.2.2.1 Structural controllability 

Control performance in complex networks depends on both the structure of the network 

and the dynamics of nodes. Lin first introduced the concept of Structural Controllability for 

linear time-invariant dynamical systems (Lin 1974). Consider the dynamical system (2.1) with 

the following state and input matrices: 

𝐴 = [
𝑎11 𝑎12 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

] , 𝒃 = [
0
0
𝑏3

]  

A graph for pair (A,b) can be generally obtained as follows (Lin 1974). For every non-

fixed entry (here, non-zero entry) of the augmented matrix [A | b], there exist a directed graph 

between states xi themselves or between xi and bj. Diagonal elements of matrix A result in self-

loops in the graph. An example is shown in Fig. 2.3(a). It is clear from this graph that nodes x1 

and x2 are nonaccessible. A node xi is called nonaccessible if and only if there is no possibility 

to reach xi from any input bi. It is concluded in (Lin 1974) that the pair (A,b) is not structurally 

controllable if there exists at least one nonaccessible state xi in its graph. It is also clear that the 

system is not full state controllable if it is not structurally controllable.    

x1 x2

x3

b

 

x1 x2 x3

b
 

(a) (b) 

Fig. 2.3. Structural controllability study using graphs 
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In addition, there may be “dilation” in the graph which makes the pair (A,b) structurally 

uncontrollable although all nodes are accessible. To introduce the concept of dilation, suppose 

the dynamical system (2.1) with the following state and input matrices: 

𝐴 = [
0 𝑎12 0
0 𝑎22 0
0 𝑎32 0

] , 𝒃 = [
𝑏1
𝑏2
𝑏3

]  

for which, the graph of Fig. 2.3(b) represents the pair (A,b). Clearly, all xi’s are accessible from 

b. Now, let’s consider the set of states S = {x1, x2, x3}. Consider the set of nodes from which at 

least one node of S is accessible, defined as T(S) = {x2, b}. The graph of pair (A,b) contains a 

dilation if and only if there is a subset of S with k states for which there is no more than k − 1 

nodes in T(S). Therefore, the graph in Fig. 2.3(b) contains dilation. If the graph of pair (A,b) 

contains dilation, then system (2.1) is structurally uncontrollable (Lin 1974).  

The dynamical system (2.1) is structurally controllable if the graph related to its pair (A,b) 

is accessible and has no dilation (Lin 1974). This proposes a computationally efficient 

algorithm to study structural controllability which works with matrices of only 0 and 1 

elements. This efficiency paved the way for structural controllability towards complex 

networks as presented by (Liu et al. 2011). However, in deriving this controllability measure, 

the internal dynamics of the nodes were ignored. This thesis combines structural proprieties 

and nodal dynamics in order to address the controllability of complex networks.      

 

2.2.2.2 Synchronisation 

In addition to structural and energy-based studies, controllability of complex networks is 

also addressed in the context of collective behaviours, such as synchronisation, consensus, 

formation and flocking. Among them, synchronisation has attracted a lot of research activities 

(Tang et al. 2014). The synchronisation problem in a network of coupled dynamical agents is 

presented as follows. Let’s consider a dynamical network including N identical individual 

dynamical nodes and an undirected and unweighted connection network. The equations of 

motion of the network read: 

𝑑𝒙𝑖

𝑑𝑡
= 𝐹(𝒙𝑖) − 𝜎 ∑ 𝑙𝑖𝑗

𝑁
𝑗=1 𝐻𝒙𝑗;    𝑖 = 1,2, … , 𝑁,   (2.2) 

where xi∈ℝn is the n-dimensional state vector, F: ℝn→ℝn defines the individual dynamical 

systems’ state equation, σ represents unified coupling strength and L = [lij] is the Laplacian 
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matrix. Non-zero elements of H determine the coupled elements of the oscillators.  Let’s first 

distinguish between local and global synchronisation: 

Definition 2.8. The dynamical system described by (2.2) synchronises globally if the 

following condition is satisfied for any initial conditions, 

lim
𝑡→∞

‖𝒙𝑖(𝑡) − 𝒙𝑗(𝑡)‖ = 0;      ∀𝑖, 𝑗 = 1,2,… , 𝑁    (2.3) 

The dynamical system described by (2.2) synchronises locally if (2.3) holds only when 

||xi(0) – xj(0)|| < ε for an ε > 0.        █ 

 

The “synchronisation” topic is widely studied in physics. It is also studied in other 

disciplines under different terms, such as consensus of multi-agent systems in engineering. 

Relevant research results, reported in the last two decades (see e.g. (Tang et al. 2014) as a 

survey), can be classified in the following important topics (Tang et al. 2014):  

• Robustness of synchronisation in complex networks 

• Controllability of complex networks 

• Observability of complex networks 

• The synchronisation of multiplex networks 

• Explosive Synchronisation of complex networks 

Although synchronisation emerges in a network of coupled dynamical nodes under some 

conditions, control actions facilitating synchrony are required in many applications. There has 

been much interest in this topic in the control community. 

 

2.2.3 Synchronisability of complex networks 

Synchronisability of complex networks can be generally defined as the ease by which 

nodes of the network synchronise their activities. Although coupled dynamical systems can 

develop spontaneous synchronous patterns if their coupling strength lies in an appropriate 

range, in some applications one needs to control a fraction of nodes, known as driver nodes in 

order to facilitate the synchrony (Sun and Motter 2013, Gao et al. 2014). This control action 

can provide faster synchronisation over a wider range of coupling strength.  
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In addition to the structural techniques, pinning control has also been proposed in the 

literature as a strategy to synchronise coupled dynamical nodes of a network onto a desired 

common trajectory (Porfiri and di Bernardo 2008, Q. Song and J. Cao 2010). The idea is to 

actively control a subset of nodes (usually called driver nodes) to achieve the control objective 

while the control action is propagated to the rest of the network through couplings. The 

objective of pinning control is to pin all nodes of the system to the following desired state, i.e. 

x1(t) = x2(t) = … = xn(t) = s(t) (Wang and Chen 2002): 

𝑑𝒔(𝑡)

𝑑𝑡
= 𝐹(𝒔(𝑡)).    (2.4) 

The master stability function (Pecora and Carroll 1998) gives necessary conditions for the 

local stability of the synchronisation manifold x1(t) = x2(t) = … = xn(t) = s(t). To study local 

stability of this manifold, states of nodes can be perturbed around equilibrium as xi(t) = s(t) + 

ζi (t). The variational equations of (2.2) are 

𝜁𝑖̇(𝑡) = ∇𝐹(𝑠)𝜁𝑖(𝑡) − 𝜎 ∑ 𝑙𝑖𝑗𝐻𝜁𝑗
𝑁
𝑗=1 ,    𝑖 = 1,2, … , 𝑁  (2.5) 

where ∇ stands for the Jacobian. For an undirected network, i.e. L = LT, the similarity 

transformation ηi = ζi.P can be defined such that L = P ΓPT  where Γ is a diagonal matrix 

including eigenvalues of L and columns of P are their corresponding eigenvectors. As a result, 

(2.5) is equivalent to 

𝜂̇𝑖(𝑡) = ∇𝐹(𝑠)𝜂𝑖(𝑡) − 𝜎𝜆𝑖𝐻𝜂𝑖(𝑡),    𝑖 = 1,2,… ,𝑁  (2.6) 

where λi’s are eigenvalue of the Laplacian matrix L. The largest Lyapunov exponent of 

variational equation (2.6) is called the Master Stability Function and is shown here by Λ(a) in 

which a = σλi. From the Lyapunov stability theory, the synchronised system is locally stable if 

Λ(a) < 0. 

Based on the master stability function, one can classify synchronisation systems into two 

different classes (Jalili 2013): Class I (like x-coupled Lorenz Oscillators) in which Λ(a) 

becomes zero at some values a = a* and stay negative for any a > a* (see Fig. 2.4 a). On the 

other hand, class II systems (such as x-coupled Rössler oscillators) have negative master 

stability function only in the range a1
* < a < a2

* (Fig. 2.4 b). For the latter class, 

synchronisability condition is a1
*< σλ2 < σλ3 < … < σλN < a2

* which is satisfied if 

𝜆𝑁

𝜆2
<

𝑎2
∗

𝑎1
∗     (2.7) 
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The left-hand side of this condition is related to the topology of the network, while the 

right-hand side depends on the dynamics of individual nodes. From this condition, it is 

concluded that the smaller λN / λ2, the better its synchronisability (Jalili 2013).  

Λ(a) Λ(a)

a a

0 0

(a) (b)

a
*

2a
*

1a
*

 

Fig. 2.4. Different types of system considering their Lyapunov exponent Λ(a) behaviour 

 

In order to pin (synchronise) the dynamical network (2.2) to the reference dynamics (2.4), 

the following state feedback controller should be designed: 

𝑑𝒙𝑖

𝑑𝑡
= 𝐹(𝒙𝑖) − 𝜎 ∑ 𝑙𝑖𝑗

𝑁
𝑗=1 𝐻𝒙𝑗 + 𝜎𝛽𝑖𝑘𝑖(𝒙𝑖 − 𝒔);    𝑖 = 1,2,… , 𝑁,  (2.8) 

where ki is the feedback gain. βi determines the node where the control signal should be applied; 

βi = 1 for driver nodes and zero otherwise. Therefore, the control system should propose driver 

nodes (for which βi = 1) and their control gains ki simultaneously, which results in a 

combinatorial optimisation problem (Summers et al. 2016). There is still a lack of research on 

selecting the best driver node(s) and their corresponding control gains. This thesis addresses 

the first problem.  

Following the master stability function formalism, local stability of the synchronised 

solution can be evaluated in terms of N independent blocks with the difference that λi’s are not 

eigenvalues of the Laplacian matrix, but they are for the following augmented Laplacian 

matrix: 

𝐶 =  [

𝑙11 + 𝑘1𝛽1 𝑙12 … 𝑙1𝑁
𝑙21 𝑙22 + 𝑘2𝛽2 … 𝑙2𝑁
⋮ ⋮ ⋮ ⋮
𝑙𝑁1 𝑙𝑁2 … 𝑙𝑁𝑁

]    (2.9) 

which is the Laplacian matrix of the network diagonally perturbed by control gains of driver 

nodes. Eigenvalues of this augmented Laplacian matrix are ordered as 0 < λ1 ≤ λ2 ≤… ≤ λN. 

From the master stability function formalism, R = λN/λ1 can be considered as the 

synchronisability metric for the network (Sorrentino et al. 2007, Jalili et al. 2015); i.e. the 
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smaller R, the better the synchronisability (pinning controllability). Based on this metric, 

having two sets of driver nodes S1 and S2 with the same size, S1 is argued to provide more 

effective pinning control than S2, if the network synchronises to the reference state for a larger 

range of coupling parameter when nodes in S1 is chosen as drivers. The metric R depends on 

eigenvalues of the augmented Laplacian and connects the pinning controllability studies to 

spectral graph theory.  

Pinning controllability can be evaluated in terms of the required control action, the number 

of nodes to be pinned and the feedback topology (Sorrentino et al. 2007). An important 

unsolved challenge in this context is to find the set of best drivers, leading to the best pinning 

control performance. Depending on the choice of pinning controllability metric, one can 

interpret what “optimality” means. An obvious choice for the optimal set is to select vital nodes, 

e.g., those with the highest degree, betweenness or closeness centrality. These heuristic 

methods, although computationally cost-effective, often result in non-effective pinning 

controllability (Liu et al. 2011, Jalili et al. 2015, Zhou et al. 2015, Moradi Amani et al. 2017). 

Recently, evolutionary optimisation algorithms have also been applied to find a set of most 

influential nodes in pinning control, resulting in a better performance than the above heuristic 

methods (Jalili et al. 2015, Orouskhani et al. 2016). However, evolutionary optimisation 

algorithms require computing an objective function, i.e. the synchronisation criteria, at every 

step of the optimisation process, and they often converge only after many steps, where the 

number of steps grows exponentially with network size. Therefore, such methods can only be 

applied to relatively small networks. 

Using the metric R, pinning controllability can be influenced through network topology 

(i.e. lij’s), location of driver nodes (or βi’s) and control gains of driver nodes (i.e. ki’s). In other 

words, synchronisation of a complex network can be facilitated through: 

1) Optimizing network topology by  

a. Adding/removing nodes (Watanabe and Masuda 2010) 

b. Adding / Removing / Rewiring edges (M. Jalili and Yu 2016) 

2) Selecting appropriate control nodes (Moradi Amani et al. 2018) 

3) Designing proper control gains for drivers  

Chapter 3 of this thesis addresses the problem of identifying the best drivers in 

controllability of complex networks using sensitivity analysis of R. Then, application of these 
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achievements in solving practical problems in distributed power generation and dementia 

networks are studied in Chapter 4. 

 

2.3 Controllability in the case of node/edge removal 

What is the most vulnerable node of a network to be attacked or to be removed? What is 

the most influential node in a network? These are typical questions of great interest to the 

network science community. Removing important nodes from complex networks is a challenge 

in fighting against criminal organisations and preventing disease outbreaks (Jahanpour and 

Chen 2013). Central (or vital) nodes are those with significant importance for the functionality 

of the network. A number of centrality measures have been proposed to quantify the importance 

of a node in complex networks (Mieghem 2011). The simplest one is the degree centrality, 

measuring the number of connections a node has, which proposes hubs as vital nodes. 

However, to answer the above questions comprehensively, terms like “vulnerable”, 

“influential” or “important” should be linked to a particular network function, as the degree is 

not always the best choice of centrality for many dynamical properties (Liu et al. 2011, Cowan 

et al. 2012). This thesis focuses on synchronisability of a complex network which is measured 

by the metric R.  

“Robustness” and “vulnerability” of a network against failures and attacks have been of 

much interest especially when security (Motter and Lai 2002) or fault tolerance (Staroswiecki 

and Amani 2015) of networked systems are considered. It has been shown that scale-free 

networks are robust against random node removal (Albert et al. 2000), but are fragile to specific 

removal of the most highly connected nodes (Xiao Fan and Guanrong 2002). Interactions 

among nodes as well as interconnections between networks facilitate the spread of undesired 

effects of failures and attacks which may result in catastrophic cascading failures (Motter and 

Lai 2002, Buldyrev et al. 2010). Therefore, increasing the robustness of the network against 

failures and attacks has been a hot research field in the recent decade. 

In order to increase the robustness of a network or to identify the most vulnerable node(s), 

domain-specific metrics, i.e. those which directly address synchronisability, should be 

proposed. Heuristic methods such as degree centrality, betweenness centrality and closeness 

centrality measures are still of much interest in the analysis of network robustness. In (Iyer et 

al. 2013), the size of the largest connected component of the network is studied when nodes 

are removed based on various heuristic centrality metrics. It shows that scale-free and small-
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world networks are vulnerable to simultaneous targeted attacks to nodes with a high degree or 

betweenness centrality. Structural robustness of complex networks against edge removal has 

been also studied in (Wu et al. 2011) where the redundancy of alternative roots in a network is 

characterised using a spectral measure called “natural connectivity”. It is shown in (Jamakovic 

and Van Mieghem 2008) that in Erdős-Rényi networks, the node and link connectivity, is 

related to the second smallest eigenvalue of the Laplacian matrix (also known as algebraic 

connectivity). 

Some centrality measures are connected with the spectral properties of networks (Milanese 

et al. 2010). For example, (Pecora and Carroll 1998) linked the problem of synchronisation 

stability of linearly coupled oscillators to the eigenvalues of the Laplacian matrix of the graph. 

A node removal strategy, called perturbative strategy, was proposed in (Watanabe and Masuda 

2010) which sequentially removes the nodes in order to increase the second smallest eigenvalue 

of the Laplacian matrix of the graph which enhances the synchronisability and convergence 

performance of the network. The applicability of their results is limited to the class of 

dynamical systems in which synchronisation is facilitated in networks with large λ2. A 

subgraph centrality measure is proposed in (Estrada and Rodriguez-Velazquez 2005) based on 

the spectra of the adjacency matrix.  

In Chapter 5 of this thesis, the effect of node removal on pinning controllability of a 

complex network is addressed. Based on the “local multiplicity” concept, a metric is proposed 

to rank nodes based on their influence on λi’s of Laplacian matric. This is an extension of the 

centrality metric proposed in (Moradi Amani et al. 2018). Using this proposed metric, the effect 

of node removal on convergence speed of consensus in networks with different topologies has 

been studied.  

 

2.3.1 Fault tolerance of complex networks 

Interaction between agents in a dynamical network might facilitate the propagation of 

failure effects. Failure of a node or link, which can be modelled as a node/link removal, can 

easily affect the performance of the whole dynamical network and even make it unstable. 

Breakdown of a single node is sufficient to collapse the efficiency of the entire system if the 

node is among the ones carrying the largest load (Crucitti et al. 2004). Study of this case is of 

much interest in power grids where failure in a generation unit or a power link may result in a 

blackout (Kinney et al. 2005). The thesis systematically studies the problem of preventing 
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failure propagation in a complex network using structural modification. It focuses on the 

formation control problem. Driving multiple agents to meet a prescribed constraint on their 

states so as to form a certain shape in the state space, referred to as the formation control 

problem, has attracted a great deal of research effort in recent years. Along with its applications 

to environmental monitoring, mobile robots (Das et al. 2002) and spacecraft formation flying 

(Scharf et al. 2004), theoretical challenges arising from controlling such a network with 

distributed controllers using only local data remain, which makes this important topic 

attractive. 

A multi-agent formation is composed of a number of interacting agents, each equipped 

with its own measurement and control devices. The control objective in a formation is to 

maintain the inter-agent distances constant over time. Multi-agent formation control problems 

are generally categorized into three groups based on different types of measurements and 

control variables (Oh et al. 2015). In the simplest case, each agent has an advanced sensing 

capability, thus being able to sense its own position with respect to a global coordinate system. 

This category is called position-based control, where each agent can directly go to the desired 

location without cooperative communications with its neighbours. Clearly, communications 

among agents can lead to better coordination of their positions, thus enhancing the control 

performance. In the second category, known as displacement-based control, each agent is able 

to sense the relative positions of its neighbours with respect to a global coordinate system, 

meaning that orientations of coordinates of all agents are aligned with the global coordinate 

framework. Compared with the position-based category, agents require less advanced sensing 

capabilities but more cooperation with each other. In the third category, referred to as distance-

based formation control, each agent has its own local coordinate system which is not 

necessarily aligned with its neighbours. Here, sensing systems of agents are simple while inter-

agent communications play an important role in the control of formation. This thesis takes the 

approach of the third category, with bidirectional interactions of agents over a sensing network 

of general topology. 

The existing literature on formation control mainly focuses on the stability of formations 

and the topologies of sensing graphs (see e.g. (Eren et al. 2002, Cortés 2009, Kar and Moura 

2009, Krick et al. 2009, Jalili et al. 2015, Liu et al. 2016, Ramazani et al. 2017)). One of the 

crucial issues for formation shape control, when each agent can only measure in local 

coordinates, is the rigidity of the underlying sensing network (Eren et al. 2003, Krick et al. 

2009). Pure distance measurements can be used in controlling the shape of a formation. If one 
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presents a formation by a graph G = (V, E), the rigidity theory (Laman 1970, Asimow and Roth 

1979, Eren et al. 2002) addresses the question of “active control of which inter-agent distances 

are sufficient to maintain every possible distance between agents at desired values?” In other 

words, rigid formation control is concerned with designing distributed control for each agent 

so that the formation converges to a prescribed rigid shape. In addition to distance, other 

sensing capabilities of agents can contribute to the control of formations among them, e.g. 

bearing has attracted much attention in recent years (Eren 2012, Schiano and Giordano 2017). 

Formations controlled using angles scale up easier than their distance-based counterparts. They 

are also useful when accurate localization is required (Eren 2012). This thesis focuses on the 

shape control considering only the distances between agents.    

   Besides stability, the robustness of a formation against uncertainties and faults is another 

important issue to consider. Formations are usually subject to faults in nodes, such as 

mechanical/electrical failures and loss of agents as well as breakdowns in communication or 

sensing links. One of the early works in this context is reported in (Lewis and Tan 1997), 

whereby using the “virtual structure” concept and based on simulations, a high-precision 

formation control scheme for mobile robots was proposed to preserve the formation in the case 

of failures in nodes. A robust formation control algorithm for a swarm of mobile agents was 

proposed in (Cheng et al. 2005), which could tolerate sensor errors to a certain extent. Recently, 

a formation control technique based on gain adaptation was proposed in the presence of 

arbitrary changes in the sensing graph topology (Fathian et al. 2017).  

   The rigidity maintenance problem, in particular, is to preserve the rigidity of the sensing 

graph in a formation during motion, taking into consideration of constraints such as line-of-

sight requirements, sensing ranges and power limitations. A rigid multiagent network was 

partitioned into two sub-teams in (Carboni et al. 2015) preserving rigidity. The rigidity theory 

was extended to rigidity eigenvalues in (Zelazo et al. 2015), which is used to generate a local 

control action on each agent in order to maintain the rigidity property while some constraints 

such as collision avoidance are met. Maintenance of bearing rigidity in a formation of 

unmanned aerial vehicles was studied in (Schiano and Giordano 2017), where a decentralized 

gradient-based control law was developed to preserve rigidity despite constraints in the sensing 

range. The above control algorithms are all designed assuming that each node always has 

enough neighbours in its sensing range such that a rigid formation is achievable.  

Chapter 6 of this thesis presents a distributed rigidity maintenance algorithm to recover 

rigidity of the sensing graph in the presence of link breakage. The proposed algorithm satisfies 
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real-time requirements of the problem and can recover rigidity with activating the minimum 

number of new sensing links in most of the time. 

 

2.4 Summary 

In this chapter, synchronisability of complex networks was defined and the recent 

literature on this topic was reviewed. The master stability function formalism relates local 

synchronisability of a complex network to the eigen-ratio of its Laplacian matrix, i.e. the largest 

eigenvalue divided by the second smallest one. This connects the synchronisation of complex 

networks to spectral graph theory. From the control theory perspective, structural- and energy-

based approaches to the controllability of dynamical systems were revisited. Although 

traditional controllability approaches are mathematically well developed, they should be 

revised considering network structure when they are extended to complex networks. This is the 

main motivation of this thesis. The problem of identifying the best driver to improve 

synchronisability of complex networks was formulated. Effect of removal in nodes or links on 

synchronisability of complex networks was also considered. Finally, the rigidity maintenance 

problem and its importance in the formation control problem, as an engineering application of 

synchronisation, was addressed and related literature was reviewed.   
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Section I: Enhancing controllability of complex 

networks by selecting appropriate drivers 



 

 

 

Chapter 3  

Choosing the best driver 

nodes in controllability of 

complex networks 
 

 

 

 

In this chapter, an analytical approach is introduced to find the best driver node(s) in a 

complex network. The eigen-ratio of the augmented Laplacian matrix is considered as the 

pinning controllability index. This index has been frequently used in the literature as a metric 

of pinning controllability of dynamical networks (Sorrentino et al. 2007, De Lellis et al. 2008, 

Tang et al. 2013, Jalili et al. 2015). Our approach for obtaining the set of optimal drivers is 

based on the sensitivity analysis of the eigen-ratio (Milanese et al. 2010). It requires a single 

computation of the eigenvectors and thus is applicable to large-scale networks. Achievements 

of this chapter have been published in IEEE Transactions on Circuits and Systems II and 

Physical Review E (Moradi Amani et al. 2017, Moradi Amani et al. 2018). 

 

3.1 Identification of the best driver node 

   Let us consider a dynamical network including N identical individual dynamical nodes and 

an undirected and unweighted connection network. The equations of motion of the network 

read: 

𝑑𝒙𝑖

𝑑𝑡
= 𝐹(𝒙𝑖) − 𝜎 ∑ 𝑙𝑖𝑗

𝑁
𝑗=1 𝐻𝒙𝑗;    𝑖 = 1,2, … , 𝑁,    (3.1) 
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where xi∈ℝn is the n-dimensional state vector, F: ℝn→ℝn defines the individual dynamical 

systems’ state equation and σ represents the unified coupling strength. L = [lij] is the Laplacian 

matrix, that is a zero-row sum matrix with off-diagonal elements equal to −1 if there is a link, 

and 0 otherwise (Mieghem 2011). The diagonal elements of L are the corresponding degree of 

the nodes. H is the projection matrix determining the coupled elements of the oscillators. The 

objective of pinning control is to pin all nodes to the following desired state (Wang and Chen 

2002): 

𝑑𝒔(𝑡)

𝑑𝑡
= 𝐹(𝒔(𝑡)).    (3.2) 

  

Indeed, the reference state is considered to have identical dynamics as the individual 

dynamical systems. In order to pin the dynamical network to s(t), linear state feedback 

controllers are applied only to driver nodes, and the equations of motion read as 

𝑑𝒙𝑖

𝑑𝑡
= 𝐹(𝒙𝑖) − 𝜎 ∑ 𝑙𝑖𝑗

𝑁
𝑗=1 𝐻𝒙𝑗 + 𝜎𝛽𝑖𝑘𝑖(𝒙𝑖 − 𝒔);    𝑖 = 1,2,… , 𝑁,  (3.3) 

  

where ki is the feedback control gain, βi = 1 when node i is a driver node, and otherwise βi = 0. 

When x1(t) = x2(t) = … = xN(t) = s(t), one can state that the network has been synchronised to 

the reference state. Inspired by the master stability function approach (Pecora and Carroll 

1998), the local stability of the synchronised system can be evaluated in terms of the following  

N decoupled blocks (Jalili et al. 2015, Yu et al. 2017): 

𝜼̇𝑖(𝑡) = ∇𝐹(𝑠)𝜼𝑖(𝑡) − 𝜎𝜆𝑖𝐻𝜼𝑖(𝑡),    𝑖 = 1,2,… , 𝑁  (3.4) 

  

where ∇ represents the Jacobian, ηi = xi – s and ai = σλci with λci being the ith eigenvalue of the 

augmented symmetric Laplacian matrix: 

𝐶 =  [

𝑙11 + 𝑘1𝛽1 𝑙12 … 𝑙1𝑁
𝑙21 𝑙22 + 𝑘2𝛽2 … 𝑙2𝑁
⋮ ⋮ ⋮ ⋮
𝑙𝑁1 𝑙𝑁2 … 𝑙𝑁𝑁

]    (3.5) 

  

Provided that the network is connected, the eigenvalues of the symmetric matrix C are real 

and can be ordered as 0 < λc1 ≤ λc2 … ≤ λcN. It has been shown that the eigen-ratio η = λc1/λcN 

accounts for pinning controllability, and larger values indicate better controllability (Sorrentino 

et al. 2007, De Lellis et al. 2008, Tang et al. 2013, Jalili et al. 2015). Interestingly, this technique 
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decouples the dynamical properties of the open-loop network from spectral properties of the 

network as well as from the set of the drivers (Sorrentino et al. 2007). In other words, the 

pinning controllability can be evaluated through spectral properties of matrix C regardless of 

the dynamics of the individual nodes. According to equation (3.5), selecting node i as a driver 

can be represented as a perturbation on the related diagonal element lii in the original Laplacian 

matrix L, i.e. by setting βi = 1. Here, it is assumed that perturbations, caused by control gains 

ki, on all diagonal elements of the matrix C are uniform and ki > 0. In order to obtain theory for 

the optimal driver set, the perturbations need to be much smaller than the diagonal entries of 

the original Laplacian matrix L, i.e. much smaller than the smallest degree of the network. For 

larger perturbations, the accuracy of the method might decline. 

3.1.1 Eigenvalue sensitivity analysis 

From the eigenvalue perturbation theory (Wilkinson 1965, Nelson 1976), changes in the 

eigenvalue λm of the matrix L caused by perturbation in the parameter p is: 

𝑑𝜆𝑚

𝑑𝑝
= 𝒚𝑚

𝑇 𝑑𝐿(𝑝)

𝑑𝑝
𝒙𝑚;    𝑚 = 1,2,… , 𝑁    (3.6) 

  

where yT
m and xm are the left and right eigenvectors of L corresponding to λm, respectively and 

yT
m xm=1. Selecting node i as the driver affects only a diagonal element of L which results in 

𝑑𝜂

𝑑𝑙𝑖𝑖
=

(𝒚1
𝑖 𝒙1
𝑖 )𝜆𝑁−(𝒚𝑁

𝑖 𝒙𝑁
𝑖 )𝜆1

(𝜆𝑁)
2     (3.7)  

  

where the superscript i indicates the ith element of the vector. The vector x1 = 1N is the 

eigenvector of L corresponding to λ1 where 1N is a vector with N elements all equal to 1. For 

undirected graphs we have yn = xn; therefore equation (3.7) can be written as: 

𝑑𝜂

𝑑𝑙𝑖𝑖
=

1

𝜆𝑁
[1 − 𝜂(𝒙𝑁

𝑖 )
2
]    (3.8) 

 

It shows that node i with the maximum value of (xi
N)2 results in the smallest dη/dlii meaning 

that η is closer to the maximum value. That is the node which is associated with the largest 

component (xi
N)2, will have the largest value of η = λc1/λcN, resulting from a perturbation to the 

diagonal lii. This leads us to define the “controllability centrality” Ψ(i) for node i as (Moradi 

Amani et al. 2017):  
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𝛹(𝑖) = (𝒙𝑁
𝑖 )

2
,     𝑖 = 1,2,… ,𝑁    (3.9) 

  

where xN is the eigenvector corresponding to the largest eigenvalue of the Laplacian matrix of 

the graph. Thus, the node with the maximum value of controllability centrality is the best driver 

node for the network. 

 

3.2 Best driver selection in synthetic networks 

The metric obtained in the previous section is applied to a number of synthetic networks 

and its performance is compared with some heuristic methods. As network modes, scale-free, 

small world and Erdös-Rényi networks are considered, with the construction algorithms 

explained in section 2.1.1. 

3.2.1 Networks with scale-free topology 

As heuristic methods, three approaches are considered: selecting hubs (nodes with the 

highest degree) as drivers, setting drivers as nodes with the highest closeness centrality or those 

with highest betweenness centrality. Figure 3.1 compares the performance of the proposed 

controllability centrality measure with heuristic methods in finding the most influential driver 

node. The networks are scale-free with N = 1000 and different values for parameter B and 

varying average degree. First, the exact ranking of the nodes is numerically obtained based on 

their influence on the pinning controllability. To this end, the augmented Laplacian matrix is 

considered when one of the nodes is taken as a driver, and the eigen-ratio is obtained. This is 

repeated for all nodes, resulting in a ranking of nodes (the most influential nodes are also 

identified). This gives the ground-truth, which is compared with the predictions made by the 

methods. For each case, 100 network realizations are considered and report the accuracy of the 

methods (Fig. 3.1). For example, an accuracy of 50% means that the method can correctly 

predict the most influential node in 50% of the cases. The results reveal significant 

outperformance of the proposed controllability centrality measure over the heuristics. For 

example, with B = 0 and an average degree of 2, controllability centrality has an accuracy of 

72%, while others have an accuracy of at most 31%. Among the heuristic methods, degree-

based one shows the worst performance, those based on closeness and betweenness are the 

bests for networks with small and high average degree, respectively. In some cases, the 

heuristic methods can never correctly predict the most influential nodes (i.e., accuracy of 
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almost zero). Furthermore, as the networks become less heterogeneous (B increases), the gap 

between controllability centrality and other methods decreases, indicating that controllability 

centrality is more effective in heterogeneous networks.         

These methods are further compared in terms of their accuracy in predicting the top-T 

most influential nodes (Fig. 3.2). The results indicate that as T increases, the heuristic methods 

get a closer performance to controllability centrality. Indeed, when T is not small, it is highly 

likely that the set of top-T most influential drivers are among the most central nodes (i.e., those 

with the highest degree, closeness or betweenness centrality measures). For example, the top-

10 most influential drivers are those with the highest degrees in more than 90% of the cases in 

networks with B = 0. Often, for T > 2, choosing the nodes based on their degree results in better 

pinning controllability than choosing based on closeness or betweenness centrality measures.   

3.2.2 Networks with small-world topology      

Figure 3.3 shows the accuracy of the methods in Watts-Strogatz networks with N = 1000, 

average degree of 4 and varying rewiring probability p. controllability centrality and the 

degree-based method are clearly better predictors than the closeness- and betweenness-based 

methods. In many cases, controllability centrality results in slightly better accuracy than the 

degree-based method. For p > 0.4, the top driver node is never the one with the highest 

closeness centrality. As p increases, the networks become less homogeneous, and thus, the 

accuracy of controllability centrality increases (similar to scale-free networks). 

 

 

Fig. 3.1: Accuracy of controllability centrality in scale-free networks. Accuracy of controllability centrality (solid), maximum degree (dash-

dot), maximum betweenness centrality (dot) and maximum closeness centrality (dashed) in finding the most influential driver node in 

networks with N=1000 nodes with A) B = 0, B) B = 5, and C) B = 10 (as B increases, the heterogeneity of the network decreases). The 

average degree of the networks varies from 2 to 20 and the results show the accuracies over 100 realizations. 
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Fig. 3.2: Accuracy of controllability centrality in finding the top-T most influential driver nodes in scale-free networks. Accuracy of 

controllability centrality (solid), maximum degree (dash-dot), maximum betweenness centrality (dot) and maximum closeness centrality 

(dashed) in networks with N=1000 nodes. Networks have scale-free structures with B=0 and A) m=5, B) m=10 and C) m=20 as well as B=5 

and D) m=5, E) m=10 and F) m=20 (m is the average degree. In addition, as B increases, the heterogeneity of the network decreases). 

Results are averaged over 100 realizations. 

 

 

Fig. 3.3: Accuracy of controllability centrality in Watts-Strogatz complex networks. Accuracy of controllability centrality (solid), maximum 

degree (dash-dot), Betweenness centrality (dot) and Closeness centrality (dot) in finding the most influential driver node on the 

controllability of Watts-Strogatz complex networks with N=1000 nodes. Watts-Strogatz networks are generated from a regular network with 

a rewiring probability from 0.01 to 0.9 (which is shown on horizontal axes and is logarithmically scaled). Results are averaged over 100 

realization  

 

 

Having only a single driver node might require a very high control gain, which might not 

be practical in some cases. Therefore, the proposed controllability centrality is extended to 

select the best driver set in the next section.  
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3.3 Choosing the best driver set 

Identifying the optimal set of Nd drivers for complex networks results in a combinatorial 

optimisation problem as selection of nodes and designing their control gains should be done 

simultaneously (Summers et al. 2016). In order to obtain a set of μ nodes (Sμ) that if selected 

as driver will have the maximal influence on the pinning controllability, the subset which issues 

the strongest effect on the eigen-ratio η(lii) where i ∈ Sμ is investigated. The amplitude of the 

gradient of η can be written as: 

|∇𝜂|2 = ∇𝜂𝑇 . ∇𝜂 = ∑ (
𝜕𝜂

𝜕𝑙𝑖𝑖
)𝑖∈𝑆𝜇

2

    (3.10) 

  

Considering η << 1 and using equation (3.8), this can be simplified to: 

|∇𝜂|2 = ∑
1

𝜆𝑁
2 [1 − 𝜂(𝒙𝑁

𝑖 )
2
]
2

𝑖∈𝑆𝜇 ≈
1

𝜆𝑁
2 [𝜇 − 2𝜂 ∑ (𝒙𝑁

𝑖 )
2

𝑖∈𝑆𝜇
]  (3.11) 

Therefore, controllability centrality can be defined for the subset Sμ in the same way as it 

is defined in equation (3.9) for a single node: 

𝛹(𝑆𝜇) = ∑ (𝒙𝑁
𝑖 )

2

𝑖∈𝑆𝜇     (3.12) 

  

The optimisation problem to find the subset of μ nodes with maximum influence on η 

reads as: 

maximize
𝑆𝜇

   𝛹(𝑆𝜇)    (3.13) 

  

 In other words, among subsets of μ nodes, the one maximizing Ψ(Sμ), i.e. minimizing 

equation (3.12), is the most influential subset to be considered as the driver for pinning 

controllability.  

3.3.1 Computational efficiency 

Currently, there is no computationally efficient solution to find the set of optimal Nd 

drivers. One can find the global optimal solution through a brute force search on all possible 

combinations of nodes in sets of size Nd and choosing the set with the best performance. 

However, as it requires computing a synchronisation criterion, e.g. the eigen-ratio η, for all 

possible combinations, this combinatorial process is not practical for many cases, especially 

for large-scale networks (Summers et al. 2016).  
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Interestingly, the controllability centrality proposed in (3.13) is independent of the control 

gain ki. This is valid only for uniform control gains among driver nodes and when the conditions 

of the perturbation theory hold, that is control gains are sufficiently small. It also shows the 

sub-modularity feature as it is a monotone increasing function, as: 

𝛹(𝑆𝜇+1) = (𝒙𝑁
𝜇+1)

2
+𝛹(𝑆𝜇)     (3.14) 

  

meaning that all interesting properties of sub-modular functions can be applied to this case as 

well. Based on the sub-modular property, in order to add a new driver node to the subset 

previously controlling the network, the best candidate is the node with the highest 

controllability centrality. In other words, once the eigen-decomposition of the Laplacian L (i.e., 

the case without any drivers) is performed, the best driver set of μ nodes is the set of top-μ 

nodes ranked by the controllability centrality measure. This is a significant result as it only 

requires a single eigen-decomposition and has complexity comparable to many standard 

heuristic methods. 

3.4 Simulation results of the best driver set selection 

In order to assess the performance of the proposed metric, the proposed controllability 

centrality measure is applied on synthetic scale-free and small-world networks and its 

performance is compared with the heuristic methods. The synthetic networks are constructed 

with size N = 1000 and different average degree and heterogeneity levels. First, the true optimal 

driver set, which is referred to as the ground-truth, is obtained and is used to compare the 

precision of different methods. The ground-truth optimal set is obtained by examining all 

possible combinations. Let’s consider obtaining the optimal driver set with μ nodes. First, all 

μ-combinations of N nodes are selected one-by-one and the variation of η by perturbing any of 

them is obtained. The perturbations considered on the diagonal elements of the original 

Laplacian matrix take into account uniform and non-zero control gains for the drivers. The μ-

combinations are then sorted in descending order based on the amount of the variation of η; the 

one at the top is selected as the best set. Extensive numerical simulations are run to obtain the 

ground-truth optimal sets for the networks for μ = 1, 2, …, 10. The precision of each method 

for a given μ is obtained as follows. 100 realizations of each network type are considered and 

the set with μ nodes predicted by that particular method is obtained. Then, the precision is 

obtained as P = (np/n)100%, where n is the total number of runs for each case (n = 100 here) 

and np is the number of times that all nodes in the set predicted by the method match to those 
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in the ground-truth optimal set. For example, P = 90% for an algorithm indicates that the 

algorithm correctly predicts all nodes of the ground-truth optimal set in 90% of the runs.        

Figure 3.4 shows the precision P as a function of μ for scale-free networks with different 

average degrees and B. The proposed controllability centrality metric has significantly better 

precision than the other heuristic methods. It has always a precision of higher than 70% and 

even in some cases close to 100%. This is a significant performance indicating the proposed 

methods, although being computationally efficient, can correctly predict all nodes in the 

ground-truth optimal sets in most cases. The heuristic methods have a close to zero precision 

for μ > 2 in less heterogeneous networks, i.e. B = 5, while the controllability centrality has still 

high precision in such cases. The closeness-based method has the poorest performance among 

the heuristics. Figure 3.5 shows P as a function of rewiring probability p in small-world 

networks with N = 1000 and m = 2. The controllability centrality can correctly predict the 

ground-truth in almost half of the cases in these networks. Except for p = 0.2 for which the 

controllability centrality is slightly better than the degree- and betweenness-based methods, its 

precision is significantly higher than these heuristics in other cases. Similar to scale-free 

networks, the method based on closeness centrality has the worst precision in homogeneous 

networks. The proposed approximate method indeed works much better in heterogeneous 

networks than degree-homogeneous ones, as the nodes and subset of nodes are more 

distinguishable from each other in such networks. The precision of the proposed metric is 

acceptable although it is based on the first-order approximation of equation (3.6). It is worth 

noting that the approximation provided by this first-order equation is closer to the actual value 

when perturbation on diagonal elements of equation (3.5) is smaller; i.e. when the perturbed 

node has higher degree. Therefore, it is expected to have less precision for this approximation 

in networks with homogenous and/or low-degree nodes. This is also evident from our 

simulations, as the precision for scale-free networks is much higher than that of Watts-Strogatz 

networks.   

One may surprise with such a poor quality of heuristic methods. Indeed, the criterion used 

here is rather strong and to be counted as a precise set of size μ, all μ nodes suggested by the 

algorithm must be included in the optimal set. Although the heuristic methods may correctly 

find many of the optimal nodes (e.g. in many cases, they can correctly find 7-9 nodes for μ = 

10), they fail to recover the ground-truth optimal set in majority of the cases. However, the 

proposed metric can correctly find all nodes within the optimal set with much higher precision, 

especially in scale-free networks for which its precision is above 80% in majority of the cases. 
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In other words, we do not show how effective a pinning control scheme can be in improving 

the synchrony as enough evidence has already been provided in the literature. Our aim is to 

find the best driver(s).  

 
Fig. 3.4: Precision P of the proposed controllability centrality in networks with scale-free structures. The precision of the proposed metric 

(solid black line), and heuristic methods including considering hub nodes with maximum degree (dashed cyan line), maximum betweenness 

(solid cyan line) and maximum closeness (dashed black line). Graphs show P for finding a driver set of μ nodes (μ = 1, 2, ..., 10). Networks 

have scale-free structure with N = 1000 and A) m = 2 and B = 0, B) m = 10 and B = 0, C) m = 2 and B = 5, and D) m = 10 and B = 5. (see 

text for description of these parameters). Data show mean values with error bars corresponding to standard error over 100 realizations.   

 

 

In conclusion, we introduced a pinning controllability centrality measure to obtain a driver 

set of μ nodes. The method is based on a single eigen-decomposition of the original Laplacian 

matrix (without information of drivers), indicating its computational efficiency. Although 

being simple to compute, its precision in identifying the ground-truth optimal set correctly is 

significantly better than heuristic methods.  
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Fig. 3.5: Precision P of the proposed controllability centrality in networks with Watts-Strogatz structures. The precision of the proposed 

metric (solid black line), and heuristic methods including considering hub nodes with maximum degree (dashed cyan [light grey in 

Black&White print] line), maximum betweenness (cyan [light grey in Black&White print] line) and maximum closeness (dashed black line). 

Graphs show P for finding a driver set of μ nodes (μ = 1, 2, ..., 10). Networks have Watts-Strogatz structure with N=1000 nodes and m=2 

and rewiring probability of A) p=0.2, B) p=0.5, C) p=0.7 and D) p=0.9. Data show mean values with error bars corresponding to standard 

error over 100 realizations. 

 

 

The proposed perturbation-based metric assumes uniform control gain for all drivers. 

Although the diagonal elements of matrix C have both ki and βi (the gain and location of 

drivers), our perturbation technique does not distinguish ki and βi, as only one parameter can 

be considered in the perturbation. Such an approach may raise an argument about the accuracy 

of the proposed metric when the control gains vary. Indeed, according to equation (3.12), the 

optimal driver set is ki-independent when the perturbations are uniform and much smaller than 

the smallest degree of the network. To test this, we study how the accuracy of the proposed 

metric changes by varying the control gains. We run simulations for networks with scale-free 

structures with N = 100 nodes and average degree m = 5 with minimum degree of 1. The control 

gain ki is changed from 0.001 to 50 having driver sets of different cardinality μ = 1, 2,…, 6. 

Deriving the ground-truth and calculating the accuracy is performed in the same way done 

above. Our numerical results (Fig. 3.6) show that for control gains sufficiently smaller than the 
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minimum degree of the graph, the proposed perturbation theory is highly accurate and the 

theory perfectly matches the simulation, i.e. accuracy is 100%. Even after increasing the control 

gain by 50 times the minimum degree of the graph, the accuracy of the proposed metric is still 

well above 85%. Indeed, when the control gain increases, the accuracy of the proposed 

perturbation-based method slightly declines, as the first-order approximation used here 

becomes less accurate. Future direction to our research could be to further consider optimising 

the control gains together with the location of driver nodes, i.e. designing pinning control with 

optimal control cost. 

 

Fig. 3.6: Precision P of the proposed controllability centrality metric for different control gains k. Graphs show P as a function of control 

gain k for different value of μ. The networks have scale-free structure with N = 100, m = 2.5 and B = 0. The driver sets have A) μ= 1, B) μ = 

2, C) μ = 3, D) μ = 4, E) μ = 5 and F) μ = 6 nodes. The control gain k is applied uniformly to all drivers and varies from k = 0.001 to k = 50. 

Data show mean values with error bars corresponding to standard error over 300 realizations. 

 

 

3.5 Summary 

   Pinning control of complex networks has many potential applications in science and 

engineering. Pinning controllability of a network is defined as the ease by which pinning 

control (or synchronisation) can be achieved in the network. A challenge in designing efficient 

pinning control is to find a set of optimal driver nodes to which the control signal should be 

fed. In this chapter, a controllability metric (eigen-ratio of the augmented Laplacian matrix of 

the connection graph) was considered and a novel metric, called controllability centrality, for 

the centrality of nodes for pinning controllability (the nodes with high controllability centrality 

are good candidates for drivers) was introduced. controllability centrality was computed based 
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on the eigenvectors of the Laplacian matrix. The proposed metric was compared with a number 

of heuristic methods including taking the hub nodes (i.e. those with the highest degree, 

closeness or betweenness centrality) as the driver. Although these heuristics are not based on 

eigen-decomposition, they have been natural choices for drivers in the previous works. Our 

results showed that the proposed metric outperforms heuristic approaches in synthetic scale-

free, small-world and random networks.  

 



 

 

Chapter 4  

Choosing the best driver 

set in application 
 

 

 

 
 

In the recent decade, complex networks have been frequently used to model large-scale 

systems, including modern power grids. In this chapter, the metrics proposed in chapters 3 are 

applied to solve some important problems in real applications. The first problem is in the 

distributed secondary frequency control of power generation systems and the second one is in 

dementia networks which. The results have been published in IEEE Journal on Emerging and 

Selected Topics in Circuits and Systems (Moradi Amani et al. 2017), Neurocomputing (Meyer-

Bäse et al. 2019) and the Medical Imaging conference (Tahmassebi et al. 2018).   

 

4.1 Best leader identification in the distributed secondary 
frequency control 

A revolution in the paradigm of power generation and distribution has started by moving 

from centralized large power generation units towards distributed generation and renewable 

energy sources (Yu et al. 2011). Recent technological advances in small generators, power 

electronics, and energy storage devices, as well as economic unfeasibility of large power plants 

caused by system and fuel costs and environmental problems, push this movement (Marwali et 

al. 2004). Many countries, including Australia, have set clear targets for their electricity 

generation from renewable resources. The impact of distributed generation units, especially 

renewable sources on the performance of the network is a concern in the power system society 
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(Slootweg and Kling 2002, Pham et al. 2009, Tielens and Van Hertem 2012). Controlling the 

network’s frequency and voltage levels in a large-scale power grid composed of many 

renewable sources is a challenging task. 

    A microgrid, as the main building block of future smart grids (Yu et al. 2011), includes 

a number of distributed generation units, such as renewables from wind to solar sources and 

energy storage units, which are connected over a low-voltage or medium-voltage AC bus 

(Slootweg and Kling 2002). It should be operated in such a way that local loads like hospitals, 

technology firms, university campuses and houses are reliably supplied. The microgrid 

normally works in the grid-connected mode, in which its AC bus is connected to the main 

power grid. However, in the case of disturbance or fault in the network, the microgrid will be 

isolated from the main grid and starts working in islanded mode (Bidram et al. 2014). Each 

microgrid has a dedicated control system, which is responsible for preserving the quality of the 

power delivered to loads in different normal or emergency working scenarios (Bidram and 

Davoudi 2012). Due to presence of multiple small generation units with different capabilities 

and characteristics as well as lack of a dominant generator in the islanded mode, the control 

system with faster response than traditional interconnected grids is necessary to guaranty sound 

operation of the network (Katiraei and Iravani 2006).  

Similar to traditional power systems, the control system of a microgrid can have a 

hierarchical structure. The lowest level includes primary (local) controllers which are often 

implemented inside generation units. This part should stabilise the frequency and voltage after 

any change in load or supply (Guerrero et al. 2013). Most of the microsources like photovoltaic 

arrays, small wind generators and microturbines are not suitable to be directly connected to the 

AC bus of the microgrid. Therefore, power electronic interfaces (known as inverters), are 

required to connect them to the microgrid (Lopes et al. 2006). These inverters work as the final 

elements of the primary control system. The secondary controller is responsible for the 

performance of the whole microgrid and is implemented at a higher level (Bevrani et al. 2014). 

This control restores the frequency of the microgrid to the nominal condition (Kundur et al. 

1994). Tertiary control in the highest level regulates the power flow to/from microgrids and 

optimizes the operation of the whole power system (Bidram and Davoudi 2012).  

4.1.1 Distributed secondary control 

   Secondary control of a microgrid is traditionally implemented in centralized schemes, 

in which the central controller gathers information from all local controllers, applies a control 
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algorithm and sends back control signals to the actuators (Rocabert et al. 2012). However, such 

a centralised control structure has drawbacks, such as scalability, the requirement for a high-

performance controller unit and single point of failure in the system (Ge et al. 2015). These 

drawbacks along with the progress in the communication technologies have made the 

distributed scheme more reasonable. The distributed secondary controller can be implemented 

in either cooperative control (Bidram et al. 2013) or decentralized control schemes (Schafer et 

al. 2015). Distributed approaches outperform the traditional centralized ones because of their 

modularity, scalability and robustness (Ge et al. 2015). Regardless of specific control scheme, 

a data communication network is needed between the primary and secondary controllers 

(Bidram et al. 2014). In recent approaches, local controllers interact with one another over this 

communication network to coordinate their task for achieving the desired performance 

(Vasquez et al. 2013). Such coordination schemes have also been studied in other disciplines, 

such as consensus in multi-agent systems or synchronisation in complex networks (Olfati-

Saber et al. 2007, Arenas et al. 2008). It has been shown in all of these studies that the structure 

of the communication network plays an important role in coordination of the system (Belykh 

et al. 2005, Mesbahi and Egerstedt 2010, Jalili et al. 2015, Gaeini et al. 2016).  

During the grid-connected operation, all generation units use the voltage and frequency of 

the grid as the reference. However, in islanded mode, when the microgrid losses these reference 

signals, preserving the stability of the network is subject to many unexpected events (Moradi 

Amani et al. 2013). In this case, the secondary control should assign one (or more) generation 

source(s) to regulate the voltage and frequency of the microgrid. This node(s) will perform as 

master node(s) and other nodes will be set by the secondary control to follow them (Bevrani et 

al. 2014). Therefore, one of the most challenging problems to set the proper functioning of the 

secondary control in islanded mode of a microgrid is to find the master node(s) for voltage and 

frequency. The problem of finding the best masters depends on both the dynamics of generation 

units as well as the topology of the physical power network and that of the data communication 

network (Yu et al. 2009, Jalili 2013). 

    In this chapter, the technique proposed in chapter 3 is used to introduce a metric to rank 

all generation nodes based on their effects on the frequency of a microgrid. The proposed metric 

is derived using sensitivity analysis of the largest eigenvalue of the state matrix of the power 

system. The microgrid is assumed to contain both synchronous machines, which are directly 

connected to the AC bus, and renewable energy sources, which are connected through power 

electronic equipment. A distributed secondary frequency control system is assumed to regulate 



 Choosing the best driver set in application 

45 
 

the frequency of the microgrid. As the data communication network for implementing this 

control system, a number of synthetic network structures with scale-free and small-world 

properties are considered. It is shown that the ranking obtained by the proposed metric is highly 

correlated with the true ranking. However, the computational complexity of the proposed 

method is much less than obtaining the true rankings. Our numerical simulations also reveal 

that the proposed metric results in much higher accuracy than a number of heuristic methods 

including selecting the master nodes as hub ones with the highest degree, betweenness 

centrality or closeness centrality values. 
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Fig. 4.1: Typical control structure of a distributed generation system.  

 

The primary control strategy implemented in inverters depends on their role in the 

network. When the inverter is set to feed a certain amount of active and reactive power into the 

network, PQ (active and reactive power) control mode should be used (Lopes et al. 2006). This 

mode is also suitable when the microgrid is in grid-connected mode. In the case of a fault, when 

the microgrid is disconnected from the main grid, one inverter or a subset of inverters should 

be switched into Voltage Source Inverter (VSI) control. In this case, the control objective is to 

feed the load with predefined values for voltage and frequency. In other words, inverters 

working in VSI control mode are responsible to maintain the voltage and frequency of the 
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microgrid in islanded mode (Rocabert et al. 2012). In this thesis, this situation (i.e., microgrid 

in the islanded condition) is considered.     

Figure 4.1 shows a typical structure of the control system in a microgrid. All Distributed 

Generation Systems (DGS) are connected to an AC bus that is normally connected to the main 

grid at the Point of Common Coupling (PCC). Each DG is equipped with a dedicated primary 

control system, which is mainly responsible to prevent voltage and frequency deviation in the 

case of any imbalance between generation and consumption (Bidram and Davoudi 2012). This 

controller continuously monitors the voltage and frequency of the network. In the case of any 

voltage and frequency deviations, it starts increasing the generation of active and/or reactive 

powers to prevent them from further deviation. The primary controller is a fast-acting system 

and can stop the frequency and voltage drops in many of the cases. However, it may not 

necessarily recover the system to the voltage and frequency set-point. Each microgrid has also 

a secondary control system, which regulates the voltage and frequency to desired values 

following any disturbance. It is traditionally implemented in a centralized scheme; however, a 

distributed scheme (Fig. 4.1) is more desirable in modern power grids. In this section, 

dynamical equation for frequency stability analysis of a microgrid is derived when energy 

sources are connected to the bus either directly or through electronic interfaces. 

4.1.2 Secondary frequency control  

Let’s consider a microgrid with N generation units connected to the network through 

inverters (numbered as 1,2, … l) and some synchronous machines (numbered as l + 1, …, N). 

Dynamical equation of the frequency of a microgrid will be: 

 

𝛿̇𝑖 = 𝑢𝑖 −∑ 𝑇𝑖𝑗(𝛿𝑖 − 𝛿𝑗) + 𝐺𝛿𝑖                              𝑖 = 1,2,… , 𝑙𝑁
𝑗=1
𝑗≠𝑖

  

𝑀𝑖𝛿𝑖̈ + 𝐷𝑖𝛿̇𝑖 +
𝛿̇𝑖

𝑅𝑖
= 𝑢𝑖 − ∑ 𝑇𝑖𝑗(𝛿𝑖 − 𝛿𝑗)

𝑁
𝑗=1
𝑗≠𝑖

              𝑖 = 𝑙 + 1,… . , 𝑁  (4.1) 

 

where δi shows either the power angle if i = l+1, …, N or the voltage angle for i = 1, 2, …, l. 

Mi is the inertia of the ith generation unit for synchronous machines and Di is the damping factor 

of the load. Tij is a coefficient representing the power transfer between generation units i and j 

and is calculated as Tij = EiEj / Zij where Ei and Ej are voltages at generation units i and j, 

respectively and Zij is the impedance of the line connecting them. Finally, ui represents the 

control signal for the ith unit. Defining vectors of the system states as ε = [δ1,…, δl, δl+1,…, δN]T 
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and  ξ = [δ̇l+1,…, δ̇N] as well as the input vector as u = [u1, u2, …, uN], the augmented dynamical 

equation of the microgrid can be written as (Moradi Amani et al. 2017): 

[
𝜀̇
𝜉̇
] = [

−𝐼𝑁
𝑙 × 𝐿𝑃 𝐼𝑁−𝑙

𝑙

−𝑀−1𝐼𝑁
𝑁−𝑙 × 𝐿𝑃 −𝑍

] [
𝜀
𝜉] + [

𝐼𝑁
𝑙

𝑀−1
] 𝑢    (4.2) 

 

 

where, 

𝐼𝑁
𝑙 = [

𝐼𝑙×𝑙 0
0 0

]
𝑁×𝑁

, 𝐼𝑁−𝑙
𝑙 = [

0𝑙×(𝑁−𝑙)
𝐼(𝑁−𝑙)×(𝑁−𝑙)

],        𝐼𝑁
𝑁−𝑙 = [0(𝑁−𝑙)×𝑙 𝐼(𝑁−𝑙)×(𝑁−𝑙)]  

𝑀 = [𝑚𝑖𝑗](𝑁−𝑙)×(𝑁−𝑙), 𝑚𝑖𝑗 = {
𝑀𝑖, 𝑖 = 𝑗 = 𝑙 + 1,… , 𝑁
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑍 = [𝑧𝑖𝑗](𝑁−𝑙)×(𝑁−𝑙), 𝑧𝑖𝑗 = {

1

𝑀𝑖
(𝐷𝑖 +

1

𝑅𝑖
), 𝑖 = 𝑗 = 𝑙 + 1,… ,𝑁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4.3) 

 

If one considers each generation unit of the microgrid as a node of the graph, Tij shows the 

power of the link between nodes i and j. In this way, the microgrid can be shown as a graph 

with the adjacency matrix Ap = [Tij]. For this graph, the Laplacian matrix is defined as LP and 

can be simply obtained from Ap, as LP = D      Ap where D is a diagonal matrix with appropriate 

dimension whose (k,k)th element is the summation of elements of kth row of Ap (i.e., degree of 

node k in the graph).   

To stabilise the frequency of the microgrid in the case of deviation in the generation or 

consumption, the control signal u (as shown in equation (4.1)) should be designed such that the 

whole system remains stable. This control signal is traditionally designed using a centralized 

scheme, in which each microgrid has a secondary control system that gathers information from 

all DGS’s and sends back commands to them. However, distributed control schemes are more 

practical when executive constraints are considered. Advancements in communication network 

technology also contribute to increasing the implementation of distributed algorithms. In this 

thesis, the following cooperative secondary control signal is considered in each DG: 

𝑢𝑖 = −𝑘𝑖 ∑ 𝑎𝑖𝑗(𝜀𝑖 − 𝜀𝑗)
𝑁
𝑗=1,𝑗≠𝑖 + 𝑏𝑖𝑖𝜀𝑖,   𝑖 = 1,2,… , 𝑁  (4.4) 

 

 

where ki represents the feedback gain for the ith DG. The secondary control system considered 

for each DG in Fig. 4.1 generates the set-point for the primary control based on its own data as 

well as data received from other generation units. The DGs communicate with one another on 

a data communication network, represented by adjacency matrix A = [aij]. aij ≠ 0 shows that 
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there is a communication link between the ith and jth DG’s, and aij = 0 when there is no 

connecting link. In addition, to show the master node for the frequency of the microgrid, the 

coefficient bii is defined; one has bii ≠ 0 when the i
th DG should play the master role in the 

frequency control of the microgrid, and otherwise bii = 0. Using the control signal as expressed 

by equation (4.4), the closed-loop control system will be: 

[
𝜀̇
𝜉̇
] = [

−𝐼𝑁
𝑙 × [𝐿𝑃 + 𝐾𝐿𝐷 + 𝐵] 𝐼𝑁−𝑙

𝑙

−𝑀−1𝐼𝑁
𝑁−𝑙 × [𝐿𝑃 + 𝐾𝐿𝐷 + 𝐵] −𝑍

] [
𝜀
𝜉]   (4.5) 

 

where K and B are diagonal matrices whose (i,i)th elements are ki and bii, respectively. 

Therefore, the frequency of the microgrid is stable if the state matrix in (4.5) is Hurwitz, i.e., 

all its eigenvalues have negative real parts. This indicates that the dynamics of the frequency 

of a microgrid depends on Laplacian matrix of the power network (LP), Laplacian matrix of 

data communication networks (LD) used in distributed secondary control, parameters of DG’s 

which are included in Z, local control gains of DG’s as diagonal elements of the matrix K and 

the matrix B which defines driver nodes. The Laplacian of the data communication network 

(LD) can be obtained from A using the same method explained for obtaining LP for the physical 

power network graph. LD is a zero row-sum matrix with positive diagonal entries. The 

Laplacian matrix has been shown to play a critical role in the synchronisation of complex 

networks. Synchronisability and pinning controllability of dynamical networks are related to 

spectral properties of the Laplacian matrix of the connection graph (Pecora and Carroll 1998, 

Sorrentino et al. 2007, Jalili et al. 2015, M. Jalili and Yu 2016). It is also known that the 

eigenvalue with the largest real part (called dominant eigenvalue) of the state matrix of 

equation (4.5) shows how fast the system can restore the frequency deviations. The smaller the 

real part of the dominant eigenvalue is, the faster the response of the system will be. Therefore, 

it can be considered as a measure for the convergence rate of the system. 

 

4.1.3 Leader identification using eigenvalue perturbation analysis 

From equation (4.5), one may state that all LP, LD, K, Z and B can be used to tune the 

dominant eigenvalue. However, from a practical point of view, some of them are difficult (if 

not impossible) to tune (change) to control the performance of the system. For example, LP 

depends on the physical structure of the power network representing the physical connections 

between the individual units, which is usually fixed and difficult (if not impossible) to change 

during operation. Parameters of generation units, which form matrix Z, are fixed by the vendor 
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during the manufacturing process. Any increase in the feedback gains K may cause saturation 

in control elements and generate noise activation problems. Therefore, the most practical way 

to affect this eigenvalue is to change either the communication network structure (LD) (Gaeini 

et al. 2016) or select appropriate node as the master, i.e., changing B. This means that the 

secondary control system should select the best data communication structure as well as the 

best master node according to the structure of the power system and parameters of the 

generation units. It is worth mentioning that appearance and disappearance of a DG unit in a 

microgrid is a common event because of uncertainties in renewable energy sources and large 

number of small capacity generation units. Therefore, secondary control should always monitor 

the structure of the power network and select the best communication network based on that. 

This selection can be performed either using an online design procedure or from a pre-designed 

bank of structure; although, the latter being more reasonable in large microgrids.  

In microgrids with a small number of generation units, secondary control can always find 

the best master node in a timely manner by analysing the effect of nodes on the eigenvalues of 

the state matrix of equation (4.5). However, this method fails to satisfy real-time constraints in 

microgrids with large number of DGs. Therefore, one needs time effective algorithms to find 

the best master node of the system. In this thesis, an efficient algorithm is proposed to obtain 

the best master node. The metric introduced in chapter 3 is used for this purpose. One only 

requires a single eigen-decomposition in order to obtain this metric. Thus, the proposed 

algorithm for the secondary control can easily rank all DGs and select the best one (i.e., the 

one with the highest score of the proposed metric) as the master node in large-scale microgrids. 

In the state matrix of equation (4.5) structures of the power and data communication 

networks (LP and LD, respectively) as well as the parameters of the generation units (M and Z) 

are assumed to be fixed. The only tunable parameter in this matrix is bii which shows that the 

ith DG is the master node if bii = 1 (note that there is only a single master node). Applying the 

perturbation principle (3.6) on the sensitivity analysis of the nth eigenvalue of the state matrix 

of equation (4.5), one obtains: 

|
𝑑𝜆𝑛

𝑑𝑏𝑖𝑖
| =

{
 
 

 
 𝒚𝑛

𝑇 [
𝑑𝐵

𝑑𝑏𝑖𝑖
0

0 0
]𝒙𝑛 = 𝒚𝑛

𝑖 𝒙𝑛
𝑖 , 𝑖 = 1,2,… , 𝑙

𝒚𝑛
𝑇 [

0 0
𝑑𝐵

𝑑𝑏𝑖𝑖
0]𝒙𝑛 = 𝑚𝑖

−1𝑦𝑛
𝑁+1𝑥𝑛

𝑖 , 𝑖 = 1,2,… , 𝑁 − 𝑙

  (4.6) 
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in which, y
k
n and x

k
n are the kth element of yT

n and xn, respectively and the sign |.| shows the 

absolute value. Now, the most influential node, on the stability and performance of the 

microgrid, is defined as the node whose perturbation causes the maximal effect on the real part 

of the dominant eigenvalue λ1. Therefore, for the ith generation unit in the microgrid, the value 

of this metric (ηi) is defined as:  

𝜂𝑖 = 𝑅𝑒(
𝑑𝜆1

𝑑𝑏𝑖𝑖
)    (4.7) 

 

 

where ‘Re’ is an abbreviation for the real part of a complex number. This metric can be 

calculated from the eigenvectors of the Laplacian matrix of the data communication network 

as follows: 

|𝜂𝑖| = 𝑅𝑒 {
𝒚1
𝑖 𝒙1

𝑖 , 𝑖 = 1,2,… , 𝑙

𝒚1
(𝑁+𝑖−𝑙)

𝒙1
𝑖−𝑙 , 𝑖 = 𝑙 + 1, … , 𝑁

    (4.8) 

 

In an undirected communication network, where the right and left eigenvectors of the 

Laplacian matrix are the same and real, this equation simplifies to: 

|𝜂𝑖| = 𝑅𝑒 {
(𝒙1

𝑖 )
2
, 𝑖 = 1,2,… , 𝑙

𝒙1
(𝑁+𝑖−𝑙)

𝒙1
𝑖−𝑙, 𝑖 = 𝑙 + 1,… , 𝑁

    (4.9) 

 

Remark 1: In the case that i = 1,…,l, where |ηi| = (x
i
1)

2, ηi can be either (x
i
1)

2 or – (x
i
1)

2. This 

means that to find the node that maximizes ηi, both the maximum and minimum values of (x
i
1)

2 

should be considered. In other words, the node that maximizes the value of ηi can be either the 

node maximizing (x
i
1)

2 or the one minimizing it. To select the best one from these two 

candidates, the deviation on the dominant eigenvalue of the state matrix described in equation 

(4.5) should be computed and compared; the winner is the nodes resulting in the largest 

deviation. The same condition is for the case i = l +1,…,N. Thus, the secondary control system 

can find the master node r for frequency control of a microgrid using the following algorithm: 

1) Calculate Laplacian matrices LP and LD from the connection graphs.  

2) For the state matrix as expressed by equation (4.5), calculate the right and left 

eigenvectors corresponding to the dominant eigenvalue λ1. 

3) Calculate |ηi| from equation (4.9) for both renewable energy sources (i = 1, …, l) and 

synchronous machines (i = l + 1, …, N). 
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4) Rank all nodes based on ηi. As explained in Remark 1, nodes with the highest and the 

lowest values of ηi are candidates for the most influential node. 

5) Find the best node by examining the deviation in the dominant eigenvalue of (4.5) 

caused by each of these two candidate nodes. 

 

Thus, one needs three eigen-decompositions in order to estimate the most influential 

leader; one for finding the two candidates (those maximizing and minimizing equation (4.7)), 

and two for examining each of them. This is still much simpler than computing the global 

optimal (examining all nodes one-by-one, and thus computing the eigenvalues N times) while 

resulting is satisfactory performance.  

Now, Let’s consider a power network of 200 generation units including 50 synchronous 

generators and 150 renewable energy sources. Power outputs of synchronous generators and 

20% of the renewable sources (30 units) are considered to be controllable, while those of other 

units cannot be controlled. To control the frequency of this network, the cooperative control 

rule, as expressed by equation (4.4), is applied. It is assumed that the generation sources with 

controllable power outputs are candidates to be frequency leader of the network, while others 

will be in droop mode, following the leader. Therefore, the secondary control system should 

find the best node among 80 generation units as the frequency leader of the microgrid. 

Simulations in this section have two parts. In the first part, it is shown that the proposed metric 

(equation (4.9)) is accurate enough to find the most appropriate generation unit as the frequency 

leader. In the second part, the performance of this metric is compared with heuristic methods, 

such as taking the node with the highest degree or betweenness centrality as the master node 

and show that the proposed metric is more accurate than the heuristics. It is noteworthy that 

although other methods such as evolutionary algorithms (Jalili et al. 2015, Orouskhani et al. 

2016) and spectral graph analysis (Yu et al. 2013) have been proposed to find near-optimal 

drivers, the real-time constraints of the secondary control system of power networks make them 

impractical. Therefore, the comparison is restricted to the above-mentioned heuristics, which 

can be implemented in a real-time fashion. 

The microgrid considered in this simulation has dynamical equation (4.1) in which Mi ϵ 

[0.1, 0.25] and zii = 2.5 for all synchronous generation units. All nodes are assumed to have a 

state feedback controller with gain ki = 10. As stated before, LP in equation (4.2) representing 

the Laplacian matrix of the physical power network, is normally assumed to be fixed. This is 

mainly due to the fact that any small modification in the physical power network (e.g., creating 
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new wirings) is costly and might not be practical in many cases. Therefore, any fixed structure 

for the power network can be considered in the simulations. Here, without loss of generality, 

the physical power network of the microgrid is assumed to be fully connected with the power 

transfer coefficient (Tij defined in equation (4.1)) in the range of 0.1 and 0.3. The frequency of 

this microgrid is controlled using a cooperative control scheme as in equation (4.4). The 

Laplacian matrix of the data communication network is shown by LD in equation (4.5). The 

secondary control should find the frequency leader based on the structure of the data 

communication network.  

 

 

Fig. 4.2: Correlation between the ground-truth and the proposed 

rankings in scale-free networks. The data communication network is 

scale-free with N =80 nodes, different average degree and varying B 

(higher B indicates lower degree heterogeneity in the network). Data 

show mean values and standard deviations (represented by bars) over 

100 realizations. 

Fig. 4.3: Correlation between the ground-truth and the proposed 

rankings in Watts-Strogatz networks. The data communication 

networks are constructed using the Watts-Strogatz model with N = 80, 

m = 2, and different values of rewiring probability. Data show mean 

values and standard deviations (represented by bars) over 100 

realizations. 

 

To show the reliability of the proposed metric, different synthetic networks with scale-

free, Watts-Strogatz and Erdős-Rényi structures are considered as the communication network.   

In the first step, to show the reliability of the proposed metric, it is applied to rank the generation 

units when the communication network LD has a scale-free structure. All units are also ranked 

according to deviation in the dominant eigenvalue of the state matrix of equation (4.5). In order 

to obtain the true rankings, first, the nodes are considered to be the master node one-by-one, 

and the dominant eigenvalue is obtained. Then, the nodes are ranked based on the deviation 

they cause in the dominant eigenvalue (i.e., the smaller the real part of the dominant eigenvalue, 

the higher the rank of the node). This requires N eigen-decomposition (one for each node). 

Figure 4.2 shows Pearson correlation coefficients between these two rankings. It is seen that 

the correlation is higher than 0.8 no matter how heterogeneous the data communication 
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network is (i.e., it does not depend on B). However, as the average degree increases, the 

correlation coefficient slightly drops. Figure 4.3 shows the Spearman correlations as a function 

of rewiring probability for Watts-Strogatz networks. Again, high correlation values are 

obtained although it declines as the rewiring probability increases. 

 
Fig. 4.4: Accuracy of different measures in finding top-T frequency leaders in scale-free networks. The scale-free networks are with N = 80, 

B = 0 and average degree of A) 2, B) 10, C) 20, B = 10 and average degree of D) 2, E) 10, and F) 20. The top-T nodes are determined either 

by the proposed metric (equation (14)), those with the highest degree, betweenness or closeness centrality values. The graphs show the mean 

values with bars corresponding to the standard deviations over 100 realizations. 

 

 
Fig. 4.5: Accuracy of different measures in finding top-T frequency in Watts-Strogatz networks. Networks are with N = 80 nodes with 

rewiring probability of A) p = 0.01, B) p = 0.1 and C) p = 0.9. The top-T nodes are determined either by the proposed metric (equation (14)), 

those with the highest degree, betweenness or closeness centrality values. The graphs show the mean values with bars corresponding to the 

standard deviations over 100 realizations. 

 

In order to further study the effectiveness of the proposed metric, in the second step, we 

compare its accuracy in finding the best frequency leaders with heuristic methods. As heuristic 

methods, the nodes with the highest degree, betweenness and closeness centrality are chosen 

as leaders. These heuristics are rather simple to compute and have been previously shown to 
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be effective in synchronisation and pinning controllability of dynamical networks. To find the 

accuracy of the methods, the true top-T master nodes are first derived, that is obtained by 

numerically calculating the dominant eigenvalue for each node, one by one. Then, the top-T 

nodes predicted by the methods, are obtained and the accuracy is defined as the percentage of 

them that are also present in the true top-T list. 

 
Fig. 4.6: Accuracy of different measures in finding top-T frequency leaders in Erdős-Rényi networks for A) T = 4, B) T = 10 and C) T = 20. 

Networks are with N = 80 nodes with connection probability p that varies from 0.01 to 0.9 logarithmically. The top-T nodes are determined 

either by the proposed metric (equation (14)), those with the highest degree, betweenness or closeness centrality values. The graphs show 

the mean values with bars corresponding to the standard deviations over 100 realizations. 

 

Figures 4.4 and 4.5 compare the performance of the proposed measure with heuristic 

methods in scale-free and Watts-Strogatz networks, respectively. Accuracies of all methods are 

compared in finding the best frequency leaders. As it is seen, the proposed metric is much more 

accurate than the heuristic methods. While the heuristic methods have almost zero accuracies 

for small values of T and maximum accuracy of around 6% for large values of T, the proposed 

metric show high accuracy with up to 80% for large T. Generally, as T increases, the accuracy 

of the algorithms also increases.  

Figure 4.5 compares the accuracy of the methods in Watts-Strogatz networks with three 

different rewiring probabilities. Again, as T increases, the accuracy of the methods increases, 

except for the one based on closeness centrality for which the accuracy is almost zero for all 

cases. The methods based on degree and betweenness centrality show a linear increase by 

increasing T, while the proposed method shows an exponential increase reaching to the 

accuracy of around 70% for T > 5. The proposed method has the best performance followed by 

the one based on betweenness centrality and then degree. Figure 4.6 shows the results when 

the data communication network has Erdős-Rényi structure. It is shown that the accuracies of 

all metrics are almost independent of the average degree, and the proposed metric has the best 

performance with the accuracy of more than 70% for T = 10 and T = 20, while others have 

accuracies of less than 20%. 
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From Figs. 4.4, 4.5 and 4.6, one can conclude that the proposed metric can accurately find 

the best frequency leaders in the microgrids. Adding the low computational cost of this metric 

to its rather high accuracy, this metric satisfies the real-time constraints of secondary frequency 

control calculation as well as the accuracy needed for its sound operation. 

4.2 Rate of Change of Frequency in distributed power 
generation systems 

Equation (4.5) shows that any modification in the Laplacian matrix of data communication 

networks (LD) used in distributed secondary control affects the frequency performance of the 

microgrid. It is supposed that outage of a generation unit will not affect the structure of the 

power grid (LP) since its local loads should still be supplied through the microgrid. The effect 

of the outage of a node on the data communication network LD is considered as node removal, 

i.e. the node itself, as well as all communication links connecting it to the neighbours, is 

removed. This node removal affects the eigenvalues of LD. On the other hand, Rate of Change 

of Frequency (RoCoF) of the microgrid can be measured by the dominant eigenvalue of the 

state matrix (4.5), i.e. the smaller the dominant eigenvalue the faster the frequency response. It 

is clear from (4.5) that while LP, K, Z and B are supposed to be unchanged by disconnecting a 

generation unit from the microgrid, variation in the dominant eigenvalue of (4.5) is proportional 

to the variation of the dominant eigenvalue of LD. Therefore, it would be enough to rank 

generation units based on their effect on the dominant eigenvalue of LD. The following lemma 

is useful in this way: 

Lemma 2.1 (Watanabe and Masuda 2010): Let us represent the eigenequation for the 

second smallest eigenvalue (λ2) of the Laplacian matrix (L) of an undirected unweighted graph 

as Lu2 = λ2 u2 where u2 is the normalized eigenvector of L corresponding to λ2. Removing node 

i of the network affects λ2 by: 

∆𝜆2 ≈
∑ 𝑢2

𝑗
(𝑢2
𝑖−𝑢2

𝑗
)𝑗∈𝑁𝑖

1−(𝑢2
𝑖 )
2     (4.10) 

where u2
i is the ith element of u2 and Ni indicated the neighbourhood of node i. 

4.2.1 Approximating change in RoCoF in the case of generation outage 

Now, suppose that variation in the dominant eigenvalue of (4.5) is shown by Δα. Using 

the lemma and considering that Δα is proportional to Δλ, all nodes can be ranked based on their 

effect on RoCoF. For instance, the node whose removal causes the largest value of Δλ2 in 

(4.10), will cause the highest variation in RoCoF of the microgrid. 
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In this section, a power network of 200 generation units, including 50 synchronous 

generators and 150 renewable energy sources is considered. Power outputs of synchronous 

generators, as well as 20% of the renewable sources (30 units), are considered to be 

controllable, while those of other units cannot be controlled. A cooperative distributed control, 

expressed by equation (4.4), is applied to control the frequency of the network. Therefore, 80 

generation units are candidates to participate in the secondary control of the microgrid.  

The microgrid considered in this simulation has the same dynamical equation as the one 

in section 4.1. To show the reliability of the proposed metric, different synthetic networks with 

scale-free and Watts-Strogatz structures are considered as communication networks. To derive 

figure 4.7, first the generation nodes are ranked based on metric (4.10) when data 

communication network has scale-free structure with m = 5 and B = 0. Then, the node with the 

highest rank and the node of 5th rank are removed from the data network one at a time (the 5th-

ranked node is selected to show the difference more clearly). After removing each node, a 

frequency deviation is generated in the power system in order to check how fast the control 

system can recover it. Recovery rates are shown in Fig. 4.7(A) when the node with the highest 

rank is removed and in Fig. 4.7(B) when the node with 5th rank is deleted. Clearly, RoCoF is 

more affected in (A) rather than (B), meaning that node with the highest rank influence RoCoF 

more that node with rank 5. 

 

 

 

Fig. 4.7: Comparing frequency recovery rate of a microgrid with scale-

free control network. Nodes with (A) 1st (B) 5th rank are removed from the 

network. Nodes are ranked based on equation (4.10). Data show mean 

values and standard deviations (represented by bars) over 100 

realizations. 

Fig. 4.8: Correlation between the proposed and degree-based 

rankings.  Data network is supposed to have a scale-free structure 

with the average degree (m) and degree of heterogeneity B. Data 

show mean values and standard deviations (represented by bars) 

over 100 realizations. 
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Correlation between the nodes ranked using equation (4.10) with the ranking is done using 

degree centrality of the nodes is shown in Fig. 4.8. The average degree of the scale-free data 

communication network is changed from 1 to 10 when heterogeneity factor B is zero or 10.  

Figure 4.8 shows that these two rankings are highly correlated especially for networks with 

higher average degrees. In other words, connection/disconnection of nodes with higher degrees 

in the data communication networks will affect RoCoF more.  

The same studies are conducted when data communication network has Watts-Strogatz 

structure. Here, networks with rewiring probabilities p = 0.01, p = 0.1 and p = 0.9 are 

considered. Again, first nodes are ranked based on equation (4.10). Then, the node with the 

highest ranks and the node with rank 5 are removed one at a time at the frequency recovery 

changes are compared. The upper row of Fig. 4.9 shows frequency recovery when a node with 

the highest rank is removed while the lower row is that for the node of rank 5. According to 

Fig. 4.9, removal of the former has stronger effect on the frequency recovery than removal of 

the latter especially when the structure of the network in nearer to small world, i.e. for small 

values of rewiring probability p. Finally, Fig. 4.10 shows that the ranking which is made using 

equation (4.10) is highly correlated with the ranking made through degree centrality for higher 

rewiring probabilities. 

 

 

Fig. 4.9: Comparing frequency recovery rate of a microgrid with Watts-Strogatz control network.  Nodes with (A1, B1, C1) 1st (A2, B2, C2) 5th 

rank is removed from the network. Data network is supposed to have (A) p = 0.01, (B) p = 0.1 and (C) p = 0.9. Nodes are ranked based on 

equation (4.10). 
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Fig. 4.10: Pearson’s linear correlation between the proposed and degree centrality rankings. The data communication networks are 

constructed using the Watts-Strogatz model with N = 80, m = 2, and different values of rewiring probability. Data show mean values and 

standard deviations (represented by bars) over 100 realizations. 

 

4.3 Determining disease evolution driver nodes in dementia 
networks 

With the increasing availability of medical data, improved computing power and network 

speed, modern medical imaging is facing an unprecedented amount of data to analyse and 

interpret. Novel mathematical concepts, such as graph-theoretical techniques can capture brain 

connectivity and its topology. Networks of these graphs are mostly based on Pearson 

correlation and capture either the structural and/or functional brain connectivity. From these 

graphs, new descriptors can be derived to quantify induced changes in topology or network 

organisation or to serve as theory-driven biomarkers to predict dementia at the level of 

individual patients. Graphs applied to dementia research, even for longitudinal data, are static 

networks which cannot capture the dynamical processes governing the temporal evolution of 

dementia. Therefore, a new paradigm in dementia research - dynamical graph networks - is 

required to advance this field and overcome the obstacles posed by static graph theory in terms 

of disease prediction, evolution, and its associated connectivity changes (Tahmassebi et al. 

2018).  

Here, functional connectivity networks in dementia are modelled and analysed as two-

time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system 

and the interconnections between hubs and the slow subsystem. Alterations in brain function 

as seen in dementia can be dynamically modelled by determining the clusters in which 

disturbance inputs have entered and the impact that they have on the large-scale dementia 

dynamic system.  
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Controlling regions in dementia networks represent key nodes to control the dynamics of 

the network. It is crucial to understand how this complex network is controlled to enable an 

understanding of the progressive abnormal neural circuits in dementia. Figure 4.11 

demonstrates the schematic presentation of an unweighted-undirected graph of complex 

networks in the brain. 

 

 

Fig. 4.11. Schematic illustration of an unweighted-undirected graph of complex networks in brain.  Nodes can be brain regions or voxels. 

Edges or links are the functional or structural connections between nodes. 

 

While static graph analysis has revealed the loss of strong connections in dementia patients 

compared to healthy controls, the dynamic graph analysis shows different slow modes between 

dementia patients and connectivity networks in healthy controls. The connectivity networks in 

healthy controls have smaller eigenvalues than in dementia patients for both functional and 

structural data and those eigenvalues remain operative. The contribution of the larger 

eigenvalues over time decreases quickly and the range of the eigenvalues for each subject 

represents an important biomarker for disease prediction. To further contribute to the 

theoretical progress of the analysis of the dynamical behaviour in dementia, the metric 

proposed in chapter 3 is applied to select the best driver node in connectivity graphs that show 

a transaction from normal subjects to Alzheimer's subjects.  

The theoretical results in finding the most influential nodes on controllability are applied 

on functional (FDG-PET) and structural (MRI) connectivity graphs for control (CN), mild 

cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects (Ortiz et al. 2015). These 

data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI)  database. 

For the structural MRI data, the connections in the graph show the inter-regional covariation 

of grey matter volumes in different areas while for the functional PET data, the connections do 

not show the correlation in activity but in the glucose uptake between different regions. The 
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model proposed in (Ortiz et al. 2015) considered only 42 out of the 116 regions from the 

Automated Anatomical Labelling (AAL) in the frontal, parietal, occipital, and the temporal 

lobes. Nodes in graphs represent the regions while the links show if a connection is existing 

between these regions or not. Undirected and unweighted graphs are considered and the 

controllability centrality metric is applied to them. Except for the functional connectivity graph 

for CN, the controllability centrality metric can be applied to all the other graphs. The largest 

connected graph in the functional connectivity graph for AD is considered. Figure 4.12 shows 

the most influential driver nodes found on the functional connectivity graph using 

controllability centrality metric, i.e. the metric proposed in (3.9). For CN due to the 

disconnectivity of the graph, we are not able to theoretically determine the best driver nodes. 

For MCI the best driver node is located in the inferior left occipital lobe (Occipital-Inf-L), and 

for AD in the superior right occipital lobe (Occipital-Sup-R). Early-onset AD is characterized 

by changes in the functional connectivity in the occipital lobe. Figure 4.12 shows the most 

influential driver nodes found on the structural connectivity graph. 

For all three networks, the most influential node is located in the temporal lobe (Temporal-

Pole-Mid-L). These results agree with the clinical findings which show that the MCI patients 

who are at risk to develop AD show medial temporal lobe atrophy. Detection of this important 

driver node being at the same time the most influential one may represent an important 

biomarker of the diagnosis of AD and its transition from MCI to AD (Tahmassebi et al. 2018). 
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Fig. 4.12. The most influential nodes (shown in red) in brain connectivity graphs for (a) CN, (b) MCI and (c) AD. 

 

4.4 Summary 

In this chapter, application of the mathematical achievements of chapter 3, i.e. identifying 

the best driver node (or set) to control a complex network, was applied to problems in 

distributed power generation and dementia networks. First, the problem of finding the 

frequency leader in the cooperative secondary control of a microgrid was addressed. The 

microgrid was assumed to be composed of both synchronous and VSI-connected generation 

units. The proposed model showed that the stability and performance of the distributed 
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secondary frequency control depends on i) the structure of the physical power network, ii) 

parameters of generation units, iii) structure of the data communication network (on which the 

distributed control was implemented), and iv) the node which was selected as the frequency 

leader of the microgrid. The first two factors are often fixed in the construction process of the 

power grids, and their change is costly. Whereas, the last two factors (i.e., the topology of the 

data communication network and the frequency master node) can be easily tuned. Assuming a 

communication network with fixed topology, a novel metric to select one of the nodes as 

frequency leader was proposed.  

The problem of finding the generation unit with the maximum influence on the RoCoF 

was also studied and a new metric to find this unit was proposed. The metric was based on the 

eigenvalue perturbation analysis of the state matrix of the microgrid. Using this metric, the 

power management system of the microgrid could rank all generation units and choose the one 

with the largest influence on the stability of the system as the frequency master, while other 

nodes following it. The metric is simple to compute and can be easily used in microgrids with 

a large number of small size generation units including renewables.  

Finally, structural and functional connectivity graphs in healthy controls, patients with 

mild cognitive impairment, and those suffering from Alzheimer's disease were analysed in 

order to determine the most influential driver nodes or so-called "disease epicentres". The 

location of the most influential driver nodes provides the scientific community with a novel 

biomarker that can be employed in differentiating dementia types and to monitor disease 

evolution. Our results were in good agreement with preliminary clinical findings. 

   



 

 

 

Section II:  Controllability of complex networks 

in the case of node/edge removal 



 

 

Chapter 5  

Impact of node removal on 

collective behaviours in 

complex networks  
 

 

 

 

Removal of a node or link in a complex network can be caused due to physical and/or 

functional defects, such as mechanical/electrical failures or attacks. Node/link removal might 

impact the spectrum of the network, and thus its synchronisability and collective behaviour. 

Identifying the node with the maximum influence on the synchronisability is a challenge for 

both network designers and attackers. In this chapter, a computationally efficient metric is 

proposed base on spectral graph analysis which can rank nodes based on their influence on the 

eigenvalues of the Laplacian matrix. Our proposed metric predicts the changes that a node 

removal makes in the eigenvalues of the Laplacian matrix. Results of this chapter have been 

published partly in IEEE International Symposium on Circuits and Systems (ISCAS) (Moradi 

Amani et al. 2018) and another article has been submitted. 
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5.1      A numerical study on graph spectral impact of node 
removal  

Suppose a set of N identical dynamical nodes V, connected over an undirected and 

unweighted network (V,E) with a set of edges E. Equations of the motion of this network is as 

follows: 

𝑑𝒙𝑖

𝑑𝑡
= 𝐹(𝒙𝑖) − 𝜎 ∑ 𝑙𝑖𝑗

𝑁
𝑗=1 𝐻𝒙𝑗;    𝑖 = 1,2, … , 𝑁,    (5.1) 

where xi → ℝn is the n-dimensional state vector, F: ℝn→ℝn defines the individual systems’ 

dynamical equation, which is considered to be identical for all nodes, and σ represents the 

unified coupling strength. Based on the master stability function formalism discussed in chapter 

2, local synchronisability of this system depends on spectral properties of the Laplacian matrix 

of the graph. Among eigenvalues of the Laplacian matrix, λN and λ2, i.e. the largest and the 

second smallest ones, play significant roles: λ2 and R = λN /λ2 can be synchronisability metrics 

for different classes of systems. It was discussed in chapter 2 that the smaller the eigen-ratio R 

(or the larger λ2 for classes of systems) is, the better the synchronisability of the network will 

be.  

Synchronisability analysis of a complex network using λ2 or R needs knowledge about the 

largest and the second smallest eigenvalues of the Laplacian matrix. For instance, to study the 

effect of node removal on synchronisability, its impact on the values of λN  and λ2 should be 

first determined. As a preliminary study, Figure 5.1 shows the variation in the eigenvalues (i.e. 

ΔλN and Δλ2) caused by node removal in synthetic networks with scale-free, Watts-Strogatz 

and Erdős-Rényi structures. In each network, one node and all its adjacent links are removed, 

and the terms ΔλN = λN – λR
N  and Δλ2 = λ2 – λR

2  are measured where λR
N  and λ

R
2 are the largest 

and the second smallest eigenvalues of the Laplacian matrix after node removal. Then, the 

original network is considered, and the process is repeated for another node. Fig. 5.1 shows the 

mean values along with the standard errors performed over 100 realizations.  

Figure 5.1(A) depicts ΔλN and Δλ2 in a network with scale-free structure as a function of 

the average degree (expressed by m) and for different values of B. It is shown that the 

heterogeneity degree (B) does not affect Δλ2 considerably while it has inverse effect on ΔλN, 

i.e. removing a node in more homogenous networks (B = 0) affects λN more than the case of 

more heterogeneous ones (B = 10). It is also clear in Fig. 5.1(A) that effect of node removal on 

both λN and λ2 becomes stronger as the average degree increases. In addition, variation of 



Impact of node removal on collective behaviours in complex network 

66 
 

spectral gap is generally bigger than variation of algebraic connectivity when a node is 

removed. 

  

 

 

 

 

Fig. 5.1.  Impact of removing a node in networks with  A) Scale-free B) 

Watts-Strogatz and C) Erdős-Rényi structures on the largest and the 

second smallest eigenvalues (λN and λ2, respectively) of the Laplacian 

matrix of the graph. Scale-free networks with different average degrees 

(m) and heterogeneity (B) are studied in panel A. p in panels B and C 

represent rewiring probability and connection probability, respectively. 

All networks have N = 500 nodes. Data show mean values as well as 

bars as standard error over 100 realizations. 

 

Variation of the largest and second smallest eigenvalues of the Laplacian matrix is 

relatively small and almost independent of the rewiring probability (p) in Watts-Strogatz 

networks (Fig. 5.1B). In networks with Erdős-Rényi structures, ΔλN and Δλ2 increase with 

connection probability almost with the same rates (Fig. 5.1C). These results are used in defining 

our metric in the next section. 

This study gives a general view of the effect of node removal on the synchronisability of 

a class of dynamical networks where synchronisability is related to the spectral gap. From 

mathematical graph theory (Mieghem 2011), removing a node from a complex network can be 

modelled as removal of the related row and column of the Laplacian matrix as well as a 

perturbation on diagonal elements related to the neighbours of the removed node. For a single 

node removal in a large network, this perturbation may be negligible. Therefore, one can 

approximate the effect of removing node k by removing the kth row and column of the Laplacian 

matrix and use the eigenvalue interlacing theorem (Theorem 5.2) to study the spectral impact 

of node removal. However, this approximation is not precise when the network is not large 

enough, and thus a Laplacian eigenvalue interlacing theorem should be developed. In addition, 
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a metric to rank nodes based on their removal impact on the network spectrum is useful for 

identification of vulnerable nodes in synchronisation of complex networks. These two 

problems are studied in the next sections.  

 

5.2 Eigenvalue interlacing for Laplacian matrix 

Laplacian is a zero row-sum symmetric (positive semidefinite) matrix with eigenvalues as 

0 = λ1 < λ2 ≤ … ≤ λn when the graph is connected. In general, the multiplicity of λ1 = 0 shows 

the number of components of the network. It is worth noting that to simplify the notations, the 

vector x is considered in ℝn in the rest of this chapter to get rid of the Kronecker product. 

5.2.1 Rayleigh Principle 

For any symmetric matrix P, the Rayleigh quotient RP: ℝn–{0} → ℝn  is defined as: 

𝑅𝑃(𝒙) =  
<𝒙,𝑃𝒙>

‖𝒙‖2
    (5.7) 

one can restrict the study to normalized vectors ||x|| = 1 when dealing with the possible 

values of RP(x). Therefore, from now on, RP(x) is simply computed as <x,Px> or xTPx. 

 

Assume that P = L, the Laplacian matrix. Then, it is well known that 

0 ≤ 𝑅𝐿(𝒙) ≤ 𝜆𝑛    (5.8) 

Indeed, L can be written as L = QTΛQ, where Λ = diag (λ1, λ2, …, λn) and Q forms an 

orthonormal basis from corresponding eigenvectors. Therefore, writing x in such a basis, x = 

Qα results in 

𝑅𝐿(𝒙) = 𝒙
𝑇𝑄Λ𝑄𝑇𝒙 = (𝑄𝑇𝒙)𝑇Λ(𝑄𝑇𝒙) = 𝜶𝑇Λ𝜶       

             =  𝜆1𝛼1
2 + 𝜆2𝛼2

2 +⋯+ 𝜆𝑛𝛼𝑛
2    (5.9) 

 

Then, as λ1 = 0, the above range for RL(x) follows. Besides, if G is connected, the 

corresponding eigenvector u1 is any non-zero multiple of 1N = (1,1,…,1), i.e. u1 ∈  span {1N }. 

 

Lemma 5.2. If G is connected, the smallest non-zero eigenvalue of the Laplacian matrix 

is 

𝜆2 = min
<𝒙,𝟏>=0

𝑅𝐿(𝒙) = min
<𝒙,𝟏>=0

𝒙𝑇𝐿𝒙.    (5.10) 
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5.2.2 Effect of node removal on the spectrum of the Laplacian matrix  

The first achievement of this section is an eigenvalue interlacing theorem for the Laplacian 

matrix of a graph. It is worth noting that the well-known eigenvalue interlacing theorem, which 

is defined based on deleting a row and column of a real symmetric matrix, is only applicable 

when the effect of node removal is investigated on eigenvalues of the adjacency matrix. In the 

Laplacian matrix, node removal does not exactly result in only a row and column removal and 

needs further studies. Here, an interlacing theorem for the eigenvalues of the Laplacian matrix 

is proposed when a node (and all its adjacent links) is removed from a graph. Here, the Theorem 

5.1 and its proof as well as the Theorem 5.2 are first reviewed. These theorems are applied to 

prove the interlacing theorem 5.3.  

 

Theorem 5.1. (Godsil and Royle 2001) For any symmetric n⨯n matrix P 

𝜆𝑗+1 = max
dim(𝑉)=𝑛−𝑗

min
𝒙∈𝑉

𝑅𝑃(𝒙) =  min
dim(𝑉)=𝑗+1

max
𝒙∈𝑉

𝑅𝑃(𝒙)  (5.11) 

for all j = 0, 1,…, n −1. 

Proof: To prove the first equality, let’s start with 

max
dim(𝑉)=𝑛−𝑗

min
𝒙∈𝑉

𝑅𝑃(𝒙) = max
dim(𝑉)=𝑛−𝑗

min
𝒙∈𝑉

(𝜆1𝑥1
2 + 𝜆2𝑥2

2 +⋯+ 𝜆𝑛𝑥𝑛
2).  (5.12) 

From x ∈ V, dim(V) = n − j and x ∈ ℝn, one can conclude that x is orthogonal to at least 

one subspace 𝑉̃ of dimension j. Suppose 𝑉̃ is covered by the set canonical basis {ei; i =1, 2, …, 

j} and its orthogonal complement V is covered by {vi; i = 1, 2, …, n − j}. Therefore, there exists 

x ∈ ℝn orthogonal to {e1,…,ej,v1,…,vn−j}, which have a form of x = (0,0,…,0, a1, a2,…, an-j+1) 

where the first j elements are zero. Suppose x is a normalized vector (otherwise one can 

normalize it) such that a1
2 + a2

2 +…+ an-j+1
2 = 1. Therefore, 

𝑅𝑃(𝒙) = 𝑎1
2𝜆𝑗+1 + 𝑎2

2𝜆𝑗+2 +⋯+ 𝑎𝑛−𝑗
2 𝜆𝑗 ≥ 𝜆𝑗+1   (5.13) 

which results in 

min
𝑥∈𝑉

𝑅𝑃(𝒙) =  𝜆𝑗+1    (5.14) 

and completes the proof for 

max
dim(𝑉)=𝑛−𝑗

min
𝑥∈𝑉

𝑅𝑃(𝑥) = 𝜆𝑗+1    (5.15) 

To prove the other equality in (5.11), suppose subspace U is a subspace of dimension j+1 

with basis {u1, u2,…, uj+1}. Then there exists: 
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min
dim(𝑉)=𝑗+1

max
𝒙∈𝑉
||𝒙||=1

𝑅𝑃(𝒙) ≤ max
𝒙∈𝑈
||𝒙||=1

𝑅𝑃(𝒙) ≤ 𝜆𝑗+1    (5.16) 

Now, suppose another subspace W with dimension n − (j+1)+1 and with basis {uj, uj+1,…, 

un}. There should be at least one vector x in W∩V with || x || = 1 because: 

𝑑𝑖𝑚(𝑉 ∩𝑊)  =  𝑑𝑖𝑚(𝑉) + 𝑑𝑖𝑚(𝑊) − 𝑑𝑖𝑚(𝑉 ∪𝑊) ≥ 𝑗 + 1 + 𝑛 − (𝑗 + 1) + 1 − 𝑛 = 1 

As x ∈ W, there is RP(x) = xTPx ≥ λj+1 which converts inequalities in (5.16) to equality and 

completes the proof.         █ 

Theorem 5.2. (Eigenvalue Interlacing Theorem) (Godsil and Royle 2001): Let A be a 

real symmetric n⨯n matrix with eigenvalues λ1 < λ2 ≤ … ≤ λn. For some m < n, let S be a real 

n⨯m matrix with orthogonal columns, STS = I, and consider the matrix Q = STAS with 

eigenvalues μ1 ≤ μ2 ≤ …  ≤ μm. Then, the eigenvalues of Q interlace those of A, that is 

𝜆𝑖 ≤ 𝜇𝑖 ≤ 𝜆𝑛−𝑚+𝑖; 𝑖 = 1,2, … ,𝑚,    (5.17) 

In a particular case when m = n−1, Q becomes a submatrix of P where kth, k ∈{1,2,…,n} 

row and column are removed and interlacing becomes λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ … ≤ μn-1 ≤ λn. In 

addition, when node v is removed, the Laplacian matrix of the network can be written as L̅ = 

L\v + Φ, in which L\v is achieved by removing vth row and column of L and Φ = [φij] is defined 

as 

𝜙𝑖𝑗 = {
−1, 𝑖 = 𝑗 ∈ 𝑁𝑣
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (5.18) 

Now, we prove the following theorem: 

Theorem 5.3. Suppose L and L̅ are Laplacian matrices of the original graph and the graph 

when a node and all its adjacent links are removed from it, respectively. The spectrum of these 

Laplacian matrices satisfies the following inequalities, 

𝜆𝑘(𝐿) − 1 ≤ 𝜆𝑘(𝐿̅) ≤ 𝜆𝑘+1(𝐿)     (5.19) 

Proof: First, we show that for any symmetric n⨯n matrices P and P + E, we have 

𝜆1(𝐸) ≤ 𝜆𝑘(𝑃 + 𝐸) − 𝜆𝑘(𝑃) ≤ 𝜆𝑛(𝐸)    (5.20) 

for all k ∈{1,2,…,n}. From Theorem 5.1, we have 

𝜆𝑘(𝑃 + 𝐸) = min
dim(𝑉)=𝑘

max
𝑥∈𝑉
||𝑥||=1

𝑥𝑇(𝑃 + 𝐸)𝑥 = min
dim(𝑉)=𝑘

max
𝑥∈𝑉
||𝑥||=1

(𝑥𝑇𝑃𝑥 + 𝑥𝑇𝐸𝑥) 

≤ min
dim(𝑉)=𝑘

max
𝑥∈𝑉
||𝑥||=1

(𝑥𝑇𝑃𝑥) + 𝜆𝑛(𝐸) = 𝜆𝑘(𝑃) + 𝜆𝑛(𝐸) 
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which proves the right-side inequality and can also be applied to prove the left-side inequality: 

𝜆𝑘(𝑃) = 𝜆𝑘((𝑃 + 𝐸) − 𝐸) ≤ 𝜆𝑘(𝑃 + 𝐸) + 𝜆𝑛(−𝐸) = 𝜆𝑘(𝑃 + 𝐸) − 𝜆1(𝐸)  

Now, applying (5.20) on L̅ = L\v + Φ with P = L\v, E = Φ and Φ defined in (5.18) results in 

−1 ≤ 𝜆𝑘(𝐿̅) − 𝜆𝑘(𝐿\𝑣) ≤ 0. 

on the other hand, from interlacing theorem 5.2. we have 

𝜆𝑘(𝐿) ≤ 𝜆𝑘(𝐿\𝑣) ≤ 𝜆𝑘+1(𝐿). 

Combining two recent inequalities completes the proof.    █ 

Theorem 5.3, which can be called the “Eigenvalue Interlacing of Laplacian matrix” 

theorem, is also reported in (Lotker 2007); but our proof is much simpler. It defines bounds on 

the eigenvalues of the Laplacian matrix of a graph when a node is taken out of it. Applying this 

theorem on the algebraic connectivity and the spectral gap of a graph shows that removing any 

node from the network results in reduction of λn. However, this does not necessarily happen 

for algebraic connectivity. Although a node removal strategy has been proposed for increasing 

the algebraic connectivity in large networks (Watanabe and Masuda 2010), no general rule can 

be achieved from this theorem about effect of node removal on λ2. Simulations also show that 

sometimes node removal may result in reduction in λ2. 

5.3 Identification of vital nodes for Laplacian spectrum 

Eigenvalue interlacing theorem for the Laplacian matrix does not result in a practical 

metric although supported mathematically. In fact, in many real-world applications, one needs 

an applicable metric to find the most vulnerable nodes based on their impact on 

synchronisability. These nodes can then be further protected to increase the reliability of the 

whole network. Here, using a concept called “local multiplicity”, a new metric to rank nodes 

based on their spectral impact is proposed. It is shown that the metric can be applied on 

networks with many different topologies.  

5.3.1 Local spectrum of a graph 

The spectrum of the Laplacian matrix L can be generally presented as 

𝑠𝑝(𝐿) = {𝜆0
𝑚0 , 𝜆1

𝑚1 , … , 𝜆𝑑
𝑚𝑑}    (5.20) 
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where the eigenvalues λ0, λ1,… and λd are in ascending order and the superscript denote 

algebraic multiplicities mi = m(λi) for i = 0, 1, …, d. Generally, m0+ m1+…+ md = n and also λ0 

= 0 and m0 = 1 for a connected graph.  

For each λi, let Ui be the matrix whose columns form an orthonormal basis of its eigenspace 

Ɛi = Ker (L - λiI). The dimension of Ɛi is called geometric multiplicity of λi of L. For every i = 

0, 1, …, d, the orthogonal projection of ℝn onto the eigenspace Ɛi can be done using the 

following matrices Ei which are called principal idempotents of L (Fiol 2002): 

𝐸𝑖 =
1

𝜙𝑖
∏ (𝐿 − 𝜆𝑖𝐼)
𝑑
𝑗=0
𝑗≠𝑖

   𝑤ℎ𝑒𝑟𝑒   𝜙𝑖 = ∏ (𝜆𝑖 − 𝜆𝑗)
𝑑
𝑗=0
𝑗≠𝑖

  (5.21) 

These idempotents are known to satisfy the following properties: 

(𝑎)  𝐸𝑖𝐸𝑗 = 𝛿𝑖𝑗𝐸𝑖  

(𝑏)  𝐿𝐸𝑖 = 𝜆𝑖𝐸𝑖  

(𝑐)  𝑝(𝐿) = ∑ 𝑝(𝜆𝑖)𝐸𝑖
𝑑
𝑖=0 , for any polynomial 𝑝   (5.22) 

The principal idempotents of L can be also defined in the matrix form Ei = Ui Ui
T (Fiol 

2002).  

 The local multiplicities of the eigenvalue λi are defined as the squared norm of the 

projection of eu (u
th canonical basis of ℝn where u ∈ V) in the eigenspace Ɛi. That is, 

𝑚𝑢(𝜆𝑖) = ‖𝐸𝑖𝒆𝑢‖
2 =< 𝐸𝑖𝒆𝑢 , 𝒆𝑢 > = 𝐸𝑖

𝑢𝑢     (5.23) 

where the superscript ‘uu’ shows the (u,u)th element of Ei. In fact, mu(λi) = cos
2
βui in which βui 

is the angle between eu and Ɛi (Cvetković and Doob 1985). Local multiplicities are a 

generalization of the algebraic (or geometric) multiplicities when the graph is seen from node 

u and satisfy the following properties (Fiol and Carriga 1997): 

∑ 𝑚𝑢(𝜆𝑖)
𝑑
𝑖=0 = 1   

∑ 𝑚𝑢(𝜆𝑖)𝑢∈𝑉 = 𝑚𝑖  for 𝑖 = 0,1,… , 𝑑.    (5.24) 

The local multiplicity concept facilitates the spectral analysis of a graph using a local 

approach. Here, it is used to rank the nodes based on their impact on the spectrum of the 

Laplacian. Suppose eu and ev are the uth and vth canonical bases of ℝn related to nodes u and v, 

respectively. Also, consider the case where the angle between ev and Ɛi is bigger than that of 

eu, i.e. β2 > β1, or in other words Ei
vv < Ei

uu (see Fig. 5.2, assuming that angles are between 0 

and π/2). Removing node u can be modelled as transferring from ℝn space to ℝn-{u}. In large 
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networks, it is reasonable to assume that the removal of a node has a small effect on the 

eigenvectors of L (Restrepo et al. 2006). Therefore, considering the eigenvalue λi, one can argue 

that when node u is removed, the projection of eu on Ɛi vanishes. In other words, for any 𝑥 ∈ 

Ɛi, Lx = λi x; therefore, since Eieu∈ Ɛi, we have 

< 𝐿𝐸𝑖𝑒𝑢 , 𝑒𝑢 > =  𝜆𝑖 < 𝐸𝑖𝑒𝑢 , 𝑒𝑢 >= 𝜆𝑖𝐸𝑖
𝑢𝑢     (5.25) 

which clearly shows that the impact of the removal of eu is proportional to Ei
uu. It means that 

node u with the maximum Ei
uu is the best candidate to be removed when maximum variation 

in λi is desired.  

eu

ev

Ɛi 
β1

β2

 

Fig. 5.2. Projection of different basis of ℝn onto Ɛi  

 

For networks with a simple spectrum, i.e. no repeated eigenvalue for the Laplacian matrix, 

Ker(L − λiI) = <xi >, i.e. Ɛi is generated only by the eigenvector xi. This results in Ei
vv = (xi

v)2 

meaning that the vth element of xi
Txi reflects the impact of the removal of node v on λi. In chapter 

3, we identified node v with the maximum (xN
v)2, where xN is associated with the largest 

eigenvalue, as the best node to be controlled for achieving synchrony over the widest range of 

coupling parameters. One can find that as a special case of our results in this chapter since 

results here are not restricted to any specific eigenvalue. 

5.4 Discovering vital nodes in networks with different 
topologies 

In this section, the local multiplicity technique is applied to synthetic networks with scale-

free, Watts-Strogatz and random topologies to study the effect of node removal on their 

algebraic connectivity, spectral gap and the Laplacian energy.   
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5.4.1 Algebraic connectivity  

Practically, modification of algebraic connectivity λ2 by removing nodes is easier than by 

adding them (Watanabe and Masuda 2010). Therefore, targeted node removal for maximum 

increase in λ2 is a matter of interest. We apply the maximum local multiplicity of λ2 to identify 

the node whose removal causes the maximum influence on the algebraic connectivity. We first 

calculate E2 = U2U2
T using eigen-decomposition of the Laplacian, and then rank nodes based 

on diagonal elements of E2, i.e. E2
uu. The performance is then compared with some heuristic 

methods including degree-, betweenness- and closeness-centrality. In order to study the 

precision of our proposed metric, the ground-truth is first obtained; the best node is obtained 

through examining all nodes and identifying the one which causes the maximum increase in 

the algebraic connectivity when removed. To this end, Δλ2 is measured by removing nodes 

one-by-one. The nodes are ranked based on Δλ2 with the node with the maximum Δλ2 on the 

top. This is a time-consuming process and nearly impractical (if not impossible) in real large-

scale networks and is only used to compare the performance of the proposed metric with the 

ground-truth. Then, Δλ2
v is calculated by removing the node v predicted by the proposed metric. 

This metric is computationally efficient and is calculated for all nodes using only a single eigen-

decomposition of the Laplacian. Finally, precision of our metric is calculated as P = Δλ2
v / 

max(Δλ2). For example, 90% precision indicates that the effect of removal of the predicted 

node on the algebraic connectivity is 90% of the maximum possible influence. This precision 

is also calculated for heuristic centrality metrics. Although they are not directly related to the 

algebraic connectivity, they are still the first which come to mind when one is looking for an 

index to test the impact of node removal. 

Figures 5.3 and 5.4 compare the precision of the proposed metric with that of heuristic 

centrality measures in terms of their correct prediction on λ2 in networks with scale-free, Watts-

Strogatz and Erdős-Rényi topologies. It is clearly shown that in scale-free networks (Fig. 5.3), 

using local multiplicity one can almost accurately identify the node with the maximum impact 

on λ2 regardless of level of heterogeneity (see Fig. 5.3 (A) to (C)). None of the heuristic 

methods shows such a reliable performance. Betweenness and Closeness centrality measures 

have uniform performance when average degree of the network changes, while the former is 

more accurate. The precision of the degree centrality decreases almost linearly as average 

degree increases. Fig. 5.3 (D) shows how the ranking by the local multiplicity of λ2 is correlated 

to the ground-truth. It shows the correlation between the ranking vector obtained by the 

proposed local multiplicity metric and the group-truth ranking vector. It is seen that regardless 



Impact of node removal on collective behaviours in complex network 

74 
 

of the level of heterogeneity, this correlation increases as average degree of the network 

increases.  

The performance of the metric in Watts-Strogatz and Erdős-Rényi is again close to perfect, 

and much better than the heuristics (Fig. 5.4). We further consider Erdős-Rényi networks with 

different assortativity levels and study the performance (Fig. 5.5). By making the networks 

more assortative, the precision is slightly reduced, but it is still much higher than heuristics. 

 

 

Fig. 5.3. The precision of the local multiplicity-based metric in scale-free networks. 

 The precision of the proposed metric (solid), maximum degree (dash-dot), maximum betweenness centrality (dot) and maximum closeness 

centrality (dashed) in finding the agent whose removal causes maximum impact on λ2 in networks with N = 200 agents. Networks have 

scale-free structure with average degree m and (A) B=0, (B) B=5 and (C) B=10 (as B increases, the heterogeneity of the network decreases). 

Panel (D) shows correlation between Local multiplicity-based and the ground-truth rankings. Results are averaged over 100 realizations. 

 

Fig. 5.4. The precision of the local multiplicity-based metric in small world and random networks. Networks have (A) Watts-Strogatz and 

(B) Erdős-Rényi topologies with N = 200 nodes. The precision of the proposed metric (solid), maximum degree (dash-dot), maximum 

betweenness centrality (dot) and maximum closeness centrality (dashed) in finding the node whose removal causes maximum impact on λ2. 

Results are averaged over 100 realizations. 
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Fig. 5.5. The precision of the local multiplicity-based metric in random Erdős-Rényi networks with different assortativity σ.  

 

5.4.2 Spectral gap  

Here, finding the node whose removal causes the maximum reduction in the spectral gap 

is studied where precision of our proposed local multiplicity-based metric is compared with 

heuristic methods. The way of calculating precision P is exactly the same as what explained 

for algebraic connectivity. For example, P = 90% for a metric means that if the node suggested 

by that metric is removed, Δλn will be 90% of maximum possible Δλn that may cause by node 

removal in that network. Fig. 5.6 (A) and (B) depict this comparison in synthetic small-world 

networks with Watts-Strogatz and Erdős-Rényi topologies, respectively. Local multiplicity-

based metric works more accurately than heuristics while its performance is more reliable in 

random Erdős-Rényi networks. 

 

Fig. 5.6. Accuracy of the proposed metric in networks with Watts-Strogatz and Erdős-Rényi topologies.  Accuracy of the proposed metric 

(solid), maximum degree (dash-dot), maximum betweenness centrality (dot) and maximum closeness centrality (dashed) in finding the agent 

whose removal causes a maximum reduction in spectral gap. Networks with N=200 nodes have A) Watts-Strogatz and B) Erdős-Rényi 

topologies. Results are averaged over 100 realizations. 

 

5.4.3 Laplacian centrality 

Laplacian centrality (Qi et al. 2012) of a node is defined based on Laplacian energy EL(G) 

= Σiλi
2. Importance of a node in a network is quantified by the drop of the Laplacian energy 
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when that node is removed from the network. Therefore, to rank nodes based on their 

importance, the Laplacian energy should be calculated N times (N is the number of nodes), 

which needs eigen-decomposition of the Laplacian matrix to be repeated N times. Here, using 

the concept of local multiplicity, we define a new function E̅L(G) = ΣiEi
uu, where Ei

uu is the 

local multiplicity of the eigenvalue λi at node u. With this new function, one can rank nodes 

using a single eigen-decomposition of the Laplacian matrix. To study precision of E̅L(G) in 

finding the most important node, we first calculate the drop in Laplacian energy EL(G) by 

removing nodes one-by-one and then rank nodes based on maximum energy drop, i.e. the node 

whose removal causes the maximum energy drop is ranked the highest. Then, we apply E̅L(G) 

which can clearly rank nodes faster. Precision P of E̅L(G) in identifying the node with the 

maximum energy drop is shown in the upper panels of columns (A) and (B) of Fig. 5.7 for 

scale-free, Watts-Strogatz and Erdős-Rényi networks, respectively. Correlation C between 

rankings given by E̅L(G) and EL(G) are also shown in the bottom figures. Results show that in 

scale-free networks, E̅L(G) can always predict the most important node with at least 60% 

precision regardless of heterogeneity level of the network. The ranking of nodes is at least 50% 

correlated to that of EL(G). Both these precision and correlation are higher than 70% in Watts-

Strogatz and Erdős-Rényi networks (Fig. 5.7 (B)). This concludes that E̅L(G) is accurate enough 

to rank nodes based on Laplacian centrality especially in random Erdős-Rényi networks. 

 

Fig. 5.7. The precision of the E̅L(G) in predicting central nodes based on Laplacian centrality concept.  Networks with N=200 nodes and 

scale-free topologies are reported in column (A) where those with Watts-Strogatz and Erdős-Rényi topologies are in column (B).  In each 

column, the upper figure is precision of E̅L(G) and the lower one is the correlation between rankings of E̅L(G) and EL(G). Results are 

averaged over 100 realizations. 
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5.5 Summary 

In this chapter, the problem of finding the node with the maximum influence on the 

spectrum of the Laplacian matrix was studied. An eigenvalue interlacing theorem was first 

derived to define upper and lower bounds on the variation of eigenvalues of the Laplacian 

matrix when one of its nodes is removed. Then, based on the concept of local multiplicities of 

the Laplacian matrix at each node, a metric was proposed to rank the nodes based on their effect 

on spectrum of the Laplacian matrix. It worked almost perfect in identifying the node whose 

removal results in the maximum change in the algebraic connectivity. The proposed metric for 

networks with Watts-Strogatz topologies could predict the most influential node almost 

perfectly. It also works accurate enough for scale-free and Erdős-Rényi networks and 

outperformed other heuristic methods. It also provides a reliable and easy to calculate 

approximation for the Laplacian energy of a network.  
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Chapter 6  

Blocking failure 

propagation in complex 

networks: A formation 

control study 
 

 

 

 

   Formation control is one of the applications of synchronisation in the control community 

where the goal is typically to maintain the inter-agent distances constant over time. In this 

context, rigidity of the sensing network among agents is crucial to keep the formation stable 

using local data; hence, rigidity maintenance algorithms are of much interest. A rigidity 

maintenance algorithm should consider real-time constraints in applications, along with the 

limited range of sensing and limited power in each agent. In other words, it should work fast 

within a minimum sensing range for each agent to reduce its power consumption. Taking into 

account these constraints, a lattice-based distributed online reconfiguration approach is 

proposed in this thesis to maintain the rigidity of the sensing graph in a multi-agent formation 

control system. In this approach, the rigidity of the whole framework is related to the rigidity 

of all sub-frameworks, which are much smaller in scale and hence much easier to deal with. A 

lattice of configurations is applied to reconfigure the faulty sub-framework to a rigid 

configuration, which leads to the rigidity of the whole framework without any online adaptation 



Blocking failure propagation in complex networks: A formation control study 

79 
 

in control parameters. The proposed procedure satisfies real-time requirements and is 

applicable if at least one rigid configuration is available for each sub-framework, i.e. each agent 

and all its neighbours can always interact over at least one rigid sensing configuration. If such 

a configuration is not available for at least the agent affected by link breakage, formation goes 

to emergency, which may lead to loss of agent(s) if not well handled. This critical case is 

expected since constraint in power consumption may force the formation to move towards 

rigidity with a minimum number of sensing links, which is indeed not robust enough. This 

important situation has not been well studied to date. Motivated by the above observation, this 

thesis further proposes a technique to temporarily preserve the formation in the aforementioned 

emergency situation. A novel technique is introduced with a combination of sensing and 

communication networks, for which a sufficient condition for its desired performance is 

derived. Results of this chapter are submitted to IEEE Transactions on Control of Network 

Systems. 

 

6.1 Rigidity Recovery Using Lattice of Configurations 

Suppose that a formation in d-dimensional Euclidian space (d = 2 or 3) is modelled as a 

graph G while the ith agent is associated with a point pi ∈ ℝd. The pair (G, p), a combination of 

a graph of agents and the position vector p = [p1
T, p2

T, …, pN
T]T, is referred to as a framework. 

This chapter focuses on frameworks in ℝ2. For edge k, which relates node i to node j in G, a 

relative position is associated with lk = pi – pj, resulting in the relative position vector 

𝑍 = [𝒍1
𝑇 𝒍2

𝑇 … 𝒍𝑀
𝑇 ] = (𝐻 ⊗ 𝐼𝑛)𝒑;     𝑍 ∈ ℝ

𝑛×𝑚  (6.1) 
 

   A framework (G, p) is said to be rigid in ℝd if there exists a neighbourhood U of p such 

that rG
‒1(rG (p)) ∩ U = rК

‒1(rК(p)) ∩ U, where rG(p) is a vector containing the lengths of all m 

edges of the graph, i.e. rG(p) = [ …, ||pi – pj||
2, …] for all (i,j) ∈ G and rК is the same mapping 

considering a complete graph with the same nodes as G (Asimow and Roth 1979). The 

superscript “–1” means inverse mapping of a graph. In the following definitions, p0 and p1 are 

two different position vectors: 

Definition 6.1: Frameworks (G, p0) and (G, p1) are equivalent if ||pi
0 – pj

0|| = || pi
1 – pj

1|| 

for all (i,j) ∈ E. They are congruent if ||pi
0 – pj

0|| = || pi
1 – pj

1|| for all i,j ∈ V. 
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Definition 6.2: A Framework (G, p0) is rigid if every framework (G, p1), which is 

equivalent to (G, p0) and satisfies ||pj
0 – pj

1|| < ε for all j ∈ V and for at least one ε > 0, is 

congruent to (G, p0). 

For each node i, one can define a subgraph Gi = (Vi, Ei), in which Vi = {i} ∪ Ni and Ei = 

{(k, j) ∈ E; k,j ∈ Vi}. In other words, each subgraph Gi is a cut of graph G which includes node 

i (i =1, 2, …, N) and all its neighbours. (Gi, p
0) is called a sub-framework centred at node i. 

The following Lemmas help to define the proposed approach: 

 

Lemma 6.1: The framework (G, p0) is rigid if sub-frameworks (Gi, p
0) are rigid for all i ∈ 

{1, 2, …, N}. 

Proof: To show the sufficiency, suppose that all (Gi, p0) are rigid. To prove that the 

framework (G, p0) will be rigid, it needs to show that if 

‖𝒑𝑖
0 − 𝒑𝑗

0‖ = ‖𝒑𝑖
1 − 𝒑𝑗

1‖,   ∀(𝑖, 𝑗) ∈ 𝐸  

∃𝜀 > 0,   ‖𝒑𝑗
0 − 𝒑𝑗

1‖ < 𝜀     (6.2) 

 

then ||pi
0 – pj

0|| = || pi
1 – pj

1|| for all i,j ∈ V. For this purpose, denote the set of all sub-frameworks 

by Ѵ = {(Gi, p
0); i =1, 2, …, N}.  Each (i,j) ∈ E belongs to a subset of sub-frameworks S ⊂ Ѵ, 

whose elements are all rigid. Thus, ||pi
0 – pj

0|| = || pi
1 – pj

1|| for all i,j ∈ Vi when (Gi, p
0) ∈ S. 

This is also valid for all i ∈ {1, 2, …, N} as condition (6.2) is satisfied for all edges in E, 

resulting in ||pi
0 – pj

0|| = || pi
1 – pj

1|| for all i,j ∈ V. This completes the proof.    ■ 

  Using Lemma 6.1, the rigidity property of the framework (G, p0) is decomposable to the 

rigidities of the sub-frameworks (Gi, p
0), i ∈ {1, 2, …, N}. This is useful to develop distributed 

algorithms for rigidity. 

 

Lemma 6.2: Suppose that the framework (G, p) is rigid with G = (V, E). The framework 

(G̅, p) with G̅ = (V, E ∪ P) is also rigid, where P ⊂ (V×V) \ E. 

Proof: It directly follows from the definitions, since adding an edge to a rigid framework 

will not affect its rigidity.                    ■ 

 

Definition 6.3: The sub-framework (Gi, p) is defined as a cut of the framework (G, p) 

centred at node i, in which || pi – pj|| < Di
s where Di

s ∈ ℝ+ shows the sensing range. Inside this 

sub-framework, the admissible sensing network is defined as G̅i = (V̅i, E̅i) where V̅i includes all 
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agents in Gi and E̅i is the set of all possible sensing links inside the cut, i.e. where agents are 

equipped with appropriate independent sensing channels. The admissible communication 

network is defined for each node i where the communication range is defined as Di
c∈ ℝ+. 

From this definition, one can conclude that each local framework (Gi, p) can be 

implemented in 2E̅i configurations. On the other hand, Lemma 6.1 shows that one can preserve 

the rigidities of all sub-frameworks (Gi, p), i ∈ {1, 2, …, N} to guarantee the rigidity of the 

whole framework (G, p). It means that among the 2E̅i different configurations for sub-

framework (Gi, p), those rigid ones can contribute to the rigidity of the whole framework (G, 

p). 

   Here, the objective is to develop an online distributed algorithm to locally preserve the 

rigidities of the sub-frameworks by adding a new link(s) in the case of failure in a sensing link. 

If failure in a sensing link of the rigid framework (G, p) causes loss of rigidity, there exists at 

least one sub-framework (Gi, p) whose rigidity is lost according to Lemma 6.1. The proposed 

approach is to reconfigure this sub-framework to make it rigid so as to recover the rigidity of 

(G, p). This approach is developed here based on lattice of configurations and its monotonicity 

property. 

 

6.1.1 Lattice of Configurations 

This subsection explains how a lattice of configurations works. Recall that E̅i represents 

the set of all admissible sensing links in sub-framework (Gi, p). Denote by |E̅i| the cardinality 

of E̅i. 

Definition 6.4: Each subset Ek
i ⊂ E̅i; k = 1, 2, …, 2|E̅i|, is a “configuration” for the 

framework (Gi, p), where Ek
i is the kth configuration. E̅i is called the complete configuration. 

Lattice is an abstract structure, which has been widely studied in the ordered sets theory 

in mathematics since the 1890s. It was originated from mathematical “Group Theory”; 

however, its properties (Davey and Priestley 2002) have been used in recent years to improve 

fault-tolerance performance in systems or to achieve fault-tolerant control (Staroswiecki and 

Amani 2015).  

The notion of the lattice is introduced in the following: The set of all configurations of E̅i 

is the power set of E̅i, i.e. S(E̅i) = 2E̅i. S(E̅i) can be partially ordered by set-inclusion: for A, B ∈ 

S(E̅i), A < B if and only if A ⊂ B. In this sense, sets A and B are called comparable. The word 
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“partial” indicates that not all elements of S(E̅i) are comparable. With this partial ordering, S(E̅i) 

is a lattice, i.e. for each pair of elements of S(E̅i) there exists a unique largest lower bound and 

a unique least upper bound, both in S(E̅i). In other words, every pair (Ek
i, E

p
i) ∈ S(E̅i) × S(E̅i) 

has a minimal element, namely min (Ek
i, E

p
i) = Ek

i ∩ Ep
i, and a maximal element, namely max 

(Ek
i, E

p
i) = Ek

i ∪ Ep
i (Davey and Priestley 2002).  

   A lattice is usually represented by an undirected graph. Each node represents a 

configuration, that is an element of S(E̅i), and there exists a connection (link) between two 

nodes Ek
i and Ep

i if 

∃Ω ∈ 𝑆(𝐸̅𝑖),   𝐸𝑖
𝑘 = 𝐸𝑖

𝑝
∪ Ω    𝑜𝑟    𝐸𝑖

𝑝
= 𝐸𝑖

𝑘 ∪ Ω   (6.3) 

 

The graph of a lattice is organised into levels. Each level contains configurations with the 

same number of elements. For example, in the lattice of configurations to be used below, 

configurations in each level have the same number of sensing links. The full configuration E̅i 

is usually on the top of the lattice and the empty configuration Φ is on the bottom. Edges are 

available only between adjacent levels according to the partial ordering. 

   A lattice can be directed, either in top-down or in bottom-up orientation, considering 

cases in equation (6.3). In the latter case, moving from a node in an upper layer to a node in a 

lower layer means that a sensing link in the configuration is removed while adding a new link 

moves it up. It can be enriched by adding extra information to each node, such as the probability 

of the configuration to happen or the power consumption related to this configuration. The 

lattice to be used below will be enriched by adding the “rigidity” feature to each configuration. 

 

Definition 6.5: The predecessors P(Ek
i) of a configuration Ek

i ⊂ S(E̅i) are denoted by 

𝑃(𝐸𝑖
𝑘) = {𝐸̃ ∈ 𝑆(𝐸̅𝑖); 𝐸𝑖

𝑘 ⊂ 𝐸̃}    (6.4) 

Similarly, the set of successors Λ(Ek
i) of a configuration Ek

i ⊂ S(E̅i) is defined by 

Λ(𝐸𝑖
𝑘) = {𝐸̃ ∈ 𝑆(𝐸̅𝑖); 𝐸̃ ⊂ 𝐸𝑖

𝑘}    (6.5) 

 

Example: Suppose E̅i = {1, 2, 3}. Then, S(E̅i) = {Φ, 

{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. The lattice shown in Fig. 6.1 represents S(E̅i). 
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Φ 

{1} {2} {3}

{1,2} {2,3} {1,3}

{1,2,3}

Layer 0

Layer 2

Layer 3

Layer 1

 
Fig. 6.1: Lattice graph of the example 

  

In order to establish the lattice of configurations for a sub-framework, let’s define the 

partial ordering ≥ for these configurations by 

(𝐺𝑖
𝑘 , 𝒑) ≥ (𝐺𝑖

𝑝
, 𝒑) ⟺ 𝐸𝑖

𝑘 ⊂ 𝐸𝑖
𝑝

    (6.6) 

 

where Gk
i = (V̅i, E

k
i) and Gp

i = (V̅i, E
p

i) are two configurations. For each sub-framework (Gi, p), 

i ∈ {1, 2, …, N}, 2|E̅i| configurations can be constructed. The predecessors of a framework (Gk
i, 

p) form the set  

𝑃(𝐺𝑖
𝑘 , 𝒑) = {(𝐺𝑖

𝑝
, 𝒑); (𝐺𝑖

𝑘 , 𝒑) ≥ (𝐺𝑖
𝑝
, 𝒑)}    (6.7) 

while its successors from the set  

Λ(𝐺𝑖
𝑘 , 𝒑) = {(𝐺𝑖

𝑝
, 𝒑); (𝐺𝑖

𝑝
, 𝒑) ≥ (𝐺𝑖

𝑘 , 𝒑)}    (6.8) 

 

   A framework is minimally rigid if it has no rigid successor. In order to construct the 

lattice of configurations for a sub-framework, all configurations should be arranged in different 

layers such that each framework is connected to all its successors while all its predecessors are 

connected to it. It is clear that if the framework is rigid for a specific configuration, it will be 

rigid for all its successors (Lemma 6.2).  

   In order to clarify the approach, the framework of Fig. 6.2 is considered, in which the 

circle Ds
1 shows the sensing range of agent 1. Suppose that the formation is well controlled 

using a distance-based control algorithm over the sensing network presented by solid links. As 

the sensing graph of this formation is rigid, the formation can be successfully achieved. Here, 

a lattice of configurations is developed for the sub-framework (G1, p); this process can also be 

repeated for all other agents. It is assumed in Fig. 6.2 that nodes 2, 3, 5 and 6 are in the sensing 

range of node 1. In the worst case of the analysis, consider that agent 1,2,3,5 and 6 are well 
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equipped to sense each other, i.e. all sensing links inside the sub-framework (G1, p) are 

admissible. This results in the maximum complexity in developing the lattice. Sensing graph 

of the sub-framework (G1, p) is G1 = (V̅1∪{1}, E̅1), V̅1 = {2,3,5,6} and E̅1 = {a, b, c, d, e, f, g, 

h, r, m}. The number of all possible configurations is 2|E̅1| = 210.  

   The lattice shown in Fig. 6.3 contains all possible sensing configurations of the 

framework (G1, p) in different layers. Layer i (6 ≤ i ≤ 10) contains all combinations of i links 

from E̅i. Due to space limitation, only a few configurations in layers 6, 7 and 8 are shown to 

explain the proposed algorithm. In addition, there is no need to consider layers 0 to layer 7 

since all configurations in these layers are not rigid according to the following lemma. 

 

Lemma 6.3 (Fidan et al. 2010): Any minimally d-rigid graph G = (V, E) (d = 2 or 3) with 

at least d nodes satisfies |E| = d|V| ‒ d(d+1)/2. 

 

Dark nodes represent rigid configurations in this lattice. According to Lemma 6.3, 

configuration (G1, p) needs at least 2|V̅1∪{1}| ‒ 3 = 7 links to be rigid, which means that 

configurations in layer 6 and below are definitely non-rigid and there is no need for further 

investigation. On the other hand, as all configurations in layer 8 are all rigid, all configurations 

of layer 9 inherit the rigidity according to Lemma 6.2 and the properties of the lattice diagram. 

Therefore, there is no need to check the rigidity of configurations in layer 9. These techniques 

considerably reduce the computational cost in constructing the lattice, where only 

configurations in layers 7 and 8 need to be studied for rigidity, while the rigidity status of other 

configurations is clear.  

After the lattice is established offline and programmed in a node (here, node 1), it can be 

used to preserve the rigidity of the sub-framework (G1, p) in the following manner. As shown 

in Fig. 6.2, the implemented configuration of this sub-framework is E1
1 = {a, b, c, d, e, g, h}, 

which is marked by “*” in layer 7 of Fig. 6.3. It is dark, meaning that the sub-framework is 

rigid with this configuration. 

Suppose that for some reason such as the line-of-sight constraint, sensing through link h 

becomes impossible. This link break reduces |E1
1| by one and the sensing configuration goes 

to its successor configuration in layer 6 of the lattice, which is marked by “*1”. The lattice 

shows that the recent configuration is not rigid, thus node 1 needs to activate new link(s) to 

recover the rigidity. According to the lattice, the configuration “*1” has two predecessors (other 

than E1
1) in layer 7, which are: {a, b, c, d, e, g, r} and {a, b, c, d, e, g, f}. The lattice shows that 
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the first one is rigid and the second one is not. Therefore, node 1 selects the first one in order 

to preserve the rigidity, i.e. it activates the sensing link r instead of the failed link h in order to 

recover the rigidity of the affected sub-framework and, consequently, the whole framework. In 

this way, node 1 can easily switch the local configuration to a rigid one thereby recovering the 

rigidity of the framework. As shown, once the lattice is established and programmed in the 

agents, the process of finding the rigid configuration to which the sub-framework should be 

switched is fast, which satisfies the real-time requirement.  

   As another example, suppose that the rigid sub-framework (G1, p) has the configuration 

marked by ▲ in the lattice of Fig. 6.3. A link break in f forces the sub-framework to 

configuration {a, b, c, d, e, g, r}, which is marked by “*2” in the lower layer. The new 

configuration is still rigid (it is dark in the lattice), meaning that failure in f has not affected the 

rigidity of the sub-framework, and consequently, the whole framework according to Lemma 

6.1. Therefore, there is no need to add any new sensing link. In this way, the configuration of 

the faulty sub-framework can be switched easily and fast in order to achieve the best (in the 

sense of adding the minimum number of links) new configuration which preserves the rigidity. 

One lattice per agent should be developed and pre-programmed based on its sensing range and 

potential neighbours.  

   The proposed algorithm has a number of advantages as follows. The algorithm is 

implemented in a distributed manner and is independent of the control law. The lattice can be 

developed offline and pre-programmed in each agent resulting in huge reduction in online 

computational cost. Nodes in the lattice can be also weighted based on practical constraints 

such as the power required for measuring; the farther the node, the more power required for 

sensing. The decision of each node thus goes towards options with more constraint satisfaction, 

if available. The approach has some drawbacks, however. Although the lattice (e.g. Fig. 6.3) 

can be built for each individual node in the framework, the proposed lattice does not enable a 

fully decentralized recovery approach for rigidity maintenance. Each node needs information 

about the links within its neighbours. The algorithm may also lead to a conservative 

configuration as Lemma 6.1 only offers a sufficient condition. 

6.1.2 Complexity analysis 

One may feel that establishing such a lattice for all sub-frameworks (Gi, p), i = 1, 2, …, 

N, is a complex and time- consuming process. Actually, it is not. The lattice for each node can 

be issued offline and the only online task is to update the current configuration of the subgraph 
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related to it, i.e. the location of the sign ▲ in Fig. 6.3, which is manageable in each individual 

node. Before proceeding, a complexity analysis is provided. 

Lemma 6.4 (Nourine and Raynaud 1999): Let X be a set and F be a set of subsets of X. 

The algorithm of developing the lattice has O((|X| + 1)|F|) time complexity.  

   The number of elements of E̅i, which is the set of all admissible sensing links for the 

framework (Gi, p), is at most di(di+1)/2 where di is the degree of node i. From Lemma 6.3, a 

rigid sub-framework must have at least 2di – 1 links. Therefore, one should examine all ki 

combinations (2di – 1 ≤ ki < di(di+1)/2) of elements of E̅i for rigidity. By using Lemma 7.4 and 

considering X = E̅i and F as the set of ki combinations of elements of E̅i, the time complexity 

of developing lattice of configurations for all nodes becomes 

𝑂 (∑ ∑ (𝑛𝑖 + 1)(
𝑛𝑖
𝑘𝑖
)

𝑛𝑖
𝑘𝑖=2𝑑𝑖−1

𝑁
𝑖=1 ). 

where N is the number of agents. Calculating k-combinations of a set of n elements, i.e. (
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
 has a complexity of order O(nk) if k ≤ n-k and of order O(nn-k) otherwise. Therefore, 

this calculation has O(nmin{k,n-k}) time complexity. The subset of links Ei for the sub-framework 

(Gi, p) has 𝑛𝑖 = (
𝑑𝑖 + 1
2

) =
𝑑𝑖(𝑑𝑖+1)

2
 elements, each of which is a potential link between two 

nodes. In view of Lemma 7.3, the rigidity of configurations generated by the set of ki links of 

E̅i should be studied where (2di – 1) ≤ ki < di(di+1)/2. Note that one needs at least 2di – 1 links 

for the two-dimensional sub-framework (Gi, p) to be rigid. As ni = di(di+1)/2, the computational 

complexity depends more on the degree distribution of the network rather than the number of 

agents. From network theory, it is known that even if the number of nodes increases gradually, 

the power-law distribution (in scale-free networks) or Poisson distribution (in random small-

world networks) limits the largest degree of the network. 

The lattice of configurations method can successfully recover the rigidity of a faulty 

framework if at least one rigid configuration is available to cover the affected sub-framework. 

When such a configuration is not available, the whole framework will not be recoverable. This 

case, which is not usually considered in the literature, may lead to loss of node(s), and thus can 

be considered as an emergency for the framework. In the next section, a technique is developed 

to recover the framework in such an emergency state through the utilization of the 

communication network. 
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Fig. 6.2. A rigid formation of agents.  Solid and dotted lines are active and potential sensing links among agents, respectively. 

 

 

Fig. 6.3: Lattice of configurations for sub-graph (G1, p) in Fig. 6.2. 

 

6.2 Formation Recovery in Emergency 

Here, the rigidity maintenance problem in the emergency case is studied. This is the case 

when a link failure causes loss of rigidity that is not recoverable using the above lattice 

approach due to the unavailability of local rigid configurations. A technique is proposed that 

uses a combination of sensing and communication networks. In doing so, the locally non-rigid 

framework becomes “virtually rigid” by using the communication network.   

Suppose that in a formation of N agents in the d-dimensional space, every agent is 

modelled as a single-integrator: 

𝒑̇𝑖 = 𝒖𝑖;    𝑖 = 1,2,… , 𝑁,    (6.9) 

where pi ∈ ℝd and ui ∈ ℝd are the position and control signals for agent i, respectively. The 

objective of formation control is to maintain all inter-agent distances constant over time, i.e. 

abdefgh abcdemr abcdefr bcdeghr bcdghmf abcdegh abcdegr abdefrg abcdefg bcdefrg

Other combinations of 8 links from E̅1

Other combinations of 7 links from E̅1abcdgmr

abcdefgh abcdefgr abcdefgrabcdegmrabcdemfr abcdeghr bcdghrmf abcdegfrabdefghr abcdghmf

abcdegabcdef abdefrabcdmr abdefg bcdegr bcdegh abcder abderg abcdgr bcdefg Other combinations of 6 links from E̅1

All combinations of 9 links from E̅1 are rigid.

 E̅1

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

*

*1

*2 *2

▲ 
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‖𝒑𝑖−𝒑𝑗‖= ‖𝒑𝑖
∗−𝒑𝑗

∗‖ ;    ∀𝑖, 𝑗 ∈ {1,2,… ,𝑁},    (6.10) 

where p* = [(p1
*)T, (p2

*)T, …, (pN
*)T]T is the nominal position vector of agents and ||pi

* –  pj
*|| 

represents the desired distance between agents i and j, ∀i,j∈{1,2,…,N}. Asymptotic stability of 

such a formation can be obtained using the following gradient-based distributed controller 

(Krick et al. 2009):  

𝒖𝑖 = ∑ 𝑒𝑗𝒍𝑗𝒍𝑗∈𝐸𝑖
;    𝑖 = 1,2, … , 𝑁    (6.11) 

where Ei is the set of sensing links adjacent to node i and ej = ||lj||
2   ||lj

*||2. Let’s denote the 

sensing network among agents by G. Controller (6.11) for each agent is independent of any 

global coordinates; that is, each agent can use its own coordinate system to measure relative 

positions and to implement the controller (Krick et al. 2009). Applying it to the system (6.9) 

results in 

𝒑̇(𝑡) = −ℛ𝑇𝒆(𝑡),    (6.12) 

in the global coordinate with e = [e1, e2, …, eM]T, ℛ is the rigidity matrix of the framework (G, 

p), which is defined as the Jacobian matrix ℛ(p) = ∂rG(p)/∂p and can be written as 

𝓡𝑀×𝑛𝑁(𝒑) = 𝑑𝑖𝑎𝑔([𝒍1, 𝒍2, … , 𝒍𝑀])
𝑇(𝐻⊗ 𝐼𝑛)    (6.13) 

 

Here ‘diag([.])’ represents a diagonal matrix with elements
 
defined in the vector [.]. 

Consequently, since Z(t) = [l1
T, l2

T, …, lM
T]T = (H In)p(t), the dynamical equation of the 

relative position vector Z(t) is 

𝑍̇(𝑡) = (𝐻 ⊗ 𝐼𝑛)𝒑̇(𝑡) = −(𝐻 ⊗ 𝐼𝑛)(𝐻
𝑇⊗ 𝐼𝑛)𝑑𝑖𝑎𝑔([𝒍1, 𝒍2, … , 𝒍𝑀])𝒆(𝑡)  (6.14) 

Defining Г(e) = diag([e1, e2, …, eM]), equation (6.14) can be written as 

𝑍̇(𝑡) = −(𝐻⊗ 𝐼𝑛)(𝐻
𝑇⊗ 𝐼𝑛)Γ(𝒆)𝑍(𝑡)    (6.15) 

The formation of agents defined in (6.9) and controlled by the gradient-based controller 

(6.11) is locally stable (Krick et al. 2009).  

   Now, suppose that a link break happens to the sub-framework (Gi, p), say at the link lα, 

causing loss of rigidity of the whole framework. Also, suppose that there is no rigid 

configuration available for the sub-framework (Gi, p) after this failure. As a result, the 

controller of node i cannot satisfy the desired performance due to the lack of information, 

therefore the formation is at risk of loss of node(s). The idea is to compensate for the lack of 

data using the communication network. To this end, the following procedure, called “indirect 
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position sensing”, is proposed (see Fig. 6.4). The procedure is tailored for node 1, but it is 

similar for all other nodes:  

1)  Any break in the links adjacent to node 1 in the sub-framework (Gi, p) should be 

detectable by this node. In this example, suppose that a link break between agents 1 and 

4 is detected.  

2) By investigating the lattice, it is concluded that node 1 cannot establish any locally rigid 

configuration. 

3) Node 1 thereafter initiates a search algorithm over the communication network among 

its adjacent nodes, so as to find the shortest path towards node 4, which had link break. 

It would be found as 1 → 3 → 4 (see Fig. 6.4). 

4) Node 1 initiates a common local coordinate system for those nodes in the shortest path. 

This should be done through the communication network and results in the nodes in the 

shortest path to have a common coordinate temporarily. 

5) All nodes in the shortest path can measure the positions of their successors; hence node 

1 calculates the vector lα by reading these position vectors through the shortest path. 

As a result, lα can be calculated by node 1 using “indirect position sensing”, and the lack 

of data for local control at this node can be compensated. The proposed approach is simple and 

technically implementable; however, there are two major constraints. First, a local common 

coordinate system for nodes in the shortest path should be implemented. It needs another 

algorithm by each node, resulting in further communication load. A simple algorithm to 

achieve such oriented coordinates is described in Remark 6.1. Second, lα calculated through 

such a successive measuring approach is subject to the delay induced by the communication 

network and calculating process. This delay, as inserted into the control system, may destabilise 

the formation.  

2

1

3

4

2

1

3

4

2

1

3

4

Sensing link 
failure

Sensing layer

Communication  
layer

 

Fig. 6.4. Indirect position sensing 
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   To obtain the maximum communication delay that can be tolerated by the control system 

with equation (6.15), suppose that the controller at node i, after indirect position sensing, 

becomes 

𝒖𝑖(𝑡) = −∑ 𝑒𝑗𝒍𝑗𝒍𝑗∈𝐸𝑖
ℎ − 𝑒𝛼𝒍𝛼(𝑡 − ℎ𝛼)    (6.16) 

where Ei
h = Ei \ {lα} is the set of sensing links adjacent to node i after the break, i.e. the links 

which are still working, and eα(t) = ||lf
α(t     hα)||

2   ||lα
*||2. In this case, Equation (6.15) becomes 

𝑍̇𝑅(𝑡) = −(𝐻⊗ 𝐼𝑛)(𝐻+
𝑇⊗ 𝐼𝑛)Γ(𝒆)𝑍𝑅(𝑡)  

                 − (𝐻⊗ 𝐼𝑛)(𝐻−
𝑇⊗ 𝐼𝑛)Γ(𝒆)𝑍𝑅(𝑡 − ℎ𝛼)   (6.17) 

   Suppose that the link break splits the configuration Gi = (Vi, Ei) into (Vi, E
h

i) and (Vi, 

{lα}) with incidence matrices H+ and H−, respectively, and H = H− + H+, where H is the 

incidence matrix of Gi. Then, a condition will be derived, under which equation (6.17) remains 

stable.  

   The failure-free formation is supposed to be locally stable, i.e. any local deformation 

around the nominal formation is compensated by the control system. It is also proved in (Cortés 

2009) that if the node affected by link failure uses the last recorded information about the 

relative position of its neighbour, the formation still remains around the target. Thus, one can 

linearize equation (6.17) around the nominal relative position vector Z* = [l1
*T, l2

*T, …, lM
*T] 

for stability analysis after link break, thereby obtaining the time-delay dynamical system, as 

𝑑(Δ𝑍𝑅)

𝑑𝑡
= −(𝐻 ⊗ 𝐼𝑛)(𝐻+

𝑇⊗ 𝐼𝑛)Λ(𝑍
∗)Δ𝑍𝑅  

              −(𝐻⊗ 𝐼𝑛)(𝐻−
𝑇⊗ 𝐼𝑛)Λ(𝑍

∗)Δ𝑍𝑅(𝑡 − ℎ𝛼)   (6.18) 

where  

Δ𝑍𝑅(𝑡) = 𝑍𝑅(𝑡) − 𝑍
∗,  

Λ(𝑍∗) = 𝑑𝑖𝑎𝑔([𝒍1
∗ 𝒍2

∗ … 𝒍𝑀
∗ ])    (6.19) 

 

which may be written as 

𝑑(Δ𝑍𝑅)

𝑑𝑡
= 𝐴Δ𝑍𝑅 + 𝐴1Δ𝑍𝑅(𝑡 − ℎ𝛼)     (6.20) 

A = −(H⊗ In)(H+
T⊗ In)Λ(Z

∗)  

A1 = −(H⊗ In)(H−
T⊗ In)Λ(Z

∗)  
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Consequently, the following dynamical equation, derived from equations (6.15) and 

(6.20), characterizes the error vector ε(t) = ΔZ(t) – ΔZR(t): 

𝜀̇(𝑡) = −(𝐻𝐻+
𝑇 ⊗ 𝐼𝑛)Λ(𝑍

∗)𝜀(𝑡)  

−(𝐻𝐻−
𝑇 ⊗ 𝐼𝑛)Λ(𝑍

∗)[Δ𝑍(𝑡) − Δ𝑍𝑅(𝑡 − ℎ𝛼)]    (6.21) 

 

which can be written as 

𝜀̇(𝑡) = (𝐴 + 𝐴1)𝜀(𝑡) + 𝐴1Δ𝑍𝑅(𝑡) − 𝐴1Δ𝑍𝑅(𝑡 − ℎ𝛼)  (6.22) 

 

Defining a new state vector, x(t) = [eT(t), ΔZR
T(t)]T, equations (6.15) and (6.22) can be 

augmented to the following dynamical equation: 

𝑥̇(𝑡) = [
𝐴 + 𝐴1 𝐴1
0 𝐴

] 𝑥(𝑡) + [
0 −𝐴1
0 𝐴1

] 𝑥(𝑡 − ℎ𝛼)  (6.23) 

 

The characteristic equation of this system is 

Δ(𝑠) = 𝑑𝑒𝑡 (𝑠𝐼 − [
𝐴 + 𝐴1 𝐴1
0 𝐴

] − [
0 −𝐴1
0 𝐴1

] 𝑒−ℎ𝛼𝑠)  

= det(𝑠𝐼 − 𝐴 − 𝐴1) . det (𝑠𝐼 − 𝐴 − 𝐴1𝑒
−ℎ𝛼𝑠)    (6.24) 

 

Therefore, the affected formation remains stable under indirect position sensing if all roots 

of equation (6.24) have negative real parts. The first term in this equation is related to the 

system before the link break, which was supposed to be stable originally. The next theorem 

establishes the condition under which all zeros of the second term, i.e. det(sI – A – A1e
-hαs) = 0, 

have negative real parts. To prove the theorem, the following lemma is first needed. 

Lemma 6.5: Suppose that HM×N is the incidence matrix of an arbitrary edge orientation in 

an undirected graph G = (V, E) with the set of n nodes V and set of m edges E, m > n. The 

eigenvalues of HHT are the same as the eigenvalues of the Laplacian matrix of G, while the 

eigenvalue λ = 0 of HHT has a multiplicity of m ‒ n + 1. 

Proof: Suppose that vi is an eigenvector of the Laplacian matrix L associated with the 

eigenvalue λi: 

𝐿𝒗𝑖 = 𝜆𝑖𝒗𝑖;     𝑖 = 1,2, … , 𝑛  

→ 𝐻𝑇𝐻𝒗𝑖 = 𝜆𝑖𝒗𝑖;      𝑖 = 1,2,… , 𝑛  

→ 𝐻𝐻𝑇(𝐻𝒗𝑖) = 𝜆𝑖(𝐻𝒗𝑖);      𝑖 = 1,2,… , 𝑛  
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It follows that the n eigenvalues of HHT are exactly the same eigenvalues as the Laplacian 

matrix. From linear algebra, one has rank (L) = rank (HTH) = rank (HHT). Therefore, the other 

m ‒ n eigenvalues of HHT are zero. This completes the proof.  ■ 

Theorem 6.1: Suppose that a formation of N agents with equations of motion (6.9) is 

achieved by the gradient-based distributed control law (6.11) over a minimally rigid sensing 

graph. The formation remains locally stable in the case of a break to the sensing link lα if the 

delay hα in the indirect position calculation satisfies 

ℎ𝛼 <
𝜋

2𝜆𝑚‖𝒍𝛼
∗ ‖2

    (6.25) 

 

where ||l*
α|| is the desired length of lα and λm is the largest eigenvalue of the Laplacian matrix 

of the sensing graph. 

Proof:  Without loss of generality, suppose that the broken link lα corresponds to the last 

row of the incidence matrix H.  To study the positions of roots of the second term of (6.24), 

consider a system with the following transfer function: 

𝐺ℎ(𝑠) = 𝑠𝐼 − 𝐴 − 𝐴1𝑒
−ℎ𝛼𝑠  

            = 𝑠𝐼 + (𝐻𝐻+
𝑇 ⊗ 𝐼𝑛)Λ(𝑍

∗) + (𝐻𝐻−
𝑇 ⊗ 𝐼𝑛)Λ(𝑍

∗)𝑒−ℎ𝛼𝑠  (6.26) 

 

All zeros of Gh(s) should have negative real parts in order to guarantee stability. It can be 

simplified by some algebraic manipulations as follows: 

𝐺ℎ(𝑠) = 𝑠𝐼 + (𝐻𝐻+
𝑇⊗ 𝐼𝑛)Λ(𝑍

∗) + (𝐻𝐻−
𝑇 ⊗𝐼𝑛)Λ(𝑍

∗)𝑒−ℎ𝛼𝑠  

            = 𝑠𝐼 + (𝐻⊗ 𝐼𝑛)[(𝐻+
𝑇 ⊗ 𝐼𝑛) + (𝐻−

𝑇 ⊗ 𝐼𝑛)𝑒
−ℎ𝛼𝑠]Λ(𝑍∗)  

            = 𝑠𝐼 + (𝐻⊗ 𝐼𝑛)(𝐻
𝑇𝐼ℎ⊗ 𝐼𝑛)Λ(𝑍

∗)  

            = 𝑠𝐼 + (𝐻𝐻𝑇𝐼ℎ ⊗𝐼𝑛)Λ(𝑍
∗)     (6.27) 

where 

𝐼ℎ = [
𝐼(𝑀−1)×(𝑀−1) 0

0 𝑒−ℎ𝛼𝑠
]  

 

   For simplicity of formulation, consider the roots of the characteristic function G′h(s) = 

sI + (HHTIh)Λ(Z*). By Lemma 6.5, eigenvalues of HHT are the same as those of the Laplacian 

matrix L with different multiplicities of λ = 0.  Here, without loss of generality, suppose that 

eigenvalues of HHT are 0 = λ1 <  λ2 ≤ … ≤ λM when the sensing network G is connected. Let 
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ω1
T  be the left eigenvector of HHT associated with λ1 = 0. s = 0 is a transmission zero of G′h(s) 

in the direction of ω1
T because 

𝜔1
𝑇𝐺ℎ

′ (0) = 𝜔1
𝑇(𝐻𝐻𝑇𝐼ℎ)Λ(𝑍

∗) = 𝜆1𝜔1
𝑇𝐼ℎΛ(𝑍

∗) = 0  (6.28) 

 

However, G′h(s) goes back to the fault-free setting when s = 0, which was assumed to be 

locally stable; thus, s = 0 is a stable zero for G′h(s). Next, we show that all other zeros of G′h(s) 

are located on the left-hand side of the complex plane. Let (s, ωk
T) be a transmission zero of 

G′h(s). Then, 

𝜔𝑘
𝑇𝐺ℎ

′ (𝑠) = 0 → 𝜔𝑘
𝑇𝑠 + 𝜔𝑘

𝑇(𝐻𝐻𝑇)𝐼ℎΛ(𝑍
∗) = 0  

→ 𝜔𝑘
𝑇𝑠 + 𝜆𝑘𝜔𝑘

𝑇𝐼ℎ𝛬(𝑍
∗) = 0  

→ 𝜔𝑘
𝑇(𝑠𝐼 + 𝜆𝑘𝐼ℎ𝛬(𝑍

∗)) = 0     (6.29) 

 

Since ωk
T ≠ 0, one has sI + λkIhΛ(Z*) = 0, which yields negative roots s = –λk ||l

*
k||

2 < 0 for 

all k ≠ α; but for k = α, 

𝑠 + 𝜆𝑘‖𝒍𝛼
∗ ‖2𝑒−ℎ𝛼𝑠 = 0    (6.30) 

An upper bound for the time delay hα can be estimated by using the technique proposed in 

(Olfati-Saber and Murray 2004). Suppose that h̅α is the smallest value of the delay that puts the 

zeros of (6.30) on the imaginary axis. Thus, 

𝑗𝜔 + 𝜆𝑘‖𝒍𝛼
∗ ‖2𝑒−𝑗𝜔ℎ̅𝛼 = 0  

−𝑗𝜔 + 𝜆𝑘‖𝒍𝛼
∗ ‖2𝑒𝑗𝜔ℎ̅𝛼 = 0    (6.31) 

 

After some algebraic manipulations, one obtains  

(𝜔 − 𝜆𝑘‖𝒍𝛼
∗ ‖2)2 + 2𝜆𝑘‖𝒍𝛼

∗ ‖2(1 − sin(𝜔ℎ̅𝛼)) = 0  (6.32) 

 

This equation holds when 

𝜔 = 𝜆𝑘‖𝒍𝛼
∗ ‖2 ,   sin(𝜔ℎ̅𝛼) = 1    (6.33) 

 

The minimum value of ωh̅α that satisfies the second condition is π/2. In addition, (6.33) 

should be satisfied for all k = 1, 2, …, m. Therefore, the stability condition becomes 

𝜔ℎ̅𝛼 <
𝜋

2
⟶ ℎ̅𝛼 <

𝜋

2𝜆𝑚‖𝒍𝛼
∗ ‖2

    (6.34) 

 

Consequently, the formation subjected to the loss of rigidity due to the link break remains 

locally stable if condition (6.34) is satisfied. This completes the proof.          ■ 
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Remark 4.1: As mentioned earlier, a common orientation of local reference frameworks 

should be executed through the shortest path between nodes affected by the link break. Here, a 

simple procedure based on the distributed implementation of the flooding algorithm proposed 

in (Peleg 2000) is described. Suppose G is a connected undirected graph in ℝ2. A sensing link 

failure happens between nodes N1 and N2. N1 applies an indirect position sensing procedure and 

find the shortest path towards N2. In order to orient reference frameworks of all agents through 

the path, node N1 moves a unit in the positive direction of its x-axis. All its neighbours, 

including the ones in the path, measure the relative displacement in their local frameworks and 

rotate them to align with the direction of displacement. This process is repeated until the 

frameworks of all agents in the path are aligned.   

   In summary, the formation can still be preserved even if there is no locally rigid sub-

framework available after failure in a sensing link if condition (6.25) is satisfied. Clearly, 

nothing can be said about the stability of the formation if this sufficient condition is violated. 

The right-hand side of condition (6.25) depends on the desired distance between agents affected 

by link failure (which is usually constant) as well as the largest eigenvalue λM of the Laplacian 

matrix of the graph representing the sensing network. If the sensing graph is static, the right-

hand side of condition (6.25) is fixed and can be calculated offline. Therefore, the condition 

can be easily checked. However, if it is not static, each node should be able to at least estimate 

λM individually. This requires a distributed algorithm, like the one developed in (L. Kempton 

et al. 2016).  

   Finally, checking the condition (6.25) needs the delay in indirect position sensing to be 

calculated. This implicitly means that the agents should be time-synchronised. 

 

6.3 Simulation Results 

A formation of four agents with single-integrator motion equation (6.9) is illustrated in 

Fig. 6.4. This formation is supposed to be well controlled using the gradient-based control law 

(6.11) and the desired performance, i.e. ||l*
12|| = ||l*

23|| = ||l*
34|| = ||l*

41|| = 5, can be achieved. The 

sensing graph shown in Fig. 6.4 is originally rigid in ℝ2. It is also supposed that position 

measurements of all nodes are subject to Gaussian noise of different mean values (between 0.1 

and 0.3) and different variance values (between 0.1 and 0.15). Figure 6.5A shows the formation 

before link breaking. 
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Now, suppose that the link between agents 1 and 4 is broken, thus neither agent 1 nor 4 

can measure the position of the other, yet both of them need this measurement for their control 

laws. If node 2 is in the sensing range of node 4, a link between these two nodes will recover 

the rigidity. This can be investigated and activated by node 4 using its lattice of configurations. 

However, if it is not in the range, there is no configuration to recover the rigidity of the sub-

framework centred at node 4, thus the whole framework becomes non-rigid. In this case, the 

formation starts diverging from the desired framework.  

Figures 6.5A and 6.5B show the formation ‘before’ and ‘100 seconds after’ the link failure, 

respectively. Clearly, the distance between agents 1 and 4 as shown in Fig. 6.5B is far from 

ideal, meaning that the formation is diverging. To recover the formation, agent 4 starts an 

“indirect position sensing” process. First, it initiates the shortest-path finding algorithm to find 

a path towards node 1 which results in 1 → 3 → 4. Then, it activates a process to temporarily 

generate a common coordinate with node 3. Finally, node 4 can calculate the position of node 

1 using the position of node 3 as well as the position of node 1 in coordinates of 3. Clearly, the 

common coordinate should remain active when the formation is in emergency. According to 

Theorem 1, maximum admissible delay in this measurement process is  

ℎ̅ <
𝜋

2×4×25
≈ 0.016   

Figures 6.5C and 6.5D compare cases when the delay in indirect sensing is h = 0.015 < h̅ 

and h = 0.04 > h̅, respectively. The formation is clearly recovered when h < h̅ (Fig. 6.5C), while 

it starts rotating and diverging when h > h̅ (Fig. 6.5D). 

Figure 6.6 shows the deviation in the distance between agents 1 and 4 when the sensing 

link between them breaks at T = 50 seconds. Simulation results are averaged over 100 runs 

while bars represent standard deviations. It is supposed that “Indirect Position Sensing” 

(including finding the shortest path, alignment of coordinates, etc.) takes 100 seconds. During 

this time, i.e. between T = 50 and T = 150 seconds, the distance between agents 1 and 4 is 

almost 9, which is far from the desired value 5. The amplitude of the bars also shows a higher 

variation in this distance. However, after activation of the proposed rigidity maintenance 

algorithm at T = 150 seconds, the distance returns back to the normal, meaning that the 

formation is well recovered. The delay in “Indirect Position Sensing” is supposed to be h = 

0.01 second. To further study the effect of variation in h on the performance of the proposed 

formation recovery technique, in Fig. 6.7, use e = ∑ (||lij|| – ||lij*||)2 as a metric for how far the 
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formation is from the desired framework. As expected, the formation diverges as the delay h 

in the indirect position sensing increases. 

 

Fig. 6.5: A formation control example  (A) Formation in normal condition (controlled using a distributed gradient-based control system); (B) 

Formation at 100 seconds after failure of the sensing link between agents 1 and 4; (C) Formation is recovered by applying indirectly the 

measured positions in the control system of agent 4 when delay in this measurement is h = 0.015 < h̅ (satisfies Theorem 1); (D) Formation 

becomes unstable by applying indirectly measured position in the control system when delay in this measurement is h = 0.015 > h̅ (violates 

Theorem 1). Numbers on links show distances between agents. 

 

 

Fig. 6.6: Variation of the distance between nodes 1 and 4 when the sensing link between them breaks at T = 50 seconds. Indirect Position 

Sensing is activated at T = 150 seconds. Data are averaged over 100 realizations. The solid line shows the mean value and bars indicate 

standard deviation. 
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Fig. 6.7: Effect of delay h in Indirect Position Sensing on the performance of a formation. 

 

6.4 Summary 

The practical problem of increasing the robustness of a formation of multi-agents against 

sensing failures and constraints, such as line-of-sight requirements and power limitations, is 

addressed in this chapter. When inter-agent distances are controlled using a distributed 

gradient-based controller over a minimally rigid measuring graph, the formation would diverge 

in the case of failure at a sensing link. To handle such situations, a lattice of configurations is 

proposed in this thesis to be used locally for each agent, which includes all possible 

configurations among the agent and its sensible neighbours, subject to the rigidity requirement 

that guarantees the formation. In the proposed algorithm, each agent establishes an appropriate 

configuration through the lattice and activates it to recover failed rigidity of the sensing 

framework locally, which achieves rigidity recovery of the whole framework. In the case that 

such a rigid local framework is not available, the affected node calculates the relative positions 

indirectly using a multi-layer rigidity recovery technique, i.e. using a combination of sensing 

and communication networks. Although simple to implement, the proposed algorithm is 

subject to delays in measurements. An upper bound on measurement time delays is then 

estimated, ensuring the stability of the formation to be maintained under the link breaking 

condition. Simulation results support and validate the theoretical analysis and demonstrate the 

good performance of the proposed control algorithm. 

 



 

 

 

 

 

 

Chapter 7  

Conclusions and outlooks  
 

 

 

 

 

 

Complex networks are abundant in many critical systems including some of the most 

important infrastructures, such as transportation and communication systems. Academic and 

industry communities are much interested in modelling and control of these complex systems. 

Existing theories cannot address ever-increasing complicated dynamics of these systems and a 

paradigm shift is required. From the control theory perspective, the state-space approach, which 

has been used for more than half a century to model and to control dynamical systems, should 

be revised considering networked structures. In addition, computational efficiency is a 

requirement when networks with millions of nodes are to be studied. Although the field of 

control of networked systems has been subject to heavy investigation in the last two decades, 

we are still far from the point to say that we have overcome the complexity of these systems. 

This thesis aimed at addressing some of the open questions in this field. 

 

7.1 Findings 

Coupled dynamical systems can develop spontaneous collective behaviours, such as 

synchronisation, under some conditions. The coupling might also facilitate unwanted effects, 

such as failure propagation through the complex network. These behaviours are highly 



Conclusions and outlooks 

99 
 

dependent on the structure of the interaction network as well as the dynamics of agents. Optimal 

network topology for collective behaviours and network robustness can be achieved by 

intelligently modifying the network topology, which is termed as “engineering network 

structure” in the thesis.  

This thesis first started with engineering a complex network by controlling its nodes. The 

goal was to identify the best drivers which facilitate synchronisation of the network over the 

widest range of coupling strengths. Central nodes could be good candidates and heuristic 

centrality measures such as degree, betweenness or closeness centrality can be considered, 

although they are not related to dynamics of networks. We proposed a new controllability 

centrality to find the best driver node(s). In order to engineer a network for better collective 

behaviour, this metric was proposed to identify the most influential set of driver nodes on 

controllability of a dynamical network. The metric is based on single eigen-decomposition of 

the Laplacian matrix of the graph; thus, it is computationally efficient and applicable on large-

scale networks. Simulation results prove the precision of this metric in networks with different 

scale-free, Watts-Strogatz and random topologies. Interestingly, controllability centrality 

shows the sub-modularity feature. It means that by only one eigen-decomposition of the 

Laplacian matrix, the best subset of nodes with any desired size can be identified. As an 

application, this metric successfully predicted the best frequency leader in secondary frequency 

control of distributed generation systems. This is one of the real-time requirements of future 

power management systems, where there are a lot of small capacity generators. The metric was 

also applied to identify brain areas of activation which may prevent disease to propagate in 

dementia networks. Results for these applications should prove of interest to the network 

community.     

 The second contribution of this thesis was to find the vital nodes based on their impact on 

the Laplacian spectrum of a network. Recent research has shown that spectral analysis of 

complex networked systems is an important tool in describing their functional properties. 

Therefore, network spectral analysis has found many applications in science and engineering. 

Although there have been some research articles reporting the importance of nodes and links 

for the spectrum, there is still lack of a solid mathematical framework to study impact of nodes 

on the spectrum of a network. In this thesis, a weak interlacing theorem was first proved in a 

simple way. The main contribution of the thesis for this part was to propose a novel centrality 

metric which ranks nodes based on their impact on any desired eigenvalue of the Laplacian 

matrix. This computationally cost-effective metric is based on the local multiplicity concept 



Conclusions and outlooks 

100 
 

and requires only a single eigen-decomposition to identify vital nodes. As such, it could be 

applied to networks of any size. Consequently, one can identify central nodes considering any 

desired spectral property of the Laplacian matrix of a graph, such as algebraic connectivity, 

spectral gap or Laplacian energy. Numerical simulations supported the analytic results.  

 Finally, the problem of preventing failure propagation in a complex network using 

rewiring was considered. Interaction between nodes might facilitate the propagation of failures 

thorough the network, resulting in degradation of the quality of collective behaviours. One 

strategy against this undesired effect is to re-engineer the network once failure happens in order 

to either restrict its impact or recover the faulty network. In order to theoretically study this 

problem, the class of failure and the desired collective behaviour should be clearly defined. In 

this thesis, formation was considered as collective behaviour in a network of agents. It is known 

that local controllers can stabilise a formation while the sensing framework is rigid. Failure of 

sensing links may affect rigidity of the sensing framework, thus affecting stability of the 

formation. Therefore, the rigidity maintenance problem is considered when failure of a sensing 

link between two agents results in loss of rigidity in the sensing network. In order to engineer 

the network to recover its rigidity, an online distributed rigidity maintenance algorithm based 

on “Lattice of Configuration” was proposed, which prevents the formation instability in the 

case of link breakage. The proposed technique activates new configuration for the local 

frameworks by adding a few extra sensing links which results in the rigidity of the local 

framework, and thus the whole framework. This problem was also solved in an emergency 

condition when no extra sensing link could be activated, using a combination of sensing and 

communication networks.  

 

7.2 Future directions 

With increasing large-scale complex systems in the real-world, modern tools for their 

analysis and control should be developed. The existing algorithms for control systems should 

be properly revised considering network connections between dynamical agents. To this end, 

computationally efficient and accurate enough algorithms should be developed. Complex 

network approach which is well-supported by mathematical graph theory seems a promising 

approach to handle this complexity.   

This thesis was the first step towards optimal pinning control of complex networks. The 

interpretation of being “optimal” is slightly different from the optimal control theory, widely 
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studied in control society. Here, for instance, for a network with fixed topology, we should 

select the best control nodes and design appropriate control gains for them in order to achieve 

optimal pinning control performance. This thesis proposed a metric to find the best drivers, 

which is easy to compute. As it needs only an eigen-decomposition of the Laplacian matrix, it 

is also applicable to some classes of evolving networks. The next step could be to extend the 

proposed technique to solve the optimal control problem, i.e. addressing the trade-off between 

the number and location of driver nodes and their gains, which may convert the problem into a 

combinatorial optimisation one. Practical constraints, such as limits on control gains or delay 

in interaction, can also be considered to make it more applicable to real-world scenarios. Using 

controllability centrality, one may also think about extracting the backbone of a network and 

extending results to recommender systems. To this end, extension of controllability centrality 

to directed networks might be required. 

   Inspired from the master stability function formalism, this thesis showed that one 

approach to study the effect of failures in nodes/links on network synchronisability is through 

spectral graph theory. Using this approach, a simple metric was proposed to measure the impact 

of node removal on the spectrum of a graph, hence on its collective behaviours of a class of 

complex systems. This problem can be further studied for another class of systems where 

synchronisability is measured using R = λN/λ2 metric. The proposed metric in this thesis can 

also be studied in networks with different topologies such as community-based and multi-layer 

networks and networks with load redistribution. In addition to finding vulnerable nodes and 

links, making a complex network tolerant to faults can be studied in the context of spectral 

graph theory. We particularly considered formation of agents and proposed an online recovery 

algorithm in the case of link break. This problem is a special case of distributed fault tolerant 

control of complex networks. It can be comprehensively studied using spectral graph theory by 

developing distributed algorithms to recover λ2 or λN/λ2 of a complex network in the case of 

failure in nodes or links. The problem becomes more interesting when real-time constraints of 

different application are also considered.  
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