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Abstract

In recent years, multi-agent systems have received increasing attention due to ad-

vancements in automated regulation, computer technology, and artificial intelli-

gence. In a multi-agent system, multiple intelligent agents interact through a net-

work and work together to achieve individual or global goals.

Despite the successes, many potential social shaping problems are emerging in

multi-agent systems. The resource price might not be socially acceptable for agents

under efficient resource allocation; the interactions between agents may be cooper-

ative or competitive, leading to different outcomes; the data shared by agents may

be observed by adversaries who may infer agents’ sensitive information. The above

social shaping problems are called: 1. price acceptance; 2. agent cooperation

and competition; 3. privacy risks.

For the price acceptance problem, we consider multi-agent systems with decen-

tralized resource allocations as markets. By prescribing the range of admissible

quadratic functions that agents can select from, the social shaping problem of price

acceptance for static multi-agent systems with quadratic utility functions is solved.

For dynamical multi-agent systems, a recursive computation of dynamic competitive

equilibrium is presented and a receding horizon approach to smooth the dynamic

pricing is proposed.

For agent cooperation and competition behaviors, we carry out a case study of

a multi-agent system, the well-known Regional Integrated Climate-Economy model

(RICE model). It is shown to be fundamentally a dynamic game. Both cooperative

and competitive solutions are analyzed and simulations are performed to demon-

strate the impact of cooperation and competition on international negotiations and

the development of a consensus on regional climate mitigation measures.
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Regarding the possibility of privacy risks, we study a network structure inference

problem from best-response dynamics of linear-quadratic games to reveal the poten-

tial privacy risks of agents. It is theoretically demonstrated that network structure

identifiability is equivalent to certain controllability conditions. The network struc-

ture can be numerically learned against observation noises by a stable and sparse

system identification algorithm.

Finally, we contribute to the design of privacy-aware algorithms that can offer

privacy guarantees for a multi-agent system. We study network games where agents

engage in information aggregation processes under the differential privacy require-

ment. We extend the notion of differential privacy to network game settings and

propose a Laplace linear-quadratic functional perturbation algorithm. A tutorial

example on LQ games is presented to show how specific differential privacy require-

ments can be met by parameter tuning.

In summary, this thesis manages to find solutions to the social shaping problems

of price acceptance, agent cooperation and competition, and privacy risks in multi-

agent systems. Our results in price acceptance can ensure some degree of fairness and

enable the operation of multi-agent systems for resource allocation, such as smart

grids and climate-economy systems, in a socially acceptable way. Our findings on

agent cooperation and competition shed light on how game theory might be applied

to aid international discussions leading to agreement on regional climate change

mitigation strategies as well as how cooperative and competitive regional relations

affect climate change in the long run. Our contribution to protecting privacy could

aid in averting catastrophic failures in cyber-physical applications including smart

transportation, social networks, manufacturing systems, and power networks.
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Chapter 1

Introduction

1.1 Background

In recent years, multi-agent systems have gained considerable attention due to the

emergence of automated regulation, computer technology, and artificial intelligence.

Multi-agent systems can be used to successfully solve complex problems with the

advantages of efficiency and robustness [111]. Multi-agent systems are a partic-

ular type of systems where multiple intelligent agents interact (e.g. exchanging

information and sharing resources) through a network and aim to achieve either its

individual interest or some global goal, such as consensus and network-level optimal-

ity [118, 132, 167]. Each agent holds its decision/action, preference, and objective.

Each agent evaluates the outcome of its action through a payoff/cost function. It is

for each agent to decide on an action that maximizes/minimizes its payoff/cost func-

tion. The underlying network for multi-agent systems can be physical, non-physical,

or a combination of the two.

Efficient resource allocation is a common and important task in multi-agent sys-

tems, where demand and supply must be matched for efficient and safe system-level

operations. In a typical resource allocation problem, agents with local demand and

internal and external resources are interconnected by a network that enables re-

source transfer. According to classic welfare economics theory [106], proper pricing

of the transmission flow potentially balances supply and demand throughout the

entire system. When network supply and demand are balanced, a competitive equi-

1



1.1. BACKGROUND 2

librium is achieved if all agents maximize their individual payoffs. To illustrate the

concept of multi-agent systems operating as a market via a pricing mechanism un-

der a competitive equilibrium, we present two examples of multi-agent systems as

follows.

Example 1.1 (Community Microgrids) In a community microgrid [174],

agents represent households. The underlying network is physical, representing trans-

mission lines. By optimally pricing energy resources, each agent decides the amount

of resources to be shared with other agents through transmission lines to maximize

its payoffs as the summation of utility and income/spending incurred from resources

sharing subject to the balance of energy supply and demand.

Example 1.2 (EU Emissions Trading System) In the EU emissions trading

system [40], agents represent EU countries. The underlying network in the EU

emissions trading system is non-physical, where a link between two agents represents

emission allowance transactions between these two agents. By optimally pricing

emission allowance, each agent decides the amount of emission allowance to be

traded with one another to maximize its payoffs as the summation of social wel-

fare and income/spending incurred from emission allowance trading subject to an

emission supply-demand balance.

Cooperation and competition is an interesting topic in multi-agent systems [171].

The fundamental distinction between cooperation and competition is that agents

pursue a common goal of maximizing/minimizing group payoffs/costs in coopera-

tive settings, while agents have non-aligned goals, each seeking only maximizing/

minimizing their payoffs/costs in competitive settings. While the area of multi-agent

systems is not synonymous with game theory, there is no question that game the-

ory has been a fundamental tool in explaining the decision-making of independent

and self- interested players in a strategic and competitive setting, and so we devote

several chapters to it. In cooperative settings, players are able to communicate and

cooperate with each other to achieve their common objective. Pareto optimality is

an efficiency concept, ensuring that any attempt to benefit one agent by deviating to

some other outcome will necessarily result in a loss in satisfaction of another agent
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[106]. In non-cooperative settings, each player does not have information about

other players and only cares about it own benefits. Nash equilibrium marks one

of the most important solution concepts. It is a profile of actions under which no

agent will benefit by changing its action when others keep theirs unchanged [75].

To illustrate the concept of cooperation and competition in multi-agent systems, we

present an example as follows.

Example 1.3 (RICE Model) In the Regional Integrated model of Climate and

the Economy (RICE) [123, 128], agents represent regions, holding the actions of

saving rate (the ratio of investment to the economic output) and emission-reduction

rate (the rate at which industrial CO2 emissions are going to be reduced). In the

RICE model, regions are affected by the same global climate system; they also decide

their climate strategies to benefit their individual economic benefits and political self-

interests. Therefore, the RICE model is actually a game. In cooperative settings,

it is for regions having an agreement to achieve a common goal of maximizing total

social welfare across all agents. In the non-cooperative settings, it is for each region

to solely maximize its social welfare.

Privacy issues have arisen in various areas of data analysis, such as social network-

ing and healthcare. The current trend for commercial companies and government

agencies to collect more personal information amplifies privacy concerns. As a re-

sult, protecting the privacy of data has received increasing attention over the past

decade [87, 165, 175]. Similar privacy concerns are also raised in many of the emerg-

ing distributed multi-agent systems around us, from smart buildings to intelligent

transportation systems and even smart cities, is that these multi-agent systems rely

heavily on the data collected from agents who naturally want to keep their data

private [163]. In smart grids, only when network operators and dispatchers can ac-

cess fine-grained usage time series of consumers measured by sophisticated metering

infrastructures can the system calculate optimized power forecast, generation, and

allocation. However, sensitive information about specific activities of a customer is

included in these optimized signals of power forecast, generation, and allocation.

Network games [84] are powerful game theoretic models that take interaction



1.2. SOCIAL SHAPING FOR MAS 4

among multiple agents into account, which have wide applications such as route

planning in transportation networks [12], online E-commerce in social networks [98],

and resource allocations in wireless communication networks [121]. We use the

following example of privacy issues in network games on E-commerce platforms to

illustrate potential privacy risks in multi-agent systems.

Example 1.4 (Network Games on E-commerce Marketplaces) In network

games on an E-commerce platform like Yelp, agents represent customers, holding the

actions of rating a restaurant. In the underlying social network, a link from agent

A to agent B signifies that agent A subscribes to agent B on the platform, and the

weight of this link denotes the strength of how much agent A may be affected by agent

B. Each agent’s payoff function is parameterized by its marginal benefit coefficient

and linkage intensity with its neighbors. A natural outcome of network games is

Nash equilibria, which are a direct function of marginal benefit coefficients and the

underlying social network and facilitate the learning on such games. In the work

of [99], it is shown that public behavioral data of customers’ ratings on restaurants,

known as NE, can reveal customers’ marginal benefits and the network structure of

the underlying social network that are both confidential.

1.2 Social Shaping for MAS

Although multi-agent systems have been utilized to effectively and reliably address

complicated issues, there are several potential social shaping issues arising.

1.2.1 Price Acceptance in Transactive MAS

Transactive multi-agent systems are being designed to coordinate supply and de-

mand for various distributed energy sources in an electrical power network [172, 184],

where power lines enable electricity exchanges, and communication channels enable

cyber information exchanges. Despite the success of pricing mechanisms in transac-

tive multi-agent systems, it indicates little about sustainability or fairness. Accep-

tance of prices becomes an issue. Agents may leave the multi-agent system rather
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than remain there and put up with the high resource price if the market-based re-

source price is too high. For instance, in Texas, the price of electricity increased to

an intolerably high level in February 2021 as a result of extensive power outages.

Consumers who were participating in the market-based contract must pay sky-high

bills, which surpassed their budgets and were not affordable [14, 112]. Also in both

Example 1.1 and 1.2, the price for energy in the community microgrid and the price

for emission allowance in the EU emissions trading system are potentially not so-

cially acceptable for agents, if they go too high. All the above examples raise a

“price acceptance” issue the boundedness of the resource price is not guaranteed.

Efficient resource allocation via pricing mechanisms has a rich literature [1, 26,

86, 89, 95, 101, 102, 114, 134, 158, 162, 189]. However, in the extensive literature

of economics and engineering, early and recent studies focus on the rapid changes

in the pricing process termed price volatility, rather than the resource price itself.

The Black-Scholes formula [13] and Heston’s extension [72] are the most represen-

tative models of stochastic price volatility. The work of [94] argued that previous

models did not penalize price volatility in the system-level objective, so they pro-

posed to modify the system-level objective to account for price volatility, whereby

constructing a dynamic game-theoretic framework for power markets. The work of

[166] proposed a different dynamic game-theoretic model for electricity markets, by

incorporating a pricing mechanism with the potential to reduce peak load events and

the cost of providing ancillary services. In the work of [176], the dual version of the

system-level welfare optimization problem was considered, where an explicit penalty

term on the L2 norm of price volatility was introduced in the system-level objective,

allowing for trade-offs between price volatility and social welfare considerations. To

the best of our knowledge, none of the existing pricing mechanisms can limit the

range of the resource price in a formal way. It can be a significant practical problem

due to its failure of considering implicit agents’ budgetary constraints [159].

As a result, we are inspired to focus on the resource price itself in a multi-agent sys-

tem and consider a social shaping problem aiming to bound the resource price below

a socially acceptable threshold. This thesis interprets transactive multi-agent sys-

tems as markets, studies competitive equilibrium, and defines a new social shaping
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problem of price acceptance to limit the resource price under a prescribed threshold

that is socially acceptable by all agents in multi-agent systems. As for the price

volatility problem, this thesis builds a dynamic model for dynamic multi-agent sys-

tems and proposes a receding-horizon approach to smooth the resource prices.

1.2.2 Agent Cooperation and Competition in MAS

Competition and cooperation among agents is not fixed. Agents’ actions can switch

from cooperative to non-cooperative as well as vice versa. For example, on the issue

of climate change, before 1992, there was no international cooperation among regions

of the world. However, after the establishment of the United Nations Framework

Convention on Climate Change (UNFCC) in 1992, the well-known Kyoto Protocol

in 1997 [16], Copenhagen Accord in 2009 [142], and Paris Agreement in 2016 [152]

were produced and marked a shift in the global cooperation on the climate crisis

and boost cooperative climate diplomacy. Unfortunately, regions’ climate policies

have been unpredictable at times, e.g. Canada opt-out of Kyoto Protocol [131]

in 2012, and the United States formally quit the Paris Agreement [141] in 2020

and rejoined the Paris Agreement in 2021. Therefore, international cooperation on

climate change lost momentum due to political divide and economic competition.

Also in Example 1.3, the behaviors of agents can alternate between cooperative and

non-cooperative. Agents who cooperate to maximize total social welfare may have

incentives to reduce their emission-reduction rate and its emission abatement cost,

and thus achieve higher economic benefit due to the selfish and competitive nature of

agents. All the above examples indicate that cooperative and competitive relations

among agents may shape multi-agent systems, which is worth studying.

In multi-agent systems, agents’ complex interaction, manifesting as cooperative

and competitive behaviors, is influenced by several factors such as their payoff/cost

functions, underlying network, and environmental factors. The cooperative and

competitive behaviors affect the outcome of multi-agent systems in agents’ opti-

mization and decision-making process [157]. We refer to [160, 171, 183, 192] as

comprehensive surveys on cooperative and competitive multi-agent systems. Due

to the heterogeneity of agents, game theory is an essential tool to model the co-
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operative/competitive behaviors of agents for global/individual optimization goals.

Cooperative settings ensure cooperation behavior by maximizing/minimizing the

global payoff/cost function [154]. A well-known solution concept is that agents

seek Pareto optimality through multi-objective optimization. A classical approach

to solving Pareto optimality is to consider a single-objective optimization problem

whose single objective is the summation of weighted agents’ original payoff/cost

function with weights adding up to one [51, 169]. Each pair of weights is a point

on the Pareto front. In non-cooperative settings, agents solely maximize/minimize

their payoff/cost functions to achieve the Nash equilibrium. In practice, agents do

not necessarily know about other the preferences and payoff/cost functions of other

agents. Therefore, due to incomplete information at each agent’s side, other game-

theoretic solutions are widely used [56] such as distributed Nash equilibrium (NE)

seeking [136, 149, 185], best-response dynamics [78, 108, 120], fictitious play [70]

and no-regret learning [20, 63, 103, 190].

In the control community, there are a few efforts on studying the climate-change

mitigation measures from a global perspective [21, 53, 71, 92, 93], which are all

based on DICE[127]. The work of [93] provided a tutorial introduction to DICE

and proposed a receding horizon approach to DICE. A bi-objective optimal control

problem on DICE was studied, the objectives of which are maximizing social welfare

and minimizing atmospheric temperature deviation [71]. The work of [21] stud-

ied a multi-objective stochastic optimal control problem on DICE, which accounts

for stochastic disturbances and aligns with physical targets posed by international

agreements on climate change mitigation. However, to the best of our knowledge,

there is a gap on the topic of regional cooperation and competition under the RICE

model.

As a result, we are motivated to investigate how cooperation and competition

in climate policy across the various regions in the globe under the RICE frame-

work affect the formation of international climate treaties, the implementation

of regional climate-change mitigation measures, and the resulting implications of

competitive/non-cooperative decisions for climate change.
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1.2.3 Privacy Risks in MAS

A famous real-world example of privacy risk is the open competition called the

Netflix Prize in 2006. The release of the anonymized Netflix datasets was meant

to motivate researchers to propose good-performance algorithms to predict user

ratings on films. However, the work of [116] revealed privacy issues of the Netflix

Prize competition by successfully identifying the individual users.

Privacy issues also exist in multi-agent systems. In recent years, distributed opti-

mization algorithms in multi-agent systems [8, 25, 117], where agents aim to cooper-

atively minimize the sum of their cost functions by communicating and exchanging

information only with their neighbors, have been applied in various fields, such as

power grids [19] and sensor networks [182] due to strong robustness and scalability.

However, the vulnerability of wireless communication puts the information trans-

mitted among agents at risk of being monitored by an adversary. Since agents’ cost

functions are encoded in the exchanged information, the adversary can potentially

infer the secret cost functions from the exchanged information. Unfortunately, the

cost functions are often sensitive and private. Therefore, agents’ cost functions are

under privacy disclosure. Also in Example 1.4, agents are at risk of information

disclosure. Agents’ marginal benefits and the network structure of the underlying

social network, both of which are confidential information, can be inferred from

publicly available behavioral data from agent reviews of restaurants. The above

examples imply that issues of privacy disclosure are non-negligible risk factors in

multi-agent systems.

Owing to differential privacy [49, 50], it is possible for players to share information

and decide their actions over time to achieve the desired outcome while keeping their

payoff functions from being compromised. Researchers have proposed privacy-aware

algorithms to be applied in systems and controls for a variety of goals, including

average consensus [80, 129], estimation and filtering [97], and convex optimization

[47, 67, 81, 130, 130, 173, 188, 191]. Under the goal of private distributed optimiza-

tion algorithm, two types of user data are considered to be private. One is contained

in the individual optimization constraints [66, 67, 79]. The other is encoded in the

individual payoff/cost functions [41, 47, 81, 130, 173, 188, 191].
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To protect users’ payoff /cost functions, there are two approaches to realizing

differential privacy. One main approach to ensure private payoff/cost functions in

distributed optimization algorithms was to mask the original shared information by

adding certain noise so that adversaries having access to the public information are

unable to infer users’ private data [47, 81, 173, 188, 191]. For this approach, per-

turbations have to be designed in accordance with a diverse set of objectives during

information aggregation processes. Moreover, perturbations have to be added at

all time steps, and therefore the longer the operating time of information aggrega-

tion processes is, the more number of perturbations are required to add. Another

different approach to achieving differential privacy for distributed optimization algo-

rithms is a functional perturbation mechanism, where users perturb their payoff/cost

functions and participate in distributed optimization algorithms by applying per-

turbed functions [41, 130]. Functional perturbation is easier to implement since

its design does not depend on specific tasks. In addition, functional perturbation

only adds perturbation once to produce the perturbed payoff functions, regardless

of the number of steps players participate in the following information aggregation

processes. However, functional perturbation needs the decomposition of objective

functions into an infinite sequence of coefficients corresponding to the elements of

an orthogonal basis in a separable Hilbert space, and added noises to the infinite

coefficient sequence. A disadvantage is that truncation is inevitable in practical

implementations.

Although there is a rich literature on private multi-agent systems, studies under

game-theoretic frameworks are few. As for differentially private games, the works of

[156, 186] focused on privacy-preserving distributed Nash-seeking strategy design for

aggregated games. The privacy scope of this thesis is limited to individual payoff

functions. We are inspired to extend the functional perturbation mechanism to

game-theoretic settings for multi-agent systems, which avoids the the conventional

operation of functional perturbation, namely the infinite factorization of objective

functions under a basis of separable Hilbert space [41, 130].
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1.3 Thesis Outline

Applications of various types of multi-agent systems can be well studied with the

help of a variety of models. With a clear awareness of this point, this thesis addresses

the aforementioned problems with the aid of market models, discrete-time dynamic

games, and network games. The framework of the main research content is presented

in Fig. 1.1. The thesis outline is as follows.

Figure 1.1: The framework of the main research content.

In Chapter 1.4, we present some preliminaries of duality theory, optimal control

theory, game theory, and differential privacy.

In Chapter 3, we study multi-agent systems with decentralized resource alloca-

tions. Multi-agent systems are modeled as markets. A new social shaping problem

of price acceptance is defined to explore the situation when the optimal price at the

competitive equilibrium is upper bounded for social acceptance. By prescribing the

range of admissible quadratic functions that agents can select from, the social shap-

ing problem of price acceptance for static multi-agent systems with quadratic utility

functions is solved. Dynamical multi-agent systems are also investigated. A recur-

sive computation of dynamic competition equilibrium is presented and a receding

horizon approach to smooth the dynamic pricing is proposed.

In Chapter 4, we carry out a case study of multi-agent systems, the well-known
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Regional Integrated Climate-Economy model (RICE model). It is modeled as a dy-

namic game. In light of optimal control theory and game theory, we investigate how

cooperation and competition arise in deciding regional climate policies. We begin

by demonstrating that the RICE model is fundamentally a dynamic game. Both

cooperative and competitive solutions are investigated. Simulations and analyses

demonstrate that game theory may help international negotiations and the devel-

opment of a consensus on regional climate mitigation measures and that regional

relationships of cooperation and competition may have an impact on future climate

change.

In Chapter 5, we study a network structure inference problem from best-response

dynamics of linear-quadratic games. We assume that there is an adversary who is ca-

pable of observing all agents’ best-response actions and manipulating some agents’

actions. It is theoretically demonstrated that network structure identifiability is

equivalent to certain controllability conditions. Then, a stable and sparse system

identification algorithm is proposed to learn the network structure against obser-

vation noises. Numerical simulations demonstrate the effectiveness of the proposed

algorithm, which thus reveals potential privacy risks of agents.

In Chapter 6, we study network games where agents engage in information ag-

gregation processes under the differential privacy requirement for agents’ payoff

functions. We extend the notion of differential privacy to network game settings

and propose a Laplace linear-quadratic functional perturbation algorithm. The al-

gorithm has two advantages in preserving the concavity of perturbed payoff func-

tions and bounding perturbed Nash equilibrium. A tutorial example on LQ games

is presented to show how specific differential privacy requirements can be met by

parameter tuning.

In Chapter 7, we conclude the thesis and discuss important avenues for future

work.
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Chapter 2

Preliminaries

2.1 Duality Theory

In what follows, we introduce Lagrangian duality in optimization theory. We refer

all the following materials to [18].

2.1.1 The Lagrange Dual Function

An optimization problem in the standard form is described as

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . .m

hi(x) = 0, i = 1, . . . , p,

(2.1)

with variable x ∈ Rn, its nonempty domain D =
⋂m

i=0 dom(fi) ∩
⋂p

i=1 dom(hi),

objective function f0(x), inequality constraints fi(x) ≤ 0, i = 1, . . . ,m and equality

constraints hi(x) = 0, i = 1, . . . , p. We denote the optimal value of (2.1) by p⋆.

The idea of Lagrangian duality is to take the constraints in (2.1) into account by

augmenting the objective function with a weighted sum of the constraint functions.

The Lagrangian L : D × (R≥0)m × Rp → R associated with the problem (2.1) is

defined as

L(x, λ, v) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

vihi(x), (2.2)

14
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with its domain dom(L) = D × (R≥0)m × Rp. Here, λi ∈ R≥0 is referred to as the

Lagrange multiplier associated with the ith inequality constraint fi(x) ≤ 0; vi ∈ R

is referred to as the Lagrange multiplier associated with the ith equality constraint

hi(x) = 0. The vectors λ ∈ (R≥0)m and v ∈ Rp are called the dual variables

(Lagrange multiplier vectors) associated with the problem (2.1).

The Lagrange dual function g : (R≥0)m × Rp → R is defined as the infimum value

of the Lagrangian L over x: for λ ∈ (R≥0)m, v ∈ Rp,

g(λ, v) = inf
x∈D

L(x, λ, v) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

vihi(x)
)
. (2.3)

Note that even when the problem (2.1) is not convex, its associated Lagrange dual

function (2.3) is concave because (2.3) is the pointwise infimum of a family of affine

functions of (λ, v).

The dual function (2.3) gives lower bounds on the optimal value p⋆ of the prob-

lem (2.1): for any λi ≥ 0, i = 1, . . . ,m, and any vi, i = 1, . . . , p, we have

g(λ, v) ≤ p⋆. (2.4)

2.1.2 The Lagrange Dual Problem

The Lagrange dual function gives us a lower bound on the optimal value p⋆ of the

problem (2.1). The best lower bound can be obtained from solving the Lagrange

dual problem associated with the problem (2.1):

max
λ,v

g(λ, v)

s.t. λi ≥ 0, i = 1, . . .m,

(2.5)

with its nontrivial domain dom(g) = {(λ, v) | g(λ, v) > −∞}. In this context, the

original problem (2.1) is called the primal problem. We denote the optimal solutions

for the dual problem (2.5) by (λ⋆, v⋆), which is also called the dual optimal (optimal

Lagrange multipliers). We also denote the optimal value of (2.5) by d⋆. Note that

even when the primal problem (2.1) is not convex, the dual problem (2.5) is a convex
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optimization problem due to its concave objective and convex constraint.

2.1.3 Weak Duality and Strong Duality

The best lower bound on p⋆ obtained from the Lagrange dual function (2.3) is d⋆:

d⋆ ≤ p⋆. (2.6)

This property is called weak duality. The difference p⋆ − d⋆ is referred to as the

optimal duality gap.

If the optimal duality gap is zero, i.e.,

p⋆ = d⋆, (2.7)

then the property of strong duality holds. Note that strong duality does not always

hold.

The set of all affine combinations of points in some set C ⊆ Rn is called the affine

hull of C, and denoted aff(C): aff(C) = {θ1x1+ · · ·+θkxk | x1, . . . , xk ∈ C, θ1+ · · ·+

θk = 1, k ∈ N+}. The relative interior of the set C as its interior relative to aff(C),

denoted relint(C): relint(C) = {x ∈ C | B(x, r) ∩ aff(C) ⊆ C for some r > 0},

where B(x, r) = {y | ||y − x|| ≤ r} is the ball of radius r and center x in the

norm || · || (|| · || is any norm; all norms define the same relative interior). Slater’s

condition is one simple constraint qualification that ensures strong duality: there

exists an x ∈ relint(D) such that

fi(x) < 0, i = 1, . . . ,m; Ax = b. (2.8)

Slater’s theorem states that strong duality holds if the primal problem is convex and

Slater’s condition holds, i.e., in the form

min
x

f0(x)

s.t. fi(x) < 0, i = 1, . . .m

Ax = b.

(2.9)
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Slater’s condition can be refined when some of the inequality constraint functions

fi are affine: there exists an x ∈ relint(D) such that

fi(x) ≤ 0, i = 1, . . . , k; fi(x) < 0, i = k + 1, . . . ,m; Ax = b. (2.10)

2.2 Optimal Control Theory

The optimal control problem where the system dynamics are described by a set

of linear differential/difference equations and the cost function is described by a

quadratic function is called the linear quadratic regulator (LQR). There are four

versions of LQR problem depending on whether the time horizon is finite or infinite

and whether system dynamics and cost function are continuous or discrete over time

horizon: 1) finite-horizon, continuous-time; 2) infinite-horizon, continuous-time; 3)

finite-horizon, discrete-time; 4) infinite-horizon, discrete-time. In what follows, we

present the discrete-time finite-horizon LQR problem. Throughout the present,

k = 0, 1, . . . , T − 1 is the time horizon. We refer all the following materials to

[155, 177].

2.2.1 LQR Problem

System Dynamics

The system under the LQR problem evolves according to the recursion

xk+1 = Axk +Buk (2.11a)

yk = Cxk +Duk (2.11b)

where the system state is x ∈ Rn, the control input is u ∈ Rm and the measured

output is y ∈ Rp. Matrices A,B,C, and D are with their proper dimensions. The

initial state of the system is x0. We denote the control inputs over the entire horizon

by U = [u1; . . . ; uT−1].

The system (2.11) is said to be stable if and only if all eigenvalues of matrix A

have magnitude strictly smaller than one. The system (2.11) is controllable if and
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only if

rank([B AB A2B . . . An−1B]) = n.

The system (2.11) is observable if and only if

rank([C⊤ A⊤C⊤ (A⊤)2C⊤ . . . (A⊤)n−1C⊤]) = n.

Cost Functional

The cost functional for the LQR problem is

J(U) = x⊤
TMTxT +

T−1∑
k=0

(x⊤
k Mxk + u⊤

k Nuk + 2x⊤
k Suk). (2.12)

It is assumed that

M S

S⊤ N

 is semi-positive definite, MT is semi-positive definite,

and N is positive definite.

Value Functions

The cost-to-go (value) functions as functions of the initial state and time (although

not explicitly written) are defined by

FT (x) := x⊤MTx, (2.13a)

Fk(x) := inf
u

(
x⊤Mx+ u⊤Nu+ 2x⊤Su︸ ︷︷ ︸

cost (1)

+Fk+1(Ax+Bu)︸ ︷︷ ︸
cost−to−go (2)

)
. (2.13b)

The optimal cost-to-go from xk = x to xT should be equal to the minimal among

uk = u of the summation of cost (1) incurred from xk = x to xk+1 and cost-to-go

(2) from xk+1 to xT .

2.2.2 Optimal Feedback Controller for LQR Problem

The LQR problem is to find an optimal feedback controller

u∗
k = Kkxk (2.14)
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that minimizes the cost functional (2.12) subject to the system (2.11). For the LQR

problem defined by (2.12) and (2.13), two important results are that

(i) the feedback gain Kk of the optimal feedback controller (2.14) is given by

Kk := −(N +B⊤Pk+1B)−1(S⊤ +B⊤Pk+1A), (2.15)

where Pk is given by the Riccati recursion:

Pk = M + A⊤Pk+1A− (S⊤ +B⊤Pk+1A)
⊤(N +B⊤Pk+1B)−1(S⊤ +B⊤Pk+1A)

(2.16)

with PT = MT .

(ii) the cost-to-go (value) function has the form Fk(x) = x⊤Pkx.

2.3 Game Theory

Game theory has been an essential tool in describing how self-interested players,

develop rationality and competition. We now present game-related terminology and

definition. We refer all the following materials to [9].

2.3.1 Game Definition

Definition 2.1 (A Normal Form Game) A normal form game is defined as a triple

of players, actions, and payoff functions, denoted by Γ = {V, X, f}:

(i) the players are indexed in the set V = {1, 2, . . . , n};

(ii) each player i selects an action xi from player i’s action set Xi. The action set

of the game is X := X1 × · · · ×Xn;

(iii) each player i’s payoff function fi not only depends on its action xi ∈ Xi but

also other players’ actions x−i ∈ X−i := Πj ̸=iXj, i.e., fi(xi, x−i). The payoff

functions of the game is f = (fi, . . . , fN).
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2.3.2 Solution Concepts

The best response is the action (or actions) that yields the best outcome for a player

when other players’ actions are given.

Definition 2.2 (Best Response) Given other players’ actions x−i ∈ X−i, the best

response of player i to other players’ actions x−i, denoted BRi(x−i), is

BRi(x−i) = argmax
x̃i

fi(x̃i, x−i). (2.17)

A Nash equilibrium is an action profile under which no one will benefit by changing

its action while others keep theirs unchanged.

Definition 2.3 (Nash Equilibrium) An action profile x∗ = (x∗
i , x

∗
−i) ∈ X is a

Nash equilibrium if for i ∈ V, fi(x
∗
i , x

∗
−i) ≥ fi(xi, x

∗
−i), where xi ∈ Xi and x−i =

[x1, x2, . . . , xi−1, xi+1, . . . , xn]
⊤.

Note that under the Nash equilibrium, every player plays the best response against

the other players simultaneously.

2.4 Differential Privacy

Differential privacy describes a promise to protect users’ privacy in a database where

sensitive information is privately withheld by each user, but aggregate queries are

publicly published for data study/analysis. We refer all the following materials to

[50].

2.4.1 Terminology and Definition

First, we introduce the terminology associated with differential privacy. The sensi-

tive information that needs protection is referred to as a database, denoted as D.

The space encompassing all possible databases of interest is represented by D. To

release a query publicly, it is derived from the underlying database using a query

function q : D→ Rm. Each element in the query term is denoted by qi.
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Next, we provide the definition of differential privacy, a concept that intuitively

ensures that similar inputs yield similar outputs.

Definition 2.4 (Differential Privacy) For any ϵ > 0 and 0 ≤ δ < 1, a random-

ized mapping M : D→ Rm preserves (ϵ, δ)-differential privacy if for all D1 ∈ D and

D2 ∈ D differing in at most one element, and for any subset M ⊆ range(M), there

holds:

P(M(D1) ∈M ) ≤ eϵP(M(D2) ∈M ) + δ. (2.18)

This definition highlights that (ϵ, δ)-differential privacy is upheld when the probabil-

ity of observing M(D1) in a given subset M is no more than eϵ times the probability

of observing M(D2) in the same subset, with an added error factor of δ. This ensures

privacy preservation even when databases D1 and D2 differ in only a single element.

2.4.2 Privacy-Preserving Mechanisms

We first define the l∞-sensitivity of a query function q : D→ Rm.

Definition 2.5 (l∞-Sensitivity) For a query function q, the l∞-sensitivity ∆∞ is

defined as the maximum l∞ norm of the difference between the query outputs for any

pair of neighboring databases D1, D2 ∈ D that differ in at most one element.

∆∞ = max
D1,D2

∥q(D1)− q(D2)∥∞. (2.19)

Next, we present a lemma that demonstrates the (ϵ, δ)-differential privacy achieved

by the Laplace mechanism.

Lemma 2.1 For any ϵ > 0 and 0 ≤ δ < 1, the Laplace mechanism, which adds

independent Laplace noise ηi ∈ R, i = 1, . . . ,m to each element qi, i = 1, . . . ,m in the

query output, achieves (ϵ, δ)-differential privacy. The Laplace noise ηi is generated

from the Laplace distribution Lap(m∆∞
ϵ

).

We next introduce the l2-sensitivity of a query function q : D→ Rm.
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Definition 2.6 (l2-Sensitivity) For a query function q, the l2-sensitivity ∆2 is

defined as the maximum l2 norm of the difference between the query outputs for any

pair of neighboring databases D1, D2 ∈ D that differ in at most one element.

∆2 = max
D1,D2

∥q(D1)− q(D2)∥2. (2.20)

Furthermore, we present a lemma that demonstrates the (ϵ, δ)-differential privacy

achieved by the Gaussian mechanism.

Lemma 2.2 (Gaussian Mechanism) For ϵ > 0 and 0 ≤ δ < 1, the Gaussian

mechanism, which adds a Gaussian-noise vector w ∈ Rm to the query output q,

achieves (ϵ, δ)-differential privacy. The Gaussian-noise vector w is generated from

the Gaussian distribution N(0,Σ), where Σ is a diagonal matrix with entries σ2, and

σ >
√
2 ln

(
1.25
δ

)
· ∆2

ϵ
.

It is worth noting that differential privacy is resilient to post-processing. Even if

an attacker applies arbitrary post-processing operations to the output of a privacy-

preserving randomized algorithm, the individual’s sensitive information remains pro-

tected.

Lemma 2.3 Let M : D → Rm be a randomized algorithm that preserves (ϵ, δ)-

differential privacy. For any data-independent function g : Rm → Rp, the composi-

tion g ◦M also preserves (ϵ, δ)-differential privacy.

These privacy-preserving mechanisms and properties lay the foundation for achiev-

ing differential privacy in various applications.



Chapter 3

Competitive Equilibriums and

Social Shaping for Multi-Agent

Systems

Preface

In this chapter, we study multi-agent systems with decentralized resource allo-

cations. Agents have local demand and resource supply, and are interconnected

through a network designed to support sharing of the local resource; and the net-

work has no external resource supply. When the network supply and demand are

balanced, a competitive equilibrium is achieved if all agents maximize their individ-

ual payoffs, and a social welfare equilibrium is achieved if the total agent utilities are

maximized. First, we consider multi-agent systems with static local allocations, and

prove from duality theory that under general concavity assumptions, the competitive

equilibrium and the social welfare equilibrium exist and agree. Next, we show that

the agent utility functions can be prescribed in a family of socially admissible func-

tions, under which the resource price at the competitive equilibrium is kept below

a threshold. Finally, we extend the study to dynamical multi-agent systems where

agents are associated with dynamical states from linear processes, and prove that the

dynamic competitive equilibrium and the dynamic social welfare equilibrium con-

tinue to exist and coincide with each other. We present a recursive representation of

23
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the competitive equilibriums using dynamic programming, and a receding horizon

approach for smoothing the dynamic pricing as a dynamic competitive equilibrium

social shaping method.

This chapter mainly addresses the social shaping problem of price acceptance in

multi-agent systems [28, 29].

3.1 Overview

Next generation technologies are leveraging the internet of things (IoT) to support

critical infrastructure systems including energy distribution and automotive trans-

portation, and are being organized as interconnected multi-agent systems [111].

Such systems involve data collection, resource allocation, and control coordina-

tion between geographically distributed subsystems. Each subsystem, termed an

‘agent’, is an intelligent functioning unit with its own decisions, objectives and

preferences, and remarkably, network-level goals such as consensus, formation,

and optimality can be achieved by agents interacting with others over a network

[85, 105, 118, 132, 167]. The underlying network for multi-agent systems can be

physical such as transmission lines in a power grid, non-physical such as wireless

communication channels, or a combination of the two. The key promise of orga-

nizing subsystems into networked multi-agent systems is a radical improvement in

scalability, efficiency, and sustainability through shared inputs and outputs, and

coordinated decisions and controls.

One important problem for multi-agent system operation is efficient resource al-

location, where demand and supply must be balanced for efficient and secure op-

erations at the system level. In a typical resource allocation problem, agents have

local demand and internal and external resource suppliers, interconnected through

a network that allows for transmission of the resource. In light of classical welfare

economics theory [106], careful pricing of the transmission flow potentially balances

the demand against the supply across the entire system. Agents decide on the re-

source consumed, and perhaps further the resource traded, to maximize their payoffs

considering both the utility from consumption, and income from the trading. When
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network supply and demand is balanced, a competitive equilibrium is achieved if all

agents maximize their individual payoffs; a social welfare equilibrium is achieved if

the total agent utilities are maximized, which in turn maximizes the overall system-

level payoff.

3.1.1 Problem of Interest

The concept of operating a multi-agent system as a market via optimal pricing under

a competitive equilibrium has applications in smart grid operations and climate-

economy systems. In smart grids, agents represent households, and by optimally

pricing energy, we ensure the payoff for all households are maximized subject to

the balance of energy supply and demand [1, 26, 86, 89, 95, 101, 102, 114, 134,

158, 162, 189]. In climate-economy systems, agents represent countries, and optimal

pricing of carbon emissions ensures the interests of each country are met subject

to a carbon emission supply-demand balance [123, 124, 126]. However, in both

cases, the optimally computed price is potentially not socially acceptable. For ex-

ample, in February 2021, the electricity price in Texas went to an unacceptably high

rate after widespread power outages. Consumers who were involved in the market-

based contract must pay sky-high electricity bills, which exceeded their budgets

[14, 112]. Moreover, the carbon emissions trading scheme under the Kyoto Proto-

col was widely criticized by researchers, as the estimated social cost of carbon was

deemed as unacceptable among different regions [96, 115]. We refer to [93] for an ex-

cellent introduction to the dynamic integration of climate and economy models from

a feedback system perspective. Both examples raise the problem that boundedness

of the resource price is not guaranteed.

However, in the extensive literature of economics and engineering, early and re-

cent studies focus on the rapid changes in the pricing process termed price volatility,

rather than the resource price itself. The Black-Scholes formula [13] and Heston’s

extension [72] are the most representative models of stochastic price volatility. In

[94], Kizilkale and Mannor argue that previous models do not penalize price volatil-

ity in the system-level objective. They modify the system objective to account for

price volatility and construct a dynamic game-theoretic framework for power mar-
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kets. In [166], Tsitsiklis and Xu suggest a different dynamic game-theoretic model

of electricity markets with the incorporation of ancillary service cost, and propose

a pricing mechanism that has the potential to reduce the peak load. In [176], Wei,

Malekian and Ozdaglar consider the dual version of the system-level welfare opti-

mization problem. An explicit penalty term on the L2-norm of price volatility is

introduced in the system objective, which allows trade-offs between price volatility

and social welfare. These methods strike trade-offs between economic efficiency and

price volatility. In other words, one has to compromise system efficiency in order to

reduce price volatility, which causes an inevitable supply-demand mismatch. Fur-

thermore, to the authors’ best knowledge, none of the existing pricing mechanisms

can limit the range of the resource price required at a competitive equilibrium in a

formal way. It indicates that the resource price might remain unacceptable among

agents who might opt out of the system afterwards. This can be a significant prac-

tical problem due to its failure of considering implicit agents’ budgetary constraints

[159].

Consequently, it motivates us to focus on the resource price itself and propose

a new social shaping problem for a competitive equilibrium aiming to bound the

resource price below a socially acceptable threshold. To this end, Section 3.3 con-

siders parameterized utility functions whose parameters are completely abstracted

from agents’ preferences and prescribe a range for the parameters of utility func-

tions to ensure that the resource price under a competitive equilibrium is socially

acceptable for all agents without mismatching supply and demand. The idea of

introducing parameterized utility functions comes from the concept of smart ther-

mostat agent in the AEP Ohio gridSMART Demonstration [178, 179]. Agents are

provided with an interface (usually a slider) to specify their preference settings for

relative comfort and savings. The two sides of the slider represent the maximum

comfort and maximum savings, respectively. The parameters in utility functions

reflect the extent to which agents have preferences towards comfort or towards sav-

ings. When an agent chooses to move the slider towards comfort, it indicates that

the agent is willing to maintain comfort regardless of the cost of resources. When

an agent decides to move the slider towards savings, it implies that the agent would
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like to sacrifice comfort for cost savings.

Thermostatically controlled loads (TCLs) in the home, such as air conditioners,

heat pumps, water heaters, and refrigerators, are well suited to energy arbitrage.

The TCLs’ function is to regulate their internal temperature within specific bounds.

There is a specific average power that is necessary to fulfil this function under

nominal local management. Many TCLs offer two modes of operation: powered

at a set level and unpowered, and keep temperatures within dead-bands in both.

Agents are satisfied if temperatures remain within their designated settings. Prior

studies have showed the possibility to model an aggregation of heterogeneous TCLs

by dynamical systems [68, 107, 113]. As a result, it motivates us to extend our study

to dynamical multi-agent systems in Section 3.4.

3.1.2 Chapter Contributions

In this chapter, we have made the following contributions:

(i) We first consider multi-agent systems with static local allocation, and prove

from a duality argument that under general concavity assumptions, the com-

petitive equilibrium and the social welfare equilibrium exist and agree.

(ii) We then formulate a new social shaping problem to investigate the case when

the optimal resource price at the competitive equilibrium is associated with

an upper bound for social acceptance. We focus on a fundamental class of

quadratic utility functions, and show that the social shaping problem can

be explicitly solved by prescribing a family of socially admissible quadratic

functions that agents can select from.

(iii) We extend the study to dynamical multi-agent systems where agents are asso-

ciated with dynamical states from linear processes, and prove that the dynamic

competitive equilibrium and the dynamic social welfare equilibrium continue

to exist and coincide in the context of optimal control, again from a duality

perspective. We also present a recursive way of representing and computing

the dynamic competitive equilibrium in view of the dynamic programming

principle. In order to shape the dynamic pricing in the sense that the pricing
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trajectory would be stationary, we propose a receding horizon approach for

smoothing the dynamic pricing.

To the best of our knowledge, rather than the resource price itself, most works in

the literature focus on price volatility. However, in multi-agent systems, there is an

increasing need of limiting the resource price. For example, Spain sent a proposal to

the European Union on limiting carbon emission permit prices in a bid to curb energy

price increases [140]. The social shaping problem of price acceptance for multi-agent

systems is new in the literature and has practical significance. Furthermore, we

extend the study of static multi-agent systems to dynamical multi-agent systems

from the perspective of optimal control and model predictive control, which also

advances the literature.

3.1.3 Chapter Outline

The remainder of the chapter is organized as follows. In Section 3.2, we introduce

the multi-agent system with static decisions. In Section 3.3, we define a new social

shaping problem for multi-agent systems and prescribe a family of socially admissible

quadratic functions under which the optimal resource price is always acceptable for

all agents. In Section 3.4, we formulate dynamic pricing for resource allocation

of multi-agent systems with an underlying dynamical process. Some concluding

remarks are presented in Section 3.5. Our codes for numerical examples are open-

sourced at https://github.com/chyj528/MAS-Social-Shaping.

3.2 Static Multi-Agent Systems

In this section, we study multi-agent systems with static resource allocation and

load decisions.
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3.2.1 Competitive Equilibrium for Static Multi-Agent Sys-

tems

We consider a multi-agent system (MAS) with n agents. The agents are indexed by

V = {1, . . . , n}. We consider a basic MAS setup with static agent decisions on load

allocations.

MAS with Static Agent Load Decisions (MAS-SALD). Each agent i holds a

local resource of ai units, and makes a (static) decision to allocate xi ∈ R≥0 units

of load for itself. The utility function related to agent i ∈ V allocating xi amount

of load is fi(xi) : R≥0 → R. Consequently, agent i would incur an ai − xi amount of

surplus (ai > xi), or a shortcoming (ai < xi). We assume that there is a connected

network among the n agents so that they can balance the surplus and shortcomings

through a pricing mechanism. To be precise, each unit of resource moved across the

network is priced at λ ∈ R. Therefore, agent i will yield (ai − xi)λ in income or

expenditure.

Denoting x = (x1 . . . xn)
⊤ ∈ (R≥0)n as the network resource allocation profile, we

introduce the following definitions.

Definition 3.1 A pair of price-allocation decisions (λ∗, x∗) is a competitive equi-

librium for the MAS-SALD if the following conditions hold:

(i) each agent i maximizes her combined payoff at x∗
i , i.e., x∗

i is an optimizer of

the solution to the following constrained optimization problem:

max
xi

fi(xi) + λ∗(ai − xi)

s.t. xi ∈ R≥0.

(3.1)

(ii) the total demand and supply are balanced across the network:

n∑
i=1

x∗
i =

n∑
i=1

ai. (3.2)

Definition 3.2 A resource allocation profile x⋆ is a social welfare equilibrium for
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the MAS-SALD if it is a solution to the following optimization problem:

max
x

n∑
i=1

fi(xi)

s.t.
n∑

i=1

xi =
n∑

i=1

ai,

xi ∈ R≥0; i ∈ V.

(3.3)

We present the following result which establishes the equivalence between a com-

petitive equilibrium and a social welfare equilibrium. The result is based only on a

concavity assumption for the utility functions fi.

Theorem 3.1 Consider the MAS-SALD. Suppose each fi(·) is concave over the do-

main R≥0. Then the social welfare equilibrium(s) and the competitive equilibrium(s)

coincide. To be precise, the following statements hold.

(i) If (λ∗, x∗) is a competitive equilibrium, then x∗ is a social welfare equilibrium.

(ii) If x⋆ is a social welfare equilibrium, then there exists λ∗ ∈ R such that (λ∗,

x⋆) is a competitive equilibrium.

Proof. (i) Let (λ∗, x∗) be a competitive equilibrium. The proof proceeds by con-

tradiction. Suppose that x∗ is not a social welfare equilibrium. Then there must

exist x̄∗ such that
∑n

i=1 x̄
∗
i =

∑n
i=1 x

∗
i =

∑n
i=1 ai, and

∑n
i=1 fi(x

∗
i ) <

∑n
i=1 fi(x̄

∗
i ).

Consequently, there holds

n∑
i=1

(
fi(x

∗
i ) + λ∗(ai − x∗

i )
)
<

n∑
i=1

(
fi(x̄

∗
i ) + λ∗(ai − x̄∗

i )
)
. (3.4)

This implies that there is at least one m ∈ V such that

fm(x
∗
m) + λ∗(am − x∗

m) < fm(x̄
∗
m) + λ∗(am − x̄∗

m),

which contradicts the fact that (λ∗, x∗) is a competitive equilibrium.

(ii) We propose a proof using duality. To be consistent with the literature on
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duality theory for continuous optimization, we denote gi = −fi, and rewrite (3.3) as

min
x

n∑
i=1

gi(xi)

s.t.
n∑

i=1

xi =
n∑

i=1

ai; xi ∈ R≥0, i ∈ V.

(3.5)

Let x⋆ be a social welfare equilibrium1. Then from its definition there holds∑n
i=1 x

⋆
i =

∑n
i=1 ai. Since (3.5) is a convex optimization problem with a linear

equality constraint, strong duality holds [18] and we denote the optimal primal and

dual costs of (3.5) as p∗ and d∗, respectively.

The Lagrange function of (3.5) is

L(x, λ) =
n∑

i=1

gi(xi) + λ
( n∑

i=1

xi −
n∑

i=1

ai

)
: (R≥0)n × R→ R.

Then we introduce L∗(λ) = minx∈(R≥0)n L(x, λ). If λ∗ is dual optimal (i.e., λ∗ ∈

argmaxλ∈R L
∗(λ)), there holds from strong duality [18] that

d∗ = L∗(λ∗) = min
x∈(R≥0)n

L(x, λ∗) (3.6)

≤ L(x⋆, λ∗) (3.7)

=
n∑

i=1

gi(x
⋆
i ) (3.8)

= p∗. (3.9)

This implies the inequality from the above equation actually holds at equality:

x⋆ ∈ arg min
x∈(R≥0)n

L(x, λ∗). (3.10)

Note that L(x, λ∗) =
∑n

i=1

(
gi(xi) + λ∗(xi − ai)

)
implies

x⋆
i ∈ arg max

xi∈R≥0

(
fi(xi) + λ∗(ai − xi)

)
. (3.11)

1Note that x⋆ must be finite as the feasible set of x is compact.
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Thus, we have proved that (λ∗,x⋆
i ) is a competitive equilibrium. □

Clearly, in this basic multi-agent system setup, the price λ∗ associated with a

competitive equilibrium could take negative values. From an economic point of

view, the resource at every agent must either be consumed or traded, and in cases

of an oversupply of resource a negative price for load balancing would occur. From

an optimization point of view, the price λ∗ is the Lagrange multiplier associated

with an equality constraint for a constrained optimization problem, which can take

positive or negative values. Proposition 3.1 indicates that as long as one agent is

associated with a non-decreasing utility function, oversupply will not happen.

Proposition 3.1 Consider the MAS-SALD. Suppose each fi(·) is concave over the

domain R≥0. Let (λ∗, x∗) be a competitive equilibrium. Then λ∗ ≥ 0 if there exists

at least one agent m ∈ V such that fm(·) is non-decreasing.

Proof. Let fm(·) be non-decreasing. Assume λ∗ < 0. Then fm(xm) + λ∗(am − xm

)
is a strictly increasing function with respect to xm. Therefore, there can not be a

finite x∗
m such that x∗

m ∈ argmaxxm∈R≥0

(
fm(xm) + λ∗(am − xm)

)
, contradicting the

definition of the competitive equilibrium. □

3.2.2 MAS with Trading Decisions

In our standing multi-agent system model, agent i only decides on its allocated load

xi with the surplus/shortcoming ai− xi returned to the network. Next we relax the

network restriction, and introduce the following extended MAS.

MAS with Static Agent Load and Trading Decisions (MAS-SALTD) Here

we extend the MAS-SALD. Each agent i further makes a decision on the traded

amount of resource, denoted ei. As one recent example, ei is physically constrained

by xi and ai in the following way:

(i) if xi < ai, then agent i can sell, in which case ei ≥ 0 and ei ≤ ai − xi;

(ii) if xi ≥ ai, then agent i can only buy, in which case ei ≤ 0 and ei = ai − xi.

Let λ∗ continue to represent the price for a unit of shared resource. Denote

e = (e1 . . . en)
⊤ as the vector representing the traded resource profile across the

network.
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Definition 3.3 A triplet of price-allocation-trade profile (λ∗, x∗, e∗) is a competitive

equilibrium for the MAS-SALTD if the following conditions hold:

(i) Each agent i maximizes her combined payoff at (x∗, e∗) while meeting the

physical constraint, i.e., (x∗
i , e∗i ) is an optimizer of the solution to the following

constrained optimization problem:

max
xi,ei

fi(xi) + λ∗ei

s.t. xi + ei ≤ ai,

xi ∈ R≥0, ei ∈ R.

(3.12)

(ii) The total demand and supply are balanced across the network:

n∑
i=1

e∗i = 0. (3.13)

Definition 3.4 A pair of resource allocation-trade profile (x⋆, e⋆) is a social welfare

equilibrium for the MAS-SALTD if it is an optimizer to the following optimization

problem:

max
x,e

n∑
i=1

fi(xi) (3.14)

s.t.
n∑

i=1

ei = 0, (3.15)

xi + ei ≤ ai; i ∈ V, (3.16)

xi ∈ R≥0, ei ∈ R; i ∈ V. (3.17)

Theorem 3.2 Consider the MAS-SALTD. Suppose each fi(·) is concave over the

domain R≥0. Then the social welfare equilibrium(s) and the competitive equilib-

rium(s) continue to coincide under the shared load decisions for the agents. To be

precise, the following statements hold.

(i) If (λ∗,x∗, e∗) is a competitive equilibrium, then (x∗, e∗) is a social welfare

equilibrium.

(ii) If (x⋆, e⋆) is a social welfare equilibrium, then there exists λ∗ ∈ R such that
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(λ∗,x⋆, e⋆) is a competitive equilibrium.

Proof. (i) The proof follows the same analysis as the proof of Theorem 3.1(i), where

the desired connection is in place with the definitions of the optimization goals,

respectively, for the competitive equilibrium and the social welfare equilibrium.

(ii) The key idea of the proof continues to be based on strong duality applied to the

definition of the social welfare equilibrium, as the proof of Theorem 3.1. However,

now the social welfare equilibrium contains additional inequality constraints; that

is xi + ei ≤ ai, for all i ∈ V. Inevitably, such constraints will lead to auxiliary

dual variables, in addition to the dual variable related to the equality constraint∑
ei = 0 if we simply repeat the proof of Theorem 3.1. In order to highlight the

role of the dual variable corresponding to the equality constraint, and establish it

as the price in the competitive equilibrium, we need a refined treatment. To this

end, we define a set Xi for all i ∈ V in terms of the inequality constraint in (3.16)

as Xi = {(xi, ei)|xi + ei ≤ ai; xi ∈ R≥0; ei ∈ R}. Clearly, Xi is a polyhedral set

(see Chapter 3.4.2, Duality Theory in [11]). Denoting again fi = −gi, the problem

(3.14)-(3.17) can be written as:

min
n∑

i=1

gi(xi)

s.t. (xi, ei) ∈ Xi, i ∈ V

n∑
i=1

ei = 0.

(3.18)

Let τ be the Lagrange multiplier associated with constraint
∑n

i=1 ei = 0. Sub-

sequently, we can define the dual function where the primal variables are in a

polyhedral set as ( [11], section 5.1.6): L∗(τ) =
∑n

i=1 L
∗
i (τ), where L∗

i (τ) =

inf(xi,ei)∈Xi

(
gi(xi) + τei

)
, i ∈ V. Let (x⋆, e⋆) be a social welfare equilibrium and

τ ∗ be the dual optimal i.e. τ ∗ ∈ argmax
τ∈R

L∗(τ). Since the problem (3.18) is feasible

and its optimal value is finite, strong duality holds ( [11], Proposition 5.2.1). This
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means that

n∑
i=1

gi(x
⋆
i ) = L∗(τ ∗) (3.19)

=
n∑

i=1

(
inf

(xi,ei)∈Xi

(
gi(xi) + τ ∗ei

))
(3.20)

≤
n∑

i=1

gi(x
⋆
i ) + τ ∗

n∑
i=1

e⋆i (3.21)

≤
n∑

i=1

gi(x
⋆
i ). (3.22)

Equation (3.19) states that the duality gap is zero, (3.20) comes from the definition

of the dual function, (3.21) follows since the minimization of
∑n

i=1 gi(xi)+τ ∗
∑n

i=1 ei

over (xi, ei) ∈ Xi is always less than or equal to the value at
∑n

i=1 gi(x
⋆
i )+τ ∗

∑n
i=1 e

⋆
i ,

(3.22) follows from
∑n

i=1 e
⋆
i = 0. We conclude that the two inequalities hold with

equality which implies (x⋆, e⋆) minimizes
∑n

i=1 gi(xi) + τ ∗
∑n

i=1 ei over (xi, ei) ∈ Xi.

Therefore, there holds

(x⋆, e⋆) ∈ argmin
(xi,ei)∈Xi,

i∈V

n∑
i=1

gi(xi) + τ ∗
n∑

i=1

ei. (3.23)

Since (3.23) is separable in all i ∈ V, an equivalent formulation is

(x⋆
i , e

⋆
i ) ∈ argmin

(xi,ei)∈Xi

gi(xi) + τ ∗ei, i ∈ V. (3.24)

Let us define the equilibrium price λ∗ as λ∗ = −τ ∗. It follows from (3.24) that

(x⋆
i , e

⋆
i ) is the solution of the following optimization problem:

max fi(xi) + λ∗ei

s.t. xi + ei ≤ ai

xi ∈ R≥0, ei ∈ R.

(3.25)

Hence, we conclude that the triplet (λ∗,x⋆, e⋆) is a competitive equilibrium. □

Remark 3.1 Similar results as Theorem 3.1 and Theorem 3.2 have already ex-
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isted. In classic microeconomics [106], the allocation of a competitive equilibrium

is shown to be Pareto optimal. In [88, 100], competitive equilibrium and social wel-

fare equilibrium are proven to be in agreement. In either case, the utility functions

are continuously differentiable and the proofs are based on the Karush-Kuhn-Tucker

(KKT) optimality conditions [18]. It might be possible to extend the analysis in

[10,11] to general concave utility functions based on nonsmooth KKT optimality

conditions [91]. Here, our proof provides a direct duality analysis and sheds light on

the proof for the dynamic case, which will be presented later.

In the presence of agent trading decisions, the price λ∗ under any competitive

equilibrium must be non-negative, as shown in Proposition 3.2.

Proposition 3.2 Consider the MAS-SALTD. Suppose each fi(·) is concave over the

domain R≥0. Let (λ∗,x∗, e∗) be a competitive equilibrium under the agent trading

decisions. Then there always holds that λ∗ ≥ 0.

Proof. Assume λ∗ < 0. Then fi(xi) + λ∗ei is a strictly decreasing function with

respect to ei. Since ei is unbounded below and upper bounded by ei ≤ ai−xi, there

can not be a finite e∗i such that e∗i ∈ argmaxei∈R

(
fi(xi) + λ∗ei

)
, contradicting the

definition of the competitive equilibrium. This completes the proof. □

3.2.3 Numerical Examples

Example 3.1 Consider a multi-agent system with four agents who have local re-

source (a1, a2, a3, a4) = (13, 14, 4, 7). Each agent i is associated with a utility

function fi which is represented by fi(xi) = min(kixi, βi) with (k1, k2, k3, k4) =

(21, 20, 23, 32) and (β1, β2, β3, β4) = (135, 600, 130, 150).

(i) Let the multi-agent system be MAS-SALD. The social welfare equilibrium

can be computed by numerically solving the optimization problem (3.3) as x⋆ =

(6.429, 21.232, 5.652, 4.688)⊤, and the corresponding optimal dual variable is also

obtained as λ∗ = 20. Letting λ∗ = 20, we then compute a competitive equilib-

rium that satisfies (3.1)-(3.2) as x∗ = (6.429, 21.232, 5.652, 4.688)⊤. In particular,

we obtain x∗
1 = 6.429, x∗

3 = 5.652, and x∗
4 = 4.688 by solving (3.1), and further
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establish x∗
2 = 21.232 from (3.2). Clearly there holds x⋆ = x∗, which is consistent

with Theorem 3.1.

(ii) Let the multi-agent system be MAS-SALTD. We compute the social welfare

equilibrium (x⋆, e⋆) by solving the optimization problem (3.14)-(3.17) as

x⋆ = (6.429, 21.232, 5.652, 4.688)⊤,

e⋆ = (6.571,−7.232,−1.652, 2.313)⊤.

The optimal dual variable τ ∗ corresponding to the equality constraint (3.15) can

be obtained as τ ∗ = −20. We take λ∗ = −τ ∗ = 20 and establish a competitive

equilibrium that satisfies (3.12)-(3.13) as

x∗ = (6.429, 21.232, 5.652, 4.688)⊤,

e∗ = (6.571,−7.232,−1.652, 2.313)⊤.

In particular, we compute (x∗
1, e

∗
1) = (6.429, 6.571), (x∗

3, e
∗
3) = (5.652,−1.652) and

(x∗
4, e

∗
4) = (4.688, 2.313) by solving (3.12), and obtain (x∗

2, e
∗
2) = (21.232,−7.232)

from (3.13). Again there holds (x⋆, e⋆) = (x∗, e∗), which validates Theorem 3.2. □

Example 3.2 Consider a multi-agent system with four agents. The utility function

for agent i is in the quadratic form fi = −1
2
bix

2
i + kixi for i = 1, 2, 3, 4. We consider

two pairs of system parameters

b = (2, 5, 3, 4)⊤ k = (21, 17, 23, 13)⊤; (PM.1)

b
′
= (2, 5, 3, 4)⊤ k

′
= (25, 22, 24, 14)⊤. (PM.2)

Let the network resource capacity C =
∑4

i=1 ai take values in an interval (0, 40).

We get a discretization of the interval (0, 40) with a step-size 0.8 that consists of 50

equidistant points for C. For each C, we compute the optimal prices of the system

under MAS-SALD and MAS-SALTD.

For MAS-SALD, the optimal dual variables λ∗(PM.1)
SALD and λ

∗(PM.2)
SALD are computed for
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50 times corresponding to each value of C by solving (3.3), respectively, under the

parameter setting (PM.1) and (PM.2). For MAS-SALTD, the optimal dual variables

τ
∗(PM.1)
SALTD and τ

∗(PM.2)
SALTD related to the equality constraint (3.15) are also computed for 50

times corresponding to each value of C by solving (3.14)-(3.17), respectively, under

the parameter setting (PM.1) and (PM.2), and then we take λ
∗(PM.1)
SALTD = −τ ∗(PM.1)

SALTD

and λ
∗(PM.2)
SALTD = −τ ∗(PM.2)

SALTD . In Fig. 3.1, we plot the 50 points of optimal prices versus

C, to obtain an approximate trajectory of the optimal price as a function of C.

From Fig. 3.1 we observe that the optimal price λ∗
SALD in MAS-SALD can indeed

take negative values; while the optimal price λ∗
SALTD in MAS-SALTD is always non-

negative. These observations are consistent with Proposition 3.1 and Proposition

3.2. Moreover, for both MAS-SALD and MAS-SALTD, we observe in Fig. 3.1 that

the optimal prices λ∗
SALD, λ

∗
SALTD are decreasing as the network resource capacity C

increases. □

Figure 3.1: The curves of the optimal prices as functions of the network resource
capacity in Example 3.2.

3.3 Social Shaping for Competitive Equilibrium

Consistent with classical welfare economics theory, a competitive equilibrium, de-

spite being a social welfare equilibrium as well, indicates nothing about fairness or
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sustainability. If the optimal pricing λ∗ is too high, agents might opt out of the

system, instead of participating in the self-sustained multi-agent system. When

members leave the system, the achievable payoff for the remaining agents would

go down. Therefore, the agents share a social responsibility in shaping their utility

functions so that λ∗ is within a socially acceptable range.

3.3.1 Shaping the Competitive Equilibrium

Here we present an approach to achieve a socially acceptable competitive equilib-

rium, by synthesizing a class of utility functions from which agents can select. We

make the following assumption.

Assumption 1. Each fi is represented by fi(xi) = −1
2
bix

2
i + kixi, where bi ∈ R>0

and ki ∈ R≥0. A utility function fi is socially admissible if there hold ki ∈ [kmin, kmax]

and bi ∈ [bmin, bmax].

Let λ† represent the highest pricing for λ∗ that agents can accept, and we term

such a competitive equilibrium λ∗ ≤ λ† a socially resilient equilibrium. Let a =

(a1 . . . an)
⊤ represent the network resource allocation profile, and let C :=

∑n
i=1 ai

represent the network resource capacity. Assuming C and a are given network

characteristics, we consider the following problem of shaping the competitive equi-

librium.

Problem. (Social Competitive Equilibrium Shaping) Consider the MAS-SALD.

Find the range for kmin, kmax, bmin, bmax under which there always exists a competitive

equilibrium that leads to λ∗ ≤ λ†, for all socially admissible utility functions.

3.3.2 Socially Admissible Utility Functions

Denote k = (k1, . . . , kn) and b = (b1, . . . , bn)
⊤. For two vectors l = (l1, . . . , ln) and

l′ = (l′1, . . . , l
′
n), we write l ⪯ l′ if there holds li ≤ l′i for all i ∈ V. In other words, ⪯

defines a partial order for all vectors in Rn.
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Define
S∗ :=

{(
kmin, kmax, bmin, bmax

)
∈ R4

≥0 :

nkmax

bmin

− C ≤ nkmin

bmax︸ ︷︷ ︸
con1

;
nkmax

bmin

− C ≤ nλ†

bmax

}
︸ ︷︷ ︸

con2

.
(3.26)

We present the following lemma and theorem.

Lemma 3.1 Consider the MAS-SALD. Let Assumption 1 hold. The optimal load

allocation x∗
i , which is an optimal solution of the optimization problem (3.1), satisfies

x∗
i =

 ki−λ∗

bi
if λ∗ ≤ ki,

0 if λ∗ > ki,
(3.27)

or, put more simply, x∗
i = max{0, ki−λ∗

bi
}.

Proof. The objective function for each agent i ∈ V in the problem (3.1) can be

written as

max
xi∈R≥0

−1

2
bix

2
i + kixi + λ∗(ai − xi).

Without xi ∈ R≥0, it is strictly increasing in the interval xi ∈ [−∞, ki−λ∗

bi
], and

strictly decreasing in the interval xi ∈ [ki−λ∗

bi
,∞]. Since xi takes a non-negative

value, the optimal solution to the problem (3.1) is achived at x∗
i = 0 when λ∗ > ki;

and it is achived at x∗
i =

ki−λ∗

bi
when λ∗ ≤ ki. The proof is now complete. □

Theorem 3.3 Consider the MAS-SALD. Let Assumption 1 hold. The following

statements hold.

(i) The competitive equilibrium is unique. (ii) The optimal price λ∗is monotone

increasing under the partial order over k.

(iii) The competitive equilibrium is always socially resilient (ie λ∗ ≤ λ†) for all

socially admissible utility functions as long as (kmin, kmax, bmin, bmax

)
∈ S∗.

Proof. (i) According the definition of competitive equilibrium, the optimal load

allocation profile x∗ must also satisfy the supply-demand balance constraint (3.2).

Substituting the expression (3.27) for x∗
i into the constraint (3.2), we obtain

n∑
i=1

max{0, ki − λ∗

bi
} =

n∑
i=1

ai. (3.28)
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It is straightforward to know that the competitive equilibrium is unique.

(ii)As ki increases, λ∗ must also increase so as to compensate for the change

— ensuring Eq. (3.28) holds. Otherwise, the left-hand side of Eq. (3.28) would

increase, while the right-hand side remains constant, leading to Eq. (3.28) failing to

hold. Therefore, λ∗ is monotone increasing under the partial order over k.

(iii) Without loss of generality, we suppose k1 ≥ · · · ≥ km ≥ λ∗ ≥ km+1 ≥

· · · ≥ kn,m ∈ {1, . . . , n − 1}, or k1 ≥ · · · ≥ km ≥ λ∗,m = n. Denote bmmin =

min{b1, . . . , bm} ≥ bmin and bmmax = max{b1, . . . , bm} ≤ bmax.

Let (λ∗,x∗) be a competitive equilibrium. We can write Eq. (3.28) as

m∑
i=1

ki − λ∗

bi
+

n∑
i=m+1

0 = C

where C =
∑n

i=1 ai and λ∗ ≤ ki, ∀i ≤ m. Then we obtain

λ∗ =
( m∑

i=1

ki
bi
− C

)
/
( m∑

i=1

1

bi

)
(3.29)

≤
(mkmax

bmmin

− C
)
/
( m

bmmax

)
(3.30)

≤
(nkmax

bmin

− C
)
/
( n

bmax

)
(3.31)

≤ λ† (3.32)

where kmax = k1. The second inequality from (3.30) to (3.31) is guaranteed by

m ≤ n, bmmin ≥ bmin and bmmax ≤ bmax. The third inequality from from (3.31) to (3.32)

is guaranteed by con2 in the set S∗.

We also know

λ∗ ≤
(nkmax

bmin

− C
)
/
( n

bmax

)
≤ kmin (3.33)

≤ km
min (3.34)

≤ ki, ∀i ≤ m (3.35)

The inequality from (3.32) to (3.33) is upon con1 in the set S∗. The remaining
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inequalities is guaranteed by k1 ≥ · · · ≥ km ≥ · · · ≥ kn,m ∈ {1, . . . , n − 1}, or

k1 ≥ · · · ≥ km ≥,m = n.

Collecting all conditions for (kmin, kmax, bmin, bmax

)
, we obtain that λ∗ ≤ λ† for all

socially admissible utility functions with (kmin, kmax, bmin, bmax

)
∈ S∗. □

Remark 3.2 In this thesis, the pricing threshold λ† that can be socially accepted

by all agents is given as a system requirement. Agents can find the competitive

equilibrium at which the optimal pricing is below a threshold in a distributed way.

Each agent chooses its parameters based on (3.26), communicates its parameters and

local resource with other agents, solves a social welfare equilibrium, and identifies

the corresponding Lagrange multiplier as the optimal pricing λ∗ which is guaranteed

to be socially acceptable by Theorem 3.3. For more details, we refer to [145].

3.3.3 Numerical Examples

Example 3.3 Consider a MAS-SALD with three agents and network capacity C =

18. Each agent’s utility function is set as the quadratic form fi = −1
2
bix

2
i + kixi

for i = 1, 2, 3. The system’s highest pricing for λ∗ that agents can accept socially

is assumed to be λ† = 39. Take bmin = 4, bmax = 6, kmin = 40, and kmax = 50. We

can verify such a configuration of (bmin, bmax, kmin, kmax) is a point in S∗ defined in

(3.26).

(i) Let b be fixed to be b = (4, 5, 6)⊤. Take k3 ∈ {44, 48}. We discretize the space

for (k1, k2) ∈ [40, 50]2 and compute the optimal pricing λ∗ by solving the optimal

dual variable of (3.3). Then we plot the contour maps for the optimal price as a

function of k1 and k2 in the first row of Fig. 3.2.

(ii) Let k be fixed to be k = (44, 46, 48)⊤. Take b3 ∈ {4.8, 5.2}. We discretize the

space for (b1, b2) ∈ [4, 6]2 and compute the optimal pricing λ∗ by solving the optimal

dual variable of (3.3). Then we plot the contour maps for the optimal price as a

function of b1 and b2 in the second row of Fig. 3.2.

In Fig. 3.2 we observe that the maximum value for the price λ∗ is 20, which

is lower than λ† = 39. This illustrates all socially admissible utility functions for

parameters in the set S∗ lead to socially acceptable prices, providing a validation for
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Figure 3.2: Contour maps for the optimal prices in Example 3.3.

Theorem 3.3(ii). From the first row of Fig. 3.2, the optimal price is monotone under

the partial order ⪯ with respect to k, which is consistent with Theorem 3.3(iii). □

3.4 Dynamic Multi-Agent Systems

3.4.1 MAS with Dynamic Agent Load/Trading Decisions

Here we consider the load balancing problem for dynamical multi-agent systems.

MAS with Dynamic Agent Load/Trading Decisions (MAS-DALTD). Each

agent i ∈ V is associated with a dynamical state yi(t) ∈ Rm, described by

yi(t+ 1) = Aiyi(t) +Biui(t), t ∈ T, (3.36)

where ui(t) ∈ Rd is the control input, and Ai and Bi are real matrices with proper

dimensions. The time steps are indexed by T = {0, . . . , T − 1}. Associated with

t ∈ T, agent i employs a utility function fi(yi(t),ui(t)); the terminal utility for agent

i is Φi(yi(T )). Upon taking the control action ui(t), the required resource is defined

by the function hi(ui(t)). In the context of thermostatically controlled loads, we

may interpret yi and ui as energy states and temperature setponits of all load units
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for agent i, repsectively. Each agent can produce an ai(t) units of resource at time

t, and also makes a trading decision ei(t) units of resource over the network at time

t. Similarly,

(i) if hi(ui(t)) < ai(t), then agent i can sell, in which case ei(t) ≥ 0 and ei(t) ≤

ai(t)− hi(ui(t));

(ii) if hi(ui(t)) ≥ ai(t), then agent i will buy, in which case ei(t) ≤ 0 and ei(t) =

ai(t)− hi(ui(t)).

We denote λ = (λ0 . . . λT−1)
⊤ as the pricing vector through the time horizon, where

λt is the unit price for traded energy at step t. Consequently, the payoff of agent i

throughout [0, T ] is described by

T−1∑
t=0

(
fi(yi(t),ui(t)) + λtei(t)

)
+ Φi(yi(T )).

We denote y(t) = (y1(t)
⊤ . . .yn(t)

⊤)⊤, u(t) = (u1(t)
⊤ . . .un(t)

⊤)⊤, and

e(t) = (e1(t)
⊤ . . . en(t)

⊤)⊤. We further define Y = (y(0)⊤ . . .y(T )⊤)⊤, U =

(u(0)⊤ . . .u(T − 1)⊤)⊤ and E = (e(0)⊤ . . . e(T − 1)⊤)⊤. Also introduce Ui =

(ui(0)
⊤ . . .ui(T − 1)⊤)⊤, Ei = (ei(0)

⊤ . . . ei(T − 1)⊤)⊤ and ai = (ai(0)
⊤ . . . ai(T −

1)⊤)⊤.

Definition 3.5 Let y(0) = y0 ∈ Rmn be given. A triple of price-control-trading

profiles (λ∗,U∗,E∗) is a dynamic competitive equilibrium if the following conditions

hold:

(i) each agent i maximizes its combined payoff under U∗
i and E∗

i :

max
Ui,Ei

T−1∑
t=0

(
fi(yi(t),ui(t)) + λ∗

t ei(t)
)
+ Φi(yi(T ))

s.t. yi(t+ 1) = Aiyi(t) +Biui(t), t ∈ T,

ei(t) ≤ ai(t)− hi(ui(t)), t ∈ T;

(3.37)

(ii) the total demand and supply are balanced across the network for all time, i.e.,

there holds
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n∑
i=1

ei(t) = 0, t ∈ T. (3.38)

Definition 3.6 Let y(0) = y0 ∈ Rmn be given. A pair of control-trading profiles

(U⋆,E⋆) is a dynamic social welfare equilibrium if it is a solution to the following

optimal control problem:

max
U,E

n∑
i=1

( T−1∑
t=0

fi(yi(t),ui(t)) + Φi(yi(T ))
)

(3.39)

s.t. yi(t+ 1) = Aiyi(t) +Biui(t), t ∈ T, i ∈ V, (3.40)

ei(t) ≤ ai(t)− hi(ui(t)), t ∈ T, i ∈ V, (3.41)
n∑

i=1

ei(t) = 0, t ∈ T. (3.42)

3.4.2 Dynamic Competitive Equilibrium

We impose the following assumption.

Assumption 2. (i) the Φi are concave functions for i ∈ V; (ii) the fi are concave

functions for i ∈ V; (iii) the hi are nonnegative convex functions for i ∈ V, and

hi(z) < b defines a bounded open set of z in Rd for b > 0; (iv)
∑n

i=1 ai(t) > 0 for all

t ∈ T.

We present the following result which establishes a similar connection between the

competitive equilibrium and social welfare equilibrium under this dynamic setting.

Theorem 3.4 Consider the MAS-DALTD with y(0) = y0 ∈ Rmn be given. Let

Assumption 2 hold. The dynamic social welfare equilibrium(s) and the dynamic

competitive equilibrium(s) coincide and the following statements hold.

(i) If (λ∗,U∗,E∗) is a dynamic competitive equilibrium, then (U∗,E∗) is a dynamic

social welfare equilibrium.

(ii) If (U⋆,E⋆) is a dynamic social welfare equilibrium, then there exists λ∗ ∈ RT

such that (λ∗,U⋆,E⋆) is a competitive equilibrium.

Proof: (i) The proof of sufficiency follows from a similar analysis as in the proof

of Theorem 3.1. The transition from competitive equilibrium to social welfare equi-
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librium under this dynamical setting continues to be a direct consequence of the

formulations of the two underlying optimization problems.

(ii) First of all, the dynamics yi(t+1) = Aiyi(t)+Biui(t) with given y(0) ensures

that any yi(t) for t = 1, . . . , T is a linear combination of y(0) and ui(0), . . . ,ui(t−1).

Therefore, we can always write for any i ∈ V that

yi(t) = pi,ty0 + qi,tUi, t = 0, . . . , T (3.43)

with pi,t and qi,t being matrices with proper dimensions. As a result, we have

fi(yi(t),ui(t)) = fi(pty0 + qtUi,ui(t)) := f̃i,t(Ui). (3.44)

In view of Assumption 2, and the fact that the composition of a concave function

and an affine function continues to be concave, we conclude that gi,t(·) is a concave

function. Similarly,

Φ(yi(t)) = Φ(pi,Ty0 + qi,TUi) := Φi(Ui)

where Φi(·) is a concave function.

The optimization problem (3.39)-(3.42) can be equivalently rewritten as the fol-

lowing convex programming problem:

min
U,E

−
n∑

i=1

( T−1∑
t=0

f̃i,t(Ui) + Φi(Ui)
)

s.t. hi(ui(t)) + ei(t) ≤ ai(t), t = 0, . . . , T − 1, i ∈ V

n∑
i=1

ei(t) = 0, t = 0, . . . , T − 1.

(3.45)

Similarly, (3.37) can be equivalently written as the following convex program

min
Ui,Ei

−
T−1∑
t=0

(
f̃i,t(Ui) + λ∗

t ei(t)
)
+ Φi(Ui)

s.t. ei(t) ≤ ai(t)− hi(ui(t)), t = 0, . . . , T − 1.

(3.46)
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Next, with Assumption 2.(iii)-(iv), we can verify that Slater’s condition holds

for (3.45) and (3.46), which guarantees strong duality in both problems [18]. Also,

noting

n∑
i=1

hi(ui(t)) ≤
n∑

i=1

ai(t) (3.47)

and the assumption that hi(z) < b defines a bounded open set of z in Rm for b > 0,

ui(t) takes values in a compact set for all i and t. Moreover, since hi(ui(t)) ≥ 0

holds for all i and for all t, there holds ei(t) ≤ ai(t). The constraint
∑n

i=1 ei(t) = 0

further ensures ei(t) ≥ −
∑n

i=1 ai(t) for all i and t. Thus ei(t) also takes values in a

compact set for all i and t. The convex programming problem (3.45) leads to finite

primal solution.

The Lagrange dual function of (3.45) can be written as

L(U,E,λ,µ) = −
n∑

i=1

( T−1∑
t=0

f̃i,t(Ui) + Φi(Ui)
)

+
T−1∑
t=0

n∑
i=1

λtei(t)

+
T−1∑
t=0

n∑
i=1

µi,t

(
hi(ui(t)) + ei(t)− ai(t)

)
=

n∑
i=1

Li(Ui,Ei,λ,µi) (3.48)

where

Li(Ui,Ei,λ,µi) = −
T−1∑
t=0

f̃i,t(Ui) + Φi(Ui) +
T−1∑
t=0

λtei(t)

+
T−1∑
t=0

µi,t

(
hi(ui(t)) + ei(t)− ai(t)

)
. (3.49)

Here µi,t ≥ 0 since they correspond to the inequality constraints. We have used the

conventional notation µi = (µi,0, . . . , µi,T−1)
⊤ and µ = (µ⊤

1 , . . . ,µ
⊤
n )

⊤.

Finally, letting an optimal dual solution of (3.45) be (λ∗,µ∗), there holds from
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strong duality

(U⋆,E⋆) ∈ argmin L(U,E,λ∗,µ∗) (3.50)

if (U⋆,E⋆) is a dynamic social welfare equilibrium. This implies from (3.48) that

(U⋆
i ,E

⋆
i ) ∈ argmin Li(U,E,λ∗,µ∗). (3.51)

Now, µ∗ is obtained by solving

max
λ,µ

min
U,E

L(U,E,λ,µ) = max
λ,µ

min
U,E

n∑
i=1

Li(Ui,Ei,λ,µi) (3.52)

where the maximization and minimization are taken in their respective domains for

λ,µ,U,E. As a result, there must hold

µ∗
i ∈ argmax

µi

min
Ui,Ei

Li(Ui,Ei,λ
∗,µi). (3.53)

It is worth emphasizing that Li(Ui,Ei,λ
∗,µi) is, precisely, the Lagrangian of (3.46).

Therefore, (3.53) ensures that µ∗
i is an optimal dual solution of (3.46), and then from

strong duality (3.51) ensures that (U⋆,E⋆) is an optimal primal solution of (3.46).

In other words, we have proven (λ∗,U⋆,E⋆) is a competitive equilibrium.

The proof of the theorem is now complete. □

Example 3.4 Let the time horizon be T = 30. Consider a MAS-DALTD with three

agents which have initial states

y1(0) =

1
4

 ,y2(0) =

2
5

 ,y3(0) =

3
3

 ,

and local resource

a1 = a2 = [50; · · · ; 50]30×1, a3 = [30; · · · ; 30]30×1.
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The dynamical state yi(t) ∈ R2 of agent i is described by

yi(t+ 1) = Aiyi(t) +Biui(t), t ∈ T,

where

A1 =

−3
5

0

0 −7
10

 ,A2 =

−1
2

0

0 −1
5

 ,A3 =

−2
5

0

0 −4
5

 ,

B1 =

2 0

0 7

 ,B2 =

4 0

0 6

 ,B3 =

9 0

0 3

 .

The utility function of agent i is in the quadratic form

fi = y⊤
i (t)Riyi(t) +Wiyi(t) + u⊤

i (t)Qiui(t) +Kiui(t),

where

R1 =

−5 0

0 −8

 ,R2 =

−3 0

0 −7

 ,R3 =

−2 0

0 −1

 ,

Q1 =

−5 0

0 −4

 ,Q2 =

−1 0

0 −6

 ,Q3 =

−3 0

0 −2

 ,

W1 =
[
200 300

]
,W2 =

[
200 400

]
,W3 =

[
450 300

]
,

K1 =
[
50 60

]
,K2 =

[
50 20

]
,K3 =

[
80 20

]
.

The terminal utility of agent i is also set as the quadratic form Φi(yi(T )) =

Wiyi(T ) + y⊤
i (T )Riyi(T ). Upon taking ui(t), the required resource is determined

by hi(ui(t)) = u⊤
i (t)Hiui(t), where

H1 =

5 0

0 8

 ,H2 =

3 0

0 7

 ,H3 =

2 0

0 1

 .

We compute the dynamic social welfare equilibrium (U⋆,E⋆) by solving the opti-

mization problem (3.39)-(3.42) and the optimal dual variables −λ∗ corresponding to

(3.42). Given λ∗, we further compute the dynamic competitive equilibrium (U∗,E∗)
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Figure 3.3: The dynamic optimal price versus time steps in Example 3.4.

by solving (3.37). In Fig. 3.4, we plot the dynamic social welfare equilibrium and

the dynamic competitive equilibrium. In Fig. 3.4 we observe that the dynamic social

welfare equilibrium and the dynamic competitive equilibrium agree, which is consis-

tent with Theorem 3.4. The dynamic optimal price for traded resource versus time

steps is also shown in Fig. 3.3, where the price experiences oscillations both at the

beginning and in the end of the time horizon, and holds a steady value in between.

Turnpike properties are observed in this example that the optimal solution settled

in a long time horizon approximately consists three pieces: the first and the last

being transient short-time trajectory and the middle being a long-time trajectories

staying close to the optimal steady-state solution of an associated static optimal

control problem [65]. □

3.4.3 Recursive Computation of Social Welfare Equilibrium

One of the most widely used methods in optimal control problems is dynamic pro-

gramming [11]. Here we investigate the possibility of using a dynamic program-

ming approach to represent and compute the social welfare equilibriums described

in (3.39)-(3.42) as optimal feedback decisions.
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Figure 3.4: The dynamic social welfare equilibrium and competitive equilibrium
in Example 3.4.

Denote

Et := {e(t) :
n∑

i=1

ei(t) = 0; ei(t) ≤ ai(t), ∀i ∈ V } (3.54)

and

Ut := {u(t) : ei(t) ≤ ai(t)− hi(ui(t), ∀i ∈ V }. (3.55)

Also define ft(y(t),u(t)) = −
∑n

i=1 fi(yi(t),ui(t)) and Φ(y(T )) = −
∑n

i=1 Φi(yi(T )).

Definition 3.7 Consider the MAS-DALTD with y(0) = y0. Let y(t) ∈ Yt,u(t) ∈

Ut, and e(t) ∈ Et. We say that (u(t), e(t)) follows the feedback policy π =

(π0, · · · ,πT−1) if there holds (u(t), e(t)) = πt(y(t)), for all t ∈ T.

Further introduce the cost-to-go function associated with any feedback policy π
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by

V π(k,yk) :=
T−1∑
t=k

ft(y(t),u(t)) +Φ(yT ) (3.56)

with (u(t), e(t)) = πt(y(t)), for all t = k, · · · , T − 1, y(k) = yk, and

y(s+ 1) = Ay(s) +Bu(s), s = k, · · · , T − 1. (3.57)

Here A and B are block diagonal matrices

diag(A0, · · · ,An) and diag(B0, · · · ,Bn)

respectively.

It is clear that the cost-to-go function must satisfy the boundary condition that

V π(T,y(T )) = Φ(yT ). (3.58)

Theorem 3.5 Consider the MAS-DALTD with y(0) = y0. Let (U⋆,E⋆) be a dy-

namic social welfare equilibrium from (3.39)-(3.42). Then there exists π⋆ such that

(u⋆(t), e⋆(t)) = π⋆
t (y(t)), for all t ∈ T, and the cost-to-go function V π⋆ satisfies the

following recurrence equation

V π⋆

(k,yk) = min
u(k)∈Uk;
e(k)∈Ek

[
fk(y(k),u(k)) + V π⋆

(k + 1,yk+1)
]
. (3.59)

Proof: First of all, the optimization problem (3.39)-(3.42) can be rewritten as:

min
U,E

T−1∑
t=0

ft(y(t),u(t)) +Φ(yT ) (3.60)

s.t. y(t+ 1) = Ay(t) +Bu(t), t ∈ T (3.61)

e(t) ∈ Et, t ∈ T (3.62)

u(t) ∈ Ut, t ∈ T. (3.63)

Given the form of cost-to-go function (3.56) and the boundary condition of the
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terminal cost (3.58), we next have

V π(T − 1,yT−1) = fT−1(yT−1,u(T − 1)) + V π(T,yT ) (3.64)

where V π(T − 1,yT−1) is a one-step process with initial state yT−1. The value of

V π(T − 1,yT−1) depends only on yT−1 and u(T − 1), since yT is related to yT−1

and u(T − 1) through the system dynamics (3.61). The optimal cost is then

V π⋆

(T − 1,yT−1) ≜ min
u(T−1)∈UT−1;
e(T−1)∈ET−1

[
fT−1(yT−1,u(T − 1)) + V π(T,yT )

]
. (3.65)

where the optimal choice of (u(T − 1), e(T − 1)) only depends on yT−1. The cost

over the last two intervals is given by

V π(T − 2,yT−2) = fT−2(yT−2,u(T − 2)) + V π(T − 1,yT−1) (3.66)

where V π(T − 2,yT−2) is a two-step process with initial state yT−2. The optimal

policy during these two steps is found from

V π⋆

(T − 2,yT−2) ≜ min
u(T−2)∈UT−2;
e(T−2)∈ET−2

[
V π(T − 1,yT−1) + fT−2(yT−2,u(T − 2))

]
.

(3.67)

The optimality principle states that for this two-step process, whatever the ini-

tial state yT−2, initial control action and trading decison (u(T − 2), e(T − 2)), the

remaining (u(T − 1), e(T − 1)) must be optimal with respect to yT−1 resulted by

applying (u(T − 2), e(T − 2)) to the system; that is,

V π⋆

(T − 2,yT−2) ≜ min
u(T−2)∈UT−2;
e(T−2)∈ET−2

[
V π⋆

(T − 1,yT−1) + fT−2(yT−2,u(T − 2))
]
.

(3.68)
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Applying the same analysis recursively, we obtain

V π⋆

(k,yk) = min
u(k)∈Uk;
e(k)∈Ek

[
fk(yk,u(k)) + V π⋆

(k + 1,yk+1)
]
. (3.69)

Now let (U⋆,E⋆) be a dynamic social welfare equilibrium. The value of y(t + 1)

only depends on the current state y(t) and the current input u(t), but not on the

historical states and inputs before t. Therefore, the open-loop optimal solution

(U⋆,E⋆) of (3.39)-(3.42) coincides with the feedback optimal policies π⋆. The proof

of the theorem is now complete. □

3.4.4 Social Smoothing via Receding Horizon Pricing

From Example 3.4, it is evident that dynamic multi-agent systems operating under

competitive equilibriums for a fixed horizon may encounter significant pricing os-

cillations, especially at the beginning and towards the end of the time period. In

practice, this means users are experiencing market shocks, which is not desirable

from a social point of view. Therefore, for dynamic multi-agent systems, socially re-

silient competitive equilibriums should have pricing trajectories that are as smooth

as possible. In addition, computing the dynamic competitive equilibriums over a

long period of time is also a challenging task, and may even be infeasible for large-

scale multi-agent systems.

The receding-horizon approach [109, 139] is a proven method for delivering robust

and computationally efficient controllers for dynamical systems, with successful ap-

plications in a wide range of areas ranging from emergency vehicle scheduling [62]

to dynamic hedging of options [10]. The control input trajectories derived from a

receding-horizon approach may even be good approximations of the optimal control

solution under suitable conditions [64]. With this view, we next propose a receding

horizon pricing procedure for the considered dynamic multi-agent systems.

Consider the MAS-DALTD with y(0) = y0. We fix a prediction horizon N and

denote K = {0, 1, . . . , N − 1}. The receding horizon approach approximates the

solution to the optimization problem of (3.39)-(3.42) as follows. Assume a full

measurement of the estimate of the state yi(t), i ∈ V, is available at each time step
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t, t ∈ T. We then propose a new optimization problem over the horizon [t, t+N ] at

each time step t, t ∈ T:

min
Ut→t+N|t
Et→t+N|t

Φ(yt+N |t) +
N−1∑
k=0

fk(yt+k|t,ut+k|t) (3.70)

s.t. yi,t+k+1|t = Aiyi,t+k|t +Biui,t+k|t, k ∈ K; i ∈ V, (3.71)

ei,t+k|t ≤ ai,t+k|t − hi(ui,t+k|t), k ∈ K; i ∈ V, (3.72)
n∑

i=1

ei,t+k|t = 0, k ∈ K, (3.73)

where Ut→t+N |t = {ut|t, . . . ,ut+N−1|t}, Et→t+N |t = {et|t, . . . , et+N−1|t}. Here yi,t+k|t

is the state of agent i at time step t + k predicted at time step t. Similarly, ui,t+k|t

and ei,t+k|t are the control action and trading decision of agent i at time step t+ k

predicted at time step t obtained by starting from the current state yi,t|t = yi(t)

and applying to (3.71).

Let U∗
t→t+N |t = {u∗

t|t, . . . ,u
∗
t+N−1|t}, E∗

t→t+N |t = {e∗t|t, . . . , e∗t+N−1|t} be the optimal

solution of (3.70)-(3.73) and λ∗
t→t+N |t = {λ∗

t|t, . . . , λ
∗
t+N−1|t} be the optimal dual

variables for constraints (3.73). The first element of U∗
t→t+N |t, E∗

t→t+N |t and λ∗
t→t+N |t

is applied to the MAS-DALTD at time step t:

u(t) = u∗
t|t(y(t)), (3.74)

e(t) = e∗t|t(y(t)), (3.75)

λ(t) = λ∗
t|t(y(t)). (3.76)

Based on the new state yi,t+1|t+1 = yi(t+1), i ∈ V, the optimization problem (3.70)-

(3.73) is solved repeatedly at time step t+1 and it yields a receding horizon control

and pricing. The procedure of receding horizon control and pricing is summarized

in Algorithm 3.1:

Note that Algorithm 3.1 still applies, even if the new optimization problem pro-

posed in a receding horizon fashion over the horizon [t, t + N ] exceeds the entire

time horizon [0, T ] when t ≥ T −N.
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Algorithm 3.1 Receding horizon control and pricing
while t < T do

measure the state y(t) at time step t;
obtain U∗

t→t+N |t,E
∗
t→t+N |t,λ

∗
t→t+N |t by solving (3.70)-(3.73);

apply the first element u∗
t|t,e∗t|t, λ∗

t|t to MAS-DALTD;

Example 3.5 Consider a MAS-DALTD with the same setting in Example 3.4. Let

the entire time horizon take the value of 200. We fix a prediction horizon as N = 40.

First, we follow the procedure in Example 3.4 and compute the dynamic optimal

pricing over the entire time horizon. Then we apply Algorithm 3.1 to obtain the

receding horizon pricing. The resulting trajectories of the two pricing approaches

are shown in Fig. 3.5.

Figure 3.5: The dynamic optimal pricing vs. the receding horizon pricing in
Example 3.5.

From Fig. 3.5, it is clear that the dynamic optimal pricing and receding horizon

pricing coincide over most of the time horizon, which shows that receding horizon

pricing is a good approximation of the optimal pricing planned for the entire time

horizon. We also note that the receding horizon pricing does not experience the

large oscillations found in dynamic optimal pricing during the end periods of the

time horizon. □
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3.5 Summary

In this chapter, we studied multi-agent systems with decentralized resource allo-

cation without external resource supply. For multi-agent systems with static local

allocation, we showed that under general concavity assumptions, the competitive

equilibrium and the social welfare equilibrium exist and agree using a duality analy-

sis. A major contribution of this chapter is our formulation of a new social shaping

problem for competitive equilibrium, where the optimal pricing is associated with an

upper bound. We presented an explicit family of socially admissible utility functions

under which the optimal pricing at a competitive equilibrium is always socially ac-

ceptable. Another important aspect of this chapter is our study of dynamical multi-

agent systems and we have generalized it in an optimal control context. We proved

that the dynamic competitive equilibrium and social welfare equilibrium continue to

exist and coincide with each other. In light of the dynamic programming concept,

we also provided a recursive method of expressing and computing competitive equi-

librium. We suggested a receding horizon strategy for smoothing dynamic pricing

in order to shape it in the sense that the pricing trend will be stationary. Future

work to construct a range of socially admissible utility functions in a generic way is

possible. Future work to shape the optimal prices under the dynamic competitive

equilibrium below a upper bound would also be an interesting direction.



Chapter 4

How Cooperation and

Competition Arise in Regional

Climate Policies: RICE as a

Dynamic Game

Preface

One of the most widely used models for studying the geographical economics of cli-

mate change is the Regional Integrated model of Climate and the Economy (RICE).

In this chapter, we investigate how cooperation and competition arise in regional

climate policies under the RICE framework from the standpoints of game theory

and optimal control. First, we show that the RICE model is inherently a dynamic

game. Second, we study both cooperative and non-cooperative solutions to this

RICE dynamic game. In cooperative settings, we investigate the global social wel-

fare equilibrium that maximizes the weighted and cumulative social welfare across

regions. We next divide the regions into two clusters: developed and developing, and

look at the social welfare frontier under the notion of Pareto optimality. We also

present a receding horizon approach to approximate the global social welfare equilib-

rium for robustness and computational efficiency. For non-cooperative settings, we

58
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study best-response dynamics and open-loop Nash equilibrium of the RICE game.

A Recursive Best-response Algorithm for Dynamic Games (RBA-DG) is proposed

to describe the sequences of best-response decisions for dynamic games, which indi-

cates convergence to open-loop Nash equilibrium when applied to the RICE game

by numerical studies. We also study online receding horizon feedback decisions

of the RICE game. A Receding Horizon Feedback Algorithm for Dynamic Games

(RHFA-DG) is proposed. All these proposed solution concepts are implemented and

open-sourced using the latest updated parameters and data.

This chapter mainly addresses the social shaping problem of cooperation and

competition in multi-agent systems in the context of the RICE model as a dynamic

game [30, 31, 32, 34].

4.1 Overview

The issue of global warming has emerged as a central international environmental

question over decades. As a consequence of industrialization and economic devel-

opment, human-caused emissions of greenhouse gases, most notably carbon dioxide

(CO2), contribute to a significant increase in the mean atmospheric temperature by

1.15◦C relative to the pre-industrial age [137]. This temperature deviation yields

significant changes in the global climate and ecosystem, including increasing larger

wildfires [6], sea level rise [42], melting of ice lands [150], and so on. To assess the

damages of anthropogenic greenhouse gases, especially CO2, on society, scientists

in this field employ the Integrated Assessment Models (IAMs) [3, 77, 127]. IAMs

simulate the dynamics of the economy-climate interactions by incorporating math-

ematical models from both economics and geophysical science. The Dynamic In-

tegrated model of Climate and Economy (DICE) [124, 127], developed by William

Nordhaus, who received the 2018 Nobel Memorial Prize in Economic Sciences in

large part for this body of work, is one of the most well-known IAMs. The DICE

model is globally aggregated and treats global warming as a single-agent problem.

Considering the crucial aspect of regional socio-economic heterogeneity, Nordhaus

also proposed the Regional Integrated model of Climate and the Economy (RICE)
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[122, 128], which is a decentralized version of the DICE model. By dividing the

world into several regions, the RICE model takes the vantage point in determining

how multiple regions may jointly design climate policies and cope with the global

warming issue.

Global society has been making efforts in developing sensible strategies to achieve

international consensus on climate-change mitigation over the last several decades.

There are several important international agreements on climate change. In 1992,

the United Nations Framework Convention on Climate Change (UNFCC) was the

first formal global treaty to be signed by 154 (now 198) parties to explicitly address

climate change, which established an annual forum for international discussions

aimed at stabilizing greenhouse gas concentrations in the atmosphere [15]. These

meetings produced the well-known Kyoto Protocol [16], Copenhagen Accord [142],

and Paris Agreement [152]. The Kyoto Protocol was a binding agreement that

was signed in 1997 and expired in 2012. The Kyoto Protocol called for developed

countries to reduce emissions by an average of 5 percent below pre-industrial lev-

els, and established a system to monitor countries’ progress [16]. The meeting in

Copenhagen in 2009 was called to establish a replacement for the Kyoto Protocol.

Although it failed to establish binding emission limits after 2012, countries recog-

nized “the scientific view that the increase in global temperature should be below

2◦C” [142]. The Paris Agreement was signed in 2016 and called for all countries

to set emissions-reduction pledges/targets, with the goals of preventing the mean

atmospheric temperature from rising 2◦C above pre-industrial levels and pursuing

efforts to keep it below 1.5◦C [152]. Despite intensified diplomacy in these meetings,

most existing climate-change treaties are neither sufficient nor mandatory, some

of which even stalled due to a lack of political will [131, 141]. Due to economic

competition and political divide, an international enforceable agreement on specific

emission-reduction control has not yet been reached.

There are two coupled but conflicting sides in regional emission reduction policies:

Regions are affected by the same global climate system; they also decide their climate

strategies to benefit their individual economic benefits and political self-interests.

Therefore, it is actually a decision-making process where competition occurs. Game
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theory has been a fundamental tool in explaining the decision-making of indepen-

dent and self-interested players in a strategic and competitive setting [170]. In a

game, each player takes action to maximize its payoff function. The payoff func-

tion of each player relies on not only its own action but also other players’ actions,

resulting in inherent competition. A common solution concept in game theory is

Nash equilibrium under which no one will benefit by changing its action when others

remain unchanged [75]. In the RICE model, the regional climate strategies are as-

sociated with a common global climate dynamic, and as a result, the climate policy

decisions fall into the concept of dynamic games established from the interface be-

tween game theory and optimal control theory [9]. In a dynamic game, the strategic

interaction among players recurs over time. The group of players is associated with

a dynamic game state that depends on all players’ actions. The goal is for each

player to take an action to maximize each player’s cumulative payoff function over

time that depends on the game state, its own action, and other players’ actions.

4.1.1 Problem of Interest

In this chapter, we investigate how cooperation and competition in climate policy

across the various regions in the globe under the RICE framework affect the forma-

tion of international climate treaties, the implementation of regional climate-change

mitigation measures, and the resulting implications of competitive/non-cooperative

decisions for climate change.

In the control community, there are a few efforts on studying the climate-change

mitigation measures. The work of [93] provided a tutorial introduction to the DICE

model and proposed a receding horizon approach to DICE. A bi-objective optimal

control problem (OCP) on DICE was studied, the objectives of which are maximizing

social welfare and minimizing atmospheric temperature deviation [71]. The work of

[21] studied a multi-objective stochastic OCP on DICE, which accounts for stochastic

disturbances and aligns with physical targets posed by international agreements on

climate change mitigation.

From the implementation side, as for the DICE model, the work of [127] provided

a GAMS implementation of the DICE-2013R model with the objective of solving a
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social welfare maximization problem, which is available at [125]. The work of [92]

published a Matlab implementation of the DICE-2013R model, which replicated the

basic functionality of GAMS implementation. Further, the work of [52, 93] released

a Matlab implementation of the MPC-DICE model, which used model predictive

control to approximately solve the DICE OCP. As for the RICE model, an Excel

implementation (without an optimization module), and a GAMS implementation

were provided at [125], which is currently inaccessible. The work of [2] created an

implementation in Julia programming language, which re-coded the Excel version

of RICE without optimization module [2].

4.1.2 Chapter Contributions

The contributions of this chapter are summarized as follows. We show that the RICE

model is inherently a dynamic game, termed the RICE game. Both cooperative and

non-cooperative solutions to this RICE game are considered:

• For cooperative solutions, we study the global social welfare maximization

problem where all regions take actions that maximize the weighted and cumu-

lative social welfare across all regions, which serves as a benchmark. Next, we

classify regions into two clusters of developed regions and developing regions,

and consider the concept of Pareto equilibrium, describing that any attempt

to benefit one cluster by deviating to some outcome will necessarily result in a

loss in satisfaction of the other cluster. Our simulation results show that under

different Pareto equilibria, the social welfare of developed regions and devel-

oping regions would not drastically change, and the atmospheric temperature

deviation is quite robust. Finally, we apply a receding horizon approach to

approximate the solution to the global social welfare maximization problem.

The receding horizon control presents a favorable approximation property.

• For non-cooperative solutions, we study best-response dynamics and open-

loop Nash equilibrium of the RICE game. Multiple plays/episodes of dynamic

games are considered, where each player chooses the sequence of control for the

next episode that maximizes its social welfare given other players’ sequences
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of control in the current episode. A Recursive Best-response Algorithm for

Dynamic Games (RBA-DG) is proposed. By applying it to the RICE game,

simulation results show that the obtained sequence of actions converges to a

steady point, indicating that RBA-DG is useful for computing the open-loop

Nash equilibrium of the RICE game. We also study online receding horizon

feedback decisions of the RICE game. A single play of dynamic games is

considered, where players observe the current game state and other players’

actions, and then apply a receding-horizon feedback decision-making approach

to predict the action in the future. A Receding Horizon Feedback Algorithm

for Dynamic Games (RHFA-DG) is proposed. By implementing it over the

RICE game, simulation results show that with the nature of competition,

receding horizon, and myopic assumption about other players’ actions, the

emission-reduction rates become lower in most time steps.

The implementations of our studies are based on the RICE-2011 model with a few

parameters updated from the latest updated data. There have been a few imple-

mentations in the literature on DICE and RICE. Our implementations of various

solution concepts for RICE under the proposed dynamic-game perspective are de-

veloped relying on these previous efforts. We have open-sourced our implementation

as a RICE-GAME framework, with a Matlab and Casadi-based implementation of

RICE dynamic game, Preprint at [31], code for download at [30].

We fill the following gaps in the literature on the RICE model. To the best of our

knowledge, we are the first to formally show that the RICE model is inherently a

dynamic game. Owing to this, we provide a comprehensive investigation of regional

climate policies and climate change under both cooperative and competitive settings

from the standpoint of optimal control and game theory. We also provide a complete

and replicate implementation of the RICE game and proposed solution concepts,

which has been open-sourced [30].
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4.1.3 Chapter Outline

The remainder of the chapter is organized as follows. Section 4.2 provides preliminar-

ies of the DICE/RICE model and dynamic games. Section 4.3 represents the RICE

model as a dynamic game. Section 4.4 considers cooperative solutions for the RICE

game under three cooperative settings: global social welfare maximization, RICE

Pareto frontier, and receding-horizon global social welfare maximization. Two non-

cooperative settings are then considered. Best-response dynamics and open-loop

Nash equilibrium for the RICE game are studied in Section 4.5. A receding horizon

feedback planning approach for RICE game is proposed in Section 4.6. The paper

ends with concluding remarks in Section 5.6.

4.2 Preliminaries

In this section, we introduce some preliminary knowledge on the DICE/RICE model

and dynamic games.

4.2.1 The DICE Model

The DICE model [127] is one of integrated assessment models (IAMs) that simulate

the interplay between economy and climate, and quantify the social cost of CO2

emissions. The DICE model operates in periods of 5 years and its latest version

starts from the year 2015 as the initial year. The DICE model is composed of two

sectors (see Fig. 4.1): a geophysical sector (blue dotted block) that accounts for the

global interaction between carbon and temperature, and an economic sector that is

globally aggregated for the world total (red dotted block).

Geophysical and Economic Sectors. In the geophysical sector, the DICE model

considers CO2 emissions as the major contributor to climate change. The geophysical

sector is constructed as follows.

• There are two main sources of CO2 emissions: industrial CO2 emissions related

to the carbon intensity (denoted by σ) of global economic activities and natural

CO2 emissions due to land use changes, E land. The global CO2 emissions as the
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Figure 4.1: A block diagram for the DICE model.

sum of industrial and natural emissions drive the carbon cycle of the Earth.

• The carbon dynamics are described by a three-reservoir model [138] on the

carbon flows among three reservoirs: the atmosphere, the upper oceans and

biosphere, and the deep oceans. The average carbon masses in those reservoirs

are represented by MAT, MUP, and MLO, respectively.

• Accumulations of CO2 emissions and other greenhouse gases warm the Earth’s

surface through enhanced radiative forcing. Radiative forcing resulting from

CO2 emissions has a logarithmic dependence on the atmospheric carbon mass;

greenhouse gases other than CO2 emissions contribute to exogenous radiative

forcing FEX.

• The rise in temperature at the Earth’s surface is driven by radiative forcing.

Temperature dynamics are captured by a two-layer model [153]. Given the

temperature in year 1750 as zero reference, TAT and T LO represent the tem-

perature deviation in the atmosphere and in the lower ocean from those of the

reference year, respectively.

The economic sector of DICE is based on the Cobb-Douglas production function
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[39], where gross economic output is determined by total factor productivity A,

labor L, and capital K. The total factor productivity and labor evolve exogenously;

the capital dynamics follows the Solow-Swan model [164] where capital depreciates

over time and is replenished by investment.

Climate-Economy Feedback. The DICE model establishes two feedback loops

between the geophysical sector and the economic sector: (i) the industrial CO2

emissions are a by-product of economic activities; (ii) the atmospheric temperature

rise has a negative impact on economic production.

Control Inputs. The DICE model assumes two control decisions: the saving rate

s and the emission-reduction rate µ. The saving rate s represents the ratio of

investment to the economic output; the emission-reduction rate µ represents the

rate at which industrial CO2 emissions are reduced. By adjusting the saving rate,

it is possible to balance consumption today and consumption in the future. By

increasing the emission-reduction rate to slow down CO2 emissions as a “climate

investment”, the currently available amount of consumption and investment will be

reduced [127]. This climate investment will lower climate damage and therefore

potentially increase consumption in the future.

System Outputs. The economic output is counted as output net of emission

abatement cost and climate damage. Social welfare is calculated as the discounted

sum of the population-weighted utility of per capita consumption.

DICE Variables. All variables described above are time-dependent, although not

explicitly written. The variables TAT, T LO,MAT,MUP,MLO and FEX belong to the

geophysical sector, whereas the variables K,A,L, σ, and E land belong to the eco-

nomic sector. Some variables evolve independently, whereas others evolve in an

interdependent manner. The variables that evolve independently as exogenous sig-

nals are FEX, A, L, σ, and E land; the variables evolving in an interdependent manner

are TAT, T LO,MAT,MUP,MLO, and K.
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4.2.2 The RICE Model

The RICE model is a variant of the DICE model that accounts for regional climate

damages and control decisions [122, 123]. Since being proposed in the 1990s, the

calibration of the RICE model has been updated several times, and the latest version

of the RICE model is the RICE-2011 model on which our study is based. The RICE-

2011 model uses a time-step of 10 years, starting from the year 2005 as the initial

year.

The RICE-2011 model integrates a global geophysical sector with regional eco-

nomic sectors (see Fig. 4.2):

• The global geophysical sector of the RICE-2011 model contains the same car-

bon dynamics and temperature dynamics as the DICE model;

• The regional economic sectors of the RICE-2011 model disaggregate the world

into 12 regions (US, EU, Japan, Russia, Non-Russian Eurasia, China, India,

Middle East, Africa, Latin America, other high-income countries, and other

Asian countries), each of which is equipped with region-specific climate damage

level, economic factors, and saving rate and emission-reduction rate as local

control inputs.

RICE Variables. The variables TAT, T LO,MAT,MUP, MLO, and FEX in the global

geophysical sector of the RICE-2011 model are inherited from the DICE model, while

the variables Ki, Ai, Li, σi, and E land
i , i ∈ {1, 2, . . . , 12}, in the regional economic

sectors of the RICE-2011 model correspondingly depend on specific regions.

4.2.3 Dynamic Games

The theory of dynamic games lies in the interface between game theory and optimal

control, which involves a dynamic decision process for multiple players [9]. An n-

player discrete-time dynamic game over a finite horizon is defined as follows.

Dynamic Game. The n players are indexed in V := {1, 2, . . . , n}; time is discrete

with the steps indexed in T := {0, 1, . . . , T}. Each player can manipulate the game

through its control decisions, and the control decision space of player i ∈ V is
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Figure 4.2: The workflow of the RICE-2011 model.

denoted by Ui ⊆ Rd. At each time step t = 0, . . . , T , the decision executed by

player i is denoted by ui(t) ∈ Ui. We also use u(t) = [u⊤
1 (t); . . . ;u

⊤
n (t)], Ui =

[u⊤
i (0); . . . ;u

⊤
i (T )] and U = [U1; . . . ;Un] to represent the all-player decision profile

at time t, the player-i decision throughout the time horizon, and the decision profile

for all players and for all time steps. The control decisions of all players excluding

player i at time step t is denoted by u−i(t), and the control decisions of all players

excluding player i over the entire horizon are represented by U−i.

For each t = 0, 1, . . . , T , the group of players are associated with a dynamical

state x(t) ⊆ Rm that evolves according to

x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t = 0, . . . , T, (4.1)

with x0 being the initial state. At each time t = 0, . . . , T , upon playing ui(t), the

agent i receives a payoff gi(x(t),ui(t),u−i(t)) ∈ R given other players’ actions u−i(t)

and the current state x(t), where gi(x(t),ui(t),u−i(t)) is a continuous function with

respect to x(t), ui(t), and u−i(t). The cumulative payoff of agent i throughout the
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time horizon is therefore

Ji(X,Ui,U−i) =
T∑
t=0

gi(x(t),ui(t),u−i(t)) (4.2)

where X = (x⊤(0), . . . ,x⊤(T ))⊤. Each player’s goal is to make decisions for max-

imizing its cumulative payoff function; the system dynamics produces a terminal

state x(T + 1) towards the end of the time horizon as a result of those decisions.

In what follows, we present cooperative and non-cooperative settings as well as

three solution concepts for discrete-time dynamic games: Pareto solution, open-loop

Nash equilibrium (NE), and feedback Nash equilibrium.

Cooperative Decisions: Pareto Solutions

In the cooperative setting, players are able to communicate and cooperate with

each other to achieve their objectives, and all players know the system dynamics

and payoff functions of other players. Pareto optimality is an efficiency concept

[106] under which any attempt to benefit one player by deviating to some other

outcome will necessarily result in a loss in satisfaction of another player.

Definition 4.1 (Pareto Efficiency) A decision profile Up is Pareto efficient for

the dynamic game if there does not exist another decision profile U such that

(i) there holds for all i ∈ V,

Ji(X
p,Up

i ,U
p
−i) ≤ Ji(X,Ui,U−i);

(ii) there exists at least one k ∈ V such that

Jk(X
p,Up

k,U
p
−k) < Jk(X,Uk,U−k).

Here X and Xp are the states evolved under U and Up, respectively. The set of all

Pareto solution is called the Pareto frontier.

The following Lemma provides a convenient way of computing Pareto solutions

[51, Lemma 6.1].
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Lemma 4.1 Consider a set of parameters C := {c = (c1, . . . , cn) : ci ≥

0, and
∑n

i=1 ci = 1}. If a decision profile Up is such that

Up ∈ argmax
U

{ n∑
i=1

ciJi
}
, (4.3)

for some c ∈ C, then Up is Pareto efficient.

Non-Cooperative Setting: Nash Equilibriums

In the non-cooperative setting of games, Nash equilibriums (NE) mark one of the

most important solution concepts. For a dynamic game, the information structure

in terms of what players know before a decision is made at a particular time becomes

critical in properly defining NE. There are two basic types of information structure:

the open loop information structure and the feedback information structure.

In the open loop information structure, each player knows the initial state x0, and

then plans at t = 0 all the control decisions ui(t) for t ∈ T. Consequently, the open

loop control decision of ui(t) can be written as

ui(t) = ui(t,x0). (4.4)

Denote an open loop decision profile by U∗ where U∗
i :=

[u∗
i (0,x0); . . . ;u

∗
i (T,x0)], i ∈ V. We introduce the following definition. Here

with slight abuse of notation we also write Ji(X,Ui,U−i) as Ji(x0,Ui,U−i) noting

the fact that X is uniquely determined by x0 and (Ui,U−i).

Definition 4.2 (Open Loop NE) Given the initial state x0, a control decision

profile U∗ is said to be an open loop Nash equilibrium control decision profile if there

holds for all i ∈ V and all Ui that

Ji(x0,U
∗
i ,U

∗
−i) ≥ Ji(x0,Ui,U

∗
−i). (4.5)

In the feedback information structure, at time step t ∈ T, each player knows

the current system state x(t). As a consequence, each player i ∈ V may employ a
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feedback law πi : T × X→ Ui to determine its decisions by

ui(t) = πi(t,x(t)). (4.6)

In this case, we denote the overall feedback law as π = [π1; . . . ;πn], and then write

Ji(X,Ui,U−i) as Ji(x0,πi,π−i) noting (X,Ui,U−i) is uniquely determined by x0

and π. We introduce the following definition.

Definition 4.3 (Feedback NE) For any initial state x0, a feedback profile π∗ is

said to be a feedback Nash equilibrium for the dynamic game if there holds for all

i ∈ V and all πi that

Ji(x0,π
∗
i ,π

∗
−i) ≥ Ji(x0,πi,π

∗
−i). (4.7)

4.3 RICE as a Dynamic Game

In this section, we show that the RICE model is inherently a dynamic game where

regional saving rates and emission-reduction rates regulate global temperature, and

then the global temperature has impact on regional social welfares through climate

damage. Our presentation is based on the RICE-2011 model with slight modifica-

tions, but the nature of being a dynamic game is embedded in all RICE models.

There are 12 regions in the RICE-2011 model. Each region is considered a player

and the regions are indexed in V = {1, 2, . . . , n} with n = 12. We operate the RICE

dynamic game in periods of 5 years, starting from the year 2020 as the initial year1.

Taking the discrete time step index T = {0, 1, . . . , T}, the relation between an actual

calendar year and the corresponding discrete time step is determined by

year(t) = year(0) + 5t, year(0) = 2020. (4.8)

Note that although most variables in the RICE-2011 model are defined as flows per

year and only some variables are in flows per decade [123, Supplementary Material],

all variables in this present of the RICE dynamic game are defined as flows per year.
1The RICE-2011 model operates in periods of 10 years starting from 2005.
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4.3.1 System Dynamics

We define the dynamical state of the RICE model at time step t ∈ T as

x(t) = [TAT(t);T LO(t);MAT(t);MUP(t);MLO(t); (4.9)

K1(t); . . . ;Kn(t)] ∈ Rn+5. (4.10)

Let the control decision of region i ∈ V at time step t ∈ T be

ui(t) = [si(t);µi(t)]
⊤ := [ui[1](t);ui[2](t)]

⊤ ∈ [0, 1]2. (4.11)

Consequently, the control decisions of the RICE dynamic game at time step t ∈ T

of all players are

u(t) = [s1(t);µ1(t); . . . ; sn(t);µn(t)] ∈ [0, 1]24. (4.12)

According to the RICE model, the dynamics of x(t) can be written as

x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T, (4.13)

where f := [f1; f2; . . . ; fn+5]
⊤ follows from the interdependency among the geophys-

ical signals and the economic signals, and the feedback between the two sectors. In

what follows, we briefly describe the form of entries in the dynamics f . For a more

detailed description, please refer to [123].

Carbon dynamics. There are three carbon reservoirs: the atmosphere, the upper

oceans and the biosphere, and the deep oceans. The atmospheric carbon reservoir

has an additional input, the global CO2 emissions E(t) that is related to economic

activities and land use at time t. The carbon dynamics for carbon transition among

the three reservoirs are described by
MAT(t+ 1)

MUP(t+ 1)

MLO(t+ 1)

 =


ζ11 ζ12 0

ζ21 ζ22 ζ23

0 ζ32 ζ33



MAT(t)

MUP(t)

MLO(t)

+


ξ1

0

0

E(t), (4.14)
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where ζ11, ζ12, ζ21, ζ22, ζ23, ζ32, ζ33 and ξ1 are constant parameters.

Temperature dynamics. The evolution of the atmospheric and ocean tempera-

ture is governed by the following equations:TAT(t+ 1)

T LO(t+ 1)

 =

ϕ11 ϕ12

ϕ21 ϕ22

TAT(t)

T LO(t)

+

ξ2
0

F (t), (4.15)

where ϕ11, ϕ12, ϕ21, ϕ22 and ξ2 are constant parameters, and the radiative forcing at

time step t, F (t), is computed as

F (t) = η log2(
MAT(t)

MAT,1750
) + FEX(t). (4.16)

Here η and MAT,1750 are constants, and FEX(t) represents radiative forcing due to

other greenhouse gases at time step t.

Economic dynamics. The economy of each region i ∈ V at time step t ∈ T follows

from the Cobb-Douglas production function [39]:

Yi(t) = Ai(t)Ki(t)
γi(t)Li(t)

1−γi , (4.17)

where Yi(t), Ai(t), Ki(t) and Li(t) represent region i’s gross economic output, total

factor productivity, capital stock and labor at time step t, respectively. Here, γi, i ∈

V, are constant parameters.

Economy-climate feedback. Global CO2 emissions at time step t are the sum

of natural emissions because of each region’s land use at time step t, E land
i (t), and

industrial emissions resulted from each region’s economic activities at time step

t. Each region i’s industrial emissions depend on each region i’s carbon intensity

at time step t, σi(t), which is an exogenous variable. Consequently, global CO2

emissions at time step t is described by

E(t) =
n∑

i=1

(
σi(t)(1− µi(t))Yi(t) + E land

i (t)
)
, (4.18)
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where µi(t), i ∈ V, t ∈ T, are control decisions representing the emission-reduction

rate.

The emission abatement cost fraction as the percentage of gross economic output

spent on emission-reduction effort at time step t is given by

Λi(t) = 1− θ
[1]
i (t)µi(t)

θ
[2]
i , (4.19)

where θ
[2]
i , and θ

[1]
i (t), i ∈ V, t ∈ T, are parameters. The parameters θ[1]i (t), i ∈ V, t ∈

T, are calculated by

θ
[1]
i (t) =

pbi

1000 · θ[2]i

(1− δpbi )t−1 · σi(t), (4.20)

where pbi, i ∈ V, represent the price of backstop technology at time step t = 0

for region i to replace all carbon fuels, and δpbi , i ∈ V, are constant parameters.

The damage function Ωi(t) is the percentage of gross economic output damaged by

temperature rising. As a result, the net economic output Qi(t) (economic output

after the emission-reduction spending and climate damage), is given by

Qi(t) = Ωi(t)Λi(t)Yi(t). (4.21)

The Solow-Swan model [164] gives a description of capital accumulation of each

region i ∈ V:

Ki(t+ 1) = (1− δKi )
5Ki(t) + 5si(t)Qi(t), (4.22)

where δKi , i ∈ V, are constant parameters, and si(t), i ∈ V, t ∈ T, are control decisions

representing the saving rate, i.e., the percentage of net economic output invested in

capital.

4.3.2 Damage Functions

The rising atmospheric temperature has a negative impact on economic production.

Although there are various specifications offering various estimates of the damage

function, there are no substantial discrepancies among them [17]. In the RICE-2011
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model, damages to economic gross output caused by rising temperatures are consid-

ered to be region-specific and dependent on factors such as atmospheric temperature

deviation, sea level rises, and atmospheric carbon mass. However, the form of the

damage function of the RICE-2011 model is not given explicitly. In the current

study, a simplified form of the damage function is employed, which only depends on

the rising atmospheric temperature deviation:

Ωi(t) = 1− a
[1]
i TAT(t)− a

[2]
i TAT(t)a

[3]
i , (4.23)

where a
[1]
i , a

[2]
i , and a

[3]
i , i ∈ V, are parameters calibrated to yield a certain amount

of damage loss to regional economic gross output. Each region’s damage loss to

its regional economic gross output at 2◦C is presented in Table 4.1. For example,

India would suffer a damage loss of 1.55% to its economic gross output when the

atmospheric temperature deviation reaches 2◦C.

Table 4.1: Each region’s damage loss with respect to its gross economic output
when atmospheric deviation is at 2◦C.

US EU Japan Russia Eurasia China
Loss 0.56% 0.64% 0.75% 0.46% 0.52% 0.66%

India MidEast Africa LatAm OHI OthAsia
Loss 1.55% 1.19% 1.47% 0.66% 0.62% 1.04%

4.3.3 Payoff Functions

Note that from the net economic output Qi(t), a total amount of si(t)Qi(t) has

been made as investment. The remaining part Ci(t) = (1 − si(t))Qi(t) can then

be used for consumption. In RICE models, for region i, the social welfare of the

population Li(t) consuming Ci(t) of economic output at time t is defined by the

population-weighted utility of per capita consumption

gi(Ci(t), Li(t)) = Li(t) ·
(Ci(t)
Li(t)

)1−αi − 1

1− αi

, (4.24)
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where αi is a constant. The cumulative social welfare of region i across the time

horizon is then given by

Ji =
T∑
t=0

gi(Ci(t), Li(t))

(1 + ρi)5t

=
T∑
t=0

([Ai(t)Li(t)
1+αi−γi

(1− αi)(1 + ρi)5t

(
1− ui[2](t)

)
x5+i(t)

γi

·
(
1− a

[1]
i x1(t)− a

[2]
i x1(t)

a
[3]
i

)(
1− θ

[1]
i (t)ui[1](t)

θ
[2]
i

)]
− Li(t)

(1− αi)(1 + ρi)5t

)
:= Ji(X,Ui,U−i) (4.25)

where ρi is a constant discounting factor. For each region i ∈ V, naturally it will

attempt to maximize its cumulative social welfare.

We have now formally represented the RICE-2011 model as a dynamic game,

termed the RICE game where the regions as players seek to plan their control

decisions in emission-reduction rate and saving rate for the entire time horizon

(600 years) Ui = [si(0);µi(0); . . . ; si(T );µi(T )] so as to maximize their payoff func-

tions (4.25) subject to the underlying dynamical system (4.13), represented in (4.15)-

(4.22). In what follows when we implement the proposed RICE game, the values

of the initial state x(0) and the parameters are updated in the following way: the

initial state are calibrated to match the data in the year 2020; the parameters in

the geophysical sector use the latest updated values in the DICE-2016 model [124],

while the parameters in the regional economic sector remain unchanged.

4.3.4 The Social Cost of CO2

The social cost of CO2 (SCC) is a central concept for understanding and implement-

ing climate change policies. In a market setting like a cap-and-trade regime, the SCC

would serve as the trading price of carbon emission permits. In a carbon-tax regime,

the SCC would be the carbon tax for the regions who want to emit carbon emissions.

The SCC in a particular year is defined as the decrease in aggregate consumption
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in that year that would change the current expected value of social welfare by the

same amount as a one unit increase in carbon emissions in that year [119]. The

regional SCC is then given by

SCCi(t) = −1000 ·
∂Ji

∂Ei(t)

/ ∂Ji
∂Ci(t)

= −1000 · ∂Ci(t)

∂Ei(t)
. (4.26)

4.4 The RICE Game: Cooperative Solutions

In this section, we study the solutions to the RICE game under cooperative settings.

First of all, we revisit the classical RICE solution concept defined by a system-

level social welfare maximization, and present numerical solutions under the current

calibration of climate damage function and the updated geophysical and economic

parameters and conditions. Next, we move to Pareto solutions to the proposed RICE

game, and present the Pareto frontier of the RICE game between developing and

developed regions. Finally, we introduce a receding horizon solution to the classical

RICE solution as the counter-part for MPC-DICE developed in [52, 53].

4.4.1 RICE Social Welfare Maximization

The RICE-2011 model focused on the sum of the weighed regional social welfare

across all regions:

Wc =
n∑

i=1

ciJi, (4.27)

where 0 < ci < 1 is known as the Negishi weight for region i with
∑n

i=1 = 1. The

values of the ci were calibrated in the work of [123] to be the inverse of the marginal

utilities of consumption when maximizing (4.27) subject to RICE dynamics (4.14)-

(4.22) under the assumption that there is no abatement of CO2 emissions [127, 128,

161].
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Solution Concept

One benchmark cooperative solution to the RICE game is for a centralized climate

policy planner to compute the U1, . . . ,Un for all regions that achieve the maximal

value of Wc, for a given initial condition x0.

Definition 4.4 A decision profile Uw is a global social welfare equilibrium if it is a

solution to the following optimization problem

max
U1,··· ,Un

Wc(X,U)

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T

u(t) ∈ [0, 1]24, t ∈ T.

(4.28)

Results

We run a total of 120 5−year periods, and therefore we set T = 120. We obtain

the global social welfare equilibrium Uw for the RICE game under Definition 4.4 by

solving the corresponding OCP (4.28).

First, each region’s optimal control decisions in emission-reduction rate and saving

rate under Uw are plotted in Fig 4.3. Clearly, regions including China, Africa, India,

Eurasia, OthAsia, and Russia have relatively high emission-reduction rates who

should reach carbon neutral status (i.e., the emission-reduction rate µi(t) becoming

exactly 1) relatively sooner. The reason for that could be twofold. First, regions

such as Africa and India bear the greatest damage loss caused by rising atmospheric

temperature as presented in Table 4.1. Second, it takes regions such as China,

Eurasia and Russia comparatively lower cost to reduce carbon emissions (see the

estimated price for backstop technology replacing all carbon fuels in the year 2020

in Table 4.2).

Table 4.2: The estimated price for backstop technology in each region that can
replace all carbon fuels in the year 2020.

US EU Japan Russia Eurasia China
Price 1051 1635 1635 701 701 817

India MidEast Africa LatAm OHI OthAsia
Price 1284 1167 1284 1518 1284 1401
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(a) Optimal emission-reduction rate.
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(b) Optimal saving rate.

Figure 4.3: Each region’s optimal emission-reduction rate and saving rate under
Uw.
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Then, in Fig. 4.4, we examine the trajectory of the atmospheric temperature

deviation when the emission-reduction rates and saving rates under Uw are taken.

The work of [123] also solved the OCP (4.28) with the same horizon length (600

years) starting from the year of 2005. Although we do not have access to the exact

and complete data of results in [123, Fig. 3], the atmospheric temperature deviation

trajectory in Fig. 4.4 appears to be similar to that in [123]. To be specific, the

atmospheric temperature deviation in [123, Fig. 3] is around 2.8◦C, whereas ours is

approximately 3◦C.

Finally, in Fig. 4.5, the social cost of CO2 in each region under the global social

welfare equilibrium is presented. It shows that the social cost of CO2 under Uw

in India, Africa and OthAsia is significantly higher than those in other regions.

The reason for that could be that both prices for backstop technology and optimal

emission-reduction rates for these regions are higher than those for other regions.
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Figure 4.4: The atmospheric temperature deviation trajectory under Uw.

4.4.2 RICE Pareto Frontier

Noting the global social welfare equilibrium is a solution concept where the Negishi

weights ci, i = 1, . . . , n are calibrated in a centralized manner. Since the weight ci

may greatly impact the optimal emission rates and saving rates for region i and then

its own social cost of carbon, the regions have intrinsic incentives in negotiating on
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Figure 4.5: The social cost of CO2 (USD/GtC) in each region under Uw.

the distribution of the ci’s. In recent years’ international climate policy forums, the

divide between developed and developing regions has been one of the main barriers

from a global consensus on carbon emission rates [24, 45, 142]. In this subsection,

we focus on the social welfare Pareto frontier between developed and developing

regions involved in the RICE game.

Solution Concept: Pareto Frontier

We classify the regions in the RICE-2011 model into two clusters of regions: de-

veloped regions (US, EU, Japan and other high income countries) and developing

regions (Russia, Non-Russian Eurasia, China, India, Middle East, Africa, Latin

America and other Asian countries). We denote Vdeveloped = {1, 2, 3, 11} and

Vdeveloping = {4, 5, 6, 7, 8, 9, 10, 12}. Correspondingly, the social welfare of the two

clusters of regions is defined as, respectively,

Wdeveloped =
∑

i∈Vdeveloped

Ji, Wdeveloping =
∑

i∈Vdeveloping

Ji.
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For the considered RICE game over these two clusters of regions, we consider the

Pareto optimality.

Definition 4.5 For the RICE game under developed and developing clusters of

regions, a decision profile Up is a Pareto social welfare equilibrium between the

developed and developing clusters if there does not exist another decision profile U

such that

(i) there hold

Wdeveloped(X
p,Up

i ,U
p
−i) ≤ Wdeveloped(X,Ui,U−i),

Wdeveloping(X
p,Up

i ,U
p
−i) ≤ Wdeveloping(X,Ui,U−i);

(ii) either one of the above two inequalities holds strictly.

Here X and Xp are the states evolved under U and Up, respectively.

Based on Lemma 4.1, we can calculate such Pareto social welfare frontier between

the developed and developing clusters by solving the family of optimization problems

for a given initial condition x0:

max
U1,··· ,Un

p ·Wdeveloped + (1− p) ·Wdeveloping

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T

u(t) ∈ [0, 1]24, t ∈ T

(4.29)

where p is selected in the interval [0, 1]. For any fixed p ∈ [0, 1], we obtain a Pareto

social welfare equilibrium, and their collection forms the Pareto frontier between the

developed and developing clusters. The Pareto formulation might have the potential

to serve as a benchmark for the interchange of positions between developed regions

and developing regions on climate policies. The parameter p serves as a quantitative

characterization to the allocation of responsibility for climate change mitigation

between developed regions and developing regions: If p is close to 0, developed

regions will take higher responsibility, as the developing regions will if p is close to

1.
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Figure 4.6: Social welfare Pareto frontier between developed regions and devel-
oping regions (×104 trillion USD).

Results

We set a total of 120 5-year periods. We take 999 linearly spaced values between

0.001 and 0.999 as the values of p. For each p, we obtain the Pareto solution Up

by solving the respective OCP (4.29). We plot the social welfare Pareto frontier

between developed and developing regions in Fig. 4.6. We also plot the atmospheric

temperature deviation at the final time step, TAT(120), versus the parameter p in

Fig. 4.7.
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Figure 4.7: The atmospheric temperature deviation in the year 2620, TAT(120),
versus the parameter p.
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These results reveal a few notable effects.

• From Fig. 4.6, it can be seen that the values of p can not drastically change

the social welfare received for both the developing and developed clusters

of regions. The maximal (p = 0.999) and minimal (p = 0.001) values for

Wdeveloped differs only by 0.35%; the maximal (p = 0.001) and minimal (p =

0.999) values for Wdeveloping differs only by 0.56%.

• Fig 4.7 shows that the atmospheric temperature deviation at the final time step

is quite robust with respect to p under the Pareto equilibrium. In fact, for all

values of p between 0.001 and 0.999, TAT(120), the atmospheric temperature

deviation in the year of 2620, always falls between 2.8◦C and 3.3◦C. It is

also clear that a higher or a lower p will both result in a lower atmospheric

temperature deviation in the final year, while p = 0.862 leads to highest

terminal atmospheric temperature deviation, i.e., global warming in the worst

case.

4.4.3 Receding Horizon RICE

Equation (4.28) is an OCP for a nonlinear dynamical system with non-convex cost

function. When the horizon length gets larger, it becomes more difficult to solve

the problem numerically. The work of [93] established a novel receding horizon

solution to DICE, which provides robustness and computational efficiency compared

to solving DICE in a long time horizon directly. In what follows, we extend the idea

of [93] to RICE.

Solution Concept: MPC-RICE

For the receding horizon approach, we denote the prediction horizon by Trh and the

simulation horizon by Tsim. We introduce

l(t,x(t),u(t)) :=
n∑

i=1

ci ·
gi(Ci(t), Li(t))

(1 + ρi)5t
,
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and assume a full measurement or estimate of the state x(t) is available at each

time step t ∈ Tsim := {0, 1, . . . , Tsim}. The receding horizon process to approximate

the global social welfare equilibrium Uw is proposed in Algorithm 4.1. A decision

profile Urhw = [urhw(0)⊤, . . . ,urhw(Tsim)
⊤]⊤ as output of Algorithm 4.1 is said to be

a receding horizon global social welfare equilibrium.

Algorithm 4.1 MPC-RICE
Input: simulation horizon Tsim; prediction horizon Trh.

1: t← 0
2: while t ≤ Tsim do
3: observe x(t)
4: compute the optimal solution u∗(s), s ∈ S := {t, t+ 1, . . . , t+ Trh}, to the

following optimization problem over the receding horizon S

max
u(s),∀s∈S

t+Trh∑
s=t

l(s,x(s),u(s))

subject to x(s+ 1) = f(s,x(s),u(s)), s ∈ S,

u(s) ∈ [0, 1]24, s ∈ S.

(4.30)

5: apply urhw(t) := u∗(t) to RICE game
6: return Urhw

Results

We set the simulation horizon to be Tsim = 120 (600 years), and implement MPC-

RICE under prediction horizons Trh ∈ {10, 20, 60}. We also reproduce MPC-DICE

with a simulation horizon of 600 years under prediction horizons Trh ∈ {10, 20, 60}.

In Fig. 4.8, we plot trajectories of the optimal emission-reduction rates under

global social welfare equilibrium Uw and the optimal control decision Urhw obtained

by MPC-RICE with Trh ∈ {10, 20, 60}. When the prediction horizon gets larger,

the optimal emission-reduction rates under Uw converge towards those under Uw

for most time steps. Moreover, the optimal emission-reduction rates under Urhw are

more steady in the sense that they do not drop back to lower levels towards the end

of the simulation horizon, which is the case under Uw. Compared with [53], MPC-

RICE and MPC-DICE present similar approximation feature under large prediction

horizons.
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In Fig. 4.9, we plot trajectories of atmospheric temperature deviation for the entire

simulation horizon under the optimal solutions from DICE OCP, MPC-DICE with

Trh = 60, Uw, and Urhw with Trh = 60. The trajectories of atmospheric temperature

deviation under DICE OCP and MPC-DICE with Trh = 60 are higher than under

Uw and Urhw with Trh = 60 in most time steps except at the beginning. To this

extent, the RICE model and MPC-RICE raise more concerns about global warming.
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Figure 4.8: The comparison of each region’s optimal emission-reduction rates
under Uw and Urhw with different prediction horizons Trh ∈ {10, 20, 60}.

4.5 RICE Game: Best-response Dynamics and

Open-Loop NE

In this section, we study the best-response dynamics and open-loop Nash equilibrium

of the RICE game.
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Figure 4.9: The comparison of atmospheric temperature deviation for the entire
simulation horizon under the optimal solutions from DICE OCP, MPC-DICE with
Trh = 60, Uw, and Urhw with Trh = 60.

4.5.1 Best-response Recursions for Dynamic Games

In game theory, best-response dynamics is a classical model that describes how play-

ers strategically behave in repeated plays [144]. In standard best-response episodes,

each player takes a best-response action for the next round that maximizes its payoff

function given other players’ actions in the present round of play. For certain types

of games such as two-player zero-sum games and potential games, the player actions

under best-response dynamics may converge to a Nash equilibrium [38, 73].

In this subsection, we establish the best-response recursions for the dynamic game

introduced in Section 4.2.3 with n players over a finite horizon T . We assume

the dynamic game is repeatedly and recursively played for N episodes, where each

episode consists of T time steps. We thereby define the aggregated control decisions

of all players in episode k = 1, · · · , N by U(k), and the decisions of player i in

episode k by U
(k)
i . Similarly, the decisions of players excluding player i in episode

k is denoted by U
(k)
−i . In view of the best-response for static games [144], the best-

response recursion of the agents in the dynamic game over the N episodes are

described in the following Recursive Best-response Algorithm for Dynamic Games

(RBA-DG) as in Algorithm 4.2. The RBA-DG produces an output UNE
∗ = U(N)

after N episodes of updates.
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Algorithm 4.2 Recursive Best-response Algorithm for Dynamic Games (RBA-DG)
Input: Episodes N ; ci, i ∈ V .

1: compute an optimal cooperative solution Uc by the following problem

max
U1,··· ,Un

∑
i∈V

ci · Ji(X,Ui,U−i)

subject to x(t+ 1) = f(t,x(t),u(t)),x(0) = x0,

u(t) ∈ [0, 1]24, t ∈ T.

2: let U
(0)
i = Uc

i , ∀i ∈ V

3: k ← 0
4: while k < N do
5: for each player i ∈ V do
6: observe U

(k)
−i

7: compute U
(k+1)
i by solving the problem

max
Ui

Ji(X,Ui,U−i), (4.31a)

s.t. x(t+ 1) = f(t,x(t),u(t)), (4.31b)
U−i = U

(k)
−i , (4.31c)

x(0) = x0. (4.31d)

8: U(k+1) = [U
(k+1)
1 ; · · · ;U(k+1)

n ]
9: k ← k + 1

10: return UNE
∗ = U(N)

The implementation of RBA-DG requires two conditions. First, the initial value

of the system x(0) = x0 needs to be known by all players at the beginning of the

process. Second, at the end of each episode k = 1, · · · , N , every player should

be able to observe or know all other players’ decision sequences over the episode

U
(k)
−i . Then the update of the player decisions for the next episode follows directly

from the best-response dynamics. We present the following result, which holds true

immediately from definition of open-loop Nash equilibrium.

Proposition 4.1 Consider the repeatedly played n-player dynamic game. Let N =

∞ in the RBA-DG. Suppose there exists U∗ such that there holds limk→∞ U(k) = U∗.

Then U∗ is an open-loop Nash equilibrium for the dynamic game.
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4.5.2 Recursive Best-response for RICE

The RICE model describes the interplay of the various regions in the world in terms

of their climate-change mitigation policy over a few centuries (for example, RICE-

2011 assumes a total time horizon of 600 years [123, Supplementary Material]). As

a result, despite the fact that the RBA-DG may be conceptually applied to RICE

since RICE has been identified as a dynamic game, it is important to clarify the

real-world implication of recursive best response for RICE.

Solution Concept: Regional Climate Policy Negotiations

We propose to adopt RBA-DG over RICE as a mechanism for regional climate policy

negotiations. The overall negotiations take a prescribed N episodes. In each round

of the negotiations, regions accept RICE as the standing model for climate-economy

integration, and decide their emission reduction rates and saving rates for a fixed

time horizon (e.g., 200 years). At the end of each round, all regions reveal their

current planning of the emission reduction rates and saving rates for the entire time

horizon to other regions. Then, during the next round of negotiations, regions get to

revise their planned decisions and adopt RBA-DG as their principle of updating such

planned decisions. After the N episodes of negotiations, if all regions realize none

of them can unilaterally change their climate actions and gain significant increase

in social welfare, such a mechanism will produce an approximate open-loop Nash

equilibrium for the RICE game in view of Proposition 4.1. Such a Nash equilibrium

holds higher promise of being accepted by all regions since no region is able to benefit

from a revised decision when all other regions take the actions from the equilibrium.

Results

Now we implement the RBA-DG over the RICE game. We set the number of

episodes to be N = 21.

Convergence. In Fig. 4.10, we plot the trajectory of ∥U(k+1)−U(k)∥ versus episode

k. The result shows that when applying RBA-DG over the RICE game, the obtained

sequence of U(k) converges to a steady point, and after 5 episodes, the ∥U(k+1)−U(k)∥
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has become very close to zero. From Proposition 4.1, this implies that the RBA-

DG may also serve as an efficient algorithm for computing the open-loop Nash

equilibrium of the RICE game.

Cooperation vs Competition. In Fig. 4.11, we plot the comparison of each

region’s optimal emission-reduction rates under global social welfare equilibrium Uw

(cooperative solution) and the optimal control decision UNE
∗ (competitive solution)

obtained by RBA-DG (Algorithm 4.2). From Fig. 4.11, it is not surprising that

each region’s optimal emission-reduction rates under UNE
∗ are significantly lower

than those under Uw. This is a direct reflection that under Nash equilibrium of the

RICE game, the regions are working towards maximizing their own social welfare

instead of a collective social welfare of all regions. As a result, each region has

incentives to reduce its emission-reduction rate and its emission abatement cost, and

thus improve its social welfare. These results partially show the rationale behind

regions leaving signed climate treaties, e.g., Canada opt-out from Kyoto Protocol

[131] in 2012, and the United States formally quit Paris Agreement [141] in 2020

because a less aggressive regional policy leads to higher economic benefit even facing

climate change damages.

In Fig. 4.12, we plot the comparison of the atmospheric temperature deviation

trajectories under Uw and U
(NE)
∗ . From the results, with competition, substantially

higher atmospheric temperature deviation occurs under U
(NE)
∗ , as a consequence of

lower emission-reduction rates. For example, in 2620, the atmospheric temperature

deviation resulted from RBA-DG is around 6◦C while the atmospheric temperature

deviation under global social welfare equilibrium is about 3◦C.

4.6 RICE Game: Receding Horizon Feedback De-

cisions

In this section, we present a framework for dynamic games where in a single play

over the time horizon, players observe the underlying dynamic process and other

players’ actions, and then apply a receding-horizon feedback decision making for a
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Figure 4.10: Convergence of ∥U(k+1) −U(k)∥ versus episodes for RBA-DG.
.

prediction horizon. Then we apply this receding horizon feedback process to RICE

game in order to capture the competitive nature of regional climate policies, and

show how such competitions have impact on the global climate dynamics.

4.6.1 Receding Horizon Feedback Decisions for Dynamic

Games

Consider the dynamic game introduced in Section 4.2.3 with n players over a finite

horizon T . The game is played only once, and the players take the following feedback

decision process in the receding horizon sense.

The Receding Horizon Feedback Decision Process. The players apply a

receding horizon approach and compute their feedback decisions ui(t). At each

time t = 0, . . . , T − 1, each player i observes other players’ played action u−i(t)

and the system state x(t). Then, every player i assumes that u−i(t) will continue

to be played over [t + 1, t + Trh], and therefore decides its best feedback decision

plan uRHP
i|t+1→t+Trh

(x(t),u−i(t)), where uRHP
i|t+1→t+Trh

maximizes the cumulative payoff

of player i over the time horizon [t+1, t+Trh] conditioned on that u−i(t) be played

over [t + 1, t + Trh]. Finally, each player i plays the first planned decision uRHP
i|t+1 in

uRHP
i|t+1→t+Trh

for the step t+ 1, and the process moves forward recursively. Denoting
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Figure 4.11: The comparison of each region’s optimal emission-reduction rates
under Uw and UNE

∗ .

uRHF
i (t) as the actions generated by the receding horizon feedback decision process,

clearly there is an underlying feedback law πi such that

uRHF
i (t) = πi(t,x(t),u

RHF
−i (t)).

Note that the decisions uRHF
i (t) are actually played by the players at each time

t. The resulting collective player decisions over the entire time horizon is written

as URHF. The computational process of this receding horizon feedback decision

framework is presented in the following Receding Horizon Feedback Algorithm for

Dynamic Games (RHFA-DG).



4.6. RICE GAME: RECEDING HORIZON FEEDBACK DECISIONS 93

2020 2170 2320 2470 2620

Years

0

2

4

6

8

Figure 4.12: The comparison of the atmospheric temperature deviation trajec-
tories under Uw and UNE

∗ .

4.6.2 Receding Horizon Feedback for RICE

In the current climate-change mitigation measures, there has been no international

consensus on the emission reduction rates and the saving rates for different regions

or for the globe collectively, despite the successful adoption of global or regional

climate-change agreements such as the Paris Agreement. In fact, most climate

treaties are neither substantial nor mandatory [22]. The objective of such treaties has

not been the actual emission-reduction rate, but rather to establish environmental

norms at the international level. The hope is that such international environmental

norms may then be translated into the domestic climate policies according to each

region’s political processes [23].

In the real world, regions revise their climate-change policies from time to time

and attempt to compete with each other while acknowledging the importance of

climate-change mitigation. Indeed, such revisions of regional climate-change policies

may depend on many factors such as the public opinion shifts, government changes,

and new international environmental norms. In the end, the nature of regional

competitions persists as aggressive climate-change mitigation policy for a region may

benefit other regions economically in the short run, although collectively aggressive

climate-change mitigation policy benefits every region as shown from the comparison
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Algorithm 4.3 Receding Horizon Feedback Algorithm for Dynamic Games (RHFA-
DG)
Input: simulation horizon Tsim; prediction horizon Trh; ci, i ∈ V.

1: compute an optimal cooperative solution Uc by the following problem

max
U1,··· ,Un

∑
i∈V

ci · Ji(X,Ui,U−i)

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0,

u(t) ∈ [0, 1]24, t ∈ T.

2: let URHF
i (0) = Uc

i (0), ∀i ∈ V

3: t← 0
4: while t ≤ Tsim do
5: for each player i ∈ V do
6: Take action URHF

i (t)

7: for each player i ∈ V do
8: observe x(t) and URHF(t)
9: compute x(t+ 1) according to (4.1)

10: assume all players j ∈ V/{i} will continue to play URHF
−i (t) over [t +

1, t+ Trh]
11: compute its optimal solution uRHP

i|t+1→t+Trh
to the following receding hori-

zon optimization problem

max
ui|t+1→t+Trh

t+Trh∑
s=t+1

gi(s,x(s),ui(s),u−i(s))

s.t. x(s+ 1) = f(s,x(s),u(s)),

u−i(s) = URHF
−i (t), s ∈ [t+ 1, t+ Trh].

12: plan URHF
i (t+ 1) = uRHP

i|t+1

between cooperative social welfare equilibrium and the approximate open-loop Nash

equilibrium. Here, we propose to apply RHFA-DG on RICE as an attempt to model

the real-world regional climate-policy evolution given the economically competitive

nature of such policies.

4.6.3 Results

We implement the RHFA-DG over the RICE game. We set the simulation horizon

and prediction horizon to be Tsim = 120 and Trh = {5, 10, 20}.

In Fig. 4.13, we plot the comparison of each region’s optimal emission-reduction
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rates under global social welfare equilibrium Uw, the approximated open-loop

Nash equilibrium UNE
∗ solved from RBA-DG (Algorithm 4.2), and the receding

horizon feedback decisions URHF solved from RHFA-DG (Algorithm 4.3) with

Trh = {5, 10, 20}. First, with competition, the receding horizon feedback deci-

sions of emission-reduction rates solved from RHFA-DG are significantly lower than

those under global social welfare equilibrium. Second, due to receding horizon and

myopic assumption of other regions’ future decisions, the emission-reduction rates

from RHFA-DG are lower than those obtained from RBA-DG in the early time

steps. However, interestingly, the former continues to climb in the final time steps,

while the latter drops back to lower levels in the end of simulation horizons.

In Fig. 4.14, we plot the comparison of the atmospheric temperature deviation

trajectories under Uw, UNE
∗ , and URHF with Trh = {5, 10, 20}. There are several

observations on the results. First, the atmospheric temperature deviation under

URHF is substantially higher than that under Uw, and slightly higher than that

under UNE
∗ . Second, for URHF with Trh = {5, 10, 20}, the smaller the prediction

horizon is, the higher the atmospheric temperature deviation is. This implies that

longer prediction horizon forces the regions to take the long-term climate damages

more into their receding horizon decisions, and therefore leads to better climate-

change mitigation.

4.7 Summary

In this chapter, we investigated how cooperation and competition arise in regional

climate policies under the RICE framework from the perspective of game theory and

optimal control. The results revealed how game theory may be used to facilitate

international negotiations towards consensus on regional climate-change mitigation

policies, as well as how cooperative and competitive regional relations shape climate

change for our future.
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Figure 4.13: The comparison of each region’s optimal emission-reduction rates
under Uw, UNE

∗ , and URHF with Trh = {5, 10, 20}.
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Chapter 5

Network Learning from

Best-Response Dynamics in LQ

Games

Preface

In this chapter, we focus on network structure inference problem for linear-quadratic

(LQ) games from best-response dynamics. An adversary is considered to have no

knowledge of the game network structure but have the ability to observe all players’

best-response actions and manipulate some players’ actions. this chapter presents a

comprehensive framework for network learning from best-response dynamics in LQ

games. First of all, we establish theoretical results that characterize network struc-

ture identifiability and provide numerical examples to demonstrate the usefulness of

our theoretical results. Next, in the face of the inherent stability and sparsity con-

straints for the game network structure, we propose an information-theoretic stable

and sparse system identification algorithm for learning the network structure. Fi-

nally, the effectiveness of the proposed learning algorithm is tested in both synthetic

networks and real networks. The connection between network structure inference

problem and classical system identification theory is covered by our work, which

advances the literature.

This chapter reveals a type of privacy risk in multi-agent systems in the context

97
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of LQ games: the leakage of network structure [27].

5.1 Overview

Game theory has been an essential tool in describing how self-interested individuals,

referred to as players, develop rationality and competition [170]. In a game with

multiple players, each player chooses her action to maximize her payoffs determined

by her payoff function. The payoff function of each player relies on not only her own

action, but also other players’ actions, resulting in underlying competition. Many

games are played over networks, in the sense that players are interconnected through

a network [84]. In many aspects of our life, network games are extensively employed

to model strategic interactions among interconnected players, such as online E-

commerce in social networks [98], route planning in transportation networks [12],

and games arising in wireless communication networks [121]. Significant progress

has been made in computing equilibrium solution concepts such as Nash equilibrium

(NE) and correlated equilibrium, and identifying the most influential players in

network games [4, 57, 135]. All of these works are in the field of algorithmic game

theory and are concerned with analyzing the properties of network games on known

graphs.

Another vibrant stream of game literature focuses on network structure inference

where players’ behavior actions are collected to reconstruct the network structure.

Network structure inference problem is also related to graphical learning problems

in the fields of machine learning and signal processing. Many approaches have been

proposed, differing in the applied models such as probabilistic graphical models

[55, 180], physically-motivated models [61] and signal processing models [48, 133].

As for learning network structure in the game settings, there also has been a consid-

erable amount of work. In the continuous-action setting, different methods were pro-

posed according to different action and payoff function settings (e.g., non-parametric

payoffs in a recent work [7]). As for the discrete-action setting, the work of [76] pro-

posed a maximum-likelihood approach to learning linear influence games with binary

actions. In [60], the authors proposed a l1-regularized logistic regression model to
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learn linear influence given observations over the pure-strategy NEs. The work of

[99] studied a learning problem of LQ games on networks, over which a number of

independent games were played with all NE actions observed for learning the graph.

5.1.1 Problem of Interest

In this chapter, we consider a LQ game over a network where each player’s payoffs is

a LQ function of her own action and other players’ actions. Each player participating

in this game is assumed to play her best responses in a sequential decision process.

Each player will decide her next action as the decision that maximizes her payoff

given other players’ current actions [56]. We assume that there is an adversary

who does not know the game network structure but is capable of observing all

players’ best-response actions and manipulating some players’ actions. The aim

of the adversary is to infer the game network structure from its observations and

manipulations.

The reasons that the problem is worth studying are as follows. First, this problem

will be naturally a dynamic extension of network structure inference from static

NEs in LQ games in [99]. Second, when network games are considered to study the

behaviors of players, NE is not the only behavior model to explain players’ strategic

decision-making. Instead, best response is also a possible model to describe the

players’ strategic behavior in a sequential decision-making manner. In practice,

players may not able to take the NE action at the beginning of networks games

because players cannot get or anticipate complete information about other players’

payoff functions [44].

There are two practical issues that need to be addressed. It is expected that

players’ best-response actions should converge to a NE, which means the network

structure should be stable [82]; the empirical analysis has shown that real-world

social networks are typically sparse [5]. As a result, network structure inference from

best-response dynamics becomes a stable and sparse system identification problem.

System identification of stable systems is a well-studied problem in the literature.
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In [168], a frequency domain solution to linear system identification of a stable

system was provided in presence of undermodeling. In [151], sharp finite-time error

analysis was derived based on ordinary least-squares, which was suitable for both

stable and unstable systems. In [90], a method for projecting an arbitrary square

matrix to the non-convex set of asymptotically stable matrices was proposed, whose

projection was optimal in an information-theoretic sense. Rich results of sparse

system identification also have been well established, most of which are based on

general penalties [37]. A specific line of penalty type is the method of l1-regularized

penalization [35, 110].

5.1.2 Chapter Contributions

In this chapter, we have made the following contributions:

(i) We manage to establish theoretic results characterizing network structure

identifiability from the view of the adversary: network structure identifiability

is shown to be equivalent to certain controllability conditions;

(ii) Taking into account the intrinsic stability and sparsity properties of the game

network structure, we propose a stable and sparse system identification frame-

work for learning the network structure. In the algorithm, we first solve an

l1-regularized least square problem arising from players’ best-response action

data, and then project the solution to the set of stable matrices by applying

the method in [90];

(iii) We conduct extensive experiments on synthetic and real-world networks to

validate the effectiveness of the proposed learning algorithm.

Our results provide a complete answer to network structure inference for LQ games

from best-response dynamics. By introducing stable and sparse system identification

into network structure inference for LQ games, we cover the connection between

network structure inference for LQ games and classical system identification theory,

advancing the literature.
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5.1.3 Chapter Outline

The remainder of the chapter is organized as follows. In Section 5.2, we introduce

LQ games, best-response dynamics, and the adversary model, followed by a prob-

lem description. In Section 5.3, we investigate the identifiability problem under

which conditions the network structure can be uniquely identified by the adversary

from the perspective of control theory. In Section 5.4, we propose an information-

theoretic algorithm to learn the network structure, assuming that the network struc-

ture is stable and sparse. In Section 5.5, experiments for the proposed algorithm are

conducted with a comprehensive discussion about the performance of effectiveness.

This chapter ends with concluding remarks in Section 5.6.

5.2 Problem Formulation

5.2.1 Linear Quadratic Game

A network game is associated with a graph. The nodes of the graph represent

the players of the network game, and the links define the interdependency among

the players in payoffs. In an n-player network game with LQ payoffs, each player

i ∈ V := {1, 2, . . . , n} chooses her action xi ∈ R that can maximize her payoffs Ji

described by

Ji = αixi −
1

2
x2
i +

n∑
j=1

gijxixj. (5.1)

In (5.1), the first two terms characterize the benefit of player i by taking her own

action xi, where the parameter αi > 0 is called the marginal benefit, capturing the

level of selfishness of player i. The last term of this payoff function reflects the peer

effect suffered by player i from the actions of other players: if gij > 0, players i

and j are strategic complements (friends); if gij < 0, players i and j are strategic

substitutes (opponents); if gij = 0, there is no influence on player i from player j.

Let G ∈ Rn×n be the matrix formed by the gij, i.e., the ij-entry of G is gij.

The interaction graph G = (V,E) underlying the game (5.1) is then defined as the



5.2. PROBLEM FORMULATION 102

induced graph of G, where a directed link (j, i) ∈ E if and only if gij ̸= 0. Note that

gii = 0 as we suppose there exists no self-loop in the graph G.

5.2.2 Nash Equilibrium and Best-response Dynamics

Nash equilibrium A common solution concept in game theory is called NE, and

it is a profile of actions under which no one will benefit by changing her action

when others keep theirs unchanged. We denote the vector x⋆ := [x⋆
1, . . . ,x

⋆
n]

⊤ as the

NE of the LQ game introduced previously. We adopt a critical assumption in the

following.

Assumption 5.1 The spectral radius of the matrix G, denoted by ρ(G) is less than

1.

It guarantees the existence and uniqueness of pure-strategy NE x⋆ in LQ games.

Moreover, as derived in [4], the form of NE is x⋆ = (I − G)−1α, where α :=

[α1, . . . , αn]
⊤.

Best response For players participating in a game, generally, NE can not be

played immediately when the game starts since the payoff functions are held in

private. Rather, in practice, players’ behaviors are better explained in a sequential

decision process [104]. Let time be indexed in T := {0, 1, 2, . . . , T}, and let xi(k)

be player i’s decision at any time k ∈ T. Then, it is reasonable to assume that any

rational player at any given time k will decide her action at the next time k + 1

as the decision that maximizes her payoff given other players’ current decisions at

time k. This is known as best responses [56]. As a result, in repeated plays for LQ

games, the dynamics of xi(k) obey

xi(k + 1) = argmax
xi

Ji(xi,x−i(k))

= αi +
n∑

j=1

gijxj(k), i ∈ V, t ∈ T. (BR)

In practice, it is expected that the best-response dynamics (BR) should converge

to a NE [82], which is guaranteed by Assumption 5.1 according to the work [4].
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5.2.3 The Adversary Model

In this chapter, we investigate the possibility of inferring the sensitive network struc-

ture from the perspective of an adversary. Specifically, an adversary refers to an

individual who is intended to infer the relationship through injecting adversarial

perturbations and monitoring the players’ actions.

We assume that the adversary is able to observe all players’ best-response actions

and manipulate some players’ actions. We term such players as action-compromised

players, indexed in the set M ⊆ V. Then V \ M contains benign players who

just follow (BR). For i ∈ M, we model the manipulation of the adversary as a

perturbation ui(k) over the best response actions of player i. The best response of

the players in the presence of the action-compromised players becomes

xi(k + 1) = argmax
xi

Ji(xi,x−i(k)) + IM(i)ui(k)

= αi +
n∑

j=1

gijxj(k) + IM(i)ui(k), i = 1, . . . , n.
(p-BR)

where IM(i) is the indicator function: IM(i) = 1 if i ∈ M; IM(i) = 0 otherwise.

Real-world Interpretations Fake reviews and misinformation has been shown

to be ubiquitous in the study of social bots in online social networks. Many works

have characterized the role and the ability of social bots in the manipulation of

social media [36, 54]. Therefore, the proposed adversary model captures this critical

characteristic of real-world online social networks.

5.2.4 Problem Definition

In this chapter, we are interested in whether and how the underlying graph G (or

equivalently, its adjacency matrix G) is exposed to risk of being uniquely identified

by the adversary. To be precise, the adversary holds information

I :
{
ui(k), i ∈ M,k ∈ T

}⋃
(5.2a){

xj(k), j ∈ V, k ∈ T
}

(5.2b)
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with the ui(k) and xi(k) being produced by the perturbed best response (p-BR).

The problems of interest from the perspective of the adversary lie in

• Identifiability: Whether it is possible to uniquely identify G from I, perhaps

with the help of strategically designed ui(k), i ∈ M, k ∈ T.

• Learning: How to build effective learning frameworks for estimating G from

I, perhaps with prior structural information such as stability and sparsity.

For the above-defined problems, there are three critical points worth mentioning.

First, best-response dynamics is a good start to investigate the game network struc-

ture inference problem given observations from the players’ best-response dynamics.

Even though the form of best response dynamics is simple, the learning problem

is still challenging. Second, the “identifiability” problem characterizes the funda-

mental limitation of the adversary’s learning capability on a theoretic level; on the

other hand, the “learning” problem focuses on designing computational algorithms

that would instruct the adversary to infer the network structure on a practical level.

These two parts are complementary and consist a thorough study of learning the

network structure from best-response dynamics. Third, how inherent properties of

stability and sparsity for the network structure can be integrated into this learning

problem has been largely open under the dynamic setting of games.

5.3 Network Structure Identifiability

In this section, we look into identifiability conditions under which the network struc-

ture can be uniquely identified by an adversary. Different identifiability conditions

are provided under two scenarios: the adversary injects no perturbation on players’

actions, or the adversary injects perturbations on the actions of a subset of players.

For notational simplicity, we denote the cardinality of the set M as m. The index

of action-compromised players is sorted in ascending order with M := {p1, . . . , pm}.

For example, if the network game has three action-compromised players (i.e., player

1, 3, 6), then m = 3 and M = {p1 = 1, p2 = 3, p3 = 6}.
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We also denote the aggregated action profile of all players and the overall injected

perturbations at time k by x(k) := [x1(k), . . . ,xn(k)]
⊤ ∈ Rn and u(k) := [ui(k), i ∈

M]⊤ ∈ Rm, respectively.

We introduce B ∈ Rn×m to represent the set of M. Specifically, the (i, j)-th entry

of matrix B satisfies that

Bi,j =

1, i = pj;

0, otherwise.

(5.3)

From classical control theory [181], for two matrices A ∈ Rn×n and B ∈ Rn×r, the

matrix pair (A,B) is said to be controllable if the n × nr controllability matrix

(where the subscript n denotes the number of block columns)

Cn(A,B) :=
[
B AB . . . An−1B

]
has rank n.

Controllability is regarded as a critical property of a control system. Basically,

in a control system, controllability is the ability of the system to shift from the

initial state to a specified state by applying input in a finite amount of time. In the

sequel, we establish a control system based on the best-response dynamics, and link

the determination of identifiability for the adversary with the property of control

system (i.e., controllability).

5.3.1 Main Results

We now present the following result that if the adversary has access to all players’ ac-

tions but has no ability to add action perturbations (i.e., M = ∅), network structure

identifiability can be precisely characterized by a special form of controllability.

Theorem 5.1 Assume M = ∅. Let the adversary have access to I from (p-BR).

Then G can be uniquely identified by the adversary for sufficiently large T if and

only if (G,x(1)− x(0)) is controllable.
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Proof. Regarding the action dynamics described in (p-BR), we define the action

difference and the perturbation difference as yi(k) := xi(k+1)−xi(k) and vi(k) :=

ui(k+1)−ui(k) respectively, in order to eliminate the effect of marginal benefit αi.

Adding the observation ports to the action dynamics (p-BR), we arrive at the

compact form of an input-output linear invariant system:

y(k + 1) = Gy(k) +Bv(k), (5.4a)

z(k) = y(k), (5.4b)

in which the state y(k) := [y1(k), . . . ,yn(k)]
⊤, the input signal v(k) : [ui(k + 1) −

ui(k), i ∈ M] ∈ Rm, and B ∈ Rn×m. The nonzero entries of matrices B correspond

to the set of action-compromised players. Hence, the adversary has a trajectory of

the input/output signal of this system (5.4a): I := {v(k), z(k), 0 ≤ k ≤ T, k ∈ N}.

When M = ∅ and I is accessible, (5.4a) is degenerated as

z(k + 1) = y(k + 1) = Gy(k).

Then, the single trajectory satisfies

Z = GY,

where Z = [y(1),y(2), . . . ,y(T )] ∈ Rn×T and Y = [y(0),y(1), . . . ,y(T −1)] ∈ Rn×T .

This equation can be decoupled as several linear equations: Y ⊤[G⊤]i = [Z⊤]i, ∀i ∈

V with [·]i representing the i-th column of a matrix. Then, G is uniquely con-

structable from the trajectory T if and only if each of these linear equations has a

unique solution, i.e., rank(Y ) = rank([Y ⊤, [Z⊤]i]) = n, ∀i ∈ V.

Note that Y = [y(0),y(1), . . . ,y(T − 1)] = [y(0),Gy(0), . . . ,GT−1y(0)], of which

the vectors span a G-cyclic subspace of Rn, denoted by H(y(0);G). This subspace

is an invariant subspace for G, in the sense that GH(y(0);G) ⊆ H(y(0);G), which

validates rank(Y ) = rank([Y ⊤, [Z⊤]i]). Moreover, the condition rank(Y ) = n holds

if and only if (G,y(0)) is controllable. □

The next result characterizes the ability to identify G by linear feedback pertur-
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bations, namely u(k) = Kx(k) for K ∈ Rm×n.

For a matrix A, we denote the image of matrix A by Im(A). It is the span of the

vectors of the matrix A or linear transformation A.

We now introduce a lemma coming from [181, Lemma 2.2].

Lemma 5.1 Let 0 ̸= y(0) ∈ Im(B). If (G,B) is controllable, there exists K such

that (G+BK,y(0)) is controllable.

Theorem 5.2 Assume M ̸= ∅. Let the adversary has access to I from (p-BR).

Suppose u(k) is generated by u(k) = Kx(k). Then there exists K such that G can

be uniquely identified if the following conditions hold:

(i) 0 ̸= x(1)− x(0) ∈ Im(B);

(ii) (G,B) is controllable.

Proof. When M ̸= ∅, (5.4a) is degenerated as

z(k + 1) = y(k + 1) = Gy(k) +Bv(k).

Setting v(k) = Ky(k), there holds

y(k + 1) = (G+BK)y(k).

According to Theorem 1, G can be uniquely identified by the adversary from the

information I if and only if (G+BK,y(0)) is controllable.

Since conditions (i) and (ii) are satisfied, Lemma 5.1 holds that there exists K

such that (G+BK,y(0)) is controllable. Therefore, there exists K such that G can

be uniquely identified. □

5.3.2 Numerical Examples

In what follows, we provide numerical examples to illustrate the usefulness of the

conditions in Theorems 5.1 and 5.2.
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Consider a 4-player LQ game. The LQ game is associated with an interaction

graph G shown in Fig. 5.1. The corresponding adjacency matrix is

G =


0 0 0 0

g21 0 0 0

g31 0 0 g34

g41 0 0 0

 .

The same setting is used in the following three numerical examples.

Figure 5.1: An example of 4-player network structure.

Example 5.1 Suppose no perturbation is injected into the players’ actions, i.e.,

M = ∅. We can compute that rank(Cn(G,x(1)− x(0))) is always less or equal to 3

no matter what value x(1) − x(0) takes. According to Theorem 5.1, the adversary

cannot identify the network structure from its information I. □

In the following two examples, we consider two ways of adversary perturbations

shown in Fig. 5.2

Example 5.2 Suppose the adversary is designed to influence the actions of players

1 and 2, i.e., M = {1, 2} (see blue perturbations in Fig. 5.2). We then obtain

B =

1 0 0 0

0 1 0 0

⊤

. It is obvious that the controllability condition in Theorem

5.2 holds since rank(Cn(G,B)) = 4. Moreover, to guarantee the satisfactory of

the first condition in Theorem 5.2, the initial state can be designed as x(0) =
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Figure 5.2: Two ways of adversary perturbations highlighted in blue and red.

(I − G)−1(α − e1), where e1 is a unit vector only with the first entry to be one,

and the inverse exists according to Assumption 5.1. According Theorem 5.2, G is

learnable. □

Example 5.3 Suppose the adversary is designed to influence the actions of players

2 and 4, i.e., M = {2, 4} (see red perturbations in Fig. 5.2). We then obtain B =0 1 0 0

0 0 0 1

⊤

. The controllability condition in Theorem 5.2 does not hold because

rank(Cn(G,B)) = 3. The pair (G,B) is uncontrollable. Clearly, the unidentifiability

of matrix G is a direct consequence caused by which subset of players is chosen by

the adversary to perturb. □

Examples 5.1, 5.2 and 5.3 reveal that although the adversary cannot identify the

network structure in Fig 5.1 without perturbations, strategically injecting pertur-

bations on a subset of players can benefit the adversary in identifying the network

structure. Moreover, the subset of players it chooses could affect the ability of

network structure identification.
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5.4 Network Structure Learning

In this section, we develop a framework for identifying the network structure for LQ

games G from players’ best response action data.

5.4.1 The Framework: Stable and Sparse System Identifica-

tion

Let S be the set of stable matrices in Rn×n, i.e., S := {A ∈ Rn×n : ρ(A) < 1}.

Assumption 5.1 requires that G ∈ S. Moreover, in practice, G is typically a sparse

matrix. Sparsity is a fundamental characteristic of numerous biological, social, and

technological networks references [5]. In summary, the adversary attempts to learn

a stable and sparse graph matrix G from its information I raising from (p-BR).

Upon the action dynamics (p-BR), we have already arrived at the action difference

dynamics (5.4a) in the proof of Theorem 5.1:

y(k + 1) = Gy(k) +Bv(k).

Note that the practical observations of the x(k) (and thus, y(k)) captured by the

adversary are subject to the influence of noises. That is ym(k) = y(k) + ek. It will

be the actually observed actions, where ek ∈ Rn, k ∈ T are stationary random noises

with zero mean and co-variance Sn. So the adversary has access to

Z =
[
ym(1) ym(2) · · · ym(T )

]
; (5.5)

Y =
[
ym(0) ym(1) · · · ym(T − 1)

]
; (5.6)

V =
[
v(0) v(1) · · · v(T − 1)

]
. (5.7)

We propose the following Stable Sparse System Identification (SSSI) for learning

the network structure from full player action observations:

GSSSI = arg inf
G∈S

1

2
||Z −GY −BV ||2F + θ||G||1. (SSSI)
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5.4.2 An Information-Theoretic Algorithm

As S is an open and nonconvex set, solving (SSSI) is numerically challenging. We

propose to adopt the recently developed algorithm for stable system identification

in [90], where an information-theoretic projection onto S was used to soften the

computational complexity by solving Riccati equations. This leads to Algorithm 5.1.

Algorithm 5.1 Information-theoretic Projection SSSI Algorithm
Input: Z, Y, V,B

Output: Network structure G

1: Solve the regularized least square solution

Ĝ = argmin
G

1

2
||Z −GY −BV ||2F + θ||G||1; (5.8)

2: Random generate δ ≥ 0;
3: Solve the algebraic Riccati equation (DARE) with the unique solution Pδ:

P = I+ Ĝ⊤PĜ− Ĝ⊤P(P+ (2δSn)
−1)−1PĜ⊤; (5.9)

4: Compute Lδ = −(Pδ + (2δSn)
−1)−1PδĜ;

5: Return GSSSI = Ĝ+ Lδ.

5.5 Experiments

In this section, experiments are designed to evaluate the effectiveness of Algo-

rithm 5.1 in both synthetic networks and real networks.

5.5.1 Synthetic Networks

In this subsection, we examine the performance of Algorithm 1 on three types of syn-

thetic networks generated using the Erdős–Rényi (ER), the Watts–Strogatz (WS),

and the Barabási–Albert (BA) models. The networks under evaluation have n = 100

nodes.

Network Setup In the ER graph, each link takes place with probability per = 0.1

independently with all the other links; in the WS graph, each node’s average degree
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and the random rewiring process is set to be is kws = 5 and pws = 0.2, respectively;

in the BA graph, a new node at each time step is created to connect to mba = 2

existing nodes via preferential attachment. After the realization of each graph, a

nonzero random number is selected between −5 and 5 as the weight for each link.

Each entry of the adjacency matrix G is then divided by the largest absolute value

of its eigenvalues to ensure the stability G.

Data Generation A set M representing action-compromised players is selected

and a matrix B is created according to (5.3). We then generate x(0), u(k), k ∈ T,

and α by considering x(0),u(k),α ∼ N(0, I), and simulate the dynamics (p-BR)

to obtain x(k), k ∈ T. The observation noises follow a normal distribution ek ∼

ξ ∗ N(0, I) where ξ represents the noise intensity level. Upon Eq. (5.5)-(5.7), we

finally obtain three matrices Z, Y, V .

Baselines We consider two baseline approaches: the stable least square ((SLS))

and stable L2-regularized least square ((SL2LS)). The method of the stable least

square is defined by the optimization problem

inf
G∈S

1

2
||Z −GY −BV ||2F . (SLS)

The method of the stable L2-regularized least square solves

inf
G∈S

1

2
||Z −GY −BV ||2F + β||G||2F . (SL2LS)

Solving (SLS) and (SL2LS) is numerically challenging. As in Algorithm 5.1, we

propose to solve ĜSLS = argminG
1
2
||Z−GY −BV ||2F and ĜSL2LS = argminG

1
2
||Z−

GY − BV ||2F + β||G||2F and project them to their nearest stable ones by applying

Eq. (5.9).

Results By applying Algorithm 1 and baselines to the respective network settings,

we obtain the network structures Glearn. We then compare the outcomes against

the ground truth by the relative error

Err :=
||Glearn −GTruth||F
||GTruth||F

. (5.10)
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For (SSSI) and (SL2LS) baselines, we provide the results using the parameters θ and

β that yield the greatest average performance across 50 randomly generated graph

instances.

First and foremost, we are to discover how the trajectory length affects learn-

ing performance. We fix noise level to be ξ = 0.1, use 6 different values of

T = {15, 20, 25, 30, 35, 40} and follow the aforementioned data generation process.

The learning performance of the three methods versus trajectory length on the ER,

WS, and BA networks is illustrated in Fig. 5.3.

We next examine the robustness of the three methods in the face of various levels

of noise during the observations. Let the trajectory length be T = 40 and the

noise intensity level take values in ξ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The learning

performance of the three methods versus noise intensities on the ER, WS, and

BA networks is shown in Fig. 5.4. Clearly, in terms of reconstructing the weights

for the ground truth links, the (SSSI) outperforms the other two baseline methods

significantly. Moreover, the BA networks appear to be more difficult to learn under

(SSSI) in all cases, compared to the ER graphs and WS graphs.

5.5.2 Real Networks

In this section, we investigate the performance of Algorithm 5.1 for learning un-

weighted real networks where gij, ∀i, j ∈ V, is either 0 or 1. In other words, we try

to solve the classification task of learning the real networks. Since the real networks

used are sparse, we use the area under the curve (AUC) for the evaluation.

Indian Villages Dataset We consider learning social networks in 75 villages in

southern rural India [83]. In each village network, nodes represent households and

links represent the connection between two households. The average number of

nodes and links per village network is 198.72 and 1782.99, respectively. In order to

guarantee the stability of G, each element of each village network’s binary adjacency

matrix is then normalized by the largest absolute value of its eigenvalues.

Results We follow the same data generation process in Section 5.5. We apply

Algorithm 5.1 to the respective settings to learn village networks and compare the
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(a) Erdős–Rényi networks. (b) Watts–Strogatz networks.

(c) Barabási–Albert networks.

Figure 5.3: The relative errors from (SSSI), (SLS), (SL2LS) versus trajectory
length over the ER, WS and BA networks.

results against the ground truth in a binary classification scenario.

First, we examine AUC versus trajectory length on 75 village networks. We fix

noise level to be ξ = 0.3, set 4 different values of T = {10, 30, 50, 70} and obtain the

results in Fig. 5.5a. Clearly, AUC increases as trajectory length increases.

We then discover how noise level affects the robustness of Algorithm 5.1. We

let trajectory length fixed to be T = 120 and noise level take values in ξ =

{0.15, 0.2, 0.25, 0.3} and present the results in Fig. 5.5b. It is straightforward to

see that AUC decreases as the noise level increases.
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(a) Erdős–Rényi networks. (b) Watts–Strogatz networks.

(c) Barabási–Albert networks.

Figure 5.4: The relative errors from (SSSI), (SLS), (SL2LS) versus noise intensity
level over the ER, WS and BA networks.

5.6 Summary

In this chapter, we considered network structure inference problem for LQ games

from best-response dynamics. A complete framework for network learning for LQ

games from best-response dynamics is presented. First, we provided theoretic results

that characterized network structure identifiability and demonstrated its usefulness

with numerical examples. Then, given the intrinsic stability and sparsity constraint

of network structure, we developed a stable and sparse system identification algo-

rithm for learning the network structure. Lastly, the effectiveness of the proposed

learning algorithm was evaluated in both synthetic networks and real networks. This

chapter opened the door for understandingthe network structure inference problem
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(a) AUC versus trajectory length. (b) AUC versus noise level.

Figure 5.5: Learning performance (AUC) of Algorithm 5.1 on 75 Indian village
network datasets.

for network games based on best-response dynamics from the perspective of classical

system identification theory. We bridged the connection between these two fields by

introducing stable and sparse system identification into network structure inference

for LQ games. Future work may include extensions of this line of research to partial

action observations of the adversary and general payoff functions of players.



Chapter 6

Differentially Private Games via

Payoff Perturbation

Preface

In this chapter, we study network games where players are involved in information

aggregation processes subject to the differential privacy requirement for players’

payoff functions. We propose a Laplace linear-quadratic functional perturbation

(LLQFP) mechanism, which perturbs players’ payoff functions with linear-quadratic

functions whose coefficients are produced from truncated Laplace distributions. For

monotone games, we show that the LLQFP mechanism maintains the concavity

property of the perturbed payoff functions, and produces a perturbed NE whose

distance from the original NE is bounded and adjustable by Laplace parameter

tuning. We focus on linear-quadratic games, which is a fundamental type of network

games with players’ payoffs being linear-quadratic functions, and derive explicit

conditions on how the LLQFP mechanism ensures differential privacy with a given

privacy budget. Lastly, numerical examples are provided for the verification of the

advantages of the LLQFP mechanism.

This chapter mainly addresses the social shaping problem of privacy risks of payoff

functions in the context of network games [33].

117
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6.1 Overview

Games on networks has gained increased traction in recent years. It has been applied

in a variety of fields such as online E-commerce in social networks [98], route planning

in transportation networks [12], and resource allocations in wireless communication

networks [121]. There are typically three information aggregation processes in games

for players to achieve network-level goals: the distributed Nash equilibrium (NE)

seeking [136, 149, 185], best-response dynamics [78, 108, 120], and no-regret learning

[20, 63, 103, 190].

What these frameworks have in common is that players need to share information

with others in a dynamic process, such as their actions, payoff gradients, or payoffs,

and then choose their actions for the next stage based on the information received

and their own payoff functions. Clearly, players’ payoff functions are encoded in

the shared information. However, players’ payoff functions are often sensitive and

private [69]. As a result, players’ payoff functions are at risk of privacy leakage.

Owing to differential privacy [49, 50], it is possible for players to share information

and decide their actions over time to achieve the desired outcome while keeping

their payoff functions from being compromised. Differentially private systems have

been well studied in the sense that many privacy algorithms are designed for various

tasks such as average consensus [80, 129], estimation and filtering [97], and convex

optimization [67, 81, 130]. As for differentially private games, the works of [156,

186] have focused on privacy-preserving distributed Nash seeking strategy design

for aggregated games.

6.1.1 Problem of Interest

In this chapter, we consider a network game where players are interconnected

through an interaction/communication network. Players are involved in information

aggregation processes that requires them to share information to accomplish certain

collective goal. The shared information that encodes the sensitive information of

payoff functions is monitored by adversaries. As a result, we aim to protect the

differential privacy of players’ payoff functions.
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We are inspired by [41, 130]. We propose a Laplace linear-quadratic functional

perturbation (LLQFP) mechanism, which perturbs players’ original payoff functions

with linear-quadratic functional perturbation. The coefficients of those perturbation

are generated by truncated Laplace distributions. The idea is to let players partici-

pate in certain information aggregation process using the perturbed payoff functions.

If the LLQFP mechanism preserves differential privacy, then it also enforces differen-

tial privacy of information aggregation processes by the resilience to post-processing

of differential privacy [50].

In the literature of differentially private information aggregation processes, a com-

mon approach is to add noises to players’ shared information [67, 81, 156, 186, 187].

For this approach, perturbation has to be designed in accordance with a diverse set

of objectives during information aggregation processes. Moreover, perturbation has

to be added at all time steps, and therefore the longer the operating time of informa-

tion aggregation processes is, the more amount of perturbation is required to add.

Functional perturbation is easier to implement since its design does not depend on

specific tasks. In addition, functional perturbation only adds perturbation once to

produce the perturbed payoff functions, regardless of the number of steps players

participate in the following information aggregation processes.

Functional perturbation was also proposed by [41, 130]. They studied the dis-

tributed optimization problem subject to the requirement of differential privacy.

Their work decomposed the objective functions into an infinite sequence of coeffi-

cients corresponding to the elements of a orthogonal basis in a separable Hilbert

space, and added noises to the infinite coefficient sequence. Unfortunately, trun-

cation is inevitable in practical implementations. Our work focuses on generaliz-

ing functional perturbation to the differentially private game setting. Instead of

considering infinite expansion, we propose a mechanism that does not involve the

decomposition of function space, but directly apply linear-quadratic functions as

perturbation avoiding the truncation problem.

6.1.2 Chapter Contributions

In this chapter, we make the following contributions:
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• We extend the notion of differential privacy to the network game setting, and

propose a Laplace linear-quadratic functional perturbation (LLQFP) algo-

rithm, which perturbs players’ original payoff functions with linear-quadratic

functional perturbation whose coefficients are generated according to trun-

cated Laplace distributions.

• For monotone games, we show that the LLQFP algorithm maintains the con-

cavity property of the perturbed payoff functions and yields a γ-accurate per-

turbed NE whose distance from the original NE is upper bounded by any

prescribed constant γ.

• We investigate LQ games that players’ payoff functions are parameterized. It

serves as a tutorial example showing how Laplace parameters are selected to

ensure certain differential privacy requirement.

• Experiments are conducted to verify the advantages of the LLQFP algorithm.

Private multi-agent systems are well-studied in the literature. However, there are

few studies under the game-theoretic framework. The work of [156, 186] focuses on

privacy-preserving distributed Nash-seeking strategy design for aggregated games.

The private distributed optimization algorithms in these works are to perturb the

original shared information with noises. On the contrary, we manage to extend the

functional perturbation mechanism first proposed by [41, 130] to the game-theoretic

settings for multi-agent systems and give a tutorial example of LQ games about

how differential privacy requirement can be achieved by parameter tuning, which

advances the literature.

6.1.3 Chapter Outline

The remainder of the chapter is organized as follows. For privacy concerns about

players’ payoff functions in network games, we formalize our problem in Section 6.2.

In Section 6.3, we propose the LLQFP algorithm. In Section 6.4, we consider mono-

tone games, and show the advantages of the LLQFP algorithm. In Section 6.5, we
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consider LQ games, and investigate Laplace parameter conditions that can guar-

antee certain different privacy requirement. Numerical examples are presented in

Section 6.6. this chapter ends with concluding remarks in Section 6.7.

6.2 Problem Formulation

6.2.1 Network Games

Consider a network game with n players. The players are interconnected through

an interaction/communication network. The interaction/communication network

is associated with a graph G(V,E), where V := {1, 2, . . . , n} represents the nodes

(players), and E defines the links (the interdependency among players). Each player

i ∈ V holds an action xi from a compact convex action space Ai ⊆ R. The aggregated

action profile of all players and the action profile excluding player i are denoted by

x := [x1, . . . , xn]
⊤ and x−i = [x1, . . . , xi−1, xi+1, . . . , xn]

⊤, respectively. Each player i

then receives her payoffs determined by a payoff function, i.e., ui = fi(xi,x−i), where

the payoff function fi ∈ C2(A) is twice continuously differentiable over A := Πi∈VAi.

A common solution concept in game theory is called Nash equilibrium. It depicts

an action profile under which no player may gain by simply modifying her action

while others maintain theirs unaltered. We denote the NE by x∗ := [x∗
1, . . . , x

∗
n]

⊤.

Information Aggregation Processes In network games, there are various in-

formation aggregation operations on network level that require players to share dy-

namical states over a horizon t ∈ {0, 1, . . . , T} to accomplish collective goals such as

the distributed Nash seeking [136, 149, 185], best-response dynamics [78, 108, 120],

and no-regret learning [20, 63, 103, 190].

Example 6.1 (Distributed Nash seeking [136, 149, 185]) At time step t,

each player i holds a dynamical state yi(t) that typically consists of her action

and her estimate of other players’ actions. Then, each player i shares yi(t) with

other players via certain interaction/communication network. Next, each player i

updates her dynamical state for yi(t + 1) based on the received players’ dynamical

states and her own payoff function fi. The network-level objective is for (perhaps
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part of) the sequence [y1(t); . . . ;yn(t)], t = 0, 1, . . . to converge to a NE.

Example 6.2 (Best-response Dynamics [78, 108, 120]) At time step t, each

player i holds a dynamical state yi(t) that represents her action. Then, each yi(t)

is observed by or communicated with other players. Next, each player i updates

her state yi(t + 1) as the action that maximizes her payoff function given other

players’ current actions. Best-response dynamics is a behavioral model depicting

how players strategically make decisions in a sequential manner. Sometimes, best-

response dynamics converge to a NE.

Example 6.3 (No-regret Learning [20, 63, 103, 190]) At time step t, each

player i holds a dynamical state yi(t) that typically consists of her action and her

estimate of other players’ payoff gradients. Then, each player i shares yi(t) with

other players via certain interaction/communication network. Next, each player i

updates her dynamical state upon the received players’ dynamical states and her

own payoff function fi. The network-level objective of no-regret learning is for the

sequence yi(t), t = 0, 1, . . . to minimize the regret of player i as the cumulative loss

compared with a plain/single action in hindsight.

6.2.2 Problem Definition

Differentially Private Information Aggregation Processes From the above

network-level information aggregation operations, it is clear that the yi(t), i =

1, . . . , n, t = 0, 1, . . . , T encode the information of payoff functions. Those states

yi(t) are shared by player i with other players. However, players’ payoff functions

are often private and contains sensitive information [69]. As a result, payoff func-

tions face privacy risk in the information aggregation processes.

Differential privacy has been a standard tool to protect an individual’s data

privacy in a system where aggregate information is publicly published, but indi-

vidual information is privately withheld [50]. Specifically, to protect the differ-

ential privacy of players’ payoff functions, the mapping from f := [f1; . . . ; fn] to

Y := [y1(0); . . . ;y1(T ); . . . ;yn(0); . . . ;yn(T )] should satisfy the following differen-

tial privacy condition.
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Definition 6.1 (W-adjacency [41]) Given any normed vector space (W, || · ||W),

f and f
′ are said be W-adjacent if there exists i0 ∈ V such that

fi = f
′

i , i ̸= i0; (6.1a)

fi0 − f
′

i0
∈W. (6.1b)

The normed vector space W is a design choice that we specify later according to the

class of payoff functions.

Definition 6.2 ((ϵ, δ)-differential privacy) The mapping M is said to preserve

(ϵ, δ)-differential privacy if for any subset M ⊆ range
(
M
)
,

P(M(f) ∈M ) ≤ eϵP(M(f ′) ∈M ) + δ, (6.2)

holds for any two W-adjacent payoff functions f and f ′.

6.2.3 Functional Perturbation

We propose a functional perturbation mechanism from f to f̂ where certain pertur-

bation is added to produce f̂ , and then players use f̂ to participate in information

aggregation processes. As a result, the privacy of players’ payoff functions f may be

protected in the sense that Definition 6.2 may be satisfied. If the mapping from f

to f̂ preserves differential privacy, then differential privacy of the mapping from f

to Y is also enforced by the immune to post-processing [50].

There are a few practical challenges in designing such a mechanism:

• Differential privacy of the functional perturbation mechanism from f to f̂

should be provable.

• The basic regularity property of the game should be maintained. In particular,

if f are concave, f̂ should be also concave.

• The distance between the NE of the original game and the NE of the perturbed

game should be upper bounded and adjustable by parameter tuning.
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In this chapter, we aim to develop a distributed algorithm to realize this functional

perturbation mechanism that can address the above challenges.

6.3 The Proposed Algorithm

The truncated Laplace distribution truncated by [−a, a] with mean zero and scale

parameter λ, denoted Ltr(a, λ), has probability density function

p(x; a, λ) =

 Be−|x|/λ, for x ∈ [−a, a],

0 , otherwise,
(6.3)

where B = 1
2λ(1−e−a/λ)

.

Denote the neighbors of player i by the set Ni ⊂ V. We sort the indices of player

i’s neighbors in ascending order in the set Oi := {i1, i2, . . . , i|Ni|}. For example, if

player j is player i’s kth neighbor, then ik = j.

6.3.1 LLQFP Algorithm

We next propose a Laplace linear-quadratic functional perturbation Algorithm in

Algorithm 6.1.

Algorithm 6.1 perturbs the original payoff functions with linear-quadratic func-

tional perturbation whose coefficients are generated according to (6.3). Each player

i first generates |Ni| + 2 independent truncated Laplace noises, and then strategi-

cally inserts noises to her payoff function in a linear-quadratic perturbation form.

Each qi in the perturbed payoff function is not a simple stack of |Ni|+ 1 truncated

Laplace noises, but depends on the network structure and the truncated bound a.

The work of [41, 130] was based on the assumption that the objective functions are

twice continuously differentiable functions with bounded gradients and Hessians, and

then decomposed f into its coefficients by the infinite expansion, and perturbed this

infinite sequence by adding noise to all of its elements. Truncation is inevitable in

practical implementations. However, our approach here assume that the underlying

game is a monotone game, which is common in the game literature [143]. We only
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Algorithm 6.1 Laplace Linear-quadratic Functional Perturbation Algorithm
Input: Laplace parameters a, λ; payoff functions f1, . . . , fn;

Output: perturbed payoff functions f̂1, . . . , f̂n

1: Each player i ∈ V independently generates a sequence random numbers ωi,k,
k = 1, . . . , |Ni|+ 2, according to Ltr(a, λ) in (6.3).

2: Each player i ∈ V computes

qij =


ωi,(|Ni|+1)

2
+ a(|Ni|+1)

2
, j = i,

ωi,k, j = ik,
0, otherwise,

(6.4a)

βi = ωi,(|Ni|+2). (6.4b)

3: Each player i ∈ V employs a perturbed payoff function based on qi :=
[qi1, . . . , qin]

⊤ and βi:

f̂i(xi,x−i) = fi(xi,x−i)− xiq
⊤
i x− βixi. (6.5)

4: f̂1, . . . , f̂n

consider linear-quadratic functional perturbation where the noise coefficients are

related with the underlying interaction graph of the game, in the sense that the

network structure of the game may be maintained.

6.3.2 Positivity Guarantee

We now present a property of the coefficients generated according to Ltr(a, λ), which

is necessary for the Theorems later.

Denote di = [qi1, . . . , qi(i−1), 2qii, qi(i+1), . . . , qin]
⊤ and D = [d1 d2 . . . dn]. Also

denote β = [β1, . . . , βn]
⊤.

Lemma 6.1 D⊤ is a positive semidefinite matrix.

Proof. We focus on the magnitude of the diagonal element in each row, and the sum

of the magnitudes of all non-diagonal elements in that row. According to (6.4a),

we have |2qii| ∈ [a|Ni|, a(|Ni| + 2)] and
∑

i ̸=j |qij| ∈ [0, a|Ni|], ∀i ∈ V. Since |2qii| ≥∑
i ̸=j |qij|, D⊤ is diagonally dominant. A symmetric diagonally dominant real matrix

with nonnegative diagonal entries is positive semidefinite. Hence, D⊤ is a positive

semidefinite matrix. □
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6.4 Monotone Games

In what follows, we look at a class of strongly monotone games, present its basic

properties, and show the advantages of Algorithm 6.1.

For each i ∈ V, we denote the gradient of fi with respect to xi by∇xi
fi :=

∂fi
∂xi
∈ R,

and ϕ(x) := [∇x1f1, . . . ,∇xnfn]
⊤ ∈ Rn.

We impose the following assumption of a class of strongly monotone games.

Assumption 6.1 ([20]) For some lm > 0 and for all x′,x ∈ A,

∑
i∈V

(ϕi(x)− ϕi(x
′))(xi − x′

i) ≤ −lm∥x− x′∥2. (6.6)

Assumption 6.1 implies that each player’s original payoff function f is strictly con-

cave in xi [143]. We introduce the definition of concavity preservation.

Definition 6.3 (Concavity preservation [41]) Let Assumption 6.1 hold. Algo-

rithm 6.1 is said to be concavity-preserving if each f̂i is strictly concave in xi for all

i ∈ V.

6.4.1 Concavity Preservation

The following result proves that under Assumption 6.1, Algorithm 6.1 is concavity-

preserving.

Theorem 6.1 Let Assumption 6.1 hold. Then, Algorithm 6.1 is concavity-

preserving.

Proof. Under Assumption 6.1, each player i’s original payoff function is strictly

concave in xi. We consider x = [x1, . . . , xi, . . . , xn]
⊤ and x′ = [x1, . . . , x

′
i, . . . , xn]

⊤

and obtain (ϕi(x)− ϕi(x
′))(xi − x′

i) < 0.

We then check the sign of (ϕ̂i(x)− ϕ̂i(x
′))(xi − x′

i) = (ϕi(x)− ϕi(x
′))(xi − x′

i)−

2qii(xi − x′
i)
2 < 0, which complies with Definition 6.3. □

The next result shows that under Assumption 6.1, both original game and per-

turbed game after Algorithm 6.1 admit a unique NE.
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Theorem 6.2 Let Assumption 6.1 hold. Then,

(i) the original game with the payoff functions f admits a unique NE.

(ii) after Algorithm 6.1, the perturbed game with the perturbed payoff functions f̂

admits a unique NE.

Proof. For (i), the class of strongly monotone games is a proper subclass of monotone

games, first introduced in [143]. Instead of the stronger requirement in Assump-

tion 6.1, the weaker assumption
∑

i∈V ci(ϕi(x) − ϕi(x
′))(xi − x′

i) < 0 is imposed.

Every monotone game admits a unique NE [143, Theorem 2]. Therefore, the origi-

nal game under Assumption 6.1 also admits a unique NE.

For (ii), we are going to check whether the perturbed game is a monotone game by

investigating whether the sign of
∑

i∈V(ϕ̂i(x)− ϕ̂i(x
′))(xi−x′

i) < 0, ∀x′,x ∈ A,x′ ̸=

x. It is straightforward that

∑
i∈V

(ϕ̂i(x)− ϕ̂i(x
′))(xi − x′

i)

=
∑
i∈V

(ϕi(x)− ϕi(x
′))(xi − x′

i)−
∑
i∈V

2qii(xi − x′
i)
2 < 0.

We draw the conclusion that the perturbed game is a monotone game, therefore

admitting a unique NE. □

6.4.2 γ-accurate Nash equilibrium

According to Theorem 6.2, when Assumption 6.1 holds, both original game and

perturbed game admit a unique NE. We denote the original NE of the original game

by x∗ and the perturbed NE of the perturbed game by x̂∗.

We now introduce the definition of γ-accurate NE.

Definition 6.4 (γ-accurate NE) Let Assumption 6.1 hold. The perturbed NE x̂∗

is said to be γ-accurate if ∥x∗ − x̂∗∥ ≤ γ.

In the following result, we derive an upper bound for the distance between the

original NE and the perturbed NE after Algorithm 6.1.
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Theorem 6.3 Let Assumption 6.1 hold. Further suppose that the original NE and

perturbed NE are both interior points in the action space A. Then, the perturbed NE

is γ-accurate with

γ =

√
na+

√∑
i∈V(4|N|2i + 5|Ni|+ 4)a∥x∗∥

lm
(6.7)

Proof. By taking the derivative of (6.5) w.r.t. xi and rewriting it in the vector form,

we obtain

ϕ̂(x) = ϕ(x)−D⊤x− β. (6.8)

We now turn to the original NE and perturbed NE, whose existence and uniqueness

are guaranteed by Theorem 6.2. Moreover, in Theorem 6.3, we further impose

the assumption of interior NE. Substituting x̂∗ into Eq. (6.8), we have ϕ(x̂∗) =

ϕ̂(x̂∗) +D⊤x̂∗ + β. The first-order condition for the interior NE is that ϕ(x∗) = 0

and ϕ̂(x̂∗) = 0. Then, it yields
[
ϕ(x∗) − ϕ(x̂∗)

]
− D⊤(x∗ − x̂∗) = −β − D⊤x∗.

Multiplying by (x∗ − x̂∗)⊤, we observe that

− (x∗ − x̂∗)⊤(β +D⊤x∗)

=(x∗ − x̂∗)⊤
[
ϕ(x∗)− ϕ(x̂∗)

]
− (x∗ − x̂∗)⊤D⊤(x∗ − x̂∗)

(a)

≤(x∗ − x̂∗)⊤
[
ϕ(x∗)− ϕ(x̂∗)

]
(b)

≤ − lm∥x∗ − x̂∗∥2.

The inequality (a) holds because D⊤ is designed to be a positive semidefinite matrix

(See Lemma 6.1). The inequality (b) is exactly from Eq. (6.6). Thus there holds

(x∗ − x̂∗)⊤(β +D⊤x∗) ≥ lm∥x∗ − x̂∗∥2 > 0.

Further considering the Cauchy–Schwarz inequality, we finally obtain a bound on
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the distance

∥x∗ − x̂∗∥ (6.9a)

≤∥β∥+ ∥D∥∥x
∗∥

lm
(6.9b)

≤
√
na+

√∑
i∈V(4|N|2i + 5|Ni|+ 4)a∥x∗∥

lm
. (6.9c)

The proof is now completed. □

Remark 6.1 The upper bound (6.9c) is very conservative because it considers the

worst-case scenario in which all qij, βi, ∀i, j ∈ V take their maximum values. In

comparison, the upper bound (6.9b) is a relatively small bound, which is more likely

to happen with high probability in realization.

6.5 Linear-quadratic Games

A practical challenge of Algorithm 6.1 is how to select the Laplace parameters a and

λ that can ensure certain differential privacy requirement. The selection depends on

the class of payoff functions and the design choice of W-adjacency. In this section,

we analyze a benchmark game whose payoff functions are in the linear-quadratic

form.

Denote the adjacency matrix of the interaction/communication network by G ∈

Rn×n, with each entry gij ∈ R denoting whether player j ∈ V is linked to player

i ∈ V and also indicating the linkage intensity.

We now impose the assumption of linear-quadratic games.

Assumption 6.2 The payoff functions of a linear-quadratic game are set as

fi(xi,x−i) = −
1

2
x2
i + bixi +

∑
j∈V

gijxixj, ∀i ∈ V, (6.10)

where bi ∈ R≥0 represents the marginal benefit of player i.

Since each player i’s payoff functions is now parameterized by the parameters gij

and bi. Hence, it is reasonable to specify W-adjacency on these parameters. For
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example, we specify a definition of µ-adjacency for LQ games.

Definition 6.5 (µ-adjacency) Consider linear-quadratic payoff functions f and

f ′. They are said to be µ-adjacent if there exists i0 ∈ V such that

gi1 = g′i1, . . . , gin = g′in, bi = b′i, i ̸= i0; (6.11a)

max{gi01 − g′i01, . . . , gi0n − g′i0n, bi0 − b′i0} ≤ µ. (6.11b)

In what follows, we first present how the Laplace parameters a and λ are se-

lected to guarantee (ϵ, δ)-differential privacy for one-dimensional truncated Laplace

mechanism, and then generalize this result to differential private LQ games.

6.5.1 One-dimensional Truncated Laplace Mechanism

The work of [43, 59, 74] investigated how the Laplace parameters are chosen to meet

the differential privacy criterion in the one-dimensional case. As presented in (6.9c),

Algorithm 6.1 leads to a biased perturbed NE. As a result, a stringent analysis is

required to determine the lower bounds of the Laplace parameters that can produce

a less biased perturbed NE. Compared with [59], the following result relaxes the

requirement for the Laplace parameters to guarantee the differential privacy, and

gives the tight lower bounds for a and λ in the one-dimensional case.

We consider one-dimensional truncated perturbation mechanism. Let D be the

space of datasets of interest. Suppose there is a query as a function y : D → R.

Given D, a randomized mapping K will release the one-dimensional response K(D)

that is the summation of the true query answer y ∈ R and a random noise η ∈ [−a, a]

following Ltr(a, λ), K(D) = y(D)+η. The sensitivity of one-dimensional true query

is then given by ∆y = maxD1,D2∈D |y(D1)−y(D2)|. The randomized mapping K gives

(ϵ, δ)-differential privacy if for any two datasets D1, D2 ∈ D differing in at most one

element, and all K ⊆ range(K), there holds

P(K(D1) ∈ K ) ≤ eϵP(K(D2) ∈ K ) + δ. (6.12)
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Lemma 6.2 Given the privacy parameters 0 < δ < 1
2
, ϵ > 0, the randomized map-

ping K preserves (ϵ, δ)-differential privacy if

λ ≥ ∆y

ϵ− ln(1− δ)
, (6.13a)

a ≥ max
{
∆y, λ ln

(
e

∆y
λ − 1

2δ
+ 1

)}
. (6.13b)

Proof. We are seeking to show that for any D1, D2 ∈ D differing in at most one

element, for any subset K ⊆ range(K), Eq. (6.12) is satisfied.

Without loss of generality, we let y(D1) ≤ y(D2). Given K ⊆ range(K), there

are 5 cases to consider, each of which should render Eq. (6.12) to be satisfied.

1. K ⊆ (−∞,−a+ y(D1)] : It is true that 0 ≤ eϵ · 0 + δ.

2. K ⊆ [−a + y(D1),−a + y(D2)] : First, since δ < 1
2
, it is impossible to find

the configuration for a and λ that can make Eq. (6.12) valid when a ≤ ∆y.

Second, we now consider y(D2) − y(D1) ≤ ∆y < a. For any D1 and D2

differing in at most one element, to satisfy Eq. (6.12), we are going to show

that the probability mass in the interval [−a + y(D1),−a + y(D2)] does not

exceed δ:

∫
K

Be
−|y−y(D1)|

λ dy =Bλ(e
−a+y(D2)−y(D1)

λ − e
−a
λ )

≤Bλ(e
−a+∆

λ − e
−a
λ ) ≤ δ.

The first inequality holds because e
−a+y(D2)−y(D1)

λ increases when y(D2)−y(D1)

increases, while the second inequality comes from the condition (6.13b).

3. K ⊆ [−a+ y(D2), a+ y(D1)] : Equation (6.12) can be written as

∫
K

Be
−|y−y(D1)|

λ dy ≤ eϵ
∫

K

Be
−|y−y(D2)|

λ dy + δ.

Using triangle inequality |y−y(D2)| ≤ |y−y(D1)|+ |y(D1)−y(D2)| and com-

bining the condition (6.13a), it is sufficient to show that
∫

K
Be

−|y−y(D1)|
λ dy ≤

eϵ−
∆
λ

∫
K

Be
−|y−y(D1)|

λ dy+δ, or further, 1 ≤ eϵ−
∆y
λ +δ ≤ eϵ−

∆y
λ + δ∫

K Be
−|y−y(D1)|

λ dy
.
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4. K ⊆ [a+ y(D1), a+ y(D2)] : It is true that 0 ≤ eϵ
∫

K
Be

−|y−y(D2)|
λ dy + δ.

5. K ⊆ [a+ y(D2),∞] : It is valid that 0 ≤ eϵ · 0 + δ.

In all, under conditions (6.13a) and (6.13b), the randomized mapping K preserves

(ϵ, δ)-differential privacy. □

6.5.2 Differentially Private LQ Games

In what follows, Laplace parameter conditions are given to ensure certain differential

privacy requirement for LQ games.

Stack the non-zero elements qij into q ∈ Rm with m = n +
∑

i∈V |Ni|. Also

stack gij into g ∈ Rm such that each element in g is matched with the corresponding

element in q. In particular, if the kth element of q is qij, then the kth element of g is

gij. The dimension of

g
b

 is l = 2n+
∑

i∈V |Ni|. Further define p = 1+maxi∈V |Ni|.

Theorem 6.4 Consider a LQ game. Then given any ϵ, δ, µ > 0, the mapping

M̂(g,b) =

g − q

b− β

 achieves (pϵ, pδ)-differential privacy under µ-adjacency if

λ ≥ µ

ϵ− ln(1− δ)
, (6.14a)

a ≥ max
{
µ, λ ln

(
e

µ
λ − 1

2δ
+ 1

)}
. (6.14b)

Proof. Consider two µ-adjacent linear-quadratic payoff functions f and f
′ that are

uniquely determined by the pairs (g,b) and (g′,b′), respectively.

Denote v = [g⊤ b⊤]⊤ ∈ Rl and v′ = [g′⊤ b′⊤]⊤ ∈ Rl. Also define Vperturbed =

{1, 2, . . . , l}. Due to µ-adjacency, there exists i0 ∈ V such that the conditions (6.11a)

and (6.11b) hold. We denote by Vdiff the indices of bi0 and gi0j, j ∈ Ni0 ∪ {i0}, in

v. The conditions (6.11a) and (6.11b) indicate that 1) v and v′ differ in at most

|Ni0 |+ 1 elements; 2) and for any i ∈ Vdiff , we have |vi − v′i| ≤ µ.

Note that each vi, i ∈ Vdiff , is independent of any other vj, j ∈ Vperturbed ̸= i.

We decompose M̂ and further notice that each component M̂i(vi), i ∈ Vdiff , can be

viewed as a randomization of vi. We then apply Lemma 6.2 with ∆y = µ. It is



6.5. LINEAR-QUADRATIC GAMES 133

therefore straightforward that when the conditions (6.14a) and (6.14b) are satisfied,

each component M̂i(vi), i ∈ Vdiff , preserves (ϵ, δ)-differential privacy.

We now examine the probability P(M̂(v) ∈ M̂ ) =
∏

i∈Vperturbed
P(M̂i(vi) ∈ M̂i).

There are at most |Ni0 | + 1 different elements indexed in Vdiff between v and v′,

while the remaining elements indexed in the set Vsame := (Vperturbed − Vdiff ) are

the same. Also, combining the fact that each component M̂i(vi), i ∈ Vdiff , is (ϵ, δ)-

differentially private, as a consequence, we can substitute

∏
i∈Vperturbed

P(M̂i(vi) ∈ M̂i)

=
∏

i∈Vsame

P(M̂i(vi) ∈ M̂i)
∏

i∈Vdiff

P(M̂i(vi) ∈ M̂i)

≤
∏

i∈Vsame

P(M̂i(v
′
i) ∈ M̂i)

∏
i∈Vdiff

(eϵP(M̂i(v
′
i) ∈ M̂i) + δ)

If we focus on the second product term and look at the additive contribution of

each of the δ terms, of which there are |Ni0 | + 1, we notice that they are only ever

multiplied by probabilities that are at most one Therefore, each contributes at most

an additive δ:

∏
i∈Vdiff

(eϵP(M̂i(v
′
i) ∈ M̂i) + δ)

≤e(|Ni0
|+1)ϵ

∏
i∈Vdiff

P(M̂i(v
′
i) ∈ M̂i) + (|Ni0 |+ 1)δ

Then, we have

∏
i∈Vperturbed

P(M̂i(vi) ∈ M̂i)

≤ e(|Ni0
|+1)ϵP(M̂(v′) ∈ M̂ ) + (|Ni0 |+ 1)δ.

Note that i0 can be any i ∈ V. Therefore, M̂ releases (pϵ, pδ)-differential privacy

with p = 1 +maxi∈V |Ni|. □

Remark 6.2 Note that the privacy guarantee depends in a crucial way on how the
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notion of adjacency is defined. Although we only prove the differential privacy from f

to f̂ for LQ games with µ-adjacency in Definition 6.5, it serves as a tutorial example

and can be applied to other monotone games as long as players’ payoff functions are

explicitly given.

6.6 Numerical Examples

Consider a LQ game with 10 players. Players are arranged in a ring lattice with

each player connected to |Ni| = 4, ∀i ∈ V, neighbors. (Thus, p = 5.) Each

linkage intensity is set as 0.08. The action space considered is relatively large,

xi ∈ [0, 100], ∀i ∈ V, to ensure interior original NE and perturbed NE. According to

[4], the original NE is calculated by x∗ = (I−G)−1b.

Experiment 6.1 (Validation of Theorems) We consider µ = 0.01 and choose

two parameter configurations

ϵ1 = ln 2, δ1 = 0.05, a1 = 0.034, λ1 = 0.013; (S1)

ϵ2 = 3 ln 2, δ2 = 0.15, a2 = 0.015, λ2 = 0.0045, (S2)

where a1, a2, λ1, λ2 are selected upon Theorem 6.4 to guarantee differential privacy.

Under each parameter configuration, we conduct 500 executions, in each of which

we apply Algorithm 6.1. Each perturbed NE is calculated by x̂∗ = (I−G+D)−1(b−

β). We then compute ∥x∗ − x̂∗∥, and γ according to (6.9b).

In Fig. 6.1, we plot the comparison of γ and ∥x∗ − x̂∗∥ between two parameter

configurations (S1) and (S2). The result of Fig. 6.1 is consistent with Theorem 6.3

that the distance between the original NE and the perturbed NE is bounded by γ

while preserving differential privacy. □

Experiment 6.2 (Benchmark with Existing Methods) Upon Experi-

ment 6.1, we further plot each player’s original NE and distribution of the

perturbed NE under two parameter configurations (S1) and (S2) among 500

executions.
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Figure 6.1: The comparison of γ and ∥x∗ − x̂∗∥ between two parameter config-
urations (S1) and (S2).

The result of Fig. 6.2 shows that most perturbed NE under (S1) and (S2) are

located to the left of the original NE. The parameter configuration (S2) has a weaker

requirement for differential privacy. The perturbed NE under (S2) are closer to the

original NE, implying that one has to sacrifice the differential privacy of payoff

functions for the accuracy of NE.

To further show the relevance among the accuracy of NE, the privacy requirement

ϵ and the Laplace parameter a, we fix δ = 0 and plot ∥x∗ − x̂∗∥/∥x∗∥ versus ϵ and

a each for 50 executions in Fig. 6.3. Roughly speaking, it shows that as ϵ decreases

(stricter privacy), the Laplace parameter a increases and thus the accuracy of NE

decreases.

Compared with existing methods of state/communication perturbation [47, 67,

186], we both show the tradeoff between the accuracy of the optimal points/NE

and the privacy of objective functions/payoff functions, However, they prove that

limk→∞ E(∥x(k)− x∗∥2) has a upper bound depending on convergence rate and pri-

vacy level. According to the structure of their privacy algorithm, they might produce
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Figure 6.2: The original NE and the distribution of the perturbed NE under
the parameter configurations (S1) and (S2). The y-axis represents the number
of times that player i’s perturbed NE action occurred within the intervals set by
the x-axis among 500 executions.

a asymptotically unbiased perturbed NE. Unlike those results, Algorithm 6.1 always

produces a biased perturbed NE. It arises from E(qii) > 0, ∀i ∈ V that are necessary

to ensure the concavity of the perturbed payoff function. However, they have to

add perturbation to communications at all time steps. For example, in [47], it takes

roughly 4000 steps to reach a close distance from x∗, in each of which perturbation is

added to players’ state. In contrast, we only add perturbation to the original payoff

functions once, after which the computation of the distributed NE is deterministic.

The number of linear-quadratic perturbation coefficients (non-zero qij, βi, ∀i, j ∈ V)

generated by Algorithm 6.1 is only 60, which is far less than theirs. □
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Figure 6.3: The plot of ∥x∗ − x̂∗∥/∥x∗∥ versus ϵ and a each for 50 executions.

Experiment 6.3 (Tradeoff between Privacy and Payoffs) Based on Experi-

ment 6.1, we further compute the players’ payoffs at the original NE and the per-

turbed NE under two parameter configurations, f(x∗) and f(x̂∗), and plot them in

Fig. 6.4,.

From the result of Fig. 6.4, it is not surprising that players’ payoffs at the per-

turbed NE under (S1) and (S2) are always lower than those at the original NE.

Players’ payoffs at the perturbed under (S1) are lower than those at the perturbed

NE under (S2). It indicates that the sacrifice of the accuracy of NE for payoff

functions’ privacy leads to the decline of players’ payoffs. □

6.7 Summary

In this chapter, we investigated network games in which players participated in infor-

mation aggregation processes under the differential privacy requirement for players’

payoff functions. The LLQFP mechanism was proposed. We turned to monotone

games, demonstrating that the LLQFP mechanism preserved the concavity property

and generated a bounded perturbed NE which was controllable by Laplace parame-

ter tuning. We also looked at LQ games as a pedagogical example to explain, given

what Laplace parameter conditions, differential privacy of the LLQFP mechanism
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Figure 6.4: Players’ payoffs at the original NE, the perturbed NE in (S1), and
the perturbed NE in(S2). The y-axis represents the value of player i’s payoffs.

could be ensured. Finally, numerical examples were presented to demonstrate the

benefits of the LLQFP mechanism.



Chapter 7

Conclusions

7.1 Summary

Multi-agent systems is an active field of research. While multi-agent systems have

been used to tackle complex problems efficiently and robustly, there are many

potential social shaping problems emerging. This thesis focuses on solving and

analyzing social shaping problems of price acceptance, cooperation and competition,

and privacy risks in multi-agent systems with the help of optimization theory,

control theory, game theory, and differential privacy. The detailed contributions of

the thesis are as follows.

Price acceptance Chapter 3 studies multi-agent systems with decentralized

resource allocations. First, static multi-agent systems are studied. Based on duality

theory, the equivalence of social welfare equilibrium and competitive equilibrium is

established under convexity assumptions. A new social shaping problem is defined

to investigate the case when the optimal price at the competitive equilibrium is

upper bounded for social acceptance. Quadratic utility functions are examined

and the associated social shaping problem is solved by prescribing the range of

admissible quadratic functions that agents can select from. Then, we extend the

study to dynamical multi-agent systems with linear dynamics. The equivalence of

dynamic social welfare equilibrium and dynamic competitive equilibrium continues

to hold. In view of the dynamic programming principle, a recursive computation

139
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of dynamic competitive equilibrium is presented. In order to smooth the dynamic

pricing, a receding horizon approach is proposed.

Cooperation and Competition Chapter 4 conducts a case study of multi-agent

systems, i.e., the well-known RICE model. In view of optimal control theory

and game theory, we analyze how agents develop cooperation and competition in

deciding regional climate policies in the context of the RICE model. First, we show

that the RICE model is intrinsically a dynamic game. Second, both cooperative

and competitive solutions to this RICE dynamic game are studied. Simulations

and analysis demonstrate i) the possible assistance of game theory in facilitating

international negotiations and reaching a consensus on regional climate mitigation

measures, ii) and the potential impact of regional relationships of cooperation and

competition on future climate change. Finally, an implementation of the RICE

dynamic game framework has been open-sourced.

Privacy Risks Chapter 5 introduces a network structure inference problem for

linear-quadratic games from best-response dynamics. We assume that there is an

adversary who does not know the game network structure but is capable of observ-

ing all players’ best-response actions and manipulating some players’ actions. The

aim of the adversary is to infer the game network structure from its observations

and manipulations. First, network structure identifiability is theoretically shown

to be equivalent to certain controllability conditions. Second, a stable and sparse

system identification algorithm is proposed to learn the network structure against

observation noises. Experiments on synthetic and real-world networks are validated

to demonstrate the effectiveness of the proposed learning algorithm. In the con-

text of LQ games, Chapter 5 reveals a type of privacy risk in multi-agent systems:

the leakage of network structure/interaction graph. Once the interaction graph

is inferred by the adversary, parameters that characterize the peer effect between

agents are leaked. In LQ games, agents’ payoff functions are parameterized by these

peer effect parameters and other parameters capturing the level of the selfishness of

agents. Consequently, agents’ payoff functions are also under leakage risks.
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As a result, Chapter 6 studies network games where players participate in in-

formation aggregation processes subject to the differential privacy requirement for

players’ payoff functions. First, we extend the notion of differential privacy to the

network game setting and propose a Laplace linear-quadratic functional perturba-

tion algorithm. Second, we show two advantages of the proposed algorithm: i)

concavity preservation of perturbed payoff functions, ii) boundedness of perturbed

Nash equilibrium. Finally, taking LQ games as a tutorial example, we demonstrate

how Laplace parameters can be selected to meet specific differential privacy needs.

7.2 Future Research Directions

Price acceptance In Chapter 3, a new social shaping problem of price acceptance

is defined to investigate the case when the optimal price at the competitive equilib-

rium is upper bounded by a threshold for social acceptance. The price acceptance

problem is examined under quadratic utility functions. By prescribing the range

of admissible quadratic functions that agents can select from, the associated price

acceptance problem is solved. However, the considered class of utility functions is

limited to quadratic utility functions. We believe that future work to construct a

range of social admissible utility functions in a generic way is worth exploring. In

addition, the price acceptance problem considered in Chapter 3 is limited to the

static setting. Future work to limit the dynamic pricing in the context of dynamic

multi-agent systems is also a promising direction. We have addressed the price

acceptance problem of dynamic multi-agent systems over both finite horizon and

infinite horizon [147, 148].

Cooperation and Competition Chapter 4 conducts a single case study of multi-

agent systems. It investigates agents’ cooperative and non-cooperative behaviors

in the context of the RICE model as a dynamic game. A Recursive Best-response

Algorithm for Dynamic Games is proposed to describe the sequences of agents’

best-response decisions and to potentially obtain open-loop Nash equilibrium.

Although this algorithm indicates convergence to open-loop Nash equilibrium in
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the RICE game, it may not work in other dynamic games. Admittedly, there are

lots of distributed Nash-seeking algorithms for games in the literature. However,

considering the large scale of agents [58], the action space of agents increases

exponentially, which inevitably makes it more difficult to find Nash equilibrium or

globally optimal solutions. In addition, since most distributed Nash-seeking algo-

rithms require communication among agents, with the increasing scale of agents, the

communication cost is a big challenge. We believe that there is a space to be filled

by future research in cooperation and competition in large-scale multi-agent systems.

Privacy Risks Chapter 5 introduces a network structure inference problem for LQ

games from best-response dynamics given all players’ actions are fully observable.

The learning method proposed in Chapter 5 assumed the completeness of sample

data. In other words, the actions taken by all players can be fully observed. Future

work to consider a general setting when players’ actions are partially observable is

a promising direction to overcome the limitation of not having access to complete

data. We have addressed the partial case, which is available at OpenReview.net

[46].

Chapter 6 studies network games where players are involved in information ag-

gregation processes subject to specific differential privacy requirement for players’

payoff functions. A Laplace linear-quadratic functional perturbation algorithm is

proposed. Two advantages of the proposed algorithm are showed: i) concavity

preservation of perturbed payoff functions, ii) boundedness of perturbed Nash equi-

librium. Only trade-offs between privacy and accuracy of NE is investigated. A

future direction is to analytically characterize the trade-offs between privacy and

payoffs. The tutorial example showing the effectiveness of the proposed algorithm

is limited to linear-quadratic games. Future work to show how given differential

privacy requirement can be met by Laplace parameter tuning for other classes of

payoff functions.
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