6,339 research outputs found

    SPEED CONTROL OF PMSG SUPPLIED CLOSED LOOP PMSM DRIVE FOR WATER PUMPING SYSTEM

    Get PDF
    This paper introduces a standalone variable speed wind energy conversion system(WECS) based on permanent magnet synchronous Generator (PMSG) supplied permanent magnet synchronous Motor (PMSM) drive for water pumping system. Pumping water is a worldwide   need that is necessary for agriculture and the usage of wind energy conversion is a choice that is considered natural for that kind of applications. The Permanent magnet synchronous motor (PMSM) drive that is powered by high speed wind energy conversion system is investigated. The WECS application is inquired, in order to high light the wind speed effect on the WECS feeding the PMSM, where the speed of a PMSM drive is a function of wind speed. The proposed system consists of  WECS using PMSG, a rectifier converter, a three phase VSI (Voltage Source Inverter) and a PMSM coupled with a centrifugal water pump. The suggested control strategies are focused on Maximum Power Point Tracking (MPPT) for PMSG speed control, and DC-bus voltage management. Three phase VSI (Voltage Source Inverter) is also controlled to supply PMSM under change in wind speed in vector oriented mode. Some simulations are done using Matlab / Simulink software in order to show the control strategies performances

    Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology

    Get PDF
    This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn

    New Adaptive Control Strategy for a Wind Turbine Permanent Magnet Synchronous Generator (PMSG)

    Get PDF
    Wind energy conversion systems have become a key technology to harvest wind energy worldwide. In permanent magnet synchronous generator-based wind turbine systems, the rotor position is needed for variable speed control and it uses an encoder or a speed sensor. However, these sensors lead to some obstacles, such as additional weight and cost, increased noise, complexity and reliability issues. For these reasons, the development of new sensorless control methods has become critically important for wind turbine generators. This paper aims to develop a new sensorless and adaptive control method for a surface-mounted permanent magnet synchronous generator. The proposed method includes a new model reference adaptive system, which is used to estimate the rotor position and speed as an observer. Adaptive control is implemented in the pulse-width modulated current source converter. In the conventional model reference adaptive system, the proportional-integral controller is used in the adaptation mechanism. Moreover, the proportional-integral controller is generally tuned by the trial and error method, which is tedious and inaccurate. In contrast, the proposed method is based on model predictive control which eliminates the use of speed and position sensors and also improves the performance of model reference adaptive control systems. In this paper, the proposed predictive controller is modelled in MATLAB/SIMULINK and validated experimentally on a 6-kW wind turbine generator. Test results prove the effectiveness of the control strategy in terms of energy efficiency and dynamical adaptation to the wind turbine operational conditions. The experimental results also show that the control method has good dynamic response to parameter variations and external disturbances. Therefore, the developed technique will help increase the uptake of permanent magnet synchronous generators and model predictive control methods in the wind power industry

    Maximum power point tracking control of hydrokinetic turbine and low-speed high-thrust permanent magnet generator design

    Get PDF
    River-based hydrokinetic turbine power generation systems have been studied to introduce an effective energy flow control method. Hydrokinetic turbine systems share a lot of similarities with wind turbine systems in terms of physical principles of operation, electrical hardware, and variable speed capability for optimal energy extraction. A multipole permanent magnet synchronous generator is used to generate electric power because of its ability to reach high power density and high thrust at low speed. A 3-phase diode rectifier is used to convert AC power from the generator into DC power and a boost converter is used to implement energy flow control. On the load side, an electronic voltage load is used for test purposes to simulate a constant DC bus voltage load, such as a battery. A dynamic model of the entire system is developed and used to analyze the interaction between the mechanical structure of water turbine and electrical load of the system, based on which a maximum power point tracking control algorithm is developed and implemented in the boost converter. Simulation and experimental results are presented to validate the proposed MPPT control strategy for hydrokinetic turbine system. Similar to the wind turbine system, hydrokinetic turbine system usually requires a gear box to couple the turbine and the generator because the operating speed range for the hydrokinetic turbine is much lower than the operating speed range for most PMSGs. However, the gear box coupling adds additional transmission power losses. Therefore a high-thrust low-speed permanent magnet synchronous generator is designed to couple with the water turbine without a gear box --Abstract, page iii

    Wind turbine emulation using an inverter-controlled induction motor

    Get PDF
    The focus of this work is on the wind turbine emulation, using an induction motor (IM) driven by a variable speed drive and real time control software, to supply a mechanical power to the generator’ shaft. From a given wind profile, using the turbine characteristics and the rotational speed of the generator, the theoretical mechanical power is calculated and regulated at the output of the induction motor. The drive train was designed for small scale power systems, and it is based on a variable speed wind energy system, using a permanent magnet synchronous generator, decoupled from the grid by a power rectifier bridge and a photovoltaic (PV) inverter. The inverter approach aims to provide cost effective solutions and technological independence, aiming at exploring a large amount of feasible sites. In order to corroborate the proposed design, the experimental platform has been tested with two different PV inverters.info:eu-repo/semantics/publishedVersio

    Low power wind energy conversion system based on variable speed permanent magnet synchronous generators

    Full text link
    This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing scheme based on a diode rectifier and a boost DC-DC converter working in discontinuous conduction mode is proposed. The proposed generator control structure is based on three cascaded control loops that regulate the generator current, the turbine speed and the amount of power that is extracted from the wind, respectively, following the turbine aerodynamics and the actual wind speed. The analysis and design of both the current and the speed loops have been carried out taking into consideration the electrical and mechanical characteristics of the WECS, as well as the turbine aerodynamics. The power loop is not a linear one, but a maximum power point tracking algorithm, based on the Perturb and Observe technique, from which is obtained the reference signal for the speed loop. Finally, to avoid the need of mechanical sensors, a linear Kalman Filter has been chosen to estimate the generator speed. Simulation and experimental results on a 2-kW prototype are shown to validate the concept. © 2013 John Wiley & Sons, Ltd.Carranza Castillo, O.; Garcerá Sanfeliú, G.; Figueres Amorós, E.; González Morales, LG. (2014). Low power wind energy conversion system based on variable speed permanent magnet synchronous generators. Wind Energy. 17(6):811-827. doi:10.1002/we.1598S811827176Ackermann, T. (Ed.). (2005). Wind Power in Power Systems. doi:10.1002/0470012684Muyeen, S. M., Shishido, S., Ali, M. H., Takahashi, R., Murata, T., & Tamura, J. (2008). Application of energy capacitor system to wind power generation. Wind Energy, 11(4), 335-350. doi:10.1002/we.265Ladenburg, J. (2009). Stated public preferences for on-land and offshore wind power generation-a review. Wind Energy, 12(2), 171-181. doi:10.1002/we.308Maeda, T., & Kamada, Y. (2009). A review of wind energy activities in Japan. Wind Energy, 12(7), 621-639. doi:10.1002/we.313Baroudi, J. A., Dinavahi, V., & Knight, A. M. (2007). A review of power converter topologies for wind generators. Renewable Energy, 32(14), 2369-2385. doi:10.1016/j.renene.2006.12.002Di Gerlando, A., Foglia, G., Iacchetti, M. F., & Perini, R. (2012). Analysis and Test of Diode Rectifier Solutions in Grid-Connected Wind Energy Conversion Systems Employing Modular Permanent-Magnet Synchronous Generators. IEEE Transactions on Industrial Electronics, 59(5), 2135-2146. doi:10.1109/tie.2011.2157295Yungtaek Jang, & Jovanovic, M. M. (2000). A new input-voltage feedforward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers. IEEE Transactions on Power Electronics, 15(2), 268-277. doi:10.1109/63.838099Athab, H. S., Lu, D. D.-C., & Ramar, K. (2012). A Single-Switch AC/DC Flyback Converter Using a CCM/DCM Quasi-Active Power Factor Correction Front-End. IEEE Transactions on Industrial Electronics, 59(3), 1517-1526. doi:10.1109/tie.2011.2158771Barbosa, P., Canales, F., Crebier, J.-C., & Lee, F. C. (2001). Interleaved three-phase boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation. IEEE Transactions on Power Electronics, 16(5), 724-734. doi:10.1109/63.949505Yao, K., Ruan, X., Mao, X., & Ye, Z. (2011). Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter. IEEE Transactions on Industrial Electronics, 58(5), 1856-1865. doi:10.1109/tie.2010.2052538Andriollo, M., De Bortoli, M., Martinelli, G., Morini, A., & Tortella, A. (2009). Control strategy of a wind turbine drive by an integrated model. Wind Energy, 12(1), 33-49. doi:10.1002/we.281Hansen, A. D., & Michalke, G. (2008). Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine. Wind Energy, 11(5), 537-554. doi:10.1002/we.278Salvatore, N., Caponio, A., Neri, F., Stasi, S., & Cascella, G. L. (2010). Optimization of Delayed-State Kalman-Filter-Based Algorithm via Differential Evolution for Sensorless Control of Induction Motors. IEEE Transactions on Industrial Electronics, 57(1), 385-394. doi:10.1109/tie.2009.2033489Kazmi, S. M. R., Goto, H., Guo, H.-J., & Ichinokura, O. (2011). A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems. IEEE Transactions on Industrial Electronics, 58(1), 29-36. doi:10.1109/tie.2010.2044732Pucci, M., & Cirrincione, M. (2011). Neural MPPT Control of Wind Generators With Induction Machines Without Speed Sensors. IEEE Transactions on Industrial Electronics, 58(1), 37-47. doi:10.1109/tie.2010.2043043Ming Y Li G Ming Z Chengyong Z Modeling of the wind turbine with a permanent magnet synchronous generator for integration IEEE Power Engineering Society General Meeting, 2007 2007 1 6Carranza O Figueres E Garcera G Gonzalez LG Gonzalez-Espin F Peak current mode control of a boost rectifier with low distortion of the input current for wind power systems based on permanent magnet synchronous generators 13th European Conference on Power Electronics and Applications, EPE ’09 2009 1 10Eltamaly, A. M. (2007). Harmonics reduction of three-phase boost rectifier by modulating duty ratio. Electric Power Systems Research, 77(10), 1425-1431. doi:10.1016/j.epsr.2006.10.012Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 490-496. doi:10.1109/7.106126Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813Carranza O Figueres E Garcera G Trujillo CL Velasco D Comparison of speed estimators applied to wind generation systems with noisy measurement signals ISIE 2010 IEEE International Symposium on Industrial 2010 3317 3322Yaoqin J Zhongqing Y Binggang C A new maximum power point tracking control scheme for wind generation International Conference on Power System Technology, PowerCon 2002 IEEE-PES/CSEE 2002 144 148PSIM 7.0 User's Guide (2006), Powersim Inc. 2006Carranza, O., Garcerá, G., Figueres, E., & González, L. G. (2010). Peak current mode control of three-phase boost rectifiers in discontinuous conduction mode for small wind power generators. Applied Energy, 87(8), 2728-2736. doi:10.1016/j.apenergy.2010.02.01

    Dynamic Modeling and Performance Analysis of PMSG- based Variable Speed WTG: Case Study of Adama Wind Farm I, Ethiopia

    Get PDF
    In this paper, the performance of Permanent Magnet Synchronous Generator (PMSG) -based Variable Speed Wind Turbine Generator (WTG) at Adama Wind Farm I (WTG), connected to a grid is studied. To study the performance of the WTG, both machine and grid side converters are modeled and analyzed very well. On the machine side, maximum power point tracking (MPPT) for maximum energy extraction is done using the direct speed control (DSC) technique, which is linked with the optimal tip speed ratio for each wind speed value considered. On the grid side, dc-link voltage and reactive power flow to the grid are controlled. For this purpose, first, the simulation model of the system is prepared in MATLAB Simulink considering the dynamic mathematical model of the PMSG, and Wind Turbine Aerodynamic model using the user-defined function blocks. Then, the PI regulators designed for direct speed, torque (current) control, and dc-link voltage are employed in the model. Moreover, to study and analyze the behavior of the system in a variable speed operation, a wind speed starting from cut-in wind speed (3m/s) to the rated wind speed (11m/s) is applied in 4s. The simulation result of the existing system model shows that the actual values of performance variables correspond well with the analytical values of the system. In addition, the chosen control algorithms applied in the control system of the generator-side converter are hence verified

    Speed sensorless and MPPT control of IPM synchronous generator for wind energy conversion system

    Get PDF
    The popularity of renewable energy has experienced significant growth recently due to the foreseeable exhaustion of conventional fossil fuel power generation methods and increasing realization of the adverse effects that conventional fossil fuel power generation has on the environment. Among the renewable energy sources, wind power generation is rapidly becoming competitive with conventional fossil fuel sources. The wind turbines in the market have a variety of innovative concepts, with proven technology for both generators and power electronics interfaces. Recently, variable-speed permanent magnet synchronous generator (PMSG) based wind energy conversion systems (WECS) is becoming more attractive in comparison to the fixed-speed WECS. In the variable-speed generation system, the wind turbine can be operated at maximum power operating points over a wide speed range by adjusting the shaft speed optimally. This thesis presents both wind and rotor speed sensorless control for the direct-drive interior permanent magnet synchronous generator (IPMSG) with maximum power point tracking (MPPT) algorithm. The proposed method, without requiring the knowledge of wind speed, air density or turbine parameters, generates optimum speed command for speed control loop of vector controlled machine side converter. The MPPT algorithm based on perturbation and observation uses only estimated active power as its input to track peak output power points in accordance with wind speed change and incorporates proposed sensorless control to transfer maximum dc-link power from generator. In this work for the IPMSG, the rotor position and speed are estimated based on model reference adaptive system. Additionally, it incorporates flux weakening controller (FWC) for wide operating speed range at various wind speed and other disturbances. Matlab/Simulink based simulation model of the proposed sensorless MPPT control of IPMSG based WECS is built to verify the effectiveness of the system. The MPPT controller has been tested for variable wind speed conditions. The performance of the proposed WECS is also compared with the conventional control of WECS system. The proposed IPMSG based WECS incorporating the MPPT and sensorless algorithms is successfully implemented in real-time using the digital signal processor (DSP) board DS1104 for a laboratory 5 hp machine. A 5 hp DC motor is used as wind turbine to drive the IPMSG. The speed tracking performance and maximum power transfer capability of the proposed WECS are verified by both simulation and experimental results at different speed conditions

    A Downsizing Strategy for Combinatorial PMSG Based Wind Turbine and Micro-SMES System Applied in Standalone DC Microgrid

    Get PDF
    This paper presents a combinatorial standalone permanent magnet synchronous generator (PMSG) based variable speed wind turbine (VSWT) and small-size superconducting magnetic energy storage (SMES) system into the DC microgrid system. The principal purpose of SMES system is to preserve power balance by absorbing power during peak wind generation and to release it during low power generation. This work accomplished by describing the optimized design of the SMES solenoid coil, ensuring the desired energy storage capacity based on the simulated annealing (SA) algorithm. More importantly, the new control technique is developed for bi-directional DC-DC converter to level output power of the wind turbine depending on the demand thereby reducing the capacity of the DC-DC converter system. Detailed simulation studies implemented in PSCAD/EMTDC corroborate the superior robustness and balancing performance of the proposed micro-SMES controller with an optimal coil size under various situations including variable wind speed. This combination will result in “scaling-factors” knowledge through downsizing strategy which will lead to the most efficient system from cost cutting, energy savings, and downsizing viewpoints
    • …
    corecore