789 research outputs found

    Mathematical Programming Based Synthesis of Rice Drying Processes

    Get PDF
    Various drying models have been developed in the extent which they are available for the analysis of drying processes in a variety of practical drying systems. However, most were focused only on a single unit operation; mainly the dryer. Nevertheless other unit operations such as cooling and tempering units are also employed in industrial drying systems. Therefore, there is an important need for an integrated analysis of rice drying systems which takes into account all the interactions between the units that appear in a drying process. The aim is to select a process out of the large number of alternatives and operating conditions which meet the specified performance. In this work, the synthesis problem of drying processes will be thoroughly investigated using various drying models. Both simplified (empirical) and rigorous (theoretical) models were used. The aim is to find the optimum configuration and operating conditions which satisfy two optimization criteria. One is to maximize the quality (head rice yield) and the other is to minimize the energy consumption. To solve the synthesis problem, mathematical programming will be used as a tool. Three major steps involving the application of mathematical programming in synthesis problems were developed and presented; superstructure representation, problem formulation and optimization strategy. For the synthesis problem using empirical models, the problem was formulated as an MINLP model. However, due to the fact that different mathematical models are often possible for the same synthesis problem and the recent advances in modeling techniques, generalized disjunctive programming (GDP), known as an alternative model to MINLP, was used. The objectives are to investigate the benefit of using GDP as an alternative model to MINLP and also to exploit a disjunction part of a GDP model for integrating alternative choices of empirical drying models to eliminate the problem of having drying models which are valid only in a small range of operating conditions. The results showed that different drying strategies were obtained from using different drying models in the case of maximum head of rice yield (quality) while the same strategies have been found from using different drying models in the case of minimum energy consumption. This finding is due to the reason that quality as an objective function is highly nonlinear; therefore it contains many local solutions while the energy objective function is a simple linear function. In the aspect of using GDP model, we found that GDP models provide good structure of variable relationships which can improve the search strategy and solution efficiency for the problem dealing with highly nonlinear functions such as in the case of maximum head price yield. Moreover, because of this good characteristic of MINLP based GDP model, the synthesis problem of rice drying processes dealing with various kinds of empirical models can be solved in reasonable time in GAMS. Nonetheless, in the case that the optimization problem is dealing with the simple mathematical function, the GDP model did not outperform the ad hoc MINLP model for the case of minimizing energy consumption. Also, GDP modeling framework facilitated the problem formulation of the synthesis problem which had two drying models valid in a different range of drying operations in rice drying processes. The synthesis problem using theoretical models arising from the simultaneous heat and mass transfer balances gave rise to a mixed-integer nonlinear programming (MIDO) model. Such problem is highly nonlinear, multimodal and discontinuous in nature and is very difficult to solve. A hybrid method which combines genetic algorithms (GAs) and control vector parameterization (CVP) approach was proposed to solve this problem. In the case of maximum head rice yield, the results of the synthesis problem showed that high quality rice grain can be preserved regardless of the choice of drying configuration as long as the drying process is operated under a condition which produces the least amount of moisture gradient within the rice grain. Many local optimum solutions which gave rise to different drying configurations and operating policies were found from using different initial guesses. In the case of minimum energy consumption, the results showed that a cooling-tempering configuration which operates at ambient temperature gave the minimum energy consumption. Different initial guesses converged to the same drying configuration (cooling-tempering) but different operating policies and total number of passes. Moreover, since the optimal operating time in a cooling unit is at the upper operating bound allowed in this unit, the effect of the bound of operating time for a cooling unit on the total number of passes required was studied. The results showed that less number of passes would be obtained if longer periods of cooling are allowed. The hybrid proposed method was able to solve MIDO problems; albeit at a relatively large computational expense. For the comparison aspect between the theoretical and empirical models for synthesis of rice drying processes, empirical models are easier to use for the synthesis problem but they are valid only within the range which they were developed. Also, there is a need for developing a model for each particular unit employed in rice drying processes. For the synthesis problem with theoretical models, this problem gives rise to the most difficult class of optimization problems; however, a theoretical model provides a better understanding of the drying kinetics happening in rice grain. Moreover, theoretical models alleviate the need to develop models for each particular unit employed in rice drying systems. The common feature found from using theoretical and empirical models is that head rice yield objective function always gives rise to different choices of drying configurations while the energy objective function always give rise to a unique drying configuration (cooling-tempering). Different drying strategies have been found from using different drying models. These alternative configurations provide a broader vision on the operation of drying systems. To decide which one is the best, other factors must be taken into account such as investment cost, term of uses and available technology

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities

    Novel approach for integrated biomass supply chain synthesis and optimisation

    Get PDF
    Despite looming energy crises, fossil resources are still widely used for energy and chemical production. Growing awareness of the environmental impact from fossil fuels has made sustainability one of the main focuses in research and development. Towards that end, biomass is identified as a promising renewable source of carbon that can potentially replace fossil resources in energy and chemical productions. Although many researches on converting biomass to value-added product have been done, biomass is still considered underutilised in the industry. This is mainly due to challenges in the logistic and processing network of biomass. An integrated biomass supply chain synthesis and optimisation are therefore important. Thus, the ultimate goal of this thesis is to develop a novel approach for an integrated biomass supply chain. Firstly, a multiple biomass corridor (MBC) concept is presented to integrate various biomass and processing technologies into existing biomass supply chain system in urban and developed regions. Based on this approach, a framework is developed for the synthesis of a more diversified and economical biomass supply chain system. The work is then extended to consider the centralisation and decentralisation of supply chain structure. In this manner, P-graph-aided decomposition approach (PADA) is proposed, whereby it divides the complex supply chain problem into two smaller sub-problems – the processing network is solved via mixed-integer linear programming (MILP) model, whereas the binaries-intensive logistic network configuration is determined through P-graph framework. As existing works often focus on supply chain synthesis in urban regions with well-developed infrastructure, resources integrated network (RIN) – a novel approach for the synthesis of integrated biomass supply chain in rural and remote regions is introduced to enhance rural economies. This approach incorporates multiple resources (i.e. bioresources, food commodities, rural communities’ daily needs) into the value chain and utilises inland water system as the mode of transport, making the system more economically feasible. It extends the MBC approach for technology selection and adopts vehicle routing problem (VRP) for inland water supply and delivery network. To evaluate the performance of the proposed integrated biomass supply chain system, a FANP-based (fuzzy analytical network process) sustainability assessment tool is established. A framework is proposed to derive sustainability index (SI) from pairwise comparison done by supply chain stakeholders to assess the sustainability of a system. Fuzzy limits are introduced to reduce uncertainties in human judgment while conducting the pairwise comparison. To design a sustainable integrated biomass supply chain, a FANP-aided, a novel multiple objectives optimisation framework is proposed. This approach transforms multiple objective functions into single objective function by prioritising each of the objective through the FANP framework. The multiple objectives are then normalised via max-min aggregation to ensure the trade-off between objectives is performed on the same scale. At the end of this thesis, viable future works of the whole programme is presented for consideration

    Continuous Biochemical Processing: Investigating Novel Strategies to Produce Sustainable Fuels and Pharmaceuticals

    Get PDF
    Biochemical processing methods have been targeted as one of the potential renewable strategies for producing commodities currently dominated by the petrochemical industry. To design biochemical systems with the ability to compete with petrochemical facilities, inroads are needed to transition from traditional batch methods to continuous methods. Recent advancements in the areas of process systems and biochemical engineering have provided the tools necessary to study and design these continuous biochemical systems to maximize productivity and substrate utilization while reducing capital and operating costs. The first goal of this thesis is to propose a novel strategy for the continuous biochemical production of pharmaceuticals. The structural complexity of most pharmaceutical compounds makes chemical synthesis a difficult option, facilitating the need for their biological production. To this end, a continuous, multi-feed bioreactor system composed of multiple independently controlled feeds for substrate(s) and media is proposed to freely manipulate the bioreactor dilution rate and substrate concentrations. The optimal feed flow rates are determined through the solution to an optimal control problem where the kinetic models describing the time-variant system states are used as constraints. This new bioreactor paradigm is exemplified through the batch and continuous cultivation of β-carotene, a representative product of the mevalonate pathway, using Saccharomyces cerevisiae strain mutant SM14. The second goal of this thesis is to design continuous, biochemical processes capable of economically producing alternative liquid fuels. The large-scale, continuous production of ethanol via consolidated bioprocessing (CBP) is examined. Optimal process topologies for the CBP technology selected from a superstructure considering multiple biomass feeds, chosen from those available across the United States, and multiple prospective pretreatment technologies. Similarly, the production of butanol via acetone-butanol-ethanol (ABE) fermentation is explored using process intensification to improve process productivity and profitability. To overcome the inhibitory nature of the butanol product, the multi-feed bioreactor paradigm developed for pharmaceutical production is utilized with in situ gas stripping to simultaneously provide dilution effects and selectively remove the volatile ABE components. Optimal control and process synthesis techniques are utilized to determine the benefits of gas stripping and design a butanol production process guaranteed to be profitable

    Novel approach for integrated biomass supply chain synthesis and optimisation

    Get PDF
    Despite looming energy crises, fossil resources are still widely used for energy and chemical production. Growing awareness of the environmental impact from fossil fuels has made sustainability one of the main focuses in research and development. Towards that end, biomass is identified as a promising renewable source of carbon that can potentially replace fossil resources in energy and chemical productions. Although many researches on converting biomass to value-added product have been done, biomass is still considered underutilised in the industry. This is mainly due to challenges in the logistic and processing network of biomass. An integrated biomass supply chain synthesis and optimisation are therefore important. Thus, the ultimate goal of this thesis is to develop a novel approach for an integrated biomass supply chain. Firstly, a multiple biomass corridor (MBC) concept is presented to integrate various biomass and processing technologies into existing biomass supply chain system in urban and developed regions. Based on this approach, a framework is developed for the synthesis of a more diversified and economical biomass supply chain system. The work is then extended to consider the centralisation and decentralisation of supply chain structure. In this manner, P-graph-aided decomposition approach (PADA) is proposed, whereby it divides the complex supply chain problem into two smaller sub-problems – the processing network is solved via mixed-integer linear programming (MILP) model, whereas the binaries-intensive logistic network configuration is determined through P-graph framework. As existing works often focus on supply chain synthesis in urban regions with well-developed infrastructure, resources integrated network (RIN) – a novel approach for the synthesis of integrated biomass supply chain in rural and remote regions is introduced to enhance rural economies. This approach incorporates multiple resources (i.e. bioresources, food commodities, rural communities’ daily needs) into the value chain and utilises inland water system as the mode of transport, making the system more economically feasible. It extends the MBC approach for technology selection and adopts vehicle routing problem (VRP) for inland water supply and delivery network. To evaluate the performance of the proposed integrated biomass supply chain system, a FANP-based (fuzzy analytical network process) sustainability assessment tool is established. A framework is proposed to derive sustainability index (SI) from pairwise comparison done by supply chain stakeholders to assess the sustainability of a system. Fuzzy limits are introduced to reduce uncertainties in human judgment while conducting the pairwise comparison. To design a sustainable integrated biomass supply chain, a FANP-aided, a novel multiple objectives optimisation framework is proposed. This approach transforms multiple objective functions into single objective function by prioritising each of the objective through the FANP framework. The multiple objectives are then normalised via max-min aggregation to ensure the trade-off between objectives is performed on the same scale. At the end of this thesis, viable future works of the whole programme is presented for consideration

    Pertanika Journal of Science & Technology

    Get PDF

    Book of abstracts of the 10th International Chemical and Biological Engineering Conference: CHEMPOR 2008

    Get PDF
    This book contains the extended abstracts presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, over 3 days, from the 4th to the 6th of September, 2008. Previous editions took place in Lisboa (1975, 1889, 1998), Braga (1978), Póvoa de Varzim (1981), Coimbra (1985, 2005), Porto (1993), and Aveiro (2001). The conference was jointly organized by the University of Minho, “Ordem dos Engenheiros”, and the IBB - Institute for Biotechnology and Bioengineering with the usual support of the “Sociedade Portuguesa de Química” and, by the first time, of the “Sociedade Portuguesa de Biotecnologia”. Thirty years elapsed since CHEMPOR was held at the University of Minho, organized by T.R. Bott, D. Allen, A. Bridgwater, J.J.B. Romero, L.J.S. Soares and J.D.R.S. Pinheiro. We are fortunate to have Profs. Bott, Soares and Pinheiro in the Honor Committee of this 10th edition, under the high Patronage of his Excellency the President of the Portuguese Republic, Prof. Aníbal Cavaco Silva. The opening ceremony will confer Prof. Bott with a “Long Term Achievement” award acknowledging the important contribution Prof. Bott brought along more than 30 years to the development of the Chemical Engineering science, to the launch of CHEMPOR series and specially to the University of Minho. Prof. Bott’s inaugural lecture will address the importance of effective energy management in processing operations, particularly in the effectiveness of heat recovery and the associated reduction in greenhouse gas emission from combustion processes. The CHEMPOR series traditionally brings together both young and established researchers and end users to discuss recent developments in different areas of Chemical Engineering. The scope of this edition is broadening out by including the Biological Engineering research. One of the major core areas of the conference program is life quality, due to the importance that Chemical and Biological Engineering plays in this area. “Integration of Life Sciences & Engineering” and “Sustainable Process-Product Development through Green Chemistry” are two of the leading themes with papers addressing such important issues. This is complemented with additional leading themes including “Advancing the Chemical and Biological Engineering Fundamentals”, “Multi-Scale and/or Multi-Disciplinary Approach to Process-Product Innovation”, “Systematic Methods and Tools for Managing the Complexity”, and “Educating Chemical and Biological Engineers for Coming Challenges” which define the extended abstracts arrangements along this book. A total of 516 extended abstracts are included in the book, consisting of 7 invited lecturers, 15 keynote, 105 short oral presentations given in 5 parallel sessions, along with 6 slots for viewing 389 poster presentations. Full papers are jointly included in the companion Proceedings in CD-ROM. All papers have been reviewed and we are grateful to the members of scientific and organizing committees for their evaluations. It was an intensive task since 610 submitted abstracts from 45 countries were received. It has been an honor for us to contribute to setting up CHEMPOR 2008 during almost two years. We wish to thank the authors who have contributed to yield a high scientific standard to the program. We are thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to all those who, through their dedicated efforts, have assisted us in this task. On behalf of the Scientific and Organizing Committees we wish you that together with an interesting reading, the scientific program and the social moments organized will be memorable for all.Fundação para a Ciência e a Tecnologia (FCT

    Pertanika Journal of Science & Technology

    Get PDF
    corecore