282,142 research outputs found

    Analysis of an On-Line Stability Monitoring Approach for DC Microgrid Power Converters

    Get PDF
    An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids

    Display/control requirements for automated VTOL aircraft

    Get PDF
    A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests

    A smart radar absorber based on the phase-switched screen

    Get PDF
    Although conventional (i.e., passive) radar absorbers are widely used for modifying the radar cross-section (RCS) of current military platforms, such absorbers may not have adequate performance to satisfy future requirements. Active absorbers, however, offer the potential to overcome the so-called Rozanov performance limit and to enable additional smart functionality such as monitoring damage, adaptive control of RCS or target appearance, identification-friend-or-foe, and absorb-while-scan. This paper outlines the concept and basic properties of a novel type of active radar absorber, the so-called phase-switched screen (PSS). The basic PSS topology is then modified so as to enable it to operate as a smart radar absorber when used together with an external sensor and feedback control loop. System implementation issues and the optimum choice of design parameters for a range of operational scenarios are discussed, and theoretical predictions are supported by measured performance data

    Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels

    Get PDF
    Existing deployments of wireless sensor networks (WSNs) are often conceived as stand-alone monitoring tools. In this paper, we report instead on a deployment where the WSN is a key component of a closed-loop control system for adaptive lighting in operational road tunnels. WSN nodes along the tunnel walls report light readings to a control station, which closes the loop by setting the intensity of lamps to match a legislated curve. The ability to match dynamically the lighting levels to the actual environmental conditions improves the tunnel safety and reduces its power consumption. The use of WSNs in a closed-loop system, combined with the real-world, harsh setting of operational road tunnels, induces tighter requirements on the quality and timeliness of sensed data, as well as on the reliability and lifetime of the network. In this work, we test to what extent mainstream WSN technology meets these challenges, using a dedicated design that however relies on wellestablished techniques. The paper describes the hw/sw architecture we devised by focusing on the WSN component, and analyzes its performance through experiments in a real, operational tunnel

    Real-time ensemble control with reduced-order modeling

    Get PDF
    The control of spatially distributed systems is often complicated by significant uncertainty about system inputs, both time-varying exogenous inputs and time-invariant parameters. Spatial variations of uncertain parameters can be particularly problematic in geoscience applications, making it difficult to forecast the impact of proposed controls. One of the most effective ways to deal with uncertainties in control problems is to incorporate periodic measurements of the system’s states into the control process. Stochastic control provides a convenient way to do this, by integrating uncertainty, monitoring, forecasting, and control in a consistent analytical framework. This paper describes an ensemble-based approach to closed-loop stochastic control that relies on a computationally efficient reduced-order model. The use of ensembles of uncertain parameters and states makes it possible to consider a range of probabilistic performance objectives and to derive real-time controls that explicitly account for uncertainty. The process divides naturally into measurement updating, control, and forecasting steps carried out recursively and initialized with a prior ensemble that describes parameter uncertainty. The performance of the ensemble controller is investigated here with a numerical experiment based on a solute transport control problem. This experiment evaluates the performance of open and closed-loop controllers with full and reduced-order models as well as the performance obtained with a controller based on perfect knowledge of the system and the nominal performance obtained with no control. The experimental results show that a closed-loop controller that relies on measurements consistently performs better than an open loop controller that does not. They also show that a reduced-order forecasting model based on offline simulations gives nearly the same performance as a significantly more computationally demanding full order model. Finally, the experiment indicates that a moderate penalty on the variance of control cost yields a robust control strategy that reduces uncertainty about system performance with little or no increase in average cost. Taken together, these results confirm that reduced-order ensemble closed-loop control is a flexible and efficient control option for uncertain spatially distributed systems.Shell Oil Compan

    Real-time ensemble control with reduced-order modeling

    Get PDF
    The control of spatially distributed systems is often complicated by significant uncertainty about system inputs, both time-varying exogenous inputs and time-invariant parameters. Spatial variations of uncertain parameters can be particularly problematic in geoscience applications, making it difficult to forecast the impact of proposed controls. One of the most effective ways to deal with uncertainties in control problems is to incorporate periodic measurements of the system’s states into the control process. Stochastic control provides a convenient way to do this, by integrating uncertainty, monitoring, forecasting, and control in a consistent analytical framework. This paper describes an ensemble-based approach to closed-loop stochastic control that relies on a computationally efficient reduced-order model. The use of ensembles of uncertain parameters and states makes it possible to consider a range of probabilistic performance objectives and to derive real-time controls that explicitly account for uncertainty. The process divides naturally into measurement updating, control, and forecasting steps carried out recursively and initialized with a prior ensemble that describes parameter uncertainty. The performance of the ensemble controller is investigated here with a numerical experiment based on a solute transport control problem. This experiment evaluates the performance of open and closed-loop controllers with full and reduced-order models as well as the performance obtained with a controller based on perfect knowledge of the system and the nominal performance obtained with no control. The experimental results show that a closed-loop controller that relies on measurements consistently performs better than an open loop controller that does not. They also show that a reduced-order forecasting model based on offline simulations gives nearly the same performance as a significantly more computationally demanding full order model. Finally, the experiment indicates that a moderate penalty on the variance of control cost yields a robust control strategy that reduces uncertainty about system performance with little or no increase in average cost. Taken together, these results confirm that reduced-order ensemble closed-loop control is a flexible and efficient control option for uncertain spatially distributed systems.Shell Oil Compan

    Loop status monitoring and fault localisation

    Get PDF
    Loop status monitoring involves the declaration of deterministic trends, such as oscillations and drifting, in loops that are in multi-loop plant configurations. By analysing various time domain statistics pertaining to PI/PID control loops, a trend can be recognised as one of seven categories. The scientific basis for working with the particular statistics is given and the categorisation process is described. These statistics can be combined to produce an <i>Overall Loop Performance Index</i> for each loop, which can be compared to localise a single fault in a multi-loop arrangement. Estimation methods for these time domain statistics are outlined and the performance of the approach is demonstrated on both simulated and real plant data sets

    An Approach to the Health Monitoring of the Fuel System of a Turbofan

    Get PDF
    This paper focuses on the monitoring of the fuel system of a turbofan which is the core organ of an aircraft engine control system. The paper provides a method for real time on-board monitoring and on-ground diagnosis of one of its subsystems: the hydromechanical actuation loop. First, a system analysis is performed to highlight the main degradation modes and potential failures. Then, an approach for a real-time extraction of salient features named indicators is addressed. On-ground diagnosis is performed through a learning algorithm and a classification method. Parameterization of the on-ground part needs a reference healthy state of the indicators and the signatures of the degradations. The healthy distribution of the indicators is measured on field data whereas a physical model of the system is utilized to simulate degradations, quantify indicators sensibility and construct the signatures. Eventually, algorithms are deployed and statistical validation is performed by the computation of key performance indicators (KPI)
    • …
    corecore