21 research outputs found

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attirĂ© une Ă©norme quantitĂ© de recherches ces derniĂšres annĂ©es, surtout aprĂšs la prĂ©sentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de trĂšs hauts dĂ©bits de faible puissance tout en Ă©liminant les interfĂ©rences avec les systĂšmes existants Ă  bande Ă©troite. La faible puissance, cependant, limite la portĂ©e de propagation des radios UWB Ă  quelques mĂštres pour la transmission sans fil Ă  l’intĂ©rieur d’une piĂšce. En outre, des signaux UWB reçu sont Ă©tendus dans le temps en raison de la propagation par trajet multiple qui rĂ©sulte en beaucoup d’interfĂ©rence inter-symbole (ISI) Ă  haut dĂ©bit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thĂšse, nous dĂ©montrons des transmet- teurs qui sont capables de gĂ©nĂ©rer des impulsions UWB avec une efficacitĂ© de puissance Ă©levĂ©e. Une impulsion efficace rĂ©sulte dans un rapport de signal Ă  bruit (SNR) supĂ©rieur au rĂ©cepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomĂštres pour la distribution dans un rĂ©seau optique pas- sif. La fibre optique est trĂšs fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les Ă©lĂ©ments simples comme un modulateur Mach-Zehnder ou un rĂ©sonateur en anneau pour gĂ©nĂ©rer des impulsions, ce qui permet l’intĂ©gration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel Ă©norme pour abaisser le coĂ»t et l’encombrement des systĂšmes optiques. La photodĂ©tection convertit les impulsions optiques en impulsions Ă©lectriques avant la transmission sur l’antenne du cĂŽtĂ© de l’utilisateur. La rĂ©ponse frĂ©quentielle de l’antenne dĂ©forme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linĂ©aire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amĂ©lioration de l’énergie des impulsions UWB amĂ©liore directement la SNR au rĂ©cepteur. Les rĂ©sultats de simulation montrent que les impulsions optimisĂ©es amĂ©liorent considĂ©rablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adaptĂ© pour recevoir efficacement des impulsions UWB. Le filtre adaptĂ© est synthĂ©tisĂ© et fabriquĂ© en technologie microstrip, en collaboration avec l’UniversitĂ© McGill comme un dispositif de bande interdite Ă©lectromagnĂ©tique. La rĂ©ponse frĂ©quentielle du filtre adaptĂ© montre une ex- cellente concordance avec le spectre ciblĂ© de l’impulsion UWB. Les mesures de BER confirment la performance supĂ©rieure du filtre adaptĂ© par rapport Ă  un rĂ©cepteur Ă  conversion directe. Le canal UWB est trĂšs riche en trajet multiple conduisant Ă  l’ISI Ă  haut dĂ©bit. Notre derniĂšre contribution est l’étude de performance des rĂ©cepteurs en simulant un systĂšme avec des conditions de canaux rĂ©alistes. Les rĂ©sultats de la simulation montrent que la performance d’un tel systĂšme se dĂ©grade de façon significative pour les hauts dĂ©bits. Afin de compenser la forte ISI dans les taux de transfert de donnĂ©es en Gb/s, nous Ă©tudions l’algorithme de Viterbi (VA) avec un nombre limitĂ© d’états et un Ă©galiseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation amĂ©liore considĂ©rablement les performances par rapport Ă  la dĂ©tection de symbole. La DFE a une meilleure performance par rapport Ă  la VA en utilisant une complexitĂ© comparable. La DFE peut couvrir une plus grande mĂ©moire de canal avec un niveau de complexitĂ© relativement rĂ©duit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    An all-digital transmitter for pulsed ultra-wideband communication

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 91-96).Applications like sensor networks, medical monitoring, and asset tracking have led to a demand for energy-efficient and low-cost wireless transceivers. These types of applications typically require low effective data rates, thus providing an opportunity to employ simple modulation schemes and aggressive duty-cycling. Due to their inherently duty-cycled nature, pulse-based Ultra-Wideband (UWB) systems are amenable to low-power operation by shutting off circuitry during idle mode between pulses. Furthermore, the use of non-coherent UWB signaling greatly simplifies both transmitter and receiver implementations, offering additional energy savings. This thesis presents an all-digital transmitter designed for a non-coherent pulsed UWB system. By exploiting relaxed center frequency tolerances in non-coherent wideband communication, the transmitter synthesizes UWB pulses from an energy efficient, single-ended digital ring oscillator. Dual capacitively-coupled digital power amplifiers (PAs) are used in tandem to generate bipolar phase modulated pulses for spectral scrambling purposes. By maintaining opposite common modes at the output of these PAs during idle mode (i.e. when no pulses are being transmitted), low frequency turn-on and turn-off transients typically associated with single-ended digital circuits driving single-ended antennas are attenuated by up to 12dB. Furthermore, four level digital pulse shaping is employed to attenuate RF side lobes by up to 20dB. The resulting dual power amplifiers achieve FCC compliant operation in the 3.5, 4.0, and 4.5GHz IEEE 802.15.4a bands without the use of any off-chip filters or large passive components. The transmitter is fabricated in a 90nm CMOS process and requires a core area of 0.07mm2. The entirely digital architecture consumes zero static bias current, resulting in an energy efficiency of 17.5pJ/pulse at data rates up to 15.6Mbps.by Patrick Philip Mercier.S.M

    A digital polar transmitter for multi-band OFDM Ultra-WideBand

    No full text
    Linear power amplifiers used to implement the Ultra-Wideband standard must be backed off from optimum power efficiency to meet the standard specifications and the power efficiency suffers. The problem of low efficiency can be mitigated by polar modulation. Digital polar architectures have been employed on numerous wireless standards like GSM, EDGE, and WLAN, where the fractional bandwidths achieved are only about 1%, and the power levels achieved are often in the vicinity of 20 dBm. Can the architecture be employed on wireless standards with low-power and high fractional bandwidth requirements and yet achieve good power efficiency? To answer these question, this thesis studies the application of a digital polar transmitter architecture with parallel amplifier stages for UWB. The concept of the digital transmitter is motivated and inspired by three factors. First, unrelenting advances in the CMOS technology in deep-submicron process and the prevalence of low-cost Digital Signal processing have resulted in the realization of higher level of integration using digitally intensive approaches. Furthermore, the architecture is an evolution of polar modulation, which is known for high power efficiency in other wireless applications. Finally, the architecture is operated as a digital-to-analog converter which circumvents the use of converters in conventional transmitters. Modeling and simulation of the system architecture is performed on the Agilent Advanced Design System Ptolemy simulation platform. First, by studying the envelope signal, we found that envelope clipping results in a reduction in the peak-to-average power ratio which in turn improves the error vector magnitude performance (figure of merit for the study). In addition, we have demonstrated that a resolution of three bits suffices for the digital polar transmitter when envelope clipping is performed. Next, this thesis covers a theoretical derivation for the estimate of the error vector magnitude based on the resolution, quantization and phase noise errors. An analysis on the process variations - which result in gain and delay mismatches - for a digital transmitter architecture with four bits ensues. The above studies allow RF designers to estimate the number of bits required and the amount of distortion that can be tolerated in the system. Next, a study on the circuit implementation was conducted. A DPA that comprises 7 parallel RF amplifiers driven by a constant RF phase-modulated signal and 7 cascode transistors (individually connected in series with the bottom amplifiers) digitally controlled by a 3-bit digitized envelope signal to reconstruct the UWB signal at the output. Through the use of NFET models from the IBM 130-nm technology, our simulation reveals that our DPA is able to achieve an EVM of - 22 dB. The DPA simulations have been performed at 3.432 GHz centre frequency with a channel bandwidth of 528 MHz, which translates to a fractional bandwidth of 15.4%. Drain efficiencies of 13.2/19.5/21.0% have been obtained while delivering -1.9/2.5/5.5 dBm of output power and consuming 5/9/17 mW of power. In addition, we performed a yield analysis on the digital polar amplifier, based on unit-weighted and binary-weighted architecture, when gain variations are introduced in all the individual stages. The dynamic element matching method is also introduced for the unit-weighted digital polar transmitter. Monte Carlo simulations reveal that when the gain of the amplifiers are allowed to vary at a mean of 1 with a standard deviation of 0.2, the binary-weighted architecture obtained a yield of 79%, while the yields of the unit-weighted architectures are in the neighbourhood of 95%. Moreover, the dynamic element matching technique demonstrates an improvement in the yield by approximately 3%. Finally, a hardware implementation for this architecture based on software-defined arbitrary waveform generators is studied. In this section, we demonstrate that the error vector magnitude results obtained with a four-stage binary-weighted digital polar transmitter under ideal combining conditions fulfill the European Computer Manufacturers Association requirements. The proposed experimental setup, believed to be the first ever attempted, confirm the feasibility of a digital polar transmitter architecture for Ultra-Wideband. In addition, we propose a number of power combining techniques suitable for the hardware implementation. Spatial power combining, in particular, shows a high potential for the digital polar transmitter architecture. The above studies demonstrate the feasibility of the digital polar architecture with good power efficiency for a wideband wireless standard with low-power and high fractional bandwidth requirements

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Analysis and design of low power CMOS ultra wideband receiver

    Full text link
    This research concentrates on the design and analysis of low power ultra wideband receivers for Multiband Orthogonal Frequency Division Multiplexing systems. Low power design entails different performance tradeoffs, which are analyzed. Relationship among power consumption, achievable noise figure and linearity performance including distortion products (cross-modulation, inter-modulation and harmonic distortion) are derived. From these relationships, circuit design proceeds with allocation of gain among different sub circuit blocks for power optimum system. A power optimum RF receiver front-end for MB-OFDM based UWB systems is designed that covers all the MB-OFDM spectrum between 3.1 GHZ to 9.6 GHZ. The receiver consists of a low-noise amplifier, down-converter, channel select filter and programmable gain amplifier and occupies only 1mm 2 in 0.13um CMOS process. Receiver consumes 20 mA from a 1.2 V supply and has the measured gain of 69db, noise figure less than 6 dB and input IIP 3 of -6 dBm

    A 3.1-4.8GHz IR-UWB All-Digital Pulse Generator in 0.13-um CMOS Technology for WBAN Systems

    Get PDF
    Analog, Digital & RF Circuit DesignImpulse Radio Ultra-WideBand (IR-UWB) systems have drawn growing attention for wireless sensor networks such as Wireless Personal Area Network (WPAN) and Wireless Body Area Network (WBAN) systems ever since the Federal Communications Commission (FCC) released the spectrum between 3.1 and 10.6GHz for unlicensed use in 2002. The restriction on transmitted power spectral density in this band is equal to the noise emission limit of household digital electronics. This band is also shared with several existing service, therefore in-band interference is expected and presents a challenge to UWB system design. UWB devices as secondary spectrum users must also detect and avoid (DAA) other licensed users from the cognitive radio???s point of view. For the DAA requirement, it is more effective to deploy signal with variable center frequency and a minimum 10dB bandwidth of 500MHz than a signal covering the entire UWB spectrum range with fixed center frequency. A key requirement of the applications using IR-UWB signal is ultra-low power consumption for longer battery life. Also, cost reduction is highly desirable. Recently, digital IR-UWB pulse generation is studied more than analog approach due to its lower power consumption. An all-digital pulse generator in a standard 0.13-um CMOS technology for communication systems using Impulse Radio Ultra-WideBand (IR-UWB) signal is presented. A delay line-based architecture utilizing only static logic gates and leading lower power consumption for pulse generation is proposed in this thesis. By using of all-digital architecture, energy is consumed by CV2 switching losses and sub-threshold leakage currents, without RF oscillator or analog bias currents. The center frequency and the fixed bandwidth of 500MHz of the output signal can be digitally controlled to cover three channels in low band of UWB spectrum. Delay based Binary Shift Keying (DB-BPSK) and Pulse Position Modulation (PPM) schemes are exploited at the same time to modulate the transmitted signals with further improvement in spectrum characteristics. The total energy consumption is 48pJ/pulse at 1.2V supply voltage, which is well suitable for WBAN systems.ope

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    ï»żUltrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden mĂŒssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen FĂ€llen der naheliegende Ansatz, ein kohĂ€renter EmpfĂ€nger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohĂ€renter EmpfĂ€nger zum Einsatz. InkohĂ€rente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgĂŒnstige und robuste Implementierungen möglich sind. Dies trifft vor allem in AnwendungsfĂ€llen wie den von drahtlosen Sensornetzen zu, wo preiswerte GerĂ€te mit langer Batterielaufzeit nötigsind. Dies verringert den fĂŒr die KanalschĂ€tzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenĂŒber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunĂ€chst ein inkohĂ€renter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohĂ€renter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hĂ€ngt von dem Produkt aus der LĂ€nge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohĂ€rentes Combining zu reduzieren und somit die Leistungseffizienz des EmpfĂ€ngers zu steigern, werden verbesserte Combining-Methoden fĂŒr Mehrwegeempfang vorgeschlagen. Ein analoger EmpfĂ€nger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird fĂŒr UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dĂŒnn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel fĂŒr die Code-Auswahl vorgestellt, welche die StabilitĂ€t des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohĂ€rentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohĂ€renter Demodulation. Im Vergleich zum AnalogempfĂ€nger besitzt ein DigitalempfĂ€nger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohĂ€rent und beschrĂ€nkt das inkohĂ€rente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewĂ€hrleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohĂ€renten Combining-Verlust, sonder zeigt auch eine stĂ€rkere Resistenz gegenĂŒber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfĂ€llt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in AbhĂ€ngigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur UnterdrĂŒckung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohĂ€rente EmpfĂ€nger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohĂ€rentem Combining-Verlust und StabilitĂ€t gegenĂŒber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept fĂŒr UWB-Systeme erarbeitet: wahlweise kohĂ€rente oder inkohĂ€rente EmpfĂ€nger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengĂŒnstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung fĂŒr hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die FunktionalitĂ€t des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). ZusĂ€tzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollstĂ€ndig ausnutzen, was sich in verbesserten SchĂ€tzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas
    corecore