2,419 research outputs found

    Effects of Isolated Systolic Hypertension and Essential Hypertension on Large and Middle-sized Artery Compliance

    Get PDF
    Systolic hypertension of the elderly is characterized by a reduction in arterial compliance. Whether and to what extent this involves arteries of various structure and size is not well known.To study carotid and radial artery compliance in systolic hypertension of the elderly, compared to essential hypertension and normotension.We investigated 28 elderly patients with systolic hypertension (age 68.6 +/- 1.4 years, mean +/- SE; systolic blood pressure160 mmHg and diastolic blood pressure90 mmHg) plus 17 age-matched patients with essential hypertension and 15 age-matched healthy normotensive subjects. Radial and carotid artery compliance were evaluated using echotracking techniques. In both arteries compliance was assessed statistically and dynamically, i.e. as compliance values throughout the diasto-systolic pressure range. Measurements included intima-media wall thickness of the radial artery.Compared to normotensive subjects, carotid artery compliance was reduced in essential hypertension and more so in systolic hypertension. However, although in both groups radial artery wall thickness was markedly greater than in the normotensive group, radial artery compliance was markedly reduced in systolic hypertension, but unchanged in essential hypertension.In systolic hypertension of the elderly the reduction of arterial compliance is marked in both muscular and large elastic arteries, while in elderly essential hypertensives changes in arterial compliance are more heterogeneous, i.e. only carotid artery compliance is reduced. The different effects of these two types of hypertension on arterial mechanics are visible throughout the physiological range of blood pressure and probably accounted for by different alterations in vessel wall structure

    Multi agent system for estimation of cardiovascular parameters

    Full text link
    Many cardiovascular diseases can be avoided by continuous monitoring cardiovascular parameters. Heart rate, electrocardiogram, blood pressure and pulse wave velocity are the most important and popular cardiovascular parameters. These parameters can be measured by different sensors that have been developed and improved to achieve reliable, accurate and continuous measurements. A part of the processing of theses sensors data, to get the related information, is parameters estimation. This paper presents a new concept to estimate cardiovascular parameters via using a new multi-agent system; that combines two independent methods; first method depends on pulse wave velocity (PWV), while second method depends on heart rate and artery resistance. The outcome of this multi-agent system is a continuous and reliable estimation of cardiovascular parameters by using non-invasive, Cuffless cheap sensors. © 2005 IEEE

    Estimating pulse wave velocity using mobile phone sensors

    Get PDF
    Pulse wave velocity has been recognised as an important physiological phenomenon in the human body, and its measurement can aid in the diagnosis and treatment of chronic diseases. It is the gold standard for arterial stiffness measurements, and it also shares a positive relationship with blood pressure and heart rate. There exist several methods and devices via which it can be measured. However, commercially available devices are more geared towards working health professionals and hospital settings, requiring a significant monetary investment and specialised training to operate correctly. Furthermore, most of these devices are not portable and thus generally not feasible for private home use by the common individual. Given its usefulness as an indicator of certain physiological functions, it is expected that having a more portable, affordable, and simple to use solution would present many benefits to both end users and healthcare professionals alike. This study investigated and developed a working model for a new approach to pulse wave velocity measurement, based on existing methods, but making use of novel equipment. The proposed approach made use of a mobile phone video camera and audio input in conjunction with a Doppler ultrasound probe. The underlying principle is that of a two-point measurement system utilising photoplethysmography and electrocardiogram signals, an existing method commonly found in many studies. Data was collected using the mobile phone sensors and processed and analysed on a computer. A custom program was developed in MATLAB that computed pulse wave velocity given the audio and video signals and a measurement of the distance between the two data acquisition sites. Results were compared to the findings of previous studies in the field, and showed similar trends. As the power of mobile smartphones grows, there exists potential for the work and methods presented here to be fully developed into a standalone mobile application, which would bring forth real benefits of portability and cost-effectiveness to the prospective user base

    Continuous and Noninvasive Measurement of Arterial Pulse Pressure and Pressure Waveform using an Image-free Ultrasound System

    Full text link
    The local beat-to-beat local pulse pressure (PP) and blood pressure waveform of arteries, especially central arteries, are important indicators of the course of cardiovascular diseases (CVDs). Nevertheless, noninvasive measurement of them remains a challenge in the clinic. This work presents a three-element image-free ultrasound system with a low-computational method for real-time measurement of local pulse wave velocity (PWV) and diameter waveforms, enabling real-time and noninvasive continuous PP and blood pressure waveforms measurement without calibration. The developed system has been well-validated in vitro and in vivo. In in vitro cardiovascular phantom experiments, the results demonstrated high accuracy in the measurement of PP (error < 3 mmHg) and blood pressure waveform (root-mean-square-errors (RMSE) < 2 mmHg, correlation coefficient (r) > textgreater 0.99). In subsequent human carotid experiments, the system was compared with an arterial tonometer, which showed excellent PP accuracy (mean absolute error (MAE) = 3.7 +- 3.4 mmHg) and pressure waveform similarity (RMSE = 3.7 +- 1.6 mmHg, r = 0.98 +- 0.01). Furthermore, comparative experiments with the volume clamp device demonstrated the system's ability to accurately trace blood pressure changes (induced by deep breathing) over a period of one minute, with the MAE of DBP, MAP, and SBP within 5 +- 8 mmHg. The present results demonstrate the accuracy and reliability of the developed system for continuous and noninvasive measurement of arterial PP and blood pressure waveform measurements, with potential applications in the diagnosis and prevention of CVDs.Comment: 13 pages, 12 figure
    corecore