419 research outputs found

    The Development of a Viscoelastic Ellipsoidal Model for use in Measuring Plantar Tissue Material Properties during Walking

    Full text link
    Introduction: The mechanical characteristics of the plantar tissues during walking is not well understood as most of the current research focuses on testing specific plantar regions in cadavers or while the feet of the participants are raised. In this work, it is hypothesized that a viscoelastic geometric ellipsoid model used to assess multiple structures of the foot would be accurate and robust. This model would be participant-specific and applicable to the entire stance phase of gait. Methods: The proposed viscoelastic ellipsoid model would represent several key anatomical areas: Heel, Posterior Midfoot, Anterior Midfoot, Metatarsals 1-2, Metatarsals 3-5, Toe 1, Toe 2, and Toes 3-5. The ellipsoid model required measurement of force and contact area simultaneously. This was done using pressure-measuring insoles (Medilogic ®, Schönefeld, Germany), worn by multiple, college-aged participants. The insole force and area data were used to optimize the model for each participant as the material properties and geometry of each participant’s foot will differ. Results: The results of the model application was able to show that the ellipsoid model was fairly successful in producing the ground reaction force during walking. Further, the ellipsoid model was able to characterize stiffness and damping results, that were different for all the plantar regions. These results were also different from previous research that used data from mechanical tests and experiments where the participant’s foot was static. Conclusion: The viscoelastic ellipsoidal model was able to reproduce ground reaction force and determine the unique mechanical characteristics for each plantar region. Future uses of the model will be with clinical data collected from persons with plantar diseases, which could lead to predictions and preventions of plantar disease

    Wearable Sensing for Solid Biomechanics: A Review

    Get PDF
    Understanding the solid biomechanics of the human body is important to the study of structure and function of the body, which can have a range of applications in health care, sport, well-being, and workflow analysis. Conventional laboratory-based biomechanical analysis systems and observation-based tests are designed only to capture brief snapshots of the mechanics of movement. With recent developments in wearable sensing technologies, biomechanical analysis can be conducted in less-constrained environments, thus allowing continuous monitoring and analysis beyond laboratory settings. In this paper, we review the current research in wearable sensing technologies for biomechanical analysis, focusing on sensing and analytics that enable continuous, long-term monitoring of kinematics and kinetics in a free-living environment. The main technical challenges, including measurement drift, external interferences, nonlinear sensor properties, sensor placement, and muscle variations, that can affect the accuracy and robustness of existing methods and different methods for reducing the impact of these sources of errors are described in this paper. Recent developments in motion estimation in kinematics, mobile force sensing in kinematics, sensor reduction for electromyography, and the future direction of sensing for biomechanics are also discussed

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    AI-based smart sensing and AR for gait rehabilitation assessment

    Get PDF
    Health monitoring is crucial in hospitals and rehabilitation centers. Challenges can affect the reliability and accuracy of health data. Human error, patient compliance concerns, time, money, technology, and environmental factors might cause these issues. In order to improve patient care, healthcare providers must address these challenges. We propose a non-intrusive smart sensing system that uses a SensFloor smart carpet and an inertial measurement unit (IMU) wearable sensor on the user’s back to monitor position and gait characteristics. Furthermore, we implemented machine learning (ML) algorithms to analyze the data collected from the SensFloor and IMU sensors. The system generates real-time data that are stored in the cloud and are accessible to physical therapists and patients. Additionally, the system’s real-time dashboards provide a comprehensive analysis of the user’s gait and balance, enabling personalized training plans with tailored exercises and better rehabilitation outcomes. Using non-invasive smart sensing technology, our proposed solution enables healthcare facilities to monitor patients’ health and enhance their physical rehabilitation plans.info:eu-repo/semantics/publishedVersio

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Adaptive Controllers for Assistive Robotic Devices

    Full text link
    Lower extremity assistive robotic devices, such as exoskeletons and prostheses, have the potential to improve mobility for millions of individuals, both healthy and disabled. These devices are designed to work in conjunction with the user to enhance or replace lost functionality of a limb. Given the large variability in walking dynamics from person to person, it is still an open research question of how to optimally control such devices to maximize their benefit for each individual user. In this context, it is becoming more and more evident that there exists no "one size fits all" solution, but that each device needs to be tuned on a subject-specific basis to best account for each user's unique gait characteristics. However, the controllers that run in the background of these devices to dictate when and what type of actuation to deliver often have up to a hundred different parameters that can be tuned on a subject-specific basis. To hand tune each parameter can be an extremely tedious and time consuming process. Additionally, current tuning practices often rely on subjective measures to inform the fitting process. To address the current obstacles associated with device control and tuning, I have developed novel tools that overcome some of these issues through the design of control architectures that autonomously adapt to the user based upon real-time physiological measures. This approach frames the tuning process of a device as a real-time optimization and allows for the device to co-adapt with the wearer during use. As an outcome of these approaches, I have been able to investigate what qualities of a device controller are beneficial to users through the analysis of whole body kinematics, dynamics, and energetics. The framework of my research has been broken down into four major projects. First, I investigated how current standards of processing and analyzing physiological measures could be improved upon. Specifically, I focused on how to analyze non-steady-state measures of metabolic work rate in real time and how the noise content of theses measures can inform confidence analyses. Second, I applied the techniques I developed for analyzing non-steady-state measures of metabolic work rate to conduct a real-time optimization of powered bilateral ankle exoskeletons. For this study I employed a gradient descent optimization to tune and optimize an actuation timing parameter of these simple exoskeletons on a subject-specific basis. Third, I investigated how users may use an adaptive controller where they had a more direct impact on the adaptation via their own muscle recruitment. In this study, I designed and tested an adaptive gain proportional myoelectric controller with healthy subjects walking in bilateral ankle exoskeletons. Through this work I showed that subjects adapted to using increased levels of total ankle power compared to unpowered walking in the devices. As a result, subjects decreased power at their hip and were able to achieve large decreases in their metabolic work rate compared to unpowered walking. Fourth, I compared how subjects may use a controller driven by neural signals differently than one driven by mechanically intrinsic signals. The results of this project suggest that control based on neural signals may be better suited for therapeutic rehabilitation than control based on mechanically intrinsic signals. Together, these four projects have drastically improved upon subject-specific control of assistive devices in both a research and clinical setting.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144029/1/jrkoller_1.pd

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Measurement Devices for Custom Shoe Manufacturing

    Get PDF
    The majority of North Americans suffer from foot problems at some point in their lives. These foot problems can be divided into three domains ranging from mismatch on healthy feet, to small injuries and deformities and extreme sensitivity and deformities. A solution to these problems is the development of corrective shoes. The design of corrective shoes involves three steps: first, the measurement or digitization of the foot to create a model; second, the manipulation of the model and last creation; third, constructing the shoe with the last. This work focuses on developing a foot digitization system or scanner for each of the three problem domains. A good digitization paves the way for development of foot manipulation algorithms and last manufacturing techniques that can be applied to develop well fitting comfortable shoes. Three scanning methods were investigated in this work. The first was designed for scanning near normal feet and automatically building a 3D approximation of the plantar surface of the foot. This digitizer was successfully built and demonstrated. The second scanner was designed to scan the entire 3D surface of the foot. This scanner was built and used to extract data for building complete 3D models of the foot. The last scanner was designed to measure and modify the pressure distribution of the loaded foot on a controllable surface. This scanner is more capable in creating an optimal corrective shoe, but is more expensive. A pin matrix design was selected and subsystem prototypes were successfully produced and tested. The first two developed designs provide low cost solutions for modeling feet, for the purposes of corrective shoe and insole creation. The third design explores a method of measuring foot pressure and distributing it via control of a 3D surface upon which the foot is supported
    • …
    corecore