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Abstract—Understanding the solid biomechanics of the human
body is important to the study of structure and function of
the body, which can have a range of applications in healthcare,
sport, wellbeing, and workflow analysis. Conventional laboratory-
based biomechanical analysis systems and observation-based tests
are only designed to capture brief snapshots of the mechanics
of movement. With recent developments in wearable sensing
technologies, biomechanical analysis can be conducted in less
constrained environments, thus allowing continuous monitoring
and analysis beyond laboratory settings. In this paper, we review
the current research in wearable sensing technologies for biome-
chanical analysis, focusing upon sensing and analytics that enable
continuous, long-term monitoring of kinematics and kinetics
in a free-living environment. The main technical challenges,
including measurement drift, external interferences, nonlinear
sensor properties, sensor placement, and muscle variations that
can affect the accuracy and robustness of existing methods,
and different methods for reducing the impact of these sources
of errors are described in this review. Recent developments
in motion estimation in kinematics, mobile force sensing in
kinematics, sensor reduction for electromyography, as well as the
future direction of sensing for biomechanics are also discussed.

I. INTRODUCTION

Human biomechanics is the study of structure and function

of the human body. The study of human biomechanics has

been a subject of interest for centuries, as scientists seek to

improve performance of the body and establish methods for

diagnosis, recovery, and prevention of diseases through better

understanding of the human body [1],. This plays an important

role in healthcare, sports, wellbeing, and workflow analysis.

Biomechanics studies may be oriented towards the biomechan-

ics of solid bodies or fluids, for example, haemodynamics of

the cardiovascular system [2][3]. In this review, we only focus

upon solid biomechanics.

Two branches of biomechanics commonly studied are kine-

matics and kinetics, which study the description of motion

and the cause of motion, respectively. Kinematics describes

the overall motion of the body without considering the causes

of motion. Thus far, human kinematics can be obtained at

varying granularities and accuracy through a wide spectrum of

technologies. For example, the movements of the head, hands,

arms and legs can be measured using mechanical, magnetic,

optical, and inertial systems. In contrast, kinetics studies the

forces and torques that initiate the motion. When an accurate

model of the musculoskeletal system is available, muscle force

and muscle activation can be estimated using force measure-

ment systems for kinetic analysis. Floor-mounted force plates,

instrumented tools, and portable pressure sensors enable forces

(a) Gait laboratory

(b) Markers

(c) IR camera

Fig. 1. (a) Gait laboratory equipped with an optical marker-based motion
capture system and multi-view camera system for whole body kinematic
analysis at The Hamlyn Centre, Imperial College London. The motion of
(b) passive retro-reflective markers placed on the upper body are tracked using
the optical system’s (c) infrared cameras [29].

to be measured. Detailed measurement of muscle activations

and forces can also be obtained through electromyography

(EMG).

Thus far, many technologies, such as mechanical attach-

ments, optical systems, floor-mounted instruments, and elec-

trode arrays, have been developed to measure human biome-

chanics, but such systems are designed to capture brief

periods of the movement in a laboratory setting. With the

developments in wearable sensing technologies, continuous

biomechanical analysis can be conducted in less constrained

environments. In the rest of this section, we will briefly

introduce the current sensing technologies used in the labo-

ratory and typical applications of these technologies. A short

summary of the previous surveys will also be provided.

A. Sensing Technologies

Conventional biomechanical analysis techniques have re-

lied on subjective laboratory-based observation. Mechanical

instruments [4]–[14], marker-based optical systems [15]–[20],

force sensing walkways [21]–[25], and electromyography

(EMG) [25]–[28] allow detailed quantification of movement

and the cause of motion. Fig. 1 shows a typical example

of a motion capture laboratory. These technologies enable a

detailed study of human biomechanics with high accuracy.

However, the complexity and technological constraints of

laboratory-based instruments have prohibited their routine use

in free-living environments.

The recovery of human biomechanics through natural video

sequences has gained significant interest in the past as spe-



TABLE I
APPLICATIONS OF WEARABLE SENSING FOR BIOMECHANICS

Application Study size Sensor type Sensor
placement

Pros Cons

Pathology & Rehabilitation

Gait analysis 8 – 28 Inertial,
Pressure insole

Foot, Shank,
Thigh

Inertial sensors allow gait anal-
ysis to be performed in free-
living environments.

Floor-mounted force plates are
still necessary for accurate
force measurement.

Parkinson’s disease 4 – 10 Inertial Chest,
Forearm,
Hip, Shank,
Thigh,
Upper arm

Wearable sensors are essential
for enabling continuous mon-
itoring of Parkinson’s disease
patients. Inertial sensors also
allow subtle movements to be
captured. Studies have used in-
ertial sensors to detecting freez-
ing of gait (FOG) events and
feedback optimising deep brain
stimulation.

Additional contextual factors
from the surrounding environ-
ment and physiological factors,
which may affect Parkinson’s
patients, however, cannot be
captured solely using inertial
sensors.

Rehabilitation 2 – 15 Exoskeleton,
Goniometer,
Inertial

Forearm,
Shank,
Thigh,
Upper arm

In addition to accurate motion
measurement, robotic exoskele-
tons can also provide support
for limb movement during reha-
bilitation. Goniometers and in-
ertial sensors also enable accu-
rate motion estimation.

Mechanical systems, such as
exoskeletons and goniometers,
can restrict natural motion and
the cost of most exoskeletons
remain high.

Stroke 12 – 15 Exoskeleton,
Inertial

Chest,
Forearm,
Hand, Upper
arm

Exoskeletons also can provide
support for post-stroke rehabili-
tation and inertial sensors allow
motor ability assessments to be
performed outside the labora-
tory.

The nonlinear relationships be-
tween kinematics and exist-
ing clinical assessments for
post-stroke patients mean that
these assessments cannot be
performed solely through wear-
able sensors.

Sports Performance

Darts 3 Inertial Forearm,
Shank,
Shoulder

Wearable sensors allow key
biomechanical factors, such as
speed, acceleration, and throw
timing to be easily measured.

Measurement drift and external
interferences, however, can af-
fect measurement accuracy.

Rowing 1 – 5 Goniometer, In-
ertial

Hip, Thigh Wearable sensors can provide
an accurate estimate of the
rower’s posture and wireless
connectivity enables real-time
analysis. Inertial sensor nodes
can also be easily adapted to fit
different users.

Goniometers, however, can re-
strict the range of movement of
the limbs, which is undesirable
for sports.

Running 20 Inertial Foot,
Forearm,
Hip, Shank,
Shoulder,
Thigh,
Upper arm

Motion estimation in uncon-
strained environments can be
achieved using wearable iner-
tial sensors. Analysis of athlete
skill and fatigue can also be
achieved through classification
of kinematic changes.

Measurement drift, external in-
terference, and differences in
sensor placement, however, can
affect motion estimation and
classification approaches.

Other

Posture 9 Fibre optic Spine
Surgical skill assessment 30 Potentiometer,

Force/Torque
Hand

Workflow analysis 10 – 27 Inertial,
Microphone,
Ultrasonic,
Ultra-wideband

Chest,
Forearm,
Hand, Neck,
Shoulder

Ultrasonic and ultra-wideband
enable low cost drift-free mea-
surement of movement for mul-
tiple people

The accuracy and frequency of
ultrasonic and ultra-wideband
sensors, however, are typically
lower than inertial sensors.

cialised markers and motion analysis laboratories are not nec-

essary. Markerless vision-based systems using a single camera,

multiple cameras, and depth cameras have been increasingly

used recently for motion capture. Markerless solutions are less

intrusive compared to other analysis methods. However, the

estimation accuracy and robustness of the existing techniques

are still lagging behind conventional marker-based optical

systems.

In contrast to the current laboratory-based and vision sens-

ing systems, wearable sensors offer much greater flexibility

without spatial constraints. Developments in wearable tech-

nologies, such as inertial/magnetic motion capture, are en-

abling continuous capture of biomechanics beyond the typical

laboratory setting. Advances in wearable sensing technolo-

gies and processing techniques have brought increasingly

miniaturised sensors to measure human biomechanics with



good accuracy. Flexible electrogoniometers, lightweight ex-

oskeletons, wearable inertial systems, shoe-mounted pressure

sensors, instrumented tools, and wireless electromyography

(EMG) systems have brought continuous kinematic and ki-

netic analysis of daily life closer to reality. Current research

platforms focusing upon challenges affecting the accuracy and

robustness of wearable sensing technologies have explored

the implementation of more detailed human models, more

reliable motion estimation algorithms, and sensor fusion and

estimation strategies, which we will elaborate on in Section II

and III.

B. Applications

The development of sensing technologies and processing

techniques for biomechanical analysis are used to enable study

across a wide spectrum of applications. In this section, we will

consider the following exemplars as shown in Table I on how

one can use biomechanics to understand the effect of diseases

and rehabilitation on patients, skills assessment in workplace

and training on athletic performance.

Clinically, systems for kinematic and kinetic analysis are

used for the diagnosis of disease and illness, such as the sever-

ity of symptoms in Parkinson’s disease [30]–[33], assessment

of patient recovery from treatment, such as the outcomes of

training schemes for patient rehabilitation [34], and control of

prostheses through identification of movement intention [35]–

[37].

In workplace, existing processes and techniques can be

optimised through biomechanical analysis of dexterity, body

motion, and posture. In surgery, for example, studies of

surgical workflow seek to describe and understand the surgical

process such that the information can be used for training

and skills assessment [38]. The application of biomechanical

analysis techniques to acquire staff movement and interaction

information can be used to gain a deeper understanding of

activities that occur in the operating theatre such that commu-

nication and team interaction can be examined [39][40].

Biomechanical analysis technologies have been used in a

wide range of sport applications, including overarm throw in

darts [41], rowing [42][43], and golf swings [44]. This has

enabled the performance of athletes to be quantified during

training and in-game with unobtrusive devices.

C. Previous Surveys

Recent surveys of biomechanical analysis technologies used

in patient assessment studies [45]–[47] and workflow analysis

[48]–[51] have signified the importance of obtaining repeatable

objective measures. These surveys focus mainly on the clinical

application of analysis techniques rather than technical novelty

of the sensing technologies.

Perez-Sala et al. [52] reviewed the state-of-the-art for vision-

based motion capture. It provided an overview of the methods

that describe appearance, resolve viewpoints, spatial models,

temporal models, and human behaviour. For vision-based mo-

tion capture, determining activity and contextual information

through the understanding of behaviour has been shown to

improve visual pose estimation. However, behavioural cues

from vision can also be used for improving the analysis using

wearable sensors by providing contextual information.

Roriz et al. [53] reviewed the use of fibre optic sensors

for measuring strain and forces in biomechanics. For sensing

strain, fibre optic sensors that use wavelength modulation

are used to substitute conventional strain sensors since they

provide a linear response to axial strain, absolute measure-

ments, and are promising for in vivo applications, particularly

in minimally invasive and robotic assisted surgery. Fibre

optic sensors are small, minimally invasive, and accurate, but

involve complicated setup procedures and high costs. These

limit the adoption of this technology for monitoring solid

biomechanics in a free-living environment.

A review of wearable sensors for human posture and

movement analysis by Wong et al. [54] highlighted the clinical

applications as well as the major achievements of recent work

and key challenges. It looked at alternatives to vision-based

systems for measuring human movement and posture, and the

possible clinical application of the sensors. The review con-

siders physical activity monitoring, gait analysis, posture and

trunk movement analysis, and upper limb movement analysis

using a range of sensors, such as accelerometers, gyroscopes,

flexible angular sensors, magnetic sensors, and smart fabrics.

However, limitations in accuracy and environmental factors

can affect all sensors depending on the environment. This can

be overcome by fusion of different sensor information.

D. Content of This Paper

Different to previous surveys, this review focuses on devel-

opments in wearable technologies and processing techniques

that facilitate continuous biomechanical analysis within, as

well as beyond the hospital or laboratory settings. Three

databases - IEEE Xplore [55], Google Scholar [56], and IEEE

JBHI Topic Network [57] - were used for the literature search.

A combination of keywords, such as biomechanics, solid

biomechanics, kinematics, kinetics, wearable, motion capture,

flexible exoskeleton, fibre/fiber optic, vision, pose estimation,

drift, interference, inertial, ground reaction force, electromyog-

raphy, surface electromyography, and muscle force, were used

as search terms. Publications from 2009 – 2014 were preferred,

however, this range was extended in some cases.

The rest of this paper is organised as follows: developments

in sensing for kinematics are detailed in Section II and

developments in mobile force sensing and electromyography

are detailed in Section III. Section IV concludes the paper

and discusses the future direction of wearable sensing in solid

biomechanics.

II. KINEMATICS

Kinematics is the study of classical mechanics that describes

the motion of human body without consideration of the causes

of motion. Properties of the human joints, such as the trajec-

tory, velocity, acceleration, joint angle, and angular velocity,

are of interest in kinematics studies. Thus far, a number of

wearable sensing technologies and processing techniques have



TABLE II
SENSOR PROPERTIES FOR KINEMATICS

Properties Goniometer Exoskeleton Inertial

Sensor size Length depends on joint measured Full body suit Multiple nodes < 40mm
3 each

Customisation Flexible goniometer placement ad-
justable

Typically customised or adjusted to
the subject for precise alignment

Sensor node positions adjustable

Setup Precise alignment required at each
joint

Precise alignment required at each
joint

Calibration with known pose re-
quired

Accuracy < 2° at each joint < 2° at each joint < 2° at each joint
Variability Accuracy can be affected if go-

niometer becomes misaligned
Accuracy can be affected if the ex-
oskeleton becomes misaligned with
the joints

Accuracy can be affected by mea-
surement drift and external interfer-
ence

Limb movement Mechanical attachments can limit
the range of motion of the subject’s
limbs

Mechanical attachments can limit
the range of motion of the subject’s
limbs

Lightweight micro-inertial sensors
allow free limb movement

Environment Unconstrained Some lightweight exoskeletons can
be used within unconstrained envi-
ronments

Micro-inertial sensor nodes can
also be used within unconstrained
environments

Power consumption Low; batteries enable operation for
several hours

High; high capacity batteries that
enable the system to function for
several hours are used

Low; small batteries enable most
systems to operate from 1 day to
1 week

(a) Goniometer (b) Exoskeleton (c) Inertial

Fig. 2. (a) Flexible goniometers, such as the Biometrics Single/Twin Axis
Goniometer [58], (b) exoskeletons, such as the Ekso Bionics suit [59], and
(c) wearable inertial motion capture systems, such as Xsen’s MVN suit [60],
have been used for detailed analysis of human kinematics.

been have been developed to improve the robustness and

accuracy of kinematic analysis systems. In this section, we

will introduce the developments in wearable sensor technology

and data processing techniques.

A. Wearable Sensors

For kinematics, marker-based optical motion capture sys-

tems are considered to be the gold standard and commonly

used as a reference for validation. However, as shown in Fig.

2, the study of human kinematics outside the laboratory has

only been made possible with the introduction of wearable

sensors, lightweight exoskeletons, and micro-inertial/magnetic

sensors. Table II summarises the typical properties of these

sensors.

Exoskeletons, such as the Ekso Bionics suit [59], are rigid

structures of jointed, straight metal or plastic rods, which are

normally linked together with potentiometers or goniometers

at the joints. Human kinematics can thus be directly measured

using the potentiometers or goniometers. When the subject

moves, the exoskeleton follows the same movement by mea-

suring the subject’s relative motion. It not only provides real-

time kinematics estimation, but also supports limb movement,

which is why many platforms are integrated as robotic plat-

forms so as to provide mechanical support, feedback and con-

trol for limb rehabilitation applications. However, the complex

setup procedures, poor wearability, and rigid construction of

most exoskeletons affect routine usage and natural human

movement. To this end, flexible and comfortable goniometers

have also been used directly on the body to capture joint angles

from specific parts of the body, such as the fingers [61] and

legs [62], but flexible goniometers still suffer from complex

setup procedures, requiring precise alignment across joints.

Unlike rigid exoskeletons or flexible goniometers, micro-

inertial sensors typically have a more straightforward setup

procedure and have minimal interference with natural hu-

man movement, which makes them the most widely used

nowadays. Multiple inertial sensors are typically attached

onto the surface of the human body for real-time capture of

movement. Many systems incorporate other micro sensors,

such as magnetometers [63], ultrasonic sensors [64], and

cameras [65], to compensate for measurement drift which may

be present. Extensive development of inertial/magnetic sensors

has been witnessed over the last decade and some established

commercial systems, such as Synertial [66], Perception [67],

and Xsens [60], have been developed.

B. Processing Techniques

Measurement of joint movement through potentiometers

and goniometers is relatively simple once they have been

properly aligned to each joint. Kinematics through inertial

sensing is more prone to error; therefore, in this section,

we will only focus on the inertial sensor based processing

techniques. Thus far, extensive research has been performed

on how to fuse inertial and magnetic sensor measurements for

accurate segment orientation and joint angle estimation [68]–

[70]. The method can be further extended to estimate the



global displacement and centre of mass as well [71]–[74].

However, the estimation accuracy can be severely affected

by measurement drift and external interferences, which recent

works have sought to resolve. Thus far, model constraints

based methods and extra sensor-based methods have been

proposed to further reduce drift, while interference estima-

tion based solutions and noise adjustment methods have also

been presented to handle external interference. In the rest of

this section, we will explore these four areas developed for

minimising estimation errors.

1) Model Constraints: Current skeleton models used in

inertial capture systems are typically comprised of a simple

structure of connected joints and segments [75], and each

joint can admit three degrees-of-freedom. However, some

joints, such as the elbow and knee, cannot rotate freely about

three axes, thus geometric constraints should be taken into

consideration for processing of processing inertial data.

Recently, some researchers have proposed to use these

known physical limitations of the skeleton to further reduce

inertial sensor drift. For example, Seel et al. [76] make

use of the fact that the knee joint behaves approximately

like a mechanical hinge joint. The kinematic constraints of

the knee joint are exploited to align the inertial sensors to

the body segments, which is crucial for precise joint angle

calculation. Meng et al. [77] also used similar anatomical

constraints for walking gait. The knee and ankle joints are

modelled as soft hinges during walking, where the main axis

of rotation is flexion/extension while inversion and abduction

movements are limited to a small range. Similarly, Luinge et

al. [78] uses constraints in the elbow to determine the exact

orientation of each of the sensors with respect to the segment,

thus improving the estimation accuracy of orientation of the

lower arm with respect to the upper arm. Zhang et al. [79]

proposes a link structure with five degrees of freedom to

model the human upper-limb skeleton structure by limiting

the elbow joint movement. Parameters are defined according to

Denavit-Hartenberg convention, forward kinematics equations

are derived, and an unscented Kalman filter is employed to

estimate the human arm kinematics. Estimation errors of less

than 3° and 12° were achieved, respectively, for upper-arm

motion and forearm motion. Peppoloni et al. [80] and El-

Gohary et al. [81] also present similar ideas for kinematic

analysis using wearable inertial sensors.

These recent approaches demonstrate that by applying

constraints on joint movement, which limit the degrees of

freedom, range of motion, and body segment rotation, it is

possible to reduce inertial sensor drift. However, these methods

can only constrain movement to be within the defined range of

each joint, while erroneous measurements within the defined

ranges cannot be prevented. Furthermore, most works have

only focused on constraining the motion of specific hinge

joints, such as the elbow, knee, and ankle, meaning that drift

my still be present within other segments of the body.

2) Multi Sensor-based method: In addition to constraint-

based methods, researchers have considered the use of comple-

mentary information from other sensing devices. As discussed

earlier, one of the key issues with inertial sensing is the

measurement drift present in the estimation. To overcome

this challenge, the use of drift-free sensors is combined with

inertial sensing.

Drift-free sensors, such as global positioning system (GPS),

laser range finders, and vision, have been used in recent

works. For example, Brodie et al. [82] added Differential GPS

(DGPS) to inertial sensing for biomechanical analysis of ski

racing to reduce measurement drift of the subject positioning.

In outdoor environments, where there is a clear view of the

sky, DGPS systems have an accuracy of ±5 metres, which

can be used to reduce drift in position estimation. However,

the accuracy of DGPS declines significantly in indoor environ-

ments due to interference. Schall et al. [83] extended this idea

by combining DGPS and vision, which had an average error

of ∼ 0.002° per pixel, with inertial sensing to compensate

for measurement drift in outdoor and indoor environments,

using vision to track sensor orientation where positioning

information from DGPS is not available. Ziegler et al. [84]

proposed to use a laser range finder instead to reduce drift

in the position estimate. The human body posture captured

using inertial sensing is combined with the location to obtain

globally aligned full posture estimates. Position estimate error

was reduced to less than 0.2m from 15m, where estimation

was performed using only inertial measurements. However, leg

detection methods in natural environments are likely to yield

many false positives as a result of the laser range sensor’s

view of the environment. Tao and Hu [85] and Pons-Moll et

al. [86] introduce vision to track image features on the human

body to use as complementary information to reduce drift in

the inertial estimation. Multi-camera and monocular systems

are able provide drift-free tracking of the human body where

the tracked segment is free from occlusion.

Other drift-free sensors, such as ultrasound, short-range

radio - ultra-wideband (UWB) [87]–[90], radio frequency

identification (RFID) [91], Wi-Fi [92][93], and Zigbee [94]

- have also been explored in recent years. Regardless of the

drift-free sensor type, the addition of complementary data from

extra sensors has been shown to be effective towards reducing

measurement drift from inertial sensing. These additional cues

have enabled the study of human kinematics in both indoor

and outdoor environments, where an accumulation of drift

over long durations and distances can result in significant

estimation errors. However, the suitability of each sensor also

depends on the application and environment of kinematic

analysis. For example, while the laser range finder is well

suited for reducing measurement drift in large open areas,

the interference present in more crowded environments would

significantly reduce the efficacy of the sensor. Moreover,

the use of additional sensing devices can be undesirable in

a wearable sensing system as they often introduce further

complexity and bulk to the system. This is especially true

for methods that rely on ambient sensors, such as laser range

finders and cameras, as these extra sensors can reduce the

portability of the system.



3) Interference estimation: External interference is also

an issue that can greatly impact the kinematics estimation

accuracy of micro-inertial sensors. Most inertial sensors com-

prise of accelerometers, gyroscopes, and magnetometers. The

accelerometer is generally assumed to only measure gravity

while the magnetometer only measures local magnetic field,

and the linear acceleration of the rigid body and magnetic

disturbance are assumed to be negligible. However, such

assumptions are not applicable to real word kinematic studies

where relatively large linear acceleration exists due to dynamic

motion or magnetic disturbances due to ferromagnetic mate-

rial.

To this end, many methods have considered estimating the

interference by adding it as part of the state vector in the

framework of Bayesian filter. For example, Young [95] com-

bines the human body model with the rotational parameters

of each inertial sensor worn on the body to more accurately

estimate acceleration. The linear acceleration at each joint

is estimated recursively through a tree of connected joints

used to represent the skeleton. Mean root-mean-square (RMS)

errors of 0.54° and 0.72° at the pelvis were achieved for

walking and running, respectively. Roetenberg et al. [96]

proposed a model which separates gravitational acceleration

and linear acceleration to handle interference from accelera-

tion, and a magnetometer model for preventing heading drift

and interference from magnetic disturbances. RMS errors of

2.7° and 11.9° were observed for orientation estimation with

and without magnetic disturbance compensation, respectively.

Ren and Kazanzides [97] used Kalman filters to estimate

gravity and magnetic field measurements, and an extended

Kalman filter for estimating the orientation of a hand-held

surgical instrument tracked using an inertial and magnetic

navigation system. Estimating magnetometer measurements

using a Kalman filter can eliminate the influence of brief

periods of magnetic interference. Overall RMS tracking errors

of 0.76° - 1.06° were obtained. Sun et al. [98] proposed a

quaternion-based adaptive Kalman filter for drift-free orienta-

tion estimation. In the filter, the motion acceleration is included

in the state vector to compensate the effects of human body

linear acceleration. Lee et al. [99] also presented similar ideas

to estimate the external linear acceleration with RMS errors

ranging from 0.92° – 5.28° for low interference, to 1.2° –

44.13° for high interference.

These methods show that interference from acceleration and

magnetic disturbances can be estimated and thus compensated

for by using Bayesian estimation models. However, the effec-

tiveness of compensation from interference through adaptation

of process noise and filtering of sensor measurements is

limited where external interference is sustained for prolonged

periods of time. The other disadvantage of these methods is

that they can only deal with relatively small interferences,

which is problematic where the magnitude of the interference

is large.

4) Noise adjustment: Another approach used to minimise

errors introduced through interference and disturbances is

measurement noise adjustment, which adapts measurement

noise based on the estimated level of interference. In general,

when interference is detected, the covariance matrix of the

measurement noise is increased to reflect the noisier sensor

measurements.

Similar to interference estimation methods, noise adjust-

ment has also been widely explored in recent years. For

instance, Sabatini [100] proposed an approach which modifies

the measurement noise covariance matrix of the quaternion-

based extended Kalman filter to handle interference in ac-

celerometer and magnetometer measurements. The approach

achieved RMS errors of 1.31°, 1.4°, and 4.13° for roll, pitch,

yaw orientation estimates. Sun et al. [101] also proposes

an adaptive quaternion-based complementary Kalman filter.

To optimise the performance under interference, the filter

changes the covariances of accelerometer and magnetometer

measurement noises based on the information confidence,

which is evaluated by computing interference level. Compared

against three other methods - FQA [102], Quaternion-based

UKF [103], and direct gyroscope integration - their method is

shown to be accurate under motion acceleration and magnetic

disturbance with RMS errors of 0.56° and 1.19° achieved for

roll and pitch. Zhang et al. [104] implements an acceleration

interference detection scheme based on the exponentially

discounted average of the normalised innovation squared (NIS)

in the Kalman filter framework. According to the detection

results, process and measurement noise levels are then scaled

up or down automatically. Their results show that before noise

adjustment, measurement errors can exceed 40° compared to

errors of less than 20° with compensation. However, the main

disadvantage of the aforementioned solutions is the response

speed, as the covariance matrix increment is not fast enough

to handle the outburst of large interferences. For this purpose,

some variations of noise adjustment, such as vector selection

schemes, have also been proposed. The basic idea for such

schemes is to detect whether the sensor measurements are

perturbed and then replace the degraded measurements with

more reliable ones. Lee et al. [105] and Zhang et al. [106]

have explored such ideas in their work. In general, noise

adjustment has shown better performance in reducing the

effects of interference from acceleration and magnetic dis-

turbances than interference estimation methods. On the other

hand, similarly to interference estimation methods, they cannot

handle significant and sustained interferences either.

In addition to kinematics, kinetics is another important

branch of biomechanics, which studies the cause of motion in

the human body. It considers the forces generated internally in

the body that result in human movement. Thus far, a number

of wearable sensing technologies and processing techniques

have brought greater mobility for kinetic analysis. In this

section, we will review the developments in wearable sensor

technology and data processing techniques for kinetics.

In summary, interference estimation and noise adjustment

methods have been shown to minimise measurement errors in-

troduced through interference from acceleration and magnetic

disturbances, which may be prevalent beyond the controlled

laboratory environment, where the interference is usually small



and transient. Small changes in the magnetic field due to

positional variations and interference from acceleration can

be handled as demonstrated by Roetenberg et al. [96] who

achieved a 9.2° reduction in error through magnetic com-

pensation. However, where significant external interferences

are present or interference is sustained for prolonged time

periods, interference estimation and noise adjustment methods

become ineffective for reducing measurement error. For more

significant and prolonged interferences, model constraints and

additional sensor information can be used minimise error and

measurement drift. Model constraints and the inclusion of

data from extra drift-free sensors have been shown to reduce

measurement drift from 15m to 0.2m in some experiments. To

improve accuracy and enable greater resilience against mea-

surement drift and external interference in kinematic analysis,

it is necessary to consider drift and interference reduction

methods together.

Advances in wearable sensing technologies have led to the

development of smaller, lighter, and low-power systems for

enabling the study of kinematics beyond the laboratory. Many

different lightweight exoskeletons and micro-inertial sensors

have already been developed by researchers and commercial

entities. Accuracies comparable to those offered by commer-

cial marker-based optical systems have been achieved for

estimation certain joint movements. However, the use of me-

chanical attachments across multiple joints in exoskeletons and

the number of sensor nodes required for inertial motion capture

still limit the widespread adoption of these technologies for

certain kinematic studies. Continued development of smaller,

lighter, and more accurate wearable systems that are more

comfortable, with better wearability, and rely on fewer sensor

nodes is essential for widespread adoption.

III. KINETICS

A. Wearable Sensors

For kinetics, ground reaction force (GRF), the force exerted

onto the ground, is essential for inferring the internal forces

generated at each joint in the body, which is typically mea-

sured using floor-mounted force plates. In addition, muscle

activity, which can be captured through electromyography

(EMG), also allows more in-depth study of the cause of

motion and detailed force analysis. Similar to kinematics

measurement, kinetic analysis is so far mainly confined to the

laboratory environment. However, as shown in Fig. 3, with

the development of portable and wearable sensors in the past

decade, kinetic analysis beyond the laboratory is becoming

possible. In this section, we will briefly introduce some of the

portable and wearable sensors, including mobile force plates,

wearable pressure insoles, micro-inertial sensors, and wearable

surface EMG. Table III summarises the typical properties of

these sensors.

The development of low-cost and lightweight force plates

has made technology GRF measurement more accessible and

portable. Commercially available portable force plates from

AMTI [107], Bertec [111], and Kistler [112] enable human

kinetics to be studied outside of the controlled laboratory

(a) Mobile force plate (b) Pressure insole (c) Inertial

(d) High-density EMG (e) Sparse EMG

Fig. 3. (a) Mobile force plates, such as the AccuGait portable system from
AMTI [107], (b) pressure insoles, such as the Parotec system from Paromed
[108], (c) inertial sensors, such as the ear-worn accelerometer used by Lo et
al. [109], (d) high-density surface EMG, such as the used by Rojas-Martı́nez
et al. [110], and (e) sparse surface EMG, such as the wireless FREEEMG
system from BTS Bioengineering [29], have allowed human kinetics to be
captured.

environment. However, while GRF can be captured for a more

diverse range of applications, portable force plates can only

capture the force exerted over very small areas, which places

significant restrictions on the activities that can be studied.

As an alternative to portable force plates, wearable pressure

sensing insoles and inertial sensors have been developed to

measure GRF within free-living environments. Thus far, a

number of research platforms have been reported. For instance,

Liu et al. [113] develop a mobile force plate that can be

attached onto a shoe which combines three triaxial force

sensors, one triaxial accelerometer, and three uniaxial gyro-

scopes to measure GRF, centre of pressure (CoP), acceleration,

and angular velocity. Morris Bamberg et al. [114] present an

insole which incorporates two dual-axis accelerometers, three

gyroscopes, four force sensitive resistors, two polyvinylidene

fluoride strips, two bend sensors, and an electric field sensor

for the analysis of Parkinsonian gait. Pressure sensing shoes

and insoles are also presented by Howell et al. [115] and

Strohrmann et al. [116] to study the motion of stroke and

Cerebral Palsy patients, respectively.

Both Lo et al. [109] and Neugebauer et al. [117] propose to

further simplify kinetic analysis using micro-inertial sensors

for GRF measurement. Although GRF is critically important

for kinetics analysis, it can only be used to infer virtual force

generated at each joint by inverse dynamics, which may not

be enough in practice.

In addition to GRF, surface EMG (sEMG) systems can be

used to measure muscle activity for better understanding of

muscle characteristics, muscle force estimation, and movement



TABLE III
SENSOR PROPERTIES FOR KINETICS FORCE ESTIMATION

Properties Mobile force plate Pressure insole Inertial High-density EMG Sparse EMG

Sensor size > 40cm2 Shoe size < 4cm3 Area of muscles mon-
itored typically cov-
ered

< 4cm2

Customisation Multiple force plates
may be used depend-
ing on assessment

Customised to sub-
ject’s shoe/shoe size

Sensor node positions
adjustable

Electrode placement
depends on study

Electrode placement
depends on study

Setup Initial calibration re-
quired

Calibration required Per subject calibra-
tion required

Precise placement re-
quired

Precise placement re-
quired

Accuracy > 99.5% > 90% 80 ∼ 90% – –
Variability Low Can increase due to

wear of insole mate-
rials

Subject variation Yes; across different
subjects and place-
ment

Yes; across different
subjects, placement,
and external
interference

Limb movement Unlimited, however,
force measurement
is constrained to the
force plate area

Unlimited Unlimited Free movement lim-
ited due to large sur-
face electrode array

Unlimited

Environment Limited to area of
force plate

Unconstrained Unconstrained Limited to laboratory
setting

Unconstrained

Power consumption Moderate; most sys-
tems are wired or op-
erate for several hours

Low; batteries enable
monitoring from sev-
eral hours to days

Low; small batteries
enable most systems
to operate from 1 day
to 1 week

High; most systems
are wired

Low; small batteries
enable wireless mea-
surement for several
hours

identification. Previous studies capture myoelectric signals

through high density arrays of surface electrodes as they

are less invasive than intramuscular electrodes and provide

high resolution measurements. Recently, electrode placement

studies [118] have enabled the usage of sparse sEMG to

improve setup times and the convenience of capturing muscle

activities. Some established commercial systems, such as the

BTS Bioengineering FREEEMG system [29], Delsys Trigno

Wireless EMG [119], and Shimmer3 ExG [120], are already

available on the market.

B. Processing Techniques

Obtaining accurate GRF measurements for kinetic analysis

from portable force plates is normally straightforward once the

system has been calibrated. However, obtaining an accurate

GRF measurement from pressure sensing insoles and inertial

sensors is more challenging as the relationship between force

and measurements from deforming insoles and inertial sensors

are nonlinear. To this end, calibration and force estimation

from insole and inertial data is important for enabling GRF

measurement through wearable sensing. Meanwhile, accurate

muscle force estimation and movement identification through

sEMG is challenging due to signal variation across the muscle

and crosstalk. The routine measurement of myoelectric sig-

nals using sEMG is also challenging as the electrode arrays

typically used for detailed analysis are cumbersome to setup

and may affect natural human movement. Therefore, in this

section, processing techniques for pressure insole calibration

and force estimation, and inertial force estimation methods for

GRF measurement, and muscle force estimation and motion

classification methods for surface EMG measurement are

detailed.

1) Pressure insole GRF estimation: Ground reaction force

measurements from force-sensitive resistors used in pressure

insoles are nonlinear and may change as the materials within

the insole deform and become worn with use. Therefore,

careful sensor calibration and force estimation methods are

necessary to ensure accurate GRF measurement.

For example, Morris Bamberg et al. [114] fit sensor mea-

surements with known forces generated from Stable Micro

Systems’ TA-XT Texture Analyser onto a curve for sensor

calibration. Four force-sensitive resistors and a polyvinylidene

fluoride strip are used in the insole to obtain timing and

pressure distribution across the foot. Howell et al. [115] use

an iLoad Mini 50 pound miniature load cell for calibration.

Least squares linear regression is used to find the weighting

coefficients to match the measurements to ground truth GRF

measurements. Similarly, multiple force-sensitive resistors are

used to capture plantar pressure distribution and GRF - 12

resistors are mounted on a flexible circuit board. An overall

RMS error of 5.4% and 6.4% was obtained for GRF estima-

tion of the control subjects and stroke patients, respectively.

Rouhani et al. [121] compares GRF estimation using linear

regression and nonlinear mapping functions - multi-layer per-

ceptron (MLP) network and locally linear neuro-fuzzy (LLNF)

model. Nonlinear mapping functions are shown to have lower

Normalised RMS errors of 7.28N for MLP and 7.66N for

LLNF in comparison to 10.69N for linear regression where

stance time percentage is also used as an additional input.

Pressure sensing insoles are used to capture not only GRF,

but also more detailed characteristics of force distribution

by typically using multiple force-sensitive resistors in their

implementations. Calibration is commonly performed for each

force-sensitive resistor against ground truth values before use

to correct for variations in measurement arising from wear

of the insole. Linear and nonlinear approximation models are

used and compared for GRF estimation. Due to the nonlinear



nature of insole measurements, nonlinear approximation and

input selection using principal component analysis (PCA)

showed better performance. However, the high cost of com-

mercial pressure insole systems and modifications required to

the subject’s footwear limit their widespread use.

2) Ground reaction force estimation from inertial data: The

use of micro-inertial sensors for estimating ground reaction

force has also been explored by researchers as the low cost

and size of the sensors make them ideal for routine use in

kinetic studies.

Recent research has used statistical models, such as

Bayesian networks and regression models, to derive GRF

measurement estimation from acceleration. For example, Lo

et al. [109] use an ear-worn triaxial accelerometer to estimate

the plantar force distribution across each foot, which is di-

vided into eight sub-plantar regions. A hierarchical Bayesian

network is used to detect footsteps, heel strikes, and lateral

hindfoot strikes. A relatively high sensitivity and specificity

of 88% and 83%, respectively, were achieved for detecting

pressure transitions, and a specificity of 77% was achieved for

detecting medial and lateral contact. Similarly, Neugebauer et

al. [117] used a waist-worn accelerometer to estimate GRF.

A mixed effect and generalised regression model, which is

not subject specific, is used to predict the peak vertical GRF

from the waist-worn sensor. Results from the patient cohort

show that the predicted force measurement for most subjects

were within 11% of the fitted mean. Other studies have also

considered the use of multiple sensors for GRF estimation.

Rowlands and Stiles [122] used five accelerometers - three

on the hip and one on each wrist - to consider different

sensor placements on the body. Their findings showed that

measurements from accelerometers on the wrist and hip were

similar. This suggests that it is possible to also capture GRF

using wrist-worn inertial sensors. Charry et al. [123] attached

inertial sensors to the medial tibia of each leg to more

accurately capture peak GRF along the tibial axis, achieving

an average RMS error of 151N , 106N , and 130N , for each

subject in their experiments.

These studies demonstrate that GRF estimation using in-

ertial sensors is possible from sensors mounted on multiple

locations of the body, such as the ear, waist, hip, wrist, and

legs, which may be useful when considering different appli-

cations. However, most papers only assume a steady activity

state for estimation, which means that GRF for mixed activities

is not accurately estimated. For less controlled continuous

monitoring applications in the natural environment, the use of

activity classification techniques can be incorporated to handle

different activities. Furthermore, while it has been shown that

plantar pressure distribution can be determined through an ear-

worn accelerometer, accurate measurements were not obtained

throughout the sub-plantar regions of the foot.

3) Electromyography: Surface electromyography offers a

less invasive means of capturing muscle activity, however,

since surface electrodes can only measure activity from su-

perficial muscles near the electrode, estimating overall muscle

force and identifying joint movement using sEMG is not

straightforward. Muscle models and a number of machine

learning techniques are used by researchers to estimate muscle

forces and identify joint movement.

To estimate muscle forces using sEMG, musculoskeletal

models and learning methods are typically used. For example,

Staudenmann et al. [124] used a high density electrode array

and principal component analysis (PCA) to estimate muscle

force. PCA was used transform the spatial distribution of

muscle activations into linearly independent ranked modes,

split into a sum of higher modes and lower modes, for muscle

force estimation. Shao et al. [125] used a modified Hill-type

muscle model [126] for describing lower limb anatomy. High-

pass filtering, full wave rectification, normalisation using peak

rectified EMG measurements, and low-pass filtering are used

to process the measurements. A calibration process which

incorporates EMG and kinematics was used to determine

parameters between EMG and muscle activation of the muscle

model to achieve RMS errors between 9.7% and 14.7%.

Similarly, Naeem et al. [127] also rectified smooth EMG

measurements, which are combined with a back-propagation

neural network. The artificial neural network learns the ex-

erted muscle force from the rectified EMG measurements. A

comparison of the Hill-type muscle model with the proposed

neural network is also provided. Recent works show that while

muscle models, such as Hill’s muscle model, are important and

still commonly used, the addition of machine learning tech-

niques and calibration for each individual subject is vital for

muscle force measurement due to muscle variations between

each subject.

To identify movement intention using sEMG, learning meth-

ods are typically used to classify observed muscle activations

into actions. For example, Rojas-Martı́nez et al. [110] used

high density electrode arrays with around 350 channels to

classify activations from upper-arm and forearm muscles into

four movement directions at the elbow at different strengths.

A linear discriminant classifier (LDC) was used to classify the

activation maps into 12 groups based on the spatial distribution

and intensity of the map, with classification accuracies of up

to 96.3% achieved. Similarly, Boschmann and Platzner [128]

used a 96 channel high density electrode array to identify 11

hand and wrist movements. Three classifiers - linear discrimi-

nant analysis (LDA), support vector machines (SVM), and k-

nearest neighbour (k-NN) - are compared and used to identify

the different movements. Using a subset of 20 EMG channels,

classification accuracies of up to 85% were achieved, while a

77% accuracy was attained using just four EMG channels. An

electrode placement study by Mesin et al. [118] considered

the importance of precise electrode placement, avoiding the

muscle innervation zone where the muscle bulges, and pro-

poses a search method for locating optimal detection positions

for surface electrodes using multichannel surface EMG. To

further simplify EMG embodiment for routine analysis, high

density electrode arrays are not used in some recent works

for movement identification. Precise electrode placement is

important where the number of electrodes used is reduced.

For example, Landry et al. [28] and Man et al. [129] used



smaller electrode arrays to capture muscle activity from the

foot and fingers, respectively. Zhang et al. [130] proposed a

further reduction through a combination of careful placement

of surface electrodes on the forearm and feature dimensional-

ity reduction using uncorrelated linear discriminant analysis

(ULDA), which seeks to maximise the separation among

different classes, to classify six forearm movements using

five electrodes. An overall classification accuracy of 97.9%

was obtained using 8 EMG channels, which was reduced to

95% when using a subset of five EMG channels. Reducing

the number of electrodes required for muscle activity analysis

makes routine clinical use more practical, however, the lack

of redundancy means that placement and error recovery from

noisy measurements becomes even more essential.

In summary, high-density electrode arrays are commonly

used for detailed muscle activity monitoring in the laboratory

as they have been shown to achieve activity classification ac-

curacies of up to 90% – 96.3%, however, large electrode arrays

are time consuming to setup and not suited for long-term

or routine use beyond the laboratory. To enable the capture

of muscle activity beyond the laboratory, recent works have

demonstrated that by locating optimal positions on the muscle

for measuring activity and targeting specific areas on the

muscle using wireless sEMG sensor nodes or small electrode

arrays, movement identification can also be obtained using

significantly fewer surface EMG electrodes for routine muscle

activity monitoring with 77% – 97% classification accuracy

achievable using 4 – 20 EMG channels. The development

of muscle models and machine learning techniques, such as

neural networks, also allow sEMG to be used to estimate

muscle force. However, due to variations between subjects,

per subject training of estimation models is still necessary for

obtaining muscle force estimates with RMS errors from 9.7%.

While these developments alleviate some of the challenges

associated with monitoring outside laboratories, continuous

monitoring of daily activities in a free-living environment is

still a major challenge as error recovery techniques from EMG

signal interference and skin motion, which alters the muscle

position of the electrode, still require further work.

Advances in ground reaction force estimation using pressure

insoles and inertial sensors have also enabled kinetic analysis

beyond the laboratory. Calibration methods and approximation

models have enabled pressure insoles to capture detailed foot

pressure information, including GRF and pressure distribution,

with greater consistency. Nonlinear approximation models,

such as multi-layer perceptron (MLP) network and locally lin-

ear neuro-fuzzy (LLNF) model, were found to result in greater

prediction accuracies when compared with a linear model. The

proposition of force estimation from inertial sensing creates an

opportunity for realising low cost continuous kinetic analysis

beyond the laboratory with GRF estimates within 11% of the

fitted mean obtained, however, accuracy is limited for complex

movement, and further developments are still necessary to

improve estimation accuracies for a greater range of activities.

IV. CONCLUSION

The study of solid human biomechanics enables the assess-

ment of the structure and function of the human body, which

is important for monitoring a person’s health and wellbeing,

and also monitoring performance in the workplace and in

sports. Established analysis techniques have traditionally relied

upon laboratory-based observation and instruments, which are

costly and limit the range of applications that can be studied.

Fortunately, advances in wearable sensing technologies and

processing techniques have enabled the study of biomechanics

beyond the laboratory.

The development of lightweight exoskeletons, micro-inertial

sensors, mobile force plates, pressure insoles, and wireless

surface electromyography have made monitoring kinematics

and kinetics in the natural free living environment more

feasible. However, costs, complex and time consuming setup

procedures, and reliance on multiple sensor nodes still lim-

its the widespread use of these technologies for continuous

monitoring of biomechanics. For example, while micro-inertial

sensors are small, lightweight, and have demonstrated the

ability to capture human kinematics and ground reaction force

for kinetics, the number of sensor nodes typically required is

undesirable for long-term use, and makes setup complex and

time consuming. A number of challenges, such as measure-

ment drift, external interferences, and muscle variations, also

affect the accuracy and resilience of these technologies.

To realise practical wearable sensing technologies that can

be used in routine human biomechanics studies, further work

is still necessary to improve both the sensing hardware and

software. Further work to improve drift compensation, error

recovery, and estimation accuracy in uncontrolled natural

environments is necessary. Multi-sensor fusion techniques

that fuse complementary sources of information to further

improve accuracy and resilience against interference is also

an important consideration for future research.
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