47 research outputs found

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Mixture of Latent Variable Models for Remotely Sensed Image Processing

    Get PDF
    The processing of remotely sensed data is innately an inverse problem where properties of spatial processes are inferred from the observations based on a generative model. Meaningful data inversion relies on well-defined generative models that capture key factors in the relationship between the underlying physical process and the measurements. Unfortunately, as two mainstream data processing techniques, both mixture models and latent variables models (LVM) are inadequate in describing the complex relationship between the spatial process and the remote sensing data. Consequently, mixture models, such as K-Means, Gaussian Mixture Model (GMM), Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA), characterize a class by statistics in the original space, ignoring the fact that a class can be better represented by discriminative signals in the hidden/latent feature space, while LVMs, such as Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Sparse Representation (SR), seek representational signals in the whole image scene that involves multiple spatial processes, neglecting the fact that signal discovery for individual processes is more efficient. Although the combined use of mixture model and LVMs is required for remote sensing data analysis, there is still a lack of systematic exploration on this important topic in remote sensing literature. Driven by the above considerations, this thesis therefore introduces a mixture of LVM (MLVM) framework for combining the mixture models and LVMs, under which three models are developed in order to address different aspects of remote sensing data processing: (1) a mixture of probabilistic SR (MPSR) is proposed for supervised classification of hyperspectral remote sensing imagery, considering that SR is an emerging and powerful technique for feature extraction and data representation; (2) a mixture model of K “Purified” means (K-P-Means) is proposed for addressing the spectral endmember estimation, which is a fundamental issue in remote sensing data analysis; (3) and a clustering-based PCA model is introduced for SAR image denoising. Under a unified optimization scheme, all models are solved via Expectation and Maximization (EM) algorithm, by iteratively estimating the two groups of parameters, i.e., the labels of pixels and the latent variables. Experiments on simulated data and real remote sensing data demonstrate the advantages of the proposed models in the respective applications

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Remote sensing satellite image processing techniques for image classification: a comprehensive survey

    Get PDF
    This paper is a brief survey of advance technological aspects of Digital Image Processing which are applied to remote sensing images obtained from various satellite sensors. In remote sensing, the image processing techniques can be categories in to four main processing stages: Image preprocessing, Enhancement, Transformation and Classification. Image pre-processing is the initial processing which deals with correcting radiometric distortions, atmospheric distortion and geometric distortions present in the raw image data. Enhancement techniques are applied to preprocessed data in order to effectively display the image for visual interpretation. It includes techniques to effectively distinguish surface features for visual interpretation. Transformation aims to identify particular feature of earth’s surface and classification is a process of grouping the pixels, that produces effective thematic map of particular land use and land cover

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing

    No full text
    International audience—Remote sensing is one of the most common ways to extract relevant information about the Earth and our environment. Remote sensing acquisitions can be done by both active (synthetic aperture radar, LiDAR) and passive (optical and thermal range, multispectral and hyperspectral) devices. According to the sensor, a variety of information about the Earth's surface can be obtained. The data acquired by these sensors can provide information about the structure (optical, synthetic aperture radar), elevation (LiDAR) and material content (multi and hyperspectral) of the objects in the image. Once considered together their comple-mentarity can be helpful for characterizing land use (urban analysis, precision agriculture), damage detection (e.g., in natural disasters such as floods, hurricanes, earthquakes, oil-spills in seas), and give insights to potential exploitation of resources (oil fields, minerals). In addition, repeated acquisitions of a scene at different times allows one to monitor natural resources and environmental variables (vegetation phenology, snow cover), anthropological effects (urban sprawl, deforestation), climate changes (desertification, coastal erosion) among others. In this paper, we sketch the current opportunities and challenges related to the exploitation of multimodal data for Earth observation. This is done by leveraging the outcomes of the Data Fusion contests, organized by the IEEE Geoscience and Remote Sensing Society since 2006. We will report on the outcomes of these contests, presenting the multimodal sets of data made available to the community each year, the targeted applications and an analysis of the submitted methods and results: How was multimodality considered and integrated in the processing chain? What were the improvements/new opportunities offered by the fusion? What were the objectives to be addressed and the reported solutions? And from this, what will be the next challenges

    Spatially Adaptive Classification of Land Cover With Remote Sensing Data

    Full text link

    Large-Scale Urban Impervous Surfaces Estimation Through Incorporating Temporal and Spatial Information into Spectral Mixture Analysis

    Get PDF
    With rapid urbanization, impervious surfaces, a major component of urbanized areas, have increased concurrently. As a key indicator of environmental quality and urbanization intensity, an accurate estimation of impervious surfaces becomes essential. Numerous automated estimation approaches have been developed during the past decades. Among them, spectral mixture analysis (SMA) has been recognized as a powerful and widely employed technique. While SMA has proven valuable in impervious surface estimation, effects of temporal and spectral variability have not been successfully addressed. In particular, impervious surface estimation is likely to be sensitive to seasonal changes, majorly due to the shadowing effects of vegetation canopy in summer and the confusion between impervious surfaces and soil in winter. Moreover, endmember variability and multi-collinearity have adversely impacted the accurate estimation of impervious surface distribution with coarse resolution remote sensing imagery. Therefore, the main goal of this research is to incorporate temporal and spatial information, as well as geostatistical approaches, into SMA for improving large-scale urban impervious surface estimation. Specifically, three new approaches have been developed in this dissertation to improve the accuracy of large-scale impervious surface estimation. First, a phenology based temporal mixture analysis was developed to address seasonal sensitivity and spectral confusion issues with the multi-temporal MODIS NDVI data. Second, land use land cover information assisted temporal mixture analysis was proposed to handle the issue of endmember class variability through analyzing the spatial relationship between endmembers and surrounding environmental and socio-economic factors in support of the selection of an appropriate number and types of endmember classes. Third, a geostatistical temporal mixture analysis was developed to address endmember spectral variability by generating per-pixel spatial varied endmember spectra. Analysis results suggest that, first, with the proposed phenology based temporal mixture analysis, a significant phenophase differences between impervious surfaces and soil can be extracted and employed in unmxing analysis, which can facilitate their discrimination and successfully address the issue of seasonal sensitivity and spectral confusion. Second, with the analyzed spatial distribution relationship between endmembers and environmental and socio-economic factors, endmember classes can be identified with clear physical meanings throughout the whole study area, which can effectively improve the unmixing analysis results. Third, the use of the spatially varying per-pixel endmember generated from the geostatistical approach can effectively consider the endmember spectra spatial variability, overcome the endmember within-class variability issue, and improve the accuracy of impervious surface estimates. Major contributions of this research can be summarized as follows. First, instead of Landsat Thematic Mapper (TM) images, MODIS imageries with large geographic coverage and high temporal resolution have been successfully employed in this research, thus making timely and regional estimation of impervious surfaces possible. Second, this research proves that the incorporation of geographic knowledge (e.g. phonological knowledge, spatial interaction, and geostatistics) can effectively improve the spectral mixture analysis model, and therefore improve the estimation accuracy of urban impervious surfaces
    corecore