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ABSTRACT 

 

LARGE-SCALE URBAN IMPERVIOUS SURFACES 

ESTIMATION THROUGH INCORPORATING  

TEMPORAL AND SPATIAL INFORMATION  

INTO SPECTRAL MIXTURE ANALYSIS 
 

by 

Wenliang Li 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Changshan Wu 

 

 

With rapid urbanization, impervious surfaces, a major component of urbanized areas, 

have increased concurrently. As a key indicator of environmental quality and urbanization 

intensity, an accurate estimation of impervious surfaces becomes essential. Numerous automated 

estimation approaches have been developed during the past decades. Among them, spectral 

mixture analysis (SMA) has been recognized as a powerful and widely employed technique. 

While SMA has proven valuable in impervious surface estimation, effects of temporal and 

spectral variability have not been successfully addressed. In particular, impervious surface 

estimation is likely to be sensitive to seasonal changes, majorly due to the shadowing effects of 

vegetation canopy in summer and the confusion between impervious surfaces and soil in winter. 

Moreover, endmember variability and multi-collinearity have adversely impacted the accurate 

estimation of impervious surface distribution with coarse resolution remote sensing imagery. 
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Therefore, the main goal of this research is to incorporate temporal and spatial information, as 

well as geostatistical approaches, into SMA for improving large-scale urban impervious surface 

estimation.  

Specifically, three new approaches have been developed in this dissertation to improve 

the accuracy of large-scale impervious surface estimation. First, a phenology based temporal 

mixture analysis was developed to address seasonal sensitivity and spectral confusion issues with 

the multi-temporal MODIS NDVI data. Second, land use land cover information assisted 

temporal mixture analysis was proposed to handle the issue of endmember class variability 

through analyzing the spatial relationship between endmembers and surrounding environmental 

and socio-economic factors in support of the selection of an appropriate number and types of 

endmember classes. Third, a geostatistical temporal mixture analysis was developed to address 

endmember spectral variability by generating per-pixel spatial varied endmember spectra. 

Analysis results suggest that, first, with the proposed phenology based temporal mixture 

analysis, a significant phenophase differences between impervious surfaces and soil can be 

extracted and employed in unmxing analysis, which can facilitate their discrimination and 

successfully address the issue of seasonal sensitivity and spectral confusion. Second, with the 

analyzed spatial distribution relationship between endmembers and environmental and socio-

economic factors, endmember classes can be identified with clear physical meanings throughout 

the whole study area, which can effectively improve the unmixing analysis results. Third, the use 

of the spatially varying per-pixel endmember generated from the geostatistical approach can 

effectively consider the endmember spectra spatial variability, overcome the endmember within-

class variability issue, and improve the accuracy of impervious surface estimates.  
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Major contributions of this research can be summarized as follows. First, instead of 

Landsat Thematic Mapper (TM) images, MODIS imageries with large geographic coverage and 

high temporal resolution have been successfully employed in this research, thus making timely 

and regional estimation of impervious surfaces possible. Second, this research proves that the 

incorporation of geographic knowledge (e.g. phonological knowledge, spatial interaction, and 

geostatistics) can effectively improve the spectral mixture analysis model, and therefore improve 

the estimation accuracy of urban impervious surfaces. 
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CHAPTER1 INTRODUCTION 

 

1.1 Background 

 

Since the second industrial revolution in the late 19
th

 centuries, the world has experienced 

rapid urbanization. The percentage of people who reside in urban areas increased from 13.3% in 

1900 to 29.4% in 1950, 51.6% in 2010, and it is expected to be over 67% in 2050 (United-

Nations 2012). Associated with the high speed of urbanization, large numbers of natural lands, 

such as agricultural land, forestland, and grassland, have been converted to industrial, residential, 

and commercial areas, which are mainly comprised by impervious surfaces. Impervious surfaces 

are generally defined as materials that water cannot infiltrate, and they can be found associated 

with two major types of land uses: building rooftops and transportation systems (e.g. roads, 

driveways, parking lots, and sidewalks) (Arnold and Gibbons 1996; Hu and Weng 2009; 

Schueler 1994). 

As one of the major components of urban areas, impervious surfaces have been 

considered as  an important index for analyzing urban growth pattern and quantifying the 

development of urban and suburban areas (Lu and Weng 2004; Rashed et al. 2001; Yang and Liu 

2005; Yang 2006). Meanwhile, impervious surface has been widely applied in the corresponding 

socio-economic study areas, such as detailed population estimation, population distribution 

pattern analysis, and its impact on housing prices (Wu and Murray 2005; Yu and Wu 2004; Yu 

and Wu 2006). In addition to its role in quantifying urban extent and applications in socio-

economic studies, impervious surfaces have also served as a key indicator for evaluating 

environmental quality. For instance, the increase of impervious surfaces influences surface and 
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underground water cycles, leads to the decrease of base flow, and the increase of surface runoff 

and flood frequency(Brabec et al. 2002; Brun and Band 2000; Weng 2001, 2007). Furthermore, 

the increase of impervious surfaces and corresponding surface runoff would influence surface 

pollutant transportation, and lead to associated water pollution (Arnold and Gibbons 1996; 

Gillies et al. 2003; Hurd and Civo 2004). In addition to the hydrological issues, impervious 

surfaces can alter local climate, and cause the corresponding urban heat island effect (Gluch et al. 

2006; Imhoff et al. 2010; Yuan and Bauer 2007). Moreover, the reduction of natural habitats led 

by the increase of impervious surfaces can also lead to the reduction of biodiversity (Gillies et al. 

2003; Goetz and Fiske 2008; Goetz et al. 2009). As the important role that urban impervious 

surfaces play, the accurate estimation and dynamic monitoring of impervious surfaces have 

become more and more important.  

Numerous methods have been developed to estimate impervious surface areas at local 

and regional scales in past decades. Manual interpretation from air photographs is 

straightforward and the most accurate method. However, it is time-consuming and labor-

intensive, and it is difficult to be conducted for a large geographical region. Since the launch of 

the first remote sensing satellite, satellite remote sensing data, with the advantages of large area 

coverage, regular revisit period, and multiple spectral bands, has become widely applied to 

monitor urban land use change and environmental quality (Bauer et al. 2004). Since then, 

traditional classification techniques, such as supervised and unsupervised classifications, have 

been applied to estimate the distribution of impervious surfaces from local to global scale. 

Although these approaches are straightforward, they only assign one land cover type to one pixel 

and ignore the spatial heterogeneity of urban areas. In reality, the spatial extent of a typical land 

use and land cover (LULC) type is usually smaller than the pixel size, and there may be a large 
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number of mixed pixels in an image due to the heterogeneity of land use combinations in urban 

environment. Therefore, information loss and reduced accuracy have been found associated with 

these hard classifications (Foody and Cox 1994). In order to address this issue, a vegetation–

impervious surfaces–soil model (V-I-S) proposed by Ridd (1995) was applied to quantify the 

components of urban environment at the sub-pixel level with the assumption that the LULC 

types can be decomposed as the areal fractions of vegetation, impervious surfaces, and soil. 

Based on the conceptual V-I-S model, numerous automated methods have been proposed, and 

they can be grouped into three major types: (1) regression/decision tree (RT/DT); (2) artificial 

neural network (ANN); and (3) spectral mixture analysis (SMA).  

DT/RT model is to construct the relationship between a dependent variable and 

independent variables by repeatedly splitting the data based on specific rules. ANN model is an 

adaptive system, which changes its structure through the learning process to model the complex 

relationships between input and output data. They are both considered as machine learning 

methods and also have been widely used for impervious surfaces estimation through constructing 

the empirical relationship with spatial and spectral characteristics offered by remote sensing data 

(Hu and Weng 2009; Lu et al. 2011; Lu and Weng 2009; Mohapatra and Wu 2010; Xian and 

Crane 2005; Yang et al. 2003a; Yang et al. 2003b; Yuan and Bauer 2007; Yuan et al. 2008). 

However, the estimation accuracy of both methods is highly dependent on the selection of the 

training data and test data, which is relatively subjective for the model construction and 

validation (Plaza et al. 2004; Somers et al. 2011).  Furthermore, some ANN models, such as 

Multi-Layer Perceptron model, require both presence and absence data, true and false 

information, which make the data collection rather challenging. 
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Spectral mixture analysis is seen as one promising method for the estimation of 

impervious surfaces in recent years. It has also been applied in many fields, such as water quality 

assessment, climate change research, natural hazard risk assessment, vegetation mapping, etc. 

SMA assumes the spectra of a pixel as a linear/nonlinear combination of the spectra of 

comprised pure land cover types (also called endmembers), and the areal fraction of each land 

cover type can be examined through an inverse least squares deconvolution model. Due to the 

effectiveness of SMA in dealing with mixed pixels, it has been widely applied in many studies, 

especially for urban impervious surface estimations (Hu and Weng 2011; Lu and Weng 2006; 

Madhavan et al. 2001; Michishita et al. 2012; Phinn et al. 2002; Powell et al. 2007; Ward et al. 

2000; Weng et al. 2009; Weng et al. 2008; Wu 2009; Wu 2004; Wu and Murray 2003). 

Until now, medium resolution (e.g. Landsat TM/ETM+ and SPOT data) and high 

resolution (e.g. IKONOSand Quick bird) remote sensing imagery has been typically employed to 

estimate impervious surface distribution at the local scale (Demarchi et al. 2012; Huang and 

Townshend 2003; Weng and Hu 2008; Wu 2009; Wu and Murray 2003; Xu 2013; Yang et al. 

2003a; Yang et al. 2003b; Yuan et al. 2005). Although relatively accurate results have been 

reported, these methods cannot be applied to a large geographic area due to the burdens of data 

acquisition, processing, and analysis (Elvidge et al. 2007; Knight and Voth 2011; Xian and 

Homer 2010). The other problem is associated with their low temporal resolutions. Medium- or 

high-resolution remote sensing imagery always has a low temporal resolution, and as a result, 

large-area land use land cover information can only be updated one or two times per decade. For 

example, the United States national land cover dataset (NLCD) is only produced once per decade 

by the United States Geological Survey (USGS), majorly due to the heavy burdens of data 

processing and low temporal resolutions of the Landsat TM/ETM+ imagery. Frequently updated 
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impervious surface information at the regional or global scales, however, is essential for many 

environmental studies, including regional and global land use land cover change modeling, 

impact analysis of land cover changes on water quantity and quality, and analysis of urbanization 

and regional climate, etc. (Sexton et al. 2013; Yang et al. 2010). Therefore, there is an urgent 

need of deriving fractional land cover information at an annual basis. The availability of the 

Moderate-resolution Imaging Spectroradiometer (MODIS) imagery made it possible for a timely 

estimation of impervious surface distribution over a large geographic area. With large geographic 

coverage and  high temporal resolutions (e.g. daily), MODIS imagery can be employed for the 

studies at regional and global scales.  

While MODIS imagery offers great potential for impervious surface estimation at a large 

geographic scale, there are two challenging problems. First, impervious surface estimation is 

likely to be sensitive to seasonal variations, majorly due to the shadowing effects of vegetation 

canopy in summer and the confusion between impervious surfaces and soil in winter. The other 

problem is associated with spectral variability and multi-collinearity of selected endmember 

spectra, which may also lead to unsatisfied estimation results. In summary, seasonal sensitivity 

and spectral variability of endmembers become the most profound error sources for impervious 

surface estimates, and it is essential to address these problems. 

 

1.2 Problem Statement 

 

The proposed research will be focusing on the issues of seasonal sensitivity and 

endmember spectral variability for improving the estimation accuracy of impervious surfaces. 

Seasonal sensitivity refers to the variations of percent impervious surfaces area (%ISA) in 
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different seasons due to the impact of vegetation phenology including forestland, cropland, and 

pasture (Sung and Li 2012; Weng 2012; Weng et al. 2009; Wu and Yuan 2007). In particular, in 

spring, natural vegetation, such as forestland and grassland, is still at the early stage, the 

confusion of exposed bare soil and impervious surfaces can inevitably lead to inaccurate 

estimates. In fall, with degradation of forestland and grassland, the harvest of agricultural land, 

the exposed dry soil illustrate similar spectra with the bright impervious surfaces, the confusion 

between them would make impervious surfaces estimation to be less accurate (Weng et al. 2009). 

In winter, overestimation of impervious surfaces may also occur because of spectral confusions 

among bare soil, snow cover, and impervious surfaces. With the high vegetation abundance and 

increased spectral contrast between impervious surfaces and vegetation, the imagery in summer, 

therefore, becomes the preferred data source for the estimation of impervious surfaces in many 

studies (Lu and Weng 2006; Madhavan et al. 2001; Phinn et al. 2002; Powell et al. 2007; Ward 

et al. 2000; Weng et al. 2009; Weng et al. 2008; Wu 2009; Wu 2004; Wu and Murray 2003). 

However, since the remote sensing sensor can only reflect the upmost land cover layer, tree 

crowns and their shadows may obstruct underlying impervious surfaces, and thereby result in an 

underestimation. In conclusion, the estimation of impervious surface fractions based on a single 

date remote sensing data has become a challenging work. 

The spectral variability of endmembers can be generally distinguished as within-class 

variability and between-class variability (Zhang et al. 2006). The first one refers to the relative 

spectral differences for a specific ground class, and the later one is associated with the spectral 

variations among different ground classes. In simple SMA, reflectance data has been used for the 

estimation of impervious surfaces. The reflectance spectra of a specific endmember may vary 

according to different specific conditions. For instance, soil spectra can be varied associated with 
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the variations of size, water content and composition in soil (Ben-Dor et al. 1999; Irons et al. 

1989). Moreover, impervious surfaces illustrate much brightness variations because of the 

spectra differences ranging from low albedo to high albedo (Ben-Dor et al. 2001; Herold et al. 

2004). In addition to the endmember within-class variability issue, the endmember between-class 

variability issues also bring difficulty for obtaining accurate estimation results. In particular, 

some pervious materials, such as bare soil, illustrate very similar spectral signatures when 

compared to those of impervious surfaces with the application of a single time image. Moreover, 

vegetation, such as forestland and agricultural land, may show rather similar reflectance spectra, 

majorly due to similar amount of chlorophyll content. In order to minimize the error caused by 

endmember spectral variability, reducing endmembers within-class variability and increasing 

endmembers between-class variability becomes an essential work. 

In summary, the specific objectives of this proposed research include: (1) developing a 

temporal SMA method to address the seasonal sensitivity and spectral confusion issues 

associated with endmembers; (2) incorporating spatial information into SMA to identify the 

numbers and types of endmember combinations for mitigating spectral variability of image 

endmembers; (3) applying a geostatistic method in SMA to handle the endmember within-class 

variability issue. 

 

1.3 Literature review 

 

1.3.1 Seasonal sensitivity and endmember spectral variability 

 

Due to the impact of seasonal sensitivity on impervious surface estimations, a number of 

studies have been carried out to find an optimal time through comparing the estimation accuracy 
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with different seasons.Wu and Yuan (2007) examined the accuracy of impervious surface 

estimation in April, July, October, and December in Franklin County, Ohio, U.S.A., using 

Landsat TM/ETM+ imagery, and found that the best estimation accuracy was achieved in the 

summer season (July). Weng et al. (2009) explored the seasonal impact using ASTER data in 

Indianapolis/Marion County, Indiana, and obtained the similar results that the fraction map 

examined from the summer image was more accurate than images from other seasons. In 

addition, he also reported that the winter image has the poorest performance due to the reduced 

spectral contrast among different ground classes and the high confusion between bare soil and 

impervious surfaces. Sung and Li (2012), however, argued that these studies were conducted in 

temperate regions, and for tropical and subtropical areas summer may not be the optimal season. 

Consequently, they conducted a comparative analysis in Austin, Texas, and found that winter 

imagery was with better accuracy. All the previous studies provide valuable references for 

selecting an optimal time for impervious surface estimation under different climates. However, 

their objectives were to select the best time for estimating impervious surfaces, and ignored 

seasonal sensitivity. In reality, no matter the summer in temperate regions or the winter in 

tropical areas, impervious surfaces still tend to be erroneously estimated, primarily due to the 

shadowing effects of vegetation canopy and spectral confusion between impervious surfaces and 

soil. 

In addition to seasonal sensitivity issue, the spectral variability of endmembers has also 

been recognized as an important issue in the estimation of impervious surfaces, and several 

studies have been conducted for improving the estimation accuracy through reducing within-

class variability or enhancing the between-class variability. One attempt was made by focusing 

on endmember spectral selection. Asner and Lobell (2000) introduced an autoSWIR approach to 
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highlight the variations among different land cover types through selecting the partial shortwave 

infrared (SWIR) spectrum region. Moreover, statistical approaches, such as principal component 

analysis (PCA) (Johnson et al. 1993; Miao et al. 2006), discrete cosine transform (DCT) (Li 

2004), and residual analysis (Ball et al. 2007; Miao et al. 2006), have been proposed to select the 

best bands for spectral unmixing. Furthermore, a stable zone unmixing (SZU) technique was 

developed by Somers et al. (2010). In the SZU approach, the bands with the lowest within-class 

variation were selected according to the instability index (ISI), and were used for generating 

corresponding land cover fractions. Other techniques include spectral weighting, spectral 

transformation, and spectral transfer model. Chang and Ji (2006) developed a weighted spectral 

mixture analysis (WSMA) to reduce endmember variability, in which the spectral bands with the 

lowest endmember variability are assumed as more important, and a higher weight is assigned. 

WSMA has been demonstrated to perform better than the un-weighted SMA(Chang and Ji 2006). 

In order to upgrade WSMA, a two-step weighting SMA was developed by Somers et al. (2009) 

through considering the variations of the reflected energy associated with each band and 

endmember variability. In addition to the spectral weighting techniques, spectral transformation 

has also been developed for mitigating endmember variability.Wu (2004) proposed normalized 

spectral mixture analysis (NSMA) to reduce the within-class variation through normalizing the 

endmember spectra. This method was subsequently employed in geological applications (Zhang 

et al. 2005). In addition, a derivative spectral unmixing (DSU) was developed by Zhang et al. 

(2004) to highlight within-class variability along with reducing between-class variability through 

inputting the second-derivative endmember spectra in SMA. Although DSU is effective in 

solving the endmember variability issue, it also enhances high frequency noise. Thus, wavelet 

analysis, including the discrete wavelet and continuous wavelets techniques, has been proposed 
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(Li 2004). In the wavelet analysis, transformed spectral features, instead of original reflectance 

features, have been employed in SMA (Li 2004; Rivard et al. 2008). Further, soil modeling 

mixture analysis (SMMA) was proposed to decrease within-class moisture differences for soil 

(Lobell et al. 2002; Somers et al. 2009). 

In addition to the aforementioned techniques for addressing endmember variability, the 

other approach is the trial-and-error technique, which considers all possible endmember 

combinations, and selects the best endmember set for each pixel. One widely applied approach is 

multiple endmember spectral mixture analysis (MESMA) proposed by Roberts et al. (1998). In 

MESMA, a spectra library with a wide range of endmember spectra is constructed, and different 

sets of endmember combinations, instead of a fixed endmember set in simple SMA, are allowed 

for each pixel. Thus, all possible endmember sets are considered and tested, and the best fit 

combination set is selected for each pixel. Generally, the lowest root mean square error (RMSE) 

is used as the selection criterion. In addition, some other selection techniques have been 

developed, such as the count-based approach (COB)(Roberts et al. 2003), endmember average 

RMSE (EAR) (Dennison and Roberts 2003), minimum average spectral angle (MASA) 

(Dennison et al. 2004), and Iterative endmember selection (IES) (Schaaf et al. 2011). Similar to 

MESMA, the endmember bundles approach proposed by Bateson and Curtiss (1996) is the other 

technique for mitigating endmember variability. Specifically, instead of using only one 

endmember spectra, a bundle of spectra for each endmember is collected and employed to 

construct endmember sets, and the minimum, mean, and maximum fractions for each land cover 

type are then extracted.  

As a summary, although many studies have been conducted for addressing seasonal 

sensitivity and spectral variability issues, we are still facing a number of challenging problems. 
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To address these problems, temporal, spatial, and prior contextual information may be of 

significant help for better estimations of impervious surfaces. 

1.3.2 Incorporating temporal information into SMA 

 

Instead of using single-date imagery, MODIS NDVI data, with multi-temporal series and 

phenological information, may provide the potential to address the aforementioned issues. With 

two-year and four-year MODIS NDVI imagery, Knight and Voth (2011) developed temporal 

mixture analysis (TMA) approaches and found TMA with the two-year NDVI series performed 

better when compared to the four-year TMA and a sequential maximum angle convex cone 

approach. This attempt provides a new means for impervious surface estimation. However, with 

only two endmembers, impervious surfaces and deciduous forest, the resultant impervious 

surface estimates were with relatively low accuracy. Yang et al. (2012) applied multi-temporal 

imagery to examine impervious surfaces fractions in Japan, and conducted a comparative 

analysis with other SMA approaches. They found that the multi-temporal SMA technique 

performs the best. However, instead of using the one-year time-series data with integral 

phenological information, only six NDVI bands with the highest values were extracted as 

endmember spectra for SMA. As a result, although with multi-temporal NDVI imagery, only 

summer images were employed for SMA. Therefore, although a number of studies have been 

conducted to address the impact of seasonal sensitivity on impervious surface estimation, they 

have not been able to take advantage of phenological information derived from MODIS NDVI 

imagery, and more research in incorporating temporal information into SMA is needed. 

 

1.3.3 Incorporating spatial information into SMA 
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The lack of using spatial information may be the other issue for the estimation of 

impervious surfaces. Although spatial information may have significant impact on mitigating 

endmember variability, it has rarely been considered. One exception is the work of Maselli 

(2001), who incorporated environmental factors in addressing spatial spectral variability using 

MODIS NDVI data. However, instead of using specific environmental factors, only NDVI has 

been considered as the important factor for reflecting the impact of environmental factors on 

vegetation. Actually, numerous environmental factors, such as elevation, slope, climate, water 

availability, etc. may have significant impact on the vegetation phonology, and they cannot be 

simply replaced by NDVI. Moreover, conventional multivariate regression analysis has been 

employed for examining the vegetation fractions. Although it is highly efficient and easily to be 

implemented, its ability of handling spectral mixing problems is questionable, and may lead to 

degraded estimation results. Therefore, how to incorporate spatial information into SMA 

becomes an important topic.  

One attempt to incorporate spatial information into SMA was conducted in the 

endmember selection process. Instead of considering each pixel as independent of other pixels, 

the spatial relationships between the target pixel and its corresponding neighboring pixels have 

been examined by Roessner et al. (2001) for reducing the number of possibilities of endmember 

combination for each pixel. In addition, Plaza et al. (2002) took advantage of the mathematical 

morphology to develop an automated morphological endmember extraction approach, in which a 

set of spatial/spectral operations have been employed to extract endmember spectra. Furthermore, 

the spatial-spectral endmember extraction tool (SSEE) has been proposed by Rogge et al. (2007), 

with which the spatial characteristics were used to increase the spectral contrast and select 

endmembers with low contrast. Further, spatial constraints have been imposed to make the 
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selected endmembers to be more representative throughout the entire image. Moreover, Zortea 

and Plaza (2009) developed a novel approach to integrate the spatial and spectral information for 

the endmember extraction with the consideration of spectral similarity between target pixel and 

neighborhood pixels. The other attempt was made by Deng and Wu (In press)through developing 

a spatially adaptive spectral mixture analysis (SASMA) for improving the estimation accuracy. 

In SASMA, local spatial information has been incoporated into SMA to overcome the 

endmember variability problem for examining subpixel impervious surfaces fractions. In 

particular, spatial dependence, in which the spectral similarity is highly associated with the 

distance among pixels, has been considered as key point for local endmember selection, and 

spatially adaptive endmembers were extracted for spectral unmixing. 

Although all proposed approaches have proven helpful for improving estimation accuracy, 

only the spatial correlation among neighborhood pixels and local spatial information have been 

considered. The impact of global spatial information such as relationships among ground land 

use land cover classes and corresponding environmental, social-economic factors and their 

impacts on endmembers variability have been ignored. Such information, however, may play an 

important role in quantifying the spatial distribution of endmembers and identifying the numbers 

and types of endmember combinations, and provides valuable information for addressing 

endmember variability. 

 

1.3.4 Applying a geostatistic method in SMA 

 

As discussed earlier, endmembers tend to illustrate spatial variability, majorly due to the 

impact of local environmental and socio-economic factors (e.g. topography, climate, economic 
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development, population density, etc.). However, in most studies, derived endmember spectra 

are often considered identical and applied to all the pixels in a remote sensing image. Therefore, 

endmember variability has become a profound error source and may severely affect the 

performance of an SMA model. 

To derive spatially varying per-pixel endmember sets, MESMA is a major approach that 

employing a variety of endmember set combinations, and the one with the lowest error (e.g. 

RMSE) is chosen for spectral unmixing. Although widely applied, MESMA only employs pixel-

based spectral information, and may be considered computational expensive. Recently, the 

SASMA proposed by Deng and Wu (2013) attempted to address endmember variability through 

deriving endmembers for a particular pixel through applying an inverse distance weighting (IDW) 

approach using all endmember candidates in a moving window. This approach, however, only 

employs the distance for generating weights, and the statistical meanings of the spatial variations 

of endmembers have been neglected. As a consequence, inappropriate endmembers may be 

selected and applied in SMA and result in erroneous estimations. As the powerful ability for 

generating localized information, the geostatistical technique may provide great support for 

handling the endmember variability issue. In particular, the ordinary kriging, a non-biased 

interpolation technique, can interpolate the value of a function at a given point by computing a 

weighted average of the known values of the function in the neighborhood of the point. In this 

case, per-pixel level endmember spectra can be generated and used in unmixing analysis for 

overcoming the endmember within-class variability. 
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CHAPTER2 PHENOLOGY BASED TEMPORAL MIXTURE ANALYSIS 

FOR ESTIMATING LARGE-SCALE IMPERVIOUS SURFACE 

DISTRIBUTIONS1 

 

2.1 Introduction 

 

Although urbanized areas only occupy a small proportion (3%) of the Earth’s land 

surface (Grubler 1994), they constitute more than half of the world’s population and are centres 

of political, economic, socio-cultural, scientific, and technological activity. Urban areas also 

provide high quality of life experiences, including education and employment opportunities, 

medical services, public transportation, sanitation, and social services (Wu 2010; Wu et al. 2011). 

Rapid urbanization, however, leads to challenging environmental and socio-economic problems 

on both local and global scales, such as alteration of local climate, reduction of biodiversity, 

increased soil erosion, degraded water quality, traffic congestion, public health deterioration, and 

resource depletion (Guttikunda et al. 2003; Lin and Ho 2003; Newman and Kenworthy 1999; 

Pauleit and Duhme 2000; Pielke 2005; Stevens, Dragicevic, and Rothley 2007; Van Metre and 

Mahler 2005; Zang et al. 2011; Zhou et al. 2004). Along with rapid urbanizsation, the prevalence 

of impervious surfaces, defined as materials that water cannot infiltrate (e.g., parking lots, 

building roofs, sidewalks), has increased concurrently. As one of the major biophysical 

compositions of urban areas, impervious surface area has been widely adopted as a key indicator 

of urbanization intensity and urban environmental quality (Arnold and Gibbons 1996; Jantz, 

Goetz, and Shelley 2004; Xian and Crane 2005). Due to the critical role of urban impervious 

                                                 
1
Portions of this chapter have been published in International Journal of Remote Sensing, coauthored with Dr. 

Changshan Wu. 
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surfaces, knowledge of their quantity and spatial distribution is essential for urban planning and 

environmental management. 

Numerous methods have been developed to estimate impervious surface area on local and 

regional scales. Manual interpretation from aerial photos is straightforward and the most accurate 

method. However, this manual approach is time-consuming and labour-intensive, which prevents 

its application to large geographical regions. Therefore, satellite remote-sensing techniques have 

been developed to map impervious surface areas due to their ability to cover large geographical 

areas, regular revisits,and improved spectral resolution (Bauer et al. 2004). With the availability 

of satellite remote sensing imagery at different spatial resolutions, unsupervised (e.g., ISODATA) 

and supervised (e.g., maximum likelihood, artificial neural network, classification tree) 

classification methods have been used to estimate impervious surface distributions from local to 

global scales. Although these approaches have been widely applied with some success, they 

neglect the spatial heterogeneity of urban areas, assigning only one land cover type to each pixel. 

Therefore, information loss and reduced accuracy are associated with these hard classifications 

(Foody and Cox 1994). To address these issues, sub-pixel analysis methods have been developed 

over the past several decades, including regression modelling, spectral mixture analysis (SMA), 

artificial neural networks (ANNs), regression trees (RTs), and random forests (RFs) (Bauer et al. 

2004; Lee and Lathrop 2006; Lu and Weng 2004; Wu 2004; Wu and Murray 2003; Yuan, Wu, 

and Bauer 2008). Among these methods, SMA has been particularly widely employed, as it 

provides a physical-based means to addressing mixed pixels(Lu and Weng 2006; Madhavan et al. 

2001; Phinn et al. 2002; Powell et al. 2007; Ward, Phinn, and Murray 2000; Weng and Hu 2008; 

Weng, Hu, and Liu 2009; Wu and Murray 2003; Wu 2004; Wu 2009; Yang et al. 2009). A 

number of studies have been conducted to improve the accuracy of impervious surface 
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estimation based on SMA. Wu and Murray (2003) developed a four-endmember SMA, with 

which the percent impervious surface area was derived as the summation of the percent of low- 

and high-albedo materials. Wu (2004)proposed normalized spectral mixture analysis (NSMA) to 

address the brightness variation and shade issues for the impervious surface estimation. In 

addition, Roberts et al. (1998) and Powell et al. (2007) presented multiple endmember spectral 

mixture analysis (MESMA) to improve the estimation accuracy in a complex urban environment 

by considering variations at the pixel level and allowing different sets of endmember 

combinations for each pixel (Powell et al. 2007). Yang, Matsushita, and Fukushima (2010) 

developed a pre-screened and normalized multiple endmember spectral mixture analysis 

(PNMESMA) by incorporating NSMA into MESMA, resulting in higher accuracy.   

Until now, medium-resolution (e.g., Landsat TM/ETM+ and SPOT data) and high-

resolution (e.g., IKONOS and Quick Bird) remote sensing imagery has been typically applied to 

estimate impervious surface distribution on a local scale (e.g., a city)(Huang and Townshend 

2003; Weng and Hu 2008; Wu and Murray 2003; Wu 2009; Yang, Huang, et al. 2003; Yang, 

Xian, et al. 2003; Yuan et al. 2005; Goodwin, Coops, and Stone 2005; Demarchi et al. 2012). 

Although reasonably accurate results have been reported, these methods cannot be applied to a 

large geographic area due to the burdens of data acquisition, processing, and analysis (Elvidge et 

al. 2007; Xian and Homer 2010; Knight and Voth 2011). Additionally, these methods suffer from 

low temporal resolutions. Medium- or high-resolution remote sensing imagery has a low 

temporal resolution, and as a result, large-area land use or land cover information can only be 

updated infrequently. For example, the United States National Land Cover Dataset (NLCD) is 

only produced once per decade by the United States Geological Survey (USGS), mostly due to 

the heavy burden of data processing and the low temporal resolutions of high quality Landsat 
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TM/ETM+ imagery due to weather conditions such as could cover and atmospheric effects. 

Frequently updated impervious surface information at regional or global scales, however, is 

required for many environmental studies, such as regional and global land use/land cover change 

modelling, impact analysis of land cover changes on water quantity and quality, and analysis of 

urbanisation and regional climate (Sexton et al. 2013). The availability of Moderate-Resolution 

Imaging Spectroradiometer (MODIS) imagery enables the timely estimation of impervious 

surface distribution over a large geographic area. With a coarse spatial resolution (e.g., 250 m, 

500 m, and 1000 m) but a high temporal resolution (e.g., daily), MODIS imagery can be 

employed for studies on regional and global scales.  

Although applying SMA to MODIS imagery provides great potential for large-scale 

impervious surface estimation, some problems remain. In particular, impervious surface 

estimation is likely to be sensitive to seasonal changes, mostly due to the shadowing effects of 

vegetation canopy in summer and confusion between impervious surfaces and soil in winter.In 

summer, tree crowns and their shadows may obstruct underlying impervious surfaces, resulting 

in an underestimation. In winter, inaccurate estimation of impervious surfaces may occur 

because of spectral confusion among bare soil, snow cover, and impervious surfaces. Wu and 

Yuan (2007) examined the accuracy of impervious surface estimation in April, July, October, 

and December in Franklin County, Ohio, U.S.A. using Landsat TM/ETM+ imagery and found 

that the best estimation accuracy was achieved in the summer (July). Weng, Hu, and Liu (2009) 

explored the seasonal impact using ASTER data in Indianapolis/Marion County, Indiana, U.S.A. 

and obtained similar results. Sung and Li (2012), however, noted that these studies were 

conducted in temperate regions and argued that summer may not be the optimal season for 

tropical and subtropical areas. Consequently, they conducted a comparative analysis in Austin, 
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Texas, U.S.A. and found that winter imagery yielded better accuracy. All previous studies 

provide valuable references for selecting an optimal time for impervious surface estimation 

under different climates. However, their objectives were to select the best time for estimating 

impervious surfaces, ignoring seasonal sensitivity. In reality, even if summer data are used in 

temperate regions and winter data are used in tropical areas, impervious surfaces still tend to be 

erroneously estimated, primarily due to the shadowing effects of vegetation canopy and spectral 

confusion between impervious surfaces and soil. 

Instead of using single-date imagery, the use of MODIS NDVI data, with multi-temporal 

series and phenological information, may be best suited to address the aforementioned issues. 

Using two-year and four-year MODIS NDVI imagery, Knight and Voth (2011) developed 

temporal mixture analysis (TMA) approaches and found that TMA with the two-year NDVI 

series performed better than the four-year TMA and a sequential maximum angle convex cone 

approach. This result provides a new means for impervious surface estimation. However, with 

only two endmembers, impervious surfaces and deciduous forest, the resultant impervious 

surface estimates had low accuracy. Yang et al. (2012) applied multi-temporal imagery to 

examine impervious surface fractions in Japan and conducted a comparative analysis with other 

SMA approaches. They found that the multi-temporal SMA technique performs best. However, 

instead of using the one-year time-series data with integral phenological information, only six 

NDVI bands with the highest values were extracted as endmember spectra for SMA. As a result, 

only summer images were employed for SMA, despite the use of multi-temporal NDVI imagery. 

Therefore, although a number of studies have been conducted to address the impact of seasonal 

sensitivity on impervious surface estimation, the phenological information derived from MODIS 
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NDVI imagery has yet to be taken advantage of, and further efforts to incorporate temporal 

information into SMA are warranted.  

In this study, we proposed phenology-based temporal mixture analysis (PTMA) and 

phenology-based multi-endmember temporal mixture analysis (PMETMA) to address the 

challenges associated with seasonal sensitivity and spectral confusion. Additionally, the 

performances of these two phenology-based methods were compared with those of TMA 

methods applied to summer and winter seasons. This chapter is organized as follows: Section 2.2 

introduces the study area and data sources. Section 2.3 develops the PTMA and PMETMA 

methods for impervious surface estimation. Comparative analyses of PTMA, PMETMA, 

Summer TMA, and Winter TMA are reported in Section 2.4. Finally, a discussion and 

conclusions are provided in Sections 2.5 and 2.6, respectively. 

 

2.2Study area and data 

 

The State of Wisconsin, U.S.A. was chosen as the study area in this research. Wisconsin 

is situated in the north-central part of the United States and along the west side of Lake 

Michigan, with latitudes between 42°37′and47°05′ N and longitudes between 86°46′ and 92°53′ 

W (see Figure1). It has a geographical area of 169,639 km
2
, covering 72 counties. Almost 68% 

of the population of Wisconsin resides in urban areas, including Madison (the state capital), 

Green Bay, and Milwaukee (the most populated city). Wisconsin has experienced rapid 

population growth and urbanisation over the past several decades. The population of Wisconsin 

increased from 4.89 million in 1990 to 5.71 million in 2011, an increase of approximately 16%, 

and this trend is likely to continue in the near future. This rapid urbanization has caused a 

number of challenging issues, including environmental pollution and traffic congestion. 
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Therefore, an accurate and timely estimation of impervious surfaces in Wisconsin is essential.  

 

 

Figure 1Study area: the State of Wisconsin, U.S.A. 

 

In this study, MODIS NDVI images in 2006 (product of MOD13Q1, 2 images per 

month), with 250-m spatial resolution and 0.5-pixel positional accuracy were obtained from the 

United States Geographical Survey (USGS) website (www.usgs.gov). Further, the EVI 

standardized anomaly evaluation method developed by Samanta et al. (2012) was applied to 

detect MODIS NDVI anomalies. As a result, the early November image was identified and 

removed from further analysis due to heavy cloud cover and suboptimal quality, and the NDVI 

time-series image with 22 bands (except the one in early November) were employed for 

estimating large-scale impervious surface abundance. These images were stacked together to 

construct a single image with 22 layers using ERDAS Imagine 9.3 software. Additionally, the 

National Land Cover Data (NLCD) 2006 Percent Developed Imperviousness data were obtained 
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from the Multi-Resolution Land Characteristics Consortium (MRLC) website 

(http://www.mrlc.gov/nlcd06_data.php) and employed as the reference data for accuracy 

assessment. NLCD 2006 data was derived using Landsat ETM+ and TM imagery acquired from 

02/11/2005 to 10/03/2007 (Fry et al. 2012). Although the imagery acquisition dates do not match 

perfectly with those of the MODIS data, we assume that no significant changes have taken place 

in Wisconsin during this two-year period, and therefore NLCD 2006 data can serve as reference 

information for accuracy assessment.  

 

2.3 Methodology 

 

2.3.1 Phenology-based temporal mixture analysis (PTMA) 

 

To address seasonal sensitivity and spectral confusion issues, we developed a phenology-

based temporal mixture analysis (PTMA) method using multi-temporal NDVI data with integral 

phenological information for deriving impervious surfaces fractions. In particular, two steps 

were carried out, 1) endmember selection and 2) fully constrained linear spectral unmixing, to 

derive impervious surface abundance information. For multi-temporal MODIS NDVI data, 

endmember selection is the first and most important step. To reduce noise whitening and guide 

image endmember selection, maximum noise fraction (MNF) transformation (Green et al. 1988) 

was applied. MNF transformation orders components according to signal-to-noise ratios (SNRs), 

with the majority of spectral information provided by the first several components. In this study, 

the first three MNF components (see Figure 2) were employed to identify the endmember type, 

number, and spectra. Through careful visual examination, we identified five endmembers, 

including impervious surfaces, agriculture (soil), pasture, evergreen forest, and deciduous forest, 
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and the NDVI spectra of these endmembers are shown in Figure 3. For agricultural lands, bare 

soil is usually exposed in fall and winter (with low NDVI values) and occupied by green 

vegetation (e.g. crops) in spring and summer (with high NDVI values). These endmember 

spectra illustrate representative phenological signatures with different phenophases (including 

dormancy, green up, maturity, and senescence). Specifically, evergreen forest only experiences 

the maturity phenophase, with relatively high NDVI values for the entire year. Agricultural land 

(soil), deciduous forest, and pasture experience integral phenophases with different timing, 

including dormancy with low NDVI values in winter, green up with increasing NDVI values in 

spring, maturity with high NDVI values in summer, and senescence with decreasing NDVI 

values in fall. Impervious surfaces only experience dormancy, with low NDVI values throughout 

the whole year. These significantly varied phenological signatures were used as endmember 

spectra for impervious surface estimations. 

With the selected endmember signatures, a fully constrained linear spectral unmixing was 

conducted, with which the NDVI spectra of a mixed pixel can be linearly modelled by the NDVI 

spectra of all identified endmembers and the areal fractions of each land cover type can be 

derived accordingly. The formulation of the fully constrained linear spectral unmixing is as 

follows: 

 

𝑁𝐷𝑉𝐼𝑏 = ∑ 𝑓𝑖
𝑁
𝑖=1 × 𝑁𝐷𝑉𝐼𝑖,𝑏 + 𝑒𝑏                                                                                                            (2.1) 

∑ 𝑓𝑖
𝑁
𝑖=1 = 1                                                                                                                                                    (2.2)     

𝑓𝑖 ≥ 0                                                                                                                                           (2.3) 

 

where NDVIb is the value of NDVI for each band b in the MODIS NDVI image, N is the number 

of endmembers, fi is the estimated fraction for endmember i, NDVIi,bis the NDVI value of 



24 

 

endmember i in band b, and eb is the residual. The model fitness can be assessed using the root 

mean square error (RMSE) (see equation 2.4): 

𝑅𝑀𝑆 = (
∑ 𝑒𝑏

2𝑀
𝑏=1

𝑀
)

1
2⁄

                                                                                                                  (2.4) 

where M is the number of bands in the remote sensing image. 

 

 

Figure 2 Two-dimensional feature space plots using the first three MNF components 
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Figure 3 Endmember NDVI spectra of impervious surfaces, agriculture (bare soil), deciduous 

forest, evergreen forest, and pasture 

 

2.3.2 Phenology-based multiple-endmember temporal mixture analysis (PMETMA) 

 

PTMA only employs a fixed set of endmembers and does not consider the variability of 

endmember type and number or their within-class spectral variations (Pu et al. 2008). Therefore, 

in addition to PTMA, we also developed phenology-based multiple-endmember temporal 

mixture analysis (PMETMA) to mitigate the issues associated with endmember variability. 

PMETMA allows the use of different sets of endmember combinations for each pixel. It tests all 

corresponding combination models and selects the one with the best fit. As a result, it effectively 

reduces the estimation error (Demarchi et al. 2012; Franke et al. 2009; Rosso, Ustin, and 
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Hastings 2005). In this study, the bundles endmember selection approach was employed to 

reduce within-class endmember variability, and for each bundle, five endmembers were selected 

from the vertices of the 2-D scatter plot (see Figure 4). 

 

 

Figure 4 Endmember bundle spectra of (a) Agricultural land (bare soil), (b) Impervious surfaces, 

(c) Deciduous forest, (d) Pasture, and (e) Evergreen forest 
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With PMETMA, RMSE cannot be employed as the single criterion for examining model 

fitness, as lower RMSE values are likely to be achieved with a larger number of endmembers. To 

address this problem, the threshold INCRrel developed by Demarchi et al. (2012)was employed to 

select the model with the best performance. INCRrel is calculated based on the change in RMSE, 

giving preference to a model that employs a lower number of endmembers. The lowest RMSE 

was selected from the 2-EM, 3-EM, 4-EM, and 5-EM model sets, and the increase in RMSE 

from the 5-EM model to the 4-EM model, the 4-EM model to the 3-EM model, and the 3-EM to 

the 2-EM model set can be calculated as follows: 

 

𝐼𝑁𝐶𝑅𝑟𝑒𝑙 =  
𝑅𝑀𝑆(𝑛−𝐸𝑀)−𝑅𝑀𝑆(𝑛+1−𝐸𝑀)

𝑅𝑀𝑆(𝑛+1−𝐸𝑀)
                                                                                                         (2.5) 

 

Where n is the total number of endmembers in each combination model set, RMS(n-EM) is the 

lowest RMSE from all n-EM combination model sets, and RMS(n+1-EM) is the lowest RMSE from 

all n+1-EM combination model sets. The n-EM combination model set is chosen as the best fit 

model set for spectral unmixing if the INCRrel value is higher than the threshold value; 

otherwise, the n+1-EM model set will be selected. In this study, an empirical threshold of 90% 

was chosen based on guidance provided by Demarchi et al. (2012). 

 

2.3.3 Temporal mixture analysis with summer and winter imagery 

 

In addition to the proposed PTMA and PMETMA techniques, we also developed two 

other TMA methods with multi-temporal NDVI imagery for the summer and winter seasons for 

comparative purposes. In Summer TMA, proposed by Yang et al. (2012), the NDVI values were 

rearranged, and six maximum NDVI time-series values were selected for extracting impervious 
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surfaces fractions. Similarly, Winter TMA was developed by applying the six lowest NDVI 

time-series values. These two TMA methods were developed to examine the seasonal differences 

of impervious surface estimations. 

 

2.3.4 Accuracy assessment 

 

Using the fractional impervious surface estimates obtained via the aforementioned 

models, PTMA, PMETMA, Summer TMA, and Winter TMA, we conducted accuracy 

assessment through a pixel-by-pixel comparison with the National Land Cover Data (NLCD) 

2006 Percent Developed Imperviousness data. Three indices were utilised to evaluate the 

accuracy for the impervious surface estimation results: the root mean square error (RMSE, 

Equation 2.6), systematic error (SE, Equation 2.7), and mean average error (MAE, Equation 2.8).  

𝑅𝑀𝑆𝐸 = √∑ (𝐼𝑖−𝐼𝑖)2𝑁
𝑖=1

𝑁
                                                                                                                  (2.6) 

𝑆𝐸 =
∑ (𝐼�̂�−𝐼𝑖)𝑁

𝑖=1

𝑁
                                                                                                                             (2.7) 

𝑀𝐴𝐸 =
∑ |𝐼𝑖−𝐼�̂�|𝑁

𝑖=1

𝑁
                                                                                                                         (2.8) 

Where 𝐼�̂�  is the estimated impervious surface fraction value for pixel i, Iiis the reference 

impervious surface fraction value for pixel i, and N is the total number of pixels. Specifically, 

RMSE and MAE quantify relative estimation errors of impervious surface fractions for the whole 

study area, and SE reflects the estimation bias (over- or underestimation). 
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2.4 Results 

 

2.4.1 Phenology-based methods 

 

The two developed phenology-based temporal mixture analysis methods, PTMA and 

PMETMA were used to derive the resultant impervious surface maps, as illustrated in Figures5a 

and 5b. A similar impervious surface distribution pattern is obtained using these two methods. 

Specifically, reasonably high impervious surface fractions can be found in major metropolitan 

areas, including Milwaukee (the most populated city), Madison (the state capital), and Green Bay. 

Furthermore, medium-sized cities, such as La Crosse and Stevens Point, feature lower fractions 

of impervious surfaces. Finally, the majority of Wisconsin, especially northwest Wisconsin, has 

very low fractions of impervious surfaces, as these areas are mostly covered by forest and 

grassland.  

In addition to the visual examination, we also performed a quantitative analysis of the 

estimation accuracy for the whole study area, developed areas (%ISA of at least 30%), and less 

developed areas (%ISA of less than 30%). The 30% of %ISA threshold is selected based on the 

definition of developed lands of the NLCD (http://www.epa.gov/mrlc/definitions.html). Three 

accuracy measures, RMSE, SE, and MAE, were calculated accordingly (see Table 1).The results 

show that, in general, the performances of these phenology-based TMA methods are satisfactory, 

with an RMSE of approximately 7-8%, SE of 2-4%, and MAE of 3-4%. Both models performed 

much better in less developed areas (an MAE of 3-4%) than developed areas (an MAE of 12%). 

Moreover, they tend to overestimate impervious surface fractions in less developed regions (2%-

4%), and underestimate impervious surface fractions in developed regions (-7% to -9%). In 

addition to the above comparisons, a scatterplot was generated to illustrate the relationship 
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between the estimated and “true” impervious surface fractions using 120 stratified randomly 

selected samples (see Figure 6). Visual examination of Figure 6 indicates that PTMA and 

PMETMA provide comparable and satisfactory performances, with slopes close to one (e.g., 

0.7488 and 0.7775) and intersects near zero (0.0491 and 0.0402). Moreover, fairly high values of 

R
2
 were achieved (0.7623 for PTMA and 0.7587 for PMETMA).  

Although the performances of PTMA and PMETMA are comparable, there are some 

small differences. PMETMA performs much better in less-developed regions, with a lower MAE 

value (3.23% versus 3.90%) but a slightly higher RMSE value (7.51% versus 7.07%). In addition, 

the estimation bias of PMETMA is lower than that of PTMA, with an SE of 2.13% (versus 

3.25%) for the entire study area, -7.46% (versus -8.17%) for developed areas, and 2.32% (versus 

3.43%) for less-developed areas. These results indicate that the estimation errors caused by 

endmember variability are somewhat reduced with PMETMA, especially for less-developed 

regions.  



31 

 

 

Figure 5 Impervious surface fraction maps generated from (a) PTMA, (b) PMETMA, (c) 

Summer TMA, and (d) Winter TMA 
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Table 1 Accuracy assessment of impervious surface estimation with PTMA, PMETMA, Summer 
TMA, and Winter TMA 
 

    RMSE SE MAE 

 

Overall  7.27  3.25  4.03 

PTMA Developed 15.41 -8.17 12.15 

 

Less developed   7.07  3.43  3.90 

 

Overall   7.54  2.13  3.36 

PMETMA Developed 15.62 -7.46 12.16 

 

Less developed  7.51  2.32   3.23 

 Overall 10.01  4.91   6.16 

Summer TMA Developed 14.52 -5.69  11.13 

 

Less developed   8.62  5.08    5.40 

 

Overall 15.52  4.98    7.56 

Winter TMA Developed 39.25 -35.27  36.45 

  Less developed 13.96  5.62    6.94 

 

 

Figure 6 Accuracy assessment of the impervious surface estimation by (a) PTMA, (b) PMETMA, 

(c) Summer TMA, and (d) Winter TMA 

. 
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2.4.2 Summer TMA and Winter TMA 

 

For comparison, Summer TMA (Yang et al. 2012)and Winter TMA were implemented, 

and the results are reported in Figures 5 and 6 and Table 1. As illustrated in Figure 5c and Table 

1, Summer TMA’s overall performance is worse than that of the phenology-based TMA models, 

with much higher RMSE (10.01%), SE (4.91%), and MAE (6.16%). In particular, obvious 

overestimations can be found in less-developed areas, as indicated by the relatively high values 

of SE (5.08%), RMSE (8.62%), and MAE (5.40%). For developed regions, however, Summer 

TMA performed slightly better than the phenology-based models. Specifically, the 

underestimation of impervious surface areas is less severe, with an SE of -5.69%, when 

compared to PTMA (-8.17%) and PMETMA (-7.46%). Moreover, a comparable but slightly 

worse accuracy can also be observed between the estimated and the “true” impervious surface 

fractions (Figure 6c). These results indicate that Summer TMA is an effective alternative for 

estimating impervious surface areas. 

In contrast, the performance of Winter TMA is significantly worse than that of the other 

three TMA methods. In particular, there is an obvious underestimation in developed regions (SE 

= -35.27%) and overestimation in less-developed areas (SE=5.62%), and the resultant 

impervious surface map (Figure 5d) is unacceptable. This conclusion can also be reached by 

reviewing the scatterplot of the estimated and the “true” impervious surface fractions (Figure 6d). 

The poor performance of Winter TMA is not unexpected, as significant confusion exists between 

bare soil and impervious surfaces with only winter NDVI series. The implementation of Winter 

TMA is only for comparison purposes, and it should not be applied to estimate impervious 

surfaces for Wisconsin. 
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2.5 Discussion 

 

Seasonal variations of vegetation and spectral confusion between impervious surfaces 

and bare soil may prohibit an accurate estimation of impervious surface abundance at the 

regional or national scales (Sung and Li 2012; Weng 2012; Weng, Hu, and Liu 2009; Wu and 

Yuan 2007). When using remote sensing imagery for a single season, impervious surface 

abundance information may be sensitive to seasonal variations and therefore tends to be 

erroneously estimated. In particular, impervious surfaces may be obstructed by tree canopy in 

summer and frequently confused with soil in winter. The developed phenology-based methods, 

PTMA and PMETMA, partially address the seasonal variability problem by adopting one-year 

multi-temporal NDVI data with four integral phenological phases (i.e., dormancy, green-up, 

maturity, senescence). Specifically, urban impervious surfaces only experience the dormancy 

phenophase, with low NDVI values throughout the year. Bare soil experiences dormancy in 

winter, with low NDVI values; green-up in spring, with elevated NDVI values associated with 

the growth of vegetation (e.g., agricultural lands); maturity in summer, with high NDVI values; 

and senescence in autumn, with decreasing NDVI values due to the harvest (e.g., agricultural 

lands). Consequently, the significant phenophase difference between impervious surfaces and 

soil facilitates their discrimination with phenology-based approaches.   

The results also indicate that, compared to phenology-based TMA models, summer TMA 

performs slightly better in developed areas but worse in less-developed areas (see Table 1). A 

possible explanation may be that, with Summer TMA, any materials with low NDVI values in 

summer are considered impervious surfaces. These materials, however, may include shade, non-

photosynthetic vegetation, bare soil, etc. In less-developed areas, therefore, significant 

overestimation of impervious surfaces occurred (e.g., SE = 5.08). Such overestimation, however, 
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may help mitigate the underestimation problem in developed areas, resulting in better estimation 

accuracy, with a better SE value (e.g., -5.69%). For both phenology-based TMA and Summer 

TMA methods, a clear underestimation exists in developed areas, and overestimation exists in 

less-developed areas. One possible cause could be associated with the fully constrained spectral 

mixture analysis model. With this model, the fractions of all land covers should be positive and 

sum to one. Although the estimation results from the fully constrained model have clear physical 

meanings, overestimation in less-developed areas and underestimation in developed areas may 

exist. 

When compared to PTMA, the performance of PMETMA is similar in developed areas 

but much better in less-developed areas. This result is consistent with the findings of Powell et al. 

(2007), who found that multiple endmember spectral mixture analysis (MESMA) performs better 

in less-developed areas than in urban areas. This difference may be due to the significant 

heterogeneous spectral variations of manmade materials in urban areas, causing the models with 

multiple endmembers to be less efficient than when applied to less-developed areas. 

 

2.6 Conclusions and future research 

 

In this study, phenology-based TMA techniques, PTMA and PMETMA, were developed 

to estimate subpixel impervious surface fractions in the State of Wisconsin, U.S.A. In particular, 

one-year-continuous NDVI series with integral phenological stages were employed to reduce 

seasonal sensitivity and spectral confusion of land covers. The estimated results were compared 

to those obtained using TMA techniques applied only to summer and winter seasons (i.e., 

Summer TMA and Winter TMA). The estimation accuracy of these models was assessed using 

the National Land Cover Data (NLCD) 2006 Percent Developed Imperviousness data as 
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reference, and comparative analyses were conducted among PTMA, PMETMA, Summer TMA, 

and Winter TMA models. The results suggest several major conclusions. 

First, both phenology-based models, PTMA and PMETMA, are able to estimate the 

percent impervious surface areas well. In particular, these two models feature an MAE of 

approximately 3.3-4.0% for the entire study area, 12.2% for developed areas, and 3.2-3.9% for 

less-developed areas. Moreover, a slight overestimation for less-developed areas (2.3-3.4%) and 

an underestimation for developed areas (-8.2 to -7.5%) were found using these phenology-based 

models. Second, a comparative analysis between these two models indicates that PMETMA 

performs better than PTMA. In particular, PMETMA performs significantly better in less-

developed areas, with relatively lower SE and MAE, and slightly better or similar to PTMA in 

developed areas. Third, compared to Summer TMA and Winter TMA models, phenology-based 

models provide better estimation accuracy. Summer TMA is effective in developed areas but 

achieved consistent overestimation and higher estimation error for the whole study area and the 

less developed areas. The performance of Winter TMA is unacceptable, with significant 

estimation errors for the entire study area.  

Although the performances of the developed phenology-based TMA models are 

satisfactory in estimating large-scale urban imperviousness, their ability to separate urban 

impervious surfaces and bare soil remains unknown, mostly due to the unavailability of bare soil 

reference data for a large geographic area. Therefore, one future research direction may be the 

collection of actual bare soil ground data for the further validation of the PTMA and PMETMA 

approaches. In addition, although the phenology-based TMA and METMA perform fairly well in 

this study, an obvious underestimation exists in developed areas for both approaches. Therefore, 

another research direction could involve improving the impervious surface estimation in 
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developed areas by incorporating spatial information into the unmixing analysis. Such 

information may be of significant help in mitigating endmember variability and improving 

estimation accuracy. 
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CHAPER3 INCORPORATING LAND USE LAND COVER PROBABILITY 

INFORMATION INTO ENDMEMBER CLASS SELECTIONS FOR 

TEMPORAL MIXTURE ANALYSIS2 

 

3.1 Introduction 

 

Spectral mixture analysis (SMA) is a promising method for estimating fractional land 

covers within a remote sensing image pixel. As a physical based approach, SMA has proven 

effective in addressing mixed pixel problem and been successfully applied in urban analysis 

(Weng and Hu, 2008; Wu and Murray, 2003; Wu, 2004), vegetation mapping (Liu and Yang, 

2013; Small, 2001; Small and Lu, 2006; Song, 2005), geological mapping (Bedini, 2009; 

Johnson et al., 1993; Ramsey and Christense, 1998; Sunshine and Pieters, 1993), natural hazard 

risk assessment(Jia et al., 2006; Eckmann et al., 2010), etc..SMA assumes the spectra of a pixel 

as a linear/nonlinear combination of the spectra of comprised pure land cover types (also called 

endmember classes), and the areal fraction of each endmember class can be estimated through an 

inversion model such as the inverse least squares deconvolution method.For successful 

applications of SMA, an important step is the selection of the number, type, and spectral 

signatures of endmember classes(Tompkins et al., 1997; Elmore et al., 2000). Within these, the 

choice of appropriate spectral signatures has been extensively studied in the past decades 

(Somers et al.,2011). In particular, Asner and Lobell (2000)introduced an autoSWIR approach to 

extract endmembers through highlighting the variations among different land cover types. In 

addition to band selection, spectral transformations have also been applied in SMA. Wu (2004) 

proposed a normalized spectral mixture analysis (NSMA) to reduce within-class brightness 

variations of the reflectance spectra. Zhang et al., (2004) developed a derivative spectral 

                                                 
2
Portions of this chapter have been published in ISPRS Journal of Photogrammetry and Remote Sensing, coauthored 

with Dr. Changshan Wu. 
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unmixing (DSU) method to highlight between-class variability while reducing within-class 

variability, with which spectral unmixing was implemented with the second derivative 

endmember spectra. Further, wavelet analysis techniques, including discrete wavelets and 

continuous wavelets, were proposed by Li (2004).In addition to the spectral transformation 

method, spectral weighting is another alternative. Instead of considering all bands as equally 

important, the weighted spectral mixture analysis (WSMA) (Chang and Ji (2006)) assumes that 

the spectral bands with the lowest endmember variability are more important, thereby assigned 

higher weights accordingly. Further, Somers et al. (2009a) found that the traditional SMA 

generally overlooked the correlation of error variance and reflectance energy, and then 

developed a two-step WSMA through taking the variations of the reflected energy into 

consideration. Moreover, Somers et al. (2010) developed a stable zone unmixing (SZU) 

technique to select spectral bands with the lowest within-class variations in SMA for generating 

corresponding land cover fractions. In addition, the multiple endmember spectral mixture 

analysis (MESMA) method was also proposed to address endmember variability (Roberts et al., 

1998). With MESMA, a spectra library with a wide range of endmembers is constructed, and 

different sets of endmember combinations, instead of a fixed endmember set, are employed to 

derive the fractional land covers for each pixel. Recently, Deng and Wu (2013)developed a 

spatially adaptive spectral mixture analysis (SASMA) to mitigate endmember variability through 

only including spatially adjacent endmember candidates into consideration. 

Besides the selection of an appropriate endmember sets, the choices of type and number 

of endmember classes also play an essential role in SMA and a few studies have examined this 

issue (Somers et al., 2009b). One early attempt was made by Smith et al., (1990), who proposed 

a three-endmember model: vegetation-soil-shade (V-S-S) model for mapping vegetation cover 
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fractions in a desert environment. Furthermore, Ridd (1995)proposed a vegetation-impervious 

surface-soil (V-I-S) model for characterizing urban environments. Moreover, Small 

(2001)considered that urban environments are composed by vegetation, low-albedo materials, 

and high-albedo materials, and developed another three-endmember model (V-L-H) for urban 

applications. Wu and Murray (2003) developed a four-endmember model: vegetation-low 

albedo-high albedo-soil (V-L-H-S) model to characterize the urban environments of Columbus, 

Ohio, United States. Zhang et al., (2014) applied the V-L-H model in high-density urban areas, 

and the V-L-H-S model in low-density urban areas. In addition to these models with a fixed 

endmember set for each pixel, MESMA has taken the endmember class types and number into 

consideration, and chosen the optimal endmember class types based on a set of error terms 

(Dennison and Roberts 2003).  

While these models provide valuable references in selecting endmember classes for 

parameterizing biophysical compositions, several problems remain. Specifically, endmember 

classes are typically identified from vertices of n-dimensional scatter plots and then applied to 

the entire study area. This approach applies the same endmember class set to each individual 

pixel for the whole image, and neglects their spatial distributions. Consequently, if a non-existing 

endmember class is included in the unmixing process, the estimated abundance for this 

endmember class is usually over zero, thereby inevitably generating large over-estimation errors. 

On the contrary, if an endmember class is mistakenly ignored, the resultant abundance of that 

class is zero, thereby leading to severe under-estimation errors. While MESMA has taken the 

selections of endmember class types and number into consideration, it neglects the spatial 

associations of land use land covers, and only employs pixel-wise estimation errors (e.g. root 

mean square error (RMSE)) as the criteria.  
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To address this problem, in this study, we proposed to automatically select endmember 

classes for SMA through incorporating land use land cover probability information derived from 

socio-economic and environmental drivers. A logistic regression model is typically applied to 

estimate the distribution probability of a land use land cover (LULC) type through analyzing the 

relationships among LULCs and their socio-economic and environmental factors, such as 

distance to the nearest city, distance to water, elevation, slope, etc. For instance, urban 

infrastructures are likely to be found in areas with flat or gentle slopes and with convenient 

access to transportation networks; vegetation may be found near to lakes and river streams. This 

logistic regression analysis has been applied in explaining the process of urbanization, and 

simulating future urban development scenarios (Verburg et al., 2004; Li and Wu 2013; Li et 

al.,2014). Such analysis, therefore, may provide a physical means of explaining the existence and 

spatial distribution of endmember classes, and its successful applications in land use studies 

suggest that it might be a better alternative for addressing the endmember class selection issue in 

SMA. In this study, we incorporated LULC probability information into the selections of 

endmember class type and number, and further inputted to spectral unmixing for better deriving 

impervious surface estimates. This proposed model includes three consecutive steps, including 1) 

quantifying the distribution probability of each endmember class using a logistic regression 

analysis, 2) identifying whether each endmember class exists or not in a particular pixel using a 

classification tree method, and 3) estimating fractional land covers using temporal mixture 

analysis (TMA). TMA is a variant of SMA, with which NDVI values, instead of the original 

reflectance spectra, are employed for spectral unmixing (Knight and Voth 2011; Yang et al., 

2012, 2014; Li and Wu, 2014). One major advantage of TMA is the incorporation of NDVI time 

series profiles into spectral unmixing. With NDVI time series profiles, different phenophases 



42 

 

(green up, maturity, senescence, and dormancy) of green vegetation can be identified and the 

significant amount of phenological information can be of great help for distinguishing one land 

cover type from another, thereby effectively addressing the issues of endmember variability. For 

instance, impervious surfaces only experience the dormancy phenological stage during the entire 

year with very low NDVI values. Bare soil, on the other hand, is with very low NDVI values in 

fall and winter (e.g. dormancy), but with relatively high NDVI values in spring and summer due 

to the growth of vegetation. Therefore, NDVI time series profiles are essential for distinguishing 

impervious surfaces and bare soil. Further, NDVI time series profiles can also help estimating 

the percent of impervious surfaces due to its close relation to vegetation fractions. Therefore, 

TMA, instead of SMA, has been employed in this study for estimating large-scale impervious 

surface distribution. The rest of the paper is organized as follows. The study area and data are 

introduced in Section 3.2. Details of the proposed TMA approach, as well as comparative 

analysis and accuracy assessment, are described in Section 3.3. Results of this study are reported 

in Section 3.4. Finally, discussion and conclusions are provided in Sections 3.5 and 3.6. 

 

3.2 Study area and data 

 

The State of Wisconsin, located in the north-central part of the United States of America, 

was chosen as the study area. Wisconsin is within the longitudes of 86°46′-92°53′ W and 

latitudes of 42°37′ - 47°05′ N (see Figure 7), with a geographic area of 169,639 square 

kilometers that covering 72 counties. The total population of Wisconsin was 5.68 million in 2010, 

and the majority of the population resides in the southeastern part of the state. Approximately 68% 

of the population in Wisconsin resides in urbanized areas, including Milwaukee, Madison, and 
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Green Bay, etc. Wisconsin has experienced fast population growth and urbanization in the past 

decades. The population has increased almost 16%, from 4.89 million in 1990 to 5.68 million in 

2010, and it is expected that the growth trend will continue in the future. This rapid urbanization 

has caused challenging issues, including environmental pollution, traffic congestion, etc. As 

impervious surfaces are served as one of the major components of urban areas and widely 

considered as a key indicator of urbanization intensity and environmental quality, accurate 

estimates of impervious surfaces are essential for Wisconsin. 

 

Figure 7 Study area: the State of Wisconsin, U.S.A. (A: stacked MODIS products; B: Land use 

land cover data from NLCD2006) 
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To carry out the proposed TMA approach for estimating urban impervious surface 

distribution, 22 Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI images 

acquired in 2006 (Two images per month, product of MOD13Q1, late November data was 

excluded due to its suboptimal quality), with a spatial resolution of 250 m and a positional 

accuracy of 0.5 pixel, were collected from the United States Geological Survey (USGS) website 

(www.usgs.gov). In order to identify LULC type and assess the estimation accuracy, the 2006 

National Land Cover Data (NLCD) land cover and percent developed Imperviousness data 

obtained from the Multi-Resolution Land Characteristics Consortium (MRLC) website 

(http://www.mrlc.gov/nlcd06_data.php) were employed as reference data.  NLCD 2006 data was 

generated using Landsat TM and ETM+ remote sensing data collected between 2 November 

2005 and 10 March 2007. While the data collected dates are not fully consistent with the MODIS 

images, we consider little change has been taken place in Wisconsin during those periods. Thus, 

NLCD 2006 data are qualified as the reference data for identifying LULC types and evaluating 

estimation accuracy. In addition to remote sensing data, digital elevation data (DEM) and 

hydrological data (e.g. rivers, lakes) were collected from United States Geological Survey 

(USGS) website (www.usgs.gov). Further, transportation networks (e.g. Highway, railway), and 

georeferenced city and village data were obtained from the American Geographical Society 

Library at the University of Wisconsin-Milwaukee. All the data were re-projected to the 

Universal Transverse Mercator (UTM) projection with a datum of World Geodetic System 

(WGS) 84. 

 

3.3 Methodology 
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The flowchart of the proposed method can be found in Figure8. Before implementing the 

proposed land use/land cover probability incorporated TMA, potential endmember classes have 

to be identified. In order to reduce noise and facilitate endmember selection, a maximum noise 

fraction (MNF) transformation was employed (Green et al., 1988). Specifically, MNF 

transformation was conducted with the help of the ENVI program, a commercial remote sensing 

image processing software. Spectral feature spaces were generated using the first several MNF 

components, and endmembers were identified from the vertices of those scatterplots. In this 

study, five potential endmember classes, including impervious surfaces, deciduous forest, 

pasture, evergreen forest, and agricultural land, were chosen according to the scatterplots of the 

first three MNF components (see Figure9) 

 

Figure 8 Flowchart of the proposed land use/land cover probability incorporated TMA approach 
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Figure 9 Spectral feature spaces of MNF components 

 

3.3.1 Endmember class probability estimation using logistic regression analysis 

 

In order to generate the endmember class probability for each individual pixel, a logistic 

regression analysis was employed in this study. The logistic regression model has the ability to 

uncover the complicated interrelationship between the spatial distribution of LULCs and their 

determinants, and has been widely employed for deriving land use distribution probability and 

explaining the causes and effects of LULC change dynamics through incorporating terrain, 

distances and other physical and socio-economic factors (Overmars et al., 2003; Verburg et al., 

2004; Dendoncker et al., 2007). In this study, five LULC types (identified from NLCD2006), 
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namely agricultural land, deciduous forest, built-up (impervious surfaces), evergreen forest, and 

pasture, were chosen as the potential endmember class types. Eight driving factors, including 

elevation, slope, distance to the nearest city, distance to the nearest lake, distance to the nearest 

railway, distance to the nearest river, distance to the nearest village, and distance to the nearest 

road, were selected to examine the probability of each endmember class. The relationship 

between the probability of the existence of an endmember class and its driving forces can be 

modeled as follows. 
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where Pk is the probability that endmember class k exists in a pixel; Xj,k is the jth driving factors 

for the class k,  αj is the regression coefficient of the jth driving factor, and n is the total number 

of driving factors. To collect samples of each endmember class for constructing the regression 

model, the NLCD 2006 data was utilized. Specifically, the spatial distribution map of all 

endmember classes were extracted from NLCD2006and then 2000 samples were randomly 

selected for each endmember class using ArcGIS. To assess the fitness of the regression model, 

the relative operating characteristic (ROC) was applied (Pontius Jr and Schneider 2001). The 

ROC value ranges from 0 to 1. The higher the ROC value, the better the spatial distribution of a 

specific endmember class explained by the selected driving factors.   

 

3.3.2 Endmember class types and number selection using classification tree model 

 

With the knowledge of the spatial distribution probabilities of all endmember classes 

produced from the logistic regression model, a classification tree approach was utilized to 
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automatically identify whether an endmember class exists in each pixel. As an established model 

for image classification, classification tree can generate interpretable results by incorporating 

categorical data and continuous data without the need of rigorous statistical assumptions of the 

data. It can uncover the relationship between a categorical variable (e.g. whether the built-up 

endmember class exists in a pixel or not) and independent variables (e.g. the probabilities of the 

existence of an endmember class type). The classification results were produced through splitting 

all the data with the interactions between the categorical variable and the independent variables. 

The classification tree was conducted using SEE5 (or C5.0), a commercial program, with 200 

samples randomly selected for each endmember class type. SEE5 was employed to generate a 

decision tree proposed by Quinlan (1993)(https://www.rulequest.com/see5-info.html). 

Specifically, all samples were randomly collected from the spatial distribution map of five land 

use land covers based on NLCD2006 data. 

 

3.3.3Temporal mixture analysis 

 

With the identified endmember classes fo reach pixel, a fully constrained linear TMA was 

applied to extract the areal fractions of all land cover types using multi-temporal MODIS NDVI 

data. With TMA, the multi-temporal NDVI data, instead of the original reflectance spectra, was 

employed for spectral unmixing. The spectral signatures of five endmembers, including 

impervious surfaces, deciduous forest, pasture, evergreen forest, and agricultural land were 

chosen according to the scatterplots of the first three MNF components. With the selections of 

the types, number, and spectral signatures of endmember classes, fractional land covers can be 

modeled using TMA as follows. 
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𝑁𝐷𝑉𝐼𝑏 = ∑ 𝑓𝑖
𝑁
𝑖=1 × 𝑁𝐷𝑉𝐼𝑖,𝑏 + 𝑒𝑏                                                                                                           (3.2) 

Subject to   ∑ 𝑓𝑖
𝑁
𝑖=1 = 1and 𝑓𝑖 ≥ 0                                   (3.3) 

 

Where NDVIb is the NDVI value for band b, N is the number of endmembers, fi is the fraction of 

endmember i, NDVIi,bis the NDVI value of endmember i in band b, and eb is the residual. In 

order to assess the model fitness, the eb and RMS were  applied. 
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                                                                                                                    (3.4) 

Where M is the number of bands of the remote sensing image. 

 

3.3.4 Comparative Analysis and Accuracy assessment 

 

To evaluate the performance of the proposed TMA model, comparative analysis with a 

simple TMA and multiple endmember TMA (METMA) techniques was conducted. With the 

simple TMA, all five endmember classes were adopted, and the spectra of each endmember class 

were obtained using the same approach described in the previous section. In terms of the 

METMA, different endmember combination sets were allowed for each pixel. In particular, the 

bundles selection method has been utilized for identifying endmember spectra and the root mean 

square error (RMSE) has been employed for examining endmember number at each pixel. As a 

lower RMSE is always associated with a larger number of endmembers, the indicator proposed 

by Demarchi et al. (2012) was applied to select endmember combination models in METMA (Li 

and Wu 2014). To quantitatively assess the performances of the proposed TMA method, an 

accuracy assessment was conducted through comparing with the National LandCover Data 
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(NLCD) 2006 Percent Developed Imperviousness data. This dataset was derived from Landsat 

TM/ETM+ imagery with a spatial resolution of 30 m. With the help of NLCD 2006 Percent 

Impervious surfaces data, a computer based pixel-by-pixel comparison has been conducted for 

quantitative analysis of the estimation accuracy. Two widely used error measurement indices, 

systematic error (SE) and mean absolute error (MAE), were utilized to assess the accuracy of the 

impervious surfaces fractions estimated by the proposed TMA method. Specifically, MAE 

reflects the relative estimated errors of impervious surface abundances, and SE measures the bias, 

an overall tendency of over- or under-estimation. These indices can be calculated using the 

following equations (Equations 3.5and 3.6). 

𝑆𝐸 =
∑ (𝐼�̂�−𝐼𝑖)𝑁

𝑖=1

𝑁
                                                                                                                                            (3.5) 

𝑀𝐴𝐸 =
∑ |𝐼𝑖−𝐼�̂�|𝑁

𝑖=1

𝑁
                                                                                                                  (3.6) 

Where 𝐼�̂�  is the modelled impervious surface fraction value for pixel i, Iiis the reference 

impervious surface fraction value for pixel i, and N is the total number of pixels.These two 

accuracy metrics were calculated for the entire study area, developed areas (with ISA% equals 

and over 30%), and less developed areas (with ISA% less than 30%). 

 

3.4 Results 

 

3.4.1 Endmember class probability estimation 

 

The distribution probabilities of all endmember classes, including agricultural lands, 

deciduous forest, built-up, evergreen forest, and pasture, were estimated using the logistic 

regression analysis. Table 2 reports the coefficients of each LULC drivers employed in the 
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logistic regression analysis, as well as the ROC value. Taken the built-up endmember class as an 

example (see Table 2), it appears that higher probability of built-up areas is associated with lower 

elevation, relatively higher slope, closer to the nearest city, lake, river, village, and road, and 

farther away from railway. On the contrary, higher probability of evergreen forest endmember 

class is positively correlated with areas with lower elevation, lower slope, longer distance to 

cities, villages, and roads, and closer to railway and rivers. The ROC values for all the logistic 

regression models were over 0.65, indicating that these driving factors have effectively explained 

the spatial distributions of these LULC types. The resultant distribution probabilities of these 

endmember classes are reported in Figure 10 It illustrates that the spatial patterns of endmember 

class probabilities reasonably reflect the actual LULC patterns of Wisconsin. As an example, 

built-up areas (Figure 10B) were mainly found in the southeastern Wisconsin and forests 

(deciduous and evergreen) (Figure 10C and 10D) were located in the northern Wisconsin.  

Table 2 Results of logistic regression analysis for each endmember class 
 
Driving factors Agricultural land Deciduous forest Built up Evergreen forest Pasture 

Elevation (m) 0.00064894 0.00813792 -0.00231551 -0.00107184 -0.00018148 

Slope (degree)      -0.14955313 0.32144669   0.00207563 -0.22212906 -0.03614778 

DisCity (m) -0.00002835 0.00002630  -0.00002211     0.00001151 -0.00003098 

DisLake (m)   0.00013175 0.00003733  -0.00005401   0.00013647   0.00011846 

DisRailway (m)   0.00000808 -0.00000152   0.00000145  -0.00001959 -0.00000694 

DisRiver (m)   0.00001284 -0.00003618  -0.00003483   -0.00008011 0.00003977 

DisVillage (m)  -0.00006065 -0.00001629  -0.00000988    0.00001257 -0.00003284 

DisRoad(m)  -0.00014293  0.00000885  -0.00021078   0.00000247 -0.00010072 

Constant  -0.32620496 -4.04933074  -0.67114000 -3.72471954 -1.72240487 

ROC 0.761 0.756 0.747 0.667 0.726 
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Figure 10 The spatial distribution probabilities of endmember classes 
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3.4.2Endmember class type identification 

 

With the probability of each endmember class type, a classification tree model was 

constructed for each endmember class type to identify whether an endmember class is present or 

absent in a particular pixel. The rules derived from the classification tree approach are shown in 

Table3.Taking the agriculture land endmember class as an example, it is present in a pixel if the 

probability of agriculture land is higher than 14.4% and the probability of evergreen forest is 

lower than 5.2%, or the probability of agriculture is lower than 14.4% but the built-up probability 

is between 11.0% and 24.5%. The former may indicate agriculture lands in rural areas, and the 

later may represent agriculture lands near to built-up areas. Similarly, the built-up endmember 

class is present if the probability of built-up endmember class is greater than 9.3%, or the built-

up endmember class probability is lower than 9.3% but the probability of evergreen class is 

higher than 0.6%, or the built-up class probability is lower than 7.8% but the probability of 

agriculture class is higher than 44.1%. With these cases, the first one indicates high density urban 

areas, and the second one indicates the mixture of impervious surfaces and forest, and the third 

one indicates the mixtures of impervious surfaces and agricultural lands. With the extracted 

thresholds for all endmember classes (Table 3), we can identify the types and numbers of 

endmember classes at each pixel for spectral unmixing. Take impervious surfaces as an example 

(see Figure 11), we can find that impervious surfaces are mostly distributed in the southeast part 

of Wisconsin. 
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Table 3 Rules derived from classification tree 

 

 Endmember class  Status Agriculture Deciduous Evergreen Built-up Pasture 

 Present >14.4%  <5.2%   

  <14.4%   11.0% - 24.5%  

Agriculture Absent >=14.4%  >=5.2%   

 

 <=14.4%   >=24.5% 

 

 

 <=14.4%   <=11.0% 

  Present >44.1%   <=7.8%  

Built-up     >9.3%  

(Impervious       >0.6% <=9.3%   

Surfaces) Absent <=44.1%   <=7.78%  

    <=0.6% <=9.3%  

Deciduous     >16.9%  

 Present  >45.3%  <=16.9%  

  >38.9% <=45.3%  >6.5%  

 Absent <=38.9% <=45.3%  <=16.9%  

  >38.9% <=45.3%  <=6.5%  

Evergreen      Present  >20.3% >2.2%   

   >20.3% <=2.2%  11.1% - 11.5% 

 Absent  <=20.3%    

   >20.3% <=2.2%  >11.5% 

   >20.3% <=2.2%  <=11.1% 

Pasture Present >14.5%    >11.6% 

 Absent <=14.5%    <=11.6% 

  >14.5%     
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Figure 11 The spatial distribution of impervious surfaces in Wisconsin 

 

3.4.3Temporal mixture analysis 

 

With the identified endmember class type, number, and spectra (see Figure 12), TMA 

was performed using Equations 3.2 and 3.3, and the results are reported in Figure 13. A visual 

examination of the spatial distributions of urban impervious surfaces indicates that the patterns 

of impervious surface distributions are consistent with the known LULC patterns of Wisconsin. 

Especially, high fractional impervious surface areas are mainly located in urbanized and 

populated regions (e.g. southeast Wisconsin), including the metropolitan statistical area (MSA) 

of Milwaukee, Madison, and Green Bay, etc. In addition, very low fractional urban impervious 

surface areas can be found in the northern portion of Wisconsin. In addition to the visual 
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examination, the results of accuracy assessment are reported in Table 4 Results (see Table 4) 

indicate that the proposed LULC probability based TMA is with a reasonably well performance 

for estimating impervious surfaces for the study area, with an SE of 2.25% and MAE of 3.18%. 

With a detailed analysis, results indicate a better performance in less developed areas (e.g. an SE 

of 1.62% and an MAE of 2.53%) when compared to developed areas (e.g. an SE of -8.66% and 

MAE of 12.89%). For developed areas, in particular, the under-estimation of urban impervious 

surfaces is a major concern. 

 

Table 4 Accuracy assessment of impervious surfaces with the proposed TMA, simple TMA and 

METMA 
 

    
Proposed TMA 

(%) 

Simple TMA 

(%) 

      Percent 

difference (%) 

METMA 

(%) 

      Percent 

difference (%) 

Overall SE 2.25 3.25 -30.8** 2.13 

 

5.63 

  MAE 3.18 4.03 -21.1* 3.36 

 

-5.36 

Developed SE -8.66 -8.17 6.0 -7.46 

 

16.09 

  MAE 12.89 12.15 6.1 12.16 

 

6.00 

Less  SE 1.62 3.43 -52.8** 2.32 

 

-30.17* 

developed MAE 2.53 3.90 -35.1* 3.23 

 

-27.67* 

*significant at the 95% significance level 

**significant at the 99% significance level 
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Figure 12 NDVI spectral signatures of identified endmember classes 
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Figure 13 Impervious surfaces fraction maps generated from (a) proposed TMA method (b) 

simple TMA method and (c) METMA method 

 

3.4.4 Comparative analysis and accuracy assessment 

 

For a comparative analysis, the simple TMA and METMA were implemented and the 

results are reported in Figure 13 Through a visual comparison, we found that a rather similar 

impervious surface distribution pattern is shown in most parts of Wisconsin, with the majority of 
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impervious surfaces located in major cities in the southeastern portion, and lower fractional 

impervious surfaces were found in the northern and northwestern parts of Wisconsin. Moreover, 

further quantitative accuracy assessment indicates that the performance of the simple TMA is 

worse than that of the LULC probability based TMA method. Specifically, the overall 

performance of the simple TMA is worse, with an SE of 3.25% and MAE of 4.03%, both of 

them are significantly higher than those of the proposed TMA method (see Table 4). Further 

analyses indicate that a more severe over-estimation can be detected in less developed areas with 

significantly higher values of SE (3.43%vs. 1.62%), and MAE (3.90%vs. 2.53%). For developed 

areas, the performance of the simple TMA and the proposed TMA method is comparable, and a 

slightly better performance was achieved with the simple TMA method.  When compared to the 

proposed LULC probability based TMA approach, METMA method also achieved a satisfactory 

performance for overall study area with SE of 2.13% and MAE of 3.36%. In detail, METMA 

performs slightly better in developed areas with a lower SE value (-7.46% vs. -8.66%) and a 

slightly higher MAE value (12.16% vs. 12.15%), but generate much higher errors in less 

developed areas with an SE of 2.32 %( vs.1.62%) and MAE of 3.23 %( vs.2.53%). In addition to 

the above comparisons, we also generated a scatter plot to show the relationship between the 

examined and observed impervious surfaces fractions using randomly selected samples. 

Figure14 indicates that the proposed TMA provides a better performance with a higher value of 

R
2
.As a summary, the proposed LULC probability based TMA has a satisfied performance in the 

entire study area and greatly improved estimation accuracy in less developed areas, while a 

slightly better accuracy was achieved with the simple TMA and METMA in developed areas. 
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Figure 14 Accuracy assessment of the impervious surfaces estimation by (a) proposed TMA 

method (b) simple TMA method and (c) METMA method 

 

3.5 Discussion 

 

3.5.1 Endmember class variability 

 

With SMA, the first and the most important step is the selection of endmember class type, 

number and spectra. While the spectra variability of endmember classes has been studied 

extensively (Asner and Lobell, 2000; Chang and Ji, 2006; Somers et al, 2010; Zhang, 2004; Wu, 

2004), little research has been conducted in selecting endmember class type and number (Small, 

2001; Somers et al, 2009b; Wu and Murray, 2003; Zhang et al., 2014). The choice of endmember 

classes, however, is the foundation of endmember extraction, and key to successful applications 

of SMA(Tompkins et al., 1997; Elmore et al., 2000). Because of the spatially heterogeneous 

nature of landscapes, the distribution of endmember classes tends to illustrate spatial variability. 

Up to now, however, endmember class types for each remote sensing image pixel are always 

assumed to be identical (Deng and Wu, 2013; Small and Lu, 2006; Song, 2005; Wu, 2004; Wu 

and Murray, 2003; Yang et al., 2012). Although the MESMA method has employed different 

types of endmember classes, they only used the pixel-based error terms (e.g. EAR or 
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RMSE)(Dennison and Roberts, 2003), minimum average spectral angle (MASA) (Dennison et 

al., 2004), or iterative endmember selection (IES)(Dennison, et al., 2011) as the criteria for 

endmember class selection, and neglected the physical meanings of endmember classes (Roberts 

et al., 1998). As a result, endmember classes may be misidentified and lead to large errors in 

fractional land cover estimates. The developed LULC probability based TMA might be helpful 

in addressing this issue. Specifically, the general spatial distribution probability can be extracted 

through analyzing the relationship between the sampled locations of endmember classes and 

their surrounding natural and socio-economic forces through a logistic regression analysis. 

Furthermore, a classification tree approach was developed to automatically identify the per-pixel 

level endmember classes based on the derived spatial distribution probabilities of all endmember 

classes. Consequently, the selected endmember classes with clear physical meanings can 

effectively improve the estimation accuracy for fractional land cover estimates. Results of this 

study indicate that it is highly necessary to conduct the selection of endmember class type and 

number prior to spectral unmixing. 

 

3.5.2 Importance of endmember class type and number selection 

 

Through incorporating the LULC probability information in the TMA method, we found 

that the accuracy of resultant impervious surface fractional estimates in less developed areas is 

significantly better than that with the simple TMA and MEMTA methods, while similar 

performance was found in developed areas (see Table 4). This observation might indicate that 

the selections of endmember class type and number are more essential in less developed areas 

when compared to developed areas. With the simple SMA model, built-up (impervious surfaces) 
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has to be an endmember for all pixels, thereby leading to remarkable overestimation of 

impervious surfaces in rural areas. While the METMA model considers the issue of endmember 

class variability, the selection of endmember classes only related to estimation residuals without 

any physical meanings. Therefore, it may also cause mis-identified endmember class (e.g. 

impervious surfaces) to be included, and finally lead to the overestimation of impervious 

surfaces in less developed areas. Such over-estimation, however, has been partially addressed 

with the LULC probability based TMA method, as urban impervious surface class has been 

effectively removed from the endmember class set for each rural pixel. In developed (urban) 

areas, the less-than-desired results of impervious surface estimates may be due to the high 

heterogeneity of urban environments with numerous manmade materials (e.g. asphalt, concrete, 

glass, metal, etc.), and endmember variability may play an essential role in the modeling 

accuracy of the resulting impervious surface estimates. Although several studies (Small, 2001; 

Somers et al, 2009b; Wu and Murray, 2003; Zhang et al., 2014) have attempted to employ 

different endmember class sets for urban and rural areas, this study provides a clear theoretical 

foundation of selecting endmember class type and number, and highlighted the importance of 

endmember class type selections, which has been neglected in the SMA literature.  

 

3.6 Conclusions and future research 

 

In this paper, we incorporated LULC probability information into the selections of 

endmember class type and number for TMA. In particular, logistic regression analyses were 

conducted to estimate the LULC probabilities of endmember classes through modeling their 

relationships with socio-economic and environmental drivers. Then, classification tree methods 
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were employed to identify the existence of each endmember class type for each remote sensing 

pixel. As a result, an appropriate endmember class set was determined for each image pixel. 

Finally, the linear TMA method was applied to estimate the impervious surface fractions for 

each model. This developed method was applied to the MODIS NDVI imagery of Wisconsin, 

United States, and comparative analysis with the simple TMA and METMA were performed.  

Analysis of results indicates three major conclusions. First, the proposed LULC 

probability based TMA has a promising accuracy in the estimation of impervious surfaces 

fractions. It has an overall MAE of 3.18% and SE of 2.25%, with better performance in less 

developed areas than in developed areas. Further results of accuracy assessment indicate that a 

slight over-estimation was found in less developed areas, and under-estimation was found in 

developed areas. Second, comparative analysis with simple TMA and METMA indicates that the 

proposed TMA model has achieved comparable performance for overall study area and greatly 

improved the estimation accuracy of fractional impervious surface cover for the less developed 

areas. Specifically, when compared to simple TMA and METMA, the SE values for less 

developed areas have decreased 52.8% and 30.17%, and the MAE values for the less developed 

areas have decreased 35.1% and 27.67% respectively. Finally, for developed (urban) areas, the 

performance of the proposed TMA method is comparable to that of simple TMA and METMA, 

indicating that endmember class sections might not be as essential in heterogeneous urban 

environments, and endmember variability might be a more important factor. 

Although a relatively satisfactory performance was achieved using the proposed LULC 

probability based TMA method, only the global LULC probabilities were considered for 

selecting endmember class type and number. Local spatial information, however, may also play 

an essential role in identifying endmember class types. Therefore, one research direction could 
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be incorporating local LULC probability into endmember class selections for further improving 

the modeling accuracy. Furthermore, in this study, only MODIS NDVI data was applied, and it 

is necessary to evaluate the proposed model’s performance with other dataset in other study area 

at different scales. 
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CHAPTER4 A GEOSTATISTICAL TEMPORAL MIXTURE ANALYSIS 

APPROACH TO ADDRESS ENDMEMBER VARIABILITY FOR 

ESTIMATING REGIONAL IMPERVIOUS SURFACE DISTRIBUTIONS3 

 

4.1 Introduction 

 

Spectral mixture analysis (SMA) is one of the major approaches for estimating fractional 

land covers through modeling the relationship between the spectral signatures of a mixed pixel 

and those of the comprised pure land covers (also termed as endmembers) within the 

pixel(Keshava 2003). Because of its effectiveness in addressing the mixed pixel problem, SMA 

has been applied in many fields, including urban impervious surface and vegetation mapping, 

agricultural production assessment, terrestrial ecosystem monitoring, geological mapping, etc. 

(Bedini 2009; Cunningham et al. 2015; Eckmann et al. 2010; Gilabert et al. 2000; Hestir et al. 

2008; Jia et al. 2006; Johnson et al. 1993; Lelong et al. 1998; Li et al. 2013; Liu et al. 2008; Rhee 

et al. 2014; Rosa and Wiesmann; 2013; Wu 2004; Wu and Murray 2003). When implementing 

SMA, the first and most important issue is the selections of endmember class types, number, and 

their corresponding spectra (Elmore et al. 2000; Tompkins et al. 1997). The set of corresponding 

spectra of endmember classes have been typically identified manually or statistically through 

analyzing the spectral plots. Subsequently, these endmembers were applied to each individual 

pixel of an image to extract areal fractions of land covers using spectral unmixing (Sabol et al. 

1992). While it’s straightforward, the endmember variability was ignored, and it might resulting 

in large estimation errors in areas with heterogeneous landscapes (Asner and Lobell 2000; 

Bateson et al. 2000; Bhatti and Tripathi; 2014; Herold etal. 2004; Qiu et al.2014; Roberts et al. 

                                                 
3
Portions of this chapter have been published in the journal of GIScience & Remote Sensing, coauthored with Dr. 

Changshan Wu. 
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1998). As a result, endmember variability has become a profound error source and essential 

problem in SMA(Bateson et al. 2000).  

Endmember variability can be generally categorized as intra-class variability and inter-

class variability (Zhang et al. 2006). The first one refers to the relative spectral differences within 

a specific endmember class, and the later one is associated with spectral variations among 

different classes. To overcome endmember variability, several studies have been conducted in 

the past decades through reducing intra-class variability or enhancing inter-class 

variability(Somers et al. 2011). Somers et al. (2011) first reviewed and compared all the 

proposed techniques for addressing the issue of endmember variability, they pointed out that the 

first attempt should be associated with the selection of appropriate spectral features for unmixng 

analysis. In particular, Asner and Lobell (2000) developed an autoSWIR approach to enhance 

between-class spectral variations through selecting the partial shortwave infrared (SWIR) 

spectral region. Moreover, statistical approaches, such as principal component analysis (PCA) 

(Johnson et al. 1993; Miao et al. 2006), discrete cosine transform (DCT) (Li 2004), and residual 

analysis (Ball et al. 2007; Miao et al. 2006), have been proposed to select the best wavebands for 

spectral unmixing. Furthermore, Somers et al. (2010) developed a stable zone unmixing (SZU) 

technique  to select the bands with the lowest intra-class variation according to the instability 

index (ISI). Other techniques include spectral weighting, spectral transformation, and spectral 

transfer model. Chang and Ji (2006) proposed a weighted spectral mixture analysis (WSMA) to 

reduce endmember variability, with which higher weights were assigned to bands with relative 

low endmember variability. Further, Somers et al. (2009) developed a two-step weighting SMA 

through considering the variations of the reflected energy associated with each band. In addition 

to the spectral weighting techniques, spectral transformation has also been developed for 
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mitigating within-class endmember variability.Wu (2004) developed normalized spectral mixture 

analysis (NSMA) to minimize the within-class endmember variability by normalizing the 

original spectra. This method was subsequently employed in geological applications (Zhang et al. 

2005). In addition, Zhang et al. (2004) developed a derivative spectral unmixing (DSU) to 

address the variability issue through inputting the second-derivative endmember spectra in SMA. 

Although DSU is effective in solving the endmember variability issue, it also enhances high 

frequency noise. Thus, continuous wavelets techniques, and discrete wavelet and other wavelet 

analysis techniques, have been developed (Li 2004). With the wavelet analysis, transformed 

spectral features, instead of original reflectance features, have been employed in SMA (Li 2004; 

Rivard et al. 2008). Further, soil modeling mixture analysis (SMMA) was proposed to decrease 

within-class moisture differences for soil (Lobell et al. 2002; Somers et al. 2009). 

In addition to the aforementioned techniques for addressing endmember variability, the 

other approach is the multiple endmember spectral mixture analysis (MESMA) method (Roberts 

et al. (1998), which considers all possible endmember combinations, and selects the best 

endmember set for each pixel. In MESMA, multiple endmembers were collected and saved in a 

spectra library, and numerous SMA models were constructed and tested with different 

combinations of types, number, and spectra of endmember classes for each individual pixel, and 

the best fit combination set was selected. Generally, the lowest root mean square error (RMSE) 

was used as the selection criterion. In addition, other selection techniques have also been 

developed, including count-based (COB)(Roberts et al. 2003), endmember average RMSE (EAR) 

(Dennison and Roberts 2003), minimum average spectral angle (MASA) (Dennison et al. 2004), 

and iterative endmember selection (IES) (Schaaf et al. 2011). In addition to MESMA, the 

endmember bundles approach proposed by Bateson and Curtiss (1996) is the other trial-and-error 
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technique for mitigating endmember variability. Specifically, instead of using only one 

endmember, a bundle of endmembers are collected and employed to construct endmember sets, 

and the minimum, mean, and maximum fractions for each land cover type are then extracted.  

Although those proposed approaches have proven valuable in addressing endmember 

variability, there are still some challenging problems. In particular, most approaches still apply a 

set of fixed endmembers to extract image-wide land cover fractions. In fact, due to local 

variations of environmental and socio-economic factors (e.g. topography, climate, economic 

development, population density, and etc.), endmembers can be typically varied from location to 

location, and the selected endmembers may not be adequate to represent the complex conditions 

of a geographic area, which in turn results in erroneous estimates. While MESMA has addressed 

the endmember variability issue through including a variety of endmember sets, it is a pixel-

based approach without considering geographic knowledge. Recently, Deng and Wu (2013) 

developed a spatial adaptive SMA (SASMA), with which local endmembers for a target pixel 

were selected within a moving window, and an inverse distance weighting approach was applied 

to derive the endmembers for the target pixels. SASMA, however, is a mathematical approach 

with empirically determined neighborhood size and distance-weighting functions (Li and Wu, 

2015).  

Instead of employing single-date reflectance imagery, a temporal mixture analysis (TMA) 

was proposed by Knight and Voth (2011) using multiple-temporal NDVI (Normalized 

Difference Vegetation Index) data. The results show that the 2-year NDVI temporal profiles have 

achieved a satisfactory performance for estimating urban imperviousness. Further, Yang (2012) 

applied TMA in Japan and demonstrated the ability of NDVI temporal profiles in estimating 

urban imperviousness at the national scale. Recently, Li and Wu (2014) proposed a phenology 
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based TMA and METMA (Multiple-Endmember Temporal Mixture Analysis) with the highlight 

of the importance of phenological information derived from NDVI temporal profiles, and they 

found with the extracted phenological information, one land cover type can be easily 

distinguished from another, and the issue of inter-class variability (such as the mixture of bare 

soil and impervious surface) can be effectively addressed. Furthermore, Li and Wu (2015) also 

successfully addressed the issue of endmember class selections through incorporating land 

use/land cover spatial information into TMA. 

Although all proposed approaches have proven helpful for improving estimation accuracy, 

the issue of endmember variability has not been fully addressed. Therefore, in this study, we 

developed a geostatistical approach to approximate the “representative” endmembers for each 

individual pixel. In particular, we proposed to apply an ordinary kriging analysis method to 

interpolate the endmembers for each pixel. Ordinary kriging is a geostatistical approach and 

considered as a non-biased interpolation technique, as it can interpolate the value of a function at 

a given point by computing a weighted average of the known values of the function in the 

neighborhood of the point. It derives a best linear unbiased estimator based on assumptions on 

covariance and make use of Gauss-Markov theorem to prove the independence of the estimate 

and error, and finally generate reasonable results.  Ordinary kriging has been widely applied in 

soil mapping, population estimation, climatology, etc. (Cressie 1993; Vauclin et al. 1983; Wu 

and Murray 2005). This geostatistical temporal mixture analysis (GTMA) method can be divided 

into three steps, including 1) identifying potential endmember candidates over the entire image 

using image endmember extraction and sampling, 2) calculating endmembers for each individual 

pixel using an ordinary kriging technique, and 3) estimating the endmember class fractions 

through spectral unmixing.  
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The rest of the paper is structured as follows. Section 4.2 describes the selected study 

area and data source. Section 4.3 introduces the proposed GTMA approach, including 

endmember extraction and sampling, per-pixel endmember estimation using ordinary kriging, 

and fractional land cover estimation using fully constrained linear temporal mixture analysis. 

The estimation results of the proposed GTMA and comparative analyses with PTMA and 

PMETMA are reported in Section 4.4. Finally, discussion and conclusions are provided in 

Sections 4.5 and 4.6.  

 

4.2 Study area and data 

 

States of Wisconsin, United States (U.S.) was selected as the study area for this research 

(see Figure15). Wisconsin is situated in the mid-western region of the U.S. with a geographic 

area of approximately 170,000 square kilometers and has experienced rapid urbanization during 

the past decades. According to 2010 U.S. census, the populations in Wisconsin was about 5.7 

million, and with increments of approximately 16% from 1990 to 2010, and this trend was 

predicted to continue in the next decades (U.S. Census Bureau, 2014). Wisconsin is covered by a 

wide variety of land use/land cover types. Specifically, forest lands, including evergreen forest 

and deciduous forest, can be found in the northern part. Large patches of agricultural lands and 

pastures can be found in the southwest and northwest parts respectively. Comparatively, urban 

areas, including Madison, Milwaukee, and Green Bay, are majorly distributed in the southeast 

part of the State. As the major component of urbanized areas, impervious surfaces are composed 

of various manmade materials, such as asphalts for drive way, sidewalks and parking lots, 

concrete and cement for building rooftops, and tiles for residential house rooftops.  
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Figure 15 Study area: Wisconsin State, USA 

 

In order to map subpixel impervious surfaces fractions in Wisconsin and North Carolina 

through the proposed GTMA, 44 (22 for each study area) MODIS (Moderate-resolution imaging 

spectroradiometer) NDVI images (1 band, Product of MOD13Q1) acquired in 2006 were 

employed (two images per month, except the one in late November for Wisconsin and one in late 

August for North Carolina as heavy cloud covered). All images were collected from the United 

States Geological Survey (USGS) website (www.usgs.gov) with a 0.5-pixel positional accuracy 
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and a spatial resolution of 250 meters. In addition to MODIS NDVI data, we also collected the 

National Land Cover Data (NLCD) 2006 Percent Developed Imperviousness data from the 

Multi-Resolution Land Characteristics Consortium (MRLC) website 

(http://www.mrlc.gov/nlcd06_data.php) for accuracy assessment. NLCD data, generated by 

USGS, is the national land cover dataset that covers the entire United States. The data was 

produced based Landsat TM/ETM+ imagery at a spatial resolution of 30 meters, and updated for 

every 5-10 years. For NLCD, the Anderson classification scheme was employed to classify the 

image into ten major classes (see Table 5), and in this study, five land covers, including 

agriculture, deciduous forest, evergreen forest, pasture, and impervious surface were considered. 

Barren land and grassland were ignored due to their small areal coverages and the coarse 

resolution (250m) of our remote sensing imagery. Further, water and wetlands were masked out 

before spectral unmixing to mitigate spectral confusion. 

 

Table 5 Land covers types in the study areas 

Land cover type Description 

Urban Areas with constructed materials and high number of impervious surfaces 

Deciduous forest Forest with trees losing the foliage seasonally 

Evergreen forest Forest with trees keeping leaves in all seasons 

Pasture Vegetation planted for livestock grazing 

Grassland Vegetation covered mainly by gramanoid or herbaceous, not subject to any 

intensive management  

Agriculture Areas for annual crops production 

Barren land Areas of glacial debris, sand, mines, bedrock, slides, desert pavement 

Water Areas of river, lake, reservoirs, streams 

Wetland Areas of forest or shrubland vegetation saturated with or covered with water 
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4.3 Methodology 

 

To implement the proposed GTMA approach, three major steps were carried out, 

including endmember candidate extraction and sampling, spatially varying per-pixel endmember 

extraction using kriging, and fully constrained linear temporal mixture analysis. The details of 

these three steps are described as follows. 

 

4.3.1 Endmember candidate extraction and sampling 

 

Endmember selection is the first and the most important step for successful spectral 

unmixing. Typically, principal component analysis (PCA) or minimum noise fraction (MNF) 

transformation is employed to guide the selection of endmembers. Due to the ability of ordering 

components on the basis of signal to noise ratios, MNF was applied in this study to remove noise 

and guide endmember selection. In this study, several feature spaces were generated using the 

first several MNF components, and finally we found all expected endmembers could be 

identified from scatterplots of the first three MNF components (see Figure 16). With the 2-

dimentional scatter plots generated using the first three MNF components; the vertices of these 

plots were selected as endmembers after verification with ground observations. These 

endmembers include agriculture, impervious surface, deciduous forest, evergreen forest, and 

pasture. Based on the pure spectra sets of endmembers chosen from the 2-dimentional scatter 

plot, a stratified random sampling was applied for each class to collect endmembers for each 

class, and 200 endmember samples were selected for agriculture, deciduous forest, evergreen 

forest, and pasture respectively, and 50 samples were chosen for impervious surfaces (as limited 

quantity of “pure” impervious surfaces exist) (see Figure 17). In order to show the spatial 
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variation of the collected endmember samples, the NDVI temporal profiles of endmembers 

(calculated by averaging all samples of each endmember) including the first standard deviation 

were quantified and showed in figure 18. 

 

 

Figure 16 2-dimentional scatter plot generated from MNF components 
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Figure 17 Spatial distribution of endmember class samples 

 

Figure 18 NDVI temporal profiles of selected endmember classes (including the 1st standard 

deviation) 
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4.3.2 Per-pixel endmember estimation using ordinary kriging 

 

In order to apply ordinary kriging method to estimate the endmember for each class at per 

image pixel, a second moment stationary hypothesis (the correlation of two variables only 

associated with the spatial distance between them, and is not related to their location) test was 

conducted. The test results show that no significant variation can be detected and ordinary 

kriging analysis can be applied in further study. As the temporal profiles of each class include 22 

NDVI bands in the stacked MODIS image, the ordinary kriging analysis needs to be 

implemented 22 times, each of which is to estimate the NDVI value for a particular band. The 

ordinary kriging was implemented with three major steps, including 1) estimating the 

experimental variogram of an NDVI value of a specific band for a particular endmember class 

using collected samples, 2) fitting the estimated experimental variogram into a mathematical 

model, and 3) interpolating the NDVI value of the specific band for the endmember at each pixel. 

In this study, we identified five endmember classes (e.g. agriculture, impervious surface, 

deciduous forest, evergreen forest, and pasture) and each of them has 22-band NDVI temporal 

profiles. Therefore, this ordinary kriging process needs to be replicated for 110 times to derive 

the per-pixel endmembers for all endmember classes.  

The details of this ordinary kriging process for estimating NDVI value for band b (1<= b 

<=22) of endmember class i are shown as follows. The first step is to estimate the experimental 

variogram using Equation (4.1). 

𝛾(𝑑) =
1

2𝑛(𝑑)
∑ (𝑁𝐷𝑉𝐼𝑖,𝑏,𝑗 − 𝑁𝐷𝑉𝐼𝑖,𝑏,𝑘)2

𝑑𝑗𝑘=𝑑

                                                                                   (4.1) 
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Where, 𝛾(𝑑) is the experimental variogram with a lag of d, NDVIi,b,j and NDVIi,b,k are the NDVI 

values of endmember samples j and k, and djk is the distance between samples j and k. In this 

study, the variogram was derived by using the mean value of all directions. With the knowledge 

of the spatial structure extracted from the experimental variogram, several theoretical 

mathematical models including circular, spherical, exponential, Gaussian, and linear models 

were applied to fit the experimental variogram, and the one with the highest R
2
 was selected as 

the best-fit model. Following the guidance provided by Curran and Atkinson(1998)and 

McBratney and Webster(1986), a weighted least square fitting method was applied to derive the 

mathematical function of γ(d). With an appropriate mathematical expression of γ(d), kriging 

attempts to minimize the squares of the difference between the estimated and the reference 

NDVI values, expressed in Equation (4.2). 

Minimize             (4.2) 
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GS+7.0, and ArcGIS10 was employed subsequently to implement the ordinary kriging for 

deriving the per-pixel endmember. 

 

4.3.3 Fully constrained linear temporal mixture analysis 

 

With the identified endmember classes and the corresponding endmembers derived from 

the ordinary kriging, a fully constrained linear TMA was conducted. The formulation of the 

TMA and the associated constraints are listed as follows: 

NDVIb = ∑ fi

N

i=1

× NDVIi,b + eb                                                                                                              (4.3) 

Subject to ∑ fi
N
i=1 = 1 and  fi ≥ 0 

Where NDVIbis the NDVI value for each band b, N is the total number of endmember classes (5), 

fi is the fraction of endmember class i, NDVIi,bis the NDVI value for band b of endmember i, 

and eb is the residual. The TMA was carried out based on the assumption that the NDVI 

temporal profile of a mixed pixel (NDVIb) is a linear combination of the estimated NDVI 

temporal profiles of all quantified endmember classes (NDVIi,b), and the areal abundances (fi) 

of all identified endmember classes can be extracted through implementing an inverse least 

squares deconvolution model.  In order to present the physical meanings of the TMA results, the 

sum-to-one and non-negativity constraints were applied. 

In order to assess the model fitness, the eb and RMS error were applied. RMS error is 

typically used to measure the differences (also called residual) between predicted and observed 

values. RMS error can be expressed as follows: 
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                                                       RMS = (
∑ eb

2B
b=1

B
)

1
2⁄

                                                                     (4.4) 

Where B is the number of bands (22) of the MODIS NDVI image. 

 

4.3.4 Comparative analysis and accuracy assessment 

 

For comparative purposes, Phenology based TMA (PTMA) and Phenology based 

METMA (PMETMA) have also been implemented in this study. With PTMA, instead of using 

the localized endmembers derived from kriging analysis, a mean endmember set was calculated 

through averaging the collected endmembers, and this mean endmember set was subsequently 

applied for the whole image to estimate impervious surfaces fractions using the fully constrained 

linear temporal mixture analysis. Different from PTMA, PMETMA allows the use of a variety of 

endmember set combinations, and selects the one with the best model fit. For details of the 

PTMA and PMETMA models, readers can refer to (Li and Wu, 2014). 

To assess the performance of the proposed GTMA, as well as those of PTMA and 

PMETMA, the NLCD 2006 Percent Developed Imperviousness data from USGS was applied in 

this study as the ground truth data, and a pixel by pixel comparison was conducted. Two widely 

used accuracy assessment metrics, systematic error (SE, Equation 4.5) and mean absolute error 

(MAE, Equation 4.6), were calculated respectively to evaluate the performance of these three 

models. Specifically, SE quantifies the systematic bias (overestimation or underestimation), 

while MAE measure the overall precision. 

𝑆𝐸 =
∑ (𝑓�̅�−𝑓𝑗)𝑁

𝑗=1

𝑁
                                                                                                                                          (4.5) 
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𝑀𝐴𝐸 =
∑ |𝑓𝑗−𝑓�̅�|𝑁

𝑗=1

𝑁
                                                                                                                                        (4.6) 

Where 𝑓�̅� is the estimated impervious surface fraction for pixel j, fj is the referenced impervious 

surface fraction value collected from NLCD 2006 impervious surfaces fractions for pixel j, and 

N is the total number of pixels. 

 

4.4 Results 

4.4.1 Spatially varying endmember estimation using ordinary kriging 

 

For estimating spatially varying per-pixel endmember for each endmember class, the 

ordinary kriging method was applied. Through analyzing the spatial variation structure of 

sampled endmembers for each class, we found that there is no significant anisotropy, and the 

variograms can be considered as isotropic. Results of experimental variograms and fitted 

exponential models of early August NDVI image (NDVI band 14), as an example, are illustrated 

in Figure 19. This result proves the existence of endmember variability, as well as the spatial 

autocorrelation of these endmembers. That is, the endmember of a pixel is likely to be similar to 

that of its neighbouring pixels, and significantly different from those of pixels farther away. With 

the experimental variograms and fitted mathematical models, the endmember of each land cover 

type, e.g. agriculture, deciduous forest, evergreen forest, impervious surface, and pasture, was 

interpolated for each image pixel. Taking impervious surfaces as examples, Figure 20 indicates 

that the estimated endmember is with significant spatial variations. For example, a relatively 

high NDVI values (e.g. 0.34) in early August were found in the northern part of Wisconsin, and 

a rather low NDVI values (e.g. 0.20) were discerned in the southern portion. In order to further 

illustrate the spatial variability of endmembers derived from the ordinary kriging, 10 samples 
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were randomly selected in the study area, and the corresponding endmembers for impervious 

surfaces in Wisconsin are shown in Figure 20B. These results further prove the existence of 

spatial variations of endmembers, and endmember variability should be carefully examined 

before spectral unmixing. Artifacts of the impervious surface endmember distribution, however, 

do exist in Figure 20. In particular, it appears that low NDVI values are found in or around urban 

areas, and significant higher NDVI values exist in rural areas (see Figure 20). This may be due to 

the lack of impervious surface endmember samples, as well as their uneven spatial distributions. 

Further improvements, may include the adoption of a more quantitative approach for selecting a 

larger number and evenly distributed endmembers. This, however, might be difficult to achieve 

due to the scarce of potential impervious surfaces endmember candidates.  

 

 

Figure 19 Variograms of pure spectra of (a) Agriculture (b) Deciduous forest (c) Evergreen 

forest (d) Impervious surface and (e) Pasture (Take early August as an example) 
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Figure 20 Interpolated impervious surface spectra using ordinary kriging and sampled NDVI 

temporal profile (Take early August as an example, colored lines are impervious surfaces 

temporal profiles from 10 sampling locations) 

 

4.4.2 Fully constrained linear temporal mixture analysis 

With the identified endmember classes and spatially varying per-pixel endmembers, we 

implemented the fully constrained linear temporal mixture analysis to extract the fractional land 

covers for each endmember class. Results (see Figure 21) illustrate that the spatial pattern of the 

modelled impervious surfaces corresponds well with our local knowledge of the study areas. In 

particular, high impervious surface fractions (ISF: 70-100%) are mainly located in the downtown 

area of urbanized areas such as Madison City (the state capital of Wisconsin) and Milwaukee 

City (the largest city of Wisconsin). Further, medium impervious surface fractions (ISF: 30-70%) 

are majorly distributed in the suburban areas such as Mequon, Grafton, and Oak Creek in 

Wisconsin which can be commonly categorized as residential areas. In addition, low impervious 

surface fractions (ISF: 0-30%) can be easily found in the northern and western parts of the 

Wisconsin which are majorly covered by vegetation. In addition to the visual examination, a 
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quantitative analysis was also conducted for the whole study area, developed areas (ISF>=30%) 

and less developed areas (<30%). The 30% of ISA threshold is selected based on the definition 

of developed lands of the NLCD (http://www.epa.gov/mrlc/definitions.html). Results (see 

Table6) indicate that the proposed GTMA has achieved a promising accuracy in modelling the 

impervious surface fractions. Specifically, the overall study area was with an SE of 2.98%and 

MAE of 3.83%. Detailed analysis indicate that GTMA performs better in less developed areas 

(MAE=3.71%) than developed areas (MAE=9.36%), and a slightly overestimation (SE=3.07%) 

for less developed areas and underestimation (SE=-1.49%) for developed areas have been 

detected. 

 

Figure 21 Estimated impervious surface fraction maps from (A) GTMA, (B) PTMA, (C) 

PMETMA 
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Table 6 Accuracy assessment of impervious surfaces with GTMA, PTMA, and PMETMA 

      SE (%) MAE (%) 

 GTMA Overall  2.98 3.83 

 

 

 

      Wisconsin 

 

Developed  -1.49 9.36 

  Less developed  3.07 3.71 

PTMA Overall  3.25 4.03 

 Developed  -8.17 12.15 

  Less developed  3.43 3.9 

PMETMA Overall  2.13 3.36 

 Developed  -7.46 12.16 

  Less developed  2.32 3.23 

 

4.4.3 Comparative analysis 

 

The estimation results (see Figure 21) indicate that impervious surface fraction maps 

generated from GTMA, PTMA, and PMETMA are with similar spatial distribution patterns. In 

particular, higher impervious surface fraction values can be found in the southeast Wisconsin 

(e.g. Milwaukee City), and significantly lower impervious surface fraction values are located in 

the western and northern Wisconsin, covered by wetlands, agriculture, and forest. Although with 

similar spatial patterns, one noticeable difference can be found in urban areas. That is, with 

PTMA and PMETMA, impervious surface fraction estimates in urban areas are much lower than 

those estimated with GTMA. In order to illustrate the improvement in developed areas, 

Milwaukee, the largest city in Wisconsin was selected and comparative maps were shown in 

Figure 21. It indicates that obvious underestimation can be detected with PTMA and PMETMA, 

and this problem has been effectively addressed with GTMA. Further quantitative analysis 
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confirms these visual observations. For the entire study area, as well as less developed areas, the 

performances of PTMA and PMETMA are comparable to that of GTMA. That is, these three 

models are with similar SE and MAE values. In urban areas, however, the performances of 

PTMA and PMETMA are significantly worse than that of GTMA. For instance, in urban areas, 

SE values of PTMA and PMETMA are (-8.17%) and (-7.46%) respectively, significantly higher 

than that of GTMA (-1.49%). Moreover, in urban areas, MAE values of PTMA and PMETMA 

are 12.15% 12.16% and 11.62% respectively, much higher than those of GTMA (9.36%). 

Moreover, in order to illustrate the relationship between the modelled and referenced impervious 

surfaces fractions, a scatter plot was also created through stratified randomly selected samples 

(see Figure 22). Figure 22 shows that with the proposed GTMA, the underestimation in the 

developed areas has been highly addressed, and generally, the proposed GTMA has achieved a 

better performance with a higher R
2
. In summary, when compared to PTMA and PMETMA, the 

proposed GTMA has achieved a comparable performance for the whole study area and less 

developed areas, and a much better performance for developed areas. 

 

 

Figure 22 Accuracy assessment of the impervious surfaces estimation by the GTMA, PTMA, 

and PMETMA 
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4.5 Discussion 

 

4.5.1 Estimating spatially varying per-pixel endmembers using geostatistical techniques 

 

Endmember selection has been widely considered as a key step of spectra unmixing, and 

exerts significant impact on the estimation accuracy of fractional land covers. Specifically, as 

environmental factors vary spatially, endmember spectra tend to be different across space. 

However, derived endmember spectra are often considered identical and applied to all the pixels 

in a remote sensing image. While MESMA accommodates endmember variability through 

employing a variety of endmember sets, it only employs pixel-based spectral information, 

without considering spatial knowledge. Recently, the SASMA proposed by Deng and Wu (2013) 

attempted to address endmember variability through deriving endmembers for a particular pixel 

through applying an inverse distance weighting (IDW) approach using all endmember candidates 

in a moving window. This approach, however, only employs the distance for generating weights, 

and the statistical meanings of the spatial variations of endmembers have been neglected. As a 

consequence, inappropriate endmembers may be selected and applied in SMA and result in 

erroneous estimations. The proposed GTMA is able to address the aforementioned issues. In 

particular, a spatially varying per-pixel endmember was calculated for each image pixel using a 

rigorous geostatistical technique, ordinary kriging interpolation technique.  

 

4.5.2 Endmember variability in developed and less-developed areas 

 

Compared with the results we derived from PTMA and PMETMA (Li and Wu, 2014), 

the performance of GTMA is comparable in the whole study area and less developed areas. The 

improvements in developed areas (see Figure 21), however, are much more significant (SE of -
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1.49% vs. -8.17% and-7.46%, and MAE of 9.36% vs. 12.15% and 12.16%) when compared to 

less-developed areas. These results might indicate that endmember variability play an even more 

important role in developed areas than in less-developed areas. This may be due to the 

complexity and heterogeneity of urban landscapes. That is, unlike less-developed areas with 

relatively homogenous land cover types and corresponding spectral signatures, developed areas 

are covered by heterogeneous and anthropogenic materials with different physical and chemical 

compositions. For instance, impervious surfaces may be comprised by several different materials 

for different purposes, such as asphalts for drive way, sidewalks, and parking lot, concrete and 

cement for building rooftop, and tiles for residential house rooftops. In addition, the same 

building materials with different ages may also show quite different spectral responses. As a 

result, endmember variability may play a more essential role in developed areas when compared 

to less-developed areas. The advantages of the proposed GTMA approach, therefore, are to better 

approximate the spatially varying per-pixel endmembers, especially for developed areas with 

heterogeneous and anthropogenic materials. 

 

4.6 Conclusions and future research directions 

 

This study developed a GTMA approach to address the endmember variability issue for 

estimating regional impervious surface distributions using time-series MODIS NDVI imagery 

acquired in Wisconsin, United States. In particular, an ordinary kriging interpolation technique 

was employed to extract spatially varying pixel specific endmembers. Consequently, a fully 

constrained linear temporal mixture analysis with spatially varying endmember was developed to 

quantify impervious surface distributions.  
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 Analysis of results suggests several conclusions. First, the proposed GTMA has achieved 

a satisfactory performance for examining the fractions of impervious surfaces in the entire study 

area of Wisconsin with an SE of 2.98% and MAE of 3.83%. Detailed analysis indicates that a 

better performance has been achieved in less developed areas than developed areas, and slightly 

underestimation and overestimation has been detected in developed areas and less developed 

areas respectively. Second, for a comparative purpose, PTMA and PMETMA have been 

implemented and the comparative analysis results indicate that the proposed GTMA has 

achieved a comparable performance with PTMA and PMETMA in the overall area and less 

developed area. However, a significant improvement has been found in developed areas of 

Wisconsin with the SE of -1.49% (vs. -8.17% and -7.46%) and MAE of 9.36% (vs.12.15% and 

12.16%). 

Although the proposed GTMA has achieved a promising accuracy for estimating 

impervious surfaces fractions through addressing endmember variability, endmember class 

variability has not been fully considered in this study. In fact, the selection of endmember classes 

is the foundation of endmember extraction, and it may play a very important role in successfully 

spectral unmixing.  Therefore, one future research could be considering both endmember class 

variability and endmember variability through constructing an integrated temporal mixture 

analysis model to improve the estimation accuracy. In addition, in this study, only local spatial 

information has been incorporated in spectral unmixing analysis, and regional spatial information 

has been more or less neglected. However, such information may also be helpful in addressing 

the endmember variability issue.  Therefore, another future research direction could be 

incorporating both regional and local spatial information into temporal mixture analysis. 
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CHAPTER5 CONCLUSIONS 

 

5.1 Summary 

 

Spectral mixture analysis (SMA) has been considered as a powerful and widely used 

technique for estimating fractional land covers (e.g. impervious surfaces). For impervious 

surface estimation, though, effects of temporal and spectral variability of endmembers have not 

been successfully addressed. In particular, impervious surface estimation is likely to vary in 

different seasons, majorly due to shadowing effects of vegetation canopy in summer and the 

confusion between impervious surfaces and soil in winter. Moreover, endmember variability and 

multi-collinearity have adversely impacted the accurate estimation of impervious surface 

distribution with coarse resolution remote sensing imagery. To address these issues, this study 

incorporated phenology, spatial information, as well as geostatistic method into SMA to derive 

improved impervious surfaces fractions at a large-scale. Specifically, three new approaches have 

been developed in the dissertation to improve the large-scale impervious surface estimation 

accuracy. On one hand, phenological information of all endmembers have been extracted and 

applied in unmxing analysis for addressing the issue of seasonal sensitivity and spectral 

confusion using one-year continuous MODIS NDVI data. On the other hand, a logistic 

regression analysis was conducted in this study to analyze the spatial relationship between 

endmembers and surrounding environmental and socio-economic factors in support of the 

selection of appropriate number and types of endmember classes for handling the endmember 

class variability issue. Finally, with the identified per-pixel level endmember classes, the 

selection of the corresponding pure endmember spectra has become a key step of SMA. In order 

to consider the endmember spectra spatial variation, a geostatistic method, ordinary kriging 
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interpolation technique, has been applied in this study to generate per-pixel spatially varied 

endmember spectra for overcoming the issue of endmember variability. 

 

5.2 Contributions 

 

The first contribution of this research is the successful incorporation of phenology 

information into SMA for addressing the challenging issue of seasonal variations of vegetation 

and spectral confusion between impervious surfaces and bare soil. With a single date remote 

sensing imagery, impervious surface is sensitive to the seasonal change and easy to be mis-

estimated largely due to the obstruction by large tree crowns in summer and the confusion with 

soil in winter. With the developed phenology based method, temporal mixture analysis, can 

partially address the seasonal variability problem by adopting one-year multi-temporal NDVI 

data with four integral phenological phases (i.e., dormancy, green-up, maturity, senescence). 

Specifically, urban impervious surfaces only experience the dormancy phenophase, with low 

NDVI values throughout the year. Bare soil experiences dormancy in winter (e.g. with low 

NDVI values), green-up in spring (with elevated NDVI values associated with the growth of 

vegetation), maturity in summer (with high NDVI values), and senescence in autumn ( with 

decreasing NDVI values due to the harvest of agricultural lands). Consequently, the significant 

phenophase difference between impervious surfaces and soil facilitates their discrimination with 

phenology-based approaches.   

The second contribution of this research is that the spatial information has been 

successfully incorporated into SMA to handle the issue of endmember class variability. With 

SMA, the choice of endmember classes is the foundation of endmember extraction and key to the 
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successfully application of SMA. Due to the spatial variation of the natural landscapes, the 

distribution of endmember classes tends to illustrate spatial variability. With the simple SMA 

model, the same endmember class set of each individual pixel is applied for the whole image, 

and neglects their spatial distributions. In this research, a logistic regression model was applied 

to estimate the distribution probability of a land use land cover (LULC) type through analyzing 

the relationships among LULCs and their socio-economic and environmental factors, such as 

distance to the nearest city, distance to water, elevation, slope, etc. And then we incorporated 

LULC probability information into the selections of endmember class type and number, and 

further inputted to spectral unmixing for better derivation of impervious surface estimates. The 

selected endmember classes with clear physical meanings can effectively improve the estimation 

accuracy for fractional land cover estimates. Results of this study indicate that it is highly 

necessary to conduct the selection of endmember class type and number prior to spectral 

unmixing. 

The third contribution of this research is the application of geostatistic method in SMA to 

overcome the endmember spectra variability issue. Endmember spectra selection has been 

widely considered as a key step of spectra unmixing, and exerts significant impact on the 

estimation accuracy of fractional land covers. Specifically, as environmental factors vary 

spatially, endmember spectra tend to be different across space. However, derived endmember 

spectra are often considered identical and applied to all the pixels in a remote sensing image. As 

a consequence, inappropriate endmembers may be selected and applied in SMA and result in 

erroneous estimations. In this dissertation research, a geostatistic approach, ordinary kriging 

interpolation technique, has been employed to address the aforementioned issues. In particular, a 
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spatially varying per-pixel endmember was derived for each image pixel using a rigorous 

geostatistical technique, ordinary kriging interpolation technique.  

 

5.3 Future research 

 

Future research will be focusing on two aspects. First, it is necessary to further improve 

the performance of the unmixing analysis model and impervious surface estimation accuracy 

through simulation techniques and other mathematical methods. Until now, the model 

performance of unmixing analysis is highly associated with the selected study area and the 

quality of the remote sensing image. Therefore, it’s difficult to make consistent and confident 

conclusions for comparing different unmixing methods. Moreover, in most studies, endmembers 

are assumed to be with equal probability at the per-pixel level without a prior assumptions about 

the spatial distribution. However, dissertation research demonstrates that the distribution 

probability of land use land covers varies spatially. Multiple mathematical methods such as 

Bayesian and Markov chain may serve as a better alternative to consider that a prior knowledge 

in SMA for improving the model performance. Second, with the improved modeling 

performance and estimation accuracy, another future research direction would be how to apply 

the proposed methods in associated application studies such as population estimation, 

environmental evaluation, public transportation optimization, etc. 
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