17,015 research outputs found

    Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus

    Get PDF
    In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this area’s role in spatial working memory and remote memory recall

    Structuring time in human lateral entorhinal cortex

    Get PDF
    Episodic memories consist of event information linked to spatio-temporal context. Notably, the hippocampus is involved in the encoding, representation and retrieval of temporal relations that comprise a context, but it remains largely unclear how coding for elapsed time arises in the hippocampal-entorhinal region. The entorhinal cortex (EC), the main cortical input structure of the hippocampus, has been hypothesized to provide temporal tags for memories via contextual drift and recent evidence demonstrates that time can be decoded from population activity in the rodent lateral EC. Here, we use fMRI to show that the anterior-lateral EC (alEC), the human homologue region of rodent lateral EC, maps the temporal structure of events. Participants acquired knowledge about temporal and spatial relationships between object positions - dissociated via teleporters - along a fixed route through a virtual city. Multi-voxel pattern similarity in alEC changed through learning to reflect elapsed time between event memories. Furthermore, we reconstructed the temporal structure of object relationships from alEC pattern similarity change. In contrast to the hippocampus, which maps the subjective time between event memories in this task, the temporal map in alEC reflected the objective time elapsed between events. Our findings provide evidence for the notion that alEC represents the temporal structure of memories, putatively derived from slowly-varying population signals during learning. Further, our findings suggest a dissociation between objective and subjective temporal maps in EC and hippocampus; thereby providing novel evidence for the role of the hippocampal-entorhinal region in representing time for episodic memory

    Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.

    Get PDF
    The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories

    Exploring adult hippocampal neurogenesis using optogenetics

    Get PDF
    In the 1980s, it was widely accepted that new neurons are continuously generated in the dentate gyrus of the mammalian hippocampus. Since its acceptance, researchers have employed various techniques and behavioral paradigms to study the proliferation, differentiation, and functional role of adult-born neurons. This literature thesis aims to discuss how optogenetics is able to overcome the limitations of past techniques and provide the field with new insights into the functional role of neurogenesis. We will review the current knowledge on both adult hippocampal neurogenesis and optogenetics, present representative studies using optogenetics to investigate neurogenesis and discuss potential limitations and concerns involved in using optogenetics

    Anterior Hippocampus and Goal-Directed Spatial Decision Making

    Get PDF
    Contains fulltext : 115487.pdf (publisher's version ) (Open Access

    The Importance of Forgetting: Limiting Memory Improves Recovery of Topological Characteristics from Neural Data

    Full text link
    We develop of a line of work initiated by Curto and Itskov towards understanding the amount of information contained in the spike trains of hippocampal place cells via topology considerations. Previously, it was established that simply knowing which groups of place cells fire together in an animal's hippocampus is sufficient to extract the global topology of the animal's physical environment. We model a system where collections of place cells group and ungroup according to short-term plasticity rules. In particular, we obtain the surprising result that in experiments with spurious firing, the accuracy of the extracted topological information decreases with the persistence (beyond a certain regime) of the cell groups. This suggests that synaptic transience, or forgetting, is a mechanism by which the brain counteracts the effects of spurious place cell activity

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research
    corecore