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Abstract 
 
Risk assessment (RA) behavior is unusual in the context of survival circuits. An external object elicits 
eating, mating or fleeing; but conflict between internal approach and withdrawal tendencies elicits RA-
specific behavior that scans the environment for new information to bring closure. Recently rodent and 
human threat responses have been compared using ‘predators’ that can be real (e.g. a tarantula), robot, 
virtual, or symbolic (with the last three rendered predatory by the use of shock). ‘Quick and dirty’ survival 
circuits in the periaqueductal grey, hypothalamus, and amygdala control external RA behavior. These 
subcortical circuits activate, and are partially inhibited by, higher-order internal RA processes (anxiety, 
memory scanning, evaluation and sometimes-maladaptive rumination) in the ventral hippocampus and 
medial prefrontal cortex. 
[118/ 100-120 words] 
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Highlights: 

 Risk assessment can be compared in humans and rodents with virtual predators  

 Risk assessment is elicited by approach-avoidance conflict 

 Periaqueductal grey and hypothalamus control urgent risk assessment behavior 

 Amygdala, septum, and ventral hippocampus control complex risk assessment behavior  

 Medial prefrontal cortex controls sophisticated internal risk assessment processes 
  



Introduction 
 
Our main text reviews reports (2015-2017) relating to “risk assessment” (RA) in the context of “survival 

circuits”. First, we provide some background context.  

 

Survival circuits “instantiate functions that allow organisms to survive and thrive by detecting and 

responding to challenges and opportunities … [e.g.] defense, maintenance of energy and nutritional 

supplies … [they] and their adaptive functions are conserved to a significant degree across mammalian 

species, including humans” [1, p. 654, our emphasis]. They operate primarily at lower levels of neural 

processing, are not the substrate of conscious experience, and only partially overlap the control of 

‘emotion’ [2]. Such “quick and dirty” [3] circuits produce characteristic RA-specific behaviors [4,5]. In rats, 

these include crouch-sniff and stretch-attend when threat is near; and rearing when threat is not so 

immediate. All RA behavior functions to gain information from the environment. 

With less proximal threat, RA processes shift from the gathering of new external information to 

(most obviously in humans) slow and sophisticated [3] re-processing of information internally: planning 

and scanning of memory [6*]. It may also involve rumination/worry – but with high levels of rumination 

“appearing to represent a type of non-functional RA” [7**, section 2.2]. Indeed, worry may not reflect RA 

at all, since it does not add information from the world or from memory; and does not function to resolve 

the response conflicts generated by threat.  

Internalised RA is embedded in complex ‘neuroeconomic’ processes [see 8]: “We routinely have 

to evaluate the relative risks and rewards associated with different options, choosing between potentially 

more profitable, but uncertain outcomes, and safer, yet more modest, rewards, such as when managing 

an investment portfolio”; with rats and humans both using prefrontal-amygdala-accumbens circuits in a 

dynamic competition between top-down and bottom-up processing [9, p. 2886]. Risk aversion can bias 

decisions, as can risk seeking, with bias sometimes reflecting evaluation failures within frontal circuits 

[10]; and risk modulates rhythmic activity in both frontal and posterior cortex [11]. Risk in the economic 

literature is tightly defined as the result of chance outcomes where the probabilities are known. 

Ambiguity is treated as distinct and arises when probabilities are not known. RA is likely to arise primarily 

when there is ambiguity [6*; see Blanchard this issue] or when behavioral strategies are being adapted in 

response to known probabilities. It would not be expected to occur once behavior has stabilised – that is, 

it has become habitual. As detailed below, the frontal areas involved in internal RA processes have bi-

directional, co-ordinating, links with subcortical RA survival circuits, which are often driven by immediate 

input from the environment. 

“Survival circuits are sensory-motor integrative devices that serve specific adaptive purposes, …  

and they … control behavioral responses and internal physiological adjustment that help bring closure to 

the situation.” [1, p. 655, our emphasis]. Tissue need can produce appetite and a search for an appetitive 

object. But, we are more often driven by incentive motivation – the object generates our desire [12]. 

With aversion, control by the object is more obvious. Proximity to, or contact with, such motivating 

objects (predator, food, mate) elicits object-specific behaviors. At greater distance, behavior elicited by 

an object will not be object-specific (such as attack, eating or lordosis) but rather will result from 

activation of subcortical survival circuits that control general approach to any positive goal and 

withdrawal from any negative goal, respectively [13*]. Such goal approach or goal withdrawal is an 

extension of object-specific behavior: lever pressing by a female rat to obtain a potent male [14] is an 



immediate precursor to lordosis and both are necessary for her achievement of the crucial (gene) survival 

behavior of copulation. Indeed, except with an unrestrained male rat, the female rat will always have to 

undertake general approach to obtain any of a wide range of desired objects – and so too with the human 

female. 

 

Fig. 1. Overall relation of goal approach (BAS), goal withdrawal (FFFS = fight, freeze, flee) and goal conflict 

(BIS = behavioral inhibition) systems. Inputs are classified as delivery (+) or omission (−) of primary positive 

reinforcers (PosR) or primary negative reinforcers (NegR) or conditional stimuli (CS) or innate stimuli (IS) 

that predict primary reinforcers. The BIS detects approach-withdrawal conflict and, when these are of 

similar strength, releases RA behaviors, including exploration, while inhibiting pre-potent approach and 

withdrawal. From [15]. 

 RA behavior arises in an unusual survival circuit. Risk is not an object like a predator or food. RA 

arises when the goal approach and goal withdrawal systems are in a conflict1 – detected by a third system 

(BIS, Fig. 1). Despite being neurally above the approach and withdrawal systems (which are above object-

specific circuits), the BIS produces RA-specific behaviors. RA behavior gathers, or makes salient, new 

positive or negative information and so brings closure from conflict. Closure will involve approach if 

safety is established; or, more usually, withdrawal (negative bias increases risk aversion, Fig. 1). This 

elicitation of RA-specific behaviors requires not only goal conflict, but also an intermediate ‘defensive 

distance’ [16-18] or immediacy of threat. When threat is close, defensive quiescence appears; when 

threat is far, RA is part of internal planning. We have previously mapped the hierarchy of passive 

defensive behavior to a hierarchy of neural structures [13*,19,20], locating the primary control of RA-

                                                           
1 Approach can be produced by gain or the omission of loss; withdrawal can be produced by loss or the omission of 
gain. A choice to approach one of two alternatives automatically means omission of the consequences of the other. 
So approach/approach and avoidance/avoidance choice can elicit conflict, and RA, in the same way as 
approach/avoidance. Note that, in these situations, the words “reward” and “punishment” can be ambiguous [52]. 
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specific behaviors in the ventrolateral periaqueductal grey and medial hypothalamus (Fig. 2), close to 

other survival circuits [21]. 

 

Fig. 2.  Hierarchical organization of approach, withdrawal and behavioral inhibition (BIS) in terms of 

behavior and neural level. Lower levels process small defensive distances; higher levels process greater 

ones (i.e., negative events that are more distant in space or time). Activation tends to spread through the 

whole system (double-headed black arrows) but strong activation of a higher level (e.g., avoidance) 

inhibits (single-headed arrows) the behavioral output from (but not the activation of) lower levels (e.g., 

escape). * = static postures that achieve withdrawal, conflict resolution, or approach, respectively. 

Abbreviations: PAG = periaqueductal grey; OFC = orbital frontal cortex. [Adapted from 13*]. 

 In this context, it is important to realise that the PAG, while controlling simple forms of behavior, 

does so in a goal directed (not taxon or stimulus response [13]) fashion. Thus simple RA behavior could be 

elicited by moderate co-activation of PAG areas controlling conflicting goals. As with direct prefrontal 

influences on panic simple RA behaviors could be elicited where neocortically-detected uncertainty 

simply requires additional external information for its resolution. Conversely, conflicting simple PAG 

activations could elicit higher order, neocortical, RA processes. 

An important feature of the goal-conflict detection system in general (and of RA in particular) is 

sensitivity to benzodiazepines and other anxiolytic drugs (which affect neither approach nor 

withdrawal/fight/flight). This sensitivity gives us reason to see RA as functionally fundamental – the 

benzodiazepine receptor is phylogenetically old, appearing in bony fish [22], with a largely conserved 

functional role [23, p. 464]. Although our modern minds inhabit an “age of anxiety” that particularly 

engages our prefrontal cortex [24*], control of this anxiety is strongly linked to benzodiazepine receptors 

[25] implicating ancient survival circuits in key processes like RA [see also 7**].   
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Main text of review 
 

Measuring Risk Assessment 

As we have noted, RA is a response to a lack of information rather than to the presence of some 
explicit survival-related object. This makes its study difficult on two counts.  

First, we cannot easily present a specific, explicit, eliciting stimulus; so most researchers measure 
RA incidentally or indirectly. RA is, therefore, best studied with neuroethology [26*]. Reliable elicitation 
of RA with a predator [27] has recently been extended to more controllable artificial predators [see 26*] 
and to more formal shock conditioning in rats [28*] and humans [29**].  

Second, unlike approach and withdrawal, the specific type (coded by a trained observer) and 
intensity of RA behavior varies non-linearly with, for example, threat level. Network analysis of behavior 
[e.g., 30] may help solve some of these problems. Recent translation of rodent RA paradigms to human 
scenarios, and video games, suggests that systematic manipulation of the ambiguity/uncertainty of threat 
is something to which “RA is exquisitely sensitive” [6*] – emphasising that RA is a response to a lack of 
explicit stimulus information rather than a response to an explicit stimulus; but escapability may also be 
important [28*]. Ecologically valid testing of variations in defensive distance, threat, and uncertainty in 
humans could also, therefore, involve quite simple stimulus presentation [e.g., 31*] but will need great 
care in its analysis. 

Subcortical Risk Assessment Survival Circuits 

The periaqueductal grey (PAG) appears to be the lowest level of integrated control of motivated 
responses (Fig. 2). The PAG has strong but complex clinical links with panic disorder; and is subject to top-
down influences from prefrontal cortex (PFC), both directly, and via amygdala/hippocampus [32*,33**]. 
This is consistent with its association with very short defensive distance freezing/flight (Fig. 2) and control 
by the amygdala in the rat [34*]. PAG appears to control only the more proximal RA behaviors such as 
stretch-attend [35]. RA behavior elicited by avoidable contextual shock conditioning is associated with 
increased c-fos in the dorsomedial and lateral PAG [28*] – possibly due to concurrent activation of 
approach and avoidance (Fig. 2). In contrast, RA elicited by cat odour (or its context) is blocked by NMDA-
receptor antagonist injections in the dorsolateral PAG [36; consistent with Fig. 2]. The serotonin system 
(its dorsal raphe component is embedded in the PAG) may be particularly important for the control of RA 
[7**]. 

Activation of the dorsomedial and lateral PAG during RA is accompanied by activation of the 
lateral hypothalamus and dorsal premammillary nucleus but not the hippocampal and septal areas that 
provide a major top-down input to the lateral hypothalamus [28*]. In addition to the lateral 
hypothalamus [37], the posterior hypothalamus may be involved in RA (in the form of novel object 
exploration) and may concurrently control the anxiety-related neuroendocrine stress response [38].  
Consistent with the top-down control of the PAG by the amygdala in relation to freezing and flight, the 
basolateral amygdala appears to be involved in the generation of RA as measured by stretch-attend in the 
elevated plus-maze [39] and by the firing of one group of its cells during periods of hesitation or retreat, 
but not of escape [40*].  

Subcortex-Cortex Interactions 

We can expect (Fig. 2) bidirectional connections between any quick and dirty survival circuit and 
its slow and sophisticated cortical companion. Each should be able to activate the other and, when an 



appropriate sophisticated response is available, cortex should be able to inhibit the simplistic output from 
subcortex.  

Interestingly, the key output from the amygdala in its control of PAG-based RA behavior is 
ascending: to medial PFC either directly [41] or relayed [42] via the ventral hippocampus [43,44]. This 
transfer, like many other processes [45*], depends on theta-frequency synchrony [42]. However, this 
theta-rhythmicity may be more related to the approach or withdrawal that follows RA than it is to RA 
itself [46]. Conversely, a distinct population of ventral hippocampal cells that targets the lateral septum 
rather than the medial PFC inhibits anxiety-related behavior, perhaps as a form of negative feedback [44]. 
In contrast to the positive role of the basolateral, the basomedial amygdala appears to mediate 
suppression by the ventromedial PFC of a wide range of fear- and anxiety-related responses [47**]. 

Recent imaging work with humans, using virtual predators, has distinguished between ‘reactive 
fear’ circuits (involving PAG and mid-cingulate cortex) controlling escape at short defensive distances and 
‘cognitive fear’/anxiety circuits (involving hippocampus, posterior cingulate cortex, and ventromedial PFC) 
that control escape/strategic avoidance at long defensive distances [29**,48]. Given the use of long 
defensive distance, such strategic calculations likely reflect RA in the cognitive/neuroeconomic sense we 
mentioned earlier: clearly involving memory and operating well above the level of simple RA behavior 
controlled by highly conserved subcortical survival circuits. In particular, human cortical circuits appear to 
go well beyond the capacities of the survival circuits we share with other animals in their capacity for 
imagination/simulation of future threat, environmental/social reduction of threat, vicarious learning, and 
the use of reason to anticipate new threats – constituting a Survival Optimisation System  [49**]. 

Models of Risk Assessment Circuits 
 

We now have a detailed picture of the ascending control of RA [Fig. 3; 50*]. In this model, activation of 
PAG can engage the highest levels of internal processing and planning. However, quite simple RA 
behaviors that acquire more information from the environment may resolve even the most complex goal 
conflict. RA, as a whole, then is likely to involve interactions between ascending and descending circuits 
[47**]. The precise descending control of RA remains to be determined, but is likely to involve the same 
structures as does ascending control (compare Fig. 3 and Fig. 4). 

 
Fig. 3. The ascending control of risk assessment [from 50*; with permission]. 
 



 
 
Fig. 4. Topographically organised descending control of goal-directed behavior [adapted from 51]. 

Conclusions 
Despite its key role in survival, there has been little direct study of ancient conserved RA survival circuits. 

The hope is that here, as more generally, the move towards “semi-realistic studies will allow … a 

paradigm shift in experimental design, moving beyond the oversimplified methods uses in classical and 

instrumental conditioning, yet  … [with] tight control over conditions … [ and providing] a new window 

into the neural circuits that underlie fear and anxiety” [26*]. 
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