22,273 research outputs found

    Social relationship based routing for delay tolerant Bluetooth-enabled PSN communications

    Get PDF
    PhDOpportunistic networking is a concept derived from the mobile ad hoc networking in which devices have no prior knowledge of routes to the intended destinations. Content dissemination in opportunistic networks thus is carried out in a store and forward fashion. Opportunistic routing poses distinct challenges compared to the traditional networks such as Internet and mobile ad hoc networks where nodes have prior knowledge of the routes to the intended destinations. Information dissemination in opportunistic networks requires dealing with intermittent connectivity, variable delays, short connection durations and dynamic topology. Addressing these challenges becomes a significant motivation for developing novel applications and protocols for information dissemination in opportunistic networks. This research looks at opportunistic networking, specifically at networks composed of mobile devices or, pocket switched networks. Mobile devices are now accepted as an integral part of society and are often equipped with Bluetooth capabilities that allow for opportunistic information sharing between devices. The ad hoc nature of opportunistic networks means nodes have no advance routing knowledge and this is key challenge. Human social relationships are based on certain patterns that can be exploited to make opportunistic routing decisions. Targeting nodes that evidence high popularity or high influence can enable more efficient content dissemination. Based on this observation, a novel impact based neighbourhood algorithm called Lobby Influence is presented. The algorithm is tested against two previously proposed algorithms and proves better in terms of message delivery and delay. Moreover, unlike other social based algorithms, which have a tendency to concentrate traffic through their identified routing nodes, the new algorithm provides a fairer load distribution, thus alleviating the tendency to saturate individual nodes

    Using NDN in improving energy efciency of MANET

    Get PDF
    This paper seeks to extol the virtues of named data networking (NDN), as an alternative to host-centric networking (HCN), for its prominent features that can be taken advantage of to significantly reduce energy consumption demands in a mobile ad hoc network (MANET) implementation. Therefore, a NDN-based content routing mechanism was compared with two types of HCN routing protocol implementations in this study: OLSR and Batman-adv. The experimental results obtained from this research provide early evidence that NDN can increase the energy efficiency of MANETcompared to the use ofHCNprimarily TCP/IP on the network stack solution for MANET. Of particular note would be NDN-based content routing’s viability as a solution for energy consumption issues that plague wireless multi-hop ad hoc networks. Last but not least, this paper also provides the future research direction that could be undertaken on the subject

    Multilevel adaptive security system

    Get PDF
    Recent trends show increased demand for content-rich media such as images, videos and text in ad-hoc communication. Since such content often tends to be private, sensitive, or paid for, there exists a requirement for securing such information over resource constrained ad hoc networks. In this work, traditional data security mechanisms, existing ad hoc secure routing protocols and multilevel security are first reviewed. Then a new system, called the Multilevel Adaptive Security System, which incorporates the multilevel security concept at both the application layer and the network layer, is proposed to provide adaptive security services for data and routing processes. MLASS is composed of two subsystems: Content-Based Multi-level Data Security (CB-MLDS) for content-rich data protection and Multi-Level On-demand Secure Mobile Ad hoc Routing (MOSAR) for secure route selection. The structure of each sub-system is explained in detail; experiments for each sub-system were conducted and the performance was analyzed. It is shown that MLASS is a practical security solution that is flexible enough to adapt to a range of security requirements and applies appropriate level of security services to data and its distribution over ad hoc networks. MLASS provides a balance between security, performance and resource

    Trust Worthy Content Based Routing in Mobile Ad-hoc Networks

    Get PDF
    This thesis proposes a trust based security model suitable for content-basedrouting in Ad-hoc networks. The trust model is developed by listening to incoming and outgoing messages in passive mode. Knowledge of how these messages are modified is used to update trust tables. This work looks at a number of attacks in such network, for example, predicate modification and proximity modification. For message forwarding these trust tables are used to decide which messages need to be ignored or forwarded depending on threshold trust levels in the tables, thus developing a trust mechanism. The main finding for the research shows that all nodes which are malicious are identified over time; however, there is a high number of false positives for predicate modifications. This is an area for future research.Computer Science Departmen

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    Video streaming over Ad hoc on-demand distance vector routing protocol

    Get PDF
    Video streaming is content sent in compressed form over the netwoks and viwed the users progressively. The transmission of video with the end goal that it can be prepared as consistent and nonstop stream. The point is that to give client support to client at anyplace and at whatever time. Mobile Ad hoc Networks (MANETs) are considered an attractive nertwork for information transmission in many applications where the customer programme can begin showing the information before the whole record has been transmitted. Ad hoc On-demand Distance Vector (AODV) protocol is considered as one of the most important routing protocols in MANET. However, routing protocols assume a crucial part in transmission of information over the network. This paper investigates the performance of AODV Routing Protocol under video traffic over PHY IEEE 802.11g. The protocol model was developed in OPNET. Different outcomes from simulation based models are analyzed and appropriate reasons are also discussed. A different scenarios of video streaming were used. The metric in terms of throughput, end to end delay, packet delivery ratio and routing overhead were measured. A comparision with GRP and GRP are also reported

    Cooperation as a Service in VANET: Implementation and Simulation Results

    Get PDF
    The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET), specializing from the well-known Mobile Ad Hoc Networks (MANET) to Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS); a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle\u27s cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR) for intra-cluster communications and DTN (Delay and disruption-Tolerant Network) routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach

    Design and evaluation of a peer-to-peer MANET crosslayer approach: OneHopOverlay4MANET

    Get PDF
    Peer-to-Peer overlay networks can be deployed over Mobile Ad hoc Networks (MANET) to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET do not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. OneHopOverlay4MANET exploits the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. In this paper, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. We evaluate OneHopOverlay4MANET with two proactive underlay (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). Through simulation we show that the use of OLSR in OneHopOverlay4MANET yields the best performance. In addition, we compare the performance of the proposed system over OLSR to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. As simulation result shows, better performance can be achieved using OneHopOverlay4MANET

    Moving Targets: Geographically Routed Human Movement Networks

    Get PDF
    We introduce a new communication paradigm, Human-to-human Mobile Ad hoc Networking (HuManet), that exploits smartphone capabilities and human behavior to create decentralized networks for smartphone-to-smartphone message delivery. HuManets support stealth command-and-control messaging for mobile BotNets, covert channels in the presence of an observer who monitors all cellular communication, and distributed protocols for querying the state or content of targeted mobile devices. In this paper, we introduce techniques for constructing HumaNets and describe protocols for efficiently routing and addressing messages. In contrast to flooding or broadcast schemes that saturate the network and aggressively consume phone resources (e.g., batteries), our protocols exploit human mobility patterns to significantly increase communication efficiency while limiting the exposure of HuManets to mobile service providers. Our techniques leverage properties of smartphones – in particular, their highly synchronized clocks and ability to discern location information – to construct location profiles for each device. HuManets’ fully-distributed and heuristic-based routing protocols route messages towards phones with location profiles that are similar to those of the intended receiver, enabling efficient message delivery with limited effects to end-to-end latency
    • …
    corecore