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Moving Targets: Geographically Routed
Human Movement Networks∗

Technical Report: MS-CIS-10-12
March 2010, University of Pennsylvania

Adam J. Aviv Micah Sherr Matt Blaze Jonathan M. Smith

{aviv,msherr,blaze,jms}@cis.upenn.edu

Abstract
We introduce a new communication paradigm, Human-to-human Mobile Ad hoc Networking (HU-

MANET), that exploits smartphone capabilities and human behavior to create decentralized networks for
smartphone-to-smartphone message delivery. HUMANETs support stealth command-and-control mes-
saging for mobile BotNets, covert channels in the presence of an observer who monitors all cellular
communication, and distributed protocols for querying the state or content of targeted mobile devices.

In this paper, we introduce techniques for constructing HUMANETs and describe protocols for ef-
ficiently routing and addressing messages. In contrast to flooding or broadcast schemes that saturate
the network and aggressively consume phone resources (e.g., batteries), our protocols exploit human
mobility patterns to significantly increase communication efficiency while limiting the exposure of HU-
MANETs to mobile service providers. Our techniques leverage properties of smartphones – in particular,
their highly synchronized clocks and ability to discern location information – to construct location pro-
files for each device. HUMANETs’ fully-distributed and heuristic-based routing protocols route messages
towards phones with location profiles that are similar to those of the intended receiver, enabling efficient
message delivery with limited effects to end-to-end latency.

1 Introduction
The convergence of computing and communications technologies has resulted in the “smartphone” – a
highly-portable communications device which is also a computing device with substantial processing ca-
pability and storage capacity. This transformation has been so effectively achieved that users routinely
download and install new software on their phones as if it were a desktop or laptop computer. In this paper,
we show that a combination of human behavior and smartphone features enables novel networking capa-
bilities, with implications for privacy and security. In particular, we utilize several features of humans and
smartphones:

First, the presence of multiple communication channels, such as 802.11 and Bluetooth, permits mes-
sages to be exchanged with physically proximate peers without resorting to the use of the traditional cellular
infrastructures and carriers. For example, the Texas Instruments OMAP 4 [16] System-on-a-Chip (SoC) to
support smartphones (Figure 1) illustrates many key architectural features of communications/computing
convergence, including multiprocessing and a variety of accelerators, in addition to plentiful communi-
cations. Although smartphones are designed for use in highly centralized and tightly controlled cellular

∗Errata published February 2011: www.cis.upenn.edu/˜aviv/papers/targets-errata.pdf

1

www.cis.upenn.edu/~aviv/papers/targets-errata.pdf


Figure 1: Block diagram of TI OMAP 4430, Courtesy of Texas Instruments

networks, we introduce methods for constructing decentralized and unmonitored communication channels
through phone-to-phone message passing.

The second feature we exploit is that current-generation phones are programmable devices that include
geo-location features (GPS and E911) and highly accurate real-time clocks. These features make it possible
for software running on a handset to periodically discern its physical location with a resolution that is
typically less than a city block. Using basic machine learning techniques, smartphones can construct location
profiles that characterize possible future locations a given handset may frequent.

Third, cellular telephones are tightly coupled to individual people, perhaps more than any other com-
puting or communication devices in common use. The handsets are generally left on (except during specific
times where their use is prohibited, such as air travel or during lectures), and they often travel with their
owners throughout their daily activities. That is, telephones go where their owners go. The existence of
human travel patterns provides a valuable heuristic by which messages can be efficiently routed towards
their destinations.

Finally, human travel patterns have two useful, if seemingly contradictory, properties that are critical for
our purposes: they are often both regular and chaotic. They are regular in the sense that humans often go to
the same places over and over. They are chaotic in the sense that human contact patterns are often perturbed
by randomness, and so a given person may contact many different people in a given geographic area over
time.

This paper presents the case for, and design of, unmonitored and fully decentralized networks that are
outside the purview of the cellular network. This new communication paradigm, which we call Human-to-
human Mobile Ad hoc Networking (HUMANET), enables novel and unintended uses of smartphones. As
one example, such phone-to-phone networks support stealthy command-and-control messaging for mobile
BotNets. HUMANETs’ messaging delivery mechanisms allow a BotNet operator to direct commands toward
particular phones or phones within geographic areas to attack critical cellular infrastructure [30]. As a
second example, HUMANETs may be used to covertly deliver messages in repressive regimes in which
cellular voice and data communication is being monitored. Finally, HUMANETs could be deployed to direct
queries toward targeted smartphones to retrieve personal information such as contact addresses and emails,
and even surreptitiously recorded audio.

We introduce techniques for constructing such phone-to-phone networks, and present messaging proto-
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cols that efficiently route messages towards their intended receivers. Flooding or broadcast schemes do not
scale beyond a small number of simultaneous senders, incur significant bandwidth and storage overhead,
and may be detectable by the smartphone owner simply by observing increases in battery depletion. In
contrast, our protocols exploit human mobility patterns to significantly increase communication efficiency,
and in many instances, incur a fixed bandwidth cost per message.

Our techniques leverage properties of smartphones – in particular, their highly synchronized clocks and
ability to discern location information – to construct location profiles for each mobile device. HUMANETs’
fully-distributed routing protocols route messages towards phones with location profiles that are similar to
those of the intended receiver, enabling efficient message delivery with limited effects on end-to-end latency.

In trace driven simulation, we show that HUMANET-based smartphone routing in city-wide areas suc-
cessfully routes 85% of the messages to their intended destinations. The effects of our techniques on latency
are nominal: 75% of the messages reach their destination within a day. In comparison to epidemic flooding
in which 60% of all phones in the network store a copy of a single sent message, our techniques incur fixed
storage costs, requiring only a small fixed-sized subset of the network to carry message copies. Our rout-
ing algorithm is highly scalable, permitting many more concurrent messages in the system than allowed by
flooding and gossiping techniques.

2 Overview
HUMANETs are decentralized, peer-to-peer, metropolitan-area networks compromised of mobile smart-
phone devices that function independently of the highly centralized and tightly controlled cellular networks
for which such smartphones are designed.

Two distinguishing properties of the HUMANET environment are mobility and decentralization. The
former means that the nodes – “smart” mobile phones – move in predictable but yet also chaotic ways
within the network’s geography. The latter property reflects the lack of centralized control in such networks.
There is no infrastructure in which node devices are registered, assigned network addresses or names, or
given authority to become part of the network. While the protocols exploit various services of the cellular
networks to which nodes are attached, the network operates without the explicit knowledge or cooperation
of the mobile telephone system. In fact, a specific design goal is that cellular network operators be unable
to detect or prevent the deployment of a HUMANET.

These properties – regular and chaotic mobility and lack of infrastructure – prohibit the use of standard
routing and addressing techniques that are common in most ad-hoc networks. Without a central routing
infrastructure, to which nodes should a message addressed to a receiver R be forwarded? And how is R
unambiguously named without a central naming authority?

The HUMANET routing protocol, described in more detail in Section 6, enables a sender to route a
message towards a receiver based on knowledge of the receiver’s location profile (i.e., places that the receiver
is likely to be).

Our basic algorithm operates in two phases:

1. In the first phase, messages are passed from phone-to-phone towards locations specified in the re-
ceiver’s profile. We utilize a greedy algorithm that forwards a message to a nearby phone if the profile
belonging to that phone is more similar to the receiver’s profile than the node that currently carries the
message. To enable our system to simultaneously carry multiple messages with limited storage and
communication overhead, we do not utilize epidemic routing techniques to route messages towards
particular locations.

2. Under the assumption that people return to places that they have previously frequented, the greedy
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property described above will deliver a message with high probability to regions specified in the
intended receiver’s profile. Since not all humans come into contact with each other, messages are
then flooded within the target local area. To stop viral infection, messages are quarantined within the
boundaries of receiver’s profile.

Using these techniques, HUMANETs provide three messaging primitives: unicast (directed messaging to a
particular phone), anycast (communication targeted at any individual within a location), and multicast (the
transmission of messages to all parties within a location). The protocol implements heuristics that exploit the
observation that humans tend to return to the places that they have previously frequented, enabling efficient
heuristic-driven routing in such decentralized and highly mobile networks.

We emphasize that the HUMANET protocols are optimized for good performance within a medium-size
geographic region such as a single metropolitan area. The number of simultaneous copies in the network
of a given message is small, bounded by the number of copies originated by the sender. Flooding occurs
only once a message has arrived within the receiver’s local area. Additionally, messages are transferred
only to nodes likely to travel directly to the receivers’ local areas, with no “backbone” nodes or multi-hop
source routing. This simplifies the design of the routing scheme, and, as we will see, performs well in the
metropolitan areas in which HUMANETs are intended to be deployed.

In the sections that follow, we describe HUMANETs in more detail, and analyze our routing heuristic
using trace data of human movements. Further, we demonstrate that our routing protocol reliably deliv-
ers messages with little overhead, and compare our techniques against general and probabilistic flooding
algorithms as well as random walks.

3 Related Work
Vahdat et al. proposed epidemic routing as a means to connect isolated network points using mobile users
called carriers [31]. When two carriers come into contact, they synchronize their messages. Message
delivery occurs when a carrier meets its message’s intended destination. Vahdat et al. showed that such
network design can be reliable, but incurs a significant bandwidth cost [31]. To reduce bandwidth overhead,
Haas et al. proposed gossip routing protocols in which the exchange of message between two nearby
peers occurs probabilistically [13]. Their technique imposes only modest latency overhead, and utilizes
significantly less bandwidth than epidemic-based routing protocols. The use of such epidemic and gossip
techniques are most appropriate for disseminating information to a large group of network nodes. In contrast,
HUMANETs attempt to minimize the number of phones that must carry a message in order for it to be
delivered to its intended destination. Each send event incurs a fixed cost in a HUMANET network; by
comparison, the number of nodes that carry a message using epidemic and gossip based routing increase
exponentially over time.

HUMANETs draw on previous work in the area of geographic [17, 21, 18, 20] and position based rout-
ing [32, 28]. Similarly to these techniques, HUMANETs direct messages aggressively towards targeted
geographic areas. In contrast to geographic routing, we do not route based on the location of a neighbor nor
do we require that neighbors’ positions remain static. HUMANET are targeted for highly mobile networks in
which its constituents (i.e., people) exhibit frequent movement. Unlike most existing position-based routing
techniques that rely on fixed neighborsets, HUMANET are highly dynamic networks with no fixed infras-
tructure. Routing towards a particular geographic position is therefore difficult, as a phone that is “closer”
to the desired target location at one point in time is at the whim of its owner, and may move further away
from the intended destination depending upon the actions taken by its human operator. Instead, HUMANET

route messages towards contacts who are more likely to be in geographic areas frequented by the message’s
intended receiver.
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Human movement based store-and-forward networks have been investigated in the context of wearable
computing. Davis et al. evaluated protocols for mobile wearable computer networks [8]. Their work fo-
cused on routing technique where the carrying device has a fixed size buffer for message storage. They
found that dropping messages addressed to nodes that are encountered least often is an efficient strategy
for message delivery. In HUMANETs, instead of dropping message destined for locations that are infre-
quently encountered, phones pass messages off to others who are more likely to travel to the destination
than themselves.

Another form of wearable computing, pocket switched networks [14, 7, 6], has been used in real world
human mobility experiments (at the scale of a conference) with varying results. Although similar to HU-
MANET, these pocket switched networks are designed to overlay traditional IP routing in delay tolerant
networks and do not incorporate geographic addressing. HUMANETs are designed for a much wider scale
(i.e., the size of a city) and support greater mobility.

An important difference between HUMANETs and wearable computing is that the former is designed for
smartphones – fairly ubiquitous computing devices – while the latter requires hardware that has not yet wit-
nessed widespread adoption. HUMANETs also utilize smartphones’ capacity to discern locality information,
using such information to efficiently route messages.

Existing literature has explored the efficacy of phone-to-phone message propagation. Fleizach et al.
investigated different malware propagation rates based on a variety of possible infection vectors [11]. How-
ever, their propagation model often requires the use of the cellular network. In contrast, a principal design
goal of HUMANETs is to avoid the use of centralized cellular infrastructure, and instead pass messages be-
tween phones using point-to-point messaging paradigms. Zyba et al. investigated defenses against phone-
to-phone infections by using phone-to-phone virus signature dissemination [34]. Their simulation method-
ology is based on analytic models and synthetic traces constructed using Levy Walks [26]. Unfortunately,
such simulation techniques cannot be directly applied at the scale HUMANETs are designed to operate.
Moreover, HUMANETs rely on the tendency for humans to return to the same places they have been before.
Simulations based on random Levy Walk – although accurate for human walking patterns – do not reflect
the routine travel patterns exhibited by human beings.

Traynor et al. investigated the use of mobile phones to attack the underlying cellular network [10]. In
related work [30], it was demonstrated that coordinated mobile phones can launch devastating denial of ser-
vice attacks against critical cellular infrastructure. HUMANETs’ routing techniques can be a means for bot
masters to coordinate mobile phones to launch such attacks at specific locations. Singh et al. studied the use
of Bluetooth to coordinate command and control functionality in mobile botnets [27]. They demonstrated
that in high density locales, successful command propagation can occur with high probability. However,
their techniques partially employ the cellular network and incorporate fixed infrastructure. In contrast, HU-
MANETs are entirely decentralized and do not leverage cellular services. The inherent difficulty of tracking
messages in HUMANET make it an ideal choice for BotNet command and control.

As is true for all computing devices, smartphone software and hardware are susceptible to design and
implementation errors that lead to security vulnerabilities [24, 19]. Smartphones, by design, house personal
information and are attractive targets for potential attacks. The general phone-to-phone messaging primitives
presented in this paper provide a possible mechanism that attackers may utilize to covertly communicate
with compromised phones.

4 Human Mobility Datasets
Although mobility patterns can be generated heuristically using Levy Walks [26] and other analytic tech-
niques, our routing protocols rely on sociological patterns: specifically, the tendency of humans to frequent
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particular locations (e.g., their homes and offices). Such human behavior cannot be easily represented us-
ing synthetic modeling. Although synthetic movement patterns may express human-like characteristics (for
example, the contact rates between individuals), we are not familiar with any algorithm that produces the
diurnal movement patterns and routines exhibited by human beings.

To evaluate the feasibility and effectiveness of HUMANET routing protocols, we therefore depend on
human movement datasets – traces of actual human movement collected over periods of time. Each dataset
is of varying length and presents movement patterns at different granularities.

Unfortunately, published datasets of human movement are not perfect. Many of the available datasets
cover too short a timespan (e.g., less than a day) and consequently prevent us from evaluating our geographic
routing protocols (since movement patterns cannot be derived from such a short timescale). We therefore
confine our evaluation to the following larger datasets:

• The Cabspotting Dataset [25] contains GPS coordinates and timestamps of 536 taxicabs in the San
Francisco area. The dataset spans 20 days: from May 20, 2008 until June 7, 2008. The Cabspotting
Dataset provides the finest movement granularities of all of the analyzed datasets and is used in our
trace driven simulation (see Section 7). It should be noted that although the movements of taxis are
not representative of the general population (taxis are arguably more mobile than the average person),
simulations using this dataset can be interpreted as a representing a HUMANET network composed of
the taxi drivers’ smartphones.

• The VAST Dataset [1] contains anonymized pseudoidentities of mobile phone users, the times of
their phone calls, and the cellular tower from which the call originated. The data is composed of 400
participants and consists of measurements from a one week period. The cellular tower identifiers have
been obfuscated, preventing accurate reconstruction of physical locations.

• The Reality Mining Dataset [9] contains timing information about mobile phone users, the calls they
make, and the tower from which calls originate. The dataset collection period is roughly one year. The
study was composed of 100 participants and was originally used to model social interaction networks.
Again, tower identifiers are obfuscated and cannot be correlated to real physical, hindering our ability
to perform accurate distance measurements.

In the following section, we describe how location information is used to develop compact profiles that
accurately represent the locations most frequented by smartphone users.

5 Location Profiles
HUMANETs are highly decentralized networks with no fixed infrastructure and are composed of participants
who frequently change location. Our routing protocols achieve efficient routing in such highly dynamic and
unstructured networks by exploiting human mobility patterns. Since humans tend to return to places that
they have frequented in the past, messages may be routed towards such strategic locations (assuming they
are known). However, even if the sender of a message knows the precise location of the intended receiver,
messages must be passed from phone to phone, requiring transfers to just those phones that are more likely
to travel towards the receiver’s location. To permit such intelligent routing decisions, each phone maintains a
location profile that compactly defines the geographic areas in which its owner tends to locate. By examining
the location profiles of its nearby peers, a smartphone can transfer a message to another phone that is more
likely to intercept the message’s target. In this section, we describe how smartphones may efficiently (and,
in the case of BotNets, covertly) construct accurate location profiles of their owners.
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Generating a location profile requires classifying movements into three categories: regular, irregular, and
exceptional. Regular movements are those that occur daily or nearly daily (e.g. commuting habits). Irregular
movements, on the other hand, occur on the order of days but do not happen daily (e.g., weekend outings).
Finally, exceptional movements are those that occur infrequently (e.g., vacations). Location profiles are
constructed to recognize all such movement patterns.

Participants in a HUMANET utilize GPS or E911 capabilities to periodically discover and record their
locations. Since routing decisions in HUMANETs are based on profiles of movement patterns, these location
data must be accurately grouped into geographic regions.

To construct profiles, a smartphone applies the k-means clustering algorithm to its recorded locations.
Described in more detail in Section 5.1, the k-means algorithm assigns one of k possible “colorings” to each
location, grouping closely located measurements into the same cluster. After applying k-means, phones
convert these clusters into geographic regions. Each region constitutes a phone’s home and is represented
using a polygon (i.e., an ordered set of geographic coordinates). A phone’s profile is defined as a collection
or subset of its known homes.

Due to software and hardware limitations on smartphones, measured locations may sometimes be inex-
act or even inaccurate, causing outliers to exist in phones’ location transcripts. The clusters produced by the
k-means algorithm cannot therefore be directly mapped into homes, as such outliers will skew their shape.
Thus, it may not be feasible to represent all points within a cluster as a contiguous geographic region. Tech-
niques for converting clusters to homes are described in Section 5.2. Once homes (polygons) are computed,
phones must decide what subset of homes comprises their profiles. Mechanisms for selecting homes are
introduced in Section 5.3.

There are obvious computational demands placed on the smartphone during the profile construction
process. However, unlike polling and message transfer (see Section 6) that occur while the phone is in
motion and can place significant demand on the battery (see Section 8), profiles can be computed daily
or semi-daily. More importantly, profiles can be constructed whenever the phone is charging so that the
computation does not drain the battery.

5.1 k-means
The k-means algorithm [12, 22] divides a set of n observations into k clusters such that each observation
belongs to the cluster whose mean center (centroid) is closest. The general algorithm proceeds as follows.
First, k random points are selected as the initial mean centers (centroids) for the clusters. Next, each obser-
vation is placed in the cluster to which it is closest, with distances measured to the cluster’s centroid. The
mean centers are then recomputed based on the new assignments. If the newly computed centroids move
more than a threshold amount when compared to their previous location, then the means have not yet stabi-
lized. In such cases, the closest mean for each data point is recomputed, each observation is placed in the
cluster whose centroid they are now closest to, and the means are again recomputed. The procedure repeats
until either the clusters have moved less than the threshold amount, or a specified number of iterations of
the algorithm have occurred.

The initial assignment of the k centroids may significantly impact the output of the algorithm. However,
since we are clustering human movement, we can bootstrap the selection of the centroids by using the
centroids computed from a previous run of the algorithm. Here, we utilize the observation that people tend
to revisit places they have been before. With the exception of the initial run (in which no previous location
data can be used to kickstart the algorithm), using this heuristic significantly reduces the number of iterations
required to locate stable centroids.

Unlike existing techniques in which grids or connected graphs are used to develop location profiles
for message dissemination [20, 17, 21, 18], our k-means approach is highly adaptive and is not bound by
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Figure 2: Converting k-means clusters into geographic homes. Left: Points belonging to the same cluster.
The origin represents the centroid of the cluster. Center: Defining a polygon using the farthest point in each
quadrant. Right: Defining a polygon using the median point in each quadrant.
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Figure 3: The coverage and density curves for median and farthest vertex selection.

any indexing scheme or choice of graph vertex locations. Grids reduce the ability to dynamically define
regions and are too rigid for the scale of human movements HUMANET is designed for. GPS coordinates
and polygonal regions have been previously proposed as an addressing scheme [15], but only in the context
of routing in static networks.

5.2 Constructing Homes
The k-means algorithm partitions geographic points into clusters. We now show how to convert a given
cluster into a polygon.

For each cluster, the phone divides the cluster radially about its centroid into equal-sized angular divi-
sions. A single point from each angular division will be selected as a vertex in the polygon. That is, the
number of angular divisions equals the number of vertices in the polygon. Figure 2(left) depicts an example
cluster in which the two-dimensional space is divided into four angular units.

We investigate two strategies for selecting the vertex in each quadrant. To produce wide area polygons,
the phone may select the farthest point from the centroid (Figure 2(center)). Alternatively, the median dis-
tance points can be selected (Figure 2(right)) providing a good compromise, weighing the distance between
the farthest and the closest points in each angular division.

In Figure 3, we compare the above two home construction techniques based on their achieved coverage
(the number of points within the polygon) and density (the coverage divided by the square area) for differing
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number of vertices. Our evaluation is based on the Cabspotting Dataset described in Section 4. As can
be discerned from the figure, using the farthest points provides the best coverage, but results in the least
density. However, farthest based selection curves intersect at approximately 8 vertices with a higher density
and coverage than the median techniques which intersects at 21 vertices.

The number of vertices in a home determines the number of bits required to encode it. Homes with
a large number of vertices more precisely define a geographic area than polygons of lesser degree, but do
so at the expense of storage and communication cost. Profiles (collections of homes) should fit within a
single packet MTU (usually 1500 bytes for WiFi). Using two 4-byte doubles to represent each vertex, using
8-sided polygons permits profiles that contain up to 23 home regions.

To demonstrate the feasibility of constructing homes based on actual measurements from a smartphone
device, we implemented a simple location tracking program on the G1-Android phone. Figure 4 (left and
center) provides examples of the output of our home construction algorithms using real-world data. Given
the small size of our collected data, we do not argue that the homes depicted in the leftmost and center
maps are representative of the home sizes, shapes, or locations that would be expected for the general
population. Rather, our results demonstrate that home construction using phone-provided GPS traces is
feasible. The leftmost map depicts the travel patterns of an author who divides his time between his residence
and the University. The center map accurately reflects the locations frequented by another author who
commutes between his home in northern New Jersey and the University of Pennsylvania in Philadelphia.
For comparison, the rightmost map shows the home regions of a taxicab using data from the Cabspotting
dataset. The home construction algorithm accurately captures the travel routines of the taxi – a significant
fraction of its time is spent at the airports in the Bay Area.

Figure 4: Home computation for real location movements collected using the G1 Android smartphone (left
and center) and the Cabspotting dataset (right). The markers denote centroids of polygons. Red polygons
indicate regular homes. Blue polygons represent irregular homes.

5.3 Home Selection
We explore two strategies for selecting which homes should be added to a profile. Our goal is to ensure that
the homes that constitute the profile accurately reflect the locations commonly frequented by the phone’s
human carrier.

The first technique, popularity selection, makes profile membership decisions based on how frequently
a geographic region is mapped into a home. If the centroid of a newly computed polygonal P falls within
a previously computed home H , then P is considered to be reinforced by H , and H is replaced by P in
the phone’s profile. The phone records a popularity timeline for each home in its profile. The popularity
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timeline records the times at which a home has been reinforced over the previous week, and the number of
records in the timeline reflects the number of times over the previous week that a home has been reinforced.
If a home’s timeline becomes empty (the home has not been reinforced over the past week), then the home
expires and is ejected from the phone’s profile. Homes in the profile are sorted based on the number of
entries in their timeline. The r homes with the highest number of entries are called the phone’s regular
homes, while the remaining ir homes are the irregular homes.

Alternatively, in the current selection strategy, all homes computed from the previous day’s tracking
data are considered regular regardless if they are reinforced. Yesterday’s homes that are not reinforced move
to the irregular list of homes, and are ejected after 7 days. The set of irregular homes that are included
in the profile is then chosen based on sparsest principles: the subset of irregular homes whose sum of
pairwise distances, measured from centroid-to-centroid, is greatest. We employed a greedy algorithm for
this selection process that runs in linear time and produces good approximations of the optimal result.

Figure 5(a) shows the fraction of the day spent within a profile’s home regions for the two home se-
lection policies. Although both home selection routines produce similar curve shapes, the current selection
procedure outperforms the popularity selection in all cases. Popular selection weighs events too far in the
past, and thus has lower totals for points found within homes. This is clearly demonstrated in the effect
that Memorial Day (May 26th) had in Figure 5(a) on 8 regular and 10 irregular homes for popular selec-
tion. All curves experienced a significant drop in their predictions entering the weekend due to exceptional
movement caused by the holiday. However, popular based selection with 8 regular and 10 irregular homes
“remembered” the exception movement for longer, and as a result, continued to decrease (Figure 5(b)) while
the others adjusted, recovered and showed increases in their predictions (Figure 5(a)).

5.4 The Return-to-Home Principle
HUMANET routing protocols exploit behavior patterns of humans. An underlying assumption of our routing
techniques is that homes are good indicators of future location. We call our hypothesis the Return-to-Home
Principle.

To test whether our hypothesis holds true in practice, we utilize the Cabspotting dataset to measure the
percentage of a day’s collection of GPS coordinates that reside within the previous day’s home regions. The
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Figure 6: Percent of calls occurring from previous days profile, measure from the VAST dataset

results are presented in Figure 5. The figure shows that 65% of GPS points fell within the previous day’s
profile and the phone resided in its profile’s homes for 65% of the day. In our worst performing case, 39%
of recorded locations were inside home regions, and 45% of the day was spent within these homes.

Note that the Return-to-Home principle is upheld more often when profiles contain smaller numbers of
daily computed homes. This is to be expected: with fewer computed homes per day, each home will cover
a wider geographic area, and thus a phone is more likely to return to it. However, the same intuition would
suggest that fewer daily computed homes would perform worse in terms of routing performance again due
to the wider geographic area, but as we demonstrate in Section 7, using profiles with a fewer number of
regular homes resulted in higher message delivery rates when compared to using profiles with more homes
computed daily.

To further support our Return-to-Home principle, we validated our results with the VAST [1] and Re-
ality Mining [9] datasets. Since neither dataset provided geographic coordinates, we made the simplifying
assumption that celltower IDs represented home regions. We utilize the popular home selection technique
since the sparsest principle cannot be evaluated with distance information. Our results (Figure 6) provide
additional evidence for the Return-to-Home principle. 77% and 87% of time was spent within the previous
day’s profile regions using the Reality Mining and VAST datasets, respectively.

6 Routing Protocols
HUMANETs are decentralized phone-to-phone networks with no fixed routing infrastructure. Previous work
has examined the use of epidemic [31] or gossip [13] routing techniques to deliver messages in similarly
(un)structured mobile ad hoc networks. However, such approaches incur significant bandwidth overhead, as
a single message must be duplicated and carried by a sizable fraction of the network for it to be delivered.
HUMANETs aim to support multiple simultaneous senders, and provide messaging functionality without
overburdening the storage capacities and batteries of its constituent smartphones. In this section, we describe
protocols for efficiently routing messages towards their intended targets.

6.1 Messaging Primitives
HUMANETs support unicast, multicast, and anycast message delivery. The sendToLocation primitive
routes messages towards a targeted location, and either delivers the message to a particular party within the
location (anycast) or all parties within the specific area (multicast). Such functionalities are useful when the
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Figure 7: The synchronous timing scheme used to broadcast profiles, process announcements, and deliver
messages to nearby peers. Listed times reflect offsets (in seconds) from the start of an interval.

location of the receiver(s) matter more than their individual identity(-ies).
HUMANETs also enable senders to address messages to individual receivers. The sendToReceiver

primitive provides unicast functionality. To route messages, the sender must have knowledge of the locations
that are frequented by the receiver. The more information the sender possesses about the receiver’s mobility
habits, the more likely messages are to be successfully delivered.

For both messaging schemes, HUMANETs provide best-effort unreliable message delivery. Reliability
protocols may be deployed on top of HUMANET messaging primitives, although the development of such
protocols is outside the scope of this paper.

6.2 Synchronous Phone-to-Phone Message Delivery
Since smartphones are battery-constrained devices, asynchronous message delivery over WiFi is infeasible.
To preserve battery charge, HUMANET routing protocols operate in synchronized rounds in which phones
announce their presence, exchange profile information, and relay messages between devices.

Figure 7 shows the stages of a single round of our protocol. Rounds begin at regular intervals (every
five minutes) and last for a set duration (fifteen seconds). To communicate, phones participate in an ad
hoc network, assigning themselves IP addresses chosen uniformly at random from the 10.0.0.0/8 address
space1. For added stealth, the frequency and SSID of the ad hoc network can vary over time and be derived
cryptographically using a shared secret and the current time (for example, by basing both parameters on an
HMAC over the number of seconds past the epoch).

During the profile announcement stage, each phone broadcasts an (id,profile) tuple, where id is a 20 byte
random nonce that may vary between rounds and profile is a concise representation of a phone’s location
profile. The (nonce,profile) message should fit into an MTU-sized IP packet and is transmitted via UDP
broadcast.

Following the profile announcement stage, message carrying phones consider the profiles advertised by
their peers and determine whether their messages should be relayed to their neighbors. This processing stage
represents the “intelligence” of our routing design, and is described in detail in Sections 6.3 and 6.4.

Finally, messages are exchanged during the transfer stage. To deliver a message, a sender broadcasts a
message of the form (idX ,msg) where idX is the nonce broadcast by the intended receiver during the profile
announcement stage.

The broadcasting of location information during the profile announcement could be viewed as a privacy
violation. If the HUMANET is deployed on a voluntary basis (that is, individuals opt-in to participate), a
reasonable preference setting is to not reveal certain travel destinations during the profile announcement
stage. An application running on the mobile device could allow the operator to disable location polling or
censor certain aspects of his/her profile. However, we note that many individuals are not averse to voluntarily
sharing their location information. Several location sharing services such as Google Latitude [2] enable its
users to share their locations with their friends. If, on the other hand, the HUMANET was deployed as a

1Such an address space holds approximately 224 possible addresses (one address is reserved for broadcast); the probability that
no collisions occur if x phones participate in the local ad hoc network is 224!

(224−x)!224
x .
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msg type D msg id mode until message data

msg type BID RBi
msg id until message data

Figure 8: HUMANET message formats for sendToLocation (top) and sendToReceiver (bottom)
communication primitives.

command and control structure for mobile BotNets, the owners of the smartphone would be unaware that
their location profiles were being broadcast.

Time Synchronization To successfully receive the messages of their peers, phones must be highly syn-
chronized (i.e., having clock skew of no more than a few seconds). Although a sufficient granularity of
synchronization can be achieved by polling NTP servers, such communication may be monitored by the up-
stream Internet provider (e.g., the mobile service provider in the case that the request is made over the data
service) and may be used to reveal the identities of HUMANET participants. Fortunately, GSM and CDMA
networks provide mechanisms for tight time synchronization across mobile devices. Modern cellphones use
the station’s Network Identity and Time Zone (NITZ) service to synchronize their time with their base station
when powered on [29]. (Smartphones may also request synchronization on demand, for example, on a daily
basis if the device is left running for extended periods of time.) Due to 3G requirements, base stations across
a cellular carrier are highly synchronized. For example, the UMTS data service utilized by GSM networks
requires that the clock drift between base stations to be less than 0.05 parts per million [3] or 4.3ms over
24 hours [23]. CDMA has more stringent requirements, mandating that drift not exceed 7.5µs per day [23].
To minimize skew, base stations typically use high-precision GPS receivers to determine time-of-day. For
example, CDMA specifies a maximum error of 3µs [5], far within the tolerances required by our fifteen
second window.

6.3 Routing to a Location
To direct messages towards a particular location, our routing protocol exploits human behavior patterns.
Specifically, we rely on the Return-to-Home Principle: a person (and the phone he/she carries) is likely to
visit in the future the places that have been visited in the past. Hence, the observed profiles of peers provides
heuristic direction information that may be used to forward packets. A neighbor whose profile includes
regions that overlap that of the targeted destination is (under our underlying hypothesis) more likely to visit
that destination in the future than a randomly selected neighbor.

The sendToLocation communication primitive operates as follows:
Let PX =< HX1 , HX2 , ...,HXk

> represent X ’s profile, where each HXi denotes a home region (i.e.,
an area bounded by a polygon) frequented by X . Each smartphone X also maintains a 20-byte Bloom
Filter [4] BFX initialized to 0 (the use of the Bloom Filter is explained below).

Let A be a mobile device that currently carries a message m addressed to a destination D (a polygon
represented by an ordered set of geographic coordinates). We refer to A as the carrier of message m. The
format of m is shown in Figure 8 (top), and consists of the sendToLocation msg type, a destination
D, a 20-byte message identifier msg id, a specifier mode that indicates whether the message should be
delivered to a single phone (anycast) or all phones within the specified destination (multicast), a timestamp
until that indicates the future date and time (in UTC) at which the message should be dropped if it is
not delivered, and a payload message data. For simplicity, we assume that the entire message may be
transmitted in a single UDP packet (longer messages may be supported by adding sequence identifiers to
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the message format).
During the profile announcement stage, A observes the broadcast profiles of her peers. Let α(Pk,W )

be a function that computes the number of homes (polygons) in profile Pk that intersect with polygon W ,
C be a peer whose profile PC was received by A during the profile announcement phase, and ∧ denote the
logical and operator. A relays the message m to C during the transfer phase if and only if the following two
properties are met:

Greedy Property: α(PC , D) > α(PA, D)

Acyclic Property: BFC ∧ msg id 6= msg id

Additionally, to prevent the message from spreading epidemically (and consuming storage and bandwidth),
A relays the message at most once.

Intuitively, the Greedy Property requires that C has more similarity to the targeted area D thanA, where
similarity is defined as the number of overlaps between a phone’s profile and the desired destination. In the
case that α(PCi , D) ≤ α(PA, D) for all nearby phones Ci, thenA does not transmit the message and retains
her copy.

When a phone C receives a message m during the transfer phase, it adds the corresponding msg id to
its Bloom Filter. The Acyclic Property prevents the formation of cycles in the routing path.

The above greedy routing algorithm moves the message closer to phones that possess home regions
that intersect the targeted destination. However, the algorithm does not necessarily guarantee progress.
To illustrate, consider the case in which a carrier of a message has a profile that multiply intersects the
destination. Due to the Greedy Property, the phone will not transfer the message to a peer that has fewer
intersections. If the carrier does not move to the destination, the message is effectively pigeonholed in a
suboptimal location.2

To prevent such effects, phones record the time tmi at which a message mi is received. A local timeout
occurs when phone C stores a message mi for longer than some threshold value. If a local timeout occurs, C
transfers mi to the next phone that it encounters, provided that the Acyclic Property (but not necessarily the
Greedy Property) holds. Finally, to prevent messages that do not reach their destination from continuously
traversing the network, a global timeout occurs if the current time exceeds until. In such cases, the carrier
discards the message, and the message is permanently lost. 3

When the carrier of a message m enters the location defined by D and the mode flag specifies anycast,
then (by definition) the message has been successfully delivered. If C is located within D and the message
is to be multicast, then C changes the mode specifier to Flood. In such a case, both the Greedy and Acyclic
Properties are ignored, and the carrier relays the messages to all phones it contacts within area D. In turn,
receiving phones duplicate the message to its nearby peers, but delete the message as soon as they leave D.
That is, the message is flooded to all phones, but the spread of the message is confined to D. The message is
continuously passed withinD until the global timeout expires, at which time all phones discard the message.

6.4 Routing to an Individual
The sendToReceiver primitive is a special case of multicast mode sendToLocation. Here, we
consider a phone A that wants to deliver a message m to a phone B. By assumption, A is able to identify

2Although the carrying phone’s profile will eventually reflect new homes that do not intersect the targeted destination, profile
updates occur too infrequently (once every 24 hours) to permit efficient message transfer in such cases.

3Loss may also occur if a phone that carries the message is lost (becomes immobile) or destroyed. At the cost of a multiplicative
increase in messaging cost, the protocol may be extended to support a fixed number of copies (per region) to offset the probability
of loss. Amending the protocol to handle loss is straightforward, and is omitted for brevity.
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possible locations of B (for example, the locations he often frequents). We label such guesses as to B’s
location as regions RB =< RB1 , ..., RBk

>.
For each regionRBi ∈ RB ,A constructs a messagemi of the form depicted in Figure 8 (bottom), where

BID is a unique ID associated with B (for example, his telephone number or MAC address). The msg id
is consistent among all k copies of the message (where k = |RB|).

Messages are passed between phones using the Greedy and Acyclic Properties defined above. Each mes-
sage copy is addressed to a particular region, and is passed greedily towards phones whose home locations
intersect with that region. Unless a carrier enters a region RBi , it relays at most one copy of the message.
Until messages reach their specified regions, there will be at most k copies of the message in the network at
any given time.

As with multicast delivery, the flooding procedure described above commences when a carrier enters the
region specified in the message header. Such flooding is quarantined to the specified region (that is, phones
that contain a flooded message will discard it once it leaves the message’s designated destination area).

7 Trace Driven Simulation
To evaluate the efficacy of our routing techniques, we constructed a HUMANET-routing simulator. Since it
provides the finest location granularity, we performed simulation using the Cabspotting dataset. Due to the
limited size of the dataset (536 cabs), we did not implement the flooding stage of our routing protocol. We
therefore consider a message sent via the sendToReceiver primitive to be successfully delivered if it is
directly received by its intended target.

7.1 Alternative Routing Algorithms
We compare the performance of HUMANET against three alternative techniques: epidemic flooding, proba-
bilistic epidemic flooding, and probabilistic random walk.

In contrast to our HUMANETs’ profile based approach, the epidemic flooding technique transfers mes-
sages to all phones that come in contact with a carrier. Local and global timeouts are still observed; when
a local timeout is triggered, a phone will not accept the message again. Probabilistic epidemic flood-
ing follows the same timeout rules, but message transfers occur between phones with a fixed probability
pE ∈ (0, 1).

Probabilistic random walk is useful to isolate the effect of routing based on profiles. Random walks
function like the HUMANET routing protocol, but they do not utilize location information. A carrier of a
message will transfer that message at most once. When it encounters another phone, it transfers the message
with some probability pW ∈ (0, 1). To provide a fair point of comparison, a sender who utilizes the random
walk technique sends the same number of message copies as would have occurred if the HUMANET-routing
algorithm were used. That is, since our approach transmits k copies of a message – each addressed to a
home in the receiver’s profile – random walks are also initialized with k copies.

In all instances, all phones discard their carried messages when the global timeout occurs.

7.2 Metrics
We measure two primary statistics during simulation: Latency is defined as the time required for a message
to successfully reach its destination, relative to the time at which the message was first sent. Network
load is a measure of the total number of message copies that reside in the network during the message’s
lifespan (i.e., the period between being sent and the global timeout). Epidemic flooding and probabilistic
epidemic flooding both lead to exponential growth in network load (since messages are duplicated rather
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Figure 9: Cumulative distribution of latency and network load (measured as total number of messages in
the network) for HUMANET compared with flooding, probalistic flooding (5%), and random walk (5%).
Success rates in the lefthand figure represent the percentage of messages that were successfully received by
the receiver before the global timeout.

than transferred). In the case of random walk and HUMANET-routing, both techniques have fixed costs per
message (the number of homes in the receiver’s profile).4

7.3 Simulation Results
We ran simulations for a number of different profile configurations, including those found to be most efficient
in Section 5. Experiments were conducted using five and eight regular homes and ten irregular homes for
both current and popular profile selection criteria. The probabilistic epidemic flooding and probablistic
random walk approaches both transferred messages to nearby phones with probability 0.05. Each simulation
consisted of 300 independent runs in which the sender and receiver were chosen uniformly at random. The
local and global timeouts are 10 hours and three days, respectively.

Figure 9(a) presents the cumulative distribution of latencies among all 300 simulation runs. The y-axis
represents the fraction of paths that had latencies at least that of the corresponding x-axis value. The graph
plots the latency of successful message deliveries (i.e., cases in which the message is delivered); the latency
of undelivered messages is infinity.

As expected, epidemic flooding and probabilistic epidemic flooding deliver messages with less latency
than the random walk and HUMANET techniques. In 95% of successful runs, epidemic flooding delivered
the message within 14 hours, and probabilistic epidemic routing delivered within 17 hours. By comparison,
95% of successful HUMANET simulations delivered the messages within 54 hours, but 75% of successful
runs deliver the message within 24 hours even without using the protocol’s flooding phase. Probabilistic
random walk performs significantly worse; here, less than 50% of the messages are delivered within one
day.

Interestingly, HUMANET outperforms all other techniques by a large factor in terms of successful deliv-
ery. 85% of the simulations resulted in successful delivery when using HUMANET compared to 76.3% for
epidemic flooding. Probabilistic random walk only delivered 28% of the messages successfully, highlighting
the benefits of routing based on location profiles.

4The flooding technique used by HUMANETs’ unicast and multicast delivery primitives incurs exponential network load, but
the spread of the message is quarantined to a geographic area. The maximum number of phones that may carry the message is
determined by the area’s population.
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The impact of HUMANET is even stronger when comparing network load. Figure 9(b) (log scale)
presents the cumulative distribution of the maximum network loads that occur for a single sent message.
Since the maximum number of homes in the receiver’s profile is 15 (five regular and ten irregular homes),
neither HUMANET nor probabilistic random walk ever imposed a network load of more than 15 messages.
By comparison, epidemic routing and probabilistic epidemic routing both incur significant network load,
and in all simulations a large majority (more than 60% for probabilistic and 80% for epidemic routing) of
the phones carried the message at some point. Such loads would render the network unusable for even a
limited number of multiple sender and receiver pairs.

We were also interested in verifying the results from Section 5 in which the Return-to-Home Principle
is used to predict that utilizing five regular and ten irregular homes should outperform other profile config-
urations. Although the tested techniques produce similar distributions of achieved latency (for successful
deliveries), the success rates of the five-regular-ten-irregular approach are greater than that of using eight
regular homes. Additionally, as predicted in Section 5, using the current selection strategy outperforms
popular-based selection. It should be emphasized however, that in all cases, HUMANETs deliver messages
more reliably than epidemic flooding techniques, and do so with little latency overhead.

8 Detection, Observability and Disruption
The highly decentralized and dynamic nature of HUMANETs provides unique detection and observability
protection. Clearly, such phone-to-phone networks operate outside the view of the cellular network. HU-
MANETs have the additional advantage that they offer limited protection from active and passive adversaries
who either infiltrate the network or stalk (literally!) network participants. Since achieving a global view of
the network requires monitoring each mobile participant, such wide-scale monitoring is likely infeasible.

A passive adversary – stationary or mobile – may monitor nearby HUMANET profile broadcasts, but
there is no guarantee that a transfer would follow, making it difficult to discern whether or not a HUMANET

participant is currently carrying a message. The passive adversary could stalk a smartphone that is sending
beacons until a message is transferred and then view the message headers and the (possibly encrypted)
payload. However, such an attack requires significant time and effort, and may be overtly conspicuous to
the targeted smartphone owner.

An active adversary, after viewing a message header’s destination address, could disrupt that particular
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Figure 11: Battery charge vs. Time (hours) for different polling and transfer rates.

message by advertising a profile that matches the destination, causing the message to be transferred to the
adversary. Still, multiple message copies may exist in the network since the sender directs a message copy
to each of the receiver’s homes. To completely eliminate that message from the network, an adversary must
employ multiple mobile confederates to track and intercept every copy of the message. It should be noted
that in centrally controlled HUMANET (i.e., those established by BotNet operators), encryption may be
used to obfuscate message headers. Without knowledge of the decryption key, an attacker could not forge
convincing profile advertisements and would be unable to cause the carrier to transfer its message.

Detection protection by the smartphone owner is also an important property to maintain, especially if a
HUMANET is deployed for use in a BotNet. The code that runs a HUMANET can be protected in the tradi-
tional ways, via obfuscation and polymorphism. However, the unique relationship an owner has with his/her
smartphone also implies an intimate knowledge of its usage statistics, namely how long the smartphone
runs on a single charge under normal usage. If the beacon and transfer procedure is too aggressive, it will
adversely effect the battery consumption, and the smartphone owner may detect and remove the HUMANET

software.
HUMANET provide two “knobs” that can be tuned to balance battery usage with effective messaging: the

interval between synchronous communication sessions and the duration of each session. Figure 11 graphs
battery charge (as a percentage) over time with different polling and transfer periods on an HTC Android
G1 running Cupcake 1.5 and the modified CyanogenMod v4.0.2 kernel [33]. We measure based on trans-
fer periods (rather than beacon and processing periods) because data transmission requires the most radio
resources, and thus provides a conservative bound of battery consumption. Additionally, GPS location in-
formation was collected during the same transfer time block to simulate the cost of geographic tracking. The
experiment assumes a worst-case scenario in which a transfer must occur after every profile announcement
stage. Additionally, our experiment assumes that data is transferred for the duration of the time window.

A smartphone loaded with third party software that is being actively used for voice and data communi-
cation as well as to run applications may see different and more dramatic trends, thus masking HUMANET’s
presence further. Nonetheless, it is clear that with reasonable polling and transfer periods, either ten or five
minute messaging intervals with five second transfer windows, the battery consumption of a HUMANET

participant is on par with smartphones that do not participate.

9 Conclusion
This paper demonstrates new networking opportunities enabled by the convergence of computing and com-
munications technologies as embodied by the smartphone. The unique relationship people have with their
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cellular devices is unprecedented. No other computationally expressive, easily programmable, and highly
connected device is so tightly bound to its owners movements. Moreover, smartphones remain powered on
for indefinite periods of time, can accurately determine their locations, and maintain highly synchronized
clocks. Yet, no other computer device operates in a more centralized and controlled network environment
than cellular devices. HUMANETs provide a mechanism for constructing decentralized phone-to-phone net-
works that avoid the tightly controlled (and monitored) cellular network. In developing HUMANETs, we
contribute novel routing techniques for opportunistic networks specifically designed for human-to-human
contact networks.

We have presented methods for constructing highly accurate location profiles based on k-means clus-
tering and polygonal groupings that serve as the basis of our routing protocol. Our techniques leverage
repetitive properties in human movement patterns to predict future travel. In comparison to flooding and
gossip-based routing (in which messaging costs grow exponentially over time), our routing protocols that
human movement patterns incur fixed delivery costs to geographic regions. Using trace-driven simulations,
we show that our techniques are bandwidth efficient and deliver messages with low latency: 75% of suc-
cessful messages deliveries occur within 24 hours, with a surprisingly high success rate of 85%.

Unfortunately, we are aware of no large-scale (e.g., country-wide) human mobility dataset that accu-
rately captures human movement patterns (i.e., routines) over the long term. However, our simulation results
suggest that HUMANET will scale. Verifying such a claim can only be done via the deployment of a real
HUMANET network of smartphones, and is an intended area of future work.

The relationship people have with their computing devices, and in particular their mobile phones, is
a particularly interesting area of future research. The proliferation of smartphone devices permits novel
human-to-human contact networks in which network communication is disseminated on top of societal
structures. It is this technological kinship that we share with our devices that enables such networks, and we
wish to explore the implications of this partnership to computing.
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