903 research outputs found

    Video streaming

    Get PDF

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    Virtual RTCP: A Case Study of Monitoring and Repair for UDP-based IPTV Systems

    Get PDF
    IPTV systems have seen widespread deployment, but often lack robust mechanisms for monitoring the quality of experience. This makes it difficult for network operators to ensure that their services match the quality of traditional broadcast TV systems, leading to consumer dissatisfaction. We present a case study of virtual RTCP, a new framework for reception quality monitoring and reporting for UDP-encapsulated MPEG video delivered over IP multicast. We show that this allows incremental deployment of reporting infrastructure, coupled with effective retransmission-based packet loss repair

    No-reference bitstream-based visual quality impairment detection for high definition H.264/AVC encoded video sequences

    Get PDF
    Ensuring and maintaining adequate Quality of Experience towards end-users are key objectives for video service providers, not only for increasing customer satisfaction but also as service differentiator. However, in the case of High Definition video streaming over IP-based networks, network impairments such as packet loss can severely degrade the perceived visual quality. Several standard organizations have established a minimum set of performance objectives which should be achieved for obtaining satisfactory quality. Therefore, video service providers should continuously monitor the network and the quality of the received video streams in order to detect visual degradations. Objective video quality metrics enable automatic measurement of perceived quality. Unfortunately, the most reliable metrics require access to both the original and the received video streams which makes them inappropriate for real-time monitoring. In this article, we present a novel no-reference bitstream-based visual quality impairment detector which enables real-time detection of visual degradations caused by network impairments. By only incorporating information extracted from the encoded bitstream, network impairments are classified as visible or invisible to the end-user. Our results show that impairment visibility can be classified with a high accuracy which enables real-time validation of the existing performance objectives

    Video Quality Evaluation for Tile-Based Spatial Adaptation

    Get PDF
    The demand for very high-resolution video content in entertainment services (4K, 8K, panoramic, 360 VR) puts an increasing load on the distribution network. In order to reduce the network usage in existing delivery infrastructure for such services while keeping a good quality of experience, dynamic spatial video adaptation at the client side is seen as a key feature, and is actively investigated by academics and industrials. However, the impact of spatial adaptation on quality perception is not clear. In this paper, we propose a methodology for the evaluation of such adapted content, conduct a series of perceived quality measurements and discuss results showing potential benefits and drawbacks of the technique. Based on our results, we also propose a signaling mechanism in MPEGDASH to assist the client in its spatial adaptation log

    Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework

    Get PDF
    According to the thin client computing principle, the user interface is physically separated from the application logic. In practice only a viewer component is executed on the client device, rendering the display updates received from the distant application server and capturing the user interaction. Existing remote display frameworks are not optimized to encode the complex scenes of modern applications, which are composed of objects with very diverse graphical characteristics. In order to tackle this challenge, we propose to transfer to the client, in addition to the binary encoded objects, semantic information about the characteristics of each object. Through this semantic knowledge, the client is enabled to react autonomously on user input and does not have to wait for the display update from the server. Resulting in a reduction of the interaction latency and a mitigation of the bursty remote display traffic pattern, the presented framework is of particular interest in a wireless context, where the bandwidth is limited and expensive. In this paper, we describe a generic architecture of a semantic remote display framework. Furthermore, we have developed a prototype using the MPEG-4 Binary Format for Scenes to convey the semantic information to the client. We experimentally compare the bandwidth consumption of MPEG-4 BiFS with existing, non-semantic, remote display frameworks. In a text editing scenario, we realize an average reduction of 23% of the data peaks that are observed in remote display protocol traffic

    MPEG DASH - some QoE-based insights into the tradeoff between audio and video for live music concert streaming under congested network conditions

    Get PDF
    The rapid adoption of MPEG-DASH is testament to its core design principles that enable the client to make the informed decision relating to media encoding representations, based on network conditions, device type and preferences. Typically, the focus has mostly been on the different video quality representations rather than audio. However, for device types with small screens, the relative bandwidth budget difference allocated to the two streams may not be that large. This is especially the case if high quality audio is used, and in this scenario, we argue that increased focus should be given to the bit rate representations for audio. Arising from this, we have designed and implemented a subjective experiment to evaluate and analyses the possible effect of using different audio quality levels. In particular, we investigate the possibility of providing reduced audio quality so as to free up bandwidth for video under certain conditions. Thus, the experiment was implemented for live music concert scenarios transmitted over mobile networks, and we suggest that the results will be of significant interest to DASH content creators when considering bandwidth tradeoff between audio and video.info:eu-repo/semantics/publishedVersio

    A reduced-reference perceptual image and video quality metric based on edge preservation

    Get PDF
    In image and video compression and transmission, it is important to rely on an objective image/video quality metric which accurately represents the subjective quality of processed images and video sequences. In some scenarios, it is also important to evaluate the quality of the received video sequence with minimal reference to the transmitted one. For instance, for quality improvement of video transmission through closed-loop optimisation, the video quality measure can be evaluated at the receiver and provided as feedback information to the system controller. The original image/video sequence-prior to compression and transmission-is not usually available at the receiver side, and it is important to rely at the receiver side on an objective video quality metric that does not need reference or needs minimal reference to the original video sequence. The observation that the human eye is very sensitive to edge and contour information of an image underpins the proposal of our reduced reference (RR) quality metric, which compares edge information between the distorted and the original image. Results highlight that the metric correlates well with subjective observations, also in comparison with commonly used full-reference metrics and with a state-of-the-art RR metric. © 2012 Martini et al
    • 

    corecore