

Optimized mobile thin clients through a MPEG-4 BiFS
semantic remote display framework

P. Simoens1,2 – B. Joveski3 – L. Gardenghi3– I.J. Marshall4 – B. Vankeirsbilck2 –
M. Mitrea3 – F. Prêteux5 – F. De Turck2 – B. Dhoedt2

 1 HoGent – Dept. INWE 2 Ghent University – IBBT, Dept. INTEC
 Schoonmeersen 52 Gaston Crommenlaan 8 bus 201
 9000 Gent, BELGIUM 9050 Gent, BELGIUM

 3 Institut Telecom 4 Prologue 5 MINES ParisTech
 ARTEMIS Dept. ZA de Courtaboeuf 60 Boulevard Saint-Michel
 9 Rue Charles Fourier 12 Avenue des Tropiques 75272 ParisCedex 06
 91000 Evry, FRANCE 91943 Les Ulis CEDEX, FRANCE FRANCE

Abstract. According to the thin client computing principle, the user interface is

physically separated from the application logic. In practice only a viewer component
is executed on the client device, rendering the display updates received from the
distant application server and capturing the user interaction. Existing remote display
frameworks are not optimized to encode the complex scenes of modern applications,
which are composed of objects with very diverse graphical characteristics. In order to
tackle this challenge, we propose to transfer to the client, in addition to the binary
encoded objects, semantic information about the characteristics of each object.
Through this semantic knowledge, the client is enabled to react autonomously on user
input and does not have to wait for the display update from the server. Resulting in a
reduction of the interaction latency and a mitigation of the bursty remote display
traffic pattern, the presented framework is of particular interest in a wireless context,
where the bandwidth is limited and expensive. In this paper, we describe a generic
architecture of a semantic remote display framework. Furthermore, we have
developed a prototype using the MPEG-4 Binary Format for Scenes to convey the
semantic information to the client. We experimentally compare the bandwidth
consumption of MPEG-4 BiFS with existing, non-semantic, remote display
frameworks. In a text editing scenario, we realize an average reduction of 23 % of the
data peaks that are observed in remote display protocol traffic.

1 Introduction

In a thin client computing architecture, application and data processing are offloaded
to remote servers, while the functionality of the client device is essentially limited to
user interface functionalities. Nowadays, the web hosts increasingly powerful

2 P. Simoens et al.

computing resources and has evolved to a ubiquitous computer, offering applications
ranging from simple word processors, over all-encompassing enterprise resource
planning suites to 3D games [26]. Although recent advances in hardware
miniaturization have drastically increased the processing power of mobile
(smartphone, pda) and portable devices (laptop), the principle of thin client computing
remains of particular interest in a mobile context. A first advantage is that
applications need not to be tailored individually for each mobile platform. Second,
mobile thin client computing allows companies to better protect their classified data.
By running office applications on a centralized company server, mobile employees
can ubiquitously access all necessary data while at the same time the confidential and
valuable data stays on the trusted and secured central server [21]. For example, no
data can get lost owing to the theft of a mobile device of one of the employees. Third,
beyond the conventional office applications, mobile thin client computing allows to
provide resource demanding applications to mobile users. Despite the advances in
mobile hardware, mobile phones still lack processing and storage resources to execute
3D virtual environments that require advanced graphical hardware [2], or applications
that operate on large data sets, such as medical imaging applications [17].

In the thin client computing principle the mobile device only runs a viewer
application that acts as a remote interface to applications running on distant servers.
This viewer transfers user input to the server, and renders the display updates received
from the server. To encode the display updates, existing remote display solutions
typically use low-level graphic instructions or video codecs. The first approach is
adopted by conventional remote display architectures. For instance, Citrix XenApp
[3] and MicroSoft Remote Desktop Services [23] apply elementary drawing
commands and images, whereas Virtual Network Computing [29] updates the display
by filling rectangular screen areas with bitmaps. These low-level graphic instructions
are the most efficient way to remotely display applications that only update a small
portion of the display and have a slow refresh rate, such as office applications. In turn,
video codecs are more convenient when the graphics exhibit a high level of detail and
large parts of the display are frequently updated, such as in multimedia or 3D
applications. This approach is mainly used for multimedia applications and remote 3D
rendering, such as virtual 3D environments or 3D medical imaging applications [25,
27].
All existing remote display solutions encode the complete display using a single
output encoding format. This encoding format is however only optimized for a
specific subset of applications. Using the inappropriate format to compress
application graphics leads to high bandwidth requirements and degraded visual
experience, e.g. because static displays are encoded as video frames or because text
characters are encoded by lossy image compression techniques [34]. To support a
wider range of applications with a single remote display framework, hybrid
approaches have been presented that integrate multiple encoding formats. For
example, Citrix’ Speedscreen Acceleration forwards video streams in their original
format to the client, while the other parts of the display are still encoded through the
Citrix’ proprietary protocol. This approach is only possible for video streams for

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
3

which the appropriate video codec is installed at the thin client. Similarly, Tan et al.
[36] divide the display in low- and high-motion regions, that are encoded respectively
by means of VNC drawing primitives and MPEG-4 AVC (a.k.a. H.264) frames.
These hybrid techniques provide no adequate solution to compress the complex
scenes of contemporary applications, comprising objects with highly diverse graphic
characteristics, such as text, images, widgets and embedded audio and video. A better
approach is to encode each object individually, in its own optimal encoding format.
However, this requires that the client is provided with the appropriate information on
the different objects, such as their position and encoding format, in addition to the
binary encoded objects itself. Within the context of this paper, we refer to this
information as semantic information and introduce the concept of semantic remote
display. As illustrated in Figure 1, the semantic knowledge enables the client to
consider the scene as a collection of objects, instead of an elementary pixel buffer.
The nature of these objects can be very diverse, examples include menu windows,
dialog windows, images, character strings or video streams. In this paper, we
demonstrate that the enhanced view of the client on the displayed scene can be
exploited to optimize the thin client user experience in terms of interaction latency
and bandwidth. These challenges are of particular importance in a wireless context,
due to interference and fading effects. As a consequence, the presented semantic
remote framework is targeting all types of wireless portable devices acting as a thin
client, including laptops, smartphones and pda’s.

Fig. 1. Traditional remote display solutions typically encode the complete display using the
same output encoding format, whereas semantic remote display protocols transfer individual

objects in their own encoding format, as well as the objects’ characteristics, e.g. potential user
interaction.

The contribution of this paper is twofold. First, we introduce a generic semantic
remote display architecture. Compared with existing, non-semantic remote display
solutions, the server side component of the architecture is enhanced with a Scene
State Manager, orchestrating the transfer of semantic information to the client. We
have developed a prototype of this architecture, using the semantically rich MPEG-4
Binary Format for Scenes (BiFS). In previous work [13,24], we have already

4 P. Simoens et al.

demonstrated the viability of MPEG-4 BiFS as compression technology for objects
with diverse graphical characteristics, in terms of bandwidth and visual quality.
Compared to other technologies for the representation of heterogeneous content, such
as Flash and SMIL/SVG, BiFS has the particular advantage that it allows for dynamic
updates on the scene description, i.e. updates that are generated at the server during
the session. Furthermore, it is based on public standards, and thus avoids proprietary
solutions such as Flash, that may lead to vendor lock-in. The BiFS principles have
been optimized for thin clients, resulting in the Lightweight Application Scene
Representation (LASeR) [18]. However, BiFS seems to be more future proof, owing
to its more complex scene description possibilities, as well as the possibility to
describe 3D scenes [12].

Second, we provide the client with additional semantic information on how the user
can manipulate each object in the scene. This allows the client to react autonomously
to user events, e.g. by displaying a cached object, instead of having to wait for the
server feedback. Client side handling of user input improves the interaction latency
and reduces the amount of data that is sent by the server to the client. Compared with
existing cache mechanisms such as in HTTP, the novelty of our approach is that we
not only cache objects, but also the possible user interactions with the objects in the
scene, as well as how these objects should be reorganized after some user interaction.
This is a more fine-grained approach, allowing to update smaller parts of the scene
(not always complete objects), which in turn results in bandwidth and latency
reductions.

The remainder of this paper is structured as follows. In section 2, we elaborate on how
semantic information can be exploited to enable client side handling of user input. To
manage this semantic information, additional components are required at the server
side of a semantic remote display. Therefore, we detail our generic architecture of a
semantic remote display framework in section 3. We present our MPEG-4 BiFS based
prototype of this architecture in section 4, and detail how client side user input
handling is enabled by delivering the appropriate semantic information to the client.
In section 5, we experimentally compare our approach with existing, non-semantic,
remote display frameworks and quantify the reduction of the amount of data owing to
the handling of user input at the client. Related work is explored in section 6.

2 Client side handling of user input

After the user has generated some input, it takes at least one network roundtrip time to
transfer this information to the server and the resulting display update back to the
client. Users tolerate interaction latencies up to 80 ms for gaming [4] and up to 150
ms for office applications [38]. Wireless links, however, often introduce propagation
delays in the order of tens of milliseconds [39, 40] and the total latency is further
increased by client and server processing, router queuing, firewall processing etc.
Furthermore, the display updates that are triggered by user input, often contain a large

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
5

amount of data that needs to be transferred to the client in a short interval. This results
in a bursty traffic pattern, often requiring an instantaneous bandwidth that is much
higher than the average bandwidth availability [35].
Semantic remote display provides a solution to reduce the interaction latency and
mitigate the bursty traffic pattern. As illustrated in Figure 1, semantic information
allows the client to identify the individual objects in the scene. By providing
additional information to the client on how the user can actually manipulate these
objects, the client can react autonomously to user input and immediately take the
appropriate action. For instance, when the user clicks on the “File” menu item object
in a text editor, the client knows that an additional object needs to be displayed, i.e.
the menu that needs to be opened. When cached at the client, this menu can be
displayed immediately and the interaction latency is significantly reduced.
Furthermore, the server only needs to transmit a differential update to correct or
complete the actions undertaken by the client, which will mitigate the data peaks
observed in remote display protocol traffic. Retaking the example of the “File” menu,
this would be the list with recently opened files.
When only graphic information is delivered to the client, client side user input
handling cannot be adequately realized. Consequently, most non-semantic remote
display protocols do not support the handling of user input at the client. An exception
is Citrix, which has leveraged its architecture with the Speedscreen Latency
Reduction feature. When this option is enabled, the thin client will predict the server
response to key strokes and immediately show the character on the screen. The
mechanism is however limited, because the character is often shown in a different
font [32]. After the feedback of the server is received, the font on the screen is
corrected.
To enable client side user input handling, the client needs to have accurate
information on the potential user interactions and the appropriate actions to be taken
subsequently. For each application, we model this information in a scene state
diagram that is composed of different scene states. A scene state is defined as a
specific configuration of visible objects in the scene. In each scene state, the user can
interact with some of the objects, e.g. by clicking on it. In the diagram, these objects
are marked as transition triggers of the scene state. When the user interacts with one
of these trigger objects, a scene transition is started. Typically, a scene transition
involves two types of operations: creation and deletion of visible scene objects, and
drawing operations to modify the graphical characteristics of these objects. After the
transition, a new subset of objects is visible on the screen and the application has
entered a new scene state.
A sample scene state diagram for a text editing application is shown in Figure 2. In
this example, the scene state is uniquely determined by its visible widgets, menus and
pop-up dialog windows. When the user starts the application, he is presented the
default screen. All items in the top menu bar are marked as transition triggers. When
the user clicks on one of these items, a menu becomes visible. The corresponding
scene transition involves the creation of this menu object, as well as drawing
instructions to present the individual menu items.

6 P. Simoens et al.

If the client is able to identify the different scene states, as well as the associated
transition trigger objects, it can perform the scene transition autonomously. However,
intercepting semantic information from the application, constructing the scene state
diagram and transferring this information to the client, requires that the functionality
of the server side component of remote display frameworks is leveraged with
additional components. Furthermore, compared to conventional non-semantic
frameworks, the architecture needs to provide the required flexibility to deliver to the
client individually encoded objects instead of drawing commands or video frames, as
well as semantic information. In the next section, we present a generic architecture of
a semantic remote display framework that meets these design requirements.

Fig. 2. Scene state diagram of a text editing application.

3 Related work

The framework presented in this paper enables the client to handle user input locally
for remote applications. Related work that has been presented in literature was mainly
focused on the delivery and caching of dynamic content in web services.

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
7

In [19], the authors enhance the declarative SMIL language with an external data
model, to adapt the presentation of a web service in a more flexible way to the user
input. The data model contains user-defined state and allows to mitigate the lack of
support for interactive web based applications that is common to all declarative
languages such as HTML, SMIL or SVG. By contrast, the BiFS format that is used in
our framework has inherent support for dynamic updates from the server, triggered by
user input. Furthermore, our framework is targeting applications that are currently
installed on desktops, instead of web services.

In [10], the authors present a combined content adaptation and caching scheme for
displaying HTML content on mobile devices. After splitting the web page in HTML
content blocks, each block is adapted to the size of the mobile device display.
Furthermore, an integrated content block cache helps in reducing the mobile client
latency to fetch HTML content from a web server. Similarly, in [5], a model is
presented that tries to predict the future navigation commands during an interactive
browsing session to optimize the client cache of mobile devices. The presented work
focuses on improving the remote browsing of large scale images, which is challenging
because of the small size of mobile displays and the cost and latency associated to
data transmission. The presented caching algorithms are however designed for
JPEG2000 images and cannot directly be applied to the case of user actions that is the
scope of the current paper.

Another direction of related work can be found in the exploitation of the distinctive
feature of MPEG-4 BiFS to describe a displayed scene in terms of objects and the
potential user interactions with these objects. Kim et al. [15] have developed an
MPEG-4 object streaming server system that streams individual objects upon user
request. The presented system provides a concrete implementation of how objects can
be streamed over multiple remote display channels. Consequently, it is
complementary to our work, which focuses on how these objects should be
intercepted from the application.

Khin et al. [14] have developed an Interaction Manager that analyzes the user input
and determines the appropriate modifications to the BiFS scene. The Interaction
Manager supports more complicated operations to react on user input, such as
converting and encoding user input to the appropriate output format for online quiz
applications. The proposed architecture may however be difficult to deploy on thin
mobile devices, because additional components need to be installed on the client,
consuming additional memory and CPU. Furthermore, a detailed experimental
evaluation is missing, making it difficult to assess the footprint of the installed
components in terms of memory and CPU.

8 P. Simoens et al.

4 Architectural design of a semantic remote display framework

Any remote display framework contains a client side viewer and a server side
component. The viewer application imposes no stringent design requirements, as it
functionality is limited to transferring user input to the server and rendering the
display updates from the server. Therefore, we will focus the discussion in this section
on the server side component of a semantic remote display architecture, which is
presented in Figure 3.
The server side component is located between the application logic and the network
communication interface and is composed of two logical layers. The upper layer, the
Content Manager, intercepts the content generated by the application and converts it
to the appropriate output format. Furthermore, it manages the semantic scene
information. Both the converted graphical content as the semantic information are
delivered to the client through one of the communication channels in the lower layer
of the architecture. In the upstream direction, user events are received by the user
event handler, after possible conversion in the Content Manager, and delivered to the
application.

Fig. 3. Server side component of a semantic remote display architecture. The Scene State

Manager (SSM) manages the semantic scene information and determines the appropriate output
encoding format for each content type.

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
9

The architecture is composed of the following components:
─ Content Interceptor: captures various types of content generated by the

application, such as video streams and drawing commands, as well as semantic
scene information. Graphical information is directly forwarded to the Content
Convertor, whereas semantic information is delivered to the Scene State
Manager (SSM). The application content can be intercepted at different layers
of the rendering stack. The actual interception point is a tradeoff between
general applicability of the remote display framework and the availability of
semantic information. For example, an architecture that intercepts at the pixel
level can be used across almost all platforms, but no semantic information will
be captured. On the other hand, if the graphics are intercepted at a higher layer,
e.g. at the level of graphical libraries such as Xlib, very detailed semantic
information is intercepted, but the interceptor can only be used with applications
that are built on this library.

─ Content Convertor: converts the input captured by the content interceptors to the
appropriate output format, as instructed by the SSM. It encodes both graphic
content and semantic information that is delivered by the SSM. The supported
conversions depend on the codecs that are installed on the client.

─ Protocol channel: is a logical connection between the server side and client side
component of the architecture. Each channel transfers a specific content type
and is mapped, possibly together with other channels, on an underlying network
connection. This allows to provide each channel with the appropriate Quality of
Service from the network. Channel examples include embedded video streams
that are transported over UDP, or a dedicated channel for user events that
requires reliable transmission over TCP.

─ User event handler: is responsible for delivering user events to the appropriate
application. When the user is concurrently running multiple applications, it
queries the SSM to determine the application to deliver the event to.

─ Scene State Manager: is the heart of the Content Manager and has a double
functionality. First, this component orchestrates the conversion of intercepted
graphic content to the appropriate encoding format. Second, it manages and
interprets the semantic information captured from the application. This
information is used to determine the appropriate output format for the
intercepted content. For example, it can detect video streams in the scene, and
forward the original bit stream without conversion to one of the output remote
display protocol channels. Relevant semantic information is communicated to
the client.

5 Prototype implementation

The multiple logical remote display protocol channels and the orchestrating Scene
State Manager ensure that the architecture presented in the previous section offers the
required functionality to support the remote display of modern applications. In this

10 P. Simoens et al.

section, we elaborate on the implementation details of the prototype we have
developed. Furthermore, we detail how the Scene State Manager supports the client
side handling of user input.

5.1 Overall implementation details

To demonstrate the concept of semantic remote display frameworks, we have
implemented the prototype that is presented in Figure 4.

Fig. 4. Overview of the implemented prototype. The Scene State Manager decides which X11
instructions are transcoded to the MPEG-4 BiFS.

The prototype was developed in a Linux environment, where applications typically
render their graphics through the X Window System. Applications communicate to
the rendering XServer by means of the X11 protocol. This protocol is an appropriate
interception point, as it conveys both drawing information, e.g. to draw a rectangle or
to display an image, and semantic information, e.g. to map a window on the screen.
Furthermore, the X11 protocol can be transparently intercepted, because the
application connects to the XServer through a local Unix socket. The X11 interceptor
places itself between the application and the XServer by presenting a similar Unix
socket to the applications. Through an elementary modification of the “DISPLAY”
environment variable, the applications are instructed to connect to this socket instead
of to the original socket opened by the XServer. The X11 interceptor opens a

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
11

connection to the XServer and forwards the unmodified X11 data, thus ensuring
complete transparency to both application and XServer.
The Scene State Manager tracks all X11 protocol traffic and decides which
instructions are forwarded to the X11toBiFS convertor. Semantic protocol messages,
e.g. when a new window object is created, are used to update its internal scene state
information. More information on the internal operation of the SSM is provided in
section 4.2.
The X11toBIFSconvertor component receives X11 instructions from the X11
interceptor and additional semantic instructions from the SSM, and converts this to
the MPEG-4 Binary Format for Scenes (MPEG-4 BiFS) [11]. BiFS is an MPEG-4
scene description language that combines sufficient semantic expression power with
streaming capabilities. It is designed for interactive rich-media services that include
text, audio, video, 2D and 3D graphics. The format allows to describe all content by a
scene graph, providing a hierarchical and integrated representation of audio, video
and graphical components. A distinctive feature of BiFS is that only the scene graph
is binary encoded, whereas each object can remain encoded with its own optimal
coding scheme. Lastly, BiFS provides the means to stream this encoded scene
information to the client and to provide real-time updates to the scene tree. More
details on the MPEG-4 Binary Format for Scenes can be found in [33].
Internally, the X11toBIFSconvertor contains a specific conversion function for all
X11 protocol message types and the semantic instructions from the SSM. It is built on
the GPAC libraries [20] that support the BiFS encoding. Both scene state information,
e.g. on the size and the position of the created windows, and actual drawing
commands, e.g. to put an image in the scene, can be converted. At the end of the
chain, the BiFS encoded content is streamed to the client over UDP. The BiFS
streaming is realized by a modified version of the Live 555 Streaming Media library
[22].
In the upstream direction, the client transfers the user events as http requests. These
user events are posted on the XServer through the standard Linux uinput kernel
module. The XServer cannot discriminate between these user events and user events
that would be generated by a keyboard or mouse attached to the server machine, thus
further ensuring the complete transparency to the application and the XServer.
At the client, the GPAC player has been used. This is a standard and low complexity
MPEG-4 player that is supported on both Windows and Linux platforms.

5.2 Internal operation of the SSM

In section 2, we have explained how the possible interactions of the user can be
modeled by means of a scene state diagram. In the current section, we provide
concrete details on how this diagram is constructed inside the Scene State Manager,
and how the SSM uses this information to inform the client on potential user
interactions. To support the discussion, Figure 5 visualizes the communication
between the server components, as well as the internal scene state diagram of the
SSM, for the sample case of a text editor.

12 P. Simoens et al.

Fig. 5. Sequence diagram of the communication between the server side components when the
“File” menu is opened twice during the same session. In order not to overload the figure, the

X11toBIFS convertor is omitted from the figure, as well as the delivery of user events through
the user event handler to the XServer. The right part of the figure illustrates the current status of

the scene state diagram that is maintained by the SSM. The second time the File menu is
opened, only a differential update is provided.

When the user clicks on an item in the top menu bar of the text editor, the opened
menu needs to be displayed at the client. Although the exact encoding format might
differ, non-semantic remote display frameworks would essentially instruct the client
to draw a rectangular area and generate some drawing instructions to render the menu
items. In a semantic approach, a new window object is created, of which the graphical
content is updated by drawing instructions.
In our implementation, we have statically configured the different scene states of the
text editor, as well as the objects that are marked as transition triggers. When the
application is started, the SSM loads these definitions. These definitions do not
contain the actual operations of the scene transitions. As we will discuss below, these
actual operations are stored at run-time when they occur. In the future, we foresee to
construct the complete scene state diagram at run-time, by dynamically correlating
user events to objects in the scene.

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
13

When the user clicks the “File” menu item, the SSM detects that a transition is
triggered of which the actual operations are not yet available in its scene state
diagram. Therefore, all X11 protocol messages are, after conversion to BiFS
semantics, forwarded to the client. Consequently, the user experiences both
processing and interaction delays between his input and the menu being presented on
his screen. At the end of the transition, indicated by the mapping of the menu
window on the screen, the application is in a new scene state, and the SSM will take
two actions. First, the SSM updates its scene state diagram, storing both semantic
operations that create or delete visible objects on the screen, such as operations to
map a window object, and drawing operations that change the graphical
characteristics of scene objects, e.g. putting some text characters in the window
object. Second, the SSM will enable the client to handle autonomously the next time
the same user event occurs by informing the client on the transition trigger object, i.e.
the “File“ menu item, and on which semantic operations should be taken, i.e. which
window should be mapped. A concrete example of how this is translated in BiFS
format is shown in Listing 1. A TouchSensor is attached to a rectangular area in the
screen, and will call the JavaScript function to make the object visible by setting its
scale.
After some time, the user opens the same menu again. This time, the client is able to
correlate the user event with a trigger object, and it immediately maps the cached
version of the menu window on the screen. To keep both endpoints synchronized, the
user event is still transmitted to the application. As the application is unaware of the
client caching mechanism, it will generate the same X11 instructions to draw the
menu items and map the window on the screen. The SSM will compare these X11
instructions with the information in its scene state diagram. Drawing instructions that
will not modify the cached version of the window object, are not forwarded. Only
differential drawing instructions are forwarded, for example when the “File“ menu
contains a new list of recently opened files. Semantic operations of the scene state
transition, such as the mapping instruction, are always forwarded, to ensure the
consistency between client and server. Because these semantic operations have
already been performed by the client, they not incur an additional visual effect.
Because the object was already made visible to the client, the differential updates are
immediately shown when they arrive, such as the list with recently opened files. As
many menu items and dialog windows do not change, differential updates will only be
required in particular cases.

14 P. Simoens et al.

Listing 1: BiFS instructions to execute a JavaScript when the user clicks the
mouse on a rectangular item in the scene. The script makes the menu visible by
setting the scale argument.

DEF TR1 Transform 2D {
translation Xpos Ypos
scale K M
children [
 Shape {
 appearance Appearance{
 material Material2D{
 emissiveColor R G B
 }
 }
 geometry Rectangle {
 size Height Width \\the menu item
 }
 }
 DEF TS1 TouchSensor {}
 DEF SN1 Script {
 eventIn SFBool MouseClicked
 field SFVec2f ScaleBig 1 1
 field SFVec2f ScaleSmall 0 0
 eventOut SFVec2f CurrentScale
 url “javascript:
 function MouseClicked(value) {
 if(value == true)
 CurrentScale == ScaleBig;
 else
 CurrentScale == ScaleSmall;
 }
 “
 }
]

}

ROUTE TS1.isActive TO SN1.MouseClicked
ROUTE SN1.CurrentScale TO TR1.scale

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
15

6 Experimental evaluation

We have experimentally evaluated the approach of semantic remote display
frameworks in two ways. First, it can be expected that the additional transfer of
semantic information might result in an increase of the bandwidth consumption. To
this end, we compare the bandwidth consumption of our BiFS prototype with
conventional, non-semantic architectures. Second, we quantify the benefits of the
client side user input handling by measuring the data peaks observed in remote
display protocol traffic after some user input.

6.1 Testbed

For the experiments, the testbed presented in Figure 6 was set up. It is composed of a
server and client machine, interconnected by an impairment node. This impairment
node is equiped with the Click router framework [16] and allows to simulate the
propagation delay between client and server.

Fig. 6. Structure of the testbed used for the experimental validation.

In order to benchmark the performance of the BiFS prototype, three other open source
remote display architectures were installed on the testbed: RealVNC v4.1.1 [27],
TightVNC v1.3.10 [37] and FreeNX v3.4.0 [8]. Although all these architectures are
Linux based, their bandwidth consumption is in the same order of magnitude of
commercially available Windows-based architectures [5,31], such as Microsoft RDP
or Citrix XenApp, and consequently they can be considered as a relevant benchmark.

RealVNC is widely used and is based on the Remote Framebuffer protocol which
divides the display in multiple rectangles. TightVNC is an enhanced version of
RealVNC, offering an additional JPEG-based compression for display updates. It is

16 P. Simoens et al.

mainly targetting applications that generate display updates with complex color
patterns. FreeNX is an optimized version of the original X architecture. It compresses
X11 protocol traffic between the remote application and the rendering XServer
running at the client. By using message-specific compression algorithms and
extensive client side caching, FreeNX achieves high compression ratios. The bulk of
the rendering however is performed by the XServer running at the client. Compared
to other remote display technologies, FreeNX requires important memory and CPU
resources for cache management, decoding and rendering [6]. Consequently, FreeNX
might not be applicable on resource constrained mobile thin client devices.

6.2 Bandwidth consumption of semantic remote display

To assess the bandwidth penalty induced by the additional transfer of semantic scene
information, we have selected two scenarios: text editing and web browsing. The text
editing scenario covers applications with an elementary scene composition: the
display of a text editor is mainly composed of one large and initially blank input field.
The display, however, is frequently updated, i.e. each time the user enters a character.
By contrast, the web browsing scenario covers applications with less frequent display
updates, but with a more complex scene composition since web sites typically contain
a mixture of text, images, photos and even audiovisual streams.

To simulate the text editing scenario in a realistic way, 5 colleagues were asked to
transscribe the same text of 879 characters while recording their user input.
Afterwards, these traces were replayed by means of the Xnee tool [30], to ensure that
the same user input is used across all tested remote display architectures. The remote
application was the gedit text editor [9].

Figure 7 presents the bandwidth consumption, averaged over 10 iterations. For the
network roundtrip delay, three different values were configured in the Click router:
0 ms, 30 ms and 100 ms. The particular case of 0 ms was added because some remote
display protocols apply different compression mechanisms when the roundtrip time
between client and server is limited. In turn, 30 ms is a realistic value of the roundtrip
time on wireless links [39, 40], whereas 100 ms is close to the upper limit of network
roundtrip times that remain unnoticed to users, as explained in section 2.

Of all tested remote display architectures, TightVNC consumes most bandwidth in the
text editing scenario. This can be attributed to the use of JPEG-based encoding, which
is optimized for complex, multi-colored graphics, but inappropriate for elementary
graphics only containing characters. These results confirm that it is necessary to adapt
the compression mechanism to the graphical characteristics of the content. FreeNX is
the most bandwidth efficient remote display architecture. As explained above, this is
because FreeNX trades network bandwidth for client side processing and requires to
run a complete XServer at the client. As a result, FreeNX requires two times as much
client CPU and memory compared to BiFS, as can be seen in Table 1. This table
compares the resource requirements of the client side application of BiFS (i.e. the

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
17

GPAC player) and FreeNX. The incurred load by FreeNX is the sum of the load
generated by two processes: the decompression library (nxssh) and the XServer
(Xorg), whereas the reported load for BiFS is the load of the GPAC player.

Fig. 7. Average bandwidth consumption for users entering a text of 879 characters, with a
roundtrip delay of 30 ms between client and server. The results are the average of 10
simulations per user. BiFS is not optimal for applications with an elementary scene

composition. In the upstream direction, BiFS requires significantly less bandwidth, owing to
the lack of explicit display update requests (RealVNC and TightVNC) or important client-

server synchronization (FreeNX).

Table 1. Comparison of the client side CPU and memory usage of BiFS (GPAC player) and
FreeNX for the text editing scenario with a roundtrip delay of 30 ms. The results are averaged

over all users, with 10 iterations per user. Measurements were performed on AMD Athlon 1800
MHz with 512 MB.

 memory [MB] CPU [%]

FreeNX (nxssh + Xorg) 59.65 24.9
BiFS 28.75 11.88

18 P. Simoens et al.

 Figure 7 shows that BiFS is less optimized for the case of text editing, with
elementary graphic updates and scene composition. We believe the BiFS performance
can be enhanced by a better transmission strategy. In our current implementation,
each BiFS instruction to render a character is transmitted in a separate TCP/IP packet,
whereas RealVNC and TightVNC group multiple characters in a single display
update. Nevertheless, its bandwidth requirements do not exceed 150 kbps and remain
well below the bandwidth offered by modern mobile radio technologies
[BALACHANDRAN]. The same conclusions can be drawn for other values of the
network roundtrip time. In Table 2 and Table 3, we have presented the results of the
same experiment for a network roundtrip time of 0 ms and 100 ms respectively.

Table 2. Average bandwidth consumption for identical experiment conditions as in Fig. 7, but
with a roundtrip delay of 0 ms between client and server.

user
BiFS RealVNC TightVNC FreeNX

up down up down up down up down
1 4.48 87.22 12.05 45.67 25.51 261.71 21.58 20.43
2 3.28 67.70 8.84 51.18 18.49 188.63 15.27 14.95
3 3.61 73.20 9.96 40.65 20.13 205.38 17.83 17.59
4 6.79 118.87 19.25 69.96 37.73 339.90 32.55 30.60
5 5.40 96.40 14.72 55.20 30.86 310.11 26.18 25.04

Table 3. Average bandwidth consumption for identical experiment conditions as in Fig. 7,

but with a roundtrip delay of 100 ms between client and server.

user
BiFS RealVNC TightVNC FreeNX

up down up down up down up down
1 4.43 81.42 12.15 56.01 20.93 206.08 23.80 21.16
2 3.33 68.23 8.87 51.46 14.40 113.439 17.42 16.27
3 3.58 72.96 10.96 87.14 17.39 145.20 19.89 18.46
4 6.14 113.92 20.60 146.72 28.16 270.28 35.57 31.25
5 5.22 92.47 16.02 25.77 25.34 254.63 28.85 26.10

In the web browsing scenario, four websites were visited: a news website
(www.bbc.co.uk), the website of a project on mobile thin clients (www.mobithin.eu),
a page on the photo website Flickr and a page search on Google Image. The websites
were visited through the Epiphany browser [7] running on the server. User interaction
was limited to clicking on one of the four predefined bookmarks in the browser to
load the website.

The web browsing scenario was specifically selected to compare the display update
compression efficiency of the test remote display frameworks. First, websites have a

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
19

more complex scene composition compared to the text editing scenario, combining
text, images, photos and even audiovisual streams. Second, user interaction is now
limited to a single mouse click to load a web page, in contrast to the text editing
scenario with frequent user interaction.

Figure 8 shows the total number of bytes exchanged between client and server when
loading an individual webpage, allowing to compare the compression efficiency of
the evaluated remote display frameworks. Because the number of bytes sent upstream
is limited, we provide detailed figures on the bytes sent upstream in Table 3. With
BiFS, only one mouse event is sent upstream to communicate the click on the
bookmark. TightVNC and RealVNC regularly sent requests for a display update to
the server and hence exhibit higher upstream data traffic. With FreeNX, more
synchronization traffic between client and server is required.

Fig. 8. Total number of bytes exchanged between client and server when loading a website.

The results are averaged over 10 iterations. The BiFS compression is significantly better than
the compression achieved by RealVNC and TightVNC. Results are for a roundtrip delay of 30

ms.

20 P. Simoens et al.

Table 4. Total number of bytes sent from client to server. These bytes include a single user
event (mouse click), requests for display updates (TightVNC and RealVNC) or synchronization

information (FreeNX). The results are in kB. Results are for a roundtrip delay of 30 ms.

 BBC MobiThin Google Image Flickr

BiFS 0.4 0.4 0.4 0.4
RealVNC 123.9 42.4 32.23 79.5
TightVNC 32.7 19.5 11.9 41.9

FreeNX 25.2 15.1 12.4 17.8

In terms of the number of bytes required to encode the display updates, BiFS clearly
outperforms RealVNC and TightVNC for a roundtrip time of 30 ms. Depending on
the visited website, the relative bandwidth reduction varies between 52.0 and 75.4 %
compared with TightVNC, and 81.9 % - 95.6 % compared with RealVNC. The large
range of these experimental results can be explained by the adaptive encoding
mechanism that is applied by VNC, depending on the network roundtrip time. Unlike
the text editing scenario, TightVNC is more bandwidth efficient than RealVNC,
because its JPEG encoding is better suited for the numerous images on the visited
websites.

We have repeated the experiments for network roundtrip delays of 0 ms and 100 ms.
We have observed that RealVNC is switching to a higher level of compression for the
roundtrip delay of 100 ms. In this case, RealVNC becomes again the most bandwidth
efficient compared with TightVNC. Compared with RealVNC, BiFS requires between
21.6 % - 85.7 % less bandwidth to encode the display updates. In turn, FreeNX is able
to achieve a compression rate which is 2 or 3 times higher than BiFS; at the expense
of running a complete XServer at the client.

The results presented in this section demonstrate the feasibility of using semantic
remote display frameworks in a mobile thin client context, in particular for
applications that generate a lot of images and have complex scene compositions. The
additional bandwidth consumption required for the transfer of semantic information
does not outweigh the gains that are achieved by a more efficient encoding. In the
next section, we demonstrate how the use of semantic information in remote display
frameworks results in additional bandwidth reductions, better traffic shaping and
latency reduction.

6.3 Data peak reduction through client side handling of user input

As explained in section 2, the availability of semantic scene information at the client
can mitigate the data peaks due to display updates are triggered by user events. To
validate this approach, we have created a scene state diagram of the gedit text editor,
defining each menu item and icon in the top menu bar as a transition trigger. Two
different types of scene transitions were considered. In the first experiment, the File
menu was opened 3 times in the same session by clicking on a menu item, whereas in

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
21

the second experiment, the Save dialog window is called by clicking on the
corresponding icon. As was illustrated in Figure 5, the semantic information on the
transition trigger and the corresponding scene transition is transferred after the menu
or dialog window have been opened for the first time. From now on, the client can
immediately show these objects when a similar user event occurs. No server side
instructions are required, except for differential updates or to draw a tooltip.
Consequently, the interaction latency is reduced to the time required for the local
processing at the client.

Figure 9 shows the instantaneous bandwidth consumption when the File menu is three
times opened during the same text editing session. When the user clicks the menu for
the first time, the menu is not yet available in the client cache. The server instructs the
client to save this menu and provides the client the required semantic scene
information to directly show the cached object the next time. This can be observed in
the figure when the user opens the menu for the second and the third time: only very
limited downstream traffic is observed.

Fig. 9. Instantaneous BiFS bandwidth consumption, measured during a sample experiment in

which the same menu was opened and closed three times. The second and third time, a
significant reduction of the peaks following the mouse click can be observed.

22 P. Simoens et al.

Table 5 provides quantitative results on the peak reduction by comparing the total
number of bytes that is sent from server to client when the menu or dialog window are
shown. It is observed that all solutions sent less data the second time the user
operation occurred. For TightVNC and RealVNC, this peak reduction can be mainly
attributed to the zlib compression efficiency. This technique employs a dictionary
with recently encoded byte strings. Because the reported figures are generated when
the same menu is consecutively opened without any other operation in between, the
zlib compression is able to reduce the peaks by 18.1-30.5 % for the menu and by
20.5-25.2 % for the dialog window. In regular sessions, other display updates will be
transmitted to the client in between two menu openings and the zlib compression
efficiency will decrease.

Table 5. Total number of bytes sent from server to client when repeatedly opening the File
menu or the Save dialog of the gEdit application in the same session. The presented results are
the average of 10 iterations and were obtained with a network roundtrip time value of 30 ms.

The addition of the SSM results in an additional data reduction of 22.1-23.1 %.}

 open menu reduction open dialog window reduction
 1st time 2nd time 12 [%] 1st time 2nd time 12 [%]
BiFS w/o
SSM 22 735 5 634 75.2 23 190 6 705 71.1

BiFS with
SSM 23 407 417 98.2 23 789 1 628 93.2

FreeNX 6 302 2 267 64.0 12 533 8 624 31.2
TightVNC 16 423 11 419 30.5 14 037 11 162 20.5
RealVNC 241 332 197598 18.1 300 270 224 459 25.2

The data peak reduction achieved by FreeNX is caused by two effects. First, FreeNX
achieves a high compression ratio due to caching of X11 messages at the client.
Second, when a menu is opened for the first time, additional X11 instructions are
required to create and configure a new window object, besides the drawing
instructions to render the content of the window. When the user opens the menu or
dialog window for the second time, less X11 instructions are required because the
previous window is made visible again, instead of creating a new window object.
Because BiFS directly translates each X11 protocol message, this second effect is also
the reason why BiFS is able to reduce the amount of data to be sent by 71.2-75.2 %,
even when no Scene State Manager is implemented. The addition of the Scene State
Manager results in additional reduction of 22.1-23.0 %. By comparing the data that is
sent the first time a user event occurs, it can be concluded that less than 1kB is
required to transfer the additional semantic information to allow client side user input
handling.

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
23

7 Conclusion

Semantic remote display architectures enable the client to identify the individual
objects in the displayed scene by providing information on the composition of the
scene and the individual characteristics of each object. In this paper, we have
demonstrated how semantic information can be exploited at the client to react
immediately to user input, instead of having to wait for the display updates of the
server. At the server, a Scene State Manager captures semantic information from the
application and informs the client how the user can manipulate the objects in the
displayed scene. Furthermore, we have detailed the implementation details of our
prototype that uses MPEG-4 BiFS to encode and transfer the semantic information to
the client. We have experimentally assessed the additional bandwidth that is required
to convey semantic information to the client. Lastly, we have demonstrated how
handling user events at the client mitigates the data peaks of remote display protocol
traffic by on average 23 %.

In our current implementation, the different scene states and the transition triggers are
loaded from a preconfigured file. Future research will focus on the detection of the
individual scene states at run-time, by correlating the user input to the resulting
display update. This should result in application profiles that can be reused for other
users that use the same application. Furthermore, we will concentrate our efforts on
optimizing the amount of semantic information that needs to be saved in the memory
of the resource-constrained thin client device. Currently, each scene transition is
saved at the client after its first occurrence. This can be optimized by creating
individual user profiles, indicating the most relevant objects to be cached at the client,
e.g. the menus and dialog windows that are most frequently visited. Lastly, we will
add more types of client side actions. Currently, the client is only enabled to display
windows in response to a mouse click. The range of actions can be extended with, for
example, the client directly contacting the source of audio and video streams.

8 References

[1] Balachandran K, Bi Q, Rudrapatna, A, Seymour J, Soni R, Weber A (2009): Performance
Assessment of Next-Generation Wireless Mobile Systems. BELL LABS TECHNICAL
JOURNAL 13(4): 35-58

[2] Boukerche A, Pazzi RWN, Feng J (2008) An end-to-end virtual environment streaming

technique for thin mobile devices over heterogeneous networks. COMPUTER
COMMUNICATIONS 31(11): 2716-2725

[3] Citrix Systems Inc.: http://www.citrix.com. Last retrieved on 2011-04-20.

[4] Claypool M, Claypool K (2006) Latency and player actions in online games.

COMMUNICATIONS OF THE ACM 49(11):40-45

http://www.citrix.com/�

24 P. Simoens et al.

[5] Descampe A, De Vleeschouwer C, Iregui M, Macq B, Marques F (2007) Prefetching and

caching strategies for remote and interactive browsing of JPEG-2000 images. IEEE
TRANSACTIONS ON IMAGE PROCESSING 16(5):1339-1354

[6] Deboosere L, De Wachter J, Simoens P, De Turck F, Dhoedt B, Demeester P (2007) Thin

client computing solutions in low- and high-motion scenarios. In proceedings of the Third
International Conference on Networking and Services (ICNS 2007), pp. 230-235

[7] Epiphany, the official web browser of the GNOME desktop environment:
 http://projects.gnome.org/epiphany/ Last retrieved on 2011-04-20

[8] FreeNX. Http://freenx.berlios.de Last retrieved on 2011-04-20

[9] gEdit, the official text editor of the GNOME desktop environment:

http://projects.gnome.org/gedit/ Last retrieved on 2011-04-20

[10] Hua ZG, Xie X, Liu H, Lu HQ, Ma WY (2006) Design and performance studies of an

adaptive scheme for serving dynamic Web content in a mobile computing environment.
IEEE TRANSACTIONS ON MOBILE COMPUTING 5(12):1650-1662

[11] ISO/IEC (2005) Coding of audio-visual objects - part 11: Scene description and

application engine. ISO/IEC 14496-11

[12] Joveski B, Mitrea M, Preteux F (2010) MPEG-4 LASeR-based thin client remote viewer.

In Proceedings of 2nd European Workshop on Visual Information Processing (EUVIP),
Paris, FRANCE.

[13] Joveski B, Simoens P, Gardenghi L, Marshall J, Mitrea M, Vankeirsbilck B, Preteux F,

Dhoedt B (2011) Towards a multimedia remote viewer for mobile clients. In Proceedings of
the Multimedia on Mobile Devices and Multimedia Content Access, SPIE, San Francisco,
USA.

[14] Khin HS, Kim S (2007) An analyzer of the user event for interactive DMB. In proceedings

of Third International Conference on Embedded Software and Systems (ICESS 2007).
Lecture Notes in Computer Science (vol.4523), pp. 818-25

[15] Kim HC, Leong, JM, Kim K (2004) Development of interactive contents streaming system
based on mpeg-4. In proceedings of the 6th International Conference on Advanced

Communication Technology, vol. 2, pp. 751-755

[16] Kohler E, Morris R, Chen B, Jannotti J, Kaashoek M (2000) The Click modular router.

ACM TRANSACTIONS ON COMPUTER SYSTEMS 18(3), 263-297

[17] Koller D, Turitzin M, Levoy M, Tarini M, Croccia G, Cignoni P, Scopigno R (2004)

Protected interactive 3D graphics via remote rendering. ACM TRANSACTIONS ON
GRAPHICS 23(3):695-703

http://projects.gnome.org/epiphany/�
http://freenx.berlios.de/�
http://projects.gnome.org/gedit/�

Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework
25

[18] ISO/IEC (2008). Coding of audio-visual objects – Part 20: Lightweight Application Scene

Representation (LASeR) and Simple Aggregation Format (SAF)

[19] Jansen J, Bulterman DCA (2009) SMIL State: an architecture and implementation for

adaptive time-based web applications. MULTIMEDIA TOOLS AND APPLICATIONS
43(3):203-224

[20] Le Feuvre J, Concolato C, Moissinac JC (2007) Gpac: open source multimedia framework.

In Proceedings of the 15th International Conference on Multimedia (MULTIMEDIA '07),
pp. 1009-1012

[21] Lethanhman C, Isokawa H, Kato T (2009) Multipath data transmission for wireless thin

clients. In Proceedings of the 3rd International Conference on Mobile Ubiquitous Computing
Systems, Services and Technologies (UBICOMM), Malta.

[22] Live555: Live555 streaming media. http://www.live555.com Last retrieved on 2011-04-20

[23] MicroSoft: Remote desktop protocol: Basic connectivity and graphics remoting

specification. http://msdn.microsoft.com/en-us/library/cc240445 Last retrieved on 2011-04-
20

[24] Mitrea M, Simoens P, Joveski B, Marshall J, Taguengayte A, Prêteux F, Dhoedt B (2009)

BiFS-based approaches to remote display for mobile thin clients. In Proceedings of the SPIE
- The International Society for Optical Engineering, vol. 7444, p. 74440F (8pp.)

[25] Paravati G, Celozzi C, Sanna A, Lamberti F (2010) A Feedback-Based Control Technique

for Interactive Live Streaming Systems to Mobile Devices. IEEE TRANSACTIONS ON
CONSUMER ELECTRONICS 56(1): 190-197

[26] Pendyala VS, Shim SSY (2009) The web as the ubiquitous computer. COMPUTER

42(9):90-92

[27] Preda M, Villegas P, Moran F, Lafruit G, Berretty RP (2007) A model for adapting 3D

graphics based on scalable coding, real-time simplification and remote rendering. VISUAL
COMPUTER 24(10):881-888. International Conference on Cyberworlds, Hannover,
GERMANY, OCT 24-27, 2007

[28] RealVNC: Virtual network computing. http://www.realvnc.com Last retrieved on 2011-

04-20

[29] Richardson T, Staford-Fraser Q, Wood K, Hopper A (1998) Virtual network computing.

IEEE INTERNET COMPUTING 2(1):33-38

[30] Sandklef H (2004) Testing applications with Xnee. LINUX JOURNAL 117:87-90

[31] Schlosser D, Binzenhoefer A, Staehle B (2007) Performance Comparison of Windows-

based Thin-Client Architectures. In: 2007 AUSTRALASIANTELECOMMUNICATION

http://www.live555.com/�
http://msdn.microsoft.com/en-us/library/cc240445�
http://www.realvnc.com/�

26 P. Simoens et al.

NETWORKS AND APPLICATIONS CONFERENCE, pp. 223-228. Australasian
Telecommunication Networks and Applications Conference, Christchurch, NEW
ZEALAND, DEC 02-05, 2007

[32] Schlosser D, Staehle B, Binzenhofer A, Boder B (2010) Improving the QoE of Citrix Thin

Client Users. In: ICC 2010 - 2010 IEEE International Conference on Communications

[33] Signes J, Fisher Y, Eleftheriadis A (2000) MPEG-4's binary format for scene description.

SIGNAL PROCESSING-IMAGE COMMUNICATION 15(4-5):321-345

[34] Simoens P, Praet P, Vankeirsbilck B, De Wachter J, Deboosere L, De Turck F, Dhoedt B,

Demeester P (2008) Design and implementation of a hybrid remote display protocol to
optimize multimedia experience on thin client devices. In: ATNAC: 2008
AUSTRALASIAN TELECOMMUNICATION NETWORKS AND APPLICATIONS
CONFERENCE, pp. 391-396. Australasian Networks and Applications Conference 2008,
Adelaide, AUSTRALIA, DEC 07-10, 2008

[35] Sun Y, Tay TT (2008) Analysis and reduction of data spikes in thin client computing.
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 68(11):1463-1472

[36] Tan KJ, Gong JW, Wu BT, Chang DC, Li HY, Hsiao YM, Chen YC, Lo SW, Chu YS,

Guo JI (2010) A remote thin client system for real time multimedia streaming over VNC. In:
2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 992-997

[37] TightVNC: Tightvnc. Http://www.tightvnc.com Last retrieved on 2011-04-20

[38] Tolia N, Andersen D, Satyanarayanan M (2006) Quantifying interactive user experience
on thin clients. COMPUTER 39(3):46+

[39] Wang F, Ghosh A, Sankaran C, Fleming PJ, Hsieh F, Benes SJ (2008) Mobile
WiMAX systems: Performance and evolution. IEEE COMMUNICATIONS MAGAZINE

46(10):41-49

[40] Wellnitz O, Wolf L (2010) On latency in IEEE 802.11-based wireless ad-hoc networks. In

2010 5th International Symposium on Wireless Pervasive Computing (ISWPC), pp. 261-266

http://www.tightvnc.com/�

	1 Introduction
	2 Client side handling of user input
	3 Related work
	4 Architectural design of a semantic remote display framework
	5 Prototype implementation
	5.1 Overall implementation details
	5.2 Internal operation of the SSM

	6 Experimental evaluation
	6.1 Testbed
	6.2 Bandwidth consumption of semantic remote display
	6.3 Data peak reduction through client side handling of user input

	7 Conclusion
	8 References

