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Abstract. According to the thin client computing principle, the user interface is 

physically separated from the application logic. In practice only a viewer component 
is executed on the client device, rendering the display updates received from the 
distant application server and capturing the user interaction. Existing remote display 
frameworks are not optimized to encode the complex scenes of modern applications, 
which are composed of objects with very diverse graphical characteristics. In order to 
tackle this challenge, we propose to transfer to the client, in addition to the binary 
encoded objects, semantic information about the characteristics of each object. 
Through this semantic knowledge, the client is enabled to react autonomously on user 
input and does not have to wait for the display update from the server. Resulting in a 
reduction of the interaction latency and a mitigation of the bursty remote display 
traffic pattern, the presented framework is of particular interest in a wireless context, 
where the bandwidth is limited and expensive. In this paper, we describe a generic 
architecture of a semantic remote display framework. Furthermore, we have 
developed a prototype using the MPEG-4 Binary Format for Scenes to convey the 
semantic information to the client. We experimentally compare the bandwidth 
consumption of MPEG-4 BiFS with existing, non-semantic, remote display 
frameworks. In a text editing scenario, we realize an average reduction of 23 % of the 
data peaks that are observed in remote display protocol traffic. 

1 Introduction 

In a thin client computing architecture, application and data processing are offloaded 
to remote servers, while the functionality of the client device is essentially limited to 
user interface functionalities. Nowadays, the web hosts increasingly powerful 
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computing resources and has evolved to a ubiquitous computer, offering applications 
ranging from simple word processors, over all-encompassing enterprise resource 
planning suites to 3D games [26].  Although recent advances in hardware 
miniaturization have drastically increased the processing power of mobile 
(smartphone, pda) and portable devices (laptop), the principle of thin client computing 
remains of particular interest in a mobile context.  A first advantage is that 
applications need not to be tailored individually for each mobile platform. Second, 
mobile thin client computing allows companies to better protect their classified data. 
By running office applications on a centralized company server, mobile employees 
can ubiquitously access all necessary data while at the same time the confidential and 
valuable data stays on the trusted and secured central server [21]. For example, no 
data can get lost owing to the theft of a mobile device of one of the employees. Third, 
beyond the conventional office applications, mobile thin client computing allows to 
provide resource demanding applications to mobile users. Despite the advances in 
mobile hardware, mobile phones still lack processing and storage resources to execute 
3D virtual environments that require advanced graphical hardware [2], or applications 
that operate on large data sets, such as medical imaging applications [17].  
 
In the thin client computing principle the mobile device only runs a viewer 
application that acts as a remote interface to applications running on distant servers. 
This viewer transfers user input to the server, and renders the display updates received 
from the server. To encode the display updates, existing remote display solutions 
typically use low-level graphic instructions or video codecs. The first approach is 
adopted by conventional remote display architectures. For instance, Citrix XenApp 
[3] and MicroSoft Remote Desktop Services [23] apply elementary drawing 
commands and images, whereas Virtual Network Computing [29] updates the display 
by filling rectangular screen areas with bitmaps. These low-level graphic instructions 
are the most efficient way to remotely display applications that only update a small 
portion of the display and have a slow refresh rate, such as office applications. In turn, 
video codecs are more convenient when the graphics exhibit a high level of detail and 
large parts of the display are frequently updated, such as in multimedia or 3D 
applications. This approach is mainly used for multimedia applications and remote 3D 
rendering, such as virtual 3D environments or 3D medical imaging applications [25, 
27]. 
All existing remote display solutions encode the complete display using a single 
output encoding format. This encoding format is however only optimized for a 
specific subset of applications. Using the inappropriate format to compress 
application graphics leads to high bandwidth requirements and degraded visual 
experience, e.g. because static displays are encoded as video frames or because text 
characters are encoded by lossy image compression techniques [34]. To support a 
wider range of applications with a single remote display framework, hybrid 
approaches have been presented that integrate multiple encoding formats. For 
example, Citrix’ Speedscreen Acceleration forwards video streams in their original 
format to the client, while the other parts of the display are still encoded through the 
Citrix’ proprietary protocol. This approach is only possible for video streams for 
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which the appropriate video codec is installed at the thin client.  Similarly, Tan et al. 
[36] divide the display in low- and high-motion regions, that are encoded respectively 
by means of VNC drawing primitives and MPEG-4 AVC (a.k.a. H.264) frames.  
These hybrid techniques provide no adequate solution to compress the complex 
scenes of contemporary applications, comprising objects with highly diverse graphic 
characteristics, such as text, images, widgets and embedded audio and video. A better 
approach is to encode each object individually, in its own optimal encoding format. 
However, this requires that the client is provided with the appropriate information on 
the different objects, such as their position and encoding format, in addition to the 
binary encoded objects itself. Within the context of this paper, we refer to this 
information as semantic information and introduce the concept of semantic remote 
display. As illustrated in Figure 1, the semantic knowledge enables the client to 
consider the scene as a collection of objects, instead of an elementary pixel buffer. 
The nature of these objects can be very diverse, examples include menu windows, 
dialog windows, images, character strings or video streams. In this paper, we 
demonstrate that the enhanced view of the client on the displayed scene can be 
exploited to optimize the thin client user experience in terms of interaction latency 
and bandwidth. These challenges are of particular importance in a wireless context, 
due to interference and fading effects. As a consequence, the presented semantic 
remote framework is targeting all types of wireless portable devices acting as a thin 
client, including laptops, smartphones and pda’s. 

 

 

Fig. 1. Traditional remote display solutions typically encode the complete display using the 
same output encoding format, whereas semantic remote display protocols transfer individual 

objects in their own encoding format, as well as the objects’ characteristics, e.g. potential user 
interaction.  

The contribution of this paper is twofold. First, we introduce a generic semantic 
remote display architecture. Compared with existing, non-semantic remote display 
solutions, the server side component of the architecture is enhanced with a Scene 
State Manager, orchestrating the transfer of semantic information to the client. We 
have developed a prototype of this architecture, using the semantically rich MPEG-4 
Binary Format for Scenes (BiFS). In previous work [13,24], we have already 
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demonstrated the viability of MPEG-4 BiFS as compression technology for objects 
with diverse graphical characteristics, in terms of bandwidth and visual quality. 
Compared to other technologies for the representation of heterogeneous content, such 
as Flash and SMIL/SVG, BiFS has the particular advantage that it allows for dynamic 
updates on the scene description, i.e. updates that are generated at the server during 
the session.  Furthermore, it is based on public standards, and thus avoids proprietary 
solutions such as Flash, that may lead to vendor lock-in. The BiFS principles have 
been optimized for thin clients, resulting in the Lightweight Application Scene 
Representation (LASeR) [18]. However, BiFS seems to be more future proof, owing 
to its more complex scene description possibilities, as well as the possibility to 
describe 3D scenes [12]. 
 
Second, we provide the client with additional semantic information on how the user 
can manipulate each object in the scene. This allows the client to react autonomously 
to user events, e.g. by displaying a cached object, instead of having to wait for the 
server feedback. Client side handling of user input improves the interaction latency 
and reduces the amount of data that is sent by the server to the client. Compared with 
existing cache mechanisms such as in HTTP, the novelty of our approach is that we 
not only cache objects, but also the possible user interactions with the objects in the 
scene, as well as how these objects should be reorganized after some user interaction. 
This is a more fine-grained approach, allowing to update smaller parts of the scene 
(not always complete objects), which in turn results in bandwidth and latency 
reductions. 

 
The remainder of this paper is structured as follows. In section 2, we elaborate on how 
semantic information can be exploited to enable client side handling of user input. To 
manage this semantic information, additional components are required at the server 
side of a semantic remote display. Therefore, we detail our generic architecture of a 
semantic remote display framework in section 3. We present our MPEG-4 BiFS based 
prototype of this architecture in section 4, and detail how client side user input 
handling is enabled by delivering the appropriate semantic information to the client. 
In section 5, we experimentally compare our approach with existing, non-semantic, 
remote display frameworks and quantify the reduction of the amount of data owing to 
the handling of user input at the client. Related work is explored in section 6. 

2 Client side handling of user input 

After the user has generated some input, it takes at least one network roundtrip time to 
transfer this information to the server and the resulting display update back to the 
client. Users tolerate interaction latencies up to 80 ms for gaming [4] and up to 150 
ms for office applications [38]. Wireless links, however, often introduce propagation 
delays in the order of tens of milliseconds [39, 40] and the total latency is further 
increased by client and server processing, router queuing, firewall processing etc. 
Furthermore, the display updates that are triggered by user input, often contain a large 
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amount of data that needs to be transferred to the client in a short interval. This results 
in a bursty traffic pattern, often requiring an instantaneous bandwidth that is much 
higher than the average bandwidth availability [35].  
Semantic remote display provides a solution to reduce the interaction latency and 
mitigate the bursty traffic pattern. As illustrated in Figure 1, semantic information 
allows the client to identify the individual objects in the scene. By providing 
additional information to the client on how the user can actually manipulate these 
objects, the client can react autonomously to user input and immediately take the 
appropriate action. For instance, when the user clicks on the “File” menu item object 
in a text editor, the client knows that an additional object needs to be displayed, i.e.  
the menu that needs to be opened. When cached at the client, this menu can be 
displayed immediately and the interaction latency is significantly reduced. 
Furthermore, the server only needs to transmit a differential update to correct or 
complete the actions undertaken by the client, which will mitigate the data peaks 
observed in remote display protocol traffic. Retaking the example of the “File” menu, 
this would be the list with recently opened files. 
When only graphic information is delivered to the client, client side user input 
handling cannot be adequately realized. Consequently, most non-semantic remote 
display protocols do not support the handling of user input at the client. An exception 
is Citrix, which has leveraged its architecture with the Speedscreen Latency 
Reduction feature. When this option is enabled,  the thin client will predict the server 
response to key strokes and immediately show the character on the screen. The 
mechanism is however limited, because the character is often shown in a different 
font [32]. After the feedback of the server is received, the font on the screen is 
corrected. 
To enable client side user input handling, the client needs to have accurate 
information on the potential user interactions and the appropriate actions to be taken 
subsequently. For each application, we model this information in a scene state 
diagram that is composed of different scene states. A scene state is defined as a 
specific configuration of visible objects in the scene. In each scene state, the user can 
interact with some of the objects, e.g. by clicking on it. In the diagram, these objects 
are marked as transition triggers of the scene state. When the user interacts with one 
of these trigger objects, a scene transition is started. Typically, a scene transition 
involves two types of operations: creation and deletion of visible scene objects, and 
drawing operations to modify the graphical characteristics of these objects. After the 
transition, a new subset of objects is visible on the screen and the application has 
entered a new scene state. 
A sample scene state diagram for a text editing application is shown in Figure 2. In 
this example, the scene state is uniquely determined by its visible widgets, menus and 
pop-up dialog windows. When the user starts the application, he is presented the 
default screen. All items in the top menu bar are marked as transition triggers. When 
the user clicks on one of these items, a menu becomes visible. The corresponding 
scene transition involves the creation of this menu object, as well as drawing 
instructions to present the individual menu items. 
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If the client is able to identify the different scene states, as well as the associated 
transition trigger objects, it can perform the scene transition autonomously. However, 
intercepting semantic information from the application, constructing the scene state 
diagram and transferring this information to the client, requires that the functionality 
of the server side component of remote display frameworks is leveraged with 
additional components. Furthermore, compared to conventional non-semantic 
frameworks, the architecture needs to provide the required flexibility to deliver to the 
client individually encoded objects instead of drawing commands or video frames, as 
well as semantic information. In the next section, we present a generic architecture of 
a semantic remote display framework that meets these design requirements.   
 

 
Fig. 2. Scene state diagram of a text editing application. 

3 Related work 

The framework presented in this paper enables the client to handle user input locally 
for remote applications. Related work that has been presented in literature was mainly 
focused on the delivery and caching of dynamic content in web services. 
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In [19], the authors enhance the declarative SMIL language with an external data 
model, to adapt the presentation of a web service in a more flexible way to the user 
input. The data model contains user-defined state and allows to mitigate the lack of 
support for interactive web based applications that is common to all declarative 
languages such as HTML, SMIL or SVG. By contrast, the BiFS format that is used in 
our framework has inherent support for dynamic updates from the server, triggered by 
user input. Furthermore, our framework is targeting applications that are currently 
installed on desktops, instead of web services. 
 
In [10], the authors present a combined content adaptation and caching scheme for 
displaying HTML content on mobile devices. After splitting the web page in HTML 
content blocks, each block is adapted to the size of the mobile device display. 
Furthermore, an integrated content block cache helps in reducing the mobile client 
latency to fetch HTML content from a web server. Similarly, in [5], a model is 
presented that tries to predict the future navigation commands during an interactive 
browsing session to optimize the client cache of mobile devices. The presented work 
focuses on improving the remote browsing of large scale images, which is challenging 
because of the small size of mobile displays and the cost and latency associated to 
data transmission. The presented caching algorithms are however designed for 
JPEG2000 images and cannot directly be applied to the case of user actions that is the 
scope of the current paper. 
 
Another direction of related work can be found in the exploitation of the distinctive 
feature of MPEG-4 BiFS to describe a displayed scene in terms of objects and the 
potential user interactions with these objects. Kim et al. [15] have developed an 
MPEG-4 object streaming server system that streams individual objects upon user 
request. The presented system provides a concrete implementation of how objects can 
be streamed over multiple remote display channels. Consequently, it is 
complementary to our work, which focuses on how these objects should be 
intercepted from the application.  
 
Khin et al. [14] have developed an Interaction Manager that analyzes the user input 
and determines the appropriate modifications to the BiFS scene. The Interaction 
Manager supports more complicated operations to react on user input, such as 
converting and encoding user input to the appropriate output format for online quiz 
applications. The proposed architecture may however be difficult to deploy on thin 
mobile devices, because additional components need to be installed on the client, 
consuming additional memory and CPU. Furthermore, a detailed experimental 
evaluation is missing, making it difficult to assess the footprint of the installed 
components in terms of memory and CPU. 



8 P. Simoens et al.  

 

4 Architectural design of a semantic remote display framework 

Any remote display framework contains a client side viewer and a server side 
component. The viewer application imposes no stringent design requirements, as it 
functionality is limited to transferring user input to the server and rendering the 
display updates from the server. Therefore, we will focus the discussion in this section 
on the server side component of a semantic remote display architecture, which is 
presented in Figure 3. 
The server side component is located between the application logic and the network 
communication interface and is composed of two logical layers. The upper layer, the 
Content Manager, intercepts the content generated by the application and converts it 
to the appropriate output format. Furthermore, it manages the semantic scene 
information. Both the converted graphical content as the semantic information are 
delivered to the client through one of the communication channels in the lower layer 
of the architecture.  In the upstream direction, user events are received by the user 
event handler, after possible conversion in the Content Manager, and delivered to the 
application. 

 

 
Fig. 3. Server side component of a semantic remote display architecture. The Scene State 

Manager (SSM) manages the semantic scene information and determines the appropriate output 
encoding format for each content type. 
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The architecture is composed of the following components: 
─ Content Interceptor: captures various types of content generated by the 

application, such as video streams and drawing commands, as well as semantic 
scene information. Graphical information is directly forwarded to the Content 
Convertor, whereas semantic information is delivered to the Scene State 
Manager (SSM). The application content can be intercepted at different layers 
of the rendering stack. The actual interception point is a tradeoff between 
general applicability of the remote display framework and the availability of 
semantic information. For example, an architecture that intercepts at the pixel 
level can be used across almost all platforms, but no semantic information will 
be captured. On the other hand, if the graphics are intercepted at a higher layer, 
e.g. at the level of graphical libraries such as Xlib, very detailed semantic 
information is intercepted, but the interceptor can only be used with applications 
that are built on this library.  

─ Content Convertor: converts the input captured by the content interceptors to the 
appropriate output format, as instructed by the SSM. It encodes both graphic 
content and semantic information that is delivered by the SSM. The supported 
conversions depend on the codecs that are installed on the client. 

─ Protocol channel: is a logical connection between the server side and client side 
component of the architecture. Each channel transfers a specific content type 
and is mapped, possibly together with other channels, on an underlying network 
connection.  This allows to provide each channel with the appropriate Quality of 
Service from the network. Channel examples include embedded video streams 
that are transported over UDP, or a dedicated channel for user events that 
requires reliable transmission over TCP. 

─ User event handler: is responsible for delivering user events to the appropriate 
application. When the user is concurrently running multiple applications, it 
queries the SSM to determine the application to deliver the event to. 

─ Scene State Manager: is the heart of the Content Manager and has a double 
functionality. First, this component orchestrates the conversion of intercepted 
graphic content to the appropriate encoding format. Second, it manages and 
interprets the semantic information captured from the application. This 
information is used to determine the appropriate output format for the 
intercepted content. For example, it can detect video streams in the scene, and 
forward the original bit stream without conversion to one of the output remote 
display protocol channels. Relevant semantic information is communicated to 
the client. 

 

5 Prototype implementation 

The multiple logical remote display protocol channels and the orchestrating Scene 
State Manager ensure that the architecture presented in the previous section offers the 
required functionality to support the remote display of modern applications. In this 
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section, we elaborate on the implementation details of the prototype we have 
developed. Furthermore, we detail how the Scene State Manager supports the client 
side handling of user input. 

5.1 Overall implementation details 

To demonstrate the concept of semantic remote display frameworks, we have 
implemented the prototype that is presented in Figure 4. 

 

 

Fig. 4. Overview of the implemented prototype. The Scene State Manager decides which X11 
instructions are transcoded to the MPEG-4 BiFS. 

The prototype was developed in a Linux environment, where applications typically 
render their graphics through the X Window System. Applications communicate to 
the rendering XServer by means of the X11 protocol. This protocol is an appropriate 
interception point, as it conveys both drawing information, e.g. to draw a rectangle or 
to display an image, and semantic information, e.g. to map a window on the screen. 
Furthermore, the X11 protocol can be transparently intercepted, because the 
application connects to the XServer through a local Unix socket. The X11 interceptor 
places itself between the application and the XServer by presenting a similar Unix 
socket to the applications. Through an elementary modification of the “DISPLAY” 
environment variable, the applications are instructed to connect to this socket instead 
of to the original socket opened by the XServer. The X11 interceptor opens a 
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connection to the XServer and forwards the unmodified X11 data, thus ensuring 
complete transparency to both application and XServer.  
The Scene State Manager tracks all X11 protocol traffic and decides which 
instructions are forwarded to the X11toBiFS convertor. Semantic protocol messages, 
e.g. when a new window object is created, are used to update its internal scene state 
information. More information on the internal operation of the SSM is provided in 
section 4.2.  
The X11toBIFSconvertor component receives X11 instructions from the X11 
interceptor and additional semantic instructions from the SSM, and converts this to 
the MPEG-4 Binary Format for Scenes (MPEG-4 BiFS) [11]. BiFS is an MPEG-4 
scene description language that combines sufficient semantic expression power with 
streaming capabilities. It is designed for interactive rich-media services that include 
text, audio, video, 2D and 3D graphics. The format allows to describe all content by a 
scene graph, providing a hierarchical and integrated representation of audio, video 
and graphical components. A distinctive feature of BiFS is that only the scene graph 
is binary encoded, whereas each object can remain encoded with its own optimal 
coding scheme. Lastly, BiFS provides the means to stream this encoded scene 
information to the client and to provide real-time updates to the scene tree. More 
details on the MPEG-4 Binary Format for Scenes can be found in [33].  
Internally, the X11toBIFSconvertor contains a specific conversion function for all 
X11 protocol message types and the semantic instructions from the SSM. It is built on 
the GPAC libraries [20] that support the BiFS encoding. Both scene state information, 
e.g. on the size and the position of the created windows, and actual drawing 
commands, e.g. to put an image in the scene, can be converted. At the end of the 
chain, the BiFS encoded content is streamed to the client over UDP. The BiFS 
streaming is realized by a modified version of the Live 555 Streaming Media library 
[22]. 
In the upstream direction, the client transfers the user events as http requests. These 
user events are posted on the XServer through the standard Linux uinput kernel 
module. The XServer cannot discriminate between these user events and user events 
that would be generated by a keyboard or mouse attached to the server machine, thus 
further ensuring the complete transparency to the application and the XServer.  
At the client, the GPAC player has been used. This is a standard and low complexity 
MPEG-4 player that is supported on both Windows and Linux platforms. 

5.2 Internal operation of the SSM 

In section 2, we have explained how the possible interactions of the user can be 
modeled by means of a scene state diagram. In the current section, we provide 
concrete details on how this diagram is constructed inside the Scene State Manager, 
and how the SSM uses this information to inform the client on potential user 
interactions. To support the discussion, Figure 5 visualizes the communication 
between the server components, as well as the internal scene state diagram of the 
SSM, for the sample case of a text editor. 
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Fig. 5. Sequence diagram of the communication between the server side components when the 
“File” menu is opened twice during the same session. In order not to overload the figure, the 

X11toBIFS convertor is omitted from the figure, as well as the delivery of user events through 
the user event handler to the XServer. The right part of the figure illustrates the current status of 

the scene state diagram that is maintained by the SSM. The second time the File menu is 
opened, only a differential update is provided. 

When the user clicks on an item in the top menu bar of the text editor, the opened 
menu needs to be displayed at the client. Although the exact encoding format might 
differ, non-semantic remote display frameworks would essentially instruct the client 
to draw a rectangular area and generate some drawing instructions to render the menu 
items. In a semantic approach, a new window object is created, of which the graphical 
content is updated by drawing instructions.  
In our implementation, we have statically configured the different scene states of the 
text editor, as well as the objects that are marked as transition triggers. When the 
application is started, the SSM loads these definitions. These definitions do not 
contain the actual operations of the scene transitions. As we will discuss below, these 
actual operations are stored at run-time when they occur. In the future, we foresee to 
construct the complete scene state diagram at run-time, by dynamically correlating 
user events to objects in the scene.  
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When the user clicks the “File” menu item, the SSM detects that a transition is 
triggered of which the actual operations are not yet available in its scene state 
diagram. Therefore, all X11 protocol messages are, after conversion to BiFS 
semantics, forwarded to the client. Consequently, the user experiences both 
processing and interaction delays between his input and the menu being presented on 
his screen.  At the end of the transition, indicated by the mapping of the menu 
window on the screen, the application is in a new scene state, and the SSM will take 
two actions. First, the SSM updates its scene state diagram, storing both semantic 
operations that create or delete visible objects on the screen, such as operations to 
map a window object, and drawing operations that change the graphical 
characteristics of scene objects, e.g. putting some text characters in the window 
object. Second, the SSM will enable the client to handle autonomously the next time 
the same user event occurs by informing the client on the transition trigger object, i.e. 
the “File“ menu item, and on which semantic operations should be taken, i.e. which 
window should be mapped. A concrete example of how this is translated in BiFS 
format is shown in Listing 1. A TouchSensor is attached to a rectangular area in the 
screen, and will call the JavaScript function to make the object visible by setting its 
scale.  
After some time, the user opens the same menu again. This time, the client is able to 
correlate the user event with a trigger object, and it immediately maps the cached 
version of the menu window on the screen. To keep both endpoints synchronized, the 
user event is still transmitted to the application. As the application is unaware of the 
client caching mechanism, it will generate the same X11 instructions to draw the 
menu items and map the window on the screen. The SSM will compare these X11 
instructions with the information in its scene state diagram. Drawing instructions that 
will not modify the cached version of the window object, are not forwarded. Only 
differential drawing instructions are forwarded, for example when the “File“ menu 
contains a new list of recently opened files. Semantic operations of the scene state 
transition, such as the mapping instruction, are always forwarded, to ensure the 
consistency between client and server. Because these semantic operations have 
already been performed by the client, they not incur an additional visual effect. 
Because the object was already made visible to the client, the differential updates are 
immediately shown when they arrive, such as the list with recently opened files. As 
many menu items and dialog windows do not change, differential updates will only be 
required in particular cases. 
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Listing 1: BiFS instructions to execute a JavaScript when the user clicks the 
mouse on a rectangular item in the scene. The script makes the menu visible by 
setting the scale argument. 

DEF TR1 Transform 2D { 
translation Xpos Ypos 
scale  K M 
children [ 
 Shape { 
  appearance Appearance{ 
   material Material2D{ 
    emissiveColor R G B 
   } 
  } 
  geometry Rectangle { 
   size Height Width \\the menu item 
  } 
 } 
 DEF TS1 TouchSensor {} 
 DEF SN1 Script { 
  eventIn SFBool MouseClicked 
  field SFVec2f ScaleBig 1 1 
  field SFVec2f ScaleSmall 0 0 
  eventOut SFVec2f CurrentScale 
  url “javascript: 
   function MouseClicked(value) { 
    if(value == true) 
     CurrentScale == ScaleBig; 
    else 
     CurrentScale == ScaleSmall; 
   } 
   “ 
 } 
] 

} 
 

ROUTE TS1.isActive TO SN1.MouseClicked 
ROUTE SN1.CurrentScale TO TR1.scale  
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6 Experimental evaluation 

We have experimentally evaluated the approach of semantic remote display 
frameworks in two ways. First, it can be expected that the additional transfer of 
semantic information might result in an increase of the bandwidth consumption. To 
this end, we compare the bandwidth consumption of our BiFS prototype with 
conventional, non-semantic architectures. Second, we quantify the benefits of the 
client side user input handling by measuring the data peaks observed in remote 
display protocol traffic after some user input. 
 

6.1 Testbed 

For the experiments, the testbed presented in Figure 6 was set up. It is composed of a 
server and client machine, interconnected by an impairment node. This impairment 
node is equiped with the Click router framework [16] and allows to simulate the 
propagation delay between client and server. 

 
Fig. 6. Structure of the testbed used for the experimental validation. 

 
In order to benchmark the performance of the BiFS prototype, three other open source 
remote display architectures were installed on the testbed: RealVNC v4.1.1 [27], 
TightVNC v1.3.10 [37] and FreeNX v3.4.0 [8]. Although all these architectures are 
Linux based, their bandwidth consumption is in the same order of magnitude of 
commercially available Windows-based architectures [5,31], such as Microsoft RDP 
or Citrix XenApp, and consequently they can be considered as a relevant benchmark.  
 
RealVNC is widely used and is based on the Remote Framebuffer protocol which 
divides the display in multiple rectangles. TightVNC is an enhanced version of 
RealVNC, offering an additional JPEG-based compression for display updates. It is 
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mainly targetting applications that generate display updates with complex color 
patterns. FreeNX is an optimized version of the original X architecture. It compresses 
X11 protocol traffic between the remote application and the rendering XServer 
running at the client. By using message-specific compression algorithms and 
extensive client side caching, FreeNX achieves high compression ratios. The bulk of 
the rendering however is performed by the XServer running at the client. Compared 
to other remote display technologies, FreeNX requires important memory and CPU 
resources for cache management, decoding and rendering [6]. Consequently, FreeNX 
might not be applicable on resource constrained mobile thin client devices. 

6.2 Bandwidth consumption of semantic remote display 

To assess the bandwidth penalty induced by the additional transfer of semantic scene 
information, we have selected two scenarios: text editing and web browsing. The text 
editing scenario covers applications with an elementary scene composition: the 
display of a text editor is mainly composed of one large and initially blank input field. 
The display, however, is frequently updated, i.e. each time the user enters a character. 
By contrast, the web browsing scenario covers applications with less frequent display 
updates, but with a more complex scene composition since web sites typically contain 
a mixture of text, images, photos and even audiovisual streams. 
 
To simulate the text editing scenario in a realistic way, 5 colleagues were asked to 
transscribe the same text of 879 characters while recording their user input. 
Afterwards, these traces were replayed by means of the Xnee tool [30], to ensure that 
the same user input is used across all tested remote display architectures. The remote 
application was the gedit text editor [9].  

 
Figure 7 presents the bandwidth consumption, averaged over 10 iterations. For the 
network roundtrip delay, three different values were configured in the Click router: 
0 ms, 30 ms and 100 ms. The particular case of 0 ms was added because some remote 
display protocols apply different compression mechanisms when the roundtrip time 
between client and server is limited. In turn, 30 ms is a realistic value of the roundtrip 
time on wireless links [39, 40], whereas 100 ms is close to the upper limit of network 
roundtrip times that remain unnoticed to users, as explained in section 2. 

 
Of all tested remote display architectures, TightVNC consumes most bandwidth in the 
text editing scenario. This can be attributed to the use of JPEG-based encoding, which 
is optimized for complex, multi-colored graphics, but inappropriate for elementary 
graphics only containing characters. These results confirm that it is necessary to adapt 
the compression mechanism to the graphical characteristics of the content. FreeNX is 
the most bandwidth efficient remote display architecture. As explained above, this is 
because FreeNX trades network bandwidth for client side processing and requires to 
run a complete XServer at the client. As a result, FreeNX requires two times as much 
client CPU and memory compared to BiFS, as can be seen in Table 1. This table 
compares the resource requirements of the client side application of BiFS (i.e. the 
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GPAC player) and FreeNX. The incurred load by FreeNX is the sum of the load 
generated by two processes: the decompression library (nxssh) and the XServer 
(Xorg), whereas the reported load for BiFS is the load of the GPAC player. 
 

 

 

Fig. 7. Average bandwidth consumption for users entering a text of 879 characters, with a 
roundtrip delay of 30 ms between client and server. The results are the average of 10 
simulations per user. BiFS is not optimal for applications with an elementary scene 

composition. In the upstream direction, BiFS requires significantly less bandwidth, owing to 
the lack of explicit display update requests (RealVNC and TightVNC) or important client-

server synchronization (FreeNX). 

  
 

Table 1. Comparison of the client side CPU and memory usage of BiFS (GPAC player) and 
FreeNX for the text editing scenario with a roundtrip delay of 30 ms. The results are averaged 

over all users, with 10 iterations per user. Measurements were performed on AMD Athlon 1800 
MHz with 512 MB. 

 
 memory [MB] CPU [%] 

FreeNX (nxssh + Xorg) 59.65 24.9 
BiFS 28.75 11.88 
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 Figure 7 shows that BiFS is less optimized for the case of text editing, with 
elementary graphic updates and scene composition. We believe the BiFS performance 
can be enhanced by a better transmission strategy. In our current implementation, 
each BiFS instruction to render a character is transmitted in a separate TCP/IP packet, 
whereas RealVNC and TightVNC group multiple characters in a single display 
update. Nevertheless, its bandwidth requirements do not exceed 150 kbps and remain 
well below the bandwidth offered by modern mobile radio technologies 
[BALACHANDRAN]. The same conclusions can be drawn for other values of the 
network roundtrip time. In Table 2 and Table 3, we have presented the results of the 
same experiment for a network roundtrip time of 0 ms and 100 ms respectively.  
 

Table 2. Average bandwidth consumption for identical experiment conditions as in Fig. 7, but 
with a roundtrip delay of 0 ms between client and server. 

 

user 
BiFS RealVNC TightVNC FreeNX 

up down up down up down up down 
1 4.48 87.22 12.05 45.67 25.51 261.71 21.58 20.43 
2 3.28 67.70 8.84 51.18 18.49 188.63 15.27 14.95 
3 3.61 73.20 9.96 40.65 20.13 205.38 17.83 17.59 
4 6.79 118.87 19.25 69.96 37.73 339.90 32.55 30.60 
5 5.40 96.40 14.72 55.20 30.86 310.11 26.18 25.04 

 
Table 3. Average bandwidth consumption for identical experiment conditions as in Fig. 7, 

but with a roundtrip delay of 100 ms between client and server. 
 

user 
BiFS RealVNC TightVNC FreeNX 

up down up down up down up down 
1 4.43 81.42 12.15 56.01 20.93 206.08 23.80 21.16 
2 3.33 68.23 8.87 51.46 14.40 113.439 17.42 16.27 
3 3.58 72.96 10.96 87.14 17.39 145.20 19.89 18.46 
4 6.14 113.92 20.60 146.72 28.16 270.28 35.57 31.25 
5 5.22 92.47 16.02 25.77 25.34 254.63 28.85 26.10 

 
 

In the web browsing scenario, four websites were visited: a news website 
(www.bbc.co.uk), the website of a project on mobile thin clients (www.mobithin.eu), 
a page on the photo website Flickr and a page search on Google Image. The websites 
were visited through the Epiphany browser [7] running on the server. User interaction 
was limited to clicking on one of the four predefined bookmarks in the browser to 
load the website.  

 
The web browsing scenario was specifically selected to compare the display update 
compression efficiency of the test remote display frameworks. First, websites have a 



Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework  
19 

 

more complex scene composition compared to the text editing scenario, combining 
text, images, photos and even audiovisual streams. Second, user interaction is now 
limited to a single mouse click to load a web page, in contrast to the text editing 
scenario with frequent user interaction.   
 
Figure 8 shows the total number of bytes exchanged between client and server when 
loading an individual webpage, allowing to compare the compression efficiency of 
the evaluated remote display frameworks. Because the number of bytes sent upstream 
is limited, we provide detailed figures on the bytes sent upstream in Table 3. With 
BiFS, only one mouse event is sent upstream to communicate the click on the 
bookmark. TightVNC and RealVNC regularly sent requests for a display update to 
the server and hence exhibit higher upstream data traffic. With FreeNX, more 
synchronization traffic between client and server is required.  

 
Fig. 8. Total number of bytes exchanged between client and server when loading a website. 

The results are averaged over 10 iterations. The BiFS compression is significantly better than 
the compression achieved by RealVNC and TightVNC. Results are for a roundtrip delay of 30 

ms. 
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Table 4. Total number of bytes sent from client to server. These bytes include a single user 
event (mouse click), requests for display updates (TightVNC and RealVNC) or synchronization 

information (FreeNX). The results are in kB. Results are for a roundtrip delay of 30 ms. 

 
 BBC MobiThin Google Image Flickr 

BiFS 0.4 0.4 0.4 0.4 
RealVNC 123.9 42.4 32.23 79.5 
TightVNC 32.7 19.5 11.9 41.9 

FreeNX 25.2 15.1 12.4 17.8 
 

In terms of the number of bytes required to encode the display updates, BiFS clearly 
outperforms RealVNC and TightVNC for a roundtrip time of 30 ms. Depending on 
the visited website, the relative bandwidth reduction varies between 52.0 and 75.4 % 
compared with TightVNC, and 81.9 % - 95.6 % compared with RealVNC. The large 
range of these experimental results can be explained by the adaptive encoding 
mechanism that is applied by VNC, depending on the network roundtrip time. Unlike 
the text editing scenario, TightVNC is more bandwidth efficient than RealVNC, 
because its JPEG encoding is better suited for the numerous images on the visited 
websites.  
 
We have repeated the experiments for network roundtrip delays of 0 ms and 100 ms. 
We have observed that RealVNC is switching to a higher level of compression for the 
roundtrip delay of 100 ms. In this case, RealVNC becomes again the most bandwidth 
efficient compared with TightVNC. Compared with RealVNC, BiFS requires between 
21.6 % - 85.7 % less bandwidth to encode the display updates. In turn, FreeNX is able 
to achieve a compression rate which is 2 or 3 times higher than BiFS; at the expense 
of running a complete XServer at the client. 
  
The results presented in this section demonstrate the feasibility of using semantic 
remote display frameworks in a mobile thin client context, in particular for 
applications that generate a lot of images and have complex scene compositions. The 
additional bandwidth consumption required for the transfer of semantic information 
does not outweigh the gains that are achieved by a more efficient encoding. In the 
next section, we demonstrate how the use of semantic information in remote display 
frameworks results in additional bandwidth reductions, better traffic shaping and 
latency reduction. 

6.3 Data peak reduction through client side handling of user input 

As explained in section 2, the availability of semantic scene information at the client 
can mitigate the data peaks due to display updates are triggered by user events. To 
validate this approach, we have created a scene state diagram of the gedit text editor, 
defining each menu item and icon in the top menu bar as a transition trigger.  Two 
different types of scene transitions were considered. In the first experiment, the File 
menu was opened 3 times in the same session by clicking on a menu item, whereas in 
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the second experiment, the Save dialog window is called by clicking on the 
corresponding icon. As was illustrated in Figure 5, the semantic information on the 
transition trigger and the corresponding scene transition is transferred after the menu 
or dialog window have been opened for the first time. From now on, the client can 
immediately show these objects when a similar user event occurs. No server side 
instructions are required, except for differential updates or to draw a tooltip. 
Consequently, the interaction latency is reduced to the time required for the local 
processing at the client.  
 
Figure 9 shows the instantaneous bandwidth consumption when the File menu is three 
times opened during the same text editing session. When the user clicks the menu for 
the first time, the menu is not yet available in the client cache. The server instructs the 
client to save this menu and provides the client the required semantic scene 
information to directly show the cached object the next time. This can be observed in 
the figure when the user opens the menu for the second and the third time: only very 
limited downstream traffic is observed. 

 

 
Fig. 9. Instantaneous BiFS bandwidth consumption, measured during a sample experiment in 

which the same menu was opened and closed three times. The second and third time, a 
significant reduction of the peaks following the mouse click can be observed. 
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Table 5 provides quantitative results on the peak reduction by comparing the total 
number of bytes that is sent from server to client when the menu or dialog window are 
shown. It is observed that all solutions sent less data the second time the user 
operation occurred. For TightVNC and RealVNC, this peak reduction can be mainly 
attributed to the zlib compression efficiency. This technique employs a dictionary 
with recently encoded byte strings. Because the reported figures are generated when 
the same menu is consecutively opened without any other operation in between, the 
zlib compression is able to reduce the peaks by 18.1-30.5 % for the menu and by 
20.5-25.2 % for the dialog window. In regular sessions, other display updates will be 
transmitted to the client in between two menu openings and the zlib compression 
efficiency will decrease. 

Table 5. Total number of bytes sent from server to client when repeatedly opening the File 
menu or the Save dialog of the gEdit application in the same session. The presented results are 
the average of 10 iterations and were obtained with a network roundtrip time value of 30 ms. 

The addition of the SSM results in an additional data reduction of 22.1-23.1 %.} 

 open menu reduction open dialog window reduction 
 1st time 2nd time 12 [%] 1st time 2nd time 12 [%] 
BiFS w/o 
SSM 22 735 5 634 75.2 23 190 6 705 71.1 

BiFS with 
SSM 23 407 417 98.2 23 789 1 628 93.2 

FreeNX 6 302 2 267 64.0 12 533 8 624 31.2 
TightVNC 16 423 11 419 30.5 14 037 11 162 20.5 
RealVNC 241 332 197598 18.1 300 270 224 459 25.2 

 
 

 
The data peak reduction achieved by FreeNX is caused by two effects. First, FreeNX 
achieves a high compression ratio due to caching of X11 messages at the client. 
Second, when a menu is opened for the first time, additional X11 instructions are 
required to create and configure a new window object, besides the drawing 
instructions to render the content of the window. When the user opens the menu or 
dialog window for the second time, less X11 instructions are required because the 
previous window is made visible again, instead of creating a new window object. 
Because BiFS directly translates each X11 protocol message, this second effect is also 
the reason why BiFS is able to reduce the amount of data to be sent by 71.2-75.2 %, 
even when no Scene State Manager is implemented. The addition of the Scene State 
Manager results in additional reduction of 22.1-23.0 %. By comparing the data that is 
sent the first time a user event occurs, it can be concluded that less than 1kB is 
required to transfer the additional semantic information to allow client side user input 
handling. 
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7 Conclusion 

Semantic remote display architectures enable the client to identify the individual 
objects in the displayed scene by providing information on the composition of the 
scene and the individual characteristics of each object. In this paper, we have 
demonstrated how semantic information can be exploited at the client to react 
immediately to user input, instead of having to wait for the display updates of the 
server. At the server, a Scene State Manager captures semantic information from the 
application and informs the client how the user can manipulate the objects in the 
displayed scene. Furthermore, we have detailed the implementation details of our 
prototype that uses MPEG-4 BiFS to encode and transfer the semantic information to 
the client. We have experimentally assessed the additional bandwidth that is required 
to convey semantic information to the client. Lastly, we have demonstrated how 
handling user events at the client mitigates the data peaks of remote display protocol 
traffic by on average 23 %. 
 
In our current implementation, the different scene states and the transition triggers are 
loaded from a preconfigured file. Future research will focus on the detection of the 
individual scene states at run-time, by correlating the user input to the resulting 
display update. This should result in application profiles that can be reused for other 
users that use the same application. Furthermore, we will concentrate our efforts on 
optimizing the amount of semantic information that needs to be saved in the memory 
of the resource-constrained thin client device. Currently, each scene transition is 
saved at the client after its first occurrence. This can be optimized by creating 
individual user profiles, indicating the most relevant objects to be cached at the client, 
e.g. the menus and dialog windows that are most frequently visited. Lastly, we will 
add more types of client side actions. Currently, the client is only enabled to display 
windows in response to a mouse click. The range of actions can be extended with, for 
example, the client directly contacting the source of audio and video streams. 
 

8 References 

[1] Balachandran K, Bi Q, Rudrapatna, A, Seymour J, Soni R, Weber A (2009): Performance 
Assessment of Next-Generation Wireless Mobile Systems. BELL LABS TECHNICAL 
JOURNAL 13(4): 35-58 

 
[2] Boukerche A, Pazzi RWN, Feng J (2008) An end-to-end virtual environment streaming 

technique for thin mobile devices over heterogeneous networks. COMPUTER 
COMMUNICATIONS 31(11): 2716-2725 

 
[3] Citrix Systems Inc.: http://www.citrix.com. Last retrieved on 2011-04-20. 
 
[4] Claypool M, Claypool K (2006) Latency and player actions in online games. 

COMMUNICATIONS OF THE ACM 49(11):40-45 

http://www.citrix.com/�


24 P. Simoens et al.  

 

 
[5] Descampe A,  De Vleeschouwer C, Iregui M, Macq B, Marques F (2007) Prefetching and 

caching strategies for remote and interactive browsing of JPEG-2000 images. IEEE 
TRANSACTIONS ON IMAGE PROCESSING 16(5):1339-1354 

 
[6] Deboosere L, De Wachter J, Simoens P, De Turck F, Dhoedt B, Demeester P (2007) Thin 

client computing solutions in low- and high-motion scenarios. In proceedings of the Third 
International Conference on Networking and Services (ICNS 2007), pp. 230-235 

 
[7] Epiphany, the official web browser of the GNOME desktop environment: 
     http://projects.gnome.org/epiphany/ Last retrieved on 2011-04-20 
 
[8] FreeNX. Http://freenx.berlios.de Last retrieved on 2011-04-20 
 
[9] gEdit, the official text editor of the GNOME desktop environment: 

http://projects.gnome.org/gedit/ Last retrieved on 2011-04-20 
 
[10]  Hua ZG, Xie X, Liu H, Lu HQ, Ma WY (2006) Design and performance studies of an 

adaptive scheme for serving dynamic Web content in a mobile computing environment. 
IEEE TRANSACTIONS ON MOBILE COMPUTING 5(12):1650-1662 

 
 
[11]  ISO/IEC (2005) Coding of audio-visual objects - part 11: Scene description and 

application engine. ISO/IEC 14496-11 
 
[12] Joveski B, Mitrea M, Preteux F (2010) MPEG-4 LASeR-based thin client remote viewer. 

In Proceedings of 2nd European Workshop on Visual Information Processing (EUVIP), 
Paris, FRANCE. 

 
[13] Joveski B, Simoens P, Gardenghi L, Marshall J, Mitrea M, Vankeirsbilck B, Preteux F, 

Dhoedt B (2011) Towards a multimedia remote viewer for mobile clients. In Proceedings of 
the Multimedia on Mobile Devices and Multimedia Content Access, SPIE, San Francisco, 
USA. 

 
[14] Khin HS, Kim S (2007) An analyzer of the user event for interactive DMB. In proceedings 

of Third International Conference on Embedded Software and Systems (ICESS 2007).  
Lecture Notes in Computer Science (vol.4523), pp. 818-25 

 
[15] Kim HC, Leong, JM, Kim K (2004) Development of interactive contents streaming system 
based on mpeg-4. In proceedings of the 6th International Conference on Advanced 

Communication Technology, vol. 2, pp. 751-755 
 
[16] Kohler E, Morris R, Chen B, Jannotti J, Kaashoek M (2000) The Click modular router. 

ACM TRANSACTIONS ON COMPUTER SYSTEMS 18(3), 263-297 
 
[17] Koller D, Turitzin M, Levoy M, Tarini M, Croccia G, Cignoni P, Scopigno R (2004) 

Protected interactive 3D graphics via remote rendering. ACM TRANSACTIONS ON 
GRAPHICS 23(3):695-703 

 

http://projects.gnome.org/epiphany/�
http://freenx.berlios.de/�
http://projects.gnome.org/gedit/�


Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework  
25 

 

 
[18] ISO/IEC (2008). Coding of audio-visual objects – Part 20: Lightweight Application Scene 

Representation (LASeR) and Simple Aggregation Format (SAF) 
 
[19] Jansen J, Bulterman DCA (2009) SMIL State: an architecture and implementation for 

adaptive time-based web applications. MULTIMEDIA TOOLS AND APPLICATIONS 
43(3):203-224 

 
[20] Le Feuvre J, Concolato C, Moissinac JC (2007) Gpac: open source multimedia framework. 

In Proceedings of the 15th International Conference on Multimedia (MULTIMEDIA '07), 
pp. 1009-1012 

 
 
[21] Lethanhman C, Isokawa H, Kato T (2009) Multipath data transmission for wireless thin 

clients. In Proceedings of the 3rd International Conference on Mobile Ubiquitous Computing 
Systems, Services and Technologies (UBICOMM), Malta. 

 
[22] Live555: Live555 streaming media. http://www.live555.com Last retrieved on 2011-04-20 
 
[23] MicroSoft: Remote desktop protocol: Basic connectivity and graphics remoting 

specification. http://msdn.microsoft.com/en-us/library/cc240445 Last retrieved on 2011-04-
20 

 
[24] Mitrea M, Simoens P, Joveski B, Marshall J, Taguengayte A, Prêteux F, Dhoedt B (2009) 

BiFS-based approaches to remote display for mobile thin clients. In Proceedings of the SPIE 
- The International Society for Optical Engineering, vol. 7444, p. 74440F (8pp.) 

 
[25] Paravati G, Celozzi C, Sanna A, Lamberti F (2010) A Feedback-Based Control Technique 

for Interactive Live Streaming Systems to Mobile Devices. IEEE TRANSACTIONS ON 
CONSUMER ELECTRONICS 56(1): 190-197 

 
[26] Pendyala VS, Shim SSY (2009) The web as the ubiquitous computer. COMPUTER 

42(9):90-92 
 
[27] Preda M, Villegas P, Moran F, Lafruit G, Berretty RP (2007) A model for adapting 3D 

graphics based on scalable coding, real-time simplification and remote rendering. VISUAL 
COMPUTER 24(10):881-888. International Conference on Cyberworlds, Hannover, 
GERMANY, OCT 24-27, 2007 

 
[28] RealVNC: Virtual network computing. http://www.realvnc.com Last retrieved on 2011-

04-20 
 
[29] Richardson T, Staford-Fraser Q, Wood K, Hopper A (1998) Virtual network computing. 

IEEE INTERNET COMPUTING 2(1):33-38 
 
[30] Sandklef H (2004) Testing applications with Xnee. LINUX JOURNAL 117:87-90 
 
[31] Schlosser D, Binzenhoefer A, Staehle B (2007) Performance Comparison of Windows-

based Thin-Client Architectures. In: 2007 AUSTRALASIANTELECOMMUNICATION 

http://www.live555.com/�
http://msdn.microsoft.com/en-us/library/cc240445�
http://www.realvnc.com/�


26 P. Simoens et al.  

 

NETWORKS AND APPLICATIONS CONFERENCE, pp. 223-228. Australasian 
Telecommunication Networks and Applications Conference, Christchurch, NEW 
ZEALAND, DEC 02-05, 2007 

 
[32] Schlosser D, Staehle B, Binzenhofer A, Boder B (2010) Improving the QoE of Citrix Thin 

Client Users. In: ICC 2010 - 2010 IEEE International Conference on Communications 
  
[33] Signes J, Fisher Y, Eleftheriadis A (2000) MPEG-4's binary format for scene description. 

SIGNAL PROCESSING-IMAGE COMMUNICATION 15(4-5):321-345 
 
[34] Simoens P, Praet P, Vankeirsbilck B, De Wachter J, Deboosere L, De Turck F, Dhoedt B, 

Demeester P (2008) Design and implementation of a hybrid remote display protocol to 
optimize multimedia experience on thin client devices. In: ATNAC: 2008 
AUSTRALASIAN TELECOMMUNICATION NETWORKS AND APPLICATIONS 
CONFERENCE, pp. 391-396. Australasian Networks and Applications Conference 2008, 
Adelaide, AUSTRALIA, DEC 07-10, 2008 

 
[35] Sun Y, Tay TT (2008) Analysis and reduction of data spikes in thin client computing. 
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 68(11):1463-1472 
 
[36] Tan KJ, Gong JW, Wu BT, Chang DC, Li HY, Hsiao YM, Chen YC, Lo SW, Chu YS, 

Guo JI (2010) A remote thin client system for real time multimedia streaming over VNC. In: 
2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 992-997 

 
[37] TightVNC: Tightvnc. Http://www.tightvnc.com Last retrieved on 2011-04-20 
 
[38] Tolia N, Andersen D, Satyanarayanan M (2006) Quantifying interactive user experience 
on thin clients. COMPUTER 39(3):46+ 
 
[39] Wang F, Ghosh A, Sankaran C, Fleming PJ, Hsieh F, Benes SJ (2008) Mobile 
WiMAX systems: Performance and evolution. IEEE COMMUNICATIONS MAGAZINE 

46(10):41-49 
 
[40] Wellnitz O, Wolf L (2010) On latency in IEEE 802.11-based wireless ad-hoc networks. In 

2010 5th International Symposium on Wireless Pervasive Computing (ISWPC), pp. 261-266  
 
 

http://www.tightvnc.com/�

	1 Introduction
	2 Client side handling of user input
	3 Related work
	4 Architectural design of a semantic remote display framework
	5 Prototype implementation
	5.1 Overall implementation details
	5.2 Internal operation of the SSM

	6 Experimental evaluation
	6.1 Testbed
	6.2 Bandwidth consumption of semantic remote display
	6.3 Data peak reduction through client side handling of user input

	7 Conclusion
	8 References

