56 research outputs found

    Bisimilarity is not Borel

    Full text link
    We prove that the relation of bisimilarity between countable labelled transition systems is Σ11\Sigma_1^1-complete (hence not Borel), by reducing the set of non-wellorders over the natural numbers continuously to it. This has an impact on the theory of probabilistic and nondeterministic processes over uncountable spaces, since logical characterizations of bisimilarity (as, for instance, those based on the unique structure theorem for analytic spaces) require a countable logic whose formulas have measurable semantics. Our reduction shows that such a logic does not exist in the case of image-infinite processes.Comment: 20 pages, 1 figure; proof of Sigma_1^1 completeness added with extended comments. I acknowledge careful reading by the referees. Major changes in Introduction, Conclusion, and motivation for NLMP. Proof for Lemma 22 added, simpler proofs for Lemma 17 and Theorem 30. Added references. Part of this work was presented at Dagstuhl Seminar 12411 on Coalgebraic Logic

    Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems

    Get PDF
    Larsen and Skou characterized probabilistic bisimilarity over reactive probabilistic systems with a logic including true, negation, conjunction, and a diamond modality decorated with a probabilistic lower bound. Later on, Desharnais, Edalat, and Panangaden showed that negation is not necessary to characterize the same equivalence. In this paper, we prove that the logical characterization holds also when conjunction is replaced by disjunction, with negation still being not necessary. To this end, we introduce reactive probabilistic trees, a fully abstract model for reactive probabilistic systems that allows us to demonstrate expressiveness of the disjunctive probabilistic modal logic, as well as of the previously mentioned logics, by means of a compactness argument.Comment: Aligned content with version accepted at ICTCS 2016: fixed minor typos, added reference, improved definitions in Section 3. Still 10 pages in sigplanconf forma

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models

    Probabilistic Semantics: Metric and Logical Character¨ations for Nondeterministic Probabilistic Processes

    Get PDF
    In this thesis we focus on processes with nondeterminism and probability in the PTS model, and we propose novel techniques to study their semantics, in terms of both classic behavioral relations and the more recent behavioral metrics. Firstly, we propose a method for decomposing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This decomposition method allows us to derive the compositional properties of probabilistic (bi)simulations. Then, we propose original notions of metrics measuring the disparities in the behavior of processes with respect to (decorated) trace and testing semantics. To capture the differences in the expressive power of the metrics we order them by the relation `makes processes further than'. Thus, we obtain the first spectrum of behavioral metrics on the PTS model. From this spectrum we derive an analogous one for the kernels of the metrics, ordered by the relation `makes strictly less identification than'. Finally, we introduce a novel technique for the logical characterization of both behavioral metrics and their kernels, based on the notions of mimicking formula and distance on formulae. This kind of characterization allows us to obtain the first example of a spectrum of distances on processes obtained directly from logics. Moreover, we show that the kernels of the metrics can be characterized by simply comparing the mimicking formulae of processes

    Explaining Behavioural Inequivalence Generically in Quasilinear Time

    Get PDF
    We provide a generic algorithm for constructing formulae that distinguish behaviourally inequivalent states in systems of various transition types such as nondeterministic, probabilistic or weighted; genericity over the transition type is achieved by working with coalgebras for a set functor in the paradigm of universal coalgebra. For every behavioural equivalence class in a given system, we construct a formula which holds precisely at the states in that class. The algorithm instantiates to deterministic finite automata, transition systems, labelled Markov chains, and systems of many other types. The ambient logic is a modal logic featuring modalities that are generically extracted from the functor; these modalities can be systematically translated into custom sets of modalities in a postprocessing step. The new algorithm builds on an existing coalgebraic partition refinement algorithm. It runs in time ?((m+n) log n) on systems with n states and m transitions, and the same asymptotic bound applies to the dag size of the formulae it constructs. This improves the bounds on run time and formula size compared to previous algorithms even for previously known specific instances, viz. transition systems and Markov chains; in particular, the best previous bound for transition systems was ?(m n)

    Coalgebraic Infinite Traces and Kleisli Simulations

    Full text link
    Kleisli simulation is a categorical notion introduced by Hasuo to verify finite trace inclusion. They allow us to give definitions of forward and backward simulation for various types of systems. A generic categorical theory behind Kleisli simulation has been developed and it guarantees the soundness of those simulations with respect to finite trace semantics. Moreover, those simulations can be aided by forward partial execution (FPE)---a categorical transformation of systems previously introduced by the authors. In this paper, we give Kleisli simulation a theoretical foundation that assures its soundness also with respect to infinitary traces. There, following Jacobs' work, infinitary trace semantics is characterized as the "largest homomorphism." It turns out that soundness of forward simulations is rather straightforward; that of backward simulation holds too, although it requires certain additional conditions and its proof is more involved. We also show that FPE can be successfully employed in the infinitary trace setting to enhance the applicability of Kleisli simulations as witnesses of trace inclusion. Our framework is parameterized in the monad for branching as well as in the functor for linear-time behaviors; for the former we mainly use the powerset monad (for nondeterminism), the sub-Giry monad (for probability), and the lift monad (for exception).Comment: 39 pages, 1 figur

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science
    • …
    corecore