9,504 research outputs found

    A coalgebraic view of bar recursion and bar induction

    Get PDF
    We reformulate the bar recursion and induction principles in terms of recursive and wellfounded coalgebras. Bar induction was originally proposed by Brouwer as an axiom to recover certain classically valid theorems in a constructive setting. It is a form of induction on non- wellfounded trees satisfying certain properties. Bar recursion, introduced later by Spector, is the corresponding function defnition principle. We give a generalization of these principles, by introducing the notion of barred coalgebra: a process with a branching behaviour given by a functor, such that all possible computations terminate. Coalgebraic bar recursion is the statement that every barred coalgebra is recursive; a recursive coalgebra is one that allows defnition of functions by a coalgebra-to-algebra morphism. It is a framework to characterize valid forms of recursion for terminating functional programs. One application of the principle is the tabulation of continuous functions: Ghani, Hancock and Pattinson defned a type of wellfounded trees that represent continuous functions on streams. Bar recursion allows us to prove that every stably continuous function can be tabulated to such a tree where by stability we mean that the modulus of continuity is also continuous. Coalgebraic bar induction states that every barred coalgebra is well-founded; a wellfounded coalgebra is one that admits proof by induction

    Recursive Program Optimization Through Inductive Synthesis Proof Transformation

    Get PDF
    The research described in this paper involved developing transformation techniques which increase the efficiency of the noriginal program, the source, by transforming its synthesis proof into one, the target, which yields a computationally more efficient algorithm. We describe a working proof transformation system which, by exploiting the duality between mathematical induction and recursion, employs the novel strategy of optimizing recursive programs by transforming inductive proofs. We compare and contrast this approach with the more traditional approaches to program transformation, and highlight the benefits of proof transformation with regards to search, correctness, automatability and generality

    Extending the Calculus of Constructions with Tarski's fix-point theorem

    Get PDF
    We propose to use Tarski's least fixpoint theorem as a basis to define recursive functions in the calculus of inductive constructions. This widens the class of functions that can be modeled in type-theory based theorem proving tool to potentially non-terminating functions. This is only possible if we extend the logical framework by adding the axioms that correspond to classical logic. We claim that the extended framework makes it possible to reason about terminating and non-terminating computations and we show that common facilities of the calculus of inductive construction, like program extraction can be extended to also handle the new functions

    Dialectica Interpretation with Marked Counterexamples

    Full text link
    Goedel's functional "Dialectica" interpretation can be used to extract functional programs from non-constructive proofs in arithmetic by employing two sorts of higher-order witnessing terms: positive realisers and negative counterexamples. In the original interpretation decidability of atoms is required to compute the correct counterexample from a set of candidates. When combined with recursion, this choice needs to be made for every step in the extracted program, however, in some special cases the decision on negative witnesses can be calculated only once. We present a variant of the interpretation in which the time complexity of extracted programs can be improved by marking the chosen witness and thus avoiding recomputation. The achieved effect is similar to using an abortive control operator to interpret computational content of non-constructive principles.Comment: In Proceedings CL&C 2010, arXiv:1101.520

    The Synthesis of Logic Programs from Inductive Proofs

    Get PDF

    A Direct Version of Veldman's Proof of Open Induction on Cantor Space via Delimited Control Operators

    Get PDF
    First, we reconstruct Wim Veldman's result that Open Induction on Cantor space can be derived from Double-negation Shift and Markov's Principle. In doing this, we notice that one has to use a countable choice axiom in the proof and that Markov's Principle is replaceable by slightly strengthening the Double-negation Shift schema. We show that this strengthened version of Double-negation Shift can nonetheless be derived in a constructive intermediate logic based on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We formalize the argument and thus obtain a proof term that directly derives Open Induction on Cantor space by the shift and reset delimited control operators of Danvy and Filinski

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers
    • ā€¦
    corecore