

Edinburgh Research Explorer

The Synthesis of Logic Programs from Inductive Proofs

Citation for published version:
Bundy, A, Smaill, A & Wiggins, G 1990, 'The Synthesis of Logic Programs from Inductive Proofs'. in J Lloyd
(ed.), Computational Logic: Symposium Proceedings, Brussels, November 13/14, 1990. ESPRIT Basic
Research Series, Springer-Verlag GmbH, pp. 135-149., 10.1007/978-3-642-76274-1_8

Digital Object Identifier (DOI):
10.1007/978-3-642-76274-1_8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Computational Logic

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28960741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-76274-1_8
http://www.research.ed.ac.uk/portal/en/publications/the-synthesis-of-logic-programs-from-inductive-proofs(616b4d22-b377-4c02-b15a-3e7acdd4568b).html

The Synthesis of Logic Programs from Inductive
Proofs ∗

Alan Bundy Alan Smaill Geraint Wiggins

Department of Artificial Intelligence,
University of Edinburgh.

Abstract

We describe a technique for synthesising logic (Prolog) programs from non-
executable specifications. This technique is adapted from one for synthesising func-
tional programs as total functions. Logic programs, on the other hand, define
predicates. They can be run in different input modes, they sometimes produce mul-
tiple outputs and sometimes none. They may not terminate. The key idea of the
adaptation is that a predicate is a total function in the all-ground mode, i.e. when
all its arguments are inputs (pred(+, . . . ,+) in Prolog notation). The program is
synthesised as a function in this mode and then run in other modes. To make the
technique work it is necessary to synthesise pure logic programs, without the closed
world assumption, and then compile these into Prolog programs. The technique has
been tested on the OYSTER (functional) program development system.

1 Introduction

The ideal aspired to in logic programming is allow computer users to describe their prob-
lem in the language of predicate logic. A clever interpreter will then run their logical
description as a computer program and this will solve the user’s original problem. Hence
computer users will be freed from the necessity of thinking of their problems in procedural
terms.

Current logic programming languages do not realise this ideal, [Bundy 88a]. The
logical specification of a computer program may fail to be executable either efficiently or
at all. For instance, it may not be in clausal form. The Lloyd-Topor translation process
([Lloyd 87], p113) will put it in clausal form, but the presence of negations in the clause
body may cause it to flounder when executed using negation as failure. It may contain
non-constructor functions, which need to be turned into predicates before they can be
executed. The algorithm produced by a direct execution of the specification may be
hopelessly inefficient.

∗The research reported in this paper was supported by Esprit BRA grant 3012, and an SERC Senior
Fellowship to the first author. We are grateful for feedback from Frank van Harmelen, David Basin and
an anonymous referee on earlier drafts. Seán Matthews helped us defeat TEX. This paper first appeared
in “Computational Logic” ed Lloyd, J.W., Springer-Verlag, 1990.

1

2

One answer to these difficulties is to transform the original specification into an equiv-
alent logical formula which can be executed efficiently. A variety of such transformation
techniques have been proposed, e.g. [Hogger 81, Bruynooghe et al. 89]. In this paper
we discuss how to adapt a technique for synthesising functional programs from logical
specifications to the synthesis of logic programs. This technique is based on the ‘proofs as
programs’ paradigm, and is implemented, for instance, in the Nuprl program development
system, [Constable et al. 86]. It is useful to consider the ‘proofs as programs’ technique
for two main reasons.

• It is a powerful technique, which is useful for synthesis, transformation and verifi-
cation. Adapting it to logic programming might well reveal extensions to current
techniques. For instance, since it is based on higher order, typed logics, it will
suggest how to adapt logic program transformation to such logics. It relates proof
structure to program structure and, hence, program efficiency, thus providing a
logical account of computational complexity, which can be used to guide program
transformation.

• It is has a well developed theoretical foundation. Relating the ‘proofs as programs’
technique to existing logic programming transformation techniques might help us to
understand them better. In particular, it relates recursive programs and inductive
proofs in an intimate way. This may help us understand ‘loop spotting’ techniques,
such as those in [Bruynooghe et al. 89], as a form of inductive proof.

The adaption of the ‘proofs as programs’ technique is not straightforward. It is only
able to synthesise programs that are total functions, that is programs that are defined
for all inputs of the right type and are guaranteed to terminate and to return precisely
one output. On the other hand, the declarative meaning of a logic program procedure is
a predicate. These predicates may be called as procedures in a variety of different input
modes. For some combinations of input they fail and return no output, for others they
return more than one output on backtracking. They are not guaranteed to terminate. The
challenge is to adapt the ‘proofs as programs’ technique to synthesise these completely
different kinds of mathematical objects.

2 The Proofs as Programs Technique

We begin by describing the proofs as programs technique. We have implemented this in
the OYSTER system, [Horn 88], which is a re-implementation of Nuprl in Prolog. OYSTER
and Nuprl are interactive theorem provers for a logic based on Martin-Löf Intuitionistic
Type Theory, [Martin-Löf 79], a higher-order, richly typed logic. Using OYSTER, programs
are synthesised from their specifications by proving a specification theorem of the form:

∀Inputs, ∃Output. spec(Inputs, Output)

where spec(Inputs, Outputs) is a relationship between the inputs and the output of the
desired program. This theorem is proved constructively and the resulting proof is analysed
to extract the implicit algorithm it defines for calculating the required output given any
combination of inputs. A constructive proof is required to avoid the possibility of a
pure existence proof in which the existence of an output is proved without any implicit

3

algorithm being defined. OYSTER provides an interactive proof editor, which allows the
user to guide the process of proof construction.

For instance, the specification of set union could be written as1:

∀A:U , ∃ASets:U , ∀S1 :ASets, ∀S2 :ASets, ∃S3 :ASets,
∀El:A(El ∈ S3 ↔ El ∈ S1 ∨ El ∈ S2)

where X :τ means X is an object of type τ , A is some type of objects, ASets is the type
of finite sets of such objects and U is the type of all simple types2.

OYSTER’s Type Theory is an especially suitable logic for the task of program synthesis
because it not only provides a constructive logic, as required, but it greatly simplifies the
task of extracting the program from the proof. Every rule of inference of the logic has an
associated rule of program construction, so that the program is constructed as the proof
progresses. Thus there is a duality between proof steps and program steps, for instance
applications of mathematical induction in the proof create recursion in the program. The
synthesised program is also in OYSTER’s logic, and can, therefore, be interpreted as a
higher-order, typed, functional program. This program is called the extract term.

Because the logic is typed, the type of each variable, in the example specification of
union above, has to be declared in the variable’s quantification. OYSTER uses these type
declarations to do synthesis time type checking, rather than run time or compile time
type checking. The function synthesised is only guaranteed to meet the specification
when applied to sets of objects of type A. We will indicate this by putting a subscript on
the function name, i.e. ∪A.

3 An Example of Program Synthesis

The process of program synthesis via theorem proving is illustrated by the following
example, using the specification of set union given above, (2).

After some elimination of quantifiers the state of the proof might be:

a:U
s1 :sets(a)

s2 :sets(a)

(Θ ∃S3 :sets(a), ∀El:a(El ∈ S3 ↔ El ∈ s1 ∨ El ∈ s2)

where the extract term constructed so far is λa, λs1, λs2.Θ, where Θ is the extract term
to be constructed from the remainder of the proof. This suggests a program definition of:

S1 ∪A S2 = Θ

Suppose we now decide to apply induction on s1. This will produce subgoals corre-
sponding to the base case and the step case of the induction.

a:U
1In order to make these examples intelligible to an audience unfamiliar with intuitionistic type theory

we have used standard logical notation rather than that used in OYSTER. We follow the Prolog convention
that identifiers starting with capital letters are variables.

2U is not itself a simple type. If it were we would fall foul of Russell’s paradox.

4

s2 :sets(a)

(Φ ∃S3 :sets(a), ∀El:a(El ∈ S3 ↔ El ∈ ∅ ∨ El ∈ s2)

a:U
el′ :a

s1 :sets(a)

s2 :sets(a)

∃S3 :sets(a), ∀El:a(El ∈ S3 ↔ El ∈ s1 ∨ El ∈ s2)

(Ψ ∃S3 :sets(a), ∀El:a(El instS3 ↔ El ∈ el′ ◦ s1 ∨ El ∈ s2)

where el′ ◦ s1 is formed by adding a new member el′ to the set s1. el′ ◦ s1 is a set if el′ is
not already a member of s1. The new state of the program definition is:

∅ ∪A S2 = Φ

(El′ ◦ S1) ∪A S2 = Ψ

where Φ and Ψ are the extract terms of the base and step cases of the proof, respectively.
This is enough of the proof to give the flavour of the synthesis technique. The proof

of the base and step cases will now proceed and will instantiate Φ and Ψ . The final
program might be:

∅ ∪A S2 = S2

El′ ∈ S2 → (El′ ◦ S1) ∪A S2 = S1 ∪A S2

¬El′ ∈ S2 → (El′ ◦ S1) ∪A S2 = El′ ◦ (S1 ∪A S2)

4 Synthesising Logic Programs

How can this technique be adapted to the synthesis of logic programs, e.g. programs in
Prolog?

Firstly, Prolog is neither higher-order nor typed, so we need to prevent the occurrence
of these features in the synthesised programs. This is easily achieved by using a first-
order logic in the place of OYSTER’s current logic, or by restricting OYSTER’s logic to its
first order part. We still require this logic to be constructive and to associate program
construction rules with each rule of inference. It will also be convenient to use a typed logic
during synthesis, and then drop any reference to types in the final program. Otherwise,
in order to ensure that a Prolog procedure is defined for all its arguments, we will have
to provide clauses to deal with arguments that lie outside the intended types, e.g. clauses
for append/3 for non-list arguments.

Secondly, OYSTER will produce total functions, whereas we require partial, multi-valued
and, sometimes, non-terminating predicates. The ‘proofs as programs’ technique has
been extended to synthesise partial and non-terminating functions, e.g. by restricting the
domain of the function to sub-domains where it is both defined and terminating. The
technique has not been extended to multi-valued functions. It is this problem we address
in this paper.

5

5 Compiling Functions

An obvious solution is to synthesise a first-order, total function, then compile it into
Prolog. The drawback of this solution is that it produces a Prolog program that is under-
defined for some of its arguments and hence in some modes. Suppose we synthesise a
function foo:τ1 × . . .× τn -→ τ . This compiles into a Prolog predicate, foo/n + 1, of type
τ1 × . . . × τn × τ . This definition will not necessarily be exhaustive on its last argument,
so it may not be defined for modes other than foo(?, . . . , ?,−).

Consider, for instance, a function double:nat -→ nat, defined as:

double(0) = 0

double(s(M)) = s(s(double(M)))

This will become the Prolog procedure:

double(0, 0).

double(s(M), s(s(N))) : − double(M,N)

This will be fine in mode double(?,−), but not in mode double(?, +). Consider, for
instance, the call double(M, 3)3. This will fail. Maybe this is what was intended, but
one cannot be sure of this since the full range of inputs for the second argument was not
considered during the synthesis of the procedure. If double were originally defined as a
predicate then all the cases would have to have been considered, maybe coming up with
a definition like:

double(0, 0) ↔ true

double(s(M), 0) ↔ false

double(0, s(0)) ↔ true (1)

double(s(M), s(0)) ↔ false

double(0, s(s(N))) ↔ false

double(s(M), s(s(N))) ↔ double(M,N)

which will find the integer half in mode double(−, +), e.g. the call double(M, 3) will
instantiate M to 1. Note case (1). By giving this the body true we ensure a non-false
value in mode double(−, +), even when the second argument is an odd number. If we
want it to fail in such cases we should give (1) the body false. This definition compiles
to the Prolog procedure:

double(0, 0).

double(0, s(0)).

double(s(M), s(s(N))) : − double(M,N)

6 Predicates as Functions

We explore an alternative solution to this problem of synthesising multi-mode programs.
The proofs as programs technique is adapted to synthesise predicates instead of functions,

3Where 3 is shorthand for s(s(s(0))).

6

so that the resulting Prolog procedure is defined for all its arguments, and hence all input
modes. The key idea of the solution is that in the all-ground mode input mode i.e.
pred(+, . . . , +)) logic programs are total functions. Hence, OYSTER and similar systems
can be used directly to synthesise logic programs in this mode. If they are called in
another mode then they will not be total functions, but this will not matter.

Suppose foo/n is a Prolog procedure. We will consider foo as an n-ary predicate of
first-order typed logic. Let the type of the ith argument of foo be τi. foo can also be
regarded as a function of type τ1 × . . . × τn -→ boole. Observe that, in the all-ground
mode, foo(+, . . . , +), foo/n is a function. If all its arguments are ground then it must
take either the value true or false. It cannot take both values and it cannot take neither.
If foo is also terminating then it will be a total function.

For example, consider the procedure del/3, which deletes one occurrence of a particular
element from a list. Its standard Prolog definition is:

del(X, [X|T l], T l). (2)

del(X, [Hd|T l], [Hd|L′]) : − del(X,T l, L′). (3)

with the intended mode del(+, +,−). This is an archetypal example of a partial and
multi-valued procedure. The call del(a, [b, c], L) fails, so no value is found for L. The call
del(a, [a, b, a], L) succeeds twice, first with the value [b, a] for L and second with the value
[a, b].

However, in mode del(+, +, +), del/3 is a function. For instance, del(a, [b, c], [b, c]) has
value false; del(a, [a, b, a], [b, a]) has value true and del(a, [a, b, a], [a, b]) has value true.

7 Pure Logic Programs

This observation is obscured in Prolog because of the heavy use of the closed world
assumption. There are no explicit truth values. Falsity is equated with failure; truth
with success. In order to use our program synthesis techniques we must use a slightly
different notation for logic program procedures in which truth and falsity are explicit. We
will adapt and extend the notation first introduced in [Bundy 88b]. Procedures identified
with predicates and are defined by a set of formulae, which we will call tracts4. There
is precisely one tract for each combination of arguments to the procedure. A pure logic
program is a set of predicates each of which is defined by a set of tracts.

A tract has the form:

Condition → (Head ↔ Body)

where Condition may be true, in which case it is omitted. Head is of the form Pred(Arg1, . . . , Argn),
where Pred is an n-ary predicate. Each argument of Pred is either a recursive argument
or a parameter argument. If i is a parameter argument then Argi must be a variable. If
i is a recursive argument then Argi must be a constructor term. A constructor term is

4These are what we called cases in [Bundy 88b]. Unfortunately, this word is already in use to describe
the parts of proofs, e.g. step case. We cannot use clauses because this word is reserved for describing
Prolog programs, which we will want to distinguish from tracts. The Student’s English Dictionary
describes a ‘tract’ as a “a short dissertation in which some particular subject is treated”, and this seems
fairly close to the meaning we intend.

7

either a variable or a constructor function applied to constructor terms. All the variables
in Head are distinct. Condition and Body can be any first-order formulae that do not
contain non-constructor functions.

The tracts defining a predicate are mutually exclusive and exhaustive, i.e. they give
precisely one value for each combination of arguments. This is best illustrated by an
example. Consider the predicate del:τ × list(τ) × list(τ) -→ boole. Its tracts might be:

del(X, [], L) ↔ false (4)

del(X, [Hd|T l], L) ↔ (X = Hd ∧ T l = L) ∨ (5)

(∃L′ :list(τ) L = [Hd|L′] ∧ del(X,T l, L′))

These tracts are exhaustive since the second argument of del is of type list(τ). del/3 will
take the value true whenever the right hand side of tract (5) evaluates to true, e.g. for
del(a, [a, b, c], [b, c]).

Compare these tracts with the Prolog clauses (2) and (3), above. Case (4) defines del
when the recursive argument is an empty list. There is no Prolog clause corresponding to
this. Case (5) corresponds to clauses (2) and (3): each disjunct to the body of one clause.
Note that T l and L are not identified in the head of the tract (5), as they are in clause
(2), rather they are set equal in the corresponding disjunct in the body.

These tracts define a total function when called in mode del(+, +, +). What happens
for other modes, e.g. del(+, +,−)? There is bound to be at least one tract matching
each calling pattern, but there may be more than one. This means that del will always
return a result, but it may return more than one. Sometimes this result will be false and
sometimes true. In addition, it will instantiate some of the variables in the arguments
either partially or totally. In those cases where del returns true, we can regard these
instantiations as the answers sought. This will give us the partiality and multi-valuedness
that we seek. In general, we will call the truth values returned by a predicate call the
results. When the result is true we will call the instantiations of any unbound variables
the outputs.

Predicates may return the same result by several different computation routes. If there
are an infinite number of computation routes then the predicate is non-terminating. If
only a finite number of these routes return the result false and an infinite number return
the result true, then we will call the non-termination benign. This terminology reflects
the observation that this kind of non-termination is often desired as a way of obtaining
an infinite set of outputs. If all the infinite number of routes return the result false then
we will call the non-termination malignant, since this kind of non-termination is rarely
desired. Otherwise, there will be some true routes and an infinite number of false ones.
We will call this kind of non-termination pre-cancerous, since it is possible5 to obtain some
outputs before the call turns malignant. If there are an infinite number of true routes
then it is possible to put off the malignancy indefinitely.

For instance, consider the predicate is nat/1, which in mode is nat(+) tests whether
its argument is a natural number.

is nat(0) ↔ true

is nat(s(N)) ↔ is nat(N)

5With a clever interpreter.

8

In mode is nat(+) this predicate is total, i.e. single valued and terminating. In mode
is nat(−) it is benignly non-terminating, producing the infinite set of outputs: 0, s(0), s(s(0)),

Now consider the predicates is list/1 and both/1 defined by:

is list([]) ↔ true

is list([H|T]) ↔ is list(T)

both(X) ↔ is nat(X) ∧ is list(X)

both/1 terminates in mode both(+) but is malignantly non-terminating in mode both(−)

8 Compiling Pure Logic Programs

§11 defines a compiler for transforming pure logic programs into Prolog programs. Cases
whose body is false are omitted. ↔s are turned into : −s. Existential quantifiers in
the body are dropped. Conditions are put at the front of bodies and tracts are put into
clausal form. Body literals of the form V ar = Term are omitted and all occurrences of
V ar replaced by Term. Applying this compiler to the pure logic definition of del above
produces the Prolog program given in clauses (2) and (3) above, as required.

This procedure is guaranteed to be total in the mode del(+, +, +). However, it would
be little use if it could only be called in that mode. How will it behave in other modes?
In general, if an argument marked + is used in mode - then the procedure may be
over-defined, i.e. return multiple results. This may cause it to be multi-valued and/or
non-terminating.

The efficiency of a Prolog procedure is mode dependent. In particular, the efficiency
may be dependent on the order of the literals in each clause. This problem may be
best dealt with during the compilation into Prolog, rather than during synthesis. This is
because order is irrelevant for pure logic procedures. It only becomes significant for the
literals and clauses of Prolog procedures. The intended mode of use should be an input
to the compilation phase (see §11) and influence its outcome.

9 An Example of Predicate Synthesis

We can adapt the proofs as programs technique to the synthesis of pure logic procedures
as follows. We prove theorems of the form:

∀X1 :τ1, . . . , Xn :τn,∃B :boole. spec(X1, . . . , Xn) ↔ B (6)

where spec(X1, . . . , Xn) specifies an n-ary predicate, foo, in a constructive, first order
logic. From a proof of this theorem we can extract a definition of foo/n as a pure logic
program.

For instance, to specify the del/3 program we might prove the theorem:

∀τ :U ,∀X :τ,∀K, L:list(τ),∃B :boole.
(∃L1, L2 :list(τ). L = L1 <> L2 ∧ K = L1 <> [X|L2]) ↔ B

9

where <> is the infix list append function.
After eliminating the initial quantifiers and applying list induction to K, this theorem

reduces to the base and step cases:

τ :U , x:τ, l:list(τ)

(Φ ∃B :boole. (∃L1, L2 :list(τ).l = L1 <> L2 ∧ [] = L1 <> [x|L2]) ↔ B

τ :U , x:τ, l:list(τ)

hd:τ, tl:list(τ)

∀L:list(τ),∃B :boole.

(∃L1, L2 :list(τ). L = L1 <> L2 ∧ tl = L1 <> [x|L2]) ↔ B

(Ψ ∃B :boole.

(∃L1, L2 :list(τ). l = L1 <> L2 ∧ [hd|tl] = L1 <> [x|L2]) ↔ B

This proof suggests the following partial definition of del/3.

del(X, [], L) ↔ Φ

del(X, [Hd|T l], L) ↔ Ψ

and Φ and Ψ are the extract terms of the base and step cases, respectively.
Since for no L1 and L2 is it the case that [] = L1 <> [x|L2] then the base case reduces

to ∃B :boole.false ↔ B. This is proved by instantiating B to false, which suggests an
instantiation of the extract term, Φ, to false. This completes the base case.

The step case requires a proof by cases using:

L1 = [] ∨ ∃Hd1 :τ, T l1 :list(τ).L1 = [Hd1|T l1]

In the first case the induction conclusion reduces to:

∃B :boole. (∃L2 :list(τ). l = L2 ∧ [hd|tl] = [x|L2]) ↔ B

using the rewrite rule [] <> L ⇒ L. Note that this and the other rewrite rules used in
the proof are based on equalities or equivalences and hence valid in both directions. This
is necessary for soundness since they are applied under ↔.

Hence, by instantiating L2 to l, and applying the substitution axiom to the induction
conclusion reduces it to:

∃B :boole. (hd = x ∧ tl = l) ↔ B

This is proved by splitting it into four sub-cases using: hd = x∨hd 1= x and tl = l∨ tl 1= l.
In three of these sub-cases hd = x ∧ tl = l reduces to false and the other sub-case it
reduces to true. B is instantiated accordingly, to complete this first case. This suggests
hd = x ∧ tl = l as the extract term of this first case.

In the second case the induction conclusion reduces to

∃B :boole.
(∃Hd1 :τ, T l1, L2 :list(τ).

l = [Hd1|T l1 <> L2] ∧ [hd|tl] = [Hd1|T l1 <> [x|L2]])
↔ B

10

We split this into two sub-cases using:

l = [] ∨ ∃H ′ :τ, L′ :list(τ).l = [H ′|L′]

Since [] = [Hd1|T l1 <> L2] is false, the first sub-case is readily proved with B instanti-
ated to false. The second sub-case reduces to:

∃B :boole. (∃T l1, L2 :list(τ). L′ = T l1 <> L2 ∧ hd = Hd1 ∧ tl = T l1 <> [x|L2]) ↔ B

by applying the substitution axiom. We then apply a further case split using: hd =
Hd1∨hd 1= Hd1. The second sub-sub-case is readily proved with B instantiated to false.
The first sub-sub-case reduces to:

∃B :boole. (∃T l1, L2 :list(τ). L′ = T l1 <> L2 ∧ tl = T l1 <> [x|L2]) ↔ B

This matches the induction hypothesis by instantiating L to L′ and renaming the
bound variable L1 to T l1. We can then use the induction hypothesis to prove the induction
conclusion and complete this sub-sub-case. The use of the induction hypothesis suggests
the recursive call del(x, tl, L′) as the extract term of this sub-sub-case and ∃L′ :list(τ). l =
[hd|L′] ∧ del(x, tl, L′) as the extract term of the whole second case.

This completes the whole step case, and suggests for it the extract term:

(hd = x ∧ l = tl) ∨ (∃L′ :list(τ). l = [hd|L′] ∧ del(x, tl, L′)

Hence the final pure logic program suggested is:

del(X, [], L) ↔ false

del(X, [Hd|T l], L) ↔ (X = Hd ∧ T l = L) ∨
(∃L′ :list(τ). L = [Hd|L′] ∧ del(X,T l, L′))

as required.

10 Implementation in OYSTER

We have tested this logic program synthesis process in the OYSTER system. This is not an
ideal vehicle for two reasons.

• The programs extracted are functions in the type theory and require transformation
into pure logic programs. In general, it is not possible to make this transformation,
because . . .

• . . . OYSTER’s logic is higher order. Thus it is possible to extract non-first-order
programs that cannot be transformed into pure logic programs — even from first-
order specifications.

However, the test was easily performed, since it required no modifications to OYSTER,
and provided supportive evidence for the proposals advanced in this paper. Proofs were
obtained by interactive use of OYSTER, during which higher order features in either the
specification or extract terms were avoided. The extract term was translated into a pure
logic program by hand.

11

In OYSTER’s type theory, propositions are identified with the types of their proofs, so a
proposition is true if and only if it is inhabited when considered as a type. This suggests
a definition of boole as U , the type of simple types. However, this permits specification
theorems of the form:

∀X1 :τ1, . . . , Xn :τn,∃B :boole. spec(X1, . . . , Xn) ↔ B

to be proved in a trivial way by instantiating B to spec(X1, . . . , Xn). This synthesies a
predicate foo/n whose definition is equal to the original specification, i.e.

foo(X1, . . . , Xn) ↔ spec(X1, . . . , Xn)

which is not what we want.
Instead, we defined boole as a type containing precisely two members: true and false,

where false is the empty type void and true is some simple, inhabited type. Note that
equality on this type is decidable, so that the law of excluded middle holds for this type,
i.e.

∀B :boole. B = true ∨ B = false

Since OYSTER’s logic is constructive, this law does not hold in general, in particular, it
does not hold for the type U .

This prevents the instantiation of B by spec(X1, . . . , Xn), unless spec(X1, . . . , Xn) has
been reduced to a member of boole. In fact, we can only prove the specification theorem
by exhibiting a mapping from a proof of B to a proof of spec(X1, . . . , Xn), and vice
versa. The necessary and sufficient condition for the existence of these mappings is that
spec(X1, . . . , Xn) be decidable. The role of this is to prove spec(X1, . . . , Xn) by exhibiting
a decision procedure, namely the synthesised program.

Note that if a formulae is decidable then the law of excluded middle holds for it and
we can use this law to make a case split. We used this facility extensively in the proof
in §9, e.g. hd = x ∨ hd 1= x was used in case 1 of the step case. It was not possible to
split on spec(X1, . . . , Xn) ∨ ¬spec(X1, . . . , Xn) until it had been shown decidable. Our
synthesis proof proceeded by reducing spec(X1, . . . , Xn) to a collection of decidable sub-
goals, using case splits to instantaite B and complete the proof of each subgoals, and then
reconstituting their decision predicates into the desired logic program.

OYSTER has been used in this way to prove the example theorem in the last section.
The resulting extract term is a function in the type theory. In this case the extract term
had a clear correspondence to the desired pure logic program for del/3. Unfortunately, it
is not possible, in general, to translate such extract terms into pure logic programs. To
avoid this problem we are working on a version of OYSTER based on a constructive, first
order logic in which the extract terms are pure logic programs.

11 A Prolog Compiler

Once we have completely synthesised a pure logic procedure then we need to translate it
into Prolog clauses. This can be done by the following compiler, defined by a series of
rewritings.

12

This compiler may translate two logically equivalent pure logic procedures into two
logically equivalent6, but procedurely non-equivalent, Prolog procedures. This is because
the compilation process introduces impure features like cut and negation as failure. These
are interpreted procedurally and their interpretation can depend on the order of literals
and clauses. The compiler described below preserves the original order of expression
nesting and tracts as much as possible, and this will determine the behaviour of the
target Prolog procedure. Alternatively, one could use information about the intended
mode to influence the order of clauses and literals. We see no way to avoid this problem
of procedural non-equivalence as long as the target language contains impure features.

Here is the compiler.

1. First we write each tract into the form of a program statement, as defined by
[Lloyd 87], p107, i.e. a formula of the form A ← W , where A is an atom and
W is a first order formula.

Unconditional and Conditional tracts are rewritten from the form:

Head ↔ Body
or

Condition → Head ↔ Body

to the form:

Head ← Body

or

Head ← Condition ∧ Body

Note that these forms are procedurally, but not logically equivalent. Their proce-
dural equivalence relies on the closed world assumption in Prolog. If it was known
that Head was only ever to be called in fully ground mode then a cut could be
safely inserted between the Condition and the Body of conditional statements, but
this will not be safe in other modes.

For instance, under this transformation our del/3 procedure (tracts 4 and 5 above)
becomes:

del(X, [], L) ← false

del(X, [Hd|T l], L) ← (X = Hd ∧ T l = L) ∨
(∃L′ L = [Hd|L′] ∧ del(X,T l, L′))

2. Next we apply the Lloyd-Topor translation process to turn each program state-
ment into a set of clauses. Essentially, this puts the program statement bodies into
clausal form, but with some modifications to minimise the number of negated liter-
als. Quantifiers are eliminated, negations are moved inwards and disjunctions cause
a statement to split into two.

6In as much as a Prolog procedure may be said to have a logical meaning.

13

For instance, our del/3 procedure becomes:

del(X, [], L) ← false

del(X, [Hd|T l], L) ← X = Hd ∧ T l = L

del(X, [Hd|T l], L) ← L = [Hd|L′] ∧ del(X,T l, L′)

3. Clauses can now be tidied up by removing equalities between variables and terms.
This step is optional since it affects neither the meaning nor the behaviour of the
clause.

Any literal in a clause body of the form V ariable = Term or Term = V ariable is
omitted and each occurrence of V ariable in the clause is replaced by Term.

For instance, our del/3 procedure becomes:

del(X, [], L) ← false

del(Hd, [Hd|T l], T l) ← true

del(X, [Hd|T l], [Hd|L′]) ← del(X,T l, L′)

4. Each clause whose body contains the literal false is deleted. Each literal true is
omitted from its clause body.

For instance, our del/3 procedure becomes:

del(Hd, [Hd|T l], T l)

del(X, [Hd|T l], [Hd|L′]) ← del(X,T l, L′)

5. Finally, we rewrite the clauses into standard Prolog notation. Each clause of the
form:

Head ← Body1 ∧ . . . ∧ Bodyn

is rewritten to the form:

Head : − Body1, . . . , Bodyn.

and each body literal of the form ¬Atom is replaced by not Atom.

For instance, our del/3 procedure becomes:

del(Hd, [Hd|T l], T l).

del(X, [Hd|T l], [Hd|L′]) : − del(X,T l, L′).

12 Conclusion

We have shown apply the ‘proofs as programs’ synthesis technique to logic programs.
The key idea is to regard predicates as functions onto truth values in the ‘all-ground’
input mode, i.e. when all arguments are instantiated to ground terms. The synthesised
procedure can then be run in other modes. In these other modes it will be defined for

14

all inputs, but may give multiple outputs, and/or it may not terminate. That is, there
will be at least one tract that matches any procedure call, but there may be many in
non-all-ground modes and there may be an infinite number of computation routes.

Instead of synthesising Prolog programs directly, we synthesise procedures in a ‘pure
logic’ form and then compile them into Prolog as a post-processing step. This is necessary
in order to regard logic programs as functions onto truth values — these truth values are
only implicit as ‘success’ or ‘failure’ in Prolog programs, and must be made explicit for
the technique to work. This prevents us from reasoning with Prolog programs directly.
It also prevents us from dealing with the non-declarative features of Prolog.

We have successfully tested this ‘proofs as programs’ technique on the synthesis of
del/3 using the OYSTER system. In order to synthesise a first order program, it was
necessary to avoid the use of any higher-order features of the OYSTER logic. To obviate
this need to avoid higher-order features, we plan to build a synthesis system especially
geared to the synthesis of pure logic programs. The first-order, Deductive Tableau System
of [Manna & Waldinger 87] might be a better role model for this than Nuprl or OYSTER.
However, it would also be interesting to use OYSTER, or a similar higher-order system, to
explore the synthesis of higher-order logic programs.

In principle, it ought to be possible to use the ‘proofs as programs’ technique for the
synthesis, transformation and verification of logic programs. We have not conducted large
scale testing of our technique, so we do not yet have the empirical evidence to assess this
potential. We plan to do this.

We also plan to compare our technique with other approaches to the transformation
of logic programs. In particular, we want to compare it to systems that synthesise (or
transform into) recursive programs, e.g. [Bruynooghe et al. 89]. In our technique this
necessarily requires proof by mathematical induction. We suspect that something like
induction is also present in these other techniques, although it is sometimes disguised as
‘loop spotting’ in a symbolic execution tree.

References

[Bruynooghe et al. 89] M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling
control. Journal of Logic Programming, pages 135–162, 1989.

[Bundy 88a] Alan Bundy. A broader interpretation of logic in logic program-
ming. In R. Bowen, K. & Kowalski, editor, Proceedings of the
Fifth International Logic Programming Conference/ Fifth Sym-
posium on Logic Programming, pages 1624–1648. MIT Press,
1988. Also available from Edinburgh as DAI Research Paper
No. 388.

[Bundy 88b] Alan Bundy. Proposal for a recursive techniques editor for pro-
log. Research Paper 394, Dept. of Artificial Intelligence, Uni-
versity of Edinburgh, 1988. In the special issue of Instructional
Science on Learning Prolog: Tools and Related Issues.

15

[Constable et al. 86] R. L. Constable, S. F. Allen, H. M. Bromley, et al. Implementing
Mathematics with the Nuprl Proof Development System. Pren-
tice Hall, 1986.

[Hogger 81] C. J. Hogger. Derivation of logic programs. JACM, 28(2):372–
392, April 1981.

[Horn 88] C. Horn. The Nurprl proof development system. Working paper
214, Dept. of Artificial Intelligence, University of Edinburgh,
1988. The Edinburgh version of Nurprl has been renamed Oys-
ter.

[Lloyd 87] J. W. Lloyd. Foundations of Logic Programming. Symbolic
Computation. Springer-Verlag, 1987. Second, extended edition.

[Manna & Waldinger 87] Z. Manna and R.J. Waldinger. The origin of a binary-search
paradigm. Science of Computer Programming, 9:37–83, 1987.

[Martin-Löf 79] Per Martin-Löf. Constructive mathematics and computer pro-
gramming. In 6th International Congress for Logic, Methodol-
ogy and Philosophy of Science, pages 153–175, Hanover, August
1979. Published by North Holland, Amsterdam. 1982.

