
Capretta, Venanzio and Uustalu, Tarmo (2016) A
coalgebraic view of bar recursion and bar induction.
Lecture Notes in Computer Science, 9634 . pp. 91-106.
ISSN 0302-9743

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/33872/1/Barred_Coalgebras_FOSSACS2016.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/42493361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

A Coalgebraic View of

Bar Recursion and Bar Induction

Venanzio Capretta1 and Tarmo Uustalu2

1 School of Computer Science, University of Nottingham, United Kingdom
2 Institute of Cybernetics, Tallinn University of Technology, Estonia

vxc@cs.nott.ac.uk, tarmo@cs.ioc.ee

Abstract. We reformulate the bar recursion and induction principles in
terms of recursive and wellfounded coalgebras. Bar induction was orig-
inally proposed by Brouwer as an axiom to recover certain classically
valid theorems in a constructive setting. It is a form of induction on non-
wellfounded trees satisfying certain properties. Bar recursion, introduced
later by Spector, is the corresponding function definition principle.

We give a generalization of these principles, by introducing the notion
of barred coalgebra: a process with a branching behaviour given by a
functor, such that all possible computations terminate.

Coalgebraic bar recursion is the statement that every barred coalgebra is
recursive; a recursive coalgebra is one that allows definition of functions
by a coalgebra-to-algebra morphism. It is a framework to characterize
valid forms of recursion for terminating functional programs. One appli-
cation of the principle is the tabulation of continuous functions: Ghani,
Hancock and Pattinson defined a type of wellfounded trees that represent
continuous functions on streams. Bar recursion allows us to prove that
every stably continuous function can be tabulated to such a tree where
by stability we mean that the modulus of continuity is also continuous.

Coalgebraic bar induction states that every barred coalgebra is well-
founded; a wellfounded coalgebra is one that admits proof by induction.

1 Introduction

Bar induction is a reasoning principle formulated by L. E. J. Brouwer [23, 9].
He argued that it is justified in a constructive view of mathematics. Some

classical theorems that are not otherwise provable in intuitionistic mathematics,
follow from bar induction.

Intuitively, it posits a link between termination and induction. It says that
if processes of a certain class always terminate, then the class admits a form of
wellfounded induction.

Specifically, here is the original formulation of bar induction. Assume:

– Q is a decidable predicate on lists of natural numbers and Q is a bar (for
every stream σ there exists a natural n such that the list of the first n

elements of σ satisfies Q);

– R is another predicate on lists of naturals, such that Q implies R (every
list satisfying Q also satisfies R) and is inductive (for every list l, if every
extension of l by one element satisfies R, then l also satisfies R);

Then the empty list satisfies R.

In this statement, streams must be interpreted as choice sequences, that is,
infinite sequences of natural numbers not necessarily given by an effective rule.
Kleene proved that bar induction implies that not all streams are computable
[16]. Recently, Nakata, Bezem and one of us (Uustalu) [17] proved some interest-
ing consequences of the principle on the relationships between some temporal-
operators (some of them mixed inductive/coinductive) on branching processes.

Later, Spector [19] formulated the principle of bar recursion that allows defi-
nition of higher-order functionals (see also [10] and Chapter 5 of [4]); he exploited
the principle to give a proof of consistency of mathematical analysis. Berardi,
Bezem and Coquand [5] reformulated Spector’s principle and results; their ver-
sion was termed modified bar recursion by Berger and Oliva [6], who also gave
an analysis of the relation between the different variations.

We offer a reformulation and generalization of the principle in terms of coal-
gebras. Coalgebras are useful to model branching computational processes and
types of infinite data. In previous work [7, 8] we studied the notions of recur-
sive and wellfounded coalgebras, useful to analyze recursive functions in total
functional programming and induction proofs of their properties.

Now we formulate a new notion of barred coalgebra, which characterizes pro-
cesses whose computations always terminate, or data structures whose paths are
all finite. We then state two principles as modern versions of Brouwer’s.

Coalgebraic bar recursion states that every barred coalgebra is recursive. This
allows us to define total recursive functions on a structure if we know that all
its paths are finite. We give one application to continuous functions on streams.
Ghani, Hancock and Pattinson [13] defined a type of inductive trees that repre-
sent continuous functions on streams by tabulating the outputs in their leaves.
We restrict our attention to stably continuous functions, where stability means
that the modulus of continuity is also continuous with itself as the modulus. We
show that bar recursion implies that all stably continuous functions on streams
can be tabulated.

Coalgebraic bar induction states that every barred coalgebra is wellfounded.
This allows us to reason about the process by a form of induction. The original
form of bar induction is an instantiation of this version.

We do not claim that the principles should be accepted always and in full
generality. Instead, we view them as plausible assumptions encapsulating power-
ful function definition and reasoning devices that need to be justified depending
on the exact setting where they are invoked.

The paper is organized as follows. In Section 2, we introduce coalgebraic bar
recursion. In Section 3, we apply it to tabulation of stably continuous stream
functions. Coalgebraic bar induction is introduced and compared to Brouwer’s
principle in Section 4.

2 Bar Recursion

In previous work with Vene [7], we contributed to the study of recursive coal-
gebras, introduced by Osius [18] and further elaborated by Paul Taylor [20–22].
More recently, Adámek, Milius and colleagues [2, 3] have made additional signif-
icant contributions.

Definition 1. A coalgebra (A,α) of an endofunctor F on a category C is called
recursive if for every algebra (C, γ) there exists a unique map f : A → C (a
coalgebra-to-algebra morphism) making the following diagram commute:

A
α //

f

��

FA

Ff

��

C FC.
γ

oo

This is a useful notion in total functional programming: It guarantees that
every structured recursive diagram (that is, a coalgebra-to-algebra morphism
diagram) based on it is a definite description of a function.

In the definition, unique existence of a mediating morphism is demanded
upfront. No “more intrinsic” property of the coalgebra is invoked to guarantee
unique constructibility of the solution.

We are interested in coalgebras of functors that can be viewed as tree genera-
tors with a good notion of a path. A special class of set functors, called container
functors [1] (they are closely related to polynomial functors [12]), give tree types
that work for us.

Definition 2. A container is given by a set S of shapes and an S-indexed family
of positions for every shape. It defines a set functor JS, P K by

JS, P KX = Σs : S. P s → X.

We use containers to describe “branching types” of trees. A container (S, P)
says that there are S many “types” of branching nodes and that nodes of type
s : S have P s many children. The sets of wellfounded and non-wellfounded trees
with branching type (S, P) are described as the inductive type µX. JS, P KX (the
initial algebra) and the coinductive type νX. JS, P KX (the final coalgebra). For
the first of these to have any elements at all, there must be at least one shape
with no positions.

We demand that inhabitedness of P s is decidable for all s : S.
A coalgebra (A,α) is a process with a set of states A and a transition function

α : A → JS, P KA that generates a shape and new states in every position.
Unfolding α takes a given initial state a : A to a non-wellfounded tree. This is
the unique coalgebra morphism from (A,α) to the final coalgebra.

Recursiveness of the coalgebra is equivalent to this tree unfolding being ac-
tually wellfounded for every initial state a : A, which in other words is to say
that the unique coalgebra morphism to the final coalgebra factors through the

initial algebra. (This was observed by Adámek, Lücke and Milius [2], who also
called this condition the halting property.)

We suggest a classically equivalent, but constructively weaker condition. This
is that, for every initial state a : A, every path in the tree unfolding of α takes
one from the root to a leaf in a finite number of steps.3

We need first some additional definitions to formalize what we mean by paths
of an element of the coalgebra.

For every state a, we define the set Pathα a of paths starting from it. At
each stage, the path chooses a position through which to proceed. Notation: We
define types and families by rules; sets of rules written with a single rule line are
inductive definitions, sets of rules written with a double rule line are coinductive
definitions.

αa = (s, h) ¬P s

end : Pathα a

α a = (s, h) p : P s π : Pathα (h p)

p≺π : Pathα a

The first rule states that, if we reached a shape with no positions, then we are at
a leaf of the tree and the path ends. The second rule states that we can construct
a path by choosing a position in the present shape and continuing from the new
state given by the transition in that position. This definition is coinductive, so
the path may continue forever.

Alternatively, we could define paths as functions from N; but this would
exclude finite paths, which would have to be extended by iterating a distin-
guished element. The coinductive presentation is therefore more natural and
avoids some coding. The status of general coinductive types in constructivism is
unclear. However, paths and also tree unfoldings of coalgebras of containers can
be coded with inductive and function types. So we are justified in using them.

Next we inductively define finiteness of a path. A path π is considered fi-
nite (π ↓) if it reaches a positionless shape after a finite number of steps. The
definition mirrors that of paths, but it is inductive.

αa = (s, h) ¬P s

end ↓

αa = (s, h) p : P s π : Pathα (h p) π ↓

p≺π ↓

Definition 3. A barred coalgebra is a coalgebra α whose all paths are finite:

∀a : A. ∀π : Pathα a. π ↓ .

Note that the simpler condition that the coalgebra has no infinite paths,
although classically equivalent, is constructively weaker than finiteness of all
paths. Adopting this condition instead would make coalgebraic bar induction
too strong; it would not follow from Brouwer’s formulation anymore. Assuming
decidability of inhabitation of P s, the difference of the two conditions is exactly
Markov’s principle.

3 In our constructive setting, it might in fact be more appropriate to take the name
‘halting’ for this condition that considers individual runs one by one rather than the
whole entirety of evolutions of the process at once.

We are now ready to formulate a coalgebraic version of the principle of bar
recursion. It says that finiteness of all paths of a coalgebra implies that we can
define functions by recursion. Classically this is provable, but constructively it
is just a plausible extra axiom.

Coalgebraic Bar Recursion: Every barred coalgebra is recursive.

α barred ⇒ α recursive

The converse implication does not need to be assumed: it is provable.

Proposition 1. Every recursive coalgebra of a container functor is barred.

α recursive ⇒ α barred

Proof. Assume that a coalgebra α : A → JS, P KA is recursive. Then we have the
unique coalgebra-to-algebra morphism f : A → µX. JS, P KX. For an element
a : A, finiteness of all paths from a is proved by structural induction on f a. ⊓⊔

We will not define Spector’s bar recursion here. (Instead we will discuss
Brouwer’s bar induction in detail in Section 4.) But it corresponds to instances
of coalgebraic bar recursion for S = 1 + 1 and P (inl ∗) = 0, P (inr ∗) = A, with
A some fixed set. This means that JS, P KX ∼= 1 + (A → X). The typical case
is A = N, but Spector also considered general A. This allowed him to interpret
the general axiom of countable choice.

3 Continuous Functions on Streams

We illustrate the coalgebraic bar recursion principle by applying it to continuous
functions on streams.

A function on streams is continuous if it only uses a finite initial segment of
its input stream to determine its result.

Ghani, Hancock and Pattinson [13] defined an inductive type of trees for rep-
resenting continuous functions on streams. When applied to a stream, a function
can either immediately return a result, or read the next element of the stream
and continue the computation. In the tree representation, an immediate return is
modelled by a leaf containing the output value, a reading operation is modelled
by a node that branches according to the input value.

The statement that all continuous functions can be represented as trees in this
manner is not provable constructively without additional assumptions. Ghani,
Hancock and Pattinson give a proof of a negative version of this statement: If a
function has no tree representation, then it cannot be continuous.

We will show that, assuming coalgebraic bar recursion, the positive statement
of representability becomes provable for what we call stably continuous functions.
Stability is a natural condition, requiring that the modulus of continuity is also
continuous, with itself as its modulus.

Let SA be the type of streams (infinite sequences) of elements of type A. The
equivalence relation =n, for n a natural number, identifies streams that coincide
on the first n elements:

σ1 =n σ2 if and only if ∀i < n. σ1(i) = σ2(i).

Definition 4. A function f : SA → B from streams of elements of type A to
results of type B is continuous if

∀σ : SA. ∃n : N. ∀σ′ : SA. σ
′ =n σ → f σ′ = f σ.

So a function f is continuous on a stream σ if the value of f only depends on
the first n elements of σ, for some n. It is continuous globally if it is continuous
on every stream.

This definition corresponds to SA being assigned the prodiscrete and B the
discrete topology. This is what is appropriate for our purposes here. It can feel
limited. For B = SA, for instance, not even the identity function is continuous,
but then with the trees considered here it cannot be tabulated either.4

For other purposes, other choices can be appropriate. Brouwer’s continuity
principle states that all functions of type SN → N are continuous. It seems jus-
tified by a computational view of functions as programs: a terminating program
computes its result in a finite number of steps; during the computation it can
only read a finite number of entries from the stream. This principle can be gener-
alized to functions A → B where A and B are assigned their “native” topologies
(whereby stream types must get product topologies). However, Escardó recently
discovered that the continuity principle is inconsistent in type theory [11], so
the principle cannot be added safely to current type-theoretic foundations. The
intuitive reason is that adding the principle adds new functions to the system
and some of those are problematic. Various strands of research are investigating
weaker and more refined versions of the principle that may be safe.

For our goals, it is important that a continuous function has an explicit
modulus of continuity, the mapping that gives the length of the initial segment
of the stream needed for the computation, and that this modulus is stable, that
is, it makes consistent choices for streams that have the same initial segment.

Definition 5. A modulus of continuity for a function f : SA → B is a function
mf : SA → N such that

∀σ, σ′ : SA. σ
′ =mf σ σ → f σ′ = f σ.

The modulus is stable if

∀σ, σ′ : SA. σ
′ =mf σ σ → mf σ

′ = mf σ.

4 In a different work [14], Hancock, Pattinson and Ghani used a mixed induc-
tive/coinductive type to tabulate stream processors, i.e., continuous functions f :
SA → SB where both SA and SB are given the prodiscrete topology.

So a modulus of continuity is stable if and only if it is its own modulus of
continuity. Stability is a reasonable assumption in the computational view of
functions:

– If, to compute f σ, we only need to read the first mf σ elements of σ; and
– σ′ coincides with σ on the first mf σ elements;
– then we only need the first mf σ elements of σ′ to compute f σ′ (which is

equal to f σ);
– so it is reasonable to expect that mf σ

′ = mf σ.

However, given a possibly non-stable modulus, it is not in general possible to
construct another modulus which is stable. In the case that the original modulus
is continuous, there is an algorithm to stabilize it.

Given a non-stable but continuous modulus m, we construct a new stable
modulus m̄ for the same function. We do it by truncating every stream at an
appropriate point, dictated by m, and filling in the rest of it with a fixed stream.
If A is inhabited, so we know an element, we can repeat that element in a
constant stream σ0. For every σ and every index i : N, let σ|i be its truncation
at position i, that is, the list [σ(0), . . . , σ(i − 1)]. Let ni = m (σ|i ++σ0). (The
notation ++ denotes prepending a list to a stream and also to a path.) We now
define the result of the new modulus m̄ on σ:

m̄ σ = nk where k = min{i | ni ≤ i}.

Continuity of m guarantees that m̄ is well defined: k always exists. In fact
we know that there is a j such that, if σ′ =j σ, then mσ′ = mσ. In particular,
if we choose σ′ = σ|i ++σ0 where i = max(j,mσ), we have:

ni = mσ′ = mσ ≤ i.

So, since there is at least one i such that ni ≤ i, there is a minimal one k.
In Ghani, Hancock and Pattinson’s work [13], a continuous function f : SA →

B is represented by a wellfounded tree, an element of the inductive type SFA,B

given by the rules
b : B

write b : SFA,B

g : A → SFA,B

read g : SFA,B

The idea is that an element of SFA,B is a tabulation of all the values of a
function as leaves in a tree whose finite paths have to be matched against the
input stream. The application of a tabulation gives us a continuous function:

apply : SFA,B → SA → B

apply (write b) s = b

apply (read g) (a≺ s) = apply (g a) s

The operator apply is defined by structural recursion on its tree argument.
Is there an inverse transformation, that is, a tabulation operator assigning a

tree to every continuous function,

tabulate : (SA → B) → SFA,B?

Classically, we can prove that this function exists, but the proof is not construc-
tive. Intuitively, the algorithm to obtain the tabulation should be the following.

Let f : SA → B be continuous. Then we can define:

tabulate f = write b if f “must be” constantly b

tabulate f = read (λa.tabulate (λσ.f (a≺σ))) otherwise.

It is of course undecidable whether f is constant. But if the function is continuous
constructively, we also have a modulus for it and can check whether the modulus
is 0 on some fixed stream (we assume A to be inhabited, so we can construct
one). This a sufficient condition for constancy.

However, it is not constructively provable that this algorithm generates a
wellfounded tree. If the modulus is stable, we can prove that the paths of the
recursive calls generated by the second equation for f are always finite. But this
is not enough to conclude that the a priori non-wellfounded tabulation tree is
wellfounded.

Ghani, Hancock and Pattinson proved a negative version of the statement:
they did not construct a tabulation operator, but proved that, if a function
cannot be tabulated, then it is not continuous.

With bar recursion, we can conclude the positive statement, using stable con-
tinuity. We provide two distinct proofs. The first proof is local: for every stably
continuous function it constructs a barred coalgebra and uses it to generate the
tabulation tree. The second proof is global: it constructs a single barred coalge-
bra on the set of all stably continuous functions and uses it to define a tabulation
operation.

3.1 Individual Tabulations

First we show how to tabulate a single stably continuous function by associating
an individual barred coalgebra to it. Let f : SA → B be a function with a stable
modulus of continuity m : SA → N. We will assume that A is inhabited and has
a distinguished element, which we can repeat in a stream σ0.

We construct a coalgebra on the functor F X = B + (A → X) with carrier
the set of lists of elements of A:

αf : ListA → B + (A → ListA)

αf l =

{

inl (f (l++σ0)) if m (l++σ0) ≤ length l

inr (λa. l++[a]) otherwise.

The coalgebra checks whether the list l is sufficient to determine the result
given by f : if the modulus of continuity on a stream starting with l is at most the
length of l, then we know that f will depend only on it. In this case, the coalgebra
terminates with the value given by f . Else, it branches into new processes for all
elements of A, lengthening the list by appending the element at the end.

Observe that the functor F is a container with shapes B + 1, a shape for
each possible leaf in B, and a single shape for the continuation. The shapes in B

have no positions: the coalgebra terminates. The single continuation shape has

positions for all possible input elements, so the set of positions is A. The paths
in Pathα l are sequences of position choices, so in this case they are sequences of
elements of A. Any such path π can be padded out to a stream of elements of
A by appending σ0 to it: pad end = σ0, pad (a≺π) = a≺ padπ.

Lemma 1. αf is a barred coalgebra.

Proof. Given l : ListA and π : Pathα l, we prove that π ↓ by induction on
mσl,π − length l where σl,π = l++ padπ.

– If mσl,π − length l = 0, then mσl,π ≤ length l, so σl,π =mσl,π
l++σ0. By

stability, m (l++σ0) = mσl,π ≤ length l. Therefore αf l = inl (f (l++σ0))
and π = end. In this case obviously the path is finite.

– Otherwise, if mσl,π − length l > 0, then mσl,π > length l. It is impossible
thatm (l++σ0) ≤ length l because, if it were, then alsomσl,π = m (l++σ0) ≤
length l by stability. So αf l = inr (λa. l++[a]) and π = a≺π′ for some a : A
and π′ : Pathα (l++[a]).
Note that σl++[a],π′ = σl,π, so mσl++[a],π′ − length (l++[a]) = mσπ− length l−
1. Therefore π′ ↓ by the induction hypothesis and so π ↓. ⊓⊔

We can now invoke bar induction on this coalgebra to tabulate f .

Theorem 1. The coalgebraic bar induction principle implies that there exists an
element tabulatef : SFA,B such that apply (tabulatef)σ = f σ for every σ : SA.

Proof. If we apply the coalgebraic bar recursion principle to the statement of
Lemma 1, we obtain that αf is a recursive coalgebra.

Notice that SFA,B is the carrier of the initial algebra of the functor F :

SFA,B = µX.B + (A → X).

The copair of the two constructors [write, read] is the actual algebra.
We can apply the defining property of recursive coalgebras to deduce that

there exists a unique function tab making the following diagram commute.

ListA
αf

//

tab

��

B + (A → ListA)

F tab

��

SFA,B B + (A → SFA,B).
[write,read]

oo

We can now define the Ghani, Hancock and Pattinson representation of f by

tabulatef : SFA,B

tabulatef = tab [].

Its correctness can be checked simply by observing that, in general,

apply (tab l)σ = f (l++σ).

⊓⊔

3.2 Global Tabulation

The second way to use coalgebraic bar recursion for tabulation is to define a
coalgebra on the set of all stably continuous functions:

F = {(f,m) | m : SA → N is a stable modulus of f : SA → B}.

We use the same functor as for the individual coalgebras of the previous section:
F X = B + (A → X). The algebra simply tests whether a function must be
constant: if it has to be, it returns its value, otherwise it branches. It does so by
checking that the modulus is 0 for σ0; it must be then be 0 for all streams by
stability.

α : F → B + (A → F)

α (f,m) =

{

inl (f σ0) if mσ0 = 0
inr (λa. (fa,ma) otherwise

where

fa σ = f (a≺σ) and ma σ = m (a≺σ)− 1.

In the branching case, the coalgebra reads an element of the input, a, and
returns the function fa obtained by shifting f by a. The modulus ma of fa is
one less than the modulus of f , as we do not count the prepended element a.

Lemma 2. The coalgebra α is barred.

Proof. Let π : Pathα (f,m) be a path of the coalgebra. We prove that π ↓ by
induction on mσπ where σπ = padπ.

– If mσπ = 0, then also mσ0 = 0 by stability. So α (f,m) = inl (f σ0) and
π = end.

– If mσπ > 0, then also mσ0 > 0 by stability. So α (f,m) = inr (λa. (fa,ma)).
It must then be that π = a≺π′ for some a : A and π′ : Pathα (fa,ma). If we
then compute the modulus of the stream associated to the tail of the path,
we obtain

ma σπ′ = m (a≺σπ′)− 1 = mσπ − 1.

Therefore π′ ↓ by the induction hypothesis, so π ↓. ⊓⊔

We can now invoke bar induction on this coalgebra to construct a global
tabulation operator.

Theorem 2. The coalgebraic bar induction principle implies that there exists
a function tabulate : F → SFA,B such that, for every continuous function with
stable modulus (f,m) : F and every stream σ : SA, we have

apply (tabulate (f,m))σ = f σ.

Proof. Applying the coalgebraic bar induction principle to the result of Lemma
2, we obtain that (F , α) is a recursive coalgebra. In particular, the following
diagram has a unique solution.

F
α //

tabulate

��

B + (A → F)

F tabulate

��

SFA,B B + (A → SFA,B).
[write,read]

oo

The operator tabulate maps every function to a correct tabulation tree for it.
We prove this by induction on mσ0:

– If mσ0 = 0, then, by commutativity of the diagram, definition of α and
continuity,

apply (tabulate (f,m))σ = apply ([write, read] (F tabulate (α (f,m))))σ
= apply ([write, read] (inl (f σ0)))σ
= apply (write (f σ0))σ
= f σ0 = f σ.

– If mσ0 > 0, then, writing σ = a≺σ′, by commutativity of the diagram, the
definition of α and the induction hypothesis,

apply (tabulate (f,m))σ = apply ([write, read] (F tabulate (α (f,m))))σ
= apply ([write, read] (inr (λa. tabulate (fa,ma))))σ
= apply (read (λa. tabulate (fa,ma))) (a≺σ′)
= apply (tabulate (fa,ma)))σ

′

= fa σ
′ = f (a≺σ′) = f σ.

⊓⊔

We finish this discussion of tabulation of continuous functions on streams by
noting that we need bar recursion for tabulation because our notion of (stable)
continuity of a function (which is the standard notion of continuity) is path-
based. It considers one stream (choice sequence) at a time and requires that
reaching an answer takes a finite number of steps. Alternatively, we could define
continuity in a way that considers the entirety of possible evolutions of the choice
process at once. This would result in a stronger notion of continuity and then a
continuous function could be tabulated without assumptions like bar recursion.

Concretely, we could define continuity as a predicate on SA → B inductively
as follows.

∀σ, σ′ : SA. f σ = f σ′

f continuous

∀a : A. (λσ. f(a≺σ)) continuous

f continuous

Tabulation would be immediate by structural recursion on the proof of continuity
(and not exciting at all).

4 Bar Induction

We now want to give a coinductive account of the traditional formulation of bar
induction. For this purpose, the notion of wellfounded coalgebra will be useful.
Intuitively, it is a coalgebra that admits proofs of properties of its elements by
induction. This notion was introduced by Taylor [20–22], who proved that, under
weak reasonable assumptions, recursiveness and wellfoundedness of a coalgebra
are equivalent. (In a previous article [8], we gave a review of the topic and
extended it to the dual case or corecursive vs. antifounded algebras.)

Our formulation uses the next-time operator by Jacobs [15] on subobjects
(subsets) of the carrier of a coalgebra. Let (A,α) be a coalgebra of a functor F
that preserves pullbacks along monos on a category with pullbacks along monos.
(These requirements are satisfied by container functors.)

Definition 6. Let j : U →֒ A be a subobject of the carrier of the coalgebra. The
next-time subobject, ntα j : ntα U →֒ A is defined by the following pullback.

ntα U
α|j

//
� _

ntα j

��

F U� _

Fj

��

A
α

// F A

The idea of this definition is that, if U is a subset of A, then ntα U is the
subset of A consisting of the elements that, after an α transition, fall into U .

In particular, suppose F is a container functor, F = JS, P K. If a : A, then
αa : F A has the form (s, h) with s : S and h : P s → A. We have that a ∈ ntα U

if, for all p : P s, h p ∈ U .

ntα U = {a : A | ∀p : P s. h p ∈ U where (s, h) = αa}

Definition 7. The coalgebra (A,α) is wellfounded if, for every subobject j :
U →֒ A, if ntα U factors through U , then j is an isomorphism. In diagram form
this says that

ntα U //� r

ntα j
%%

UmM

j
{{

A

=⇒ j is iso.

In simpler terms, the coalgebra is wellfounded, if ntα U ⊆ U implies A ⊆ U .
Intuitively, the defining property of wellfounded coalgebras is a generalization

of the familiar induction principle associated to initial algebras. We want to prove
that all elements of A are in the subset U . And we do this by showing that, if
all “components” of an element a : A (given by αa) are in U , so is a.

We introduce the following principle.
Coalgebraic Bar Induction: Every barred coalgebra is wellfounded.

α barred ⇒ α wellfounded

This principle says that, if all paths of a coalgebra are finite, then we can prove
its properties by induction.

The converse implication holds without extra assumptions.

Proposition 2. Every wellfounded coalgebra is barred.

α wellfounded ⇒ α barred

Proof. Assume that α is wellfounded and take U to be the subset of those ele-
ments of A whose all paths are finite:

U = {a : A | ∀π : Pathα a. π ↓}.

We then have that

ntα U = {a : A | ∀p : P s. ∀π′ : Pathα (h p). π′ ↓ where (s, h) = αa}.

Suppose a ∈ ntα U ; we want to prove that a ∈ U . So assume π : Pathα a; we will
show that this path is finite. Suppose αa = (s, h). If π = end, as ¬P s, then we
conclude immediately that π ↓. If π = p≺π′ for some p : P s and π′ : Pathα (h p),
then we know by assumption that π′ ↓ and consequently π ↓.

We proved that ntα U ⊆ U ; therefore, by wellfoundedness of α, we have that
A ⊆ U . So all paths are finite. ⊓⊔

The traditional formulation of bar induction from Brouwer is about predi-
cates on lists of natural numbers.

Brouwer’s Bar Induction:

– Let Q be a decidable predicate on lists of natural numbers. Assume that Q
is a bar: ∀σ : SN. ∃n : N. Q (σ|n).

– Let R be a predicate on lists of naturals. Assume that Q implies R and R is
inductive: ∀l : ListN. (∀p : N. R (l++[p])) → R l.

– Then R [] holds.

We can assume that Q and R are suffix closed: ∀l : ListN. ∀p : N. Q l →
Q (l++[p]) and similarly for R. Indeed, if they are not, we can use their suffix
closures. We can define Q̂ l to hold if ∃n ≤ length l. Q (l|n) and similarly for R̂.
The new predicates Q̂ and R̂ still satisfy the assumptions of the principle and
R̂ [] ↔ R []. Also, since Q is decidable, Q being a bar implies that it is also a
“tight” bar: ∀σ : SN. ∃n : N. (∀m : N.m < n → ¬Q (σ|n)) ∧Q (σ|n).

Instead of N, one could consider other sets in Brouwer’s bar induction. The
case of B is known as the fan “theorem” (Brouwer thought that fan theorem
and bar induction were theorems, but both are just plausible axioms; the fan
theorem is a positive version of weak König’s lemma). In principle one could
replace N with any fixed set, but the question is how justified this is from the
constructive point of view. N is special in that it is a set that can be traversed
by an infinite process.

The traditional form of bar induction follows from the coalgebraic version.

Theorem 3. Coalgebraic bar induction implies Brouwer’s bar induction.

Proof. Given Q and R satisfying the assumptions of Brouwer’s bar induction,
we define a coalgebra structure of the functor F X = 1 + (N → X) on the set
ListN.

α : ListN → 1 + (N → ListN)

α l =

{

inl ∗ if Q l

inr (λp. l++[p]) otherwise.

The function α is welldefined, since Q is decidable. From the assumption that Q
is a bar, we conclude that α is barred. Indeed, let π : Pathα l for some list l; we
must prove that π is finite. We consider the stream σ = l++ padπ (using, e.g., 0
as the distinguished element of N for padding). Since Q is decidable and a bar,
σ must have a shortest finite prefix σ|n satisfying Q. If n < length l, then σ|n is
a proper prefix of l. This forces that π = end, since suffix-closedness of Q gives
us that Q l. If n ≥ length l, then l++π = σ|n ++ end. Either way, π is finite.

Thus we can apply coalgebraic bar induction and learn that α is wellfounded.
Let U = {l : ListN | R l}. (In type theory we can use the dependent pair type

Σl : ListN. R l.) We will prove that ntα U ⊆ U from where by wellfoundedness of
α it will follow that ListN ⊆ U .

By definition
ntU = {l : ListN | α l ∈ 1 + (N → U)}

We prove that if l ∈ ntU , then l ∈ U , by cases:

– If Q l holds, then α l = inl ∗. Since Q implies R, we also have R l, that is,
l ∈ U .

– If Q l does not hold, then α l = inr (λp. l++[p]) with l++[p] ∈ U for every
p : N. By the assumption that R is inductive, we can derive that l ∈ U .

Therefore, since α is wellfounded, we can deduce that ListN ⊆ U , that is,
∀l : ListN. R l.

In particular, R [], as desired. ⊓⊔

From Brouwer’s bar induction, coalgebraic bar induction follows for the func-
tor F X = 1 + (N → X).

Theorem 4. Brouwer’s bar induction implies coalgebraic bar induction for F X =
1 + (N → X).

Proof. Given any set A with a barred coalgebra structure α : A → 1 + (N → A)
and a subset U of A satisfying the assumption ntα U ⊆ U of coalgebraic bar
induction.

We define a function ց : A → ListN → 1 +A by

a ց [] = inr a

a ց (l++[p]) =

inl ∗ if a ց l = inl ∗
inl ∗ if a ց l = inr a′ and αa′ = inl ∗
inr (f p) if a ց l = inr a′ and αa′ = inr f

For any a : A, we define Qa l to hold, if a ց l = inl ∗, and Ra l to hold, if
a ց l = inl ∗ or a ց l = inr a′ and a′ ∈ U .

It is immediate that, for any a : A, Qa is decidable and ∀l : ListN. Qa l → Ra l.
Moreover, as α is barred, Qa is also a bar.

From ntα U ⊆ U , it also follows that Ra is inductive for all a : A.
Hence, for any given a : A, we can apply Brouwer’s bar induction, and

conclude that Ra []. Since a ց [] = inr a, this means that a ∈ U . ⊓⊔

Coalgebraic bar induction follows from Brouwer’s bar induction also for gen-
eral container functors JS, P K for which Σs : S. P s is isomorphic to a decidable
subset of N. This is proved by “approximate” branchings of type JS, P K with
branchings of type FX = 1 + (N → X).

5 Conclusions

The explicit use of bar recursion and bar induction makes it possible to encap-
sulate non-constructive aspects of arguments about non-wellfounded trees and
stream functions.

In this paper, we have defined coalgebraic versions of bar recursion and bar
induction. We find that this perspective has at least two benefits. First, we
can speak of the ingredients involved in bar recursion and bar induction using
the terminology of modern theoretical computer science, especially coalgebra.
Second, we can avoid unnecessary coding when we want to deal with types of
trees with multiple types of branching nodes, with different numbers of children.

The notion of barred coalgebra neatly fills a useful position in the range of
properties that a coalgebra may satisfy. In reasoning about the total correct-
ness of programs, it is usual to give a proof of termination for all computations
and then prove by induction that some invariant holds. This application of well-
founded induction is classically justified from termination, but is not construc-
tively valid. Bar induction is the missing principle that provides the link. Since
coalgebraic methods are becoming standard tools in programming and reasoning
about correctness, we hope that the coalgebraic formulation of bar recursion will
establish itself as a useful tool in functional programming and type theory.

Directly applying the traditional forms of bar induction and bar recursion in
concrete cases often requires a lot of encoding, namely making all nodes to be
of the same type with the same number of children, which also makes all paths
infinite, all this artificially; termination is then characterized by a predicate with
the bar property. Our formulation is more liberal and requires no encoding: nodes
of different branching degrees are allowed and termination is simply modelled
by leaves.

Acknowledgements Capretta is grateful to the School of Computer Science that
gave him a sabbatical semester. Uustalu was supported by the ERDF funded Es-
tonian national CoE project EXCS and ICT national programme project Coin-
duction (the latter paid also Capretta’s visit to Tallinn), the Estonian Science

Foundation grant no. 9475 and the Estonian Ministry of Education and Research
institutional research grant no. IUT-3313.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3–27 (2005).

2. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras of finitary functors. Theor.
Inform. and Appl. 41(4), 447–462 (2007)

3. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Log. Meth-
ods in Comput. Sci. 9(3), article 2 (2013)

4. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Per-
spectives in Logic, Cambridge University Press (2013)

5. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom
of choice. J. Symb. Log. 63(2), 600–622 (1998)

6. Berger, U., Oliva, P.: Modified bar recursion. Math. Struct. in Comput. Sci. 16(2),
163–183 (2006)

7. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inf. and
Comput. 204(4), 437–468 (2006)

8. Capretta, V., Uustalu, T., Vene, V.: Corecursive algebras: A study of general struc-
tured corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS,
vol. 5902, pp. 84–100. Springer (2009)

9. Dummett, M.: Elements of Intuitionism. Oxford Science Publications, 2nd edn.
(2000)

10. Escardó, M.H., Oliva, P.: Selection functions, bar recursion and backward induc-
tion. Math. Struct. in Comput. Sci. 20(2), 127–168 (2010)

11. Escardó, M.H., Xu, C.: The inconsistency of a Brouwerian continuity principle
with the Curry-Howard interpretation. In: Altenkirch, T. (ed.) 13th International
Conference on Typed Lambda Calculi and Applications, TLCA 2015. Leibniz Int.
Proc. in Informatics, vol. 38, pp. 153–164. Dagstuhl Publishing (2015)

12. Gambino, N., Hyland, M.: Wellfounded trees and dependent polynomial functors.
In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp.
210–225. Springer (2004)

13. Ghani, N., Hancock, P., Pattinson, D.: Continuous functions on final coalgebras.
Electron. Notes in Theor. Comput. Sci. 164(1), 141–155 (2006)

14. Hancock, P., Pattinson, D., Ghani, N.: Representations of stream processors using
nested fixed points. Log. Methods in Comput. Sci. 5(3), article 9 (2009)

15. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Struct. in
Comput. Sci. 12(6), 875–903 (2002)

16. Kleene, S., Vesley, R.: The foundations of intuitionistic mathematics: especially in
relation to recursive functions. North-Holland (1965)

17. Nakata, K., Uustalu, T., Bezem, M.: A proof pearl with the fan theorem and bar
induction: Walking through infinite trees with mixed induction and coinduction.
In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 353–368. Springer (2011)

18. Osius, G.: Categorical set theory: a characterization of the category of sets. J. of
Pure and Appl. Algebra 4(1), 79–119 (1974)

19. Spector, C.: Provably recursive functionals of analysis: a consistency proof of anal-
ysis by an extension of principles in current intuitionistic mathematics. In: Dekker,
F.D.E. (ed.) Recursive Function Theory: Proc. of Symposia in Pure Mathematics.
vol. 5, pp. 1–27. Amer. Math. Soc. (1962)

20. Taylor, P.: Intuitionistic sets and ordinals. J. of Symb. Logic 61(3), 705–744 (1996)
21. Taylor, P.: Towards a unied treatment of induction, I: The general recursion theo-

rem. Manuscript (1996)
22. Taylor, P.: Practical Foundations of Mathematics. Cambridge Studies in Advanced

Mathematics, Cambridge University Press (1999)
23. Troelstra, A.: Choice sequences. Clarendon Press (1977)

