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Abstract

First, we reconstruct Wim Veldman’s result that Open Induction on Cantor space can be derived

from Double-negation Shift and Markov’s Principle. In doing this, we notice that one has to

use a countable choice axiom in the proof and that Markov’s Principle is replaceable by slightly

strengthening the Double-negation Shift schema. We show that this strengthened version of

Double-negation Shift can nonetheless be derived in a constructive intermediate logic based

on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We

formalize the argument and thus obtain a proof term that directly derives Open Induction on

Cantor space by the shift and reset delimited control operators of Danvy and Filinski.
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1 Introduction

Let X be a set with an equality relation =X and a binary relation <X . We denote by Xω

and X∗ the set of infinite sequences, or streams, over X and the set of finite sequences over

X, respectively. Let elements of Xω be denoted by Greek letters α, β, γ, let natural numbers

be denoted by n, k, l, m, and let αn denote the finite sequence 〈α(0), α(1), . . . , α(n − 1)〉, i.e.,

the initial segment of length n of the sequence α.

The lexicographic extension <Xω of <X is a binary relation on streams, defined by

α <Xω β iff ∃n(αn =X∗ βn ∧ α(n) <X β(n)),

where =X∗ denotes the equality relation induced from =X by element-wise comparison, i.e.,

p =X∗ q iff p and q are of the same length and element-wise equal with respect to =X .
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A non-empty subset U of Xω is called open if there is an enumeration π : N → X∗ which

can approximate U , in the sense that membership in U can be defined1 by

α ∈ U iff ∃n∃k(αn =X∗ π(k)).

The Principle of Open Induction on Xω (equipped with <X and =X) is the following

statement, for U open:

∀α (∀β <Xω α (β ∈ U) → α ∈ U) → ∀α(α ∈ U). (OI-X)

One immediately sees that OI-X has the form of a well-founded induction principle.

However, one should note that, even for the simple choice of X = {0, 1} equipped with the

usual decidable order and equality relation, an open set U is generally uncountable, and the

lexicographic ordering <Xω is not well-founded!

The utility of this principle has been recognized by Raoult [15] who gave, using OI-X, a

new version of Nash-Williams’ proof of Kruskal’s theorem that does not explicitly use the

Axiom of Dependent Choice2.

OI-X was introduced in the context of Constructive Mathematics by Coquand [4]. He

proved OI-X by relativized Bar Induction, and also first considered separately the version

for Xω being the Cantor space [5].

Berger [3] showed that OI-X in higher-type Arithmetic, where X can be any type ρ,

is classically equivalent to the Axiom of Dependent Choice (DC) for the type ρ. He also

gave a modified realizability interpretation of OI-X by a schema of Open Recursion, and

showed that, unlike DC, OI-X is closed under double-negation- and A-translation – this

means that there is a simple way to extract open-recursive programs from classical proofs of

Π0
2-statements that use DC or OI-X.

In the context of Constructive Reverse Mathematics, in a series of lectures [18], Veldman

showed that Open Induction for Cantor space is equivalent to Double-negation Shift,

∀n¬¬A(n) → ¬¬∀nA(n) (for any formula A(n)), (DNS)

in presence of Markov’s Principle,

¬¬∃nA0(n) → ∃nA0(n) (for a decidable A0(n)). (MP)

Given that it is possible to obtain proofs for both MP [9] and DNS [11] using constructive

logical systems based on delimited control operators, it is a natural next step to attempt

to provide a direct constructive proof of OI for Cantor space based on delimited control

operators. This is what we do in this paper.

The remainder of the paper is organized as follows. In Section 2, we reconstruct in detail

Veldman’s argument that proves OI on Cantor space from DNS and MP via the principle

EnDec. In Section 3, we recall the logical system MQC+(S) from [11] that is able to prove a

strengthened version DNSS of DNS using delimited control operators. DNSS allows us to

prove (a minimal logic version of) EnDec without explicitly using MP. In Section 4, we give

a formalized proof term for OI on Cantor space in a variant of HAω based on the logical

system MQC+(S). In the concluding Section 5, we explain the current limitation of our

approach for extracting proofs from programs and we mention directly related works.

1 For simplicity, we exclude the possibility of U = ∅, so that we may take total enumerations π, rather
than partial enumerations, sending N to option(X∗).

2 Raoult proves OI-X using Zorn’s Lemma.
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190 Open Induction via Delimited Control Operators

2 From DNS and MP to Open Induction for Cantor Space

We will consider the case X = B, where B = {0, 1} with 0 <B 1 and 0 =B 0, 1 =B 1, that is,

Open Induction on Cantor space, OI-B. We will show that OI-B is provable from DNS, MP,

and AC!0,B, where

∀xN∃!yBA(x, y) → ∃fN→B∀xNA(x, f(x)) (AC!0,B)

is a restriction of the Axiom of Unique Countable Choice (also known as Countable Com-

prehension). All the arguments of this section take place in plain intuitionistic logic; if a

principle that is not intuitionistically derivable is used, that is explicitly noted.

In addition to the already introduced notational conventions, let p, q, r, s denote finite

binary sequences (bit-strings), B∗, and let p ∗ q denote the concatenation of p and q. For

a natural number k, Bk denotes the set of bit-strings of length k. Concrete bit-strings are

constructed using the notation 〈·〉, e.g. 〈〉 denotes an empty sequence, 〈0〉 the bit-string

of length 1 that contains a 0, 〈1, 1, 1, 1〉 the bit-string that contains four 1’s, etc. Thus

p ∗ 〈0〉 means that a zero bit is appended at the end of p. The function len(p) computes

the length of p. Analogously to the initial segment function αn on infinite sequences, we

denote by pn the initial segment function on finite sequences, with default value pn := p

when n > len(p). Instead of writing <Bω and =B∗ , we simply write < and =. We abbreviate

(S1 → S2) ∧ (S2 → S1) to (S1 ↔ S2). We may write n 6∈ A to mean ¬(n ∈ A).

By a Σ-formula, we mean a formula built only from existential quantifiers (over the set

N), disjunction, conjunction, and the equality symbol “=” for N. This definition is equivalent

to the usual definition of Σ0
1-formula if the language has all the primitive recursive symbols,

as is the case for the system from Section 4.

We say that a set B ⊆ N is enumerable when the membership in B is a Σ-formula, i.e.,

n ∈ B is defined as S(n) for a Σ-formula S. Equivalently3, B is enumerable when B is given

by a function f : N → N such that n ∈ B is a notation for ∃m(f(m) = n + 1). A set B ⊆ N

is decidable when we have that ∀n(n ∈ B ∨ n 6∈ B)4.

Veldman introduced the following principle.

◮ Axiom 1 (EnDec). Assume B ⊆ N is enumerable. Let, for any decidable C ⊆ B, we have

that, if ∃m(m 6∈ C), then ∃m(m 6∈ C ∧ m ∈ B). Then N ⊆ B (and hence B is decidable).

Note that EnDec holds classically, since classically any B is decidable, so we may set C := B

to obtain N ⊆ B. Our interest in EnDec here is because it is a stepping stone to proving

OI-B.

◮ Theorem 1. Assuming AC!0,B, EnDec implies Open Induction on Cantor space.

Proof. Let A be a non-empty open subset of Cantor space5 i.e., there exists π : N → B
∗

such that “α ∈ A” is a notation for ∃l, m(αl = π(m)). Let also A be progressive, that is,

∀α(∀β < α(β ∈ A) → α ∈ A).

We want to show that ∀α(α ∈ A). Define B ⊆ B
∗ as

p ∈ B iff ∃k∀q ∈ B
k∃l, m(p ∗ q l = π(m))

3 “Equivalent” in the system from Section 4.
4 In some literature, our “decidable” is called “detachable”.
5 The progressiveness on Cantor space in fact ensures that A is non-empty.
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such that p is in B if p is “uniformly barred” by π. That is, p ∈ B if there exists k such that

any extension of p by a finite bit-string of length k is covered by π(m) for some m6.

It suffices to show 〈〉 ∈ B for the empty bit-string 〈〉, since we then know that π covers

the entire Cantor space. We show that B is actually equal to B
∗, using EnDec. Notice that

B
∗ is bijective to N by primitive recursive functions and B is enumerable7, hence we may

transport EnDec from N to B
∗. It is left to show that, for any decidable subset C ⊆ B, if

∃q(q 6∈ C), then ∃r(r 6∈ C ∧ r ∈ B).

Suppose that such C and q are given. If 〈〉 ∈ C ⊆ B, then we have that q ∈ B. So we are

done. We assume 〈〉 6∈ C. Since C is decidable, we can construct α, using AC!0,B, such that

α(n) :=







0 , if αn ∗ 〈0〉 6∈ C

1 , if αn ∗ 〈0〉 ∈ C and αn ∗ 〈1〉 6∈ C

0 , if αn ∗ 〈0〉 ∈ C and αn ∗ 〈1〉 ∈ C

The sequence α tries to stay outside of C for as long as possible and tries to be minimal. It

first tries to “turn left” (value 0). If it was not possible, i.e., αn ∗ 〈0〉 ∈ C, then it tries to

“turn right” (value 1). If neither was possible, then it defaults to “turning left”. One may

notice that if α fails to stay outside of C at n + 1, i.e., αn ∗ 〈0〉 ∈ C and αn ∗ 〈1〉 ∈ C, then

we have αn ∈ B. This fact, a manifestation of the compactness of Cantor space, will be used

later in the proof.

Now, we can find a prefix of α that is in B but not in C, by following α up to the first

point where it enters B. Let us first prove that α is in A, which guarantees that α has

a prefix in B, hence that α will enter B. We use progressiveness of A. Let β < α i.e.,

∃n(βn = αn ∧ β(n) = 0 ∧ α(n) = 1). We have to show β ∈ A. By construction of α, α(n) = 1

is only possible if αn∗ 〈0〉 ∈ C and αn∗ 〈1〉 6∈ C. Noticing that β(n+1) = βn∗ 〈0〉 = αn∗ 〈0〉,

this yields β(n + 1) ∈ C ⊆ B. We conclude that β ∈ A, which was to be shown.

From α ∈ A, we obtain l, m such that αl = π(m). We finish the proof by proving the

following more general statement by induction

∀n ≤ l (α(l − n) 6∈ C → ∃l′(αl′ 6∈ C ∧ αl′ ∈ B)) .

Indeed, since we have 〈〉 6∈ C, by instantiating the above statement with n := l, we obtain p

such that p 6∈ C and p ∈ B.

In the base case, n = 0, we have that αl 6∈ C by the hypothesis and that αl ∈ B (from

α ∈ A); so we set l′ := l. In the induction case for n + 1 we consider three possibilities:

1. if α(l − (n + 1)) ∗ 〈0〉 6∈ C, then α(l − n) = α(l − (n + 1) + 1) = α(l − (n + 1)) ∗ 〈0〉 6∈ C

and we close the case by induction hypothesis;

2. similarly, if α(l − (n + 1)) ∗ 〈0〉 ∈ C and α(l − (n + 1)) ∗ 〈1〉 6∈ C, then α(l − n) =

α(l − (n+1)+1) = α(l − (n+1))∗ 〈1〉 6∈ C, and we close the case by induction hypothesis;

3. if α(l − (n + 1)) ∗ 〈0〉 ∈ C and α(l − (n + 1)) ∗ 〈1〉 ∈ C, then we get that α(l − (n + 1)) ∈ B

as we noted earlier. Recalling that we also have α(l − (n + 1)) /∈ C by hypothesis, we can

set l′ := l − (n + 1).

The first two cases could be merged into one, verifying only whether α(l−(n+1)+1) 6∈ C. ◭

6 A bit-string p is covered by q if, as a bit-string, q is a prefix of p, or the open set given by p is covered
by the open set given by q.

7 B is enumerable because it is defined by a Σ-formula: the bounded universal quantifier “∀q ∈ B
k” does

not pose a problem, since it could be interpreted as a bounded minimization operator, for example like
in §3.5 of [12].
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192 Open Induction via Delimited Control Operators

◮ Remark. In the previous proof, we used AC!0,B when constructing the sequence α by

course-of-values recursion using the choice function extracted from the decidability of C.

Since the principle EnDec is classically valid, not using a choice axiom would mean that

one can reduce OI-B (and, using Berger’s results [3], also Dependent Choice for B) to plain

classical logic without choice8.

We now consider the principle of Double-negation Shift (DNS), which is independently

important because it allows to interpret the double-negation translation of the Axiom of

Countable Choice [16]. Following Veldman, we find it useful to consider the following variant

of DNS.

◮ Axiom 2 (DNSV). ¬¬∀n(A(n) ∨ ¬A(n)), for any formula A(n).

◮ Remark. The proof of equivalence between DNS and DNSV is analogous to the proof of

equivalence between the law of double-negation elimination (DNE) and the law of excluded

middle (EM). In minimal logic, which is intuitionistic logic without the rule of ⊥-elimination

(ex falso quodlibet), EM is weaker than DNE [1]. We expect a similar result for DNS, i.e.,

that DNSV is weaker than DNS in minimal logic.

When quantifier-free formulas and decidable formulas coincide, as in Arithmetic, we may

state Markov’s Principle using Σ-formulas.

◮ Axiom 3 (MP). For any Σ-formula S, we have that ¬¬S → S.

We can now prove EnDec from DNSVand MP.

◮ Theorem 2. DNSVand MP together imply EnDec.

Proof. Let the premises of EnDec hold. Given n ∈ N, we have to prove n ∈ B, which is a

Σ-formula. We are entitled to apply MP. Now, we have to show that ¬¬(n ∈ B). Suppose

¬(n ∈ B). Thanks to DNSV, it suffices to prove ⊥ assuming moreover that B is decidable,

i.e., ∀n(n ∈ B ∨ ¬(n ∈ B)). We use the premise of EnDec by taking C := B and recalling

that we have ¬(n ∈ B). This gives us ∃m(m ∈ B ∧ ¬(m ∈ B)), from which we derive ⊥. ◭

3 A Constructive Logic Proving EnDec

In this section, we recall the logical system MQC+(S) from [11], and show that EnDec is

provable in MQC+(S) (with a suitably instantiated parameter S), without an explicit use of

MP, thanks to the slightly stronger form of DNS that MQC+(S) proves.

MQC+(S) is a pure predicate logic system, parameterized over a closed Σ-formula S,

that, in addition to the usual rules of minimal intuitionistic predicate logic, adds two rules

for proving the Σ-formula S 9. The rule “reset”,

Γ ⊢S S
# (“reset”),

Γ ⊢⋄ S

sets a marker (under the turnstile) meaning that one wants to prove S. Once the marker is

set, one can use the “shift” rule,

8 Classically AC!0,B is equivalent to Dependent Choice for B (in Berger’s formulation), hence that we

only use AC!0,B is not a concern.
9 In the context of MQC+(S), Σ-formulas coincide with formulas without ∀ and →.
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Γ, A ⇒ S ⊢S S
S (“shift”),

Γ ⊢S A

to prove by a principle related to double-negation elimination from classical logic. The idea is

to internalize in the formal system the fact, known from Friedman-Dragalin’s A-translation,

that a classical proof of a Σ0
1-formula can be translated to an intuitionistic proof of the same

formula, showing that classical proofs of such formulas are in fact constructive. The first

system built around this internalization idea was Herbelin’s [9] with the power to derive

Markov’s Principle. It satisfies, like MQC+(S), the disjunction and existence properties,

characteristic of plain intuitionistic logic.

The names “shift” and “reset” come from the computational intention behind the nor-

malization of these proof rules, Danvy and Filinski’s delimited control operators [6, 7, 8].

These operators were developed in the theory of programming languages with the aim of

enabling to write continuation-passing style (CPS) programs in so-called direct style. Since

CPS transformations are known to be one and the same thing as double-negation translations

[14], one can think of shift/reset in Logic as enabling to prove directly theorems whose

double-negation translation is intuitionistically provable. In order for this facility to remain

constructive, we allow its use only for proving Σ-formulas.

The natural deduction system for MQC+(S) is given in Table 1 with proof term annota-

tions. The diamond in the subscript of ⊢ is a wild-card: ⊢⋄ denotes either ⊢ or ⊢S , where

in the latter the subscript S is the same formula as the parameter S. We mark ⊢ with the

parameter to record that a reset has been set. The rules should be read bottom-up, so that

the marker is propagated from below to above the line. The usual intuitionistic rules neither

“read” nor “write” this marker, hence ⋄ denotes the same below and above the line. The reset

rule is the one that sets the marker (if it is not already set). If the marker has been already

set, then the marker is simply kept. This kind of use of reset would have no logical purpose,

but it would affect the course of normalization, hence the computational behavior of the

proof term. The rule shift can only be applied when the marker is set, hence it is assured

that we are ultimately proving the Σ-formula S.

The following theorem shows a utility of proving with shift and reset.

◮ Theorem 3. Let S be a closed Σ-formula and A(x) an arbitrary formula. The following

version of DNSV,

(

(

∀x
(

A(x) ∨ (A(x) → S)
)

)

→ S

)

→ S, (DNSV
S )

is provable in MQC+(S).

Proof. Using the proof term λh.#h

(

λ̃x.Sk.k
(

ι2

(

λa.k(ι1a)
)

)

)

. ◭

DNSV
S is a version of DNSV, in which ⊥ is generalized to a closed Σ-formula S. DNSV

S

already has some form of MP built in, as can be seen from the proof of Theorem 4 below.

We now state a version of EnDec which is suitable for use in minimal logic, where

⊥-elimination is absent.

◮ Axiom 4 (A minimal-logic version of Axiom 1). Assume that B ⊆ N is enumerable and

n ∈ N. Let, for any s ∈ N and any C ⊆ B, such that

∀x (x ∈ C ∨ (x ∈ C → s ∈ B)) ,

TYPES 2013



194 Open Induction via Delimited Control Operators

Table 1 Natural deduction system for MQC+(S), parameterized over a closed Σ-formula S, with

proof terms annotating the rules.

(a : A) ∈ Γ
Ax

Γ ⊢⋄ a : A

Γ ⊢⋄ p : A1 Γ ⊢⋄ q : A2
∧I

Γ ⊢⋄ (p, q) : A1 ∧ A2

Γ ⊢⋄ p : A1 ∧ A2
∧i

EΓ ⊢⋄ πi p : Ai

Γ ⊢⋄ p : Ai
∨i

IΓ ⊢⋄ ιi p : A1 ∨ A2

Γ ⊢⋄ p : A1 ∨ A2 Γ, a1 : A1 ⊢⋄ q1 : C Γ, a2 : A2 ⊢⋄ q2 : C
∨E

Γ ⊢⋄ case p of (a1.q1‖a2.q2) : C

Γ, a : A1 ⊢⋄ p : A2 →I
Γ ⊢⋄ λa.p : A1 → A2

Γ ⊢⋄ p : A1 → A2 Γ ⊢⋄ q : A1 →E
Γ ⊢⋄ p q : A2

Γ ⊢⋄ p : A(x) x fresh
∀I

Γ ⊢⋄ λ̃x.p : ∀xA(x)

Γ ⊢⋄ p : ∀xA(x)
∀E

Γ ⊢⋄ p t : A(t)

Γ ⊢⋄ p : A(t)
∃I

Γ ⊢⋄ (t, p) : ∃x.A(x)

Γ ⊢⋄ p : ∃x.A(x) Γ, a : A(x) ⊢⋄ q : C x fresh
∃E

Γ ⊢⋄ dest p as (x.a) in q : C

Γ ⊢S p : S
# (“reset”)

Γ ⊢⋄ #p : S

Γ, k : A → S ⊢S p : S
S (“shift”)

Γ ⊢S Sk.p : A

we have that, if

∃m(m ∈ C → s ∈ B),

then

∃m((m ∈ C → s ∈ B) ∧ m ∈ B).

Then, n ∈ B.

The following result is the minimal-logic analogue of Theorem 2, showing that an instance

of Axiom 4 is derivable in MQC+(S).

◮ Theorem 4. Assume that B ⊆ N is enumerable and n ∈ N. The instance of Axiom 4 with

conclusion n ∈ B is derivable in the system MQC+(n ∈ B).
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Proof. Let the premises of Axiom 4 hold. To show that n ∈ B, which is a Σ-formula, we

use DNSV
S for A(x) := x ∈ B and S := n ∈ B. Now, given ∀x(x ∈ B ∨ (x ∈ B → n ∈ B)),

we have to show n ∈ B. We use the premise of Axiom 4 for s := n and C := B, and,

using the trivial proof of ∃m(m ∈ B → n ∈ B) for m := n, the premise gives us a proof of

∃m(m ∈ B ∧ (m ∈ B → n ∈ B)), from which we derive n ∈ B. ◭

4 A Proof Term for Open Induction

In this section, we give a proof term for OI on Cantor space in the system HAω
+(S) (by

suitably instantiating the parameter S), which is the system of axioms HAω (from §§1.6.15

of [17]) and AC!0,B added on top of the predicate logic MQC+(S) — the need of AC!0,B is

justified by Remark 2. Basic ingredients to construct the proof term are at hand: Theorem 1

and Theorem 4. We are to interpret them in HAω
+(S) and combine the thus obtained proof

terms for Theorem 1 and Theorem 4.

4.1 The system HAω

+
(S)

Let S be a closed Σ-formula. First, we take a multi-sorted version of MQC+(S), that is,

given different sorts (denoted by σ, ρ, τ, δ), the language is extended with individual variables

(denoted by x, y, z) of any sort, and quantifiers for all sorts. We will not annotate quantifiers

with their sorts, since those will be clear from the context; we may annotate variables by

their sorts when we want to avoid ambiguity.

The sorts are built inductively, according to the following rules: there is a sort named 0; if

ρ and σ are sorts, then there is a sort named ρ → σ. The intended interpretation is that the

sort 0 stands for N, the sort 0 → 0 stands for functions N → N, the sort ((0 → 0) → 0) for

functionals (N → N) → N, etc. We will employ the word ‘type’ instead of sort, henceforth,

and we abbreviate the type 0 → 0 by 1.

Now, we add to the language a binary predicate symbol = for individual terms of type 0,

intended to be interpreted as (the decidable) equality on N. We emphasize that we only have

decidable equality. The individual terms will be built from the function symbols 00 (zero),

(·+1)1 (successor), Πρ→τ→ρ and Σ(δ→ρ→τ)→(δ→ρ)→δ→τ (combinators), and R0→ρ→(ρ→0→ρ)→ρ

(recursor of type ρ). There is also the function symbol of juxtaposition which is not explicitly

denoted: for terms tσ→τ and sσ, t s is a term of type τ .

The axioms defining these symbols are (the universal closures of each of):

x = x, x = y → y = x, x = y → y = z → x = z, x = y → x + 1 = y + 1,

x = y → t[x/z] = t[y/z] where t[x/z] is the simultaneous

substitution of x for z in t

t[Πxy/u] = t[x/u]

t[Σxyz/u] = t[xz(yz)/u]

t[R0yz/u] = t[y/u]

t[R(x + 1)yz/u] = t[z(Rxyz)x/u]

We also add the axiom schema of induction, for arbitrary formula A(x), but only for variables

x of type 0:

A(0) → ∀x0(A(x) → A(x + 1)) → ∀x0(A(x)) (IA)
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Since “=” is the only predicate symbol, all atomic (prime) formulas are of form t = s. This

allows us to show that x = y → A(x) → A(y), by induction on the complexity of formula A.

It is known that using the combinators one may define an individual term for lambda

abstraction, denoted λ̇x.t, of type 1, which satisfies the usual β-reduction axiom,

(λ̇x0.s0)t0 = s[t/x].

Using this and the recursor R, one can easily define all the usual primitive recursive functions.

Using the thus defined predecessor function, and the induction axiom, one can derive the

remaining Peano axioms, x + 1 = y + 1 → x = y, and (x + 1 = 0) → 1 = 0, where we took

1 = 0 instead of ⊥ because we are in minimal logic. In fact, in the presence of arithmetic,

one can prove, again by induction, that the rule of ⊥-elimination (with ⊥ replaced by 1 = 0)

is derivable, although we will not need it.

Some notational conventions follow. We shall need to speak of bits, finite sequences of

bits (bit-strings), and infinite sequences of bits (bit-streams). Bits and bit-strings can be

encoded by natural numbers, but, instead of using the type 0 for terms of that kind, to be

more pragmatic, we will write bool (intended to interpret B) and bool∗ (intended to interpret

B
∗). Bitstreams are represented by terms of type 0 → 0, but we will write 0 → bool instead.

We will need the operations for concatenation and initial segments of both bit-strings and

bit-streams, that we already introduced. In addition, the operator head(p) returns the first

bit of p, while tail(p) returns the string that follows the first bit of p. Although p is not a

function, we will use the notation p(n) to extract the (n + 1)-th bit of p10. We will also use

the fact that one can define by primitive recursion a term if · · · then · · · else · · · of type

bool → bool → bool → bool, such that the following equations hold:

if 0 then y else z = z

if x + 1 then y else z = y

We will also need the usual operation min : 0 → 0 → 0 on numbers. All the mentioned

operations can be defined by a restricted amount of primitive recursion at higher types,

level 3 of the Grzegorcyk hierarchy would suffice. Hence we could work in a corresponding

subsystem of HAω, like for example G3Aω
i from §3.5 of [12].

Finally, we shall also need the following choice axiom, a restriction of the usual Axiom of

Countable Choice (AC0,0):

∀x0∃!yboolA(x, y) → ∃φ0→bool∀x0A(x, φ x) (AC!0,B)

Neither AC0,0 nor AC!0,B is provable in HAω. For arithmetical formulas, AC0,0 (and hence

AC!0,B) is an admissible rule for HAω [2].

4.2 Proof term for OI-B

We now formalize the concepts involved in the proof of OI-B. An open set A in Cantor

space is given, as a parameter to the logical system, by a term π of type 0 → bool∗, an

enumeration of basic opens. Each bit-string π(n) is a basic open and the union of them

10 head p (resp. p(n)) returns an arbitrary default value when p is an empty sequence (resp. len(p) < n+1).
However, we will use these operations only in a well-defined way.
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makes A. Membership in A, α ∈ A, means that α is covered by some basic open from the

enumeration. Formally, we define

α ∈ A iff ∃l0∃m0(α l = π(m)),

and we see that membership in A is a closed Σ-formula. (Recall that π is a parameter of the

logical system.) The relation < on bit-streams is formalized as

β < α iff ∃n0
(

βn = αn ∧ (β(n) = 0 ∧ α(n) = 1)
)

.

We use an instance of Axiom 4 for the enumerable set B given by a Σ-formula B(x), to

be defined below, and n given by the natural number encoding an empty sequence. We define

B(x) := ∃k0∀qbool
k

∃l0∃m0(x ∗ q l = π(m)),

where ∀qbool
k

denotes a bounded universal quantification over bit-strings of length k. Bounded

quantification can be encoded away using primitive recursive symbols, hence B(x) is still a

Σ-formula. We define p ∈ B by B(p). We have that, for any α, ∃n(αn ∈ B) iff α ∈ A. We

instantiate the parameter S of HAω
+(S) by 〈〉 ∈ B.

Next, we give an interpretation of the instance of Axiom 4 in HAω
+(〈〉 ∈ B). We

cannot literally formalize Axiom 4 in HAω
+(S), since HAω

+(S) does not have higher-order

quantification (but only quantification over higher types), hence we cannot quantify over

subsets. We therefore “interpret” (the instance of) Axiom 4:

∀sbool
∗

(

∀χbool
∗

→bool

C

(

∀xbool
∗

(χC(x) = 1 → B(x)) →

∃qbool
∗

(χC(q) = 1 → B(s)) → ∃rbool
∗

((χC(r) = 1 → B(s)) ∧ B(r))
))

→ B(〈〉).

The enumerable set B is represented by the Σ-formula B(x), the decidable subset C by

a characteristic function χbool
∗

→bool

C , replacing the premise ∀x (x ∈ C ∨ (x ∈ C → s ∈ B)).

The characteristic function should intuitively read as χC(p) = 1 iff “p ∈ C”, but we take

B(s) for ⊥.

The proof term for OI-B is shown in Figure 1. We obtained it by formalizing the proofs

of Theorems 1 and 4 in HAω
+(〈〉 ∈ B), and then by normalizing and (hand-)optimizing the

formalized proof term, to obtain a compact and direct program proving OI-B.

To ease the presentation, at certain places, we have put after a semicolon the type

annotations for individual terms, and the formulas for proof terms. Some parts, being too

long, have been put below the main proof term. We suppress the use of equality axioms,

to keep the proof term simple without equality-rewriting terms. It is known that equality

proofs have no computational content when extracting programs, as they are realized by

singleton data types.

We now explain the behavior of the proof term. Given a proof h that A is progressive, it

has to show that α′ ∈ A for any α′. As in the proof of Theorem 1, it proves 〈〉 ∈ B (lines 3-10),

from which we obtain k′ such that h5 : ∀qbool
k

′

∃l0∃m0(q l = π(m)) (line 10). Then h5(α′k′)

gives us j′ such that h6 : ∃m0(α′k′j′ = π(m)) (line 11), so that (min(k′, j′), h6) proves

∃l0∃m0(α′l = π(m)) (line 12). (An explicit proof of the equality α′k′j′ = α′(min(k′, j′))

would need an explicit definition of the min function and induction).

To show 〈〉 ∈ B, which is the parameter of the system, it applies a reset # (line 3),

and now it has to show the same formula, but classical logic in the form of the shift rule
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1 : λh : ∀α(∀β < α(β ∈ A) → α ∈ A).λ̃α′.

2 : dest

3 :

(

#dest aC(λ̃x.Sk.k(ι2(λa.k(ι1a)))) as (χ.b) in

4 : dest
(

hα
(

λ̃β.λh′ : β < α.

5 : dest (h′ : β < α) as (n.h′′) in

6 : dest (a1(π2π2h′′) : β(n + 1) ∈ B) as (k.h′′′) in

7 : dest (h′′′(〈β(n + 1)〉 ∗ · · · ∗ 〈β(n + k)〉) : β(n + k + 1) ∈ A) as (j.h4) in

8 : (min(n + k + 1, j), h4)
)

: α ∈ A
)

as (l.c) in

9 : dest (c : ∃m(αl = π(m)) as (m.d) in

10 : aI (λh.h) a3 l (0, λ̃q.(l, (m, d))) : 〈〉 ∈ B

)

as (k′.h5) in

11 : dest (h5 (α′k′) : α′k′ ∈ A) as (j′.h6) in

12 : (min(k′, j′), h6)

α := λ̇n.

R(n + 1, 〈〉, (λ̇z.λ̇n′.z ∗ 〈if χ(z ∗ 〈0〉) then (if χ(z ∗ 〈1〉) then 0 else 1) else 0〉))(n)

a1 : α(n) = 1 → β(n + 1) ∈ B := λh.case aB(χ(β(n + 1))) of
(

h1.(π1(b(β(n + 1)))) h1‖h2.(π1(b(β(n + 1)))) h2

)

a3 := λ̃n.λhI : αn ∈ B → 〈〉 ∈ B.λh : α(n + 1) ∈ B.

case aB(χ(αn ∗ 〈0〉)) of (h1.(π2(b(α(n + 1)))) h1 h

‖ h2.case (aB(χ(αn ∗ 〈1〉))) of (h21.(π2(b(α(n + 1)))) h21 h‖h22.hI a4))

a4 : αn ∈ B :=

dest ((π1(b(αn ∗ 〈0〉))) h2 : αn ∗ 〈0〉 ∈ B)

as (k0.f0 : ∀q : boolk0 .∃l, m(αn ∗ 〈0〉 ∗ q l = π(m))) in

dest ((π1(b(αn ∗ 〈1〉))) h22 : αn ∗ 〈1〉 ∈ B)

as (k1.f1 : ∀q : boolk1 .∃l, m(αn ∗ 〈1〉 ∗ q l = π(m)) in

(min(k0, k1) + 1, λq : boolmin(k0,k1)+1.if head(q) then f1(tail(q)k1) else f0(tail(q)k0))

Figure 1 Proof term for OI-B of type ((∀α(∀β < α(β ∈ A) → α ∈ A)) → ∀α′(α′ ∈ A)) in

HAω
+(〈〉 ∈ B).

can be used. Indeed, the proof term λ̃x.Sk.k(ι2(λa.k(ι1a))) proves the “decidability” of B:

∀xbool
∗

(x ∈ B ∨ (x ∈ B → 〈〉 ∈ B)). Using the proof term aC for the formula

∀xbool
∗

(x ∈ B ∨ (x ∈ B → 〈〉 ∈ B)) →

∃χbool
∗

→bool∀xbool
∗

((χ(x) = 1 → x ∈ B) ∧ (χ(x) = 0 → (x ∈ B → 〈〉 ∈ B))),

we obtain from the decidability, a characteristic function χbool
∗

→bool for B. The proof term

aC is constructed by combining AC!0,B together with a proof term that eliminates disjunction

in presence of arithmetic11. The proof term b proves the characteristic property of χ, namely,

∀x((χ(x) = 1 → x ∈ B) ∧ (χ(x) = 0 → (x ∈ B → 〈〉 ∈ B))).

11 For the proof of this statement, (A ∨ B) ↔ ∃x((x = 1 → A) ∧ (x = 0 → B)), see for example §§1.3.7 of
[17].
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Now, using this χ, the bit-stream α that we saw in the proof of Theorem 1 can be

constructed using R and if · · · then · · · else · · · by (encoded) course-of-values recursion.

Next one needs to show that α ∈ A (lines 4-8). One uses progressiveness h: from β and a

proof h′ of β < α, one extracts n and a proof h′′ of

βn = αn ∧ (β(n) = 0 ∧ α(n) = 1).

Then, π2π2h′′ shows α(n) = 1, and it is for a1 to show that αn∗ 〈0〉 = β(n + 1) is in B, which

in turn shows, with the help of h′′′, that β(n + k + 1) ∈ A, i.e., ∃j∃i(β(n + k + 1)j = π(i))12.

Now, one concludes β ∈ A with (min(n + k + 1, j), h4) by appropriately choosing the witness

min(n + k + 1, j) so that β(n + k + 1)j = β(min(n + k + 1, j)) holds. (Again, we suppress

the proof term for this equality.)

The proof term a1 derives β(n + 1) ∈ B from α(n) = 1 by making a case distinction.

To generate the disjunction needed for the case analysis, one uses a proof term aB for

∀xbool(x = 0∨x = 1). For the first case in which χ(β(n+1)) = 0, we have an absurdity 1 = 0,

by definition of α, since α(n) = 1. Hence, by equality-rewriting we may use the proof term

h1 at type χ(β(n + 1)) = 1. Now, both the two cases are closed by applying π1(b(β(n + 1))),

which proves χ(β(n + 1)) = 1 → β(n + 1) ∈ B, to h1 and h2, respectively.

From α ∈ A, one obtains the length l and the index m such that αl is covered by the

basic open π(m) (the proof term d in line 9), and then one can show that α0 = 〈〉 is in B.

This last fact is derived by the proof term

aI (λh.h) a3 l (0, λ̃q.(l, (m, d))),

where aI is a proof term behind an instance of the induction axiom showing ∀l0(αl ∈ B →

〈〉 ∈ B). The proof term aI uses the proof term a3 which derives

∀n((α n ∈ B → 〈〉 ∈ B) → α (n + 1) ∈ B → 〈〉 ∈ B).

It is proved by case analysis, considering the possibilities for the pair (χ(αn∗〈0〉), χ(αn∗〈1〉)).

If either χ(αn ∗ 〈0〉) = 0 or χ(αn ∗ 〈1〉) = 0 holds, we close the case by the characteristic

property of χ together with the hypothesis h. Otherwise, i.e. both χ(αn ∗ 〈0〉) = 1 and

χ(αn ∗ 〈1〉) = 1 holds, we can deduce αn ∈ B (the proof term a4), from which the case

follows by the induction hypothesis.

5 Conclusion

We gave a direct proof for OI-B in a constructive predicate logic incorporating delimited

control operators. While computational interpretation of MQC+(S) is available, namely the

standard call-by-value weak-head reduction semantics for lambda calculus with shift and

reset, we cannot directly analyze the computational behavior of the proof term for OI-B

because, at the moment, we do not have a proof term for AC!0,B used in the proof term for

OI-B. The best way to overcome this limitation would be to extend MQC+(S) so that it can

derive AC!0,B as it is done in Martin-Löf Type Theory or constructive versions of Hilbert’s

epsilon calculus.

Another way to overcome the limitation would be to use a realizability or functional

interpretation that extracts programs from constructive proofs even in presence of choice

12 The proof term a1(π2π2h′′) proves αn ∗ 〈0〉 ∈ B, from which β(n + 1) ∈ B follows using equality axioms.
As remarked earlier, equality-rewriting is implicit in the proof term.
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axioms. For example, by using Spector’s extension of Gödel’s functional interpretation with

bar recursion, we could extract a program from our proof. However, to replace bar recursion

is the point of using delimited control operators in the first place.

If and when our future work is successful, it would allow, at least for the case of the

compact Cantor space, to replace Berger’s general-recursive computation schema of open

recursion by a terminating computation schema based on control operators.

The work of Krivine on Classical Realizability gives an interpretation of the Axiom of

Dependent Choice [13] using control operators for classical logic. Herbelin recently gave a

more direct version of that work [10], using classical control operators and coinduction.

Finally, we would like to mention Veldman’s recent work in Constructive Reverse Mathe-

matics [19, 20] that has served as inspiration for our work. An article of Veldman on the

equivalence of Open Induction with a number of other axioms is in preparation. In our paper,

we showed one direction of this equivalence for the topology of Cantor space seen as the

infinite binary tree rather than as the subset of the real line.

Acknowledgments. We would like to thank Wim Veldman for explaining us some of his

results, and Ralph Matthes and Hugo Herbelin for valuable comments on the draft.
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