31 research outputs found

    Approximation orders of shift-invariant subspaces of W2s(Rd)W^s_2({\Bbb R}^d)

    Full text link
    We extend the existing theory of approximation orders provided by shift-invariant subspaces of L2L_2 to the setting of Sobolev spaces, provide treatment of L2L_2 cases that have not been covered before, and apply our results to determine approximation order of solutions to a refinement equation with a higher-dimensional solution space.Comment: 49 page

    The Construction of Nonseparable Wavelet Bi-Frames and Associated Approximation Schemes

    Get PDF
    Wavelet analysis and its fast algorithms are widely used in many fields of applied mathematics such as in signal and image processing. In the present thesis, we circumvent the restrictions of orthogonal and biorthogonal wavelet bases by constructing wavelet frames. They still allow for a stable decomposition, and so-called wavelet bi-frames provide a series expansion very similar to those of pairs of biorthogonal wavelet bases. Contrary to biorthogonal bases, primal and dual wavelets are no longer supposed to satisfy any geometrical conditions, and the frame setting allows for redundancy. This provides more flexibility in their construction. Finally, we construct families of optimal wavelet bi-frames in arbitrary dimensions with arbitrarily high smoothness. Then we verify that the n-term approximation can be described by Besov spaces and we apply the theoretical findings to image denoising

    Low Dimensional Band-Limited Framelets and Their Applications in Colour Image Restoration

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Wavelet approximation methods for pseudodifferential equations I: stability and convergence.

    Get PDF
    This is the first part of two papers which are concerned with generalized Petrov-Galerkin schemes for elliptic periodic pseudodifferential equations in ℝn covering classical Galerkin methods, collocation, and quasiinterpolation. These methods are based on a general setting of multiresolution analysis, i.e., of sequences of nested spaces which are generated by refinable functions. In this part we develop a general stability and convergence theory for such a framework which recovers and extends many previously studied special cases. The key to the analysis is a local principle due to the second author. Its applicability relies here on a sufficiently general version of a so called discrete commutator property. These results establish important prerequisites for developing and analysing in the second part mehods for the fast solution of the resulting linear systems. These methods are based on compressing the stiffness matrices relative to wavelet bases for the given multiresolution analysis

    DISCRETE FRAMES AND TIGHT FRAMES FOR SPARSE IMAGE REPRESENTATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    On the Construction of Wavelets and Multiwavelets for General Dilation Matrices

    Get PDF
    This thesis is concerned with the construction of (pre-)wavelets and (pre-)multiwavelets. In particular, we identify minimal requirements such that a construction is still possible. To this end, we weaken the assumptions made in the definition of the multiresolution analysis. Based on this generalized multiresolution analysis, we develop construction procedures for compactly supported (pre-)wavelets and for compactly supported (pre-)multiwavelets. These construction procedures involve general dilation matrices which allow us to reduce the number of mother wavelets to a minimum. To illustrate the theory developed in this work, we choose exponential box splines as generators for the generalized multiresolution analysis and construct compactly supported (pre-)wavelets and (pre-)multiwavelets

    Unitary Representations of Wavelet Groups and Encoding of Iterated Function Systems in Solenoids

    Full text link
    For points in dd real dimensions, we introduce a geometry for general digit sets. We introduce a positional number system where the basis for our representation is a fixed dd by dd matrix over \bz. Our starting point is a given pair (A,D)(A, \mathcal D) with the matrix AA assumed expansive, and D\mathcal D a chosen complete digit set, i.e., in bijective correspondence with the points in \bz^d/A^T\bz^d. We give an explicit geometric representation and encoding with infinite words in letters from D\mathcal D. We show that the attractor X(AT,D)X(A^T,\mathcal D) for an affine Iterated Function System (IFS) based on (A,D)(A,\mathcal D) is a set of fractions for our digital representation of points in \br^d. Moreover our positional "number representation" is spelled out in the form of an explicit IFS-encoding of a compact solenoid \sa associated with the pair (A,D)(A,\mathcal D). The intricate part (Theorem \ref{thenccycl}) is played by the cycles in \bz^d for the initial (A,D)(A,\mathcal D)-IFS. Using these cycles we are able to write down formulas for the two maps which do the encoding as well as the decoding in our positional D\mathcal D-representation. We show how some wavelet representations can be realized on the solenoid, and on symbolic spaces
    corecore