
DISCRETE FRAMES AND TIGHT FRAMES

FOR SPARSE IMAGE REPRESENTATION

YUFEI ZHAO

(B.Sc., East China Normal University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2016





To my parents





Declaration

I hereby declare that the thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree in any university previ-

ously.

Yufei Zhao

2016





Acknowledgements

First, I would like to express my sincere appreciation to my advisor Associate Profes-

sor Hui Ji, for his guidance and help. What he taught me is not only the knowledge,

but also the way to think when doing research. Our communication and his guidance

has greatly inspired me on my research work. And he is very friendly and patient.

It is my honor and pleasure to work with him.

I would like to thank Professor Zuowei Shen. Besides the immense knowledge I

learned from him during discussion and seminars, his research philosophy of linking

things together will also benefit me in my whole life. Also, I would like to thank

Associate Professor Qun Mo for inspiring communications.

I am grateful to all members in the wavelet group, Andreas Heinecke, Chenglong

Bao, Zhitao Fan, Zheng Gong, Likun Hou, Kai Jiang, Jia Li, Ming Li, Chaoqiang

Liu, Yu Luo, Tongyao Pang, Yuhui Quan, Yuping Sun, Kang Wang, Xueshuang

Xiang, Peichu Xie, Guodong Xu and Jianbin Yang, for enlighting me in our discus-

sions.

I would like to express my gratitude to my friends in my graduate office, Junrui

Chen, Weiqiang Chen, Ying Cui, Han Guo, Liu Hong, Xiaowei Jia, Hengfei Lu,

Lei Qiao, Yan Wang, Ran Wei, Chen Yang, Jing Yang, Liuqin Yang, Yu Yang and

Jinjiong Yu. They have greatly enriched my graduate life.

vii



viii Acknowledgements

Finally, I want to thank my parents for their love and support.



Contents

Acknowledgements vii

Summary xiii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Sparsifying system . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Regularization models for sparse recovery . . . . . . . . . . . . 9

1.2 What is this dissertation about . . . . . . . . . . . . . . . . . . . . . 11

1.3 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . 14

2 Mathematical preliminary 17

2.1 Hilbert space and systems . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Gabor frames and MRA-based wavelet frames . . . . . . . . . . . . . 19

2.3 Conditions for sparse recovery . . . . . . . . . . . . . . . . . . . . . . 21

3 Discrete Gabor frames 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



x Contents

3.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Our works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 (Dual) Gramian analysis, fiberization and duality principle . . . . . . 26

3.3 Construction of discrete tight Gabor frames . . . . . . . . . . . . . . 34

3.4 Construction of discrete Gabor induced frames for image recovery . . 37

3.4.1 Decomposition and reconstruction by filter banks . . . . . . . 37

3.4.2 Gabor induced frames with filters of zero DC offsets . . . . . . 39

3.4.3 Orientation selectivity . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Discrete tight frames with Gabor and MRA structures 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Our works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Discrete tight frame with Gabor and MRA structures . . . . . . . . . 54

4.3 (Tight) Gabor frames induced from refinable functions . . . . . . . . 63

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Image recovery using multi-scale Gabor systems 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Regularization models and numerical algorithms . . . . . . . . . . . . 68

5.3 Image recovery and experimental evaluation . . . . . . . . . . . . . . 71

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 `1 regularizers with different loss functions for sparse recovery 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Robust and stable recovery . . . . . . . . . . . . . . . . . . . . 81

6.1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 82



Contents xi

6.2 Robustness and Stability of `2
2-`1 and `1-`1 models . . . . . . . . . . . 85

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . 95

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 98





Summary

In recent years, sparse approximation has played a fundamental role in many signal

processing areas. The sparsity-induced regularization methods for image recovery

are implemented based on the assumption that the underlying images can be sparsely

approximated under the given system. Herein, over-complete systems, especially

tight frames, possess advantages in sparse image representation and have been widely

used in applications.

In the first part of this dissertation, we focus on constructing discrete (tight)

frames using Gabor atoms to meet the needs for sparse image modeling. Gabor

systems have many advantages in sparse representation, for example accurate local

time-frequency analysis and strong orientation selectivity. However, the discretiza-

tion of continuous Gabor frames is non-trival in the sense that the resulted discrete

system may lose the frame property, as well as fast implementation algorithms. Mo-

tivated by these, we study the general theory of discrete Gabor frames by developing

Gramian and dual Gramian analysis in CN . Consequently, we derive a necessary

and sufficient condition for discrete tight Gabor frames and construct two classes of

discrete tight Gabor frames as examples. Further, to remove the non-zero DC (di-

rect current) offset, we revise the tight Gabor frame to Gabor induced frames with

closed-form dual frames and the decomposition and recontruction processes can be

xiii



xiv Summary

implemented via filter bank based fast algorithms. The orientation selectivity of the

resulted Gabor induced frame is optimal, i.e. the associated filters provide all the

possible directions defined on discrete uniform grid.

A weakness of the Gabor system is that it lacks the multi-scale property since all

its atoms are of fixed size. One way to solve this problem is to consider multi-scale

Gabor frames composed of several Gabor frames with windows of various lengths.

The other way is to construct tight frame with both Gabor and MRA structures.

Specifically, we take a set of discrete Gabor atoms as refinement and wavelet masks

to define an MRA-based wavelet system. Based on the UEP, a sufficient condition

for construcing discrete tight frame with Gabor and MRA structures for `2(Z) is

derived, which also promises that the associated continuous MRA-based wavelet

system forms a tight frame for L2(R). Further, it can be shown that systems sat-

isfying such condition must be generated by discrete constant windows. And the

experiments of image restoration illustrate the efficiency of both multi-scale Gabor

induced frames and tight frames with Gabor and MRA structures in sparse image

representation.

The last part of this thesis discusses the theoretical aspect of stability and robust-

ness for image recovery when using `1-norm as the sparsity prompting functional.

The existing sparsity-based regularization models for image recovery are composed

of two parts: regularizers and loss functions. In the dissertation, we focus on `1-

norm regularized models with either `1-norm loss function or square of `2-norm loss

function. Distinct requirements are imposed on the measurement matrices to ensure

the stable and robust recovery of these two models with different loss functions.



Chapter 1
Introduction

1.1 Overview

In many practical problems, people targeted at reconstructing signals from partial

and noisy measurement data. When the information acquisition process is linear, the

problem of signal recovery models the measurement data as the output of applying

a linear operator A to the signal of interest:

b = Af + n, (1.1)

where f ∈ CN is the true signal we need to recover, b ∈ CM is the observed data,

A ∈ CM×N is the measurement matrix modeling the linear measurement process

and n ∈ CM is the measurement noise. In practice, the available information is less

than the dimention of true signals, i.e. M < N , or the matrix A may be singular.

Therefore in most signal recovery tasks, the system (1.1) is under-determined with

an infinite number of solutions, some of which could be far away from the truth f .

That indicates it is impossible to recover f via directly solving the linear system (1.1)

without additional information. However, under certain assumptions like sparsity,

the goal of recovering signals from underdetermined linear measurements becomes

possible.

In recent years, sparse approximation has been an indispensable tool in signal

1



2 Chapter 1. Introduction

recovery. A significant amount of research has been devoted to address the problem

of sparse recovery from partial and noisy measurements in different contexts, e.g.

signal/image reconstruction ([10, 15, 13]), compressed sensing ([19, 33, 59]), non-

parametric statistics ([69, 7, 8]) and machine learning ([48, 1, 82]). A signal is said to

be sparse if most of its elements are zero or close to zero. By emperical observation,

many real-world signals themselves are sparse or their coefficients Wf under some

transform W are sparse. With the assumption of sparsity, one can implement a

general constrained regularization model for signal recovery

min
x
R(x), subject to L(x) ≤ δ, (1.2)

or an unconstrained model:

min
x
λL(x) +R(x), (1.3)

in both of which, R(x) is a sparsity induced regularizer and L(x) is a loss function

measuring how well a signal x fits the observed data b. In the unconstrained model

(1.3), λ is a pre-defined positive parameter balancing the loss function and the

regularizer.

For the topic of sparse recovery, we will mainly concentrate on the following two

questions in this dissertation:

• Finding proper systems for sparsifying certain types of signals, especially im-

ages;

• Choosing suitable sparsity-induced regularization models, by which the truth

can be exactly or approximately solved.

Whether theses two problems are solved successfully will influence the result of

sparse recovery. And next, we will give a detailed introduction to the background

related to these topics.



1.1 Overview 3

1.1.1 Sparsifying system

In most signal processing tasks, signals of interest are first expanded under some

system and then interpreted or processed in terms of their expansion coefficients.

More specifically, given a system {uj}j∈I ⊂ L2(R), people are seeking the series

expansion of signal f ∈ L2(R) like

f(t) =
∑
j∈I

cjuj(t). (1.4)

The process of computing coefficients cj’s is called decomposition and the process

of synthesizing f as (1.4) is called reconstruction. If most coefficients of {cj}j∈I are

zero, i.e. f can be expressed as a linear combination of very few atoms in {uj}j∈I ,

we say the signal f can be sparsely represented under the system {uj}j∈I . The

success of the sparsity-driven signal recovery methods largely depends on whether

the chosen system can effectively sparsify input signals.

One important class of systems in application are the Gabor systems (or Weyl-

Heisenberg systems, [60]). Given a fixed window function g ∈ L2(R) with ‖g‖2 = 1,

a Gabor system (K,L)g ⊂ L2(R) is composed of translations and modulations of g

on discrete lattices K ×L, i.e. (K,L)g = {gk,`(t) = g(t− k)e−2πi`t, t ∈ R}k∈K,`∈L. In

particular, if the uniform time-frequency lattices K × L = aZ× bZ (a, b ∈ R+) are

considered, the corresponding Gabor system can be written as

(K,L)g = {gk,`(t) = g(t− ak)e−2πib`t, t ∈ R}k,`∈Z. (1.5)

From the definition of Gabor system, the locations of its atoms are shifted across

the time-frequency plane, while the support or energy concentration of each atom

in a Gabor system is fixed.

Many efforts have been devoted to the study of Gabor theory for function space

L2(R) or L2(Rd) (see e.g. [27, 111, 43, 63, 64, 99]). Among the vast literature

studying Gabor theory, one noticeable and relevant work is [99]. The authors applies

the Gramian and dual Gramian analysis, which is first developed for shift invariant

systems in L2(Rd) ([96]), to investigating the properties of Gabor systems on the
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uniform lattices. In the Gramian and dual Gramian analysis, the frame properties of

Gabor systems is converted to the analysis of the eigenvalues of their corresponding

Gramian and dual Gramian matrices, i.e. the fiberized matrix representation of

frame operators. Consequently, the derivation of duality principle [95, 99] becomes

straightforward. For a generalization of Gramian and dual Gramian analysis, as well

as the duality principle, to the abstract Hilbert space for one single system ([53]) or

bi-systems ([52]), one may refer to related literature.

To seek a series representation of function f in L2(R) as (1.4) via a Gabor system,

the most natural idea is to make the system an orthogonal basis (or a Riesz basis)

for L2(R), under which the decomposition coefficient is determined by taking inner

product of f and each atom gk,` (or atom in the dual basis). However, the Balian-Low

Theorem ([2, 80, 3]) reveals the incompatibility of time-frequency concentration and

non-redundancy of Gabor systems in L2(R) generated on uniform lattices as (1.5).

To gain more flexibility in designing a complete and stable Gabor system for the

function space L2(R), it is necessary to introduce redundant Gabor systems and

go beyond the orthonormal bases or Riesz bases to the area of Gabor frames. For

such redundant frames, there exist non-unique dual frames. And the decomposition

and reconstruction processes can be accomplished by using the dual pair. Herein,

the construction of tight Gabor frames get people’s attention, since the canonical

dual frame of a tight frame is just the original system itself. For the existing works

about the construction of (tight) Gabor frames for L2(R), readers may check related

references (e.g. [39, 99, 29, 31, 76]). For example, in [39, 99, 29, 31], the authors use

the necessary and sufficient conditions imposed on window functions to construct

tight Gabor frames or Gabor dual pairs. And in [76], a class of constructible dual

Gabor frames is derived relying on the canonical dual.

Another widely used system is the wavelet/affine system. A wavelet is a function

ψ ∈ L2(R) with a zero average, i.e.
∫ +∞
−∞ ψ(t)dt = 0. For a given set of wavelets

Ψ = {ψ1, ..., ψr} ⊂ L2(R), the wavelet system X(Ψ) is composed of dyadic dilations
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and translations of ψ`’s, i.e.

X(Ψ) = {ψ`,n,k(t) = 2n/2ψ`(2
nt− k), t ∈ R} 1≤`≤r

n,k∈Z
. (1.6)

According to the definition, the spread of atoms in a wavelet system will be scaled

due to dilation. The locations of atoms at the same scaling level are shifted across

the time plane, and their location in frequency domain is also adaptively changed

with dilation.

Similarly as Gabor systems, people consider to find a complete and stable series

expansion by using wavelet systems. The multiresolution analysis (MRA), which

is firstly introduced by Mallat and Meyer ([83, 87]), is served as a most widely

used design method for the construction of orthonormal wavelet bases, e.g. [86,

38, 40]. However, it has been proved by Daubechies ([40]) that the only symmetric

or antisymmetric real orthonormal wavelet basis with compact support is the Haar

wavelet, which lacks smoothness.

To obtain the desirable symmetry property, as well as smoothness, one way is to

constuct MRA-based biorthogonal wavelet bases, for example [34, 110]. The other

way is to consider the overcomplete wavelet system and constructing MRA-based

(tight) wavelet frames. A systematic study about frame property of wavelet systems

with MRA structure is given in [97]. In [42], the tight frame property of an MRA-

based wavelet system in L2(R) is reduced to conditions on the masks, which is known

as the unitary extension principle (UEP). And in [42], the authors give an example

of MRA-based tight wavelet frame generated from a class of compactly supported

refinable functions, i.e. pseudo-splines, which covers the B-spline refinable function,

Daubechies orthogonal refinable function ([38, 40]) and interpolatory refinable func-

tion. To raise up the approximation order of spline tight wavelet frames, the oblique

extension principle (OEP) is discovered in [32] and [42]. Both UEP and OEP can

be generalized to the bi-frame setting, which leads to the mixed extension principle

(MEP, [98, 32, 42]). A detailed review about the MRA framework and UEP, will be

given in Chapter 2, Section 2.2.
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Different structures of Gabor systems and wavelet systems lead to their own

characteristics from the viewpoint of signal analysis. A Gabor frame in function

space L2(R), is composed by the translated and modulated copies of a single window

function, and a wavelet frame is composed by the scaled and translated copies of a

few basic functions (framelets). As the atoms of Gabor frames are essentially the

translations of a window function on time-frequency plane, the expansion of signals

under a Gabor frame characterizes their local time-frequency properties. Indeed,

by Heisenberg Uncertainty Principle, the atoms of Gabor systems with Gaussian

window functions have optimal time-frequency concentration. Thus, Gabor frames

are considered as a very important tool for local time-frequency analysis of signals.

However, when being used for analyzing signals containing multiple local structures

with very different sizes, Gabor systems are less effective as the supports of all

atoms are fixed, i.e. the support of the window function. Wavelet systems deal with

the size variations of signal structures by using the translations and dilations of

one or several mother wavelet functions. Although wavelet functions with different

scales have close relationship with the translations of wavelet functions in frequency

plane, the time-frequency analysis of signals under wavelet systems is less optimal

and less accurate than Gabor frames. In other words, both Gabor system and

wavelet system have their strengths and weaknesses in terms of signal analysis.

Gabor system is a better tool for local time-frequency analysis and wavelet system

is better for modeling signal structures with different sizes and particularly local

sharp discontinuities.

For practical applications, there is the need to have a suitable scheme that con-

verts frames for L2(R) to frames for `2(Z), together with an efficient numerical

implementation for signal decomposition and reconstruction. The discretization

of Gabor frames and wavelet frames, particularly multi-resolution analysis (MRA)

based wavelet frames, are done in different manners. Discrete Gabor frames for

`2(Z) are usually obtained via directly sampling continuous Gabor frames in a dis-

crete time-frequency grid. Sometimes, the discrete systems obtained by such a
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sampling-based discretization may lack desired properties, e.g. tight frame property

and efficient signal decomposition and reconstruction algorithms. In contrast, dis-

crete MRA-based wavelet frames for `2(Z) are directly derived from several specific

sequences in `2(Z), i.e. the refinement mask of the scaling function of MRA and

wavelet masks. As a result, a fast filter bank based algorithm is available for wavelet

decomposition and reconstruction, which cascades discrete convolution with masks

followed by sub-sampling (up-sampling).

It is worth mentioning that an important property for a system to effectively rep-

resent 2D images is the orientation selectivity, as the discontinuities of 2D images

often show geometrical regularities along image edges with different orientations.

In recent years, many real-valued frames or tight frames have been proposed to

improve orientation selectivity, including curvelets [20], bandlets [73], shearlets [71],

and many others. Although better orientation selectivity are obtained, the existing

implementations of these frame systems are much less efficient than the 1D filter

bank based implementation of tensor tight wavelet frames. Another promising ap-

proach to gain orientation selectivity without sacrificing computational efficiency is

using complex-valued systems. Different from real-valued functions, the real/imagi-

nary part of the tensor product of two 1D complex-valued functions is not separable

by itself. Thus, a 2D complex-valued tensor system can have better orientation

selectivity using carefully chosen 1D real and imaginary functions. For example,

the dual-tree complex wavelet transform [101] used two different discrete orthogonal

wavelet bases to produce a 2D tensor complex-valued wavelet tight frame whose

real part and imaginary part have up to six orientations, which still leaves plenty of

rooms for further improvement.

Another characteristic of real-world images is it often contains both cartoon parts

and texture parts. Cartoon parts show piecewise smooth content, whose disconti-

nuities (edges) have geometrical regularity along the edge directions. Texture parts

are highly non-smooth, but show small elements displaying either random or peri-

odic patterns. Therefore, the design of a good redundant system for sparsity-based
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image recovery should be able to effectively characterize both directional regularity

of image edges and texture components with local periodicity. Another weakness

of the aforementioned tight frames or their extensions is that they cannot model

texture regions displaying periodic patterns, which can be sparsely modeled in lo-

cal frequency domain. The systems containing the sinusoids in local windows are

more effective on modelling such a sparsity prior. For example, local discrete cosine

transform (DCT) has been used in the literature to model such regular textured

regions. Thus, the sparsifying frames used in some image restoration methods are

composed of two frames: a wavelet frame and a local DCT; see e.g. [105, 11]. Same

as real-valued 2D tensor wavelet frames, real-valued 2D local DCT also lacks orien-

tation selectivity such that it cannot effectively express texture regions with varying

oriented periodicity.

Owing to the advantage of complex-valued tensor product functions, 2D tensor

product Gabor functions

g(t1)g(t2)e2πi(ω1t1+ω2t2)

can provide arbitrary orientation selectivity by choosing different frequency pairs

(ω1, ω2). In other words, different modulations gives different orientations of 2D

Gabor functions; see Fig. 1.1 for an illustration.

Figure 1.1: Illustration of 2D tensor product Gabor functions with different fre-
quency orientations. The real parts of Gabor functions are shown in the top row
and the imaginary parts are shown in the bottom row.

In fact, the Gabor functions can effectively model different image features, for ex-

ample cartoon components and texture components, by using the window functions

with different supports. When using a window function of small support, the imag-

inary part of a Gabor function (sine function) can be understood as an odd-order
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partial differential operator, and its real part (cosine function) can be understood

as an even-order partial differential operator. Thus, it can measure local signal gra-

dients of multiple orders for cartoon regions with piecewise smoothness. For texture

components with sparse local frequencies, the Gabor function with Gaussian-like

window functions of sufficiently large support, is well-known for its optimality on

local time-frequency analysis by Heisenberg Uncertainty Principle.

The advantages of 2D Gabor functions on orientation selectivity and local time-

frequency analysis make them a very good tool for image analysis. Daugmann [44]

showed that simple cells in the visual cortexes of mammalian brains can be modeled

by a wavelet system generated by the translations and dilations of Gabor functions

with varying frequency orientations. Continuous Gabor wavelet transforms have

been widely used in texture analysis and segmentation, whose discrete version is

usually done via directly sampling the function on a discrete grid. However, as we

have mentioned, the system generated by such a simple discretization lacks some

important property needed for sparsity-based image recovery methods, such as the

fast numerical algorithm for exact reconstruction process. There is certainly the

need to study the general theory of discrete version of Gabor systems from the very

beginning.

1.1.2 Regularization models for sparse recovery

Next, we will briefly introduce the sparsity-induced regularization models for sparse

recovery.

As we have mentioned previously, constrained model (1.2) and unconstrained

model (1.3) are widely used for signal recovery based on the sparsity assumption.

Herein, the loss function L(·) is designed according to the statistical property of

measurement noise n. The popular choices include the square of `2-norm based

loss function L(x) = ‖Ax− b‖2
2 for additive Gaussian noise ( [100, 4, 61, 25]), the

`1-norm based loss function L(x) = ‖Ax − b‖1 for significant amount of outliers
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([66, 67, 90]), and the Kullback-Leibler divergence fidelity term for Poisson noise,

i.e. L(x) = 1>(Ax) − b> log(Ax), where 1 is the vector with all entries being 1

([72, 75]).

The regularizer R is used to enforce a sparsity constraint on the original signals

f . By assuming the signal f is sparse, we solve the system (1.1) by penalizing

f against its `0-norm. The `0-norm of a signal x is defined as the number of its

nonzero components, i.e.

‖x‖0 = |supp(x)|,

where |S| represents the cardinality of a set S. Under certain conditions, the `0-

norm regularized minimization provides good reconstruction. For example, in the

noise-free case, the model

min ‖x‖0 subject to Ax = b

will exactly recover the s sparse signal f satisfying Af = b, if any 2s columns of

A are linearly independent ([59]). Such result shows the theoretical effectiveness

of sparsity-induced model. However, it may be challenging to implement a feasible

algorithm for the `0-norm related model. For instance, it has been proved that for

any δ ≥ 0, the `0-norm regularized model with `2-norm based constraint

min
x∈CN

‖x‖0 subject to ‖Ax− f‖2 ≤ δ

is an NP hard problem ([89]). Consequently, people have tried to set other reg-

ularizers, which both induce sparsity and possess the properties like being convex

and smooth, such that the corresponding minimization problems are easy to solve

in practice.

Partially owing to the breakthrough in compressed sensing ([24, 23, 46], `1-norm

has been widely used as the convex relaxation of `0-norm for sparse signal recovery.

Typical `1-norm regularizer based optimization models for sparse recovery can be

either a constrained model:

min
x
‖x‖1, subject to L(x) ≤ δ, (1.7)
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or an unconstrained model:

min
x
λL(x) + ‖x‖1, (1.8)

where δ and λ are both pre-defined parameters. There exists an abundant literature

on studying sparse recovery using the constrained model (1.7); see e.g. [24, 23, 19,

58, 56, 17, 18, 59, 57, 107, 21]. The study of robust and stable sparse recovery using

unconstrained model (1.8) has been scant in the literature. A detailed review of

these exsisting results will be given in Chapter 6. Considering the fact that the

unconstrained model (1.8) is also common to use in practice as it is easier to solve,

there is a need to study the robustness and stability when using (1.8) for sparse

recovery.

Besides, many other regularizers have also been proposed in sparse signal recov-

ery. For example, people consider a generalization of the above `0-norm and `1-norm

based regularizers: the `q-norm based regularizer R(x) = ‖x‖qq with 0 < q ≤ 1

(e.g. [58, 107, 108]), which is continuous but nonconvex except the case q = 1.

And in [117], the author considers the Capped-`1 regularizer defined as R(x) =∑N
j=1 min(|xj|, α), which is a good approximation to `0-norm. A smoother but still

nonconvex regularizer SACD is introduced in [51]. Interested readers may refer to

related literature for more details. And in this dissertation, we just focus on the

most widely used, convex and continuous `1-norm based regularizer R(x) = ‖x‖1.

1.2 What is this dissertation about

The redundancy of (tight) frames gives more flexibilities on filter design and better

sparse approximation. The first goal of this dissertation is to construct discrete

(tight) frames meeting the needs from sparsity-induced signal recovery, especially

image recovery. To make the constructed system more effective and powerful for

sparsifying real-world images, it is hoped to have the following properties: 1) the

system may provide accurate local time-frequency analysis; 2) the corresponding
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two dimentional system possesses the directional selectivity; 3) the system can char-

acterize different signal features of multi-scales; and 4) there exists a fast algorithm

for the implementation of decomposition and reconstruction processes.

As we have mentioned in the last section, the atoms of a Gabor system inherently

have the local time-frequency analysis. And the 2D Gabor system defined from

tensor product of 1D ones provides strong directional selectivity. However, the

discretization of Gabor systems is non-trival in the sense that the resulted discrete

system may lose the frame property. Motivated by these, we study the general theory

of discrete Gabor systems, and develop the Gramian and dual Gramian analysis for

the discrete Gabor systems in CN . Further, based on the duality principle derived

from the Gramian and dual Gramian analysis, we get a necessary and sufficient

condition for discrete tight Gabor frames, and use them to construct two classes of

discrete tight Gabor frames. However, the proposed tight frames cannot be directly

used in sparsity-based image recovery methods, as the associated high-pass filters

have non-zero DC offsets. Therefore, a new class of discrete Gabor induced frames

with closed-form dual frames are constructed which remove the non-zero DC offsets

of all high-pass filters of tight Gabor frames.

By varying the size of window sequences, Gabor systems can provide powerful

expressions on both cartoon image regions and texture image regions. However, a

single Gabor system cannot characterize image features of multi-scales simultane-

ously, since all the atom sizes are fixed to be the window size.

To solve this problem, we consider to study discrete tight frames with both

Gabor and MRA structures. Such discrete tight frames will have the same multi-

scale structures as discrete MRA-based wavelet tight frames for `2(Z), and their

2D tensor products have strong orientation selectivity and good performance on

local time-frequency analysis. Our construction is based on the standard framework

of MRA, and particularly we use a set of discrete Gabor filters with frequency

parameter b

{g`(m) = g(m)e−2πib`m}0≤`≤ 1
b
−1. (1.9)
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as the refinement and wavelet masks, which consequently define the refinable func-

tion φ and wavelet functions {ψ`}
1
b
−1

`=1 . Based on the unitary extension principle

(UEP) [97, 42], we presented a sufficient condition for constructing discrete tight

frames with Gabor and MRA structures for `2(Z), and showed that the associated

systems generated by {ψ`}
1
b
−1

`=1 in the continuum domain indeed form MRA-based

tight wavelet frames for L2(R). Clearly, the discrete tight frames constructed by

such an approach have all the properties mentioned at the begining of this section.

Furthermore, we showed that only those discrete systems generated by a constant

discrete window function, i.e.

g =
1

p
(1, 1, . . . , 1)

for some positive even integer p, can form compactly supported discrete tight frame

with Gabor and MRA structures for `2(Z). Clearly, when p = 2, it corresponds to

Haar orthonormal wavelet basis with the discrete window function (1/2, 1/2). It is

noted that when p > 2, it is not necessarily corresponding to Haar basis, whose

refinable function is an indicator function. Indeed, we showed that the refinable

function φ is a continuous piece-wise spline function when p = 2m,m > 1. In

addition, we also gave a construction of Gabor frames for L2(R) whose window

function is the refinable function of an MRA, and tight Gabor frames for L2(R)

whose window function is the square root of the scaling function of an MRA.

Totally, we construct two types of discrete systems to meet our needs for sparse

recovery. One is the discrete Gabor induced frame and the other is MRA-based

discrete tight wavelet frame with Gabor structure. In fact, it’s hard to tell which

system is overwhelmingly better than the other. For the discrete Gabor induced

frames we have constructed, one has more flexibility to choose the window sequence,

while to deal with the scaling challenge, the multi-scale Gabor induced frame is

necessary to be considered. For the tight wavelet frame with Gabor structure, the

multi-scale property is automatically embedded in the MRA framework. As a result,

the window is restricted to have uniform values and lacks the smoothness, although

the corresponding continuous refinable functions can be arbitrarily smooth.
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To demonstrate the benefits of the discrete Gabor induced frames and MRA-

based tight wavelet frames with Gabor structure, we develop an `1-norm regularized

method for solving ill-posed linear inverse problem in image recovery. For the multi-

scale Gabor induced frame, our regularization model follows the idea proposed in

[16] for image inpainting, i.e., the image is read as the composite of multiple layers,

and each layer represents image parts that can be sparsely modeled by the discrete

Gabor induced frame with a particular scale. For the single frame system, i.e. the

tight frame with Gabor and MRA stuctures, this model is reduced to the usual

analysis model. The experimental results indicate the advantages of these two types

of discrete frames over other tight wavelet frames in sparsity-based image recovery.

The last part in this dissertation is about the sparsity-induced regularization

models. As aforementioned, the unconstrained `1-norm relating model for sparse

recovery has been seen its wide applications in practice. However, the analysis on

the robustness and stability of such unconstrained models is scant in the literature.

In this dissertation, we investigate the sufficient conditions for stable and robust

recovery of sparse signals when using unconstrained models. Both the `1-norm loss

function and the square of `2-norm loss function are considered. It is shown that

these two models with different loss functions have different requirements on A for

guaranteeing stable and robust sparse recovery. When using `1-norm as the loss

function, only null space property is sufficient for a good recovery while it is not

sufficient when using square of `2-norm as the loss function. How to set optimal

value of regularization parameter in the unconstrained model is also provided in the

analysis, which is helpful to the applications.

1.3 Organization of the dissertation

The remaining chapters of this dissertation is organized as follows.

• In Chapter 2, we introduce some mathematical preliminaries related to our

discussion.



1.3 Organization of the dissertation 15

• In Chapter 3, firstly we develop the Gramian and dual Gramian analysis for

studying the general theory of discrete Gabor systems, from which we derive

the duality principle. Based on the duality principle, we investigate the con-

struction of tight Gabor frames and Gabor induced frames suitable for image

recovery.

• In Chapter 4, we are devoted to the construction of discrete tight frames with

Gabor and MRA structures, as well as MRA-based tight wavelet frame for

L2(R). Additionally, we also give a construction of (tight) Gabor frames for

L2(R) using the scaling function of an MRA.

• In Chapter 5, we apply the constructed Gabor induced frames and tight frames

with Gabor and MRA structures in the `1-norm relating regularization for

image recovery problems.

• In Chapter 6, we study the sufficient conditions on measurement matrix A for

guaranteeing a robust and stable recovery of sparse signals via solving (1.8),

as well as how to set optimal value of the regularization parameter λ.





Chapter 2
Mathematical preliminary

In this chapter, we will introduce some mathematical preliminaries related to this

dissertation, for example the general frame theory and MRA-based wavelet frames,

as well as two widely used conditions on measurement matrices in sparse recov-

ery. These concepts introduced in this chapter will be employed throughout this

dissertation.

And in this dissertation, we use Z,Z+,N,R to denote the set of integers, positive

integers, natural numbers and real numbers, respectively.

2.1 Hilbert space and systems

Let H be a Hilbert space, for example L2(R), `2(Z) or CN , with the usual inner

product 〈·, ·〉 and 2-norm ‖·‖. {vj}j∈I ⊂ H is called a Bessel sequence if there exists

a positive constant B such that∑
j∈I

|〈f, vj〉|2 ≤ B‖f‖2, ∀ f ∈ H.

And it is called a frame sequence if there exist two positive constants A,B such that

A‖f‖2 ≤
∑
j∈I

|〈f, vj〉|2 ≤ B‖f‖2, ∀ f ∈ span({vj}j∈I).

17
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A Bessel sequence becomes a frame for H if there also exists a positive constant A

such that

A‖f‖2 ≤
∑
j∈I

|〈f, vj〉|2 ≤ B‖f‖2, ∀ f ∈ H.

A/B is called the lower/upper frame bound. The notion of frame was first introduced

by Duffin and Schaeffer ([47]). A frame {vj}j∈I is called tight frame when A = B = 1.

Clearly, a (tight) frame sequence of H becomes a (tight) frame for H if its linear

span is dense in H.

A sequence {vj}j∈I is called a Riesz sequence if there exist two positive constants

C1, C2 such that

C1

∑
j∈I

|c(j)|2 ≤ ‖
∑
j∈I

c(j)vj‖2
2 ≤ C2

∑
j∈I

|c(j)|2, ∀ c ∈ `2(I),

where `2(I) denotes the space of square summable sequences with index I. When

C1 = C2 = 1, the Riesz sequence {vj}j∈I becomes an orthonormal sequence. The

Riesz (orthonormal) sequence {vj}j∈I is a Riesz (orthonormal) basis for H if its

linear span is dense in H.

For a Bessel sequence {vj}j∈I for H, its synthesis operator, T : `2(I) → H is

defined by

T c =
∑
j∈I

c(j)vj ∀ c ∈ `2(I) (2.1)

and its adjoint operator, called analysis operator T ∗ : H → `2(I) is defined by

T ∗f(j) = 〈f, vj〉, j ∈ I. (2.2)

The frame operator S : H → H is then defined by S = T T ∗. Given a frame

U = {uj}j∈I for H, the sequence V = {vj}j∈I is called its dual frame if

f = TV T ∗U f = TUT ∗V f, ∀ f ∈ H. (2.3)

A frame {uj}j∈I and its dual {vj}j∈I are called bi-frames for H. Given a frame

{vj}j∈I for H, its dual frame is not unique and the so-called canonical dual frame
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is given by {(T T ∗)−1vj}j∈I . Two sequences {uj}j∈I and {vj}j∈I are called bi-

orthogonal sequences if

〈uj, vk〉 = δj−k,0, ∀ j, k ∈ I,

with δ0,0 = 1 and δj−k,0 = 0 otherwise.

2.2 Gabor frames and MRA-based wavelet frames

For any function f ∈ L2(R), its Fourier transform is defined by

f̂(ω) =

∫
R
f(t)e−iωtdt, ω ∈ R.

For any sequence h ∈ `2(Z), its Fourier series is defined by

ĥ(ω) =
∑
m∈Z

h(m)e−imω, ω ∈ R.

The construction of tight wavelet frames often starts with the construction of

MRA, which is built on refinable functions. A function φ ∈ L2(R) is called refinable

if

φ(t) = 2
∑
k∈Z

a0(k)φ(2t− k), t ∈ R, (2.4)

for some a0 ∈ `2(Z), or equivalently φ̂(2ω) = â0(ω)φ̂(ω), ω ∈ R. The sequence a0

is called the refinement mask of φ. Given a refinable function φ ∈ L2(R) with

φ̂(0) 6= 0, the sequence of sub-spaces {Vn}n∈Z defined by

Vn = span{φ(2n · −k)}k∈Z. (2.5)

forms an MRA for L2(R) if it satisfies

(i)Vn ⊂ Vn+1, n ∈ Z, (ii)∪nVn = L2(R), (iii) ∩n Vn = {0}.

Given an MRA generated by the refinable function φ, we can define a set of

framelets Ψ = {ψ`}r`=1 by

ψ`(t) = 2
∑
k∈Z

a`(k)φ(2t− k), t ∈ R, (2.6)
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or equivalently ψ̂`(2ω) = â`(ω)φ̂(ω), ω ∈ R, for some sequences {a`}r`=1 ⊂ `2(Z).

The sequences {a`}r`=1 are called wavelet masks of the framelets {ψ`}r`=1.

The so-called unitary extension principle (UEP) ([42]) provides a sufficient con-

dition on refinement mask a0 and wavelet mask {a`}r`=1 such that the affine system

X(Ψ) defined by

X(Ψ) = {2n/2ψ`(2n · −k)}1≤`≤r,n,k∈Z (2.7)

forms a tight frame for L2(R). For simplicity, we assume that the refinement mask

a0 is finitely supported.

Theorem 2.1 (UEP [97]). Let φ be a refinable function with φ̂(0) 6= 0 and with

finitely supported mask a0. For a given Ψ = {ψ`, ` = 1, . . . , r} defined by (2.6) with

wavelet masks {a`}r`=1, the affine system X(Ψ) defined by (2.7) forms a tight frame

of L2(R), if the masks {a0,a1, . . . ,ar} satisfy

r∑
`=0

|â`(ω)|2 = 1 and
r∑
`=0

â`(ω)â`(ω + π) = 0, (2.8)

for almost all ω ∈ [−π, π].

It is noted that in Theorem 2.1, the mask a0 is assumed to be the refinement

mask of a function in L2(R), which might not hold true for arbitrary sequences.

Nevertheless, it is shown in [52, Section 5.4] that a finitely supported mask a0 with

â0(0) = 1 will admit a refinable function in L2(R) if the mask a0, together with other

masks {a`}r`=1, satisfies the condition (2.8). The condition (2.8) can be expressed

as
r∑
`=0

∑
n∈Ωj

a`(n)a`(n+m) =
1

2
δm,0 (2.9)

for all m ∈ Z, j ∈ Z/2Z, where Ωj = (2Z + j) ∩ supp(a0). In short, once a set of

finitely supported masks {a`}r`=0 satisfying (2.9) is constructed, we have an MRA-

based wavelet tight frame for L2(R), and a filter bank based efficient numerical

implementation is available for the decomposition and reconstruction of signals in

`2(Z).



2.3 Conditions for sparse recovery 21

Before ending this section, we introduce a sufficient condition for the construction

of tight Gabor frames for L2(R).

Theorem 2.2. ([99]) Consider a compactly supported non-negative function g ∈

L2(R). Suppose that the support of g is [0, γ] and g > 0 on (0, γ). Then {g(t −

ak)e−2πib`t}k,`∈Z forms a tight frame for L2(R) if and only if the following two con-

ditions hold:

(a) γb ≤ 1;

(b)
∑

k∈Z |g(· − ak)|2 is constant.

2.3 Conditions for sparse recovery

For an index set T ⊂ {1, ..., N}, let |T | denote the cardinality of T and let T c denote

the complement of T in {1, ..., N}. For a vector x ∈ CN , let |x| denote the absolute

values of x, i.e. |x|(j) = |x(j)|, j ∈ {1, . . . , N}. Given a vector x ∈ CN and an

index set T , xT ∈ CN is defined as

xT (j) =

x(j) j ∈ T

0 j /∈ T.

Consider the problem of recovering signals from the underdetermined linear system

(1.1). In the literature of compressed sensing, various conditions have been imposed

on A to ensure the exact recovery of signals in the noise-free case or to ensure a

stable recovery in the noisy case, when the constrained model

min
g
‖g‖1, subject to L(b−Ag) ≤ δ,

is used. One of such conditions is the so-called null-space property ([33, 59]) for

exact recovery in the noise-free case.

Definition 2.1 (Null-space Property). The matrix A is said to satisfy the null

space property of order s, if there exists a constant 0 ≤ β < 1 such that for any
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h ∈ ker(A) and any index set T ⊂ {1, ..., N} of size |T | ≤ s,

‖hT‖1 ≤ β‖hT c‖1. (2.10)

The other is the so-called robust null-space property [59, 57]) or sparse approx-

imation property ([107]) which considers the noise-robustness and approximation-

stability of sparse recovery in the presence of noise.

Definition 2.2 (Robust Null-space Property). The matrix A is said to satisfy

the robust null space property of order s if there exist two constants D1 > 0 and

0 ≤ β1 < 1 such that for any h ∈ CN and any index set T ⊂ {1, ..., N} with |T | ≤ s,

we have

‖hT‖2 ≤ D1‖Ah‖2 + β1s
−1/2‖hT c‖1. (2.11)

It can be seen that for any matrix A satisfying the robust null-space property

will satisfy the null space property by restricting h ∈ ker(A). These two condi-

tions will be used in our discussion of the robust and stable sparse recovery by the

unconstrained `1 regularized models.
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Discrete Gabor frames

3.1 Introduction

As we have introduced in Chapter 1, a Gabor system has the advantages of accu-

rate local time-frequency analysis and the orientation selectivity, which make it a

promising tool in signal analysis and signal processing. Since D. Gabor introduced

the Gabor system ([60]) in 1946, most efforts have been devoted to the study of

Gabor theory for the function space L2(Rd) (see e.g. [40, 63, 27, 99]) and for the

infinite dimensional discrete space `2(Z) or `2(Zd) (see e.g. [88, 36, 79]).

The goal of this chapter is to construct discrete Gabor frames in CN that meet

the needs from sparsity-based image recovery methods. The discrete Gabor system

we considered is clarified as follows. Let g ∈ RN denote a window function with

the length of support p ≤ N , and let (a, b) denote two shift parameters in finite

time-frequency plane with both a and b−1 being positive integers. A discrete Gabor

system in CN generated from g is defined by

X = (K,L)g = {gk,`(m) = g((m−ak) mod N)e−2πi`bm,m = 0, 1, . . . , N−1}k∈K,`∈L,

(3.1)

where K,L ⊂ Z are the pair of integer lattices of finite time-frequency plane. The

density of X is defined as denX = |K||L|
N

where | · | denotes the cardinality of a set.

23
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While the Gabor theory in `2(Z) are applicable to discrete Gabor systems in CN

by viewing finite signals as the sequences in `2(Z), there are also studies of Gabor

systems for the space of finite signals RN or CN . In the next, we give a brief review

on the existing results of Gabor theory for CN and outline our contributions in this

chapter.

3.1.1 Literature review

For discrete Gabor systems in CN defined by (3.1), there have been various char-

acterizations presented in the past for Gabor frames and tight Gabor frames. A

necessary condition on the frame property of a discrete Gabor system for CN or

`2(Z) is ab ≤ 1 to ensure the cardinality of the system is no less than N . The

so-called Wexler-Raz duality condition for CN ([113, 81]) gives a necessary and suf-

ficient condition on Gabor bi-frames on specific finite time-frequency lattices. Many

fundamental facts of tight Gabor frames and Gabor frames for CN are provided in

Feichtinger et al. [54], which uses twisted group algebras as the main tool. Fe-

ichtinger et al. [54] studies Gabor frames for finite signals over a finite Abelian

group generated by an arbitrary lattice in finite time-frequency plane, and it covers

many existing results on Gabor analysis for both product lattices and non-product

lattices, including the duality principle [95, 99] which relates frame properties of a

Gabor system to that of its adjoint system. In [53], the duality principle is gener-

alized to the abstract Hilbert space for one single system, and further in [52], the

conclusion was extended to bi-systems. The studies for Gabor systems in `2(Z) and

CN can be seen as their specialization.

For the construction of discrete Gabor frames, many existing schemes are done

via sampling a Gabor frame for L2(R), see e.g [91, 65, 103]. The main difference

among these methods lies in the conditions used in the discrete sampling to generate

a frame. For example, it is shown in [65] that the certain regularization condition

should be imposed on the window function in order to form a frame for `2(Z) by



3.1 Introduction 25

sampling a Gabor frame for L2(R) with integer shift parameters. Moreover, it is

shown in [65] that if the inner product of window function and its time-frequency

shift has some decay, the minimal energy dual window can be sampled as well,

preserving the duality and minimality.

Other exisiting approaches to construct the discrete Gabor bi-frames is either

implicitly using the duality principle for bi-frames, i.e. the bi-orthogonality condi-

tion of the adjoint frame and its dual, or using the definition of canonical dual frame

which is done either by solving a linear system or by using unitary matrix factor-

ization of frame operator. Interested readers are referred to [92, 113, 88, 77, 93] for

more details. The discrete Gabor frames constructed by these methods usually do

not have closed-form dual frames. Thus a linear system needs to be solved to find its

dual which could be troublesome when the dimension of signals is very high. Using

the fact that the Zak transform diagonalizes the analysis operator of a Gabor system

when ab is 1 or reciprocal of an integer, an effective computation scheme is proposed

in [6] for calculating a dual frame of a Gabor frame by using the Zak transform

and the inverse Zak transform. There have been few approaches for constructing

discrete tight Gabor frame. In [36], a discrete Gabor tight frame is expressed from

the viewpoint of a filter bank and thus the construction of tight Gabor frames is

equivalent to the construction of paraunitary polyphase matrices, whose involved

computation is non-trivial.

In [30], the authors study a general theory of Fourier-like frames on locally

compact abelian groups, which can be applied to obtain explicit constructions of

discrete Gabor frames and dual Gabor frames for CN .

3.1.2 Our works

In this chapter, we use the Gramian and dual Gramian analysis first developed in

[99] for function spaces as the main tools to relate all frame properties of discrete

Gabor systems to the analysis of the eigenvalues of their corresponding Gramian
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and dual Gramian matrices. Once the Gramian and dual Gramian analysis are es-

tablished, the derivations of many existing results on discrete Gabor frames become

straightforward, including the duality principle. The simplicity of such an approach

comes from the fiberization technique introduced in [99]. While the frame proper-

ties of Gabor frames for function space require almost all fibers have such frame

properties, the frame properties of discrete Gabor frames only require a given set of

fibers have such frame properties.

Using the duality principle, we first derive a necessary and sufficient condition

for Gabor systems with non-negative window function to form tight frames for CN ,

followed by the constructions of two classes of tight Gabor frames generated by

sampling two types of window functions satisfying the property of partition of unity :

the square root of B-splines and the Fourier transform of refinable functions of Meyer

wavelets. It is noted that partition of unity has also been used for constructing Gabor

frames of function spaces; see e.g. [28]. However, the constructed tight Gabor frames

are not suitable for image recovery, as the associated high-pass filter bank has non-

zero DC offsets, i.e., the mean value of each atom is not zero. Therefore, a new

class of Gabor induced frames is proposed by removing the DC offsets of all high-

pass filters. Although the new discrete Gabor induced frames are not tight, their

associated decomposition and reconstruction processes remain as simple as tight

Gabor frames. And it can be observed that the constructed (tight) frames have the

optimal orientation selectivity.

3.2 (Dual) Gramian analysis, fiberization and du-

ality principle

In this section, we develop the Gramian and dual Gramian analysis for Gabor sys-

tems in CN , from which some useful corollaries including the duality principle are

derived.
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Before the discussion, we first introduce some notations and definitions related

to the Gramian and dual Gramian analysis for Gabor systems. For a Gabor system

X defined as (3.1), it is clearly a Bessel sequence of CN , as well as a frame sequence

of CN . The pre-Gramian matrix of X, denoted by JX , is an N -by-|K||L| matrix

defined by

JX [m, j(k, `)] = gk,`(m), 0 ≤ m < N, 0 ≤ j(k, `) < |K||L|, (3.2)

which collects all elements of X column-wise. It is consistent with the definition of

pre-Gramian defined in [53] using canonical orthonormal basis of CN . After defining

the pre-Gramian, we define the Gramian matrix of X by GX = J∗XJX and the dual

Gramian matrix by G̃X = JXJ
∗
X . For two Gabor systems X, Y , we define their

mixed Gramian matrix by GX,Y = J∗XJY , and their mixed dual Gramian matrix by

G̃X,Y = JY J
∗
X .

For a system X, its frame properties are closely related to the eigenvalues of its

Gramian GX and dual Gramian G̃X . Indeed, from the definition of pre-Gramian

given in (3.2), it can be seen that JX is exactly the synthesis operator TX defined

as (2.1) and the analysis operator T ∗X is the conjugate transpose of JX . Thus, the

frame properties of X can be described by the eigenvalues of GX and G̃X . Let λ(G)

denote the set of all eigenvalues of a matrix G. Then,

(i) The frame sequence X has lower frame bound

A = min
λ 6=0
{λ(GX)} = min

λ 6=0
{λ(G̃X)}

and upper frame bound

B = max
λ
{λ(GX)} = max

λ
{λ(G̃X)}.

(ii) X is a tight frame sequence of CN if and only if all non-zero eigenvalues of GX

(or G̃X) are 1.

(iii) X is a frame for CN if and only if all eigenvalues of G̃X are non-zero.
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(iv) X is a tight frame for CN if and only if all eigenvalues of G̃X equal to 1.

(v) X is a Riesz sequence of CN if and only if all eigenvalues of GX are non-zero.

(vi) X and Y are bi-frames for CN if and only if G̃X,Y = G̃Y,X = I.

(vii) X and Y are bi-orthogonal sequences of CN if and only if GX,Y = GY,X = I.

Clearly, the frame properties of a system X can be completely characterized from

the eigenvalues of GX and G̃X .

Recall that the columns of JX are the elements of X. Consider another system

X∗ defined by all rows of JX up to unitary equivalence, i.e. JX∗ = V1J
∗
XV2 where

V1 and V2 are two unitary matrices. Such a system X∗ is called an adjoint system

of X in [53], as the dual Gramian matrix G̃X of X is the Gramian matrix GX∗

of X∗ up to unitary equivalence. In other words, all frame properties of a system

X (e.g. frame property, frame bound and tight frame property) determined by its

dual Gramian matrix G̃X now can be also derived from the Gramian matrix GX∗

of X∗. Such a connection is the essential ingredient of the so-called duality principle

([95, 99, 53, 52]). In general, for a Gabor system, the adjoint system defined as above

is not a Gabor system. Later, we will consider another type of adjoint systems which

are Gabor systems themselves.

For the simplicity of discussion, we consider that the length of signal N can be

divided exactly by two shift parameters a and b−1. Then an often seen lattice set

{K,L} of a Gabor system X = (K,L)g is given as follows,

K := NN/a = {0, 1, . . . , N/a− 1}, and L := N 1
b

= {0, 1, . . . , b−1 − 1}. (3.3)

Before discussing its adjoint Gabor system and the duality principle, we introduce

a fiberization technique which can greatly simplify the analysis of the Gramian

matrix and dual Gramian matrix of a Gabor system. The fiberization matrices of

the pre-Gramian JX , denoted by JX(m) ∈ CbN×N
a , is defined by

JX(m)[`∗, k] = b−
1
2g((m−b−1`∗−ak) mod N), 0 ≤ `∗ ≤ bN−1, 0 ≤ k ≤ N/a−1,

(3.4)
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for m = 0, 1, . . . , N − 1. Then, the fiberization matrices for the Gramians GX , G̃X ,

GX,Y , G̃X,Y is defined by GX(m) = JX(m)∗JX(m), G̃X(m) = JX(m)JX(m)∗;

GX,Y (m) = JX(m)∗JY (m), G̃X,Y (m) = JY (m)JX(m)∗,
for 0 ≤ m < N.

(3.5)

Then, a direct extension of the fiberization technique introduced in [99] for contin-

uous setting to the discrete setting leads to the following proposition.

Proposition 3.1. Let X = (K,L)g denote a Gabor system defined on the lattices

(K,L) given by (3.3). Then there exist two unitary matrices V1 ∈ CN
ab
×N
ab and

V2 ∈ CN×N such that V1GXV
∗

1 = diag(GX(0),GX(1), . . . ,GX(b−1 − 1));

V2G̃XV
∗

2 = diag(G̃X(0), G̃X(1), . . . , G̃X(b−1 − 1)).
(3.6)

where GX(m), G̃X(m),m = 0, . . . , b−1 − 1 are fiberization matrices given by (3.5).

Proof. For a Gabor system X = (K,L)g, J∗X ∈ C|K||L|×N has its rows indexed by

k ∈ K and ` ∈ L and its columns indexed by NN . One may also index NN via two

indices (L,L∗) such that NN = {m`∗}m∈L,`∗∈L∗ , where L = N 1
b

and L∗ = NNb. Using

the double indices (K,L)× (L,L∗), J∗X can be re-written in the block-wise form:

J∗X =
(
Jk,`∗

)
K×L∗

,

where Jk,`∗ ∈ C 1
b
× 1
b is given by

Jk,`∗ [`,m] = J∗X [j(k, `), l(m, `∗)] = gk,`(m− b−1`∗), 0 ≤ `,m ≤ b−1 − 1.

Consider a square matrix U1 ∈ C|L|×|L| defined by U1[m, `] = e−2πib`m. Clearly,

U ∗1U1 = U1U
∗
1 = b−1I 1

b
. Let U ∈ C|K||L|×|K||L| denote the block-wise diagonal

matrix defined by U = diag(U1, . . . ,U1). Then, we have U ∗U = UU ∗ = b−1I |K|
b

and UJ∗X =
(
U1Jk,`∗

)
K×L∗

. Indeed, each block matrix U1Jk,`∗ ∈ C|L|×|L| is a

diagonal matrix whose diagonal entries are given by

U1Jk,`∗ [m,m] = b−1g((m− ak − b−1`∗) mod N), 0 ≤ m ≤ b−1 − 1.
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Recall that the definition (3.4) of the fiberization matrix JX(m) is given by

JX(m)[`∗, k] = b−
1
2g((m−b−1`∗−ak) mod N), 0 ≤ `∗ ≤ bN−1, 0 ≤ k ≤ N/a−1,

By re-shuffling its row indices and column indices, we can rewrite the matrix UJ∗X

as a diagonal block-wise matrix with diagonal entries being the fiberization matrices:

b
1
2P1UJ

∗
XP2 = diag(JX(0)∗,JX(1)∗, . . . ,JX(1/b− 1)∗) ∈ C|L||K|×N , (3.7)

where P1,P2 are two permutation matrices and JX(m) is the fiberization matrix

defined by (3.4). Then, by definition, the Gramian matrix GX and dual Gramian

matrix G̃X satisfy

V1GXV
∗

1 = diag(GX(0),GX(1), . . . ,GX(b−1 − 1))

and

V2G̃XV
∗

2 = diag(G̃X(0), G̃X(1), . . . , G̃X(b−1 − 1)),

here V1 = b
1
2P1U and V2 = P ∗2 are unitary matrices.

Proposition 3.1 shows that up to unitary equivalence, the Gramian matrix GX and

dual Gramian matrix G̃X can be rewritten as block diagonal matrices of fiberization

matrices. Thus, all frame properties of X now can be determined by analyzing

the union of the eigenvalues of 1
b

fiberization matrices of small size: GX(m) ∈

CN
a
×N
a , G̃X(m) ∈ CNb×Nb,m = 0, . . . , 1

b
− 1, which is easier to analyze than the big

matrices GX and G̃X .

Moreover, by a direct calculation, it can be seen that the transpose of fiberization

matrices JX(m) defined by (3.4) is indeed the fiberization matrices of another Gabor

system X∗ (up to a constant), i.e.,

JX∗(m) = (ab)
1
2JX(m)∗, m = 1, 2, . . . , N − 1, (3.8)

where X∗ = (L∗, K∗)g is the Gabor system defined by the same window function g

but with different shift parameters and different lattices:

L∗ = NNb = {0, 1, . . . , Nb− 1}, and K∗ = Na = {0, 1, . . . , a− 1}. (3.9)
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Thus, by the definition (3.5) of fiberization for Gramian and dual Gramian, there

exists a connection between the dual Gramian G̃X of X = (K,L)g and the Gramian

GX∗ of X∗ = (L∗, K∗)g given by (3.9). In other words, the Gabor system X∗ =

(L∗, K∗)g is an adjoint system of X, which is connected to X via duality principle

as stated in the following proposition.

Proposition 3.2. Let X = (K,L)g and Y = (K,L)g̃ be two Gabor systems for CN

defined on the lattices given by (3.3). Let X∗ = (L∗, K∗)g and Y ∗ = (L∗, K∗)g̃ be

the corresponding adjoint systems defined on the lattices given by (3.9). Then we

have

(a) The frame bounds of two frame sequences X and X∗ are related by B∗ = (ab)B,

A∗ = (ab)A.

(b) X is a tight frame sequence of CN if and only if (ab)−
1
2X∗ is a tight frame

sequence of CN .

(c) X is a frame for CN if and only if (ab)−
1
2X∗ is a Riesz sequence of CN .

(d) X is a tight frame for CN if and only if (ab)−
1
2X∗ is an orthonormal sequence

of CN .

(e) X and Y are bi-frames for CN if and only if (ab)−
1
2X∗ and (ab)−

1
2Y ∗ are

bi-orthogonal sequences of CN .

Proof. LetX = (K,L)g denote the Gabor system defined on the lattices (K,L) given

by (3.3). By Proposition 3.1, the eigenvalues of GX (or G̃X) are the union of the

eigenvalues of GX(m) (or G̃X(m)) for 0 ≤ m ≤ b−1− 1. Then, the frame properties

of X are determined by the eigenvalues ∪m∈Lλ(GX(m)), and ∪m∈Lλ(G̃X(m)) and

the statements about frame properties of X can be rewritten as:

(i) X is a frame for span(X), with its lower and upper frame bounds given by A = minm∈L{minλ 6=0 λ(GX(m))} = minm∈L{minλ 6=0 λ(G̃X(m))},

B = maxm∈L{maxλ λ(GX(m))} = maxm∈L{maxλ λ(G̃X(m))};
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(ii) X is a tight frame for span(X) if and only if for each m ∈ L, all non-zero

eigenvalues of GX(m) (or G̃X(m)) equal to 1;

(iii) X is a frame for CN if and only if all eigenvalues of G̃X(m) are non-zero for

each m ∈ L;

(iv) X is a tight frame for CN if and only if all eigenvalues of G̃X(m) equal to 1

for each m ∈ L;

(v) X is a Riesz sequence of CN if and only if all eigenvalues ofGX(m) are non-zero

for each m ∈ L.

Similarly, the frame properties of system X∗ are determined by the eigenvalues

∪m∈K∗λ(GX∗(m)) and ∪m∈K∗λ(G̃X∗(m)).

By checking the entries of GX , we have for any m ∈ L,

GX(m)[k′, k] = GX(m+ b−1)[[k′, k], 0 ≤ k′, k ≤ N

a
− 1,

and

G̃X(m)[`∗′, `∗] = G̃X(m+b−1)[(`∗′+1) mod bN, (`∗+1) mod bN ], 0 ≤ `∗′, `∗ ≤ bN−1.

Thus, for each m ∈ L, GX(m) and GX(m+ b−1) are exactly the same, and G̃X(m)

and G̃X(m + b−1) are also the same, up to the multiplication of some permutation

matrix. Therefore,  ∪m∈Lλ(GX(m)) = ∪m∈NNλ(GX(m)),

∪m∈Lλ(G̃X(m)) = ∪m∈NNλ(G̃X(m)).
(3.10)

The same conclusion holds true for X∗. Notice that G̃X∗(m) = abGX(m) and

GX∗ = abG̃X(m) for m ∈ NN . Thus, we have ∪m∈K∗λ(G̃X∗(m)) = ab ∪m∈L λ(GX(m)),

∪m∈K∗λ(GX∗(m)) = ab ∪m∈L λ(G̃X(m)).
(3.11)
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Together with the statements (i)–(v), the relationships between the union of the

eigenvalues ofGX(m), G̃X(m),GX∗(m), G̃X∗(m) over different lattice sets, as shown

in (3.10) and (3.11), allow us to come to the conclusions (a)–(d) in Proposition 3.2.

The proof of (e) in the proposition is essentially the same. We consider two

systemsX and Y defined on the same latticesK and L. By (3.7), the mixed Gramian

and mixed dual Gramian matrices are also equivalent to block-wise diagonal matrices

up to unitary operators:

bP1UGX,YU
∗P ∗1 = diag(GX,Y (0), . . . ,GX,Y (b−1 − 1))

and

P ∗2 G̃X,YP2 = diag(G̃X,Y (0), . . . , G̃X,Y (b−1 − 1)),

where b
1
2U ,P1,P2 are all unitary matrices. Thus, we get

(vi) X and Y are bi-frames for CN if and only if G̃X,Y (m) = G̃Y,X(m) = I for

each m ∈ L;

(vii) X and Y are bi-orthogonal sequences of CN if and only ifGX,Y (m) = GY,X(m) =

I for each m ∈ L.

Also, GX,Y (m) = I or G̃X,Y (m) = I for m ∈ L if and only if the same equality

is true for all m ∈ NN . Then by the fact that G̃Y ∗,X∗(m) = abGX,Y (m), one can

obtain the bi-frame property (e) in Proposition 3.2.

The connection between X and its adjoint Gabor system X∗ stated in Propo-

sition 3.2 shows that the construction of a tight Gabor frame X can be done via

constructing a Gabor system X∗ which is an orthonormal sequence. Often, the con-

struction and the analysis of orthonormal sequences are easier and simpler than that

of tight frames. The advantages by working on the adjoint system X∗ are exploited

when deriving frame bounds of discrete Gabor frames, as well as a sufficient and

necessary condition for Gabor tight frames with non-negative window functions.
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Remark 3.3. Fiberization matrices for Gabor systems can also be defined in fre-

quency domain. Similar to the case of functional space [99], we define

ĴX(ω)[k∗, `] = a−
1
2 ĝ(ω/N +

k∗

a
+ b`), k∗ ∈ K∗, ` ∈ L,

for ω ∈ NN . Then, X and X∗ have the same relationship as (3.8) via ĴX(ω) and

ĴX∗(ω):

ĴX∗(ω) = (ab)
1
2 ĴX(ω)∗, ω ∈ NN .

Let F denote the discrete Fourier transform given by F [ω,m] = e−2πimω
N , ω,m ∈ NN .

Define a block-wise diagonal matrix Û = diag(Û`)`∈L with the `-th block given by

Û`[ω, k] = e−2πiak( ω
N

+b`), ω, k ∈ K.

Then,
√
a
N
ÛJ∗XF

∗ is the same as the block diagonal matrix Ĵ∗X = diag(ĴX(ω)∗)0≤ω<N/a,

up to permutations. As
√

a
N
Û and 1√

N
F are both unitary matrices, the duality

principle is established.

3.3 Construction of discrete tight Gabor frames

Many fundamental results of discrete Gabor frames can be easily obtained using the

duality principle stated in Proposition 3.2. For example, a direct application of (a)

and (c) in Proposition 3.2 leads to the relationship between frame bounds and the

frame density.

Corollary 3.4. Let X be a Gabor frame for CN . Then the frame bounds A,B of

X satisfy
A

‖g‖2
2

≤ denX ≤ B

‖g‖2
2

.

In particular, the windows function of a Gabor tight frame for CN satisfies ‖g‖2
2 =

(denX)−1 = ab.

Proof. Given a Gabor frame X for CN , its adjoint system X∗ is then a Riesz se-

quence by Proposition 3.2. Let A∗ and B∗ denote its frame bounds. Then we have
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TX∗e0 = g where e0 denote the unit vector with first entry being 1. Therefore,

A∗ ≤ ‖TX∗e0‖2
2 ≤ B∗ which gives A∗ ≤ ‖g‖2

2 ≤ B∗. By Proposition 3.2 (a), we have

then

A

denX
= A∗ ≤ ‖g‖2

2 ≤ B∗ =
B

denX
.

Thus, A ≤ denX‖g‖2
2 ≤ B.

Suppose that the window function g is non-negative with its support on a finite

interval, which usually holds true in practice. Then, using the statement (d) in

Proposition 3.2, we have the following sufficient and necessary condition for X to

form a tight frame for CN .

Corollary 3.5. Suppose that g ∈ RN is a non-negative vector with support [0, p−1].

Then, the Gabor system X = (K,L)g is a tight frame for CN if and only if the

following two conditions hold true:

(i) b ≤ p−1; and (ii)

N/a−1∑
k=0

g2((· − ak) mod N) ≡ b.

Proof. Suppose that X is a tight frame for CN . Then, X∗ is an orthogonal sequence

by the duality principle (Proposition 3.2). By contradiction, suppose that b > p−1,

then consider the following two elements in X∗: {g(m)} and {g((m− 1
b
) mod N)}.

Then their inner product

N−1∑
m=0

g(m)g((m− 1

b
) mod N) ≥

p−1∑
m=1/b

g(m)g(m− 1

b
) > 0,

since g is non-negative and g(m) > 0 for 0 ≤ m ≤ p − 1, which contradicts the

assumption that X∗ is an orthogonal sequence. Thus, we have b ≤ p−1. Moreover, by

the definition of tight frame, we have I = TXT ∗X . Notice that for 0 ≤ m,n ≤ N − 1,

(TXT ∗X)[m,n] =
∑

k∈K,`∈L

g((m− ak) mod N)g((n− ak) mod N)e2πi`(n−m)b

=

 1/b
∑

k∈K g
2((m− ak) mod N), m = n;

0, m 6= n.
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Recall that (TXT ∗X)[m,m] = I[m,m] = 1, which gives
∑

k∈K g
2((·−ak) mod N) ≡ b.

Conversely, suppose that both conditions hold true. It can be seen that

(TXT ∗X)[m,n] =

1, if m = n;

0, otherwise.

Therefore, X is a tight frame for CN .

It can be seen from Corollary 3.5 that the construction of tight Gabor frames for

CN is simplified to finding a non-negative window g which satisfies the so-called

partition of unity property, provided that b is set to be no larger than 1/p. There

are actually many such window functions with good regularity.

Example 3.6. Let Ba
n denote the B-spline of order n with the knots {0, a, . . . , an}.

Then, it is known ([45]) that the function Ba
n is a non-negative function with support

[0, an] and satisfies ∑
k∈Z

Ba
n(t− ak) = 1, ∀ t ∈ R,

which leads to
∑

k∈ZB
a
n(j − ak) = 1 for any integer j. Define the vector g by

g(m) =
√
bBa

n(m) for m = 1, 2, . . . , an− 1. Then it can be seen that
∑N/a−1

k=0 |g((·−

ak) mod N)|2 = b. Thus, the Gabor system (K,L)g generated by g with b ≤ 1
an−1

is

a tight frame for CN .

Example 3.7. Let φ denote the scaling function of Meyer wavelets defined by

φ̂(ω) =


1, |ω| ≤ 2π

3
;

cos
[
π
2
β
(

3
2π
|ω| − 1

)]
, 2π

3
≤ |ω| ≤ 4π

3
;

0, otherwise,

where β is a function satisfying β(x) + β(1− x) = 1 for x ∈ [0, 1]. For example, the

one used in [40] is given by β(x) = x4(35− 84x+ 70x2 − 20x3). It can be seen that∑
k∈Z

|φ̂(ω − 2kπ)|2 = 1, ∀ω ∈ R.
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Let φ̂a(ω) = φ̂(2πω
a

). Then,
∑

k∈Z |φ̂a(·−ak)|2 = 1. Define the window function g by

g(m) =
√
b|φ̂a(m)|. Then, a non-negative window function with partition of unity

property is obtained, which leads to a tight frame (K,L)g for CN if setting b ≤ 1
p
.

For example, when a = 4, the vector g is given by g = [1/
√

2, 1, 1, 1, 1/
√

2].

3.4 Construction of discrete Gabor induced frames

for image recovery

The discrete tight frames constructed in the aforementioned section are not suitable

for image recovery, as the associated filter banks have non-zero DC offsets. Thus,

in this section, we derive a class of Gabor induced frames with zero DC offset and

with closed-form dual frames.

3.4.1 Decomposition and reconstruction by filter banks

Discrete Gabor systems X = (K,L)g are closely connected to filter banks; see e.g.

[6, 36]). For a signal f ∈ CN , let ↓a denote the down-sampling operator and ↑a
denote the up-sampling operator defined by

f↓a(n) = f(an), n = 0, 1, . . . , N
a
− 1;

f↑a(an) =

f(n), n = 0, 1, . . . N
a
− 1,

0 otherwise.

For a filter h ∈ CN , there are two essential operators: one is the analysis operator

Wh : CN → CN/a defined in the matrix form by

(Whf)[j] = (h(−·) ∗ f)↓a(j) =
N−1∑
k=0

f(k)h((k − aj) mod N).

and the other is the synthesis operator W ∗
h : CN/a → CN defined by

(W ∗
hc)(j) = (h ∗ c↑a)(j) =

N
a
−1∑

k=0

c(k)h[(j − ak) mod N ].
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The analysis operator TX and the synthesis operator T ∗X of a Gabor system

X = (K,L)g given by (3.1) can be expressed in terms of the set of analysis operators

{Wg`}g`∈G and the set of synthesis operators {W ∗
g`
}g`∈G, where G is a filter bank

defined by

G = {g`(m) = g(m)e−2πimb`}0≤`≤1/b−1.

More specifically, let D ∈ CN
ab denote the diagonal unitary matrix defined by

D = diag(D0,D1, . . . ,Db−1−1), (3.12)

where D` = diag(1, eiω0`, . . . , eiω0`(
N
a
−1)) with ω0 = 2πab. Then a direct calculation

shows that the analysis operator T ∗X and the synthesis operator TX can be rewritten

as

T ∗X = DWX ; TX = W ∗
XD

∗, (3.13)

where WX : CN → CN
ab denotes the analysis operator defined by the filter bank G:

WXf = {c0 = Wg0f , c1 = Wg1f , . . . , c 1
b
−1 = Wg 1

b
−1
f}, ∀f ∈ CN , (3.14)

and W ∗
X : CN

ab → CN denotes the synthesis operator defined by G:

W ∗
Xc =

1/b−1∑
`=0

W ∗
g`
c`, ∀c ∈ CN/ab. (3.15)

It can be seen from (3.13) that the operator TX (T ∗X) defined by X is the same as

the operator WX (W ∗
X) defined from the filter bank G, up to a diagonal matrix

D with phase factors which does not have any impact in image recovery. Thus, in

the remaining of this section, we focus on the analysis operator WX and synthesis

operator W ∗
X .

The analysis operator W decomposes a signal f into multiple frequency sub-

band channels, where Wg0f represents the low-frequency sub-band component and

all other components {Wg`f}
1
b
−1

`=1 are high-frequency sub-band components. The

filters {g`} 6̀=0 are windowed sinusoids that are only the approximation to high-pass

filters, as none of their DC offsets (the mean value of filter) are zero. As a result,
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the sub-band component decomposed by g` (` 6= 0) contains a small percentage of

low-frequency sub-band component, whose magnitude may be significant as image

intensities are always non-negative. As images have sparse coefficients in high-

frequency sub-bands but not in low-frequency sub-band, the effectiveness of sparse

approximation under X could be noticeably degraded owing to non-zero DC offsets

of these high-pass filters {g`}` 6=0 ⊂ G.

Take the tight Gabor frames constructed in Example 3.6 for instance. Consider

the tight Gabor frames constructed from cubic B-spline with nodes {0, 1, 2, 3, 4} and

a = 1, b = 1/3. Then, we have three filters with support 3:

g0 =
√

2
6

(1, 2, 1);

g1 =
√

2
12

(2,−2,−1) + i
√

6
12

(0,−2, 1);

g2 =
√

2
12

(2,−2,−1) + i
√

6
12

(0, 2,−1).

(3.16)

It can be seen that the two high-pass filters g1 and g2 have non-zero DC offsets.

The same holds true for other tight frames in Example 3.6 and Example 3.7. It is

observed in the experiments that when using these high-pass filters with non-zero

DC offset in sparsity-based image recovery, the results often show strong artifacts,

especially in those smooth regions.

3.4.2 Gabor induced frames with filters of zero DC offsets

Motivated by the needs from sparsity-based image recovery, we proposed a modified

version of tight Gabor frames to remove the DC offsets of the corresponding high-

pass filters. Although the resulting frames are not tight anymore, there exist closed-

form dual frames with simple structures. The modification is done by keeping the

low-pass filter g0 and modifying high-pass filters {g`}`6=0 as the following:

g̊` = eiθ`g` − µ`g0, for ` = 1, 2, . . . , b−1 − 1,
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where eiθ` and µ` are chosen such that
∑

m g̊`(m) = 0. Denote θ0 = µ0 = 0. In our

implementation, {eiθ`} 6̀=0 and {µ`}`6=0 are given by

eiθ` =
∑
m

g`(m)/|
∑
m

g`(m)|; and µ` = |
∑
m

g`(m)|/
∑
m

g0(m). (3.17)

(In the event that
∑

m g`(m) = 0, we adopt the convention that θ` = 0 and µ` = 0.)

It can be seen that the system Y corresponding to these modified high-pass filters

are

Y = {g̊k,`}k∈K,`∈L = {eiθ`gk,` − µ`e−2πiakb`gk,0}k∈K,`∈L. (3.18)

Strictly speaking, the new frame Y is not a Gabor system. Therefore, we call it

a Gabor induced frame. Although the system Y derived from X is no longer a

tight frame, it has a closed-form dual frame with well-posed frame bounds. By the

definition of {g̊`}`∈L,

WY = MWX . (3.19)

and the analysis operator T ∗Y of Y is then

T ∗Y = DMWX , (3.20)

where M ∈ CN×N
ab is given by

M =


IN
a

0 . . . 0

−µ1IN
a

e−iθ1IN
a

...
. . .

−µ 1
b
−1IN

a
e
−iθ 1

b
−1IN

a

 ,

and here IN
a

denotes the N
a
× N

a
identity matrix. The matrix M is a sparse matrix

with a sparse inverse:

M−1 =


IN
a

0 . . . 0

eiθ1µ1IN
a

eiθ1IN
a

...
. . .

e
iθ 1
b
−1µ 1

b
−1IN

a
e
iθ 1
b
−1IN

a
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Define the system Ỹ = {g̃k,`}k∈K,`∈L by

g̃k,0 = gk,0 +
∑

` 6=0,`∈L µle
2πiakb`+iθ`gk,`, k ∈ K;

g̃k,` = eiθ`gk,`, k ∈ K, ` ∈ L\{0}.
(3.21)

Then, the systhesis operator defined by Ỹ which leads to TỸ = W ∗
XM

−1D∗ and

gives

TỸ T
∗
Y = W ∗

XM
−1D∗DMWX = I.

Thus, Y and Ỹ form dual frames for CN . It can be seen that the computational

cost of the analysis operator T ∗Y and the synthesis operator TỸ is nearly the same as

T ∗X and TX .

Proposition 3.8. Suppose that X is a discrete Gabor tight frame for CN defined

as (3.1). Then, Y and Ỹ derived from X by (3.18) and (3.21) are dual frames for

CN .

Note that the approach provided by Proposition 3.8 can also be applied to a pair

of non-tight Gabor dual frames to remove the DC offsets of high-pass filters.

Example 3.9. Consider the tight Gabor frame constructed from B-spline of order 3

whose three filters are listed in (3.16). The corresponding filters of the Gabor induced

frame Y and its dual Ỹ are now
g0 =

√
2

6
(1, 2, 1);

g1 =
√

2
8

(−1, 2,−1) + i
√

6
12

(1, 0,−1);

g2 =
√

2
8

(−1, 2,−1) + i
√

6
12

(−1, 0, 1),

(3.22)

and 
g̃0 =

√
2

8
(1, 4, 1);

g̃1 =
√

2
12

(−1, 4,−1) + i
√

6
12

(1, 0,−1);

g̃2 =
√

2
8

(−1, 4,−1) + i
√

6
12

(−1, 0, 1).

(3.23)

It can be seen that the filters g1 and g2 are both high-pass filters with zero DC

offset. The frame bounds are A = 0.8000 and B = 1.0000. And the redundancy is

3N/N = 3.
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(a) real part (f) imaginary part

Figure 3.1: Complex-valued filter bank with support 7 × 7 of a 2D tensor product
Gabor induced frame constructed in Example 3.6.

Example 3.10. 2D discrete Gabor induced frames can be generated by the tensor

product of two 1D discrete Gabor induced frames along two axes. Consider the 1D

tight Gabor frame constructed in Example 3.6 by using the B-spline of order 4 and

setting a = 2, b = 1/7. Let Y denote the corresponding 1D Gabor induced frame after

removing non-zero DC offsets in all high-pass filters. Then, the frame bounds of the

resulting 2D discrete Gabor induced frames Y ⊗ Y are A = 0.5443 and B = 1.0069.

The redundancy is (7N
2

)2/N2 = 12.25. The support of all associated filters is 7× 7.

The concentrations of the atoms associated with low-pass filters are illustrated in

Fig. 3.2 for both frame and dual frame. The associated high-pass filters have good

orientation selectivity as shown in Fig. 3.1.

3.4.3 Orientation selectivity

Next we will discuss the orientation selectivity of the constructed frames. And we

start with functions defined on R2. Consider a continuous function f(x, y) ∈ L2(R2)

of particular orientation θ that is expressed as

f(x, y) = h(x cos θ − y sin θ)κ(x, y),
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(a) Gabor atom of frame (b) Gabor atom of dual frame

Figure 3.2: Gabor atoms of discrete Gabor induced frame constructed in Exam-
ple 3.10 with respect to low-pass filters

where h ∈ L2(R) and κ ∈ L2(R2) is the isotrophic separable regularizer for f ∈

L2(R2) satisfying κ(x, y) = g(x)g(y), e.g. Gaussian function g(t) =
√

2πσe−
t2

2σ2 .

Then, we have

f̂(ωx, ωy)

=

∫
R

∫
R
h(x cos θ − y sin θ)κ(x, y)e−i(ωxx+ωyy)dxdy

=

∫
R

∫
R
h(x)κ(x, y)e−i(ωx(x cos θ+y sin θ)+ωy(−x sin θ+y cos θ))dxdy (isotrophy)

=

∫
R

∫
R
h(x)κ(x)κ(y)e−i(ωx(x cos θ+y sin θ)+ωy(−x sin θ+y cos θ))dxdy (separability)

= (ĥ ∗ κ̂)(ωx cos θ − ωy sin θ)κ̂(ωx sin θ + ωy cos θ).

Suppose that ĝ decays fast when going away from origin, e.g. σ →∞ for Gaussian

function. It can be seen that magnitude of f̂(ωx, ωy) also decays fast when (ωx, ωy)

is away from the line ωx sin θ + ωy cos θ = 0. Thus, the orientation of a function f

is closely related to the peaks of its Fourier transform. To be specific, the peaks of

the Fourier transform of an oriented function forms a line in frequency domain and

its orientation is complementary to that of the function.

Discrete filters can be regarded as samplings of continuous functions. Therefore

by the intuition from continuous case, we consider to define the orientation of discrete

2D filters from the support of their Fourier spectrum. Suppose h ∈ Cp×p is a

discrete 2D filter of size p × p. Let p be an odd positive integer and Zp × Zp =
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{−p−1
2
,−p−1

2
+ 1, ..., 0, ..., p−1

2
} × {−p−1

2
,−p−1

2
+ 1, ..., 0, ..., p−1

2
} denote the discrete

2D uniform grid. Let ĥ ∈ Cp×p denote the 2D discrete Fourier transform of h. Then

filter h is defined to have orientation θ if both the following conditions hold:

(1) all maximum points of |ĥ| are on the line ωx cos θ + ωy sin θ = 0 in frequency

domain;

(2) the values of the points away from the line ωx cos θ + ωy sin θ = 0 are zero

(perfect) or negligible (strong).

Clearly, the high-pass filters derived from both real part and imaginary part of 2D

DFT have perfect orientation selectivity as the non-maximum points of their DFTs

vanish outside the line. See Fig. 3.3 for an illustration. Similar to that from DFT,

the high-pass filters derived from the proposed Gabor induced frames also have very

strong orientation selectivity as the values of non-maximum points of their DFTs

are much smaller than the maximum; see Fig. 3.4 for a comparison.

(a) Real(fj1,j2) (b) | ̂Real(fj1,j2)|

Figure 3.3: Real part of 2D discrete Fourier basis {fj1,j2}0≤j1,j2≤6 of size 7 × 7 and
their Fourier spectrum (zero frequency is moved to the center of the image).

In addition, the orientation selectivity of the high-pass filters from 2D DFT or

from the proposed Gabor induced frames is optimal in the sense that they cover all

possible orientations in finite discrete grid. One orientation is feasible for a finite

discrete grid only if the line with such orientation can intersect the grid Zp × Zp,
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(a) Real(g`1,`2) (b) | ̂Real(g`1,`2)|

Figure 3.4: Real part of filters {g`1,`2}0≤`1,`2≤6 for 2D discrete revised Gabor frame
with p = 7 and their Fourier spectrum (zero frequency is moved to the center of the
image).

which makes the number of all feasible orientations limited. It can be seen that for

2D filters of size 5 × 5, the total number of possible orientations is 8, and for 2D

filters of size 7 × 7, the total number is 16; see Fig. 3.5 for an illustration. Indeed,

by induction, the total number of feasible orientations for 2D filters of odd size p×p

is 4Φ(p−1
2

), where the function Φ(·) is the summation function of the Euler’s totient

function ϕ(·) which counts the positive integer up to k that are relatively prime to k,

i.e. Φ(n) =
∑n

k=1 ϕ(k). The derivation is quite straightforward. It can be seen that

the number of all feasible orientations doubles that of the first quadrant of the grid

with length p−1
2

. The possible candidates of additional feasible orientations in the

first quadrant from k = p− 1 to k = p are those come from the boundary points the

grid. For such a point, if its x-coordinate or y-coordinate is relatively prime to p−1
2

,

then it induces a new orientation. Thus, the number of new feasible orientations

induced from k = p − 1 to k = p in the first quadrant is 2φ(p−1
2

)), and the total

number is then 4φ(p−1
2

). By induction, the proof is done.
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(a) Filter size is 5 (b) Filter size is 7

Figure 3.5: All the possible directions of 2D filters of size 5× 5 or 7× 7.

3.5 Conclusion

In this chapter, we have studied the theory of discrete Gabor systems in CN . We

have developed the Gramian and dual Gramian analysis for CN , which relates the

frame properties of a discrete Gabor system to the eigenvalues of their Gramian and

dual Gramian matrices. One important corollary of these conclusions is the duality

principle, based on which a necessary and sufficient condition for the construction

of discrete tight Gabor frames has been derived. To sum up, the resulted tight

Gabor frame has the following advantages. Firstly, it possesses accurate local time-

frequency analysis. Secondly, it can be implemented by a fast filter bank algorithm

of both decomposition and reconstruction processes. Thirdly, 2D tight Gabor frames

generated from tensor product of 1D ones have the optimal orientation selectivity.

Fourthly, the Gabor frames of different sizes have the flexibilities of modelling both

image edges and local textures. Further, we revise the constructed tight Gabor

frames to discrete Gabor induced frames whose high-pass filters have zero DC offsets

in the 1D filter bank. Meanwhile, the dual frames of these systems have a closed-

form. Therefore, the newly derived frames also possess the above advantages as

tight Gabor frames and they are more suitable for sparsity-based image recovery.

And note that the orientation selectivity of such discrete Gabor induced frames is

also optimal.

One example of Gabor induced frames we illustrated is generated from the square
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root of B-spline sequences. By changing the order of B-spline, one may obtain a

series of Gabor systems in unified form but with different levels of scale. This

inspires us to utilize multi-scale Gabor induced frames in application to overcome

the weakness of a Gabor system that it lacks multi-scale structure. We will discuss

more about this in Chapter 5.

In the next chapter, we will solve the scaling challenge of Gabor systems from

the viewpoint of MRA-based wavelet system.





Chapter 4
Discrete tight frames with Gabor and

MRA structures

4.1 Introduction

For years, orthonormal wavelet bases [39] has been an indispensable tool in signal

processing. Its wide usages in signal processing are mainly motivated by two advan-

tages: effective multi-scale representation of point-wise discontinuities, and efficient

numerical implementations of signal decomposition and reconstruction. In recent

years, tight wavelet frames are more often seen in many applications, as the re-

dundancy of tight frames gives more flexibilities on filter design and better sparse

approximation of signals while having the same numerical implementation as or-

thogonal wavelet bases. Such tight wavelet frames include undecimated Daubechies’

wavelet systems [35], spline framelets [97, 42] and many others. For processing 2D

signals like images, the most popular tight wavelet frames are tensor product wavelet

systems. As most natural images exhibit line-like edges, i.e. discontinuities across

local edges, with different orientations, one main disadvantage of tensor real-valued

wavelet systems is the lack of orientation selectivity. As we have introduced in

49
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Chapter 1, one approach to gain orientation selectivity is considering tensor prod-

uct of complex-valued wavelet systems. For example, the dual-tree complex wavelet

transform [101] uses two different discrete orthogonal wavelet bases to produce a 2D

tensor complex-valued tight wavelet frame whose real part and imaginary part each

have up to six orientations.

Motivated by the strong orientation selectivity of tensor product of Gabor func-

tions, a class of discrete tight Gabor frames and Gabor induced frames is constructed

in Chapter 3. With the same efficient numerical implementation of signal decom-

positon/reconstruction, they have better orientation selectivity than tensor tight

wavelet frames (including complex-valued ones) and have better performance on lo-

cal time-frequency analysis. The performance gain of such discrete Gabor induced

frames is illustrated in various image recovery applications; more details will be given

in Chapter 5. However, the discrete Gabor induced frames constructed in Chapter

3 lack the multi-scale structure of MRA-based tight wavelet frames. As a result, it

cannot be used for modeling local signal structures with different sizes. An ad-hoc

approach is used in Chapter 5 to gain multi-scale structures by combining (tight)

Gabor frames generated by the window functions with different sizes. Nevertheless,

such discrete Gabor frames still do not have the multi-resolution analysis (MRA)

structure that many existing MRA-based tight wavelet frames have.

In this chapter, we are interested in studying discrete tight frames for `2(Z)

combining both Gabor and MRA structures. Such discrete tight frames will have

the same multi-scale structures as discrete MRA-based tight wavelet frames for

`2(Z), and their 2D tensor products have strong orientation selectivity and good

performance on local time-frequency analysis.

4.1.1 Literature review

Given a fixed window function g ∈ L2(R) and a uniform time-frequency lattice set

K × L = aZ × bZ (a, b ∈ R+), the Gabor system is defined as (1.5) in Chapter 1,
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i.e.

(K,L)g = {g(x− ak)e−2πib`x, x ∈ R}k,`∈Z. (4.1)

Interested readers are referred to [39, 99, 76, 29, 31] for more details on the charac-

terizations of frame and tight frame properties of the system (4.1).

Discrete Gabor frames for `2(Z) are usually obtained by directly sampling con-

tinuous Gabor frames for L2(R) using shift parameters a, b with a, 1
b
∈ N+:

{g(m− ak)e−2πib`m,m ∈ Z}k∈Z,`∈{0,..., 1
b
−1}. (4.2)

Many different conditions have been proposed for guaranteeing the (tight) frame

properties of discrete Gabor systems of the form (4.2). In [113, 92], the Wexler-Raz

biorthogonal condition is applied for the construction of dual discrete Gabor frames.

It is shown in [36] that discrete tight Gabor frames for `2(Z) can be obtained once the

polyphase matrix of the filters bank associated with Gabor system is para-unitary.

In Chapter 3, based on duality principle for discrete Gabor systems, a necessary

and sufficient condition for a system (4.2) to form a discrete tight Gabor frame is

presented, under the assumption that g is a sequence with non-negative entries.

All these discrete Gabor frames have no so-called MRA structure, which is closely

related to tight wavelet frames.

For a given set of wavelet functions Ψ = {ψ1, ..., ψr} ⊂ L2(R), the wavelet system

X(Ψ) is composed of dilations and translations of these wavelet functions:

X(Ψ) = {ψ`,n,k} 1≤`≤r
n,k∈Z

= {2n/2ψ`(2n · −k)} 1≤`≤r
n,k∈Z

. (4.3)

The key framework for constructing wavelet (bi)-orthonormal bases ([40, 34]) and

tight frames ([97, 42]) is the multiresolution analysis (MRA) introduced by Mal-

lat and Meyer ([83, 87]). The construction of MRA-based tight wavelet frame for

L2(R) is presented in [97, 42]. The key ingredient in their construction is the so-

called unitary extension principle (UEP) [42], which simplified the construction of

MRA-based tight wavelet frames to the construction of a set of filters with certain

properties. Different from the discretization of Gabor systems, discrete tight wavelet
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frames for `2(Z) can be directly derived from a set of filters (i.e., refinement mask

and wavelet masks) associated with tight wavelet frames in the continuum domain

constructed via UEP. As a result, a fast filter bank based algorithm is available for

efficient signal decomposition and reconstruction.

The studies on the systems with both wavelet and Gabor structures have been

scant in the literature. A continuous Gabor wavelet transform for L2(R2) is intro-

duced in [74], which extends continuous wavelet transform by using the set of Gabor

functions as mother wavelets. The system for L2(R2) is defined by the discretization

of the transform in the phase space. Numerical simulation done in [74] indicates that

the systems obtained via such a discretization form frames for L2(R2), provided that

the sampling in phase space is sufficiently dense. In the context of image in-painting,

a class of MRA-based discrete tight frames is developed in [78] for vector space RN .

In [78], the first column of a local discrete cosine transform in Rd×d is viewed as the

refinement mask of the MRA for Haar wavelets with respect to dilation factor d and

the other columns are viewed as wavelet masks. Then, by the orthogonality of local

discrete cosine transform, an MRA-based tight wavelet frames can be obtained for

RN via the standard discretization of the undecimated Haar wavelet frames with

dilation factor d.

4.1.2 Our works

This chapter aims at studying discrete tight frames for `2(Z) with both Gabor

and MRA structures. In other words, we are interested in tight frames for `2(Z)

that have the following properties: (1) local time-frequency analysis of discrete

Gabor frames, (2) multi-scale structures induced by the MRA, and (3) fast numerical

implementation of signal decomposition/reconstruction.

The basic idea is to connect the discrete Gabor frames of the form (4.2) to the

UEP. Consider a discrete Gabor system with a = 2 and 1
b
> 1:

{g(m− 2k)e−2πib`m}k∈Z,0≤`≤ 1
b
−1. (4.4)
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Clearly, such a system is generated by the even translations of the following 1
b
− 1

sequences

{g`(m) = g(m)e−2πib`m}0≤`≤ 1
b
−1. (4.5)

We use the sequences above to define a wavelet system X(Ψ) with MRA structure:

φ(t) = 2
∑
m∈Z

g0(m)φ(2t−m), t ∈ R, (4.6)

ψ`(t) = 2
∑
m∈Z

g`(m)φ(2t−m), t ∈ R, (4.7)

for ` = 1, . . . , 1
b
− 1. Suppose that these masks satisfy the UEP so that the system

X(Ψ) forms an MRA-based tight wavelet frame for L2(R). Then, a discrete wavelet

tight frames for `2(Z) can be constructed using these masks, and the Gabor system

(4.4) is exactly the part of tight frames that corresponds to the sub-space V0 of the

MRA. Thus, such a tight frame system can be viewed as a discrete tight frame for

`2(Z) with Gabor and MRA structures.

In this chapter, we first present a UEP-based sufficient condition for the wavelet

system generated by compactly supported functions {ψ1, . . . , ψ 1
b
−1} defined by (4.7)

to form an MRA-based tight wavelet frame for L2(R). Then, by further examining

the conditions imposed on the masks {g`}
1
b
−1

`=0 of the form (4.5), we present a sufficient

and necessary condition for the finitely supported masks {g`}
1
b
−1

`=0 to satisfy the UEP.

Such a sufficient and necessary condition implies that any set of compactly supported

masks {g`}
1
b
−1

`=0 satisfying UEP is of the following form (up to a translation): for

` = 0, . . . , p− 1,

g`(m) =

 p−1e−
2π
p
i`m, 0 ≤ m ≤ p− 1

0, otherwise,

where p is an even positive integer. Clearly, when p = 2, it corresponds to Haar

orthonormal wavelet basis. It is noted that when p > 2, it is not necessarily corre-

sponding to Haar basis. Instead, the refinable functions φ is a continuous piecewise

spline function when p = 2m,m > 1.
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In addition, we also investigate the (tight) Gabor frames for L2(R) when relating

window function to the refinable function of an MRA. We present a sufficient con-

dition for guaranteeing frame property of Gabor systems when using the refinable

function of an MRA as the window function, and give a construction of tight Gabor

frames for `2(Z) using the square root of the refinable function of an MRA.

4.2 Discrete tight frame with Gabor and MRA

structures

The discrete Gabor system we consider is generated by a finitely supported window

sequence g ∈ `2(Z), and it is composed by the translations of 1
b
−1 atoms {g`}

1
b
−1

`=0 ⊂

`2(Z) defined by

g`(m) = g(m)e−2πib`m, m ∈ Z. (4.8)

Without loss of generality, we assume that g(m) = 0, for all m /∈ [0, p− 1] ∩ Z. For

such a finitely supported sequence g, we define a refinable function (or distribution)

φ by

φ(t) = 2
∑
m∈Z

g(m)φ(2t−m), t ∈ R, (4.9)

and a set of framelets Ψ = {ψ`}
1
b
−1

`=1 by

ψ`(t) = 2
∑
m∈Z

g`(m)φ(2t−m), t ∈ R. (4.10)

Define an affine system X(Ψ) by

X(Ψ) = {ψ`,n,k} 1≤`≤1/b
n,k∈Z

= {2n/2ψ`(2n · −k)} 1≤`≤1/b
n,k∈Z

. (4.11)

In the next result, we give a UEP-based sufficient condition on the window sequence

g such that the affine system X(Ψ) defined above forms an MRA-based tight wavelet

frame for L2(R).
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Theorem 4.1. Consider a finitely supported sequence g ∈ `2(Z). The function φ

defined by (4.9) generates an MRA for L2(R) and the system X(Ψ) defined by (4.10)

and (4.11) forms a tight frame for L2(R), if the following conditions hold true:

(i) 1
b
≥ p;

(ii)
∑

n∈Z g(n) = 1;

(iii)
∑

n∈Ωj
|g(n)|2 = b

2
, where j ∈ Z/2Z and Ωj = (2Z + j) ∩ [0, p− 1].

Proof. For any 0 < m < 1− p, g(m) = 0, and thus g`(m) = 0 for ` = 0, . . . , 1
b
− 1.

Then, we have
1
b
−1∑
`=0

∑
n∈Ωj

g`(n)g`(n+m) = 0,

for any m /∈ [−p + 1, p − 1]. Thus, the UEP condition (2.9) holds true for any

m /∈ [−p+ 1, p− 1]. Notice that

1
b
−1∑
`=0

∑
n∈Ωj

g`(n)g`(n+m) =
∑
n∈Ωj

1
b
−1∑
`=0

g`(n)g`(n+m)

=
∑
n∈Ωj

g(n)g(n+m)

1
b
−1∑
`=0

e−2πimb`.

Then, for 1 ≤ m ≤ p− 1 or −p+ 1 ≤ m ≤ −1, we have

1
b
−1∑
`=0

∑
n∈Ωj

g`(n)g`(n+m) =
∑
n∈Ωj

g(n)g(n+m)

1
b
−1∑
`=0

e−2πimb` = 0,

as b ≤ 1
p

stated in Condition (i). For m = 0, by Condition (iii), we have

1
b
−1∑
`=0

∑
n∈Ωj

g`(n)g`(n+m) =
∑
n∈Ωj

g(n)g(n+m)

1
b
−1∑
`=0

e−2πimb` =
1

b

∑
n∈Ωj

|g(n)|2 =
1

2
.

Therefore, the UEP condition (2.9) holds for any integer m.

As shown in [52, Section 5.4], the finitely supported mask g will admit a refinable

function in L2(R) with φ̂(0) = 1 using (4.9), if it satisfies Condition (ii) and the
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UEP condition (2.9). Furthermore, such a refinable function φ generates an MRA

for L2(R) as well. Then, by Theorem 2.1, we have that the system X(Ψ) defined by

(4.10) and (4.11) forms a tight frame for L2(R).

It can be seen from Theorem 4.1 that the construction of MRA-based tight

wavelet frame X(Ψ) generated by Ψ of the form (4.10) is done once we can con-

struct the finitely supported window sequence g ∈ `2(Z) satisfying Condition (i)

Condition (ii) and Condition (iii). In the next result, we give closed-form solutions

that satisfy these conditions.

Proposition 4.2. A finitely supported sequence g ∈ `2(Z) satisfies Conditions (i),

(ii) and (iii) in Theorem 4.1 for some b, if and only if g = p−1(. . . , 0, 0, 1, ..., 1︸ ︷︷ ︸
p

, 0, 0, . . .)

with some even positive integer p.

Proof. If g = p−1(. . . , 0, 0, 1, ..., 1︸ ︷︷ ︸
p

, 0, 0, . . .) for some even positive integer p, it can

be seen that Conditions (ii) and (iii) hold true when setting 1
b

= p.

Conversely, if Conditions (i), (ii) and (iii) in Theorem 4.1 hold true, we have

p−1∑
m=0

|g(m)|2 =
∑
j=0,1

∑
m∈Ωj

|g(m)|2 = b.

and

p−1∑
m=0

|g(m)− 1

p
|2 =

p−1∑
m=0

(
|g(m)|2 − 1

p
(g(m) + g∗(m))

)
+

1

p2
· p = b− 1

p
,

Then by Condition (i),

p−1∑
m=0

|g(m)− 1

p
|2 = b− 1

p
≤ 0,

Thus, we must have b = 1
p
, and g(m) = 1

p
for any m ∈ [0, p−1]∩Z. Moreover, when

p is an odd number, the sequences g with the form above cannot satisfy Condition

(iii). Therefore, p can only be an even integer.
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Different with the tight Gabor frame constructed in Chapter 3, the discrete tight

frame in this theorem has high-pass filters of zero DC offset. In fact, based on the

first equality in the UEP condition (2.8) and the assumption that
∑

n g(n) = 1, one

can conclude
∑

n g`(n) = 0 for any 1 ≤ ` ≤ 1
b
− 1.

When the support of the mask g given in Proposition 4.2 is 2, the refinable

function admitted by such a mask is the indicator function of the MRA associated

with Haar wavelet basis. When the support of g is larger than 2, the associated

refinable function is not the indicator function any more. The next proposition

shows the smoothness of such refinable functions.

Proposition 4.3. Consider a refinable function φ with φ̂(0) = 1, defined by (4.9)

using the mask g = 2−n(1, 1, . . . , 1, 1) ∈ R2n for some integer n ≥ 2. Then, φ ∈

Cn−2(R).

Proof. The smoothness of φ is checked via checking the decay of φ̂. As shown in

[42], if |φ̂(ω)| ≤ c(1 + |ω|)−1−α−ε for some positive constant c and ε, then φ ∈ Cα.

Since g = 2−n(1, 1, . . . , 1, 1), the Fourier series of g can be factorized as

ĝ0(ω) =
1

2n

n−1∏
k=0

(1 + e−i2
kω).

By the definition of φ and φ̂(0) = 1, we have

|φ̂(ω)| = |
+∞∏
j=1

ĝ0(2−jω)| =
+∞∏
j=1

n−1∏
k=0

|1 + e−i2
k−jω

2
|.

Next, we show that the product
∏+∞

j=1

∏n−1
k=0 |1 + e−i2

k−jω−1
2

| is absolutely convergent.

Notice that e−iω − 1 = −2i sin(ω
2
)e−i

ω
2 for any ω. Then, we have

1 + |e
−i2k−jω − 1

2
| = 1 + | sin(2k−j−1ω)| ≤ 1 + |2k−j−1ω| ≤ e|2

k−j−1ω|,

and

+∞∏
j=1

n−1∏
k=0

(
1 + |e

−i2k−jω − 1

2
|

)
≤

+∞∏
j=1

n−1∏
k=0

e|2
k−j−1ω| =

+∞∏
j=1

e2n−1−j |ω| = e2n−1|ω|,
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Thus,
∏+∞

j=1

∏n−1
k=0 |1 + e−i2

k−jω−1
2

| is absolutely convergent. Therefore,

|φ̂(ω)| =
+∞∏
j=1

n−1∏
k=0

|1 + e−i2
k−jω

2
| =

n−1∏
k=0

+∞∏
j=1

|1 + e−i2
k−jω

2
|.

By the fact that

+∞∏
j=1

|1 + e−i2
k−jω

2
| = lim

m→+∞

m∏
j=1

|1 + e−i2
k−jω

2
| = lim

m→+∞

1− (e−i
2k

2m
ω)2m

2m(1− e−i 2k

2m
ω)
| = |1− e

−i2kω

i2kω
|,

we have then

|φ̂(ω)| =
n−1∏
k=0

|1− e
−i2kω

i2kω
| ≤

n−1∏
k=0

ck
1 + |2kω|

≤ c

(1 + |ω|)n
,

for some constant c. Thus φ ∈ Cn−2.

By Theorem 4.1, it can be seen that the number of framelets, i.e., 1
b
−1, is exactly

card(supp(g)) − 1, i.e., one less than the cardinality of the support of g. Once we

have an MRA-based tight wavelet frame constructed via the UEP, a filter bank

based implementation is available for n-level decomposition and reconstruction of

discrete signals. Let ? denote the usual convolution operator in `2(Z). Let ↓2

denote the down-sampling operator defined by (f↓2)(m) = f(2m),m ∈ Z, and

↑2 denote the up-sampling operator, i.e. the adjoint operator of down-sampling

operator. Then, given a signal f ∈ `2(Z), the n-level wavelet decomposition can be

recursively computed as follows: c0,0 = f , for k = 1, . . . n− 1, c0,k =
(√

2 · g0(−·) ? c0,k−1

)
↓2,

c`,k =
(√

2 · g`(−·) ? c0,k−1

)
↓2, ` = 1, ..., r.

(4.12)

The reconstruction of f from the high-pass wavelet coefficients ({c`,k}0≤k≤n−1,1≤`≤r)

and the low-pass coefficient ({c0,n}) is done in the same recursive way: for k =

n, n− 1, ..., 1,

c0,k−1 =
√

2
r∑
`=0

g` ? (c`,j ↑2). (4.13)
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It can be seen that such an n-level wavelet decomposition expands the signal

over a discrete tight frame for `2(Z) defined by

{
{φn(· − 2nj)}j∈Z, {ψ1,k(· − 2kj)}1≤k≤n,j∈Z, . . . , {ψr,k(· − 2kj)}1≤k≤n,j∈Z

}
, (4.14)

where φn,ψ`,k are sequences defined by

φ̂n(ω) =
√

2
n−1∏
m=0

ĝ0(2mω), and ψ̂`,k =
√

2ĝ`(2
k−1ω)

k−1∏
m=0

ĝ0(2mω),

for ` = 1, . . . , r, k = 1, . . . , n. The tight frame defined by (4.14) with the masks

{g`}r`=0 of the form (4.8) indeed can be viewed as a discrete tight Gabor frame for

`2(Z) with n-level multi-scale structure. When n = 1, the tight frame defined by

(4.14) can be expressed as

{
√

2g`(m− 2k) = g(m− 2k)e−2πib`m}0≤`≤ 1
b
−1,k∈Z,

which is exactly the tight Gabor frames for `2(Z) defined in (4.2) with a = 2.

Example 4.4. When taking p = 4, we have g0 = g = (1
4
, 1

4
, 1

4
, 1

4
), and the other three

Gabor atoms, g1 = (1
4
,−1

4
i,−1

4
, 1

4
i), g2 = (1

4
,−1

4
, 1

4
,−1

4
) and g3 = (1

4
, 1

4
i,−1

4
,−1

4
i).

The refinable function φ with the mask g is a linear spline given by

φ(t) =



1
2
t, t ∈ [0, 1),

1
2
, t ∈ [1, 2),

1
2
(3− t), t ∈ [2, 3),

0, otherwise.

See Figure 4.1 for the plots of the refinable function φ and three framelets admitted

by g1, g2, g3.

Example 4.5. When taking p = 6, we have g = (1
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
). The associated

refinable function φ is continuous but is not a spline. See Figure 4.2 for the plots of

the refinable function φ and five framelets.
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(a) Real (φ) (b) Imag (φ) (c) Real (ψ1) (d) Imag (ψ1)

(e) Real (ψ2) (f) Image (ψ2) (g) Real (ψ3) (h) Image (ψ3)

Figure 4.1: The real part and imaginary part of the refinable function and three
framelets generated from g = (1

4
, 1

4
, 1

4
, 1

4
)

(a) Real (φ) (b) Imag (φ) (c) Real (ψ1) (d) Imag (ψ1)

(e) Real (ψ2) (f) Imag (ψ2) (g) Real (ψ3) (h) Imag (ψ3)

(i) Real (ψ4) (j) Imag (ψ4) (k) Real (ψ5) (l) Imag (ψ5)

Figure 4.2: The real part and imaginary part of the refinable function and five
framelets generated from g0 = (1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
)
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Example 4.6. When taking p = 8, we have g = (1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
). The corre-

sponding refinable function is a quadratic spline given by

φ(t) =



1
16
t2, t ∈ [0, 1],

t
8
− 1

16
, t ∈ [1, 2],

1
16

(−t2 + 6t− 5), t ∈ [2, 3],

1
4
, t ∈ [3, 4],

1
16

(−t2 + 8t− 12), t ∈ [4, 5],

− t
8

+ 13
16
, t ∈ [5, 6],

1
16

(t− 7)2, t ∈ [6, 7],

0, otherwise.

See Figure 4.3 for the plots of the refinable function φ and seven framelets.

Before ending this section, we would like to mention that the construction scheme

presented in this section can also be used for constructing real-valued discrete tight

frame formed by local cosine basis with MRA structure. Consider a local cosine

basis with even support p:

g`(m) = α` cos(
π(2m+ 1)`

2p
), 0 ≤ m ≤ p− 1,

where α0 = 1
p
, and α` =

√
2
p

for 1 ≤ ` ≤ p − 1. By a direct calculation, the atoms

of such a basis satisfy the UEP if being used as the refinement mask and wavelet

masks. Thus, the system generated by these masks using (4.14) forms a tight frame

for `2(Z). The refinable function admitted by g0 generated the same MRA as that

of the previouly constructed tight frames, but the resulting tight wavelet frames are

different as the framelets are different. For example when taking p = 4, we have g0 =

(1
4
, 1

4
, 1

4
, 1

4
), g1 =

√
2

4
(cos π

8
, cos 3π

8
, cos 5π

8
, cos 7π

8
), g2 =

√
2

4
(cos π

4
, cos 3π

4
, cos 5π

4
, cos 7π

4
),

g3 =
√

2
4

(cos 3π
8
, cos 7π

8
, cos π

8
, cos 5π

8
). See Figure 4.4 for the plots of the refinable

function φ and three framelets.
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(a) Real (φ) (b) Imag (φ) (c) Real (ψ1) (d) Imag (ψ1)

(e) Real (ψ2) (f) Imag (ψ2) (g) Real (ψ3) (h) Imag (ψ3)

(i) Real (ψ4) (j) Imag (ψ4) (k) Real (ψ5) (l) Imag (ψ5)

(m) Real (ψ6) (n) Imag (ψ6) (o) Real (ψ7) (p) Imag (ψ7)

Figure 4.3: The real part and imaginary part of the refinable function and seven
framelets generated from g0 = (1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
)

(a) φ (b) ψ1 (c) ψ2 (d) ψ3

Figure 4.4: Wavelets generated from g0 = (1
4
, 1

4
, 1

4
, 1

4
) and cosine basis
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4.3 (Tight) Gabor frames induced from refinable

functions

In the previous section, the discrete tight Gabor frames in the sequence domain

are linked to the MRA-based tight wavelet frames in the continuum domain which

brings MRA structure to discrete Gabor frames. Another interesting question is

then can we link tight Gabor frames in the continuum domain to the MRA as well.

In other words, can we link a refinable function to the window function of a tight

Gabor frame?

Using the same sampling rate a = 2 and b = 1
p

as discrete tight Gabor frames

with MRA structure, we define a Gabor system on the lattices: K = 2Z, L = 1
p
Z:

(K,L)g = {g(t− 2k)e−
2πi`x
p , x ∈ R}t,`∈Z, (4.15)

where g ∈ L2(R) is a compactly supported non-negative window function. In the

next theorem, we give a sufficient condition on a refinable function so that the Gabor

system defined as (4.15) will form a frame when g = φ and will form a tight frame

when g =
√

2φ/p.

Theorem 4.7. Let φ ∈ L2(R) with φ̂(0) = 1 be a continuous refinable function

supported on [0, p− 1]. Suppose that p ≥ 4 and φ(t) > 0 for any t ∈ (0, p− 1). Let

g0 denote its refinement mask. Then, the Gabor system (K,L)g with g = φ forms a

frame for L2(R). Further, suppose the mask g0 satisfies∑
m∈Λj

g0(m) =
1

4
, (4.16)

where j ∈ Z/4Z and Λj = (4Z+ j)∩ [0, p−1]. Then, the Gabor system (K,L)g with

g =
√

2φ/p forms a tight frame for L2(R).

Proof. The frame property of the Gabor system (K,L)φ is proved by one sufficient

condition presented in [29] which states that as long as the window function φ is
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continuous on its support [0, p− 1], φ > 0 on (0, p− 1), b = 1
p
≤ 1

p−1
and p ≥ 4, the

system (K,L)φ forms a frame for L2(R).

The proof of tight frame property of (K,L)√
2φ/p

is based on Theorem 2.2. Since

b = 1
p
≤ 1

p−1
, Condition (a) of Theorem 2.2 is satisfied. For any j ∈ Z and r ∈ N,∑

k∈Z

φ(
j

2r
−2k) =

∑
k∈Z

∑
m∈Z

2g0(m)φ(
j

2r−1
−4k−m) =

∑
k∈Z

∑
m∈Z

2g0(m−4k)φ(
j

2r−1
−m).

As both g0 and φ are compactly supported, one can then change the order of finite

summations which gives∑
k∈Z

φ(
j

2r
− 2k) =

∑
m∈Z

∑
k∈Z

2g0(m− 4k)φ(
j

2r−1
−m) =

1

2

∑
m∈Z

φ(
j

2r−1
−m),

Herein, the last equality comes from (4.16). Moreover, by (4.16), we have
∑

k∈Z g0(m−

4k) =
∑

k∈Z g0(m − 4k + 2) = 1
4
, and thus

∑
k∈Z g0(m − 2k) = 1

2
. By the same ar-

gument as above, we have∑
m∈Z

φ(
j

2r−1
−m) =

∑
n∈Z

∑
m∈Z

2g0(n− 2m)φ(
j

2r−2
− n) =

∑
n∈Z

φ(
j

2r−2
− n).

Repeat this process, one obtains∑
m∈Z

φ(
j

2r−1
−m) =

∑
n∈Z

φ(
j

2r−2
− n) = · · · =

∑
n∈Z

φ(j − n) =
∑
n∈Z

φ(n).

Recall that we have

φ̂(0) =

∫ +∞

−∞
φ(t)dt =

∑
n∈Z

φ(n),

when the function φ is a continuous refinable function (see more details in [37]). By

the fact that φ̂(0) = 1, we have then∑
k∈Z

φ(
j

2r
− 2k) = 1/2,

for any j ∈ Z and r ∈ N. Since { j
2r
, j ∈ Z, r ∈ N} is dense in R and the continuity

of φ implies the continuity of
∑

k∈Z φ(· − 2k), it is established that for any t ∈ R,∑
k∈Z

φ(t− 2k) = 1/2,
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(a) p = 4 (b) p = 8

Figure 4.5: The square root of the refinable functions shown in Example 4.4 and
Example 4.6, which are used as the window functions of tight Gabor frames.

which is exactly Condition (b) with a = 2 in Theorem 2.2. Thus, by Theorem 2.2,

the Gabor system (K,L)g defined as (4.15) with g =
√

2φ/p forms a tight frame for

L2(R).

Example 4.8. Consider the masks in Example 4.4 and Example 4.6, i.e. p = 4,

g0 = (1
4
, 1

4
, 1

4
, 1

4
) and p = 8, g0 = (1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
). These masks and their

refinable functions φ satisfy conditions in Theorem 4.7. Therefore, the Gabor system

with window function
√

2φ/p is a tight frame for L2(R). For p = 4 and p = 8,
√
φ

is shown in Figure 4.5.

4.4 Conclusions

In this chapter, we studied the construction of discrete tight frames with Gabor and

MRA structures. The basic idea is to connect the discrete tight Gabor frames to

the MRA-based tight wavelet frames in continuum domain via UEP. A sufficient

condition for constructing such discrete tight frames is presented, and we showed

its closed-form solutions. The window sequence of the closed-form solutions takes

the form 1
p
(1, 1, . . . , 1, 1), which generates the refinable function different from that

associated with Haar wavelet for p ≥ 4. In addition, we also introduced a class of

tight Gabor frames for L2(R) whose window functions are induced from refinable

functions of MRAs. Its efficiency in sparse representation will be shown in the

experiment of image restoration in Chapter 5.





Chapter 5
Image recovery using multi-scale Gabor

systems

5.1 Introduction

In recent years, by assuming images of interest can be sparsely approximated under

a frame or tight frame, sparsity-prompting functional (e.g. `1-norm) based reg-

ularization has been used in many image recovery tasks; see e.g. shift-invariant

Daubechies wavelet system for image denoising [35], splines wavelet frame based

image restoration methods [10, 16, 14] and curvelet based image recovery methods

[104, 106]. Several approaches have been proposed for utilizing the sparse approx-

imation of images, including synthesis approach, analysis approach and balanced

approach. Interested readers are referred to [50, 102] for more details. There ex-

ist deep connections between wavelet frames based regularization method and the

widely used total variation based regularization. Indeed, it is shown in [12] that the

wavelet frame based analysis approach can be seen as sophisticated discretization of

minimizations involving the total variation penalty.

Natural images are often composed of both cartoon and texture parts. Thus, a

more efficient approach is viewing such images as the composite of multiple layers

67



68 Chapter 5. Image recovery using multi-scale Gabor systems

with different characteristics. For example, a two-layer model is considered in [16]

for image inpainting, in which one layer represents cartoon parts that are sparse

in wavelet domain and the other layer represents texture parts that are sparse in

local DCT domain. Different from spline wavelet frames, the discrete Gabor induced

frames proposed in Chapter 3 have their origins from local time-frequency analysis.

Thus, they can deal with both cartoon parts and texture parts by using window

functions of varying supports.

Another way to handle the images including multi-scale features is to use the

discrete tight frames with Gabor and MRA structures constructed in Chapter 4. By

implementing wavelet transforms of multi-levels, one can use one single system to

characterize different types of image features. Correspondingly, the usual analysis

model ([16]) can be used as the regularization model.

5.2 Regularization models and numerical algorithms

A 2D image can be concatenated as a vector in RN , where N is the total number

of image pixels. Image recovery we consider in the experiment is about solving a

linear inverse problem:

b = Af + n, (5.1)

where b ∈ RN denotes the observed degraded image, f ∈ RN denotes the original

image for recovery and n ∈ RN denotes noise. The operator A ∈ RN×N is a

measuring matrix that varies according to different image recovery problems. For

image deblurring, A is a convolution operator with a low-pass filter. For image

de-noising, A is an identity matrix. For image in-painting, A is a diagonal matrix

whose diagonal element is 1 when the corresponding pixel value is available and 0

otherwise.

For an input image composed of both cartoon parts and texture parts, we pro-

pose a sparsity-based multi-layer composite model which is based on multiple dis-

crete Gabor induced frames generated by window functions of different sizes. More



5.2 Regularization models and numerical algorithms 69

specifically, we assume that the input image is composed of multiple layers in which

each layer can be sparsely approximated under a discrete Gabor induced frame with

a different window size, which are constructed in Chapter 3. Suppose WYk is the

decomposition operator in the matrix form of a 2D Gabor induced frame Yk with

window size pk and shift parameters (ak, bk), and W̃Yk is the reconstruction operator

of its dual. Based on such a sparsity-based multi-layer composite model of images,

we propose the following regularization model for solving (5.1):

min
{u1,...,um}⊂RN

m∑
k=1

λk‖WYkuk‖1, s.t. ‖A(
m∑
k=1

uk)− b‖2 ≤ ε, (5.2)

where ε denotes the tolerance determined by noise level and λk denotes the pre-

defined regularization parameter. The recovered image ũ is then synthesized by

uk’s via ũ =
∑m

k=1 uk.

Another way to handle images with multi-layer components is using the discrete

tight frames with Gabor and MRA structures constructed in Chapter 4. Different

from the above multi-layer composite model using several Gabor induced systems,

in this approach only a single system is considered to deal with the scaling challenge,

owing to the benifits of MRA structure. The decomposition operator of a 2D n-level

discrete undecimated tight wavelet frame is represented by a matrix W and the

reconstruction operator is its adjoint matrix W ∗. We apply the following sparsity-

based regularization model, or referred to as the analysis model ([16]), for solving

(5.1):

min
u∈RN

λ‖Wu‖1, s.t. ‖Au− b‖2 ≤ ε, (5.3)

where ε is the tolerance related to the noise level. The recovered image is given by

the solution to this model.

By regarding the analysis model (5.3) as a special case of (5.2) with the number

of systems m = 1, Models (5.2) and (5.3) can be combined and written as a more

compact form like

min
u∈RmN

‖Wu‖1, s.t. ‖Ãu− b‖2 ≤ ε, (5.4)
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where W = diag(λ1WY1 , . . . , λmWYm), Ã = [A,A, . . . ,A] ∈ RN×mN and u =

[u>1 , . . . ,u
>
m]> ∈ RmN .

The minimization problem (5.4) is an `1-norm related convex problem which has

been extensively studied in recent years. It can be efficiently solved by the split

Bregman iteration or equivalently the ADMM method via the following iteration

scheme: 

(Ã>Ã+ µW ∗W )uk+1 = Ã>(b− ck) + µW ∗(dk − hk)

dk+1 = H 1
µ
(Wuk+1 + hk),

hk+1 = hk +Wuk+1 − dk+1,

ck+1 = ck + Ãuk+1 − b,

(5.5)

where Hδ(w) = [tδ(w1), tδ(w2), . . .]> is the soft thresholding operator, with tδ(wi) =

wi
|wi| max{0, |wi| − δ} if wi 6= 0 and tδ(0) = 0. Interested readers are referred to [16]

for more details. In our implementation using discrete Gabor induced frames, the

conjugate gradient method is called for solving the linear system in the first step

of the iteration. In the implementation using discrete tight frame with Gabor and

MRA structures, note that W ∗W = I. If A is a convolution matrix, the linear

system in the first step of the iteration can be solved via the fast Fourier transform if

the periodic boundary condition is considered. If A is an identity matrix or diagonal

matrix, the linear system can be solved via directly inverting A>A+ µI.

It is noted that although W is a complex-valued operator, all intermediate vari-

ables uk+1, ck+1 are real-valued in both implementations. The reason is that the

filters corresponding to the proposed Gabor induced frames or tight frames with

Gabor and MRA structures always appear as conjugate pairs. In other words, the

coefficients also appear as conjugate pairs. In addition, for any conjugate pair of

coefficients, the thresholding operator tδ either set both to 0 or keep them remaining

as a conjugate pair. Thus, all intermediate variables are real-valued.
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5.3 Image recovery and experimental evaluation

In this section, we apply multi-scale discrete Gabor induced frames based regular-

ization model (5.2) and discrete tight frames with Gabor and MRA structures based

regularization model (5.3) to solve two typical image recovery problems: image de-

noising and image deconvolution.

The implementation of the regularization method (5.2) is done as follows. The

multi-scale discrete Gabor induced frames are composed of two systems constructed

in Section 3.4.2 with two different scales. One is the discrete Gabor induced frame

of the form (3.18) modified from the tight Gabor frame in Example 3.6 using the

B-spline of order 4 with the nodes {0, 2, 4, 6, 8}. Two shift parameters of the lattices

are a = 2 and b = 1. The other system is the large-scale version of the first one,

whose window function is obtained by sampling the same B-spline function of order

4 but with the nodes {0, 4, 8, . . . , 16}. Two shift parameters of the lattices are a = 4

and b = 1. The filter size of the filter banks associated with these two systems are

p = 7 and p = 15 respectively.

In the implementation of the regularization model (5.3), the system for sparsi-

fying images is the undecimated version of discrete tight frames with Gabor and

MRA structures constructed from Theorem 4.1 and Proposition 4.2 in Section 4.2.

Tests are taken with transforms in different settings, which include (1) two-level

tight wavelet frame with filter size p = 4; and (2) one-level tight wavelet frame with

p = 8. By writing the model as the compact form (5.4), both regularization models

based on discrete Gabor induced frames and tight wavelet frames, are solved via the

iteration scheme (5.5).

To illustrate the benefit of constructed discrete Gabor induced frames and tight

wavelet frames with Gabor structure for sparsity-based image recovery, the results

are compared to that from several other `1 norm based regularization methods us-

ing different systems for sparsifying images. The first one is the popular TV based

image restoration method (see e.g. [112]), in which the total variation of the image
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(a) Barbara (b) Bowl (c) Cameraman (e) Lena

Figure 5.1: Visualization of four tested images

is regularized. The next one is wavelet frame sparsified method from [16]. For image

deblurring, the analysis model (5.3) is used and the linear spline tight wavelet frame

[99] is applied as the sparsifying system. For image denoising, two systems (local

DCT and linear spline tight wavelet frame) and a multi-layer composite model of

images modified from (5.2) are considered. The last one is using the same regu-

larization model (5.3) but the sparsifying system is the dual-tree complex wavelet

(DT-CWT) [101] whose associated filter bank has up to six orientations. In the

implementation of DT-CWT, near Symmetric (13, 19) tap filters are chosen in the

lowest level and Q-Shift (10, 10) tap filters are chosen in two higher levels to gain

the optimal performance. The parameters involved in these methods are rigorously

tuned up to achieve the best average performance over tested images. The perfor-

mance of image recovery is measured in terms of the PSNR value given by

PSNR = −20 log10

‖f − ũ‖
255N

,

where N denotes the total number of image pixels, f and ũ denote the truth and

the result.

In the experiments of image deconvolution, the tested images, shown in Figure

5.1, are firstly convoluted with a blur kernel and then added with Gaussian white

noise. The standard deviation of noise is σ = 3 and four types of blur kernel are

tested: (1) disk kernel of radius 3 pixels, (2) linear motion blur kernel of length

15 pixels and of orientation 30◦, (3) Gaussian kernel of size 15 × 15 pixels and

standard derivation 2, and (4) averaging kernel of size 9 × 9 pixels. Through the

experiments, the parameter of (5.5) for solving multi-scale Gabor induced frame
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based regularization model is uniformly set for all images as follows: λ1 = λ2 =

σ2

5
+ 3σ − 1 and µ = σ

10
. The parameters of (5.5) for solving the regularization

models using tight frames with Gabor and MRA structures are uniformly set as

follows: (1) for two-level tight frame with p = 4, set λ = 4 and µ = 1
80

; (2) for

one-level tight frame with p = 8, set λ = 1 and µ = 0.2. See Table 5.1 for the

summary of PSNR values of results deblurred by different methods. It can be seen

that the performance of the proposed multi-scale discrete Gabor induced frames

based method outperform other methods for comparison. And tight wavelet frame

based method is also competitive with other approaches, especially when the filter

size is large enough. The improvement on the PSNR value is also consistent with

the improvement on visual quality; for a visual illustration of deconvolution results

by different methods, one may check Figure 5.2.

In the experiments of image denoising, the tested images are synthesized by

adding Gaussian white noise with standard deviation σ = 20 on five tested images

shown in Figure 5.3. The parameters of denoising using discrete Gabor induced

frames are uniformly set for all images by the empirical formulation: λ1 = σ2

80
− σ

5
+13;

λ2 = − σ2

400
+ 7σ

5
− 10 and µ = 1

2
σ. The parameters of denoising using tight frames

with Gabor and MRA structures are uniformly set for all images: (1) for two-level

tight frame with p = 4, set λ = 765 and µ = 4
3∗2552

; (2) for one-level tight frame with

p = 8, set λ = 765
2

and µ = 16
3∗2552

. See Table 5.2 for the summary of the PSNR values

of the results denoised by different methods. Similarly as the deconvolution problem,

the denoising results of both proposed approaches are competitive compared to those

of other methods. Especially, the discrete multi-scale Gabor induced frames provide

very good performance. And see Figure 5.3 for a visualization of the denoised

images.
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(a) original image (b) blurred image (c) TV

(d) framelet (e) DT-CWT (f) Gabor induced frame

(g) two-level, p = 4 (h) one-level, p = 8

Figure 5.2: Visual illustration of image deconvolution. (a) True image; (b) image
blurred by motion kernel and added by noise with noise level σ = 3; (c)-(j) deblurred
results by different methods.
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(a) original image (b) noisy image (c) TV

(d) framelet & local DCT (e) DT-CWT (f) Gabor induced frame

(g) two-level, p = 4 (h) one-level, p = 8

Figure 5.3: Visual illustration of image denoising. (a) True image; (b) noisy image
with noise level σ = 20; (c)-(j) denoised results by four different methods.
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5.4 Conclusions

In this chapter, we tested the efficiency of the constructed discrete Gabor induced

frames and tight frames with Gabor and MRA structures for finite signals from

the need of sparse image modeling. As shown in the experiments, compared to the

existing wavelet frames often seen in many sparsity-based image recovery methods,

the discrete Gabor induced frames constructed in Chapter 3 and tight frames with

Gabor and MRA structures constructed in Chapter 4 have their advantages on

orientation selectivity and on the flexibilities of modelling both image edges and

local textures. Especially, the discrete Gabor induced frames, which possess the

flexibility in desinging window functions with different decay, provide noticeably

better results than other methods.



Chapter 6
`1 regularizers with different loss functions

for sparse recovery

6.1 Introduction

Recall that the problem of signal recovery usually models the observation as the

output of applying a linear operator A to image of interest:

b = Af + n, (6.1)

where b ∈ CM denotes the observed data, f ∈ CN denotes the truth to be esti-

mated, and n ∈ CM denotes the measurement noise. In the last few chapters, we

are devoted to finding proper systems to meet the needs of sparsity-induced image

recovery, i.e. the underlying image can be sparsely represented under the given sys-

tem. Based on the sparsity assumption, `1-norm regularizer has been widely used as

the convex relaxation of `0-norm regularizer for sparse recovery. In this chapter, we

will investigate the stability and robustness of `1-norm related regularization mod-

els. For convenience, we assume that the truth f itself is sparse or approximately

sparse. In fact, sometimes the analysis based on such assumption is equivalent to

that based on the assumption f is sparse under some transform. For example, con-

sider the problem of image deconvolution or denoising, where A is a convolution

79
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matrix or identity matrix. And assume W is the analysis operator of a tight frame

defined by the filter bank. By the commutativity of W and A,

λ‖Ax−b‖2
2 +‖Wx‖1 = λ‖WAx−Wb‖2

2 +‖Wx‖1 = λ‖AWx−Wb‖2
2 +‖Wx‖1.

Therefore, in order to estimate ‖x̃− f‖2, where x̃ is a solution to

min
x
λ‖Ax− b‖2

2 + ‖Wx‖1,

one only need to estimate ‖ỹ −Wf‖2 = ‖x̃− f‖2, where ỹ = Wx̃ is a solution to

min
y
λ‖Ay −Wb‖2

2 + ‖y‖1.

By assuming f is sparse, i.e. most elements of f are zero or close to zero, typical

`1-norm regularizer based optimization models for sparse recovery can be either a

constrained model:

min
x
‖x‖1, subject to L(b−Ax) ≤ δ, (6.2)

or an unconstrained model:

min
x
λL(b−Ax) + ‖x‖1, (6.3)

where L is a loss function, δ and λ are both pre-defined parameters. Usually the loss

function L is set according to the statistical property of measurement noise n. For

example, L(·) = ‖·‖2
2 is preferred, when noise n is the additive Gaussian white noise

(see e.g. [100, 4, 61, 25]). When noise is impulse noise or there exists significant

amount of outliers, the `1-norm based loss function L(·) = ‖ · ‖1 is preferred ([66,

67, 90]). In recent years, many efficient algorithms have been developed to solve

these non-smooth `1-norm relating optimization problems; see e.g. [62, 55, 41, 5,

115, 15, 94, 114]. In this chapter, we aim at studying sufficient conditions on the

measurement matrix A for guaranteeing a robust and stable recovery of signal via

solving (6.3) with different loss functions L, as well as how to set optimal value of

the regularization parameter λ.
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6.1.1 Robust and stable recovery

We consider a robust and stable recovery of sparse signals in terms of the following

three aspects.

1. Noise-robustness. The stability to noise refers to how much the noise n in

(6.1) is magnified in the solution.

2. Approximation-stability. Often a signal f is only approximately sparse with

most entries close to zero. The stability to sparse approximation refers to

how much the following best s-sparse approximation error is magnified in the

solution:

σs(f) = inf
y∈Σs
‖f − y‖1,

where Σs is the collection of all signals with at most s non-zero entries.

3. ε-optimality-stability. As the model (6.3) is usually solved via some iterative

method, only an approximate solution f̃ to (6.3) will be available which sat-

isfies

λL(b−Af̃) + ‖f̃‖1 ≤ min
x

(λL(b−Ax) + ‖x‖1) + ε,

for some constant ε. The stability to the ε-optimality refers to how much ε is

magnified in the solution.

Therefore, we give the following definition of a robust and stable recovery of

sparse signals by model (6.3).

Definition 6.1 (Robust and Stable Sparse Recovery). Consider a noisy measure-

ment b = Af + n of signal f . We say that the model (6.3) admits a robust and

stable sparse recovery of f under p-norm if there exists some λ > 0 such that for

any f̃ satisfying ε-optimality condition:

λL(b−Af̃) + ‖f̃‖1 ≤ min
x

(λL(b−Ax) + ‖x‖1) + ε,

we have

‖f̃ − f‖p ≤ c1‖n‖p + c2s
1/p−1σs(f) + c3ε.
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Here, ‖ · ‖p denotes the p-norm of a vector space with p ≥ 1, and c1, c2, c3 are all

constants that are independent of the sparsity degree s, as well as the dimensions

of f and b.

6.1.2 Literature review

Before going to our results, we give a brief review of existing works about the robust

and stable recovery via related `1-norm regularizer based models in this part.

In the noise-free case where n = 0 in (6.1), the `1-norm regularizer based model

for sparse recovery becomes `1 minimization with equality constraints:

min
x
‖x‖1, subject to Ax = b, (6.4)

which is also known as basis pursuit problem ([26]). One necessary and sufficient

condition of exact sparse recovery is imposed on the null space of A. Suppose the

truth f is s-sparse. It is shown in [59] that the truth f is the unique solution to

(6.4) if and only if the null space property (2.10) of order s holds for some constant

β ∈ (0, 1). When f is approximately s-sparse, it is shown in [59] that

‖f̃ − f‖1 ≤
1 + β

1− β

(
‖f̃‖1 − ‖f‖1 + 2σs(f)

)
for any Af̃ = Af if and only if A satisfies the null space property of order s with

constant 0 < β < 1. It implies that the null space property is a sufficient condition

for stable sparse recovery when using (6.4). Besides the null-space property, many

other sufficient conditions are proposed for exact sparse recovery using (6.4). For

example, the so-called mutual coherence is used in [46, 49] for exact recovery of f ,

which states that f can be exactly recovered by solving (6.4) if µ(A) < 1
2‖f‖0−1

,

where

µ(A) = max
j 6=k

|〈Aj,Ak〉|
‖Ak‖2‖Aj‖2

.

By restricting the maximum radius of the intersection of unit `1 ball and ker(A)

to be c/
√
s for some constant c, the so-called width property, i.e., there exists a
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constant c > 0 such that

‖f‖2 ≤
c√
s
‖x‖1, for any x ∈ kerA,

is proposed in [70] to guarantee an exact recovery of f via (6.4), as well as the

approximation-stable recovery of f when f is approximately sparse.

In the presence of noise such that b = Af + n with non-zero noise n, both `1-

norm and `2-norm have been used as the loss function, and most of the researchers

consider the constrained optimization model (6.2), with L being either ‖·‖2 or ‖·‖1.

For the `2-norm loss function based model, which reads

min
x
‖x‖1 subject to ‖b−Ax‖2 ≤ δ, (6.5)

the robust null-space property defined in Definition 2.2 is introduced in [59, 57, 107] to

ensure an approximation stable and noise robust recovery. It is shown in [59, 57, 107]

that if A satisfies the robust null-space property (2.10), then any minimizer f̃ of

(6.5) satisfies

‖f̃ − f‖2 ≤
c1√
s
σs(f) + c2δ, (6.6)

where c1, c2 are two positive constants. The same result can also be obtained if the

matrix A satisfies the robust width property ([70]). Another well-known sufficient

condition for guaranteeing the stable and robust sparse recovery is the so-called

restricted isometry property first introduced in [24]. A matrix A is said to satisfy

the s-th order restricted isometry property with constant γs if for any s-sparse vector

x,

(1− γs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + γs)‖x‖2
2,

where γs is a positive constant called restricted isometry constant. More details can

be found in [23, 19, 58, 56, 17].

For the `1-norm loss function based model which reads

min
x
‖x‖1 subject to ‖b−Ax‖1 ≤ δ, (6.7)
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it is shown in [107] that when A satisfies the robust null-space property (2.11), the

model (6.7) will admit a robust and stable recovery of sparse signals such that for

any minimizer f̃ of (6.7),

‖f̃ − f‖1 ≤ c1σs(f) + c2δ. (6.8)

Furthermore, in the context of super-resolution of sparse signals, it is shown in [21]

that as long as the matrix A satisfy the null-space property, the constrained model

(6.7) will admit a stable and robust recovery of sparse signals in the form of (6.8).

The `1-norm regularizer based unconstrained model with the square of `2-norm

loss function has been known as the lasso estimator ([109]). The model usually

reads

min
x
λ‖b−Ax‖2

2 + ‖x‖1, (6.9)

where λ is some pre-defined positive regularization parameter. As a statistical re-

gression tool, (6.9) has been extensively studied in the literature; see e.g. [84, 118,

116, 85, 22]. The error analysis of (6.9) in statistical regression is rather differ-

ent from that of signal recovery, as it focuses on the estimation error in terms of

‖Af − Af̃‖, where f̃ denotes one minimizer of (6.9). In the context of sparse

model, it is shown in [22] that when the parameter f is a s-sparse vector, the term

‖Af −Af̃‖2 is well bounded with high probability provided that s is sufficiently

small.

From the viewpoint of sparse recovery, the `1-norm loss function based un-

constrained model,

min
x
λ‖b−Ax‖1 + ‖x‖1, (6.10)

is discussed in [68]. A sufficient condition on stable and robust sparse recovery

using (6.10) is proposed in [68], which assumes that there exist constants D > 0 and

0 < β < 1 such that

‖xT‖1 + ‖x‖1 − ‖xT c‖1 ≤ D‖Ax‖1 + β‖x‖1

holds for any x and any set T with |T | ≤ s, if λ is suitably chosen.
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6.2 Robustness and Stability of `2
2-`1 and `1-`1 mod-

els

As aforementioned, two most often used loss functions L are L(·) = ‖ · ‖2
2 and

L(·) = ‖ · ‖1. We call the model (6.9) with ‖ · ‖2
2 based loss function the `2

2-`1 model:

min
x
λ‖b−Ax‖2

2 + ‖x‖1, (6.11)

and call the model (6.10) with ‖ · ‖1 based loss function the `1-`1 model:

min
x
λ‖b−Ax‖1 + ‖x‖1. (6.12)

In this section, we would like to investigate the sufficient conditions on A so that

the models (6.11) and (6.12) can admit robust and stable recovery of sparse signals

in terms of Definition 6.1, as well as how to set the regularization parameter λ

accordingly.

Assume N ≥ 2s. For `2
2-`1 model (6.11), we have the following result.

Theorem 6.1. Let f̃ denote any vector that satisfies the ε-optimality condition:

λ‖b−Af̃‖2
2 + ‖f̃‖1 ≤ min

x
(λ‖b−Ax‖2

2 + ‖x‖1) + ε. (6.13)

Suppose that the matrix A satisfies the robust null-space property of order s with

constants D1 > 0 and β1 ∈ (0, 1). Then for λ =
√
s

‖n‖2 , we have

‖f − f̃‖2 ≤
c1√
s
σs(f) + c2‖n‖2 + c3ε, (6.14)

where c1 =
7
2
D1+ 5

2

(1−β1)2
, c2 =

8D2
1+16D1+ 5

4

(1−β1)2
and c3 = 4D1+2

(1−β1)2
.

Before giving the proof of Theorem 6.1, the following lemma is introduced.

Lemma 6.2. For any d ∈ CN and any index subset T ⊂ {1, ..., N} of size |T | = s,

‖d‖2 ≤ ‖dT‖2 + ‖dT1‖2 +
1√
s
‖dT c‖1. (6.15)

where T1 is the index set of the s largest elements of |d| in T c.
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Proof. For the given vector d ∈ CN and the index set T of |T | = s, we divide T c

into sets of size s in order of decreasing magnitude of dT c , denoted by T1, T2, . . ..

That is, define T1 to be the index set of the s largest elements of |d| in T c. Let

T2 be the index set of the s largest elements of |d| in (T ∪ T1)c, and so on. Based

on the definition of {T1, T2, . . .}, |dTj(m)| ≤ 1
s
‖dTj−1

‖1 for any m and j ≥ 2. Then∑
m |dTj(m)|2 ≤ s · ‖dTj−1

‖21
s2

, i.e.

‖dTj‖2 ≤ s−1/2‖dTj−1
‖1, j ≥ 2.

Therefore, we have the following inequality about ‖d‖2:

‖d‖2 ≤ ‖dT‖2 + ‖dT1‖2 +
∑
j≥2

‖dTj‖2

≤ ‖dT‖2 + ‖dT1‖2 +
1√
s

∑
j≥1

‖dTj‖1

≤ ‖dT‖2 + ‖dT1‖2 +
1√
s
‖dT c‖1.

The proof is done.

proof of Theorem 6.1. Let h = f̃ − f . By the condition on f̃ ,

λ‖b−Af̃‖2
2 + ‖f̃‖1 ≤ min

x
(λ‖b−Ax‖2

2 + ‖x‖1) + ε

≤ λ‖b−Af‖2
2 + ‖f‖1 + ε

= λ‖n‖2
2 + ‖f‖1 + ε. (6.16)

Expanding ‖b−Af̃‖2
2 as

‖b−Af̃‖2
2

=‖b−Af‖2
2 + ‖Af̃ −Af‖2

2 − 〈b−Af ,Af̃ −Af〉 − 〈Af̃ −Af , b−Af〉

=‖n‖2
2 + ‖Ah‖2

2 − 〈n,Ah〉 − 〈Ah,n〉,

we have then

‖Ah‖2
2 ≤

1

λ
(‖f‖1 − ‖f̃‖1) + 〈n,Ah〉+ 〈Ah,n〉+

ε

λ

≤ 1

λ
‖h‖1 + 2‖n‖2‖Ah‖2 +

ε

λ
.

(6.17)
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For f ∈ CN , we divide it into the sets of size s in the order of decreasing

magnitude, denoted by T, T1, T2, . . . . That is, T is the index set of s largest elements

of |f |, then define T1 be the index set of s largest elements of |f | in T c, and so on.

Then obviously σs(f) = ‖fT c‖1. Use (6.16) and notice that ‖f‖1 = ‖fT‖1 + ‖fT c‖1,

‖f‖1 + λ‖n‖2
2 + ε ≥ ‖f̃‖1 ≥ ‖fT‖1 − ‖hT‖1 − ‖fT c‖1 + ‖hT c‖1.

Thus,

‖hT c‖1 ≤ 2‖fT c‖1 + ‖hT‖1 + λ‖n‖2
2 + ε. (6.18)

Together with the robust null-space property and notice that ‖hT‖1 ≤
√
s‖hT‖2,

we have

‖hT‖2 ≤ D1‖Ah‖2 +
β1√
s

(
2‖fT c‖1 + ‖hT‖1 + λ‖n‖2

2 + ε
)

≤ β1‖hT‖2 +D1‖Ah‖2 +
β1√
s

(
2‖fT c‖1 + λ‖n‖2

2 + ε
)
,

which implies

‖hT‖2 ≤
1

1− β1

(2β1√
s
‖fT c‖1 +

β1√
s
· (λ‖n‖2

2 + ε) +D1‖Ah‖2

)
. (6.19)

Then combining (6.18) and (6.19), we have

‖hT c‖1 ≤ 2‖fT c‖1 + λ‖n‖2
2 + ε+

√
s‖hT‖2

≤ 2

1− β1

‖fT c‖1 +
1

1− β1

(λ‖n‖2
2 + ε) +

D1

1− β1

√
s‖Ah‖2.

(6.20)

Thus,

‖h‖1 = ‖hT‖1 + ‖hT c‖1

≤ α(2‖fT c‖1 + λ‖n‖2
2 + ε) +

2D1

1− β1

√
s‖Ah‖2,

(6.21)

where α = 1+β1
1−β1 . By (6.17), we have

‖Ah‖2
2 ≤

1

λ
‖h‖1 + 2‖n‖2‖Ah‖2 +

ε

λ

≤ α

(
2

λ
‖fT c‖1 + ‖n‖2

2 +
ε

λ

)
+

2D1

√
s

λ(1− β1)
‖Ah‖2 + 2‖n‖2‖Ah‖2 +

ε

λ

=
2α

λ
‖fT c‖1 + α‖n‖2

2 +

(
2D1

√
s

λ(1− β1)
+ 2‖n‖2

)
‖Ah‖2 +

2ε

λ(1− β1)
.
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Thus, we have the following inequality on ‖Ah‖2:

‖Ah‖2 ≤ (
2D1

√
s

λ(1− β1)
+ 2‖n‖2) +

√
α

√
2‖fT c‖1

λ
+ ‖n‖2

2 +
2ε

λ(1 + β1)

≤ (
2D1

√
s

λ(1− β1)
+ 2‖n‖2) +

√
α

(
2

√
‖fT c‖1

2λ
+ ‖n‖2 + 2

√
ε

2λ(1 + β1)

)

≤ 2D1

√
s

λ(1− β1)
+ (2 +

√
α)‖n‖2 +

√
α

(√
s

2λ
+
‖fT c‖1√

s

)
+ (

1

2λ
+

ε

1− β1

).

(6.22)

The remaining step is to give an upper bound of ‖h‖2. By robust null-space property,

‖hT1‖2 ≤ D1‖Ah‖2 +
β1√
s
‖hT c1 ‖1.

By (6.21), we have then

‖hT1‖2 ≤ D1‖Ah‖2 +
β1√
s
‖hT c1 ‖1

≤ D1‖Ah‖2 +
β1√
s
‖h‖1

≤ αD1‖Ah‖2 +
αβ1√
s

(
2‖fT c‖1 + λ‖n‖2

2 + ε
)
.

(6.23)

By the inequality provided in Lemma 6.2:

‖h‖2 ≤ ‖hT‖2 + ‖hT1‖2 +
1√
s
‖hT c‖1,

together with (6.19), (6.20) and (6.23), we have

‖h‖2 ≤
1

1− β1

[
D1(3 + β1)‖Ah‖2 +

(1 + β1)2

√
s

(2‖fT c‖1 + λ‖n‖2
2 + ε)

]
. (6.24)

Recall that λ =
√
s

‖n‖2 . Combining the above inequality with (6.22) gives

‖h‖2 ≤
c1√
s
‖fT c‖1 + c2‖n‖2 + c3ε, (6.25)

where
c1 = D1(3+β1)(1+β1)1/2

(1−β1)3/2
+ 2 (1+β1)2

1−β1 ≤
7
2
D1+ 5

2

(1−β1)2
,

c2 = D1
3+β1
1−β1

(
2D1

1−β1 + 3
2

√
1+β1
1−β1 + 2 + 1

2
√
s

)
+ (1+β1)2

1−β1 ≤
8D2

1+16D1+ 5
4

(1−β1)2
,

c3 = D1(3+β1)
1−β1

1
1−β1 + (1+β1)2√

s(1−β1)
≤ 4D1+2

(1−β1)2
.

(6.26)

The proof is done.
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This theorem shows that the robust null-space property is sufficient for the robust

and stable recovery of `2
2-`1 model, given a suitable choice of λ related to the noise

level. For `1-`1 model (6.12), we have

Theorem 6.3. Let f̃ denote any vector that satisfies the ε-optimality condition:

λ‖b−Af̃‖1 + ‖f̃‖1 ≤ min
x

(λ‖b−Ax‖1 + ‖x‖1) + ε. (6.27)

Define γ = infARA=A ‖R‖1. Suppose that A satisfies the null space property of

order s with constant β ∈ (0, 1). Then for λ = 2γ
1+β

, we have

‖f − f̃‖1 ≤ c1σs(f) + c2‖n‖1 + c3τ, (6.28)

where c1 = 2+2β
1−β , c2 = 4γ

1−β , and c3 = 1+β
1−β .

Proof. Denote h = f̃ − f . For any R satisfying A = ARA, decompose h as

h = hR + hN , where hR = RAh and hN = h− hR. Obviously, hN ∈ kerA. Take

T to be the index set of the s largest components in |f |, then σs(f) = ‖fT c‖1. f̃

satisfies (6.27), which implies that

‖f̃‖1 + λ‖Af̃ − b‖1 ≤ min
x

(‖x‖1 + λ‖Ax− b‖1) + ε

≤ ‖f‖1 + λ‖Af − b‖1 + ε.

Since f̃ = f + h = f + hN + hR,

‖f̃‖1 + λ‖Af̃ − b‖1

=‖f + hN + hR‖1 + λ‖Af̃ − b‖1

≥‖fT‖1 − ‖(hN)T‖1 + ‖(hN)T c‖1 − ‖fT c‖1 − ‖hR‖1 + λ‖Af̃ − b‖1.

Therefore,

2‖fT c‖1 + λ
(
‖Af − b‖1 − ‖Af̃ − b‖1

)
+ ‖hR‖1 + ε ≥‖(hN)T c‖1 − ‖(hN)T‖1

≥(1− β)‖(hN)T c‖1.
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Here, the last inequality is by the null space property and the fact that hN ∈ kerA.

Therefore,

1

1− β

(
2‖fT c‖1 + λ

(
‖Af − b‖1 − ‖Af̃ − b‖1

)
+ ‖hR‖1 + ε

)
≥ ‖(hN)T c‖1.

(6.29)

By using the null space property,

β

1− β

(
2‖fT c‖1 + λ

(
‖Af − b‖1 − ‖Af̃ − b‖1

)
+ ‖hR‖1 + ε

)
≥ ‖(hN)T‖1. (6.30)

Then by adding (6.29) and (6.30) together, we obtain

1 + β

1− β

(
2‖fT c‖1 + λ

(
‖Af − b‖1 − ‖Af̃ − b‖1

)
+ ‖hR‖1 + ε

)
≥ ‖hN‖1.

Adding ‖hR‖1 on both sides leads to

1 + β

1− β

(
2‖fT c‖1 + λ

(
‖Af − b‖1 − ‖Af̃ − b‖1

)
+ ε
)

+
2

1− β
‖hR‖1 ≥ ‖h‖1.

Since

‖hR‖1 = ‖RAh‖1 ≤ ‖R‖1‖A(f − f̃)‖1 ≤ ‖R‖1

(
‖Af − b‖1 + ‖Af̃ − b‖1

)
,

and ‖Af − b‖1 = ‖n‖1, we get

‖h‖1 ≤ c1‖fT c‖1 + c′2‖n‖1 + c3ε+
1

1− β
(2‖R‖1 − λ(1 + β)) ‖Af̃ − b‖1,

where c1 = 2+2β
1−β , c′2 = 1

1−β (2‖R‖1 + λ(1 + β)) and c3 = 1+β
1−β . Note that the above

process holds for all R satisfying ARA = A and γ = infARA=A ‖R‖1. Therefore,

‖h‖1 ≤ c1‖fT c‖1 + c2‖n‖1 + c3ε+
1

1− β
(2γ − λ(1 + β)) ‖Af̃ − b‖1,

where c2 = 1
1−β (2γ + λ(1 + β)). If λ = 2γ

1+β
,

‖h‖1 ≤ c1‖fT c‖1 + c2‖n‖1 + c3ε, (6.31)

with c2 = 4γ
1+β

.
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It can be seen that the `1-`1 model (6.12) only requires the null space property

to guarantee a stable and robust recovery of sparse signals, while the `2
2-`1 model

(6.11) requires a seemingly stronger condition. At this point, the natural question

is whether there indeed exists a gap between (6.12) and (6.11) on the requirement

for the stable and robust sparse recovery. The following example gives a positive

answer.

Proposition 6.4. For arbitrary 0 < β < 1, suppose that M,N and s satisfy N/2 ≥

M ≥ 2C(β/3)s log4(N). Then, there exists a matrix A ∈ RM×N that satisfies the

null-space property of order s with constant β, but the `2
2-`1 model (6.11) with A

cannot guarantee neither robust nor stable recovery.

Before proving the result about the gap between the null-space property and the

robust and stable sparse recovery of `2
2-`1 model (6.11), we introduce the following

lemma from [9].

Lemma 6.5. ([9]) For any given β < 1, there exists C(β) such that when M,N, s

satisfy N/2 ≥ M ≥ C(β)s log4(N), then there exists a matrix R ∈ RM×N that has

the null-space property of order s with constant β and (1, . . . , 1)> ∈ kerR.

To prove Proposition 6.4, we first construct a matrix A satisfying the null-space

property. With the constructed A, we then give particular examples of original

signal f and observation b. And in these examples, the robust or stable recovery

as defined in Definition 6.1 cannot be obtained. The idea of such construction is

inspired by [9], which provides an example about the gap between the null-space

property (NSP) and restricted isometry property-null space property (RIP-NSP).

Proof of Proposition 6.4. Since N/2 ≥M ≥ 2C(β/3)s log4(N) implies (N − s)/2 ≥

(M − s) ≥ C(β/3)s log4(N − s), one can find B ∈ R(m−s)×(N−s) satisfying the

null-space property of order s with constant β/3 and e = (1, ..., 1︸ ︷︷ ︸
N−s

)> ∈ kerB. Define

Ne = {x ∈ kerB : x ⊥ e},
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N ′e = {(0, ..., 0︸ ︷︷ ︸
s

,x) : x ∈ Ne},

and

N̄ = N ′e ⊕ span(d),

where d = (N−s
2
γ, 0, ..., 0︸ ︷︷ ︸

s−1

,−1, ...,−1︸ ︷︷ ︸
N−s

). Then set φ = ( 2
γ
, 0, ..., 0︸ ︷︷ ︸

s−1

, 1, ..., 1︸ ︷︷ ︸
N−s

), α = ‖φ‖2

and φ1 = 1
α
φ. Easily, one may verify φ1 ⊥ N̄ . Therefore, there exists an orthonor-

mal basis of N̄⊥ including φ1. Let A be the matrix whose rows are this orthogonal

basis and φ1 is its first row.

Claim: A satisfies the null space property of order s with constant β.

To prove this assertion, we follow the similar steps as that in [9]. Without loss of

generality, consider h ∈ kerA, that can be represented by h = g+d, where g ∈ N̄ ′e.

Take T = {1, 2, ..., s}, and arbitrary I ⊂ {1, ..., N}, with |I| ≤ s. Then

‖hT‖1 = ‖dT‖1 =
N − s

2
β,

and

‖hT c‖1 ≥ −
∑
j∈T c

hT c(j) = N − s,

since gT c ⊥ e. Therefore, ‖hT‖1 ≤ β
2
‖hT c‖1. Then,

‖hI‖1 = ‖hI∩T‖1 + ‖hI∩T c‖1

≤ ‖hT‖1 + ‖hI∩T c‖1

≤ β

2
‖hT c‖1 + ‖hI∩T c‖1

=
β

2
‖hIc∩T c‖1 + (1 +

β

2
)‖hI∩T c‖1.

Note that hT c ∈ kerB. Therefore,

‖hI‖1 ≤
β

2
‖hIc∩T c‖1 + (1 +

β

2
)‖hI∩T c‖1

≤ (
β

2
+
β + 2

2

β

3
)‖hIc∩T c‖1

< β‖hIc∩T c‖1

≤ β‖hIc‖1.
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Thus, we have shown that A has the null-space property with constant β.

Next, we give two particular examples which violate the robust and stable re-

covery. Firstly, for robustness, consider the s sparse signal f = d + φ = (N−s
2
β +

2
β
, 0, ..., 0), observation b = 0 and noise n = −Af . Then f̃ = 0 is the exact so-

lution to the `2
2-`1 model (6.11), and ‖f̃ − f‖2 = N−s

2
β + 2

β
. Since d ∈ kerA,

Af = Aφ = (‖φ‖2, 0, ..., 0)>. Then ‖n‖2 = ‖Af‖2 =
√

4
β2 +N − s. Therefore,

‖f̃ − f‖2/‖n‖2 ≈ c
√
N − s, where c is a constant. This contradicts with the re-

quirement of robust recovery that ‖f̃ − f‖2 ≤ c1‖n‖2, for some constant c1.

Secondly, for stability, consider the true signal f = d ∈ kerA, as well as the

observation and noise b = n = 0. Then f̃ = 0 is the exact solution to the `2
2-`1

model (6.11). However, in this example, ‖f̃ − f‖2 = ‖d‖2 =
√

(N−s)2
4

β2 +N − s,

and σs(f) ≤ ‖fT c‖1 = N − s, where T = {1, ..., s}. This violates the requirement of

stable recovery that ‖f̃ −f‖2 ≤ c√
s
σs(f), for some constant c independent of s.

6.3 Experiments

In this section, we evaluate the effciency of the `2
2-`1 and `1-`1 models when solving

the super-resolution problem. The details of the problem formulation are as follows.

To recover an N dimensional signal f , the information b we observe is M = 2fc + 1

lowest Fourier transform coefficients of the truth f , added with measurement noise

n, i.e.

b = Af + n. (6.32)

That means the measurement matrix A is part of the discrete Fourier matrix F ∈

CN×N by selecting its M rows corresponding to the low frequencies. Usually the

information available is far less than the signal dimension, i.e. M << N . By the

assumption that the true signal f ∈ CN has certain sparsity, i.e. it has at most s

nonzero elements with s << N , one may implement the `2
2-`1 model (6.11) or the

`1-`1 model (6.12) to solve the linear inverse problem (6.32).
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6.3.1 Numerical algorithms

To solve the proposed models, we apply the alternating direction method (ADM)

derived from their dual problems, or referred to as dual-based ADM ([114]).

Firstly, we consider the `2
2-`1 model. The dual problem of (6.11) is

max
y∈CM

Re(b∗y)− 1

4λ
‖y‖2

2 subject to A∗y ∈ B∞1 , (6.33)

where B∞1 = {z ∈ CN : ‖z‖∞ ≤ 1}. Since A is a partial Fourier matrix, the rows of

A ∈ CM×N are orthogonal, i.e. AA∗ = I. Then it can be solved via the following

schemes: 
yk+1 = αAzk − β(Axk − b)

zk+1 = PB∞1 (A∗yk+1 + xk/µ)

xk+1 = xk + γµ(A∗yk+1 − zk+1),

(6.34)

where α = µ

µ+ 1
2λ

, β = 1
µ+ 1

λ

. Herein µ > 0 is an intermediate penalty parameter,

γ ∈ (0, (
√

5 + 1)/2) is the steplength attached to the update of λ, and PS is the

projection operator onto a set S. The solution f̃ is given by xk at some step k

when the stopping criterion is satisfied. For more details of the algorithm and the

convergence analysis, one may check [114].

For the `1-`1 model (6.12), it is equivalent to the constraint `1 regularized mini-

mization with the introduction of auxiliary variable r:

min
x∈CN
r∈CM

1

λ
‖x‖1 + ‖r‖1 subject to Ax+ r = b.

Therefore it can also be formulated as a basis pursuit problem by raising up the

dimensions of x and A:

min
x̄∈CM+N

‖x̄‖1 subject to Āx̄ = b̄, (6.35)

where Ā =
[A 1

λ
I]√

1+ 1
λ2

, b̄ = b

λ
√

1+ 1
λ2

and x̄ =

x
λ

r

. Note that ĀĀ∗ = I, if AA∗ = I.

In fact, the basis pursuit problem can also be solved via the dual-based ADM. The
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dual problem of basis pursuit model (6.35) is given by

max
y∈CM

Re(b̄∗y) subject to Ā∗y ∈ B∞2 ,

where B∞2 = {z ∈ CM+N : ‖z‖∞ ≤ 1}. This problem is a special case of (6.33) with

1
λ

= 0. Therefore, it can be solved by the same scheme as (6.34) by setting 1
λ

= 0

and replacing A, b and x by Ā, b̄ and x̄. For more details, interested readers are

referred to [114].

6.3.2 Experimental evaluation

In the experiment, we take the dimension of original signal x as N = 1000 and

the sparsity s = 40. We are targeted at recovering the following two types of

sparse signals: 1) the support is chosen at random and the values of nonzeros are

randomly generated from the standard normal distribution; 2) the support satisfies

the sufficient separation condition, i.e. for some constant c > 0,

min
j,j′∈supp(x),j 6=j′

|j − j′| ≥ c,

and the values on the support are randomly generated from the standard normal

distribution. In particular, the minimum separation constant c = 19 in our exper-

iment. As in the linear model (6.32), the observation b is the M = 2fc + 1 lowest

Fourier coefficients of x with fc = 150, added by Gaussian white noise n. The

standard deviation of Gaussian noise is set as σ = 0.002, 0.005 or 0.02, respectively.

The signal to noise ratio (SNR) of b is measured by

SNR = 20 log10(‖b− E(b)‖2/‖n‖2),

where E(b) is the mean of b. For each type of signal support and each noise level

σ, we randomly generate 10 tested signals x and corresponding observations b. The

mean of SNRs of the 10 simulated data b is shown in Table 6.1. To solve x from b

using the `2
2-`1 and `1-`1 models, we apply the YALL1 solver [114] that implements
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Table 6.1: Results of experiments

σ supp SNR
`2

2-`1 `1-`1

RelErr2 RelErr1 RelErr2 RelErr1

0.002
suff seprt 39.3819 0.0066 0.0067 0.0060 0.0071

rand 39.3326 0.1978 0.1284 0.1940 0.1283

0.005
suff seprt 31.4272 0.0187 0.0236 0.0236 0.0352

rand 31.3776 0.2112 0.1622 0.2186 0.1822

0.02
suff seprt 19.4401 0.1064 0.2104 0.1195 0.2265

rand 19.3895 0.2786 0.3561 0.2849 0.3688

the dual-based ADM described in the last section. The suitable values of parameter

λ in the two models for different noise levels are shown in Table 6.1.

The performance of each model can be evaluated by the relative error (RelErr)

of the solution f̃ to the truth f in `2 norm, i.e.

RelErr2 =
‖f − f̃‖2

‖f‖2

,

and the relative error in `1 norm, i.e.

RelErr1 =
‖f − f̃‖1

‖f‖1

.

To reveal the average performance of the two models on 10 randomly generated test

signals, the mean of the resulted relative errors are illustrated in Table 6.1.

From the results, we find that when the original signal satisfies certain sufficient

separation condition, the results will be much better than the case that the support

is randomly chosen. And although the observation is simulated by Gaussian noise,

the `1-`1 model is competitive with the `2
2-`1 model.

6.4 Conclusions

In this chapter, we investigate the conditions to ensure a robust and stable recov-

ery of sparse signals via two `1-norm regularizer based unconstrained models with
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square of `2-norm and `1-norm based loss functions. The results stated in Theo-

rem 6.1, Theorem 6.3 and Proposition 6.4 not only tell us sufficient conditions for

a robust and stable recovery via the `2
2-`1 and `1-`1 models, but also show that the

`1-norm based loss function requires a weaker condition for robust and stable sparse

recovery than the square of `2-norm based loss function. In addition, how to set the

regularization parameter for achieving robust and stable recovery is also provided

in our analysis. The experimental results reveal that the efficiency of `1-`1 model

(6.12) is competitive with that of `2
2-`1 model (6.11), even if the additive noise is of

Gaussian type.
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