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Zusammenfassung

In nahezu allen technischen Anwendungen der heutigen Zeit müssen Daten analysiert
und weiterverarbeitet werden. Solche Daten werden üblicherweise als Funktionen aufge-
fasst, deren Analyse ein Zerlegen in einfache Bausteine erfordert. In der Wavelet-Analyse
werden die Bausteine durch Translatieren (Verschieben) und Dilatieren (Stauchen
bzw. Strecken) endlich vieler Funktionen, die als Wavelets bezeichnet werden, erzeugt.
Man kann Wavelets mit kompakten Trägern verwenden, so dass durch verschieden star-
kes Dilatieren feine oder grobe Auflösungen erreicht werden. Wir sprechen deshalb auch
von einer Multiskalenauflösung, welche insbesondere zur Untersuchung lokaler Details
einer Funktion notwendig ist. Dies stellt den wesentlichen Vorteil gegenüber der Fourier-
Analyse dar, die Funktionen in ihre Frequenzanteile zerlegt. Deren Bausteine sind schlecht
lokalisiert und auch die sogenannte gefensterte Fourier-Analyse lässt nur eine konstante
Auflösung zu.

Die schnellen Algorithmen der Wavelet-Transformation werden bereits erfolgreich in
der Signal- und Bildverarbeitung eingesetzt. Weitere Anwendungsgebiete sind Operator-
Gleichungen, inverse Probleme und auch viele Arten von Variationsproblemen. Deren
Lösung erfordert die Betrachtung spezieller Funktionenräume, im Wesentlichen soge-
nannte Besov-Räume. Vorteilhaft ist, dass diese durch orthonormale Wavelets charak-
terisiert werden, d.h. die Waveletsysteme bilden Basen in Besov-Räumen und die Norm
des Besov-Raums kann durch eine äquivalente Folgennorm der Waveletkoeffizienten aus-
gedrückt werden. Damit stellen Wavelets eine effektive Diskretisierung des ursprünglichen
Problems dar, was eine Grundvoraussetzung erfolgreicher Lösungsverfahren darstellt.

Das Zerlegen in einfache Bausteine erfordert auch wieder eine Rekonstruktion in Form
einer Reihentwicklung. In der Praxis kann die Reihe nicht exakt berechnet werden. Des-
halb versucht man, die Funktion durch eine möglichst gute Auswahl von N Bausteinen
zu approximieren. Es ist wichtig, die zugehörigen Approximationsraten zu bestimmen.
Für orthogonale Wavelet-Basen lassen sich diese Raten durch die Besov-Regularität der
Wavelets und der jeweils zu approximierenden Funktion bestimmen.

Die oben genannten Anwendungen von Wavelets profitieren im Wesentlichen von in-
neren Waveleteigenschaften, z.B. kleinem Träger zur Lokalisation sowie Glattheit und
verschwindende Momente für eine hohe Approximationsordnung. In vielen Anwendungen
sind noch weitere Eigenschaften der Wavelets von Vorteil, vor allem die Symmetrie in der
Signal- und Bildverabeitung.

Im Hinblick auf Konstruktionen betrachten wir zunächst univariate Wavelet-Basen. Or-
thogonale Wavelets wurden von Ingrid Daubechies erfolgreich und umfassend behandelt.
Allerdings verhindert Orthogonalität wichtige zusätzliche Eigenschaften wie beispiels-
weise die Symmetrie. Um diesen Nachteil zu beseitigen, kann man zwei verschiedene
Wavelet-Basen konstruieren, die biorthogonal zueinander stehen. Diese stellen weiterhin
eine Reihenentwicklung ganz ähnlich zu orthogonalen Wavelets bereit, und sie erlauben
symmetrische Wavelets.

In vielen Anwendungen benötigt man multivariate Wavelets. Während bei univariaten
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Wavelets die Skalierung mit Zweierpotenzen kanonisch ist, führt diese dyadische Dilatati-
on jedoch in höheren Dimensionen zu einem exponentiellen Anstieg der Anzahl benötigter
Wavelets. Durch die dann steigende Komplexität werden die Wavelet-Algorithmen un-
brauchbar. Um dies zu vermeiden, ersetzen wir den Faktor 2 durch eine sogenannte Dila-
tationsmatrix, d.h. durch eine ganzzahlige diagonalisierbare Matrix, deren sämtliche Ei-
genwerte einen Betrag größer eins haben. Man dilatiert dann anstelle der Zweierpotenzen
mit den Potenzen der Matrix. Dies ermöglicht beispielsweise Wavelet-Basen in beliebigen
Dimensionen, die nur aus einem einzigen Wavelet gebildet werden. Für isotrope Skalie-
rungen, also diagonaliserbare Dilatationsmatrizen, deren Eigenwerte den gleichen Betrag
haben, charakterisieren auch biorthogonale Wavelets noch Besov-Räume und die N -Term
Approximationraten werden durch diese Räume bestimmt. Wir konzentrieren uns in der
vorliegenden Arbeit auf dieser Form der Skalierung.

Konstruktionen von multivariaten biorthogonalen Wavelet-Basen leiden unter dem
Nachteil, dass gute primale Wavelets in der Regel mit schlechteren dualen Wavelets ge-
paart werden müssen. Diesem Problem werden wir mit Hilfe des schwächeren Konzepts
der Frames begegnen. Wavelet-Bi-Frames verallgemeinern Paare biorthogonaler Wavelet-
Basen und bieten weiterhin eine stabile Zerlegung. Im Gegensatz zu Basen sind diese
Systeme jedoch in der Regel redundant. Dieses Konzept bietet einen größeren Freiraum
für Konstruktionsverfahren, den wir nutzen werden.

Mehrdimensionale Wavelet-Frame-Konstruktionen der bisher veröffentlichten Fachlite-
ratur leiden entweder unter wenigen verschwindenen Momenten, fehlender Regularität
oder einer zu großen Anzahl an Wavelets. In der vorliegenden Arbeit werden wir multiva-
riate Wavelet-Bi-Frames konstruieren, die sich den Beschränkungen von Wavelet-Basen
entziehen und bestehenden Framekonstruktionen überlegen sind. Allerdings müssen wir
sicherstellen, dass wir die Charakterisierung von Funktionenräumen nicht verlieren und
die N -Term-Approximationsraten noch bestimmt werden können.

Die obige Diskussion erfordert nunmehr die Lösung der folgenden vier Probleme:

(P1) Zeige, dass der Frameansatz genügend Flexibilität bietet, um die Beschränkungen
von multivariaten Wavelet-Basen zu überwinden.

Wir versuchen optimale Resultate zu erzielen:

(P2) Stelle geeignete Optimalitätskriterien auf und konstruiere beliebig glatte Wavelet-
Bi-Frames in beliebigen Dimensionen, die alle Optimalitätskriterien erfüllen.

Bisher konnte die Charakterisierung von Besov-Räumen und die Beschreibung der N -
Term Approximation bezüglich Wavelet-Bi-Frames nur für dyadische Skalierungen gezeigt
werden. Um die Anzahl der Wavelets zu minimieren, müssen wir jedoch allgemeinere
Dilatationsmatrizen betrachten. Dazu benötigen wir eine Lösung des dritten Problems:

(P3) Charakterisiere Besov-Räume mittels Wavelet-Bi-Frames und beschreibe deren N -
Term-Approximation auch für nichtdyadische Skalierungen.

Während Wavelet-Basen bereits erfolgreich in der Signal- und Bildverarbeitung Anwen-
dung finden, müssen Wavelet-Frames noch zeigen, dass sie eine wertvolle Alternative
darstellen können. Diese Forderung führt uns zum letzten Problem:

(P4) Weise die Nützlichkeit von Wavelet-Bi-Frames zu Anwendungszwecken nach.
Demonstriere, dass Wavelet-Bi-Frames beim Entrauschen von Bildern gute Resul-
tate liefern können.
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Alle vier Probleme werden in der vorliegenden Arbeit gelöst. Die Resultate werden in
der folgenden Inhaltsangabe vorgestellt.

Während wir im ersten Kapitel die Theorie der biorthogonalen Wavelet-Basen darstel-
len, führen wir in Kapitel 2 Wavelet-Bi-Frames ein und entwickeln die in (P2) erwähnten
Optimalitätsbedingungen. Im dritten Kapitel konstruieren wir verschiedene Wavelet-Bi-
Frames, die bis auf die Anzahl der Wavelets fast alle Optimalitätskriterien erfüllen.
Schließlich erhalten wir unter anderem eine Familie beliebig glatter Wavelet-Bi-Frames in
beliebigen Dimensionen mit nur drei Wavelets. Unsere konstruierten Wavelet-Bi-Frames
sind im Vergleich zu biorthogonalen Wavelet-Basen glatter bei gleichzeitig höherer Ap-
proximationsordnung und kleinerem Träger. Damit wird (P1) gelöst.

In Kapitel 4 leiten wir eine Konstruktionsmethode her, die zu einer geringeren Anzahl
an Wavelets führt. Neben weiteren Beispielen erhalten wir eine Familie beliebig glatter
Wavelet-Bi-Frames in beliebigen Dimensionen mit nur zwei Wavelets, die alle Optima-
litätskriterien erfüllen. Somit wird auch (P2) vollständig gelöst.

Für die Charakterisierung von Besov-Räumen mit Wavelet-Bi-Frames wiederholen wir
in Kapitel 5 zunächst die bereits bekannten Resultate bezüglich biorthogonaler Wavelets
mit isotroper Skalierung und dyadischen Wavelet Bi-Frames. Letztlich erweitern wir die
Charakterisierung durch dyadische Wavelet-Bi-Frames auf isotrope Dilatationsmatrizen.
Dies löst den ersten Teil von (P3).

Wir betrachten die N -Term-Approximation mit Wavelet-Bi-Frames in Kapitel 6. Um
die Approximationsraten zu bestimmen, müssen wir sogenannte Jackson- und Bernstein-
Ungleichungen herleiten. Dies gelingt zumindest für eine große Unterklasse von isotropen
Skalierungen, was schließlich die Approximationsraten durch Besov-Räume bestimmt.
Diese Beschränkung auf eine kleinere Klasse von Skalierungen stellt für uns de facto keine
Einschränkung dar, weil alle Skalierungen der in den Kapiteln 3 und 4 konstruierten Wa-
velets dieser Unterklasse angehören. Abschließend zeigen wir, dass für die konstruierten
Wavelets auch die weiteren Voraussetzungen der Jackson- und Bernstein-Ungleichungen
erfüllt sind. Insofern lösen wir auch (P3) vollständig.

In Kapitel 7 entrauschen wir Bilder durch einen Variationsansatz in dem einer un-
serer in Kapitel 3 konstruierten Wavelet-Bi-Frames zur Diskretierung angewendet wird.
Wir erhalten schließlich vielversprechende Resultate, die das Potential von Bi-Frames als
sinnvolle Alternative zu Wavelet-Basen unterstreicht. Damit lösen wir (P4).
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Introduction

Almost any kind of application requires at least to a certain extent the analysis of data.
Depending on the specific application, the collection of data is usually called a mea-
surement, a signal, or an image. In a mathematical framework, all of these objects are
represented as functions. In order to analyze them, they are decomposed into simple
building blocks. Such methods are not only used in mathematics, but also in physics,
eletrical engeneering, seismic geology, wireless communication, target detection, and med-
ical imaging.

In the nineteenth century, Fourier analysis was developed, where functions are de-
composed into frequency components. However, these building blocks are very poorly
localized, which causes serious problems in many applications. The windowed Fourier
transform seemed to overcome this drawback by including a so-called window function.
Yet, one often has to resolve a singularity of a given function. In other words, one has
to be able to refine the resolution near a singularity. Unfortunately, once chosen, the
window function is fixed, and one may speak of a constant resolution.

The development of wavelet theory is driven by the request for a more flexible tool and
by the idea of variable resolution. In wavelet analysis, the building blocks are shifts and
dilates of a finite number of functions ψ(1), . . . , ψ(n), namely wavelets, i.e., one considers
collections of the form

{
2

jd
2 ψ(µ)(2jx− k) : j ∈ Z, k ∈ Z

d, µ = 1, . . . , n
}
. (0.1)

Wavelets with small supports provide a good localization as well as a flexible resolution
according to different scaling indices j ∈ Z, and many textbooks describe them as a
mathematical microscope with which one can zoom in a function at a specific spot.
Moreover, the fast wavelet transform provides the separation of signals into low- and
high-frequency components, and it is nowadays successfully applied to signal and image
processing to address compression, noise removal, and segmentation, see for instance the
textbooks [Dau92, Mal99, SN96].

Many fields of applied mathematics, such as the numerical treatment of operator equa-
tions, inverse problems, and different kinds of variational methods, require the consid-
eration of smoothness spaces. In order to derive solutions from practical algorithms, a
discretization of the original problem is necessary. Wavelet analysis is a valuable tool
beyond its fast transform since so-called Besov spaces, which cover most of the arising
smoothness classes, are characterized by orthonormal wavelets, i.e., wavelets constitute
bases for Besov spaces such that the original smoothness norm is equivalent to a weighted
sequence norm of wavelet coefficients, cf. [DJP92]. Hence, decomposing into wavelet
building blocks provides a discretization method, in which the continuous problem is
replaced by a discret one in terms of wavelet coefficients.

Regarding the reconstruction, let us recall that bases provide series expansions. How-
ever, since algorithmic computations are limited to finite data, the series has to be re-
placed by a finite sum, let us say of length N . Then best N -term approximation is
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Introduction

centered around the best choice of these terms, and it is essential to determine the ap-
proximation rate. Finally, in order to realize this rate in practical algorithms, one requires
a simple rule for the choice of N terms. For orthonormal wavelet bases, it turns out that
the approximation rate of a given function is determined by its Besov regularity. Simply
taking the N largest coefficients of its series expansion provides a realization of the best
N -term approximation rate, cf. [DJP92, Tem98]. Advantageously, the rule is simple and
thresholding is computationally effective.

Before constructing wavelets, one has to identify which of their inner properties pro-
mote the above mentioned applications. Obviously, a very small support is essential for
the idea of localization. Symmetric wavelets are claimed to provide better results in image
and signal processing, cf. [Mal99], and many vanishing moments yield high compression
rates. Moreover, smoothness and vanishing moments are ingredients for a high approxi-
mation order as well as for the characterization of function spaces. Finally, we identified
important inner properties of wavelets such as

• small support,

• symmetry,

• smoothness,

• a large number of vanishing moments.

Unfortunately, smoothness and support sizes are competing properties, and constructions
have to provide a certain balance between the two. The early ad-hoc wavelet constructions
by Mallat, Meyer, and Stromberg exemplify unbalanced wavelet properties, cf. [Haa10,
Mey86, Str81]. Mallat and Meyer then proposed a systematical method by introducing
the concept of a so-called multiresolution analysis. It provides a powerful framework since
the wavelet construction is essentially reduced to the construction of a refinable function
ϕ, i.e, there is a coefficient sequence (ak)k∈Zd , namely the mask, such that

ϕ(x) =
∑

k∈Zd

akϕ(2x− k), (0.2)

see [Mal89, Mey90] for details. Orthonormal wavelet bases, which seem most desirable
according to Parseval’s Equality, require that ϕ has orthonormal integer shifts. Nowadays,
the multiresolution analysis framework is a standard tool for the construction of wavelets,
and it also provides the fast wavelet transform.

Regarding the transform, there arises a further desirable property concerning the un-
derlying refinable function of the wavelet basis. Given a function f to be analyzed, the
exact determination of the input sequence for the transform is generally complicated and
computationally expensive, cf. [Mal99, SN96]. Nevertheless, if the underlying refinable
function ϕ is

• fundamental,

which means it is continuous and its shifts interpolate the integer grid, i.e.,

ϕ(k) = δ0,k, for all k ∈ Z
d,
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then the input is determined as a sequence of sample values of f , see Subsection 1.2.2
for details. Thus, fundamental refinable functions simplify the exact application of the
wavelet transform.

Returning to the construction of wavelets, we shall begin with the univariate setting. By
applying the multiresolution analysis framework, Daubechies could construct her famous
family of arbitrarily smooth compactly supported orthogonal wavelet bases, cf. [Dau92].
However, for many applications, we need multivariate wavelets and the aforementioned
approach cannot be adapted to this multivariate setting since it uses a factorization
technique of trigonometric polynomials, which does not hold in higher dimensions. Hence,
a different method is required, and one very often uses tensor products of univariate
wavelets. Unfortunately, such bases prefer the axis directions, and this is inconvenient
for the visual perception of processed images, cf. [Mal99]. Moreover, tensor wavelet bases
consist of 2d−1 wavelets, which causes problems in higher dimensions since the complexity
of the transform increases exponentially. In order to reduce the number of wavelets, we
consider a different notion of scaling throughout the present thesis, i.e., we replace the
dyadic dilation factor 2 in (0.1) and (0.2) by a so-called dilation matrix M , i.e., an integer
matrix whose eigenvalues are larger than one in modulus. This concept allows for a finer
scaling, and the number of required wavelets equals m−1, where m = |det(M)|, which is
independent of the dimension, cf. [CD93]. Then a dilation matrix with m = 2 allows for
bases with only one wavelet, and such a bivariate choice is the popular quincunx matrix

Mq =

(
1 −1
1 1

)
. (0.3)

However, there is still a lack of promising construction methods for smooth multivari-
ate orthonormal wavelets with small supports. For instance, compactly supported and
one times differentiable orthonormal wavelets for the quincunx dilation matrix in (0.3)
are completely unknown so far. To make matters even worse, a compactly supported
orthonormal wavelet basis with respect to a dilation matrix with m = 2 neither allows
for symmetries nor for an underlying fundamental refinable function, cf. [Dau92, Han04]
as well as Lemma 1.3.1 in the present thesis. One circumvents such problems with the
concept of pairs of biorthogonal wavelet bases, i.e., one has primal and dual wavelets ψ(µ)

and ψ̃(µ), µ = 1, . . . ,m − 1, respectively, whose dilates and shifts constitute two bases,
which are biorthogonal to each other. This concept provides a series expansion similar
to orthonormal bases, i.e.,

f(x) =
m−1∑

µ=1

∑

j∈Z

∑

k∈Zd

mj
〈
f, ψ̃(µ)(M j · −k)

〉
ψ(µ)(M jx− k), (0.4)

and their construction is reducible to a pair of biorthogonal refinable functions ϕ and ϕ̃,
i.e.,

〈ϕ(· + k), ϕ̃(·+ l)〉 = δk,l.

At least for isotropic scalings, i.e., dilation matrices that are diagonalizable and whose
eigenvalues have the same modulus, biorthogonal wavelets still provide the characteri-
zation of Besov spaces as well as N -term approximation similar to dyadic orthonormal
bases, cf. [Lin05]. It turns out that biorthogonal wavelets allow for symmetries, and the
primal refinable function can be fundamental, see [CHR00, DGM99, DM97, Der99, HJ98,
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HJ02, HR02, JRS99]. However, these constructions still bear some limitations. One can
obtain strong properties of the primal wavelets, such as smoothness, small support, and
a fundamental underlying refinable function. Unfortunately, these strong properties are
generally accompanied with weak dual properties, i.e., dual wavelets have either poor
smoothness or large support.

In order to overcome the limitations, one may proceed in two different directions. In
[Koc07, Koc], one circumvents the aforementioned restrictions at least to a certain extent
in the bivariate setting by switching to refinable vectors. However, this vector approach
provides more complex structures in the fast wavelet transform, and the transform re-
quires the conversion of the original signal into a vector structure, which seems a bit
artificial and often causes computational problems.

In the present thesis, we avoid the vector setting, and, thus, follow a different approach.
We attempt to circumvent the restrictions of orthogonal and biorthogonal wavelet bases
with the weaker concept of frames. They still allow for a stable decomposition, and
so-called wavelet bi-frames provide a series expansion very similar to those of pairs of
biorthogonal wavelet bases in (0.4). Contrary to biorthogonal bases, primal and dual
wavelets are no longer supposed to satisfy any geometrical conditions, and the frame
setting allows for redundancy, i.e., there might possibly be coefficients different from inner
products such that a series expansion converges towards the same function. The coupling
of primal and dual wavelets in a bi-frame is much weaker than in the bases setting, and
this yields more flexibility in their construction. For instance, smooth, symmetric wavelet
frames with small support and a high number of vanishing moments have successfully
been constructed in [CHS02, DHRS03, SA04], see [RS97b, RS97c] for some background
information. However, these constructions are restricted to the univariate setting, and
they apply certain factorization techniques, which do not hold in higher dimensions.

So far, all multivariate wavelet frame constructions in the literature suffer from the
absence of desirable wavelet properties. We are unable to present a comprehensive list
of multivariate constructions, but we shall point out a few. For instance, the approaches
in [GR98, LS, RS98] suffer from a lack of vanishing moments. In [LS], one also derives
wavelets with a high number of vanishing moments, but it is paid for by the loss of compact
support. Smooth dyadic wavelet frames with a high number of vanishing moments are
obtained from bivariate box splines in [CH01], but the method leads to a large number
of wavelets. The general construction given in [Han03a] considers neither symmetry nor
any optimality constraints.

The limitations of orthonormal, biorthogonal, and existing frame constructions are
the motivation of the present thesis. By avoiding the vector approach, we attempt to
construct multivariate wavelet frames, which circumvent the restrictions of the bases
setting and which overcome the limitations of existing frame constructions. Finally, we
have to find multivariate wavelet bi-frames that possess superior properties in terms of
support sizes, smoothness, and vanishing moments, while providing a fast transform, the
characterization of function spaces, and a description of N -term approximation rates.

Four problems result from the above discussion. The first addresses the potential of
bi-frames in comparison to biorthogonal wavelet bases:

(P1) Verify that the frame approach provides sufficient flexibility to overcome the re-
strictions of multivariate wavelet bases. Construct multivariate wavelet bi-frames
that inherit much better properties than biorthogonal wavelet bases.
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In the second problem, we have to consider wavelet bi-frame constructions within the
bi-frame setting:

(P2) Establish certain reasonable optimality criteria, and find optimal wavelet bi-frames.
Moreover, construct families of arbitrarily smooth wavelet bi-frames in arbitrary
dimensions that satisfy all optimality conditions.

As mentioned above, orthonormal and biorthogonal wavelet bases with general isotropic
dilation matrices characterize Besov spaces, and their N -term approximation is well un-
derstood. This powerful framework must not be given up in the weaker frame setting.
Borup, Gribonval, and Nielsen could derive an extension to wavelet bi-frames with dyadic
scaling, cf. [BGN04]. Then norm equivalences hold with respect to the bi-frame coeffi-
cients, the best N -term approximation rate is determined by the Besov regularity, and
the rate can be realized by thresholding the wavelet bi-frame expansion. Note that it may
fail if one considers arbitrary expansions, in which the coefficients are not derived from
inner products with the dual wavelets. Fortunately, the last mentioned particularity of
the weaker frame setting accounts for few limitations in applications. Since the bi-frame
results only address dyadic dilation, we have to consider the following third problem:

(P3) Characterize Besov spaces by wavelet bi-frames with general isotropic scalings, and
extend the dyadic results about N -term approximation with wavelet bi-frames.

The final problem addresses the usefullness of wavelet bi-frames for applicational pur-
poses. Since wavelet bases have already been successfully applied to different kinds of
noise removal, we have to verify that wavelet bi-frames may constitute a valuable alterna-
tive. In [CDLL98], Chambolle, DeVore, Lee, and Lucier use orthogonal and biorthogonal
wavelet bases for variational image denoising, i.e., they consider a variational problem
with respect to Besov spaces depending on a so-called regularization parameter, which de-
termines the amount of noise removal. By applying the characterization of Besov spaces,
they derive an equivalent discrete variational problem in terms of wavelet coefficients.
Then an approximate solution of the original problem can be derived by thresholding the
wavelet coefficients, yet one still needs a method for choosing of an adequate regulariza-
tion parameter. The H-curve criterion in [MP03] is a possible candidate. However, it
has only been applied to discretizations by orthonormal wavelet bases so far. Finally, the
application of wavelet bi-frames requires the solution of the following fourth problem:

(P4) In order to verify the usefulness of wavelet bi-frames for image denoising via a vari-
ational approach, establish the discretization of variational problems with respect
to wavelet bi-frames, and demonstrate that the H-curve criterion provides decent
results for bi-frames as well.

In the present thesis, we solve (P1), (P2), (P3), and (P4), as we shall explain in the
following outline, where the problems are revisited.

Layout
The present thesis is organized as follows: In Chapter 1, we present an overview of
multivariate biorthogonal wavelet bases with general dilation matrices. In order to ad-
dress their construction, we recall the multiresolution analysis framework. Then, we
consider desirable properties of wavelet systems in detail, and we place them on a wish
list. Referring to the list, we discuss restrictions of wavelet bases concerning (P1). In

xvii



Introduction

order to circumvent these limitations, we address the weaker concept of wavelet frames in
Chapter 2. We introduce wavelet bi-frames, and we recall a general framework for their
construction, namely the mixed extension principle as proposed in [CHS02, DHRS03],
where wavelets are still derived from an underlying refinable function. Finally, we dis-
cuss desirable wavelet bi-frame properties, and we establish optimality criteria concerning
(P2). These criteria include the following: first, given a certain mask support, we derive
statements about the maximal smoothness and the maximal approximation order offered
by the underlying refinable function. Next, we address the approximation order of the
wavelet bi-frame, and it turns out that the order is optimal if the wavelets have a suf-
ficient number of vanishing moments. It should be mentioned that we do not consider
N -term approximation in this chapter, but approximation with respect to a truncation of
the bi-frame expansion. Finally, we address the maximal symmetry of wavelet bi-frames
and the minimal number of wavelets provided that the underlying refinable function is
fundamental.

The conceptual restrictions of biorthogonal wavelet bases are circumvented in Chapter
3 by the construction of frames. We derive smooth multivariate wavelet bi-frames for
general scalings with small support satisfying a variety of extra conditions, such as sym-
metry and a large number of vanishing moments. The number of wavelets depends only
on the dilation matrix, and in order to minimize that number, we choose a matrix with a
determinant equal to ±2. Then we obtain bi-frames with only three wavelets. Moreover,
primal and dual wavelets are obtained from one single refinable function, which is even
fundamental. This is impossible within the concept of biorthogonal wavelets. In the
bivariate setting, we construct a family of arbitrarily smooth wavelet bi-frames for the
popular quincunx dilation matrix in (0.3). We also obtain a dyadic bi-frame with the
underlying box spline refinable function derived in [RS97a]. For specific dilation matrices
satisfying |det(M)| = 2, we construct a family of arbitrarily smooth wavelet bi-frames
in arbitrary dimensions with three wavelets. Finally, all of our bi-frames provide signifi-
cantly smaller supports in comparison to biorthogonal approaches, and they satisfy many
optimality criteria established in Chapter 2. Hence, we solve problem (P1) completely
and (P2) at least to a certain extent. The results presented in this chapter have been
published in [Ehl].

In Chapter 4, we derive a wavelet bi-frame construction with fewer wavelets. Contrary
to the previous chapter, we apply the mixed oblique extension principle as derived in
[CHS02, DHRS03], see also [DH00, Han03b], which generalizes the mixed extension prin-
ciple. As far as we know, we present its first multivariate application yielding compactly
supported wavelets. Then we obtain wavelet bi-frames, whose underlying refinable func-
tions have already been addressed in Chapter 3, but we reduce the number of wavelets.
In particular, we obtain a family of arbitrarily smooth wavelet bi-frames in arbitrary
dimensions with only two wavelets satisfying all of the optimality conditions established
in Chapter 2. Hence, we solve (P2) completely. The results of this chapter have been
published in [Ehl07].

The remaining chapters are dedicated to the problems (P3) and (P4). In Chapter 5,
we introduce Besov spaces in detail. Then, we recall their characterization by pairs of
biorthogonal wavelet bases with general isotropic scalings. In order to derive the wavelet
bi-frame characterization with respect to those scalings, we try to follow the dyadic ideas
of Borup, Gribonval, and Nielsen in [BGN04]. In a sense, they localize the dyadic bi-
frame to a dyadic orthonormal wavelet basis, which plays the role of a reference system,
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such that the orthonormal characterization carries over to the bi-frame. However, in
order to consider general isotropic scalings, a conceptual difficulty arises, because, for
many dilation matrices as for instance the quincunx matrix in (0.3), sufficiently smooth
orthonormal wavelets with compact support are not known. Hence, we require a dif-
ferent reference system. Fortunately, for many dilation matrices, we can find smooth
compactly supported biorthogonal wavelets that provide the characterization of Besov
spaces, cf. [Der99, JRS99]. Then, we generalize the localization technique regarding
general isotropic dilation and biorthogonal reference systems. Finally, the biorthogonal
characterization carries over to the wavelet bi-frame. This yields the solution to the first
part of problem (P3).

In numerical analysis and approximation theory, one has to establish so-called matching
Jackson and Bernstein inequalities in order to describe best N -term approximation. We
derive both estimates with respect to wavelet bi-frames in Chapter 6. With the norm
equivalences of Chapter 5 in hand, we can follow the approach in [BGN04] to obtain the
Jackson inequality for general isotropic scalings. The required Bernstein estimate can
be reduced to a Bernstein inequality involving only the underlying refinable function. In
[Jia93], such an inequality is derived for dyadic dilation M = 2Id. An analysis of its
proof reveals that it still holds for dilation matrices of the form M = hId, h ∈ N. Then,
we establish an extension to idempotent scalings, i.e., dilation matrices M , which satisfy
M l = hId, for some l, h ∈ N. Fortunately, most isotropic dilation matrices in the literature
are idempotent. For instance, the quincunx matrix in (0.3) satisfies M8 = 16I2. In
conclusion, at least for idempotent scalings, we establish matching Jackson and Bernstein
estimates, which provide the description of best N -term approximation.

Finally, we address the realization of the approximation rate. It turns out that the rate
can be realized by thresholding since the associated result regarding unconditional bases
in [BN] only requires those properties that wavelet bi-frames also inherit. This provides
the final solution to problem (P3).

In the remainder of Chapter 6, we verify that the wavelet bi-frames from Chapters 3 and
4 satisfy the requirements for the Jackson and Bernstein inequalities. On the one hand,
this completes our construction of wavelet bi-frames since we describe their associated
N -term approximation. On the other hand, it ensures that the theoretical results about
N -term approximation with idempotent scalings are applicable to a large class of wavelet
bi-frames.

In Chapter 7, we consider variational problems for noise removal from images. By
applying the characterization of Besov spaces in Chapter 5, we derive an equivalent
discrete variational problem in terms of wavelet bi-frame coefficients, and an approximate
solution can be derived by thresholding the bi-frame expansion. In order to determine the
threshold parameter, we apply the H-curve criterion to wavelet bi-frames. Recall that, in
[MP03], it is only applied to an orthonormal wavelet bases. Finally, this chapter verifies
that the method yields good results for a wavelet bi-frame as well. In comparison to the
threshold choice according to the mean square error minimization, it turns out that the
H-curve criterion provides better denoised images with respect to the visual perception.
Hence, the numerical results are promising, and we finally solve (P4).
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Chapter 1

The Classical Setting: Wavelet Bases

The present chapter is dedicated to a brief overview of the theory of wavelet bases in
L2(R

d), whose scope is versatile. On the one hand, the wavelet transform provides fast
numerical algorithms which are successfully applied in signal and image processing. On
the other hand, the approximation power of wavelets as well as their ability to characterize
certain function spaces made them a valuable tool in pure and applied mathematics.

The success of wavelets is promoted by their inner properties, such as a high smooth-
ness, a high number of vanishing moments, and small supports. However, these qualities
are competing, and in order to construct wavelets, they require a careful balancing. In
many applications, one also needs further inner properties. For instance, symmetric
wavelets provide better results in image and signal analysis, cf. [Mal99].

Univariate orthonormal wavelets with compact support have been successfully con-
structed by Daubechies in her celebrated paper [Dau88], see also [Dau92]. Orthonormal
wavelet bases seem most desirable since they provide Parseval’s Equality. However, or-
thogonality is also very restrictive since it makes it hard or even impossible to find wavelets
satisfying a variety of extra conditions such as symmetry.

In order to overcome these restrictions, one constructs two wavelet bases, a primal
and a dual one, which are biorthogonal to each other. The weaker biorthogonal concept
allows for symmetries, while still providing expansions similar to those of orthonormal
wavelets. However, strong inner properties of primal wavelets generally lead to weak
inner properties of dual wavelets. This limitation provides the motivation to the present
work.

We proceed as follows: first, we introduce the concept of pairs of biorthogonal wavelet
bases. Then, we address their construction based on a multiresolution analysis that
is generated by a so-called refinable function. Within this framework, wavelets can be
derived by finding bases for certain complementary spaces, and this search can actually
be reduced to a matrix completion problem. Since the problem is often explicitly solvable,
the construction of wavelet bases is reduced to the construction of refinable functions.
Finally, we address the approximation order of biorthogonal wavelets, the fast wavelet
transform, and the characterization of function spaces. Within this context, we discuss
desirable inner properties of wavelets in detail. We conclude this chapter by pointing out
restrictions and inflexibilities of orthogonal and biorthogonal wavelets.
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Chapter 1 The Classical Setting: Wavelet Bases

1.1 Biorthogonal Wavelet Bases

1.1.1 Riesz Bases

LetH be a Hilbert space andK be some countable index set throughout. Then a collection
{fκ : κ ∈ K} is called complete in H if its linear span is dense. The collection {fκ : κ ∈ K}
is called an orthonormal basis if it is complete in H and satisfies the orthogonality relation

〈fκ, fκ′〉 = δκ,κ′ , for all κ, κ′ ∈ K. (1.1)

Then, each f ∈ H can be expanded by

f =
∑

κ∈K
〈f, fκ〉 fκ, (1.2)

where the right-hand side converges unconditionally, i.e., the convergence does not depend
on the ordering of K. Due to Parseval’s Theorem, the collection {fκ : κ ∈ K} is an
orthonormal basis iff its associated synthesis operator

F : ℓ2(K)→H, (cκ)κ∈K 7→
∑

κ∈K
cκfκ, (1.3)

is unitary.

The orthonormality relations (1.1) are extremely strong inner properties. For instance,
within the context of wavelets, they prohibit some desirable extra conditions, see Section
1.3 for details, and one can overcome some of those restrictions with a different concept:

Definition 1.1.1. A collection {fκ : κ ∈ K} is called a Riesz basis for H if it is complete
in H and there exist positive constants A,B such that, for all (cκ)κ∈K ∈ ℓ2(K),

A
∥∥(cκ)κ∈K

∥∥2

ℓ2
≤
∥∥∥∥∥
∑

κ∈K
cκfκ

∥∥∥∥∥

2

H

≤ B
∥∥(cκ)κ∈K

∥∥2

ℓ2
. (1.4)

The constants A and B are called the lower and upper Riesz bounds, respectively.

Again, it turns out that the convergence

∑

κ∈K
cκfκ

in (1.4) is unconditional, cf. Corollary 3.2.5 in [Chr03]. Chapter 5 with Theorem 6.5.1 in
[Chr03] imply the characterization of Riesz bases in terms of the synthesis operator:

Theorem 1.1.2. The set {fκ : κ ∈ K} is a Riesz basis iff its synthesis operator F :
ℓ2(K)→ H given by (1.3) is well-defined and invertible.

In the case of Theorem 1.1.2, the Banach-Steinhaus Theorem implies that F is even
bounded, see Lemma 3.2.1 in [Chr03]. Then the Open Mapping Theorem yields that F
is boundedly invertible.

2



1.1 Biorthogonal Wavelet Bases

Due to Theorem 1.1.2, precisely the concept of Riesz bases provides a bijective corre-
spondence between ℓ2 and H such that each element f in H has a series expansion with
coefficients in ℓ2, i.e.,

f =
∑

κ∈K
cκfκ, (cκ)κ∈K ∈ ℓ2(K).

Contrary to an orthonormal basis, given f ∈ H, the coefficients are, in general, not the
inner products (〈f, fκ〉)κ∈K. Nevertheless, for each Riesz basis {fκ : κ ∈ K}, there exists
a second Riesz basis {f̃κ : κ ∈ K}, which is biorthogonal to {fκ : κ ∈ K}, i.e.,

〈
fκ, f̃κ′

〉
= δκ,κ′ , for all κ, κ′ ∈ K,

see Theorem 3.6.3 in [Chr03]. Then each f ∈ H has the series expansion

f =
∑

κ∈K

〈
f, f̃κ

〉
fκ, (1.5)

and we say that {fκ : κ ∈ K}, {f̃κ : κ ∈ K} constitute a pair of biorthogonal Riesz bases.
Hence, the biorthogonal concept is much weaker than the orthogonal one, but it still
provides by (1.5) an expansion similar to (1.2).

1.1.2 Wavelets with General Dilation Matrices

First, we shall clarify our concept of dilation. Throughout this thesis, let M denote a
dilation matrix, i.e., an integer matrix, whose eigenvalues are greater than one in modulus.
In case M = 2Id, we speak of dyadic dilation, and the canonical univariate choice is
M = 2. Moreover, let us have a closer look at two subclasses of dilation matrices. A
dilation matrix is called isotropic if it can be diagonalized and all eigenvalues have the
same modulus. This class is mainly addressed in Chapter 5 of the present thesis. A
dilation matrix is called idempotent if there are l, h ∈ N such that

M l = hId.

Idempotent dilation matrices are of main interest in Section 6.2.2. It turns out that the
second class is contained in the first one, see Appendix A.2 for the proof of the following
lemma:

Lemma 1.1.3. Each idempotent dilation matrix is isotropic.

In the bivariate setting, the two popular dilation matrices

Mb =

(
1 1
1 −1

)
, Mq =

(
1 −1
1 1

)
(1.6)

are called box spline matrix and quincunx matrix, respectively. Since they satisfy M2
b =

2I2 and M4
q = −4I2, they are idempotent. Moreover, both matrices generate the quin-

cunx grid, i.e.,

MbZ
2 = MqZ

2 =
{
k ∈ Z

2 : k1 + k2 ∈ 2Z
}
,

see Figure 1.1.
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Chapter 1 The Classical Setting: Wavelet Bases

k2

k1

Figure 1.1: The quincunx grid

So far, we introduced our concept of dilation. In wavelet analysis, one considers dilates
and shifts of functions, i.e., for f : R

d → C, we address

fj,k(x) := m
j
2 f(M jx− k), for j ∈ Z, k ∈ Z

d,

where m := |det(M)| throughout. Then given a finite number of L2(R
d)-functions

ψ(1), . . . , ψ(n), the collection

X({ψ(1), . . . , ψ(n)}) :=
{
ψ

(µ)
j,k : j ∈ Z, k ∈ Z

d, µ = 1, . . . , n
}

(1.7)

is called a wavelet system, and the functions ψ(1), . . . , ψ(n) are called wavelets. However,
Gröchenig writes in [Grö01],

“The terminology is a bit confusing because there is no general accepted
definition of a wavelet. ..., but almost any function has been called a wavelet
at some time or other.”

If we speak of a basis in the wavelet context, then we mean a Riesz basis throughout:

Definition 1.1.4. Two wavelet systems X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}) are
called a pair of biorthogonal wavelet bases if they constitute a pair of biorthogonal Riesz
bases in L2(R

d).

Compatible to Definition 1.1.4, a wavelet system X({ψ(1), . . . , ψ(n)}) is called an or-
thonormal wavelet basis if it constitutes an orthonormal basis in L2(R

d). Next, we present
some examples. They are verified in Section 1.1.3.

Example 1.1.5. In the univariate dyadic setting, the Haar wavelet

ψH = 1[ 1
2
,1) − 1[0, 1

2)
(1.8)

yields an orthonormal basis X({ψH}) for L2(R). In fact, this was known long before the
development of wavelet theory.

The following example provides an orthonormal wavelet basis with the box spline ma-
trix.
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1.1 Biorthogonal Wavelet Bases

x1

x2

21

1

1

−1

Figure 1.2: The wavelet ψ in Example 1.1.6. It is equal to 1 on the upper parallelogram,
equal to −1 on the lower one, and 0 elsewhere.

Example 1.1.6. Let M = Mb be the box spline dilation matrix. Given ψ as in Figure
1.2, the wavelet system X({ψ}) constitutes an orthonormal basis for L2(R

2).

Example 1.1.6 can be obtained from the theory of self-similar tilings as we shall explain
in the sequel. Given a dilation matrix M and Γ∗

M a complete set of representatives of
Z

d/MZ
d, let

Q :=
{ ∞∑

n=1

M−nγ∗n : γ∗n ∈ Γ∗
M

}
. (1.9)

The Lebesgue measure of Q is an integer, and Q is self-affine with respect to M and Γ∗
M ,

i.e.,

Q =
⋃

γ∗∈Γ∗

M

(
M−1Q+ γ∗

)
,

where the union is disjoint up to a set of measure zero, see [GM92] for details. If the
Lebesgue measure of Q is equal to one, then the characteristic function 1Q has orthonor-
mal integer shifts in L2(R

d), i.e.,

〈1Q(· − k), 1Q(· − l)〉 = δk,l, for k, l ∈ Z
d,

cf. [GM92]. In case of Example 1.1.6, let ϕ = 1Q be the characteristic function of the
self-affine set Q in (1.9) with respect to M and Γ∗

M = {0, (1, 0)⊤}. It turns out that Q
equals the union of both grey parallelograms in Figure 1.2. Then one easily verifies

ψ(x) = ϕ(Mbx− (1, 0)⊤)− ϕ(Mbx). (1.10)

A similar relation holds in Example 1.1.5: the univariate dyadic situation allows for
Γ∗

M = {0, 1}, then Q given by (1.9) is equal to [0, 1), and the Haar wavelet ψH satisfies

ψH(x) = 1[0,1)(2x− 1)− 1[0,1)(2x). (1.11)

The following example starts with the function ϕ:

Example 1.1.7. Let M = Mq be the quincunx dilation matrix. For Γ∗
M = {0, (1, 0)⊤},

the self-affine set Q in (1.9) is given in Figure 1.3, and it is called the twin-dragon. Let
ϕ = 1Q, and let

ψ(x) := ϕ(Mqx− (1, 0)⊤)− ϕ(Mqx). (1.12)

Then X({ψ}) constitutes an orthonormal basis for L2(R
2).
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Chapter 1 The Classical Setting: Wavelet Bases

Figure 1.3: The twin-dragon in Example 1.1.7. It is fractal, but has the Lebesgue measure
of one.

Remark 1.1.8. The identities (1.10), (1.11), and (1.12) correspond to a general construc-
tion principle, which we present in the following section. There, we also verify Examples
1.1.5, 1.1.6, and 1.1.7.

The self-affine set generated by the box spline matrix Mb is a parallelogram. Hence, it
is somehow more regular than the fractal twin-dragon in Example 1.1.7. This observation
provides a clue that the two matrices behave quite differently in the context of wavelets.
The box spline matrix Mb allows for arbitrarily smooth compactly supported orthonormal
wavelet bases. For compactly supported smooth wavelets with the quincunx matrix Mq,
as far as we know, we have to switch into the weaker concept of biorthogonal wavelets,
cf. Section 1.3.

1.1.3 The Multiresolution Analysis

Mallat and Meyer proposed in [Mal89, Mey90] the concept of multiresolution analysis,
which is a powerful framework for the construction of wavelets. Since its first dyadic
appearance, several generalizations have been developed. We recall the concept with
respect to general dilation matrices in R

d:

Definition 1.1.9. An increasing sequence of closed subspaces (Vj)j∈Z
in L2(R

d) is called
a multiresolution analysis if the following holds:

(M-1) f ∈ Vj iff f(M−j·) ∈ V0, for all j ∈ Z,

(M-2)
⋃

j∈Z
Vj is dense in L2(R

d),

(M-3)
⋂

j∈Z
Vj = {0},

(M-4) there is a function ϕ ∈ V0, whose integer shifts constitute a Riesz basis for V0.

The function ϕ in (M-4) is called the generator of the multiresolution analysis.

It should be mentioned that a function in L2(R
d) is called stable if its integer shifts

constitute a Riesz basis for their closed linear span. Hence, (M-4) requires that ϕ is
stable.
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1.1 Biorthogonal Wavelet Bases

In order to construct compactly supported biorthogonal wavelets, let (Vj)j∈Z
and

(Ṽj)j∈Z be two multiresolution analyses with compactly supported generators ϕ and ϕ̃,
respectively. In addition, we suppose that their integer shifts are biorthogonal to each
other, i.e., for all k, k′ ∈ Z

d,

〈
ϕ(· − k), ϕ̃(· − k′)

〉
= δk,k′. (1.13)

Let W0 and W̃0 be complementary spaces of V0 in V1 and of Ṽ0 in Ṽ1, i.e,

V1 = V0 ⊕W0, Ṽ1 = Ṽ0 ⊕ W̃0. (1.14)

Moreover, they are taken to be related by

W0 ⊥ Ṽ0, W̃0 ⊥ V0. (1.15)

Then, one has to find wavelets ψ(µ) and ψ̃(µ), µ = 1, . . . , n, such that their integer
shifts constitute Riesz bases of W0 and W̃0, respectively. According to the theory of
shift invariant spaces, the number of wavelets is determined by n = m − 1, see also the
textbook [Woj97]. In order to derive birothogonal wavelets, they have to be choosen such
that 〈

ψ
(µ)
0,k , ψ̃

(µ′)
0,k′

〉
= δk,k′δµ,µ′ . (1.16)

So far, we have biorthogonality on the scale j = 0. According to the multiresolution
analysis framework, this geometrical relation extends without any more effort, as we
shall explain in the following. Once we have found W0 and W̃0, the definitions

f ∈Wj iff f(M−j ·) ∈W0,

f ∈ W̃j iff f(M−j ·) ∈ W̃0

provide two sequences of subspaces (Wj)j∈Z and (W̃j)j∈Z. They share the multiresolution
analysis structure (M-1), and they extend (1.14) and (1.15) to each scale j ∈ Z, i.e.,

Vj+1 = Vj ⊕Wj , Ṽj+1 = Ṽj ⊕ W̃j (1.17)

and
Wj ⊥ Ṽj , W̃j ⊥ Vj. (1.18)

For fixed j ∈ Z, the collections

{
ψ

(µ)
j,k : µ = 1, . . . ,m− 1, k ∈ Z

d
}
,
{
ψ̃

(µ)
j,k : µ = 1, . . . ,m− 1, k ∈ Z

d
}

are Riesz bases for Wj and W̃j , respectively, and we finally obtain the complete biorthog-
onality relations 〈

ψ
(µ)
j,k , ψ̃

(µ′)
j′,k′

〉
= δj,j′δk,k′δµ,µ′ . (1.19)

According to (M-3), the relations in (1.17) yield the decompositions up to level j,

Vj =

j−1⊕

j′=−∞
Wj′ , Ṽj =

j−1⊕

j′=−∞
W̃j′ ,

7



Chapter 1 The Classical Setting: Wavelet Bases

and by applying (M-2) and (1.17), one derives also the complete decompositions

L2(R
d) =

⊕

j∈Z

Wj, L2(R
d) =

⊕

j∈Z

W̃j , (1.20)

see [Dau92] and [CT97] for details. Thus, the wavelet systems

X({ψ(1), . . . , ψ(m−1)}), X({ψ̃(1), . . . , ψ̃(m−1)}) (1.21)

are biorthogonal to each other, and they are complete in L2(R
d).

In order to turn the above framework into a more applicable form, we have a closer look
at a multiresolution analysis. Given some generator ϕ, according to (M-1) and (M-4),
the collection {

ϕj,k : k ∈ Z
d
}

is a Riesz basis for Vj . Since the spaces Vj are increasing, ϕ is contained in V1. Thus,
there exists a sequence (ak)k∈Zd ∈ ℓ2(Zd) such that ϕ satisfies the refinement equation

ϕ(x) =
∑

k∈Z

akϕ(Mx− k). (1.22)

Therefore, we call ϕ refinable, and the sequence (ak)k∈Zd is called its mask or its filter.
Since we focus on compactly supported wavelets, it is reasonable that we suppose that
the generator ϕ has compact support and that its mask is finitely supported. It should be
mentioned that among the collection of compactly supported distributions, the solution
of the refinement equation is unique up to multiplication with a constant, cf. [CDM91].
Applying the Fourier transform to both sides of (1.22) yields

ϕ̂(ξ) = a
(
M−⊤ξ

)
ϕ̂
(
M−⊤ξ

)
, (1.23)

where the trigonometric polynomial

a(ξ) =
1

m

∑

k∈Zd

ake
−2πik·ξ

is called the symbol of ϕ, see Appendix A.1 for the normalization of the Fourier transform.

Remark 1.1.10. Throughout this thesis, symbols are trigonometric polynomials, and
hence, their coefficients are finitely supported sequences. It should be mentioned that the
term symbol sometimes includes arbitrary Z

d-periodic functions in the literature.

The iteration of (1.23) yields

ϕ̂(ξ) =

l∏

j=1

a
(
M⊤−j

ξ
)
ϕ̂
(
M⊤−l

ξ
)
, for l ∈ N. (1.24)

Since M⊤−j
ξ tends to zero as j goes to infinity, we are tempted to consider the limit. The

Fourier transform of ϕ is continuous in zero, because ϕ is compactly supported. Hence,
the convergence in (1.24) for l →∞ requires a(0) = 1. This is also sufficient as we shall

8



1.1 Biorthogonal Wavelet Bases

see in the following, where we have a different starting point, and we reverse the process
described above.

Given some symbol a with a(0) = 1, it induces a multiresolution analysis in the follow-
ing way. We define ϕ by its Fourier transform

ϕ̂(ξ) =
∏

j≥1

a
(
M⊤−j

ξ
)
. (1.25)

According to [Dau92], the right-hand side converges uniformly on compact sets, and
ϕ is a compactly supported distribution, normalized by ϕ̂(0) = 1, see Appendix A.1
for distributions. It satisfies the refinement equation (1.22), at least in the distributional
sense. If ϕ is contained in L2(R

d) and stable, then we can define V0 by (M-4). A sequence
of closed subspaces (Vj)j∈Z is derived by applying (M-1) as a definition for Vj. Since ϕ
is refinable, the subspaces are increasing and, according to [dBDR93], they constitute a
multiresolution analysis. Hence, we have obtained a refinable function and an underlying
multiresolution analysis by a suitable choice of some symbol.

Let a and b be two symbols with a(0) = b(0) = 1 generating refinable functions ϕ and
ϕ̃, respectively. We suppose that both are contained in L2(R

d) and that they are stable.
Let us denote the generated multiresolution analyses by (Vj)j∈Z and (Ṽj)j∈Z, respectively.
Then the biorthogonality relation (1.13) is equivalent to

∑

γ∈ΓM

a(ξ + γ)b(ξ + γ) = 1, for all ξ ∈ R
d, (1.26)

where ΓM is a complete set of representatives of M−⊤
Z

d/Zd with 0 ∈ ΓM throughout this
work, cf. [Dau92]. If (1.26) holds, then b is called a dual symbol of a. Since {ϕ1,k : k ∈ Z

d}
and {ϕ̃1,k : k ∈ Z

d} are Riesz bases of V1 and Ṽ1, respectively, the inclusions W0 ⊂ V1

and W̃0 ⊂ Ṽ1 provide that there exist sequences
(
a

(µ)
k

)
k∈Zd and

(
b
(µ)
k

)
k∈Zd such that

ψ(µ)(x) =
∑

k∈Zd

a
(µ)
k ϕ(Mx− k), (1.27)

ψ̃(µ)(x) =
∑

k∈Zd

b
(µ)
k ϕ̃(Mx− k). (1.28)

The coefficient sequences are necessarily contained in ℓ2(Z
d). In order to derive compactly

supported wavelets, we try to choose finitely supported sequences. Provided that we are
successful, applying the Fourier transform to (1.27) and (1.28) yields

ψ̂(µ)(ξ) = a(µ)(M−⊤ξ)ϕ̂(M−⊤ξ), (1.29)

̂̃
ψ(µ)(ξ) = b(µ)(M−⊤ξ)̂̃ϕ(M−⊤ξ), (1.30)

where a(µ) and b(µ) denote the symbols according to the finitely supported sequences(
a

(µ)
k

)
k∈Zd and

(
b
(µ)
k

)
k∈Zd , respectively. The geometrical conditions (1.13), (1.15), and

(1.16) with the complement property (1.14) imply

∑

γ∈ΓM

a(µ)(ξ + γ)b(ν)(ξ + γ) = δµ,ν , µ, ν = 0, . . . ,m− 1, (1.31)

9



Chapter 1 The Classical Setting: Wavelet Bases

where a(0) := a and b(0) := b, see [Dau92] for details. Note that (1.31) includes the duality
relations (1.26).

The following theorem turns the ideas above into a construction concept for pairs of
compactly supported biorthogonal wavelet bases. It tells us that the necessary conditions
(1.31) are already sufficient. In [RS97b], the theorem is obtained under a mild smoothness
assumption on the generators that can be removed by the results in [Bow00, CSS98].

Theorem 1.1.11. Given a symbol a and a dual symbol b with a(0) = b(0) = 1, let them
generate two stable refinable functions ϕ, ϕ̃ ∈ L2(R

d), respectively. Given additional
symbols a(µ) and b(µ), µ = 1, . . . ,m− 1, satisfying the conditions (1.31) as well as

a(µ)(0) = b(µ)(0) = 0, for all µ = 1, . . . ,m− 1, (1.32)

we define ψ(µ) and ψ̃(µ), µ = 1, . . . ,m − 1, by (1.27) and (1.28), respectively. Then the
systems

X({ψ(1), . . . , ψ(m−1)}), X({ψ̃(1), . . . , ψ̃(m−1)})
constitute a pair of compactly supported biorthogonal wavelet bases.

Theorem 1.1.11 is some good news for the construction of biorthogonal wavelets. First,
one chooses a symbol a and a dual symbol b. Then one needs to verify membership in
L2(R

d) and stability of the generated refinable functions. Advantageously, these prop-
erties can be ensured by certain conditions on the symbols, cf. [Dau92]. Once these
ingredients are established, the construction of wavelets simply requires the choice of
wavelet symbols satisfying some zero condition and (1.31).

By applying Theorem 1.1.11, we can verify the three Examples 1.1.5, 1.1.6, and 1.1.7,
which provide orthonormal wavelet bases. Recall that a symbol is called orthogonal if it
is dual to itself, i.e., ∑

γ∈ΓM

|a(ξ + γ)|2 = 1, for all ξ ∈ R
d.

First, we derive the Haar wavelet from the multiresolution analysis approach:

Example 1.1.12. In the univariate dyadic setting, let

a(ξ) =
1 + e−2πiξ

2
.

Then a is orthogonal, and it generates ϕ = 1[0,1). For

a(1)(ξ) := e−2πiξa(ξ + 1
2),

the conditions (1.31) hold with a = b and a(1) = b(1). Then

ψ(x) =
∑

k∈Z

a
(1)
k 1[0,1)(2x− k)

is exactly the same as (1.11), and ψ is the Haar wavelet (1.8). According to Theorem
1.1.11, the system X({ψ}) constitutes an orthonormal basis for L2(R).

Next, we verify Example 1.1.6:

10



1.1 Biorthogonal Wavelet Bases

Example 1.1.13. Given the box spline dilation matrix M = Mb, let the bivariate symbol
a be defined by

a(ξ) =
1 + e−2πiξ1

2
. (1.33)

Then a is orthogonal, and it generates the characteristic function ϕ of the union of both
parallelograms in Figure 1.2, cf. [GM92]. For

a(1)(ξ) := e−2πiξ1a
(
ξ +

(
1
2 ,

1
2

)⊤)
, (1.34)

the conditions (1.31) hold with a = b and a(1) = b(1). Then

ψ(x) =
∑

k∈Z2

a
(1)
k ϕ(Mbx− k)

is nothing other than (1.10), and ψ equals the wavelet in Example 1.1.6. According to
Theorem 1.1.11, X({ψ}) constitutes an orthonormal wavelet basis.

Given a collection of symbols, different choices of the dilation matrix can yield different
refinable functions and wavelets. Replacing Mb by Mq in Example 1.1.13 yields the twin-
dragon of Example 1.1.7:

Example 1.1.14. Let M = Mq be the quincunx dilation matrix. By applying ΓMb
=

ΓMq , the symbol a in (1.33) is also orthogonal with respect to the dilation matrix Mq. It
generates the characteristic function ϕ of the twin-dragon in Figure 1.3, cf. [GM92]. By
the choice of a(1) as in (1.34), the conditions (1.31) hold and

ψ(x) =
∑

k∈Z2

a
(1)
k ϕ(Mqx− k)

is nothing other than (1.12). Then ψ equals the wavelet in Example 1.1.7. According to
Theorem 1.1.11, X({ψ}) constitutes an orthonormal wavelet basis.

Another way to obtain multivariate wavelets is applying tensor products to univariate
systems, see [Dau92] for the following example:

Example 1.1.15. Given a univariate dyadic orthogonal wavelet basis X({ψ}) with com-
pact support and underlying refinable function ϕ, then the system

X({ϕ ⊗ ψ,ψ ⊗ ϕ,ψ ⊗ ψ}) (1.35)

is a bivariate dyadic orthogonal wavelet basis with underlying refinable function ϕ⊗ ϕ.

Wavelet systems like (1.35) are called separable because each wavelet is a tensor product
of univariate functions. Due to the tensor structure, separable wavelets “prefer” the axis
directions. Especially in image processing, this is quite inconvenient. Then nonseparable
bases avoid such directional preferences, and they provide better results, cf. [Mal89].

Similar to Example 1.1.15, multivariate bases can be obtained by multiple tensor prod-
ucts of univariate orthonormal bases. However, this provides similar directional depen-
dencies as the bivariate tensor approach. Moreover, the number of wavelets is 2d − 1,
which grows exponentially, and this causes complexity problems in applications. In the
context of the fast wavelet transform, we address this topic in Subsection 1.2.2.

11



Chapter 1 The Classical Setting: Wavelet Bases

In Examples 1.1.13 and 1.1.14, we already derived bivariate nonseparable wavelets.
However, they are not even continuous. In the sequel, we discuss some smooth, multi-
variate, nonseparable refinable functions. Following [dBHR93], we introduce box splines
in arbitrary dimensions that may lead to biorthogonal wavelet bases. For a fixed integer
n ≥ d, given direction vectors

y(1), . . . , y(n) ∈ Z
d,

let Yn′ , d ≤ n′ ≤ n be the matrix of the first n′ vectors, i.e,

Yn′ =
(
y(1), . . . , y(n′)

)
,

while we suppose det(Yd) 6= 0. Then the box spline ϕYn with respect to the direction
matrix Yn is recursively defined by

ϕYn′
(x) =

∫ 1

0
ϕYn′−1

(x− ty(n′))dt, for all d < n′ ≤ n,

ϕYd
=

1

|det(Yd)|
1Yd[0,1)d .

The box spline is refinable with respect to dyadic dilation, and its smoothness can easily
be read off the direction matrix, cf. [dBHR93]:

Lemma 1.1.16. Let Yn be some direction matrix. Then the following holds:

(a) The box spline ϕYn is refinable with respect to the symbol

aYn(ξ) =
n∏

ν=1

1 + e−2πiy(ν)·ξ

2

and dyadic dilation.

(b) Given an integer α ≥ 2 such that there exist n−α+ 1 linearly independent column
vectors in Yn, then ϕYn is α− 2 times differentiable.

In order to ensure that ϕYn is a generator of a multiresolution analysis, we still have
to verify stability. Advantageously, it can also be read off the direction matrix, see
[dBHR93].

Lemma 1.1.17. Given a box spline ϕYn , the following statements are equivalent:

(i) ϕYn is stable,

(ii) Yn is unimodular, i.e.,

|det(Y )| ∈ {0, 1},
for all d× d-submatrices Y of Yn.

Thus, given a unimodular direction matrix, the box spline ϕYn generates a multires-
olution analysis. Since the construction of a pair of biorthogonal wavelet bases requires
an additional second generator, we also need a dual symbol of aYn . Its existence can

12



1.1 Biorthogonal Wavelet Bases

be ensured by a general concept of linear independence: we say a compactly supported
distribution ϕ has globally linearly independent integer shifts if the mapping

F : ℓ(Zd)→ S ′(Rd), (λk)k∈Zd 7→
∑

k∈Zd

λkϕ(· − k) (1.36)

is injective, where S ′(Rd) denotes the space of tempered distributions, cf. Appendix A.1.
According to a result in [DM97], if ϕ has globally linearly independent integer shifts, then
its symbol a has a dual symbol b.

In the box spline setting, global linear independence and stability are equivalent, see
[dBHR93] for the following extension of Lemma 1.1.17.

Lemma 1.1.18. Given a box spline ϕYn , the following statements are equivalent:

(i) ϕYn has globally linearly independent integer shifts,

(ii) ϕYn is stable,

(iii) Yn is unimodular, i.e.,

|det(Y )| ∈ {0, 1},
for all d× d-submatrices Y of Yn.

Thus, given aYn with unimodular direction matrix Yn, then ϕYn generates a multireso-
lution analysis, and there exists a dual symbol b of aYn . For the application of Theorem
1.1.11, we still need additional symbols such that (1.31) holds. Since this problem does
not only arise in box spline constructions, we address the topic of finding additional
symbols in more generality in the following subsection.

1.1.4 A Matrix Completion Problem

Let ΓM = {0, γ1, . . . , γm−1} denote a complete set of reprasentatives of M−⊤
Z

d/Zd. Then
given symbols a(µ) and b(µ), µ = 0, . . . ,m− 1, the square matrices

a :=
(
a(µ)(·+ γν)

)
ν=0,...,m−1
µ=0,...,m−1

, b :=
(
b(µ)(·+ γν)

)
ν=0,...,m−1
µ=0,...,m−1

(1.37)

are called modulation matrices. Due to the Z
d-periodicity of trigonometric polynomials,

(1.31) can be rewritten into

a⊤b = Im. (1.38)

Given only a symbol a(0) and a dual symbol b(0), the application of Theorem 1.1.11
requires additional symbols such that (1.38) holds. In other words, we must complete the
matrices a and b. The existence of a completion can be ensured by the so-called Quillen-
Suslin Theorem, cf. [Qui76, Sus76], as we shall explain next. The theorem is not directly
applicable since the columns of modulation matrices are highly redundant and each entry
already determines its entire column. In the following, we transform modulation matrices
into matrices with decoupled columns. This allows for the application of the theorem,
and the completion of the decoupled system also provides a completion of the modulation
matrices.

13



Chapter 1 The Classical Setting: Wavelet Bases

Given a symbol a, we denote its γ∗-subsymbol by

Aγ∗(ξ) :=
∑

k∈Zd

aMk+γ∗e−2πik·ξ, (1.39)

where

Γ∗
M =

{
0, γ∗1 , . . . , γ

∗
m−1

}

is a complete set of representatives of Z
d/MZ

d. Hence, a can be decomposed into

a(ξ) =
1

m

∑

γ∗∈Γ∗

M

Aγ∗(M⊤ξ)e−2πiγ∗·ξ. (1.40)

An application of a result about character sums, i.e.,

∑

γ∈ΓM

e2πik·γ =

{
m, if k ∈MZ

d,

0, otherwise,
(1.41)

provides the computation of the subsymbols from the ΓM -shifts of a by

Aγ∗(M⊤ξ) =
∑

γ∈ΓM

e2πiγ∗·(ξ+γ)a(ξ + γ), (1.42)

see [CL94] for details. For symbols a(µ) and b(µ), µ = 0, . . . ,m − 1, we denote their

subsymbols by A
(µ)
γ∗

ν
and B

(µ)
γ∗

ν
, ν = 0, . . . ,m− 1, respectively. Then the two matrices

A =
(
A

(µ)
γ∗

ν

)
ν=0,...,m−1
µ=0,...,m−1

, B =
(
B

(µ)
γ∗

ν

)
ν=0,...,m−1
µ=0,...,m−1

are called polyphase matrices. Let

U(ξ) :=
(
e−2πiγ∗

µ·(ξ+γν)
)

ν=0,...,m−1
µ=0,...,m−1

, (1.43)

then by applying (1.40), we obtain

a(ξ) =
1

m
U(ξ)A(M⊤ξ), (1.44)

b(ξ) =
1

m
U(ξ)B(M⊤ξ). (1.45)

Moreover, (1.41) yields that 1√
m
U is unitary. This implies

a⊤b = Im iff A⊤B = mIm. (1.46)

At this point the famous theorem of Quillen-Suslin is applicable. In its full generality,
it states that every projective module over some polynomial ring is free, see [Qui76,
Sus76]. In [Swa78], Swan extended the result to Laurent polynomial rings. According
to the identification of

∑
k∈Zd ake

−2πik·ξ with
∑

k∈Zd akz
k, the result is also applicable

to trigonometric polynomials. In order to avoid all of the algebraic background, we only
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1.1 Biorthogonal Wavelet Bases

explain the consequences in our setting. Given a symbol a(0) and a dual symbol b(0), then
their subsymbols satisfy

(
A

(0)
γ∗

0
, . . . , A

(0)
γ∗

m−1

)
·
(
B

(0)
γ∗

0
, . . . , B

(0)
γ∗

m−1

)⊤
= m. (1.47)

In other words, the ideal generated by the subsymbols of a(0) over the ring of trigonometric
polynomials equals the entire space. Then a consequence of the Quillen-Suslin Theorem

is that we can complete the row
(
A

(0)
γ∗

0
, . . . , A

(0)
γ∗

m−1

)
to a matrix A⊤ of trigonometric

polynomials, which is invertible and whose inverse A−⊤ also consists of trigonometric
polynomials. Moreover, one can complete the matrix such that the first column of A−⊤

equals 1
m

(
B

(0)
γ∗

0
, . . . , B

(0)
γ∗

m−1

)⊤
, see also [Par95, JRS99] for details. With the choice B :=

mA−⊤, we obtain
A⊤B = mIm.

By applying (1.40), the subsymbols in A and B provide symbols a(µ) and b(µ), µ =
1, . . . ,m − 1. Hence, we finally found all of the necessary symbols to apply Theorem
1.1.11.

The original proof of the Quillen-Suslin Theorem is nonconstructive, but there are
extension algorithms by means of Gröbner bases, which can be applied by some computer
algebra software, see for example [Par95]. However, if there are other extension methods
available, one would avoid the Gröbner approach since it can generally not guarantee for
solutions with small masks.

In case m = 2, the extension problem is already solved to the full extent. The solution is
summarized in the following example, which can be verified by completing the polyphase
matrices and reconstructing the symbols from the subsymbols of the polyphase matrices.

Example 1.1.19. Let m = 2. Given a symbol a(0) and a dual symbol b(0), then (1.38)
holds for the symbols

a(1)(ξ) := e−2πiγ∗

1 ·ξa(0)(ξ + γ1),

b(1)(ξ) := e−2πiγ∗

1 ·ξb(0)(ξ + γ1).

The above choice is unique up to multiplication by te−2πi(Ml)·ξ, with |t| = 1 and l ∈ Z
d.

This affects the wavelets only by an l-shift and multiplication by t.

Note that Example 1.1.19 justifies the choice of a(1) in Examples 1.1.12, 1.1.13, and
1.1.14. The case m > 2 is generally much more involved. Nevertheless, for a large class
of symbols, it is explicitly solvable as we shall explain in the following.

In Subsection 1.2.2, within the context of the fast wavelet transform, we discuss the
importance of a fundamental refinable function, i.e., ϕ is continuous and

ϕ(k) = δ0,k, for all k ∈ Z
d.

By addressing the matrix completion, we focus on symbols a, whose refinable function is
fundamental. It turns out a must then be interpolatory, i.e.,

∑

γ∈ΓM

a(ξ + γ) = 1, for all ξ ∈ R
d. (1.48)
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Chapter 1 The Classical Setting: Wavelet Bases

The reverse implication holds if we assume ϕ to be stable and continuous, see [LLS97].
For an interpolatory symbol a, the results in [JRS99] provide a construction algorithm
for the polyphase matrix completion. In the following lemma, we present the symbols
according to the subsymbols of the polyphase matrices.

Lemma 1.1.20. Given a(0) interpolatory and a dual symbol b(0). Then by the choice

a(µ)(ξ) = e−2πiγ∗
µ·ξ

m−1∑

ν=1

(
a(0)(ξ + γν)− a(0)(ξ)e−2πiγ∗

µ·γν

)
b(0)(ξ + γν), (1.49)

b(µ)(ξ) =
1

m
e−2πiγ∗

µ·ξ
m−1∑

ν=1

(
1− e−2πiγ∗

µ·γν

)
a(0)(ξ + γν), (1.50)

for µ = 1, . . . ,m− 1, the matrix equality (1.38) holds.

Remark 1.1.21. As mentioned above, Lemma 1.1.20 is a consequence of the ideas in
[JRS99]. Moreover, it is a special case of our much more general results of Corollary 4.2.6
in Chapter 4.

In the next example, we address a fundamental box spline:

Example 1.1.22. Given M = 2I2 and

Y3 :=

(
1 0 1
0 1 1

)
,

the matrix Y3 is unimodular and the box spline symbol aY3 is interpolatory. Thus, the
associated box spline ϕY3 is fundamental. According to Lemma 1.1.17, ϕY3 has globally
linear independent integer shifts. Hence, there exists a dual symbol b, and Lemma 1.1.20
yields a collection of symbols such that (1.31) holds.

1.2 Desirable Properties

1.2.1 The Approximation Order

Given a Riesz basis {fκ : κ ∈ K} for a Hilbert space H, each f ∈ H has a series expansion

f =
∑

κ∈K
cκfκ, (cκ)κ∈K ∈ ℓ2(K).

From a computational point of view, it is necessary to replace the exact expansion by some
approximation of f . General approximation theory is divided into linear and nonlinear
methods. In Chapter 6, we consider nonlinear approximation, and we address the linear
counterpart in the following.

Linear approximation centers around the approximation of f ∈ H from a given sequence
(Vj)j∈Z of increasing linear subspaces of H. The index j is often called a specific level or
resolution. The error of best approximation of f from (Vj)j∈Z is expressed in the term
dist(f,Vj)H. In order to approximate f at level j ∈ Z by a practical algorithm, we require
a collection of linear mappings Qj : H → Vj, which represents a specific approximation.
Since Qj maps into Vj, we obviously have

dist(f,Vj)H ≤ ‖f −Qjf‖, for all f ∈ H.

16



1.2 Desirable Properties

To realize the best approximation, one has to find an approximation such that

‖f −Qjf‖ ∼ dist(f,Vj)H.

In other words, dist(f,Vj)H is a benchmark for each specific approximation.

Given an isotropic dilation matrix M , let us specify linear approximation with respect
to a multiresolution analysis (Vj)j∈Z. It constitutes a sequence of increasing subspaces in
L2(R

d), and the following definition addresses the rate of best approximation, in which
ρ denotes the modulus of the eigenvalues of M , see Appendix A.1 for the Sobolev space
W s(L2(R

d)):

Definition 1.2.1. Let M be isotropic. We say a multiresolution analysis (Vj)j∈Z provides
approximation order s if

dist(f, Vj)L2 . ρ−js, for all f ∈W s(L2(R
d)),

where the constant may depend on f .

In order to choose a specific approximation, let

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)})

be a pair of biorthogonal wavelet bases, whose primal refinable function is the generator
of the multiresolution analysis under consideration. In [DHRS03], the linear mapping

Qj : L2(R
d)→ Vj , f 7→

∑

µ=1,...,n

j′<j,k∈Zd

〈
f, ψ̃

(µ)
j′,k

〉
ψ

(µ)
j′,k (1.51)

is called the truncated representation. In order to evaluate the quality of its approxima-
tion, we consider the following definition:

Definition 1.2.2. Let M be isotropic. We say a pair of biorthogonal wavelet bases
provides approximation order s if the truncated representation Qj satisfies

‖f −Qjf‖L2
. ρ−js, for all f ∈W s(L2(R

d)),

where the constant may depend on f .

In the following, we shall verify that the truncated representations realizes the best
approximation. Let ϕ and ϕ̃ be the underlying primal and dual refinable functions,
respectively. The operator

Pj : L2(R
d)→ Vj, f 7→

∑

k∈Zd

〈f, ϕ̃j,k〉ϕj,k. (1.52)

is a projection on Vj since the refinable functions are biorthogonal to each other. Accord-
ing to the results in [Lin05], Pj realizes the best approximation, i.e.,

‖f − Pjf‖L2
∼ dist(f, Vj)L2 . (1.53)
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Chapter 1 The Classical Setting: Wavelet Bases

By applying the biorthogonality relations (1.19) and the decomposition (1.20), we obtain
Qj = Pj . Thus, the approximation order of a pair of biorthogonal wavelet bases equals
the approximation order of the underlying primal multiresolution analysis.

In the sequel, we discuss properties of refinable functions and wavelets, which promote
the approximation order. The ability of the underlying primal refinable function to
reproduce polynomials plays a major role. Let us denote the space of all polynomials up
to total degree less than s by Πs−1. We say that a compactly supported distribution ϕ
reproduces polynomials up to order s if

Πs−1 ⊂ S(ϕ),

where

S(ϕ) =




∑

k∈Zd

λkϕ(· − k) : (λk)k∈Zd ∈ ℓ(Zd)





denotes the principal shift invariant space spanned by ϕ. Note that S(ϕ) makes sense as
a subspace of S ′(Rd). According to the results in [Jia98], the approximation order of a
multiresolution analysis is determined by its generator’s reproduction of polynomials:

Theorem 1.2.3. Given a dilation matrix M = hId, h ∈ N, let ϕ be a compactly sup-
ported, continuous generator of a multiresolution analysis with finitely supported mask and
ϕ̂(0) 6= 0. Then ϕ reproduces polynomials up to order s iff its multiresolution analysis
provides approximation order s.

In [Lin05], Lindemann generalized one direction of Theorem 1.2.3 regarding isotropic
dilation matrices:

Theorem 1.2.4. Given an isotropic dilation matrix M , let ϕ be a compactly supported,
continuous generator of a multiresolution analysis with finitely supported mask and ϕ̂(0) 6=
0. If ϕ reproduces polynomials up to order s, then its multiresolution analysis provides
approximation order s.

At least for idempotent dilation matrices, the reverse implication also holds, see Ap-
pendix A.2 for the proof of the following corollary, which extends Theorem 1.2.3:

Corollary 1.2.5. Given an idempotent dilation matrix M , let ϕ be a compactly supported,
continuous generator of a multiresolution analysis with finitely supported mask and ϕ̂(0) 6=
0. Then ϕ reproduces polynomials up to order s iff its multiresolution analysis provides
approximation order s.

Thus, the reproduction of polynomials determines the approximation order. According
to the results of Jia in [Jia98], smoothness is a sufficient condition:

Theorem 1.2.6. Given an isotropic dilation matrix M , for s ∈ N0, let ϕ be a compactly
supported refinable function with finitely supported mask and ϕ̂(0) 6= 0. If ϕ is contained
in W s(L1(R

d)), then it reproduces polynomials up to order s+ 1.

In general, we choose a symbol, and then ϕ is defined by (1.25). Fortunately, the
reproduction of polynomials can be expressed in terms of its symbol. We say a symbol a
satisfies the sum rules of order s if

∂αa(γ) = 0, for all γ ∈ ΓM \ {0}, |α| < s. (1.54)

According to [Jia98], the following dependencies hold:
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Theorem 1.2.7. If a symbol a, a(0) = 1, satisfies the sum rules of order s, then ϕ
reproduces polynomials up to order s. If ϕ̂ has no Z

d-periodical zeros on ΓM , then also
the reverse implication holds.

A refinable function ϕ is stable iff its Fourier transform has no Z
d-periodical zeros on

R
d, cf. [JM90]. Thus, for stable ϕ, the condition on ϕ̂ in Theorem 1.2.7 is satisfied.

Remark 1.2.8. According to Theorems 1.2.7 and 1.2.4 as well as the equivalence (1.53)
with Qj = Pj , the sum rule order of a implies approximation order of the associated
biorthogonal wavelet bases.

Finally, in Section 5.2, we extend the concepts of multiresolution analysis and bi-
orthogonal wavelet bases from L2(R

d) to Lp(R
d) spaces with 1 < p < ∞. Then one

replaces W s(L2(R
d)) by W s(Lp(R

d)), and best approximation in Lp(R
d) involves

dist(f, Vj)Lp .

It turns out that the results in L2(R
d) presented so far essentially hold in Lp(R

d) as well,
see [Lin05] and Chapter 5 in the present thesis.

1.2.2 Fast Wavelet Transform

Let ϕ and ϕ̃ be compactly supported biorthogonal generators of two multiresolution
analyses (Vj)j∈Z and (Ṽj)j∈Z, respectively. Then each f ∈ V0 has the expansion

f =
∑

k∈Zd

〈f, ϕ̃0,k〉ϕ0,k. (1.55)

Given an associated pair X({ψ(1), . . . , ψ(m−1)}) and X({ψ̃(1) , . . . , ψ̃(m−1)}) of compactly
supported biorthogonal wavelet bases, let us fix some j0 ∈ Z with j0 < 0. Using the
notation of Section 1.1.3, the complementary spaces (Wj)j∈Z

provide the decomposition

V0 = Vj0 ⊕
−1⊕

j=j0

Wj.

The biorthogonality relations (1.15) and (1.19) yield

f =
∑

k∈Zd

〈f, ϕ̃j0,k〉ϕj0,k +

−1∑

j=j0

m−1∑

µ=1

∑

k∈Zd

〈
f, ψ̃

(µ)
j,k

〉
ψ

(µ)
j,k . (1.56)

Given the coefficients of f in V0, i.e.,

H
(0)
0 (k) := 〈f, ϕ̃0,k〉 , k ∈ Z

d, (1.57)

the fast wavelet transform computes the coefficients of the decomposition (1.56). More-
over, once derived the coefficients in (1.56), the transform can reconstruct the coefficients
in (1.55), cf. Algorithm 1, Figure 1.4, and see Appendix A.3 for the arising notation.
Hence, the fast wavelet transform provides a tool to switch between the two representa-
tions.
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Chapter 1 The Classical Setting: Wavelet Bases

(a) Decomposition:

Input: H
(0)
0

for j = −1,−2, . . . , j0 do
for µ = 0, . . . ,m− 1 do

H
(µ)
j :=

(
b(µ) ∗H(0)

j+1

)
↓M

end

end

Output: H
(0)
j0

and H
(µ)
j , for µ = 1, . . . ,m− 1, j = −1, . . . , j0 with

H
(0)
j0

(k) = 〈f, ϕ̃j0,k〉 , H
(µ)
j (k) =

〈
f, ψ̃

(µ)
j,k

〉

(b) Reconstruction:

Input: H
(0)
j0

and H
(µ)
j , µ = 1, . . . ,m− 1, j = −1,−2, . . . , j0

for j = j0, . . . ,−1 do

H
(0)
j+1 :=

m−1∑

µ=0

a(µ) ∗ (H
(µ)
j ↑M )

end

Algorithm 1: The fast wavelet transform, see Appendix A.3 for notation

···

···

+

···

b(m−1)

↓Mb(0)

b(1)

H
(0)
0

↑M

↓M H
(m−1)
−1

↓M H
(1)
−1

a(0)

a(1)

H
(0)
0H

(0)
−1

↑M

↑M a(m−1)

Figure 1.4: The filter bank scheme of the fast wavelet transform
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Next, in view of the fast wavelet transform, we discuss desirable properties of wavelets
and underlying refinable functions.

Fundamental
The computation of the coefficients in (1.57) is often expensive and sometimes even
impossible. A quite common method is to replace the inner products by sample values
of f . However, Strang and Nguyen call this approach

“...the wavelet crime.”,

see [SN96]. Nevertheless, if ϕ is fundamental, then the expansion (1.55) implies

f(k) = 〈f, ϕ̃0,k〉 , k ∈ Z
d.

Hence, the coefficients are indeed sample values. In the fundamental setting, the wavelet
crime is legal.

Small Support, Smoothness
Since all functions ϕ, ϕ̃, and ψ(µ), ψ̃(µ), µ = 1, . . . ,m− 1, are compactly supported, the
coefficients

〈f, ϕ̃j,k〉 ,
〈
f, ψ̃

(µ)
j,k

〉

contain local information about f , and the smaller the support sizes, the better local
properties can be read off the coefficients. The support of wavelets and refinable functions
can be estimated by the support sizes of their underlying masks, see [GM92]: let the
symbol a, a(0) = 1, generate the refinable function ϕ, then

supp(ϕ) ⊂
∞∑

j=1

M−j supp
(
(ak)k∈Zd

)
. (1.58)

In Examples 1.1.12, 1.1.13, and 1.1.14, we even have equality for (1.58). Thus, small
mask sizes are important because they bound the supports of the underlying refinable
function and wavelets. Moreover, small masks are desirable for their own since they
provide small filter lengths in the transform, which reduces the complexity of the filter
bank convolutions.

In general, the signal f inherits at least to a certain extent some smoothness. It is
reasonable that primal wavelets and refinable function should also share this smoothness.
Although theoretical results in wavelet analysis do not require smooth dual wavelets, nu-
merical experiments in image and signal processing provide better results if primal and
dual wavelets have similar smoothness. This observation can be justified as follows: if
primal and dual wavelets have similar support size and similar smoothness, then decompo-
sition and reconstruction resemble the orthonormal setting, which is the most economic.
Thus, localization does not only involve small supports, but also similar smoothness of
primal and dual wavelets. If primal and dual refinable functions coincide, then each
wavelet inherits exactly the same smoothness, which is optimal.

Reproduction of Polynomials, Vanishing Moments
Let ϕ reproduce polynomials up to order s. Then the biorthogonality relations (1.18)
yield that all dual wavelets ψ̃(µ), µ = 1, . . . ,m− 1, have s vanishing moments, i.e.,

∫

Rd

xαψ̃(µ)(x)dx = 0, for all |α| < s. (1.59)
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Chapter 1 The Classical Setting: Wavelet Bases

Hence, the wavelet coefficient
〈
f, ψ̃

(µ)
j,k

〉
measures how much f changes in a neighborhood

of M−j
(
supp(ψ̃(µ)) + k

)
. For smooth f , the coefficient is small. If f has some kind of

singularity, then it may become large. In other words, the wavelet coefficients detect the
details of f . Since ϕ reproduces polynomials up to order s, the smooth parts of f are
covered by the shifts of ϕ. Hence, the fast wavelet transform separates the smooth parts
of the signal from its details. Finally, a high order of polynomial reproduction and a high
number of vanishing moments promote this separation.

Real-Valued, Symmetric, Nonseparable

In most applications, the signal f is real-valued. Hence, we prefer real-valued refinable
functions and wavelets. Moreover, symmetric and nonseparable wavelets are claimed to
provide better results in image and signal analysis. For instance, engineers often prefer
linear phase filters, i.e., filters that are symmetric about a point, cf. [Mal89]. If the refin-
able function’s filter is linear phase, then the refinable function itself is symmetric about
a point. Similar results hold for the associated wavelets as well as for axis symmetries,
see [Han04] and Section 2.3.2 for details.

Small Number of Wavelets

The complexity of the fast wavelet transform is directly influenced by the number of
wavelets. As already mentioned in Section 1.1.3, this number equals m − 1. Moreover,
m has the interpretation of a scaling difference, i.e., the changeover from Vj to Vj+1.
Its minimization allows for a desirable finer analysis of signals and images, see for in-
stance [MPMK98]. Since the dilation matrix has to be expanding, m = 2 minimizes
the complexity and the scaling difference. Fortunately, such dilation matrices exist in all
dimensions, see for instance (2.27) and (2.28).

1.2.3 The Characterization of Smoothness Classes

In many problems of applied mathematics, one has to address smoothness spaces. Such
function spaces play key roles in the treatment of variational problems, partial differential
equations, as well as operator equations. In order to derive solutions from practical
algorithms, we have to discretize the problems. Wavelet bases provide a valuable tool as
we shall describe in the sequel, see Chapter 5 for a more detailed discussion about this
topic.

Biorthogonal wavelets characterize many smoothness classes, i.e., they provide series
expansions and the smoothness norm is equivalent to a weighted sequence norm of wavelet
coefficients, see [Lin05] and Chapter 5 for details. Hence, the result is an efficient dis-
cretization of the original problem. However, the characterization requires that the primal
refinable function has sufficient smoothness as well as polynomial reproduction, and the
dual wavelets have a sufficient number of vanishing moments.

According to Theorem 1.2.6, smoothness of the primal refinable function implies repro-
duction of polynomials, which yields vanishing moments of the dual wavelets. Thus, the
assumptions for the characterization reduce to the smoothness condition. In fact, smooth-
ness can be considered as one of the strongest requirements in compactly supported pairs
of biorthogonal wavelet bases.
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1.3 Restrictions

1.3 Restrictions

Let ϕ and ϕ̃ be biorthogonal generators of two multiresolution analyses (Vj)j∈Z and

(Ṽj)j∈Z, respectively. Given an associated pair of biorthogonal wavelet bases

X({ψ(1), . . . , ψ(m−1)}), X({ψ̃(1), . . . , ψ̃(m−1)}),

the discussion of Section 1.2 leads to the following wish list:

• smoothness,

• small support size,

• reproduction of polynomials up to a high order,

• high number of vanishing moments,

• small number of wavelets,

• fundamental refinable functions,

• symmetric,

• real-valued,

• nonseparable,

• primal and dual refinable functions coincide.

Many items listed above depend on each other, and these dependencies entail some re-
strictions, which are the topics for the remainder of this chapter. We proceed as follows:
first, we mention some overall restrictions. They bother all wavelet bases constructions.
Then we go into detail, and we divide our discussion into restrictions of orthonormal
wavelets as well as restrictions of biorthogonal wavelets. This division may guarantee a
detailed discussion.

Overall Restrictions

The support sizes of refinable functions and wavelets compete with their smoothness. In
other words, given a certain support size, the smoothness is bounded from above. Unfor-
tunately, the bound is often quite low, which means a serious limitation. The reproduction
of polynomials and support sizes are also competing, but the arising restrictions are less
crucial.

Next, we address relations between the number of wavelets and fundamental refinable
functions. In order to minimize the number of wavelets, one requires a dilation matrix
with m = 2. Then refinable functions suffer from the following structural restriction, see
Appendix A.2 for its proof:

Lemma 1.3.1. Given a pair of compactly supported biorthogonal wavelet bases, let their
associated refinable functions ϕ and ϕ̃ be generated by symbols a and b, respectively, with
a(0) = b(0) = 1. If both refinable functions are fundamental, then m > 2.
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Chapter 1 The Classical Setting: Wavelet Bases

The effects of Lemma 1.3.1 are considered in the following specific situations.

Orthonormal Wavelets
Let M be a dilation matrix with m = 2. Then Lemma 1.3.1 is deflating for orthogonal
wavelets. It tells us that the underlying refinable function is not fundamental, see also
[Dau92] for the univariate statement. The situation is even worse. Let X({ψ}) be a
compactly supported real-valued orthonormal wavelet basis. If ψ is continuous, then it
is not symmetric about a point, cf. [Han04]. Hence, the filter is not linear phase.

In general, it is impossible to adapt univariate constructions of orthonormal wavelet
bases to the multivariate setting since they use a certain factorization technique that does
not hold in higher dimensions. In order to circumvent this problem, one often derives
multivariate wavelets from tensor products of dyadic univariate wavelets, see Example
1.1.15. On the one hand, they inherit the univariate drawbacks, such as missing symme-
tries or a nonfundamental refinable function. On the other hand, a d-dimensional tensor
approach yields wavelet bases of 2d−1 wavelets, i.e., the number increases exponentially,
which means that the complexity of the fast wavelet transform becomes too large.

Thus, we require nonseparable multivariate wavelets. However, we already face seri-
ous difficulties in the bivariate setting. For the popular quincunx dilation matrix Mq,
one times differentiable orthonormal wavelets with compact support could not yet be
constructed.

One overcomes some of the restrictions and difficulties of orthonormal wavelets with
the concept of pairs of biorthogonal wavelet bases. However, as we shall discuss next,
they still provide some undesirable constraints:

Biorthogonal Wavelets
At first glance, Lemma 1.3.1 is harmless for biorthogonal wavelet bases. In order to
consider the wavelet coefficients as sample values in the fast wavelet transform, we require
a fundamental ϕ, but we do not need ϕ̃ to be fundamental as well. Moreover, the concept
of pairs of biorthogonal wavelet bases allows for symmetric wavelets, see [CDF92, CD93,
Der99, JRS99] for successful constructions of compactly supported symmetric wavelets
with a fundamental refinable function.

In order to minimize the number of wavelets, one must choose a dilation matrix with
m = 2. If the primal refinable function is then fundamental, Lemma 1.3.1 prohibits the
last point on our wish list, i.e., the dual refinable function does not coincide with the pri-
mal one. While the last mentioned limitation may not be crucial, the following limitation
is definitely serious. One can construct compactly supported nonseparable biorthogonal
wavelet bases such that the primal refinable function is smooth and fundamental with a
small support. However, these strong primal properties are generally accompanied by a
weak dual refinable function, i.e., the dual refinable function has either poor smoothness
or a large support.

Finally, not only orthogonality but also biorthogonality is such a strong property that
not all items on our wish list can be incorporated. We conclude this chapter with Table
1.1. It summarizes the main limitations of orthonormal and biorthogonal wavelet bases.
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features limitations

orthonormal

not fundamental
m = 2
compact support
tensor approach
compact support

orthonormal
m = 2
continuous no symmetry about a point
compact support
real-valued

orthonormal
quincunx not C1(R2) so far
compact support

biorthogonal
compact support large support
smoothness

Table 1.1: Restrictions of wavelet bases
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Chapter 2

More Flexibility: Wavelet Bi-Frames

As mentioned in Section 1.3, pairs of biorthogonal wavelet bases do not allow for all desir-
able properties of wavelets. This chapter is dedicated to the introduction and discussion
of a weaker concept, namely pairs of dual wavelet frames, called wavelet bi-frames for
short. The concept generalizes pairs of biorthogonal wavelet bases. Although primal and
dual wavelets are not required to satisfy any biorthogonality relations, they still provide
some series expansion. Similar to biorthogonal bases, the coefficients can be derived by
inner products with the dual wavelets. Contrary to bases, the frame concept allows for
redundancy. Hence, the coefficients may not be unique.

In order to construct wavelet bi-frames, one generally adapts the multiresolution analy-
sis approach in Chapter 1, and wavelets are obtained from underlying refinable functions.
Contrary to the biorthogonal setting, wavelets are neither supposed to span any comple-
mentary spaces nor do they have to satisfy any geometrical relations. This also means
that primal and dual refinable functions are no longer required to be biorthogonal, which
provides much flexibility for their choice.

However, the weaker frame concept can yield some drawbacks. Contrary to biorthog-
onal wavelets, the wavelet bi-frame’s approximation order can be less than the one of
the underlying multiresolution analysis. In other words, it may happen that the wavelet
bi-frame does not use the potential of the underlying multiresolution analysis to full ca-
pacity. Nevertheless, if the wavelet bi-frame has sufficient vanishing moments, then its
approximation order reaches the one of the multiresolution analysis, and one overcomes
this problem. In fact, the number of vanishing moments can be considered as a major
quality critirion of a wavelet bi-frame.

First, following the textbook [Chr03], we introduce frames in Hilbert spaces. Then we
apply the concept to wavelets, and we establish the so-called mixed extension principle.
It provides a construction method for wavelet bi-frames, which is similar to the method in
Theorem 1.1.11 addressing biorthogonal wavelets. Since primal and dual refinable func-
tions are decoupled, the concept allows for the construction of primal and dual wavelets
from one single refinable function, whose integer shifts are not orthogonal.

Wavelet bi-frames from the mixed extension principle provide a fast wavelet frame
transform. The filter bank scheme is nearly identical to the one of the fast wavelet
transform in Figure 1.4. It merely allows for more channels, i.e., m − 1 is replaced by
a possibly larger number n. However, the lack of the biorthogonality relations requires
some additional attention to the interpretation of the computed sequences as we shall
explain in Subsection 2.3.2. Then, we introduce several optimality criteria for wavelet bi-
frames. They serve as benchmarks for the constructions in the following Chapters 3 and
4. We consider optimality with respect to approximation order, i.e., the approximation
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order of the wavelet bi-frame reaches the one of the underlying multiresolution analysis.
Moreover, we derive optimality conditions regarding sum rules, smoothness, and the
refinable function’s mask size. Finally, we address symmetry and the optimal number of
wavelets. We conclude this chapter with a summary of the established optimality criteria.

2.1 Wavelet Frames

2.1.1 Frames in Hilbert Spaces

Let K be a countable index set with some ordering. A collection {fκ : κ ∈ K} in a Hilbert
space H is called a Bessel sequence if there is a positive constant B such that

∥∥(〈f, fκ〉)κ∈K
∥∥2

ℓ2
≤ B‖f‖2H, for all f ∈ H.

It turns out that {fκ : κ ∈ K} is a Bessel sequence iff its synthesis operator

F : ℓ2(K)→H, (cκ)κ∈K 7→
∑

κ∈K
cκfκ,

is well-defined. Then ∑

κ∈K
cκfκ

converges unconditionally, and the Banach-Steinhaus Theorem yields that F is already
bounded, see Section 3.2 in [Chr03] for details. In order to obtain a series expansion for all
f ∈ H, we need a surjective synthesis operator. This motivates the following definition.

Definition 2.1.1. Let K be a countable index set. A collection {fκ : κ ∈ K} in a Hilbert
space H is called a frame for H if there exist two positive constants A, B such that

A‖f‖2H ≤ ‖(〈f, fκ〉)κ∈K‖2ℓ2 ≤ B‖f‖2H, for all f ∈ H. (2.1)

Then A and B are called the lower and upper frame bounds, respectively.

The collection {fκ : κ ∈ K} is a frame iff its synthesis operator F : ℓ2(K)→H is well-
defined and onto, see Section 5.5 in [Chr03]. Hence, each f ∈ H has a series expansion in
the frame. This expansion is not required being unique, and a frame is called overcomplete
if the synthesis operator has a nontrivial kernel.

In order to get closer to the frame concept, we present some examples. In finite-
dimensional Hilber spaces, the characterization of frames is quite simple:

Example 2.1.2. If dim(H) <∞, then {f1, . . . , fn} is a frame for H iff it spans H.

Next, we address the relations between Riesz bases and frames.

Example 2.1.3. If {fκ : κ ∈ K} is a Riesz basis for H, then it is also a frame for H, and
the Riesz bounds coincide with the frame bounds. It is not overcomplete.

In view of Example 2.1.3, one may ask for the differences between Riesz bases and
frames. The following theorem provides an answer, cf. Sections 3.4 and 5.5 in [Chr03].

Theorem 2.1.4. Let {eκ : κ ∈ K} be an orthonormal basis for H with card(K) = ∞.
Then the following holds:
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{fκ : κ ∈ K} F : ℓ2(K)→H
Bessel sequence well-defined

Frame onto

Riesz basis invertible

Orthonormal basis unitary

Table 2.1: Concepts in terms of the synthesis operator

(a) The Riesz bases for H are precisely the families {Ueκ : κ ∈ K}, where U is a
bounded and invertible operator on H.

(b) The frames for H are precisely the families {Ueκ : κ ∈ K}, where U is a bounded
and surjective operator on H.

Table 2.1 provides a summary of the differences between Bessel sequences, frames,
Riesz bases, and orthonormal bases in terms of their synthesis operators. Moreover, the
following result yields a second description of the differences between Riesz bases and
frames, see Section 6.1 in [Chr03]. Recall that a frame is called exact if it ceases to be a
frame when an arbitrary element is removed.

Theorem 2.1.5. Let {fκ : κ ∈ K} be a frame. Then the following are equivalent:

(i) {fκ : κ ∈ K} is a Riesz basis.

(ii) {fκ : κ ∈ K} is an exact frame.

Given a Bessel sequence {fκ : κ ∈ K} for H, the adjoint of the synthesis operator, i.e.,

F ∗ : H → ℓ2(K), f 7→ (〈f, fκ〉)κ∈K (2.2)

is called the analysis operator. The following simple lemma shows that biorthogonal
frames are already Riesz bases. Since it is a combination of Theorems 3.6.3 and 6.1.1 in
[Chr03], we present the proof in Appendix A.2 for the sake of completeness.

Lemma 2.1.6. Given a frame {fκ : κ ∈ K} for H, let {f̃κ : κ ∈ K} ⊂ H be a biorthogonal
sequence, i.e., 〈

fκ, f̃κ′

〉
= δκ,κ′ , for all κ, κ′ ∈ K.

Then both systems constitute a pair of biorthogonal Riesz bases for H.

Given a frame {fκ : κ ∈ K}, the synthesis operator F : ℓ2(K) → H is onto. Hence,
each f ∈ H has a series expansion. However, we have no tool so far to determine the
coefficients. In the sequel, it turns out that there is a second frame, which computes the
coefficients by inner products, and f can be expanded similar to the biorthogonal Riesz
bases setting.

The operator

S := FF ∗ : H → H, f 7→
∑

κ∈K
〈f, fκ〉 fκ
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Chapter 2 More Flexibility: Wavelet Bi-Frames

is called the frame operator. It is positive and boundedly invertible, and the system
{S−1fκ : κ ∈ K} is called the canonical dual frame, cf. Chapter 5 in [Chr03]. It is a
frame, and it provides the expansion

f =
∑

κ∈K

〈
f, S−1fκ

〉
fκ, for all f ∈ H. (2.3)

Moreover, the canonical dual frame has the following minimality property. Given f ∈ H,
for all sequences (cκ)κ∈K such that

f =
∑

κ∈K
cκfκ,

we have

∥∥(cκ)κ∈K
∥∥2

ℓ2
=
∥∥∥
(〈
f, S−1fκ

〉)
κ∈K

∥∥∥
2

ℓ2
+
∥∥∥
(〈
f, S−1fκ

〉
− cκ

)
κ∈K

∥∥∥
2

ℓ2
. (2.4)

Hence, the coefficients provided by the canonical dual frame have minimal ℓ2-norm among
all possible choices of coefficients.

Let us present a simple example of a frame for R
2 and its canonical dual frame. It is

not contained in [Chr03]:

Example 2.1.7. Let

f1 :=

(
1
0

)
, f2 :=

(
0
1

)
, f3 := − 1√

2

(
1
1

)
,

then {f1, f2, f3} is a frame for R
2 with bounds A = 1, B = 2. The frame operator and

its inverse are given by

S =
1

2

(
3 1
1 3

)
, S−1 =

1

4

(
3 −1
−1 3

)
.

Hence, the canonical dual frame is

{
1

4

(
3
−1

)
,
1

4

(
−1
3

)
,− 1

2
√

2

(
1
1

)}
. (2.5)

See Figure 2.1 for a visualization of both frames in R
2.

If we can choose A = B in (2.1), then {fκ : κ ∈ K} is called a tight frame. It yields
S = A · idH, and the inversion of S is trivial, cf. Section 5.7 in [Chr03]. Thus, although
the elements are not orthogonal in general, the tight frame yields an expansion like (1.2)
by

f =
1

A

∑

κ∈K
〈f, fκ〉 fκ.

In other words, tight frames generalize orthonormal bases. For instance, the uniform
arrangement of three vectors in R

2 provides a tight frame, cf. [Dau92]:
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S−1f2

S−1f1
S−1f3

f1

f290◦

135◦

f3

135◦

α

α β

Figure 2.1: Primal frame and its canonical dual in Example 2.1.7. We have α ≈ 116.57◦

and β ≈ 126.87◦.

120◦

120◦

120◦

f3 f2

f1

Figure 2.2: Tight frame in Example 2.1.8
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Example 2.1.8. Let

f1 :=

(
0
1

)
, f2 := −1

2

(√
3

1

)
, f3 :=

1

2

(√
3
−1

)
,

then {f1, f2, f3} is a tight frame for R
2 with frame bounds A = B = 3

2 , see Figure 2.2.

In infinite-dimensional Hilbert spaces, there exist overcomplete tight frames, whose
finite subsets are linearly independent, see [Chr03]:

Example 2.1.9. It is well-known that
{
e2πikx|(0,1) : k ∈ Z

}
is an orthonormal basis for

L2(0, 1). Let J ⊂ (0, 1) be a pure subinterval. Then
{
e2πikx|J : k ∈ Z

}
is an overcomplete

tight frame for L2(J). It is noteworthy that each finite subset is linearly independent,
cf. Section 1.6 in [Chr03].

In the sequel, we consider frames, which inherit a certain structure. First, we address
Gabor frames. They are extensively studied in the context of time frequency analysis,
see the textbooks [FS03, Grö01]. For a, b ∈ R, let

Ta : L2(R)→ L2(R), (Taf) (x) := f(x− a),
Eb : L2(R)→ L2(R), (Ebf) (x) := e2πibxf(x),

denote translation and modulation operators, respectively. For g ∈ L2(R), the collection
{EmbTang : m,n ∈ Z} is called a Gabor frame if it is a frame for L2(R). The following
example is borrowed from Section 8.6 in [Chr03]:

Example 2.1.10. Let a, b > 0 and g(x) := e−x2
. Then {EmbTang : m,n ∈ Z} is a Gabor

frame iff ab < 1.

Given g ∈ L2(R) and a, b > 0, let {EmbTang : m,n ∈ Z} be a Gabor frame. Then the
frame operator S commutes with the translation and modulation operators, i.e.,

SEmbTna = EmbTnaS, for all m,n ∈ Z.

This implies EmbTna = S−1EmbTnaS, and we finally obtain

EmbTnaS
−1 = S−1EmbTna, for all m,n ∈ Z.

Thus, the canonical dual frame is

{
EmbTanS

−1g : m,n ∈ Z
}
. (2.6)

This provides a comfortable feature of Gabor frames: their canonical dual is also a Gabor
frame.

Next, we address the wavelet structure. Given ψ(1), . . . , ψ(n) ∈ L2(R
d), we call

X({ψ(1), . . . , ψ(n)}) a wavelet frame if it constitutes a frame for L2(R
d). Unfortunately,

dilation and translation generally do not commute with the frame operator. Hence, its
canonical dual may not have the wavelet structure. The following Subsection 2.1.2 pro-
vides an alternative, which circumvents this inconvenience.
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2.1 Wavelet Frames

2.1.2 Bi-Frames

The frame concept allows for redundancy. Thus, there can be further expansions simi-
lar to (2.3). Given the frame {f1, f2, f3} in Example 2.1.7, then {f1, f2} is already an
orthonormal basis for R

2. Hence,

{f̃1, f̃2, f̃3} := {f1, f2, 0} (2.7)

is a frame which provides the expansion

f =
2∑

κ=1

〈
f, f̃κ

〉
fκ, for all f ∈ R

2.

Thus, the choice (2.7) essentially yields the usual orthonormal expansion. Hence, non-
canonical choices can provide some features.

Given a frame of wavelets, we have already discussed that its canonical dual frame may
not have the wavelet structure as well. Nevertheless, the canonical dual can possibly be
replaced by an alternative dual wavelet frame. This motivates the following definition.

Definition 2.1.11. Two Bessel sequences {fκ : κ ∈ K} and {f̃κ : κ ∈ K} for H are called
a pair of dual frames (or a bi-frame) if the expansion

f =
∑

κ∈K

〈
f, f̃κ

〉
fκ (2.8)

holds for every f ∈ H.

Given a bi-frame, (2.8) means idH = FF̃ ∗, where F and F̃ are the associated synthesis
operators. Then F is surjective, and F̃ ∗ is injective, which yields that F̃ is surjective.
Hence, both pairs of a bi-frame are actually frames for H, see also Chapter 5 in [Chr03].

Next, we apply the bi-frame concept to wavelets.

Definition 2.1.12. Given ψ(µ), ψ̃(µ) ∈ L2(R
d), µ = 1, . . . , n, then

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)})

are called a wavelet bi-frame if they constitute a pair of dual frames in L2(R
d).

For a wavelet bi-frame X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}), the usual bi-frame
expansion (2.8) reads as

f =

n∑

µ=1

∑

j∈Z

∑

k∈Zd

〈
f, ψ̃

(µ)
j,k

〉
ψ

(µ)
j,k , for f ∈ L2(R

d). (2.9)

Hence, they combine the advantages of Gabor frames and tight frames: similar to the
Gabor frames, primal and dual frame share the same structure. As with tight frames,
one does not require the inversion of the frame operator.
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Chapter 2 More Flexibility: Wavelet Bi-Frames

2.2 The Mixed Extension Principle

The wavelet construction of Section 1.1.3 is based on a refinable function ϕ generating
a multiresolution analysis (Vj)j∈Z. The closed linear span of the integer shifts of the
wavelets is an algebraic complement of V0 in V1. Thus, the wavelets are contained in V1.
Then they can be represented by linear combinations of ϕ(Mx− k), k ∈ Z

d.
In the wavelet frame setting, we still use this approach, but we can weaken the concept

of multiresolution analysis in Definition 1.1.9. We replace (M-4) by the weaker condition

(M-4’) there is a function ϕ ∈ V0 such that V0 is the closed linear span of its integer
shifts.

In other words, we can skip the stability assumption on the generator ϕ. According
to [dBDR93], each compactly supported refinable function ϕ ∈ L2(R

d) with ϕ̂(0) 6= 0
generates a multiresolution analysis with (M-4) replaced by (M-4’). Thus, we do not
require any stability.

As usual, we start with two compactly supported refinable functions ϕ and ϕ̃ contained
in L2(R

d). They are implicitly given by two symbols a(0) and b(0). The wavelets are
defined by

ψ(µ)(x) :=
∑

k∈Zd

a
(µ)
k ϕ(Mx− k), ψ̃(µ)(x) :=

∑

k∈Zd

b
(µ)
k ϕ̃(Mx− k), (2.10)

where a(µ), b(µ) are additional symbols, for µ = 1, . . . , n. Note the only difference to (1.27)
and (1.28): we allow for n ≥ m − 1. Since the frame concept abandons biorthogonality
as well as stability of the generators, neither the relations (1.15) and (1.16) nor the
decompositions (1.14) are required to hold.

In the sequel, we discuss conditions which ensure that

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)})

constitute a wavelet bi-frame. We say the symbol family
{(
a(µ), b(µ)

)
: µ = 0, . . . , n

}

satisfies condition (I) if the following holds:

(I-a) a(0)(0) = b(0)(0) = 1.

(I-b) a(µ)(0) = b(µ)(0) = 0, for all µ = 1, . . . , n.

(I-c) For all γ ∈ ΓM , ξ ∈ R
d,

n∑

µ=0

a(µ)(ξ + γ)b(µ)(ξ) = δ0,γ . (2.11)

Let us express condition (I) in terms of modulation matrices. In (1.37), we already defined
modulation matrices from symbol families, provided that n = m − 1. This notation
extends to n ≥ m by

a :=
(
a(µ)(·+ γν)

)
ν=0,...,m−1
µ=0,...,n

, b :=
(
b(µ)(·+ γν)

)
ν=0,...,m−1
µ=0,...,n

.
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Hence, in contrast to the biorthogonal setting, the modulation matrices are no longer
supposed to be square but rectangular. Due to the Z

d-periodicy of trigonometric poly-
nomials, (I-c) is equivalent to

ab⊤ = Im. (2.12)

Since modulation matrices do generally not commute, there is a differences between (2.12)
and the condition (1.38) in the biorthogonal context.

The following mixed extension principle was stated in [CHS02, DHRS03]. Due to
the results in [Bow00, CSS98], the mild smoothness assumptions on the generators are
removed.

Theorem 2.2.1 (MEP). Let the symbol family {(a(µ), b(µ)) : µ = 0, . . . , n} satisfy con-
dition (I), and let a(0), b(0) generate refinable functions ϕ, ϕ̃ ∈ L2(R

d), respectively. For
µ = 1, . . . , n, define ψ(µ), ψ̃(µ) by (2.10). Then

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)})
constitute a wavelet bi-frame.

If the assumptions in Theorem 2.2.1 are satisfied and n = m − 1, then we obtain a
wavelet bi-frame

X({ψ(1), . . . , ψ(m−1)}), X({ψ̃(1), . . . , ψ̃(m−1)}). (2.13)

According to n = m− 1, the matrices a and b are square, and we have the equivalence

ab⊤ = Im iff a⊤b = Im. (2.14)

The right-hand side coincides with (1.38). Hence, for n = m − 1, (I-c) is equivalent
to the condition (1.31) for the construction of biorthogonal wavelets. If the underlying
refinable functions ϕ and ϕ̃ have biorthogonal integer shifts, then the systems in (2.13)
are biorthogonal. By applying Lemma 2.1.6 we verify that they already constitute a pair
of biorthogonal wavelet bases. Thus, Theorem 2.2.1 is a direct generalization of Theorem
1.1.11 for the construction of biorthogonal wavelets regarding wavelet bi-frames.

Remark 2.2.2. In biorthogonal constructions, the symbol b(0) has to be dual to a(0).
The choice n ≥ m in Theorem 2.2.1 has a deep impact since then b(0) is no longer required
to be dual to a(0). Moreover, we do not assume any stability of the generators ϕ and ϕ̃.
Hence, we obtain much more flexibility than in the biorthogonal setting.

2.3 Properties and Optimality Criteria

2.3.1 The Approximation Order of Wavelet Bi-Frames

Given a compactly supported wavelet bi-frame

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)})
with underlying refinable functions ϕ and ϕ̃, respectively, the truncated representation
Qj is a well-defined operator from L2(R

d) to Vj, i.e.,

Qj : L2(R
d)→ Vj, f 7→

∑

µ=1,...,n

j′<j,k∈Zd

〈
f, ψ̃

(µ)
j′,k

〉
ψ

(µ)
j′,k,
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Chapter 2 More Flexibility: Wavelet Bi-Frames

where (Vj)j∈Z denotes the multiresolution analysis generated by ϕ, see (1.51) for the
biorthogonal setting. The Definition 1.2.2 about approximation order of a pair of bi-
orthogonal wavelet bases obviously extends to wavelet bi-frames. Since Qj maps into Vj,
the approximation order of the wavelet bi-frame is still bounded by that of the underlying
multiresolution analysis. Note that we do not assume that the generator ϕ is stable since
we only use (M-4’) on page 34 instead of the stronger condition (M-4) in Definition
1.1.9. Nevertheless, Theorems 1.2.3 and 1.2.4 as well as Corollary 1.2.5 still hold with
respect to this weaker assumptions on the generator, cf. [Jia98, Lin05]. Hence, at least
for idempotent dilation matrices, the approximation order of the multiresolution analysis
is determined by the generator’s ability to reproduce polynomials.

In order to obtain a wavelet bi-frame with a high approximation order, we consider
two aspects. On the one hand, one requires a high approximation order of the underlying
multiresolution analysis, which provides the potential of the wavelet bi-frame. According
to Theorem 1.2.7, it can be ensured by the choice of a symbol satisfying sum rules of
high order. On the other hand, the bi-frame should provide an optimal approximation
order, i.e., its approximation order reaches the approximation order of the underlying
multiresolution analysis.

Let us address the second aspect. In the sequel, we establish conditions, which en-
sure that the bi-frame provides optimal approximation order. We say a symbol a has s
vanishing moments if

∂αa(0) = 0, for all |α| < s.

According to (2.10) and the equivalent expression (1.29) in frequency, vanishing moments
of the wavelet symbol imply vanishing moments of the associated wavelet. By summa-
rizing the results in [DHRS03], we obtain the following theorem.

Theorem 2.3.1. Let M be isotropic and let the symbol family
{(
a(µ), b(µ)

)
: µ = 0, . . . , n

}

satisfy condition (I) on page 34, generating a wavelet bi-frame in L2(R
d). Let the un-

derlying primal multiresolution analysis exactly provide approximation order s0. If, for
µ = 1, . . . , n, all products a(µ)b(µ) have 2s1 vanishing moments, then the approximation
order s of the wavelet bi-frame satisfies

min {s0, 2s1} ≤ s ≤ s0. (2.15)

Let the symbol family {(a(µ), b(µ)) : µ = 0, . . . , n} satisfy condition (I) on page 34.
According to the results in [CHR00], if a(0) and b(0) satisfy the sum rules of order s and
s′, respectively, and provided that n = m − 1, then the wavelet symbols have s′ and s
vanishing moments, respectively. However, the choice n = m−1 provides the restrictions
of the biorthogonal setting since it requires the duality (1.26) of a(0) and b(0). Thus, we
focus on n ≥ m, see also Remark 2.2.2. Unfortunately, then the sum rules no longer
ensure vanishing moments, and we have to pay extra attention to them. According to
Theorems 2.3.1 and 1.2.7, a wavelet bi-frame provides optimal approximation order if
the number of vanishing moments is at least half of the sum rule order of the underlying
refinable function’s symbol.

Next, we address the first aspect, i.e., the approximation order of the underlying mul-
tiresolution analysis. According to Corollary 1.2.5 and Theorem 1.2.7, it is determined by
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k2

R

R

k1

−L

−L

Figure 2.3: The set (2.16) for d = 2

the sum rule order of the generator’s symbol. In the following, we establish optimality cri-
teria with respect to mask size and sum rule order. Since fundamental refinable functions
are on our wish list on page 23, we restrict the following considerations to interpolatory
symbols. The next theorem is borrowed from [HJ98].

Theorem 2.3.2. For M = 2Id, let an interpolatory symbol satisfy the sum rules of order
s. If its mask is supported on

d∏

i=1

[−Li, Ri], for Li, Ri ∈ N0,

then

s ≤ min
i=1,...,d

(⌊Li + 1

2

⌋
+
⌊Ri + 1

2

⌋)
.

Furthermore, there is a unique univariate interpolatory symbol č, which is supported on
[−2N + 1, 2N − 1] and satisfies the sum rules of order 2N .

Let us derive similar results for nondyadic dilation. Given nonnegative L,R, we denote

[−L,R]Σ :=
{

(k1, . . . , kd)
⊤ ∈ Z

d : −L ≤
d∑

i=1

ki ≤ R
}
, (2.16)

see Figure 2.3 for a bivariate visualization. Then we obtain the following corollary. It
includes the bivariate results in [HJ02], which address the quincunx dilation matrix.

Corollary 2.3.3. Assume that M satisfies

ΓM =
{
0, (1/2, . . . , 1/2)⊤

}
. (2.17)

Let c be an interpolatory symbol satisfying the sum rules of order s with respect to M .
For L,R ∈ N0, let its mask be supported on [−L,R]Σ. Then,

s ≤
⌊L+ 1

2

⌋
+
⌊R+ 1

2

⌋

holds.
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Proof. The univariate symbol

č(ξ1) := c(ξ1, . . . , ξ1)

is interpolatory, and its mask is supported on [−L,R]. By applying the chain rule of
differentiation, we observe that it satisfies the sum rules of order s with respect to dyadic
dilation. Theorem 2.3.2 then concludes the proof.

Theorem 2.3.2 and Corollary 2.3.3 yield optimality criteria for symbols of refinable
functions: we say a symbol provides optimal sum rule order if its mask support does not
allow for a higher order.

2.3.2 Fast Wavelet Frame Transform

The construction of wavelet bi-frames by Theorem 2.2.1 provides the fast wavelet frame
transform, which is the topic of the present subsection. The core of the transform works
identical to the fast wavelet transform in Algorithm 1, but we have to be careful with the
input sequence. Given f ∈ V0 with the expansion

f(x) =
∑

k∈Zd

λkϕ0,k(x), (2.18)

the integer shifts of ϕ̃ are not necessarily biorthogonal to ϕ. Hence, we may not conclude

λk = 〈f, ϕ̃0,k〉 , k ∈ Z
d.

In order to derive the inner product from the coefficients in (2.18), we introduce the

bracket product of ϕ̂ and ̂̃ϕ, i.e.,

[
ϕ̂, ̂̃ϕ

]
:=
∑

k∈Zd

ϕ̂(· − k)̂̃ϕ(· − k). (2.19)

Since both ϕ and ϕ̃ are compactly supported, Poisson’s summation formula yields that
(2.19) is a trigonometric polynomial, cf. [JM90]. According to [DHRS03], we obtain

(〈f, ϕ̃0,k〉)k∈Zd =
[
ϕ̂, ̂̃ϕ

]
∗ (λk)k∈Zd , (2.20)

where we apply the filter bank notation in Appendix A.23, i.e., one convolves the Fourier
coefficients of the trigonometric polynomial with the sequence.

For the fast wavelet frame transform, the input sequence H
(0)
0 is expected either to be

the coefficient sequence in (2.18) or directly the inner products

H
(0)
0 (k) = 〈f, ϕ̃0,k〉 , k ∈ Z

d. (2.21)

Then, for j < 0, µ = 1, . . . , n, the transform computes

H
(0)
j (k) = 〈f, ϕ̃j,k〉 ,

H
(µ)
j (k) =

〈
f, ψ̃

(µ)
j,k

〉
,
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see Algorithm 2. Note that in case of H
(0)
0 = (λk)k∈Zd as the input sequence of the decom-

position, we convolve it with
[
ϕ̂, ̂̃ϕ

]
. Then the reconstruction requires the deconvolution

of
[
ϕ̂, ̂̃ϕ

]
. From a computational point of view, the deconvolution is unproblematic since

it can be accomplished by some predefined deconvolution method in matlab. Alterna-
tively, one may apply the fast Fourier transform. Then deconvolution means division on
the Fourier domain. The computation of

[
ϕ̂, ̂̃ϕ

]
is more expensive, but it is only required

once.

(a) Decomposition:

Input: H
(0)
0

if
f(x) =

∑

k∈Zd

H
(0)
0 (k)ϕ(x − k)

then

H
(0)
0 ←

[
ϕ̂, ̂̃ϕ

]
∗H(0)

0

end

/* from this point on, we have H
(0)
0 (k) =

〈
f, ψ̃

(0)
0,k

〉
*/

for j = −1,−2, . . . , j0 do
for µ = 0, . . . , n do

H
(µ)
j :=

(
b(µ) ∗H(0)

j+1

)
↓M

end

end

Output: H
(0)
j0

and H
(µ)
j , for µ = 1, . . . , n, j = −1, . . . , j0 with

H
(0)
j0

(k) = 〈f, ϕ̃j0,k〉 , H
(µ)
j (k) =

〈
f, ψ̃

(µ)
j,k

〉

(b) Reconstruction:
for j = j0, . . . ,−1 do

H
(0)
j+1 :=

n∑

µ=0

a(µ) ∗ (H
(µ)
j ↑M )

end

if H
(0)
0 was convolved by [ϕ̂, ̂̃ϕ] during decomposition then

deconvolve [ϕ̂, ̂̃ϕ] from H
(0)
0 .

end

Algorithm 2: The fast wavelet frame transform

If we do not apply any convolution and deconvolution of
[
ϕ̂, ̂̃ϕ

]
, then we still have a

filter bank with exact reconstruction, see Figure 2.4. However, we no longer have any

interpretation of the sequences H
(µ)
j as inner products. Note that Figure 1.4 and Figure

2.4 only differ by the number of channels.
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···

···

+

···

↓Mb(0)

b(1)

H
(0)
0

↑M↓M H
(1)
−1

a(0)

a(1)

H
(0)
0H

(0)
−1

↑M

↑Mb(n) a(n)↓M H
(n)
−1

Figure 2.4: The filter bank scheme of the fast wavelet frame transform

In order to bound the complexity of the transform, one must ask for the minimal
number of channels. According to condition (I) on page 34, the number of channels is at
least m, i.e., n = m − 1. However, then the symbol b(0) has to be dual to a(0), and the
wavelet bi-frame suffers from the restrictions of the biorthogonal setting, see Chapter 1.

Let us address the desirable case m = 2 in more detail. According to our wish list on
page 23, let the underlying primal refinable function be fundamental, and let the dual
refinable function coincide with the primal one. Then an application of Lemma 1.3.1
yields n ≥ 2:

Lemma 2.3.4. Let the symbol family

{(
a(0), a(0)

)
,
(
a(1), b(1)

)
, . . . ,

(
a(n), b(n)

)}

satisfy condition (I) on page 34. If a(0) generates a fundamental refinable function, then
n ≥ 2.

Proof. Since n ≥ m − 1, we merely consider m = 2, and we assume n = 1. Then the
associated polyphase matrices are square, and (2.14) yields

a⊤b = Im.

Thus, Lemma 1.3.1 with a(0) = b(0) and ϕ = ϕ̃ imply that the underlying refinable
function is not fundamental.

Lemma 2.3.4 provides the following optimality condition. For m = 2, let a wavelet
bi-frame be constructed by Theorem 2.2.1, and suppose that primal and dual wavelets
are obtained from one single fundamental refinable function. We say the wavelet bi-frame
provides an optimal number of wavelets if it is generated by only two wavelets.

2.3.3 Symmetry

We already mentioned in Section 1.2.2, that symmetric wavelets are desired in image and
signal analysis. With regard to the construction of wavelet bi-frames by Theorem 2.2.1,
it is important to express symmetry in terms of the associated symbols. Following Han
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in [Han04], we consider symmetry with respect to a so-called symmetry group G, i.e., G
is a finite subgroup of {

U ∈ Z
d×d : |det(U)| = 1

}

such that

MUM−1 ∈ G, for all U ∈ G. (2.22)

A symbol a is called G-symmetric if there exists p ∈ R
d such that

aU(k−p)+p = ak, for all U ∈ G, k ∈ Z
d.

Thus, we implicitly impose (Id − U)p ∈ Z
d, for all U ∈ G. A function f is called

G-symmetric if there is q ∈ R
d such that

f(U(x− q) + q) = f(x), for all U ∈ G, x ∈ R
d.

The role of the symmetry group can be described as follows: the elements of G express
the symmetry, and the additional requirement (2.22) transfers symbol symmetries into
symmetries of the refinable function and the wavelets. According to the results in [Han04],
we have the following theorem:

Theorem 2.3.5. Given a symbol a with a(0) = 1, let ϕ be its generated refinable function.
If a is G-symmetric, then ϕ is also G-symmetric. Moreover, if a and the associated wavelet
symbol are G-symmetric, then the wavelet is also G-symmetric.

Theorem 2.3.5 yields some good news for the construction of wavelets by Theorem
2.2.1. Symmetric wavelets can be obtained by the choice of symmetric symbols. We say
a wavelet bi-frame provides optimal symmetry if the wavelets inherit the full symmetries
of the underlying refinable function in the sense of Theorem 2.3.5.

2.3.4 Smoothness

For refinable functions, the importance of smoothness is twofold. First, smoothness can
be used as a sufficient condition for approximation order of the multiresolution analysis
since it yields reproduction of polynomials, which provides a high approximation order,
cf. Theorem 1.2.6 and Corollary 1.2.5.

Second, certain smoothness is necessary for the characterization of smoothness spaces
since wavelets are required to be contained in the space. In Subsection 1.2.3, we already
mentioned that pairs of biorthogonal wavelet bases characterize certain function spaces,
i.e., they constitute bases for the space und a weighted sequence norm of wavelet coeffi-
cients yields an equivalent norm. Contrary to Chapter 1, the present chapter addresses the
weaker concept of wavelet bi-frames. Recently, Borup, Gribonval, and Nielsen extended
the characterization of function spaces from biorthogonal wavelets to dyadic wavelet bi-
frames, see [BGN04] for details. Moreover, in Chapter 5 of the present thesis, we gener-
alize their results regarding wavelet bi-frames with isotropic dilation matrices. The main
requirements for such a characterization are smoothness and vanishing moments.

‘Smoothness’ and support size are competing properties. In this section, we derive
optimality criteria in the form:
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“Given a support size, then the refinable function can reach at most a certain
smoothness.”

Following Han and Jia in [Han99, HJ02], we measure smoothness in the scale of Lipschitz
spaces Lip

(
s, Lp(R

d)
)
, 1 ≤ p ≤ ∞, cf. Appendix A.1. For f ∈ Lp(R

d), we consider the
Lp-critical exponent

sp(f) := sup
{
s ≥ 0 : f ∈ Lip

(
s, Lp(R

d)
)}

. (2.23)

This means, for p = 2, we essentially measure Sobolev regularity and, for p = ∞, one
estimates Hölder smoothness, i.e.,

s2(f) = sup
{
s ≥ 0 : f ∈W s(L2(R

d))
}
, (2.24)

s∞(f) = sup
{
s ≥ 0 : f ∈ Cs(Rd)

}
, (2.25)

see Appendix A.1 for details. The first result for dyadic dilation is borrowed from [Han99].

Theorem 2.3.6. For M = 2Id, let an interpolatory symbol a generate the fundamental
refinable function ϕ. If a is supported on [−2N + 1, 2N − 1]d and satisfies the sum rules
of order 2N , then

sp(ϕ) ≤ sp(ϕ0), 1 ≤ p ≤ ∞, (2.26)

where ϕ0 is the compactly supported refinable function of the univariate dyadic interpo-
latory symbol č, whose mask is supported on [−2N + 1, 2N − 1], satisfying the sum rules
of order 2N .

According to Theorem 2.3.2, the symbol č is uniquely determined. Then ϕ0 in (2.26) is
unique up to multiplication with a constant, cf. [CDM91]. For N = 2, we have s∞(ϕ0) =
2, see [Han99]. This yields the following corollary, which is also contained in [Han99]:

Corollary 2.3.7. Let an interpolatory symbol a generate a fundamental refinable function
ϕ with M = 2Id. If a is supported on [−3, 3]d, then

s∞(ϕ) ≤ 2.

Theorem 2.3.6 and Corollary 2.3.7 address dyadic dilation. The relation of smoothness
and support size is much more complicated for nondyadic dilation. In the sequel, we derive
optimality criteria for specific dilation matrices mentioned in [Han02]. These matrices
can be defined in arbitrary dimensions, and they satisfy m = 2. Hence, they allow for a
minimal number of wavelets. Then in Chapters 3 and 4, we construct wavelet bi-frames
with their scalings: for d = 2, 3, let

M =

(
−1 1
1 1

)
, M =




0 2 1
−1 −1 0
1 1 1


 . (2.27)

For d > 3, we define

M =




0 2 1 . . . . . . . 1
...

. . . 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . . . . . 0 1 0
−1 . . . . . . . . . . . . −1 0
1 . . . . . . . . . . . . . . . . . 1




. (2.28)
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k1

k2

−2N + 1

2N − 1

2N − 1

N − 1

−N + 1

−2N + 1

Figure 2.5: The support set in (2.30) for d = 2

Then Md = 2Id, and M generates the checkerboard lattice, i.e.,

MZ
d =

{
(k1, . . . , kd)

⊤ ∈ Z
d :

d∑

i=1

ki ∈ 2Z

}
. (2.29)

Note that the bivariate Checkerboard lattice is also generated by the box spline and
quincunx dilation matrices Mb and Mq, respectively, cf. (1.6).

Since ΓM can be chosen as in (2.17), the sum rule estimates of Corollary 2.3.3 are
applicable. Moreover, under slightly stronger assumptions, we also obtain estimates with
respect to smoothness.

Proposition 2.3.8. Given M by (2.27), (2.28), let a symbol a satisfy the sum rules of
order 2N , and let it generate a fundamental refinable function ϕ. If its mask is supported
on

[−2N + 1, 2N − 1]Σ ∩
{
k ∈ Z

d :
∣∣∣

d∑

i=l

ki

∣∣∣ ≤ N − 1, l = 2, . . . , d
}
, (2.30)

then
sp(ϕ) ≤ sp(ϕ0), 1 ≤ p ≤ ∞, (2.31)

with ϕ0 as in Theorem 2.3.6.

For d = 2, Proposition 2.3.8 is already stated in [HJ02]. The concrete choice ofM allows
the extension to higher dimensions, see Figure 2.5 for a visualization of the support set
(2.30) with d = 2.

Proof. Due to Md = 2Id, ϕ is also refinable with respect to the symbol

c(ξ) := a(ξ) · a(M⊤ξ) · · · a(M⊤d−1
ξ)

with dyadic dilation. Define the univariate symbol č by

č(ξ1) := c(ξ1, . . . , ξ1).
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We only verify that č is the unique interpolatory symbol in Theorem 2.3.2. Then following
the lines in [HJ02] yields Proposition 2.3.8.

First, we verify

a(0, ξ1, . . . , ξ1) = 1, . . . , a(0, . . . , 0, ξ1) = 1, for all ξ1 ∈ R. (2.32)

Due to [HJ02], (2.32) holds provided that d = 2. For arbitrary d, we reduce to the
bivariate setting by

ã(ξ1, ξ2) := a(ξ1, . . . , ξ1, ξ2, . . . , ξ2),

where we can vary the numbers of appearing ξ1, ξ2. Both should appear at least once. The
symbol ã is interpolatory, and its mask is supported on (2.30) with d = 2. By applying
the chain rule of differentiation, it satisfies the sum rules of order 2N . This concludes the
proof of (2.32).

According to (2.27), (2.28), and (2.32), we have č(ξ1) = a(ξ1, . . . , ξ1). Thus, it is
interpolatory, and it satisfies the sum rules of order 2N . By applying (2.30), the mask of
č is supported on [−2N + 1, 2N − 1]. Hence, it is the unique symbol in Theorem 2.3.2,
which concludes the proof.

We derived optimality criteria with respect to smoothness and support size: let us
say a refinable function ϕ has optimal smoothness if either Theorem 2.3.6 or Proposition
2.3.8 is applicable and the associated inequality (2.26) or (2.31), respectively, becomes
an equality.

2.3.5 Summary of Optimality Criteria

In the previous subsections, we established optimality criteria for wavelet bi-frames, see
Table 2.2 for a summary of their references. On the one hand, we purely consider opti-
mality in terms of the underlying refinable function:

Mask Size vs. Sum Sule Order / Smoothness

Mask size and sum rule order are competing properties. Then Theorem 2.3.2 and Corol-
lary 2.3.3 provide statements about maximal sum rule order with respect to some given
mask size. Generally, mask size and smoothness are also competing properties. In or-
der to obtain smoothness bounds for a given mask size, a univariate refinable function
plays the role of a reference function, whose smoothness is a benchmark. Then Theorem
2.3.6, Corollary 2.3.7, and Proposition 2.3.8 provide statements about maximal Lipschitz
smoothness with respect to some given mask size.

On the other hand, we examine whether the wavelets exploit the potential of the
underlying refinable function:

Approximation Order / Symmetry / Number of Wavelets

The refinable function generates a multiresolution analysis which provides a certain ap-
proximation order. We require a wavelet bi-frame that reaches this approximation order.
Theorem 2.3.1 tells us that the bi-frame provides optimal approximation order if the
number of vanishing moments is at least the half of the order of sum rules. This provides
a main benchmark for our constructions in Chapters 3 and 4.
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property Reference

sum rules Theorem 2.3.2, Corollary 2.3.3

smoothness Theorem 2.3.6, Corollary 2.3.7, Proposition 2.3.8

card(wavelets) Lemma 2.3.4

approx. order Theorem 2.3.1

symmetry Theorem 2.3.5

Table 2.2: Optimality criteria

Given an underlying refinable function with certain symmetries, then the wavelets
should preserve these symmetries. According to Theorem 2.3.5, this can be ensured by a
careful choice of the symbols.

In order to bound the complexity of the fast wavelet frame transform, we desire a
minimal number of wavelets. Provided that all wavelets are derived from one single
fundamental refinable function, one requires at least two wavelets, see Lemma 2.3.4.
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Chapter 3

Compactly Supported Wavelet Bi-Frames
Obtained by Convolution

The present chapter is dedicated to the construction of wavelet bi-frames. Our aim is
the verification that the more flexible bi-frame approach can overcome the restrictions of
wavelet bases, and we look for wavelet bi-frames providing all items on our wish list in
Section 1.3.

First, we establish the general construction procedure based on the mixed extension
principle. Roughly speaking, our approach is based on the convolution of a pair of
biorthogonal wavelets bases. Since we do not require any smoothness, their choice can
satisfy all other items of our wish list. By some convolution process, we derive a wavelet bi-
frame. It essentially preserves the properties of the biorthogonal wavelets, and smoothness
is added by the convolution. In fact, the procedure works under weaker assumptions: we
do not require a pair of biorthogonal wavelet bases, but only symbols satisfying the
conditions (1.31). The underlying refinable functions ϕ and ϕ̃ do not even need to be
contained in L2(R

d). We merely suppose that their convolution is in L2(R
d). Since

we consider compactly supported functions, membership in L2(R
d) means some kind

of smoothness condition. Hence, these weaker assumptions allow for extremely small
supports. It should be mentioned that the convolved refinable function ϕ ∗ ϕ̃ can be very
smooth, although ϕ or ϕ̃ are not even contained in L2(R

d). Primal and dual wavelets of
the resulting bi-frame are obtained from this single refinable function ϕ ∗ ϕ̃. Hence, they
are contained in the same smoothness class.

Then, we discuss the choice of the symbols satisfying the conditions (1.31). Finally, our
approach provides optimality with respect to the criteria summarized in Subsection 2.3.5.
The underlying refinable function can be chosen to be fundamental with an optimal sum
rule order. The general procedure provides also an optimal approximation order, i.e.,
the wavelets have sufficient vanishing moments. As a highlight, we construct real-valued
wavelet bi-frames in any dimensions with arbitrary smoothness and an arbitrary number
of vanishing moments. The bi-frame is generated by only three wavelets and they are
symmetric about a point. Moreover, the underlying refinable function provides optimal
smoothness. We also derive wavelet bi-frames with respect to the quincunx dilation
matrix, and we construct a wavelet bi-frame from a fundamental version of a bivariate box
spline. Our bi-frames possess similar or even better properties with significantly smaller
mask sizes than comparative biorthogonal wavelet bases from [CHR00, HJ02, HR02].
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3.1 A Construction by the Mixed Extension Principle

First, we verify that condition (I) on page 34 is invariant under a certain multiplication
process:

Theorem 3.1.1. Let the symbol family
{(
a(µ), b(µ)

)
: µ = 0, . . . , n1

}
satisfy condition (I),

and let another family
{(
c(ν), d(ν)

)
: ν = 0, . . . , n2

}
satisfy (I-a), (I-b), and at least the

equation in (I-c) for γ = 0.

(a) Then the family

{(
a(µ)c(ν), b(µ)d(ν)

)
: µ = 0, . . . , n1, ν = 0, . . . , n2

}
(3.1)

satisfies condition (I).

(b) For ν = 0, . . . , n2 and µ = 1, . . . , n1, define

ǎ(ν)(ξ) := a(0)(ξ)c(ν)(M⊤ξ) , b̌(ν)(ξ) := b(0)(ξ)d(ν)(M⊤ξ) ,
ǎn2+µ := a(µ) , b̌n2+µ := b(µ) .

(3.2)

Then also the family

{(
ǎ(µ), b̌(µ)

)
: µ = 0, . . . , n1 + n2

}

satisfies condition (I).

Theorem 3.1.1 extends some known results in the wavelet frame literature: for the
choice n1 = n2 and

a(µ) = b(µ) = c(µ) = d(µ), µ = 0, . . . , n1,

part (a) becomes Lemma 3.2 in [Han03a]. There, it is applied to the construction of
tight wavelet frames. For a(µ) = b(µ), and c(ν) = d(ν), part (b) reduces to the induc-
tive construction algorithm given in [GR98, RS98]. These restrictions have some crucial
drawbacks: in order to obtain a minimal number of wavelets, one chooses n1 = m − 1.
Then a(µ) = b(µ), for µ = 0, . . . ,m − 1, means that the symbol family has to satisfy the
conditions for an orthogonal wavelet bases. This causes the same problems as already
mentioned in Section 1.3: for many dilation matrices, it means a lack of smoothness and
symmetry of the underlying functions.

Finally, the benefit of the more flexible Theorem 3.1.1 is the following: a choice a(µ) 6=
b(µ) allows for smooth and symmetric wavelet bi-frames. In order to clarify the last
statement, we formulate Theorem 3.1.1 with respect to two identical symbol families of
length n = m− 1, and then we translate the symbol families into refinable functions and
wavelets.

Corollary 3.1.2. Let the symbol family
{(
a(µ), b(µ)

)
: µ = 0, . . . ,m− 1

}
satisfy condition

(I) on page 34. Then also the family

{(
a(µ)b(ν), b(µ)a(ν)

)
: µ, ν = 0, . . . ,m− 1

}
(3.3)

satisfies condition (I).
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Under the assumptions of Corollary 3.1.2, let ϕ and ϕ̃ be generated by a(0) and b(0),
respectively. Then, due to the Fourier transformed refinement equation (1.23), their
convolution ϕ∗ ϕ̃ is refinable with respect to the product a(0)b(0). We denote the wavelets
corresponding to a(µ) and b(µ) as usual by ψ(µ) and ψ̃(µ), µ = 1, . . . , n, respectively. Let
us also denote

ψ(0) := ϕ, ψ̃(0) := ϕ̃.

Then the wavelets according to a(µ)b(ν) are given by ψ(µ) ∗ ψ̃(ν). If the convolution ϕ ∗ ϕ̃
is additionally contained in L2(R

d), then

X({ψ(µ) ∗ ψ̃(ν) : µ, ν = 0, . . . , n, (µ, ν) 6= (0, 0)}) (3.4)

constitutes a wavelet frame in L2(R
d), cf. Theorem 2.2.1. Its underlying refinable function

is ϕ ∗ ϕ̃, and the reconstruction formula

f =
∑

µ,ν=0,...,n
(µ,ν)6=(0,0)

j∈Z,k∈Z
d

〈
f, (ψ(µ) ∗ ψ̃(ν))j,k

〉
(ψ(ν) ∗ ψ̃(µ))j,k

holds for all f ∈ L2(R
d). Hence, a permutation of (3.4) provides a dual wavelet frame.

The number of resulting wavelets equals m2 − 1. In order to minimize their number,
one chooses a dilation matrix with m = 2, and one obtains a wavelet bi-frame with 3
wavelets.

Remark 3.1.3. Corollary 3.1.2 may provide a great tool for the construction of wavelet
bi-frames: the start symbols

{(
a(µ), b(µ)

)
: µ = 0, . . . ,m− 1

}
can be chosen with ex-

tremely small supports and much symmetry if we abandon smoothness of their underlying
functions. Then the multiplication of symbols is equivalent to the convolution of wavelets
and refinable functions. By a careful choice of the start symbols, this convolution can
yield very smooth functions and symmetry can be preserved. Finally, this construction
has the potential for providing all items on our wish list since convolution does not enlarge
the supports too much.

We still have to present the proof of Theorem 3.1.1:

Proof of Theorem 3.1.1. The conditions (I-a) and (I-b) are obviously satisfied.

(a): Let γ ∈ ΓM . By applying (I-c) for both given families, we obtain for the family
(3.1)

∑

µ,ν

a(µ)(ξ + γ)c(ν)(ξ + γ)b(µ)(ξ)d(ν)(ξ) =
∑

µ,ν

a(µ)(ξ + γ)b(µ)(ξ)c(ν)(ξ + γ)d(ν)(ξ)

= δ0,γ

∑

ν

c(ν)(ξ + γ)d(ν)(ξ) = δ0,γ .
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(b): According to M⊤γ ∈ Z
d, the definitions (3.2) yield

n1+n2∑

µ=0

ǎ(µ)(ξ + γ)b̌(µ)(ξ) =

n2∑

ν=0

a(0)(ξ + γ)c(ν)(M⊤ξ)b(0)(ξ)d(ν)(M⊤ξ)

+

n1∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ)

= a(0)(ξ + γ)b(0)(ξ)

n2∑

ν=0

c(ν)(M⊤ξ)d(ν)(M⊤ξ)

+

n1∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ)

= a(0)(ξ + γ)b(0)(ξ) +

n1∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ)

=

n1∑

µ=0

a(µ)(ξ + γ)b(µ)(ξ) = δ0,γ .

3.2 Finding Start Symbols

In this section, we address the problem of finding appropriate start symbols for Corollary
3.1.2, i.e., we are looking for a symbol family

{(
a(µ), b(µ)

)
: µ = 0, . . . ,m− 1

}
satisfying

condition (I) on page 34. Due to (2.14), this requires that b(0) is dual to a(0).

3.2.1 Wavelet Symbols

Let us suppose that we have already chosen some symbol a(0) and a dual symbol b(0)

(we address their choice in Subsection 3.2.2). In order to find additional symbols sat-
isfying (2.14), we need to solve the matrix extension problem as discussed in Section
1.1.4. Let us recall the main facts for the solution of the problem. In Section 1.1.4, we
described that the Theorem of Quillen and Suslin ensures the existence of a solution.
However, determining a specific solution generally requires some computer algebra soft-
ware as well as large computational ressources. Moreover, the algorithms do not ensure
minimal support sizes of their solutions, see for instance [Par95]. In order to circumvent
such difficulties, one makes some additional assumptions on the symbol of the refinable
function: provided that a(0) is interpolatory, see (1.48), Lemma 1.1.20 yields a symbol
family satisfying condition (I) on Page 34. However, the restriction to interpolatory a(0)

is quite strong. Fortunately, at least for m = 2, the limitation can be discarded since
Example 1.1.19 also provides a solution a(1) and b(1) for noninterpolatory a(0). Hence,
the desirable setting m = 2 allows for more flexibility than m > 2.

In order to reach an optimal approximation order, we need a wavelet bi-frame with
sufficient vanishing moments. This can be ensured by the sum rule order of a(0) and
b(0): if both satisfy the sum rules of order s, then a result in [CHR00] yields that all
start wavelet symbols a(µ) and b(µ), µ = 1, . . . ,m − 1, have s vanishing moments. Since
Corollary 3.1.2 preserves this number and the product a(0)b(0) satisfies the sum rules
of order 2s, the wavelets’ number of vanishing moments is at least half of the refinable
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function’s reproduction of polynomials. Thus, according to Theorem 2.3.1, the resulting
wavelet bi-frame can provide an optimal approximation order.

3.2.2 The Dual Symbol

In this subsection, we address the choice of a(0) and b(0). If a(0) satisfies the sum rules
of order s, then, according to the ideas about vanishing moments in Subsection 3.2.1, we
are interested in b(0) also satisfying the sum rules of order s. Since we do not require that
b(0) generates a smooth refinable function, it can be chosen with very small mask size.
In fact, this is our great advantage compared to biorthogonal constructions, where one
needs at least that its refinable function is contained in L2(R

d). We merely require that
the product a(0)b(0) generates a smooth refinable function.

Next, we address the structure of dual symbols. Given a symbol a and an initial dual
symbol u, one easily verifies that, for all symbols c,

b(ξ) = u(ξ) + c(ξ)− u(ξ)
∑

γ∈ΓM

(ca)(ξ + γ) (3.5)

is also dual to a. If a is interpolatory, then one can choose u ≡ 1, and (3.5) reduces to

b(ξ) = 1 + c(ξ) −
∑

γ∈ΓM

(ca)(ξ + γ). (3.6)

The construction of b in (3.6) follows the spirit of the so-called lifting scheme as discussed
in a sequence of papers [Swe96, Swe97, DS98, KS00]. The parallel to the philosophy of
the lifting concept may be described as follows: from the trivial dual symbol u ≡ 1, we
construct another dual symbol b with hopefully better properties. In other words, we lift
u ≡ 1, and we obtain a better symbol b.

It turns out that (3.6) essentially provides a representation of all dual symbols of a:

Theorem 3.2.1. Let an interpolatory symbol a satisfy the sum rules of order s. Then
the following holds:

(a) If an interpolatory symbol c satisfies the sum rules of order s, then

b(ξ) = c(ξ) + 1−
∑

γ∈ΓM

(ca)(ξ + γ) (3.7)

is dual to a, and it satisfies the sum rules of order s.

(b) Let some symbol b be dual to a, and let it satisfy the sum rules of order s. Then

c(ξ) = b(ξ) +
1

m

(
1−

∑

γ∈ΓM

b(ξ + γ)
)

(3.8)

is interpolatory, it satisfies the sum rules of order s, and b can be represented by
(3.7).

A natural choice in Theorem 3.2.1 is c = a or c = a. Then b generally does not generate
a refinable function in L2(R

d). Fortunately, the product ab often yields a smooth refinable
function as required for our construction.
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Remark 3.2.2. The CBC algorithm proposed in [Han99, HR02] for the construction of
dual symbols also addresses noninterpolatory symbols as well as higher orders of sum
rules for the dual symbol. Thus, it is much more general. However, Theorem 3.2.1 can
be obtained independently, and it is formulated and proven strictly in terms of symbols
instead of masks. We think the representation above provides some insight in the strucure
of the dual symbol as we shall explain in the following. Recall that a symbol is called
orthogonal if its conjugate is dual, i.e.,

∑

γ∈ΓM

|a(ξ + γ)|2 = 1.

For c = a, (3.7) reads as

b(ξ) = a(ξ) + 1−
∑

γ∈ΓM

|a(ξ + γ)|2.

Thus, b equals a up to the amount which a lacks in order to be orthogonal.

Proof of Theorem 3.2.1. (a) As already mentioned, it can directly be verified that b is
indeed dual to a. For interpolatory a and c, the sum rules of order s imply

∂αa(0) = δ0,α and ∂αc(0) = δ0,α, for all |α| < s. (3.9)

Furthermore, (3.9) and the sum rules of a and c imply the sum rules of order s for b.
(b) A short calculation yields that c is interpolatory. Let us verify the sum rules for c.

By applying the duality (1.26), we obtain

∂α
∑

γ∈ΓM

(ba)(·+ γ)
∣∣
0

= δ0,α. (3.10)

Since a and b satisfy the sum rules of order s and a also satisfies (3.9), the application of
the Leibniz formula to (3.10) yiels

∂αb(0) = δ0,α, for all |α| < s. (3.11)

Thus, the sum rules for a and b together with (3.11) imply the sum rules for c.
Let us verify the representation (3.7): by applying the duality (1.26), the interpolatory

property (1.48), and
∑

eγ∈ΓM

b(ξ + γ + γ̃) =
∑

eγ∈ΓM

b(ξ + γ̃), for γ ∈ ΓM ,

we obtain

∑

γ∈ΓM

(ca)(ξ + γ) =
∑

γ∈ΓM


b(ξ + γ) +

1

m
− 1

m

∑

eγ∈ΓM

b(ξ + γ + γ̃)


 a(ξ + γ)

= 1 +
1

m
− 1

m

∑

γ∈ΓM

b(ξ + γ).

With (3.8), this yields

c(ξ) + 1−
∑

γ∈ΓM

(ca)(ξ + γ) = b(ξ).
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3.2 Finding Start Symbols

So far, we derived b(0) if a(0) is interpolatory. Next, we extend the choice of b(0) to
noninterpolatory a(0), i.e., we allow for a(0) = ãN , N ∈ N and ã is interpolatory. Then a
possible choice of b(0) is addressed in [Der99, JRS99]. In order to avoid complex notation,
we only present their results for m = 2. Since we are mainly interested in such dilation
matrices, this does not mean any far-reaching restriction. For the following lemma, see
[Dau92] as well as [Der99, JRS99], and let

PN (x) :=

N−1∑

j=0

(
N − 1 + j

j

)
xj (3.12)

denote the Bézout polynomial of order N .

Lemma 3.2.3. Given a dilation matrix M with m = 2 and an interpolatory symbol ã,
then, for N ∈ N,

b = ãNP2N (1− ã)

is a dual symbol of a = ãN .

The application of Lemma 3.2.3 can provide fine wavelet bi-frame constructions. First,
we choose a symmetric and interpolatory symbol ã satisfying the sum rules of order s. For-
tunately, there is a large variety of candidates in literature such that a(0) = cN generates a
smooth refinable functions ϕ with small support and much symmetry, cf. [Der99, JRS99]
for instance. Note that a(0) satisfies the sum rules of order Ns. Then b(0) can be ob-
tained by Lemma 3.2.3. It also satisfies the sum rules of order Ns, but it usually does
not generate a refinable function in L2(R

d). Nevertheless, for increasing N , the product
a(0)b(0) often generates very smooth refinable functions, see [Der99, JRS99].

Remark 3.2.4. For m = 2 and c = a in Theorem 3.2.1, the symbol b in (3.7) coincides
with b in Lemma 3.2.3 for N = 1.

Finally, it should be mentioned that, given some symbol a(0), the choice of a dual
symbol b(0) is very complicated if we do not make any assumptions on a(0). It may
even happen, that there does not exist any dual symbol. By means of subsymbols Aγ∗ ,
γ∗ ∈ Γ∗

M of a(0), cf. Subsection 1.1.4, one can at least obtain a general condition, which
ensures the existence. Introducing z-notation, i.e.,

zi := e−2πiξi , ξi ∈ R, i = 1, . . . , d,

provides that the subsymbols Aγ∗ are given by

∑

k∈Zd

aMk+γ∗zk.

Hence, they may also be considered as Laurent polynomials. Then an application of
Hilbert’s Nullstellensatz to (1.47) provides that a(0) has a dual symbol iff the subsymbols
(as Laurent polynomials) do not have any common zeros on (C\{0})d, see [DM97, JRS99]
for details.
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3.3 Examples

In this section, we present several examples of wavelet bi-frames. Throughout, we apply
the following short-hand notation:

♦t :=
{

(k1, . . . , kd)
⊤ ∈ Z

d : |k1|+ . . .+ |kd| ≤ t
}
,

�t :=
{

(k1, . . . , kd)
⊤ ∈ Z

d : |k1|, . . . , |kd| ≤ t
}
,

zi := e−2πiξi , ξi ∈ R, i = 1, . . . , d.

The following smoothness estimates for the L∞(Rd)-critical exponent s∞(f), see (2.23) as
well as Appendix A.1, are accomplished with an implementation of the so-called Villemoes
algorithm, see [Vil94] for the theoretical background and [VSo] for the implementation.
Hence, for f ∈ L∞(Rd) with compact support, we compute

sup

{
s ≥ 0 :

∫

Rd

(1 + ‖ξ‖)s |f̂(ξ)|dξ <∞
}
. (3.13)

Then according to (2.25) and some standard textbook on Fourier analyis, (3.13) provides
an estimate from below of s∞(f).

3.3.1 Wavelet Bi-Frames in Arbitrary Dimensions

First, we choose univariate symbols

ǎ(0)(z) :=

(
1 + z

2

)N

·
(

1 + 1/z

2

)N

, (3.14)

b̌(0)(z) :=

(
1 + z

2

)N

·
(

1 + 1/z

2

)N

· P2N

(
1−

(
1 + z

2

)
·
(

1 + 1/z

2

))
, (3.15)

where P2N denotes the Bézout polynomial of order 2N , see (3.12). Since the dyadic
univariate symbol (

1 + z

2

)
·
(

1 + 1/z

2

)
(3.16)

is interpolatory, Lemma 3.2.3 yields that b̌(0) is dual to ǎ(0). Moreover, the symbol in
(3.16) satisfies the sum rules of order 2. Hence, both ǎ(0) and b̌(0) satisfy the sum rules
of order 2N .

We obtain multivariate symbols by the simple choice

a(0)(ξ1, . . . , ξd) := ǎ(0)(ξ1), b(0)(ξ1, . . . , ξd) := b̌(0)(ξ1).

We consider these symbols with respect to the dilation matrix M given by (2.27), (2.28).
Since

ΓM =
{

0, (1
2 , . . . ,

1
2)⊤
}
,

the multivariate symbols a(0) and b(0) are also dual to each other. Then Example 1.1.19
provides a symbol family {(

a(0), b(0)
)
,
(
a(1), b(1)

)}
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satisfying condition (I) on page 34. The wavelet symbols a(1) and b(1) have 2N vanishing
moments, and according to Corollary 3.1.2, the family

{(
a(0)b(0), a(0)b(0)

)
,
(
a(1)b(0), a(0)b(1)

)
,
(
a(0)b(1), a(1)b(0)

)
,
(
a(1)b(1), a(1)b(1)

)}

also satisfies condition (I). Note that we subsequently verify in Lemma 3.3.1 that the
underlying refinable function is contained in L2(R

d). Hence, we obtain a wavelet bi-
frame. Since the dilation matrix generates the Checkerboard lattice (2.29), we call it
Checkerboard (N).

Then a(0)b(0) is interpolatory, and it satisfies the sum rules of order 4N . Its mask is
supported on a straight line in [−4N+1, 4N −1]Σ. Hence, due to Corollary 2.3.3, a(0)b(0)

provides optimal sum rule order. Since the wavelet symbols have at least 2N vanishing
moments, the wavelet bi-frame provides an optimal approximation order, see Theorem
2.3.1.

The univariate masks of ǎ(0) and b̌(0) are symmetric about a point. Hence, the multi-
variate symbols are G-symmetric with

G := {±Id} . (3.17)

Then, due to Theorem 2.3.5, the three associated wavelets are G-symmetric.
In the following, we verify that a(0)b(0) generates a refinable function with optimal

smoothness in the sense of Proposition 2.3.8:

Lemma 3.3.1. With the choices above, let ϕ, ϕ̃ be generated by a(0), b(0), respectively.
Then the refinable function ϕ ∗ ϕ̃ of the product a(0)b(0) is given by

ϕ ∗ ϕ̃(x) =

d∏

j=1

ϕ0 ∗ ϕ̃0

( d∑

i=j

xi

)
, (3.18)

where ϕ0, ϕ̃0 are generated by ǎ(0), b̌(0), respectively.

Proof. Since Md = 2Id, we have

M⊤−jd+l

= 2−jM⊤l

, for all j, l ∈ N. (3.19)

The infinite product (1.24) and the relation (3.19) provide

∏

j≥1

a(0)(M⊤−j

ξ) =
∏

j≥1

d−1∏

l=0

a(0)(M⊤−jd

M⊤l

ξ)

=

d−1∏

l=0

∏

j≥1

a(0)(2−jM⊤l

ξ).

By applying the special choices of M and a(0), we obtain

ϕ̂(ξ) = ϕ̂0(ξd − ξd−1) · · · ϕ̂0(ξ2 − ξ1) · ϕ̂0(ξ1). (3.20)

Following the above lines, we also derive

̂̃ϕ(ξ) = ̂̃ϕ0(ξd − ξd−1) · · · ̂̃ϕ0(ξ2 − ξ1) · ̂̃ϕ0(ξ1). (3.21)

Then a direct calculation of the inverse Fourier transform yields (3.18).
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N 1 2 3 4

mask1 ♦3 ♦7 ♦11 ♦15

s∞ 2 3.5 4.7 ≥ 5.8

sum rules 4 8 12 16

vm2 2 4 6 8

approx.3 4 8 12 16

optimality

sum rules yes

smoothness yes

card(wavelets) –

approx. order yes

symmetry yes

Table 3.1: Checkerboard (N)

1convex support of the refinable function’s mask.
2number of vanishing moments which all wavelets inherit.
3approximation order of the wavelet bi-frame.

Figure 3.1: The underlying refinable function of Checkerboard (1) for d = 2

According to Lemma 3.3.1, the underlying refinable function ϕ∗ϕ̃ inherits the full regu-
larity of the univariate function ϕ0∗ϕ̃0, whose symbol ǎ(0)b̌(0) is interpolatory and satisfies
the sum rules of order 4N . Since the mask of ǎ(0)b̌(0) is supported on [−4N + 1, 4N − 1],
it is the unique interpolatory symbol of Theorem 2.3.2. Thus, due to Proposition 2.3.8,
ϕ ∗ ϕ̃ provides optimal smoothness.

The bi-frame Checkerboard (N) is optimal with respect to almost any optimality cri-
teria in Subsection 2.3.5. It inherits optimal sum rule order, smoothness, approximation
order, and symmetry. The only missing condition is the cardinality of the wavelets. We
have 3 wavelets, but, according to Lemma 2.3.4, the optimal number is 2, see Table 3.1
for properties and optimality.

The univariate function ϕ0∗ϕ̃0 is essentially the autocorrelation of the underlying refin-
able function of the N -th orthogonal Daubechies wavelets. It is known that they become
arbitrarily smooth by increasing N , cf. [Dau92]. According to (3.18), the smoothness car-
ries over to the multivariate refinable function ϕ ∗ ϕ̃. Thus, we obtain arbitrarily smooth
wavelet bi-frames by increasing N . See Table 3.1 for their properties and Figure 3.1 for
ϕ ∗ ϕ̃ with d = 2 and N = 1.

Remark 3.3.2. Another bivariate dilation matrix M satisfying M2 = 2I2 is

M =

(
0 2
1 0

)
.

By applying ΓM = {0, (1
2 , 0)

⊤}, we can follow the lines at the beginning of this section.
This yields a wavelet bi-frame, where the refinable function ϕ ∗ ϕ̃ in (3.18) has to be
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substituted by
ϕ ∗ ϕ̃(x1, x2) = ϕ0 ∗ ϕ̃0(x1) · ϕ0 ∗ ϕ̃0(x2).

Hence, it is separable.

3.3.2 The Quincunx Dilation Matrix

In this section, we address the quincunx dilation matrix

M = Mq =

(
1 −1
1 1

)
. (3.22)

Since m = 2, our convolution method of Corollary 3.1.2 with n = 1 provides a wavelet
bi-frame of only 3 wavelets.

Example 3.3.3 (Laplace). The Laplace symbol

ã(z1, z2) :=
1

2

(
1 +

1

4
z1 +

1

4

1

z1
+

1

4
z2 +

1

4

1

z2

)
(3.23)

is real-valued, interpolatory, satisfies the sum rules of order 2, and it generates a refinable
function in Cα(R2), for α = 0.6, see [CD93]. For N1, N2 ∈ N, let

a := ãN1 , b := ãN2PN1+N2(1− ã), (3.24)

where PN is again the Bézout polynomial in (3.12). Then a and b are real-valued, and b is
dual to a, see [Dau92, Der99] as well as Lemma 3.2.3 in case of N1 = N2. Example 1.1.19
provides the family

{
(a, b) ,

(
a(1), b(1)

)}
satisfying condition (I) on page 34. By applying

Corollary 3.1.2, the family

{
(ab, ab) ,

(
ab(1), a(1)b

)
,
(
a(1)b, ab(1)

)
,
(
a(1)b(1), a(1)b(1)

)}

also satisfies condition (I). The mixed extension principle yields an associated wavelet bi-
frame, which we denote by Laplace (N1-N2). Observe that a, b, and ab are G-symmetric
with

G :=

{
±I2,±

(
1 0
0 −1

)
,±
(

0 −1
1 0

)
,±
(

0 1
1 0

)}
. (3.25)

The underlying refinable function ϕ ∗ ϕ̃ is fundamental, and according to Theorem 2.3.5,
all wavelets are G-symmetric. See Figure 3.2 and Figure 3.3 for Laplace (1-1).

The optimality results of Laplace (N -N) are summarized in Table 3.2: we have opti-
mality with respect to sum rule order, approximation order, and symmetry. For N = 1, 2,
properties and a comparison to biorthogonal wavelet bases from [HJ02] are presented in
Tables 3.3 and 3.4. The chosen biorthogonal bases are the best known (at least to us),
which are comparitive to Laplace (1-1) and (2-2) with respect to smoothness, symmetry,
approximation order, and a fundamental primal refinable function. Contrary to the dia-
mond shape of the bi-frame masks, the biorthogonal masks have some square shape �t.
If one does not care about the different shapes, then the biorthogonal mask supports �t

have to be replaced by ♦2t. Then the superior performance of Laplace (N -N) would even
be more significant. In order to guarantee a fair comparison, we respect the different
shapes.
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(b) ab(1)
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(c) a(1)b
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(d) a(1)b(1)

Figure 3.2: Masks of Laplace (1-1)

(a) ϕ ∗ eϕ (b) ϕ ∗ eψ

(c) ψ ∗ eϕ (d) ψ ∗ eψ

Figure 3.3: Laplace (1-1)
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optimality

sum rules yes

smoothness –

card(wavelets) –

approx. order yes

symmetry yes

Table 3.2: Optimality of Laplace (N -N)

First, we address N = 1. Laplace (1-1) is smoother than Biorth-A and it provides a
higher approximation order. The mask of the underlying refinable function of Laplace
(1-1) is supported on the diamond ♦3. The dual mask of Biorth-A is supported on the
square �4. Since

card(♦3) = 25 < 81 = card(�4),

the bi-frame possesses better properties with smaller mask sizes.
The basis Biorth-B and the bi-frame Laplace (1-1) have similar smoothness. The pri-

mal wavelets of Biorth-B have 10 vanishing moments, and in some applications, this may
provide a better performance than only 4 vanishing moments of the bi-frame. Neverthe-
less, both wavelet systems provide the same approximation order 4. Since the primal
mask of Biorth-B is supported on �2 and card(♦3) = card(�2), it has the same support
size as the bi-frame. However, the dual mask of Biorth-B requires a square of size 7.
Since card(�7) equals 225, it is significantly larger than the bi-frame’s diamond of size 3.
Thus, Laplace (1-1) has similar smoothness and provides the same approximation order
with significantly smaller support.

Next, we adress N = 2. Laplace (2-2) is two times differentiable, and it provides
approximation order 8 with a mask of size ♦7. Biorth-C and Biorth-D are less smooth,
and they provide less approximation order. Their dual masks are supported on a square
of size 5 and 10, respectively. Since card(♦7) equals 113, and

card(�5) = 121, card(�10) = 441,

Laplace (2-2) possesses better properties than Biorth-C and Biorth-D with smaller sup-
ports.

Smoothness and approximation order of Laplace (2-2) and Biorth-E are comparable.
Although the primal wavelets of Biorth-E have 14 vanishing moments, it only provides
approximation order 8. The primal mask of Biorth-E has a smaller support size than the
bi-frame, i.e., it is supported on a square of size 4, which is smaller than the diamond of
size 7, since card(�4) = 81 < 113 = card(♦7). However, the dual mask of Biorth-E is
supported on a square of size 11. Since card(�11) equals 506, it is much larger. Finally,
Laplace (2-2) has similar smoothness and provides the same approximation order with
significantly smaller supports.

Finally, let us mention that the results in [JRS99] verify that increasing N1, N2 in
Laplace (N1-N2) yields a family of arbitrarily smooth wavelet bi-frames.

The following example is dedicated to obtaining a three times differentiable wavelet
bi-frame for the quincunx dilation matrix. In view of Example 3.3.3, we can procced in
two different directions. On the one hand, we can consider Laplace (N1-N2) for N1, N2
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Laplace (1-1) Biorth-A1 Biorth-B2

ϕ ∗ ϕ̃ ϕ ϕ̃ ϕ ϕ̃

mask ♦3 ♦1 �4 �2 �7

s∞ 1.3 0.6 0.04 1.4 1.2

sum rules 4 2 6 4 10

vm 2 6 2 10 4

approx. 4 2 4

Table 3.3: Laplace (1-1) versus biorthogonal bases

1best choice in [HJ02] with ϕ Laplace refinable function with mask (3.23), eϕ in L2(R
2).

2best choice in [HJ02] with ϕ, eϕ ∈ C
1(R2).

Laplace (2-2) Biorth-C1 Biorth-D2 Biorth-E3

ϕ ∗ ϕ̃ ϕ ϕ̃ ϕ ϕ̃ ϕ ϕ̃

mask ♦7 �2 �5 �3 �10 �4 �11

s∞ 2.5 1.4 0.09 2.2 2.2 2.9 2.2

sum rules 8 4 6 6 14 8 14

vm 4 6 4 14 6 14 8

approx. 8 4 6 8

Table 3.4: Laplace (2-2) versus biorthogonal bases

1best choice in [HJ02] with ϕ ∈ C
1(R2), eϕ in L2(R

2) (ϕ coincides with the primal refinable function
of Biorth-B).

2best choice in [HJ02] with ϕ, eϕ ∈ C
2(R2).

3best choice in [HJ02] with ϕ, eϕ ∈ C
2(R2) and approximation order 8.
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Figure 3.4: The mask of a in Example 3.3.4

sufficiently large. On the other hand, we can apply the iteration in (3.24) forN1 = N2 = 1,
but we replace the Laplace symbol ã by another symbol with better initial properties.

Example 3.3.4 (Three times differentiable). The symbol a given by the mask in Figure
3.4 is interpolatory and satisfies the sum rules of order 4. It generates a fundamental
refinable function ϕ contained in the Hölder class Cα(R2), for α = 1.5, see [DGM99]. By
Theorem 3.2.1,

b(ξ) := a(ξ) + 1− |a(ξ)|2 − |a(ξ + γ)|2 (3.26)

is dual to a. The symbols a, b, and ab are G-symmetric with G as in (3.25). Let ϕ
and ϕ̃ denote the refinable functions of a and b, respectively. Then Example 1.1.19 and
Corollary 3.1.2 provide a symbol family

{
(ab, ab) ,

(
ab(1), a(1)b

)
,
(
a(1)b, ab(1)

)
,
(
a(1)b(1), a(1)b(1)

)}

inducing a wavelet bi-frame

X({ϕ ∗ ψ̃, ψ ∗ ϕ̃, ψ ∗ ψ̃}), X({ψ ∗ ϕ̃, ϕ ∗ ψ̃, ψ ∗ ψ̃})
with fundamental refinable function ϕ ∗ ϕ̃. We call the bi-frame DGM. According to
Lemma 2.3.5, all wavelets are G-symmetric, see Figure 3.5. However, we only achieve the
estimate s∞(ϕ ∗ ϕ̃) ≈ 2.9. Laplace (3-2) and Laplace (2-3) provide three times differen-
tiable wavelets with the same mask support size ♦9, see Table 3.5 for the comparison of
DGM, Laplace (3-2), and the smoothest comparative biorthogonal basis Biorth-F from
[HJ02]. Biorth-F does not reach s∞ = 3, and its dual mask is supported on a square of
size 12. Since card(�12) = 625 is much larger than the bi-frame’s card(♦9) = 181, we can
establish that both bi-frames perform better than the biorthogonal basis.

Finally, optimality results are summarized in Table 3.6. Both bi-frames provide optimal
symmetry. DGM also provides optimal approximation order, but it is not optimal with
respect to sum rules. Laplace (3-2) has optimal sum rule order, but it does not provide
optimal approximation order.

3.3.3 A Bivariate Box Spline Wavelet Bi-Frame

In this section, we deal with a three-direction box spline. We choose M = 2I2, then let

a(z) :=

(
1 + z1

2

)
·
(

1 + z2
2

)
·
(

1 + z1z2
2

)
·
(

1

z1z2

)
. (3.27)

Hence, a is essentially the symbol of a three-direction box spline with direction matrix

Y3 =

(
1 0 1
0 1 1

)
,
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(a) ϕ ∗ eϕ (b) ϕ ∗ eψ

(c) ψ ∗ eϕ (d) ψ ∗ eψ

Figure 3.5: DGM bi-frame

DGM Laplace (3-2) Biorth-F1

ϕ ∗ ϕ̃ ϕ ∗ ϕ̃ ϕ ϕ̃

mask ♦9 ♦9 �4 �12

s∞ 2.9 3.0 2.9 2.8

sum rules 8 10 8 16

vm 4 4 16 8

approx. 8 8 8

Table 3.5: DGM versus Laplace (3-2) versus biorthogonal basis

1ϕ coincides with the primal refinable function in Biorth-E.

optimality

DGM
Laplace
(3-2)

sum rules – yes

smoothness – –

card(wavelets) – –

approx. order yes –

symmetry yes yes

Table 3.6: Optimality of DGM and Laplace (3-2)
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see Lemma 1.1.16. The factor 1
z1z2

only yields a shift of the box spline, and it provides

that a is real-valued. From the results in [RS97a], we obtain a real-valued symbol b̃ such
that b = ab̃ is dual to a. Since a is interpolatory, Lemma 1.1.20 is applicable and provides
a family of start symbols {(

a(µ), b(µ)
)

: µ = 0, . . . , 4
}
,

where a = a(0) and b = b(0). Then Corollary 3.1.2 yields a wavelet bi-frame of 15 wavelets,
which we call Box Spline (1). The underlying refinable function is fundamental, and its
mask is G-symmetric with

G :=

{
±I2,±

(
0 1
1 0

)
,±
(

1 0
1 −1

)
,±
(

0 1
−1 1

)
,±
(

1 −1
1 0

)
,±
(
−1 1
0 1

)}
, (3.28)

see Figure 3.6. According to the symmetries of the wavelet masks, Theorem 2.3.5 yields
symmetry of the wavelets with respect to different subgroups Gi ⊂ G, see also Figures 3.7
and 3.8:

G1 :=

{
±I2,±

(
0 1
1 0

)}
, ϕ ∗ ψ̃(3), ψ(3) ∗ ϕ̃, ψ(3) ∗ ψ̃(3) are G1-symmetric.

G2 :=

{
±I2,±

(
−1 1
0 1

)}
, ϕ ∗ ψ̃(1), ψ(1) ∗ ϕ̃, ψ(1) ∗ ψ̃(1) are G2-symmetric.

G3 :=

{
±I2,±

(
1 0
1 −1

)}
, ϕ ∗ ψ̃(2), ψ(2) ∗ ϕ̃, ψ(2) ∗ ψ̃(2) are G3-symmetric.

G4 := {±I2} , all other wavelets are G4-symmetric.

Since the wavelets lose symmetry with respect to the underlying refinable function, the bi-
frame does not have optimal symmetry. Nevertheless, it provides optimal approximation
order, sum rule order, and smoothness, see Table 3.8.

A comparison to biorthogonal bases from [CHR00, HR02] is presented in Table 3.7.
The mask of our bi-frame’s refinable function is supported on a square of size 3. The
L∞(R2)-critical exponent equals 2, and it provides approximation order 4. The dual
masks of the biorthogonal bases Biorth-G and Biorth-H have a much larger support since
they require a square of size 6. Moreover, they are less smooth and they do not provide
a higher approximation order than the bi-frame. Thus, Box Spline (1) performs better
than comparable biorthogonal bases.

It should be mentioned that interchanging the application of Corollary 3.1.2 by part
(b) of Theorem 3.1.1 yields a wavelet bi-frame of 6 wavelets, but the refinable function is
no longer fundamental.
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(a) a(0)b(0)

(b) ϕ ∗ eϕ

Figure 3.6: Underlying refinable function with its mask of Box Spline (1)

Box Spline (1) Biorth-G1 Biorth-H2

ϕ ∗ ϕ̃ ϕ ϕ̃ ϕ ϕ̃

mask �3 �1 �6 �3 �6

s∞ 2 1 0.63 1.43 0.073

sum rules 4 2 6 4 4

vm 2 6 2 4 4

approx. 4 2 4

Table 3.7: Box Spline (1) versus biorthogonal bases

1ϕ is the three-direction box spline with multiplicity 1. eϕ is constructed in [HR02].
2ϕ (butterfly mask) and eϕ are given in [CHR00].
3obtained by Sobolev embedding.

optimality

sum rules yes

smoothness yes

card(wavelets) –

approx. order yes

symmetry –

Table 3.8: Optimality of the Box Spline (1)
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(b) a(0)b(2)
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(c) a(0)b(3)
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(d) a(1)b(1)
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(e) a(2)b(2)
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(f) a(3)b(3)
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(g) a(2)b(1)
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(h) a(3)b(1)
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(i) a(3)b(2)
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(j) a(1)b(2)
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(k) a(1)b(3)
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(l) a(2)b(3)

Figure 3.7: Masks of Box Spline (1), part I
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(b) a(2)b(0)
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(c) a(3)b(0)

Figure 3.8: Masks of Box Spline (1), part II
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Chapter 4

Wavelet Bi-Frames with Few Wavelets

Provided that m = 2, the wavelet bi-frames in Chapter 3 are generated by three wavelets.
This yields a sufficiently small complexity of the fast wavelet frame transform. Neverthe-
less, since the refinable functions in the examples are fundamental, Lemma 2.3.4 yields
that the optimal number of wavelets is two. The present chapter is dedicated to mini-
mizing the number of wavelets from three to two.

In order to reduce the number of wavelets, we try to adapt the univariate dyadic ideas
in [CHS02, DHRS03]. They are based on the so-called mixed oblique extension principle
generalizing the mixed extension principle in Theorem 2.2.1. The univariate approach
can be splitted into two steps. Step one requires the solution of a generalization of the
modulation matrix completion problem as discussed in Subsection 1.1.4. In Step two, the
univariate approach requires a factorization of some trigonometric polynomial into two
trigonometric polynomials satisfying certain zero conditions.

The present chapter is organized as follows: first, we recall the mixed oblique extension
principle. Wavelet bi-frames from the oblique principle provide a fast oblique wavelet
frame transform. In comparison to the fast wavelet frame transform of the mixed exten-
sion principle, it requires an additional convolution at the beginning of the reconstruction
process as well as a deconvolution at its end. Then we adapt the univariate dyadic ideas
in [CHS02, DHRS03] to our multivariate setting with general dilation matrices. In order
to solve the generalization of the modulation matrix completion problem, we reformulate
the problem in terms of polyphases. Then we complete the polyphase matrices, which
also provides a completion of the original modulation matrices for Step one. Next, we
address Step two. In the multivariate setting, such factorizations of trigonometric poly-
nomials are generally impossible. We circumvent this difficulty by allowing for a sum of
products. Then we derive conditions, which ensure that we can find a convenient sum
of products for the application of the modified Step two. It should be mentioned that
these conditions still provide sufficient flexibility. Then in comparison to the method of
the previous chapter, the number of wavelets is reduced from m2 − 1 in Chapter 3 to
3m − 4 wavelets. Finally, we obtain wavelet bi-frames from the refinable functions of
the examples in Chapter 3. Then the bi-frames in the present chapter possess similar
properties with significantly fewer wavelets.

4.1 An Oblique Wavelet Bi-Frame Construction

4.1.1 The Mixed Oblique Extension Principle

In this section, we recall a generalization of the mixed extension principle. It is based on
a more general version of condition (I) on page 34. Given a symbol θ, we say the symbol
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Chapter 4 Wavelet Bi-Frames with Few Wavelets

family {(a(µ), b(µ)) : µ = 0, . . . , n} satisfies condition (II) with respect to θ if the following
holds:

(II-a) a(0)(0) = b(0)(0) = θ(0) = 1.

(II-b) a(µ)(0) = b(µ)(0) = 0, for all 1 ≤ µ ≤ n,

(II-c) for all γ ∈ ΓM , ξ ∈ R
d,

a(0)(ξ + γ)b(0)(ξ)θ(M⊤ξ) +

n∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ) = δ0,γθ(ξ). (4.1)

The next theorem is called the mixed oblique extension principle, see [CHS02, DHRS03]
as well as [DH00, Han03b]:

Theorem 4.1.1 (MOEP). Let the symbol family {(a(µ), b(µ)) : µ = 0, . . . , n} satisfy con-
dition (II) with respect to θ. Moreover, let a(0), b(0) generate ϕ, ϕ̃ ∈ L2(R

d), respectively.
For µ = 1, . . . , n, define

ψ(µ)(ξ) :=
∑

k∈Zd

a
(µ)
k ϕ(Mξ − k) and ψ̃(µ)(ξ) :=

∑

k∈Zd

b
(µ)
k ϕ̃(Mξ − k) . (4.2)

Then X({ψ(1) , . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}) is a wavelet bi-frame.

Contrary to the mixed extension principle, its oblique counterpart allows for θ 6≡ 1.
Hence, it provides additional flexibility. In the present chapter, we use this flexibility for
the construction of wavelet bi-frames with fewer wavelets than those in Chapter 3.

First, we discuss the effects of the more general construction principle to the wavelet
transform. According to [DHRS03], the mixed oblique extension principle gives rise
to the fast oblique wavelet frame transform, see Algorithm 3. The decomposition is
identical to the fast wavelet frame transform in Algorithm 2. Again, we expect the input

sequence H
(0)
0 either to be the coefficient sequence in (2.18) or directly the inner product

in (2.21). Due to (II-c), the reconstruction process involves the symbol θ. It requires
the deconvolution of θ at the end of the reconstruction (it may be accomplished similar

to the deconvolution of [ϕ̂, ̂̃ϕ] in the fast wavelet frame transform, see Subsection 2.3.2).
The deconvolution of θ has a sharpening effect, see [DHRS03]. If perfect reconstruction
is not required, then the transform can be applied without the deconvolution. This still
provides a blurry version of the original signal. It can be a feature since measured data
is generally noisy and it often requires some pre-smoothening. Then abandoning the
deconvolution makes such pre-processing unnecessary.

Finally, we address the question about the minimal number of wavelets. According to
Lemma 2.3.4, we have already derived some optimality constraints with respect to the
mixed extension principle. In the dyadic univariate setting, this lemma still holds with
respect to its oblique counterpart, see [DHRS03]:

Theorem 4.1.2. In the dyadic univariate setting, let the symbol family
{(
a(0), a(0)

)
,
(
a(1), b(1)

)
, . . . ,

(
a(n), b(n)

)}

satisfy condition (II) on page 68 with respect to θ. If a(0) generates a fundamental refin-
able function, then n ≥ 2.
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4.1 An Oblique Wavelet Bi-Frame Construction

(a) Decomposition:

Input: H
(0)
0

if
f(x) =

∑

k∈Zd

H
(0)
0 (k)ϕ(x − k)

then

H
(0)
0 ←

[
ϕ̂, ̂̃ϕ

]
∗H(0)

0

end

/* from this point on, we have H
(0)
0 (k) =

〈
f, ψ̃

(0)
0,k

〉
*/

for j = −1,−2, . . . , j0 do
for µ = 0, . . . , n do

H
(µ)
j :=

(
b(µ) ∗H(0)

j+1

)
↓M

end

end

Output: H
(0)
j0

and H
(µ)
j , for µ = 1, . . . , n, j = −1, . . . , j0 with

H
(0)
j0

(k) = 〈f, ϕ̃j0,k〉 , H
(µ)
j (k) =

〈
f, ψ̃

(µ)
j,k

〉

(b) Reconstruction:
if θ 6≡ 1 then

H
(0)
j0
← θ ∗H(0)

j0

end
for j = j0, . . . ,−1 do

H
(0)
j+1 :=

n∑

µ=0

a(µ) ∗ (H
(µ)
j ↑M )

end
if θ 6≡ 1 then

deconvolve θ from H
(0)
0

end

if H
(0)
0 was convolved by [ϕ̂, ̂̃ϕ] during decomposition then

deconvolve [ϕ̂, ̂̃ϕ] from H
(0)
0 .

end

Algorithm 3: The fast oblique wavelet frame transform
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···

···

···

θ−1 H
(0)
0↓Mb(0)

b(1) a(1)

+H
(0)
−1

θH
(0)
0 a(0)

↑M

↑M

↓M H
(1)
−1

↑M

a(n)b(n) ↓M H
(n)
−1

Figure 4.1: The filter bank scheme of the fast oblique wavelet frame transform

In general, the multivariate setting with m = 2 does not allow for more flexibility than
the dyadic univariate one. Thus, we conjecture that Theorem 4.1.2 still holds in this more
general situation. However, so far, we have no proof. The optimality statements with
respect to the number of wavelets in the examples of Section 4.3 refer to this conjecture.
In other words, the number is optimal if we would have derived the bi-frame from the
mixed extension principle.

4.1.2 A General Construction Idea

In the following theorem, we adapt the dyadic univariate construction ideas in [CHS02,
DHRS03] to the multivariate setting with general dilation matrices. See also Corollary
14.8.3 in [Chr03] for the univariate ideas.

Theorem 4.1.3. Let symbols a(0) and b(0) satisfy the sum rules of order 1. Moreover,
let a(0)(0) = b(0)(0) = 1, and denote

θ(ξ) :=
∑

γ∈ΓM

(
a(0)b(0)

)
(ξ + γ), η := 1− θ. (4.3)

Assume that

(S1) there are additional symbols a(µ), b(µ), µ = 1, . . . ,m− 1, such that

m−1∑

µ=0

a(µ)(ξ + γ)b(µ)(ξ) = δ0,γθ(ξ),

(S1*) all symbols a(µ), b(µ), µ = 1, . . . ,m− 1, have s1 ≥ 1 vanishing moments,

(S2) there are additional symbols η(ν), η̃(ν), ν = 1, . . . , n, such that

η =
n∑

ν=1

η(ν)η̃(ν),

(S2*) all symbols η(ν), η̃(ν), ν = 1, . . . , n, have s2 ≥ 1 vanishing moments.
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For ν = 1, . . . , n, let

a(m−1+ν)(ξ) := η(ν)(M⊤ξ)a(0)(ξ), b(m−1+ν)(ξ) := η̃(ν)(M⊤ξ)b(0)(ξ).

Then the collection {(a(µ), b(µ)) : µ = 0, . . . ,m − 1 + n} satisfies condition (II) on page
68 with respect to θ. All wavelet symbols have at least min{s1, s2} vanishing moments.

The application of Theorem 4.1.3 in the next sections works as follows: first, we choose
a(0) and b(0), then we derive all other symbols by some canonical choice. In the section
4.2, we impose restrictions on the symbol a(0) such that we obtain a simple and concrete
construction algorithm.

Remark 4.1.4. If θ ≡ 1, then (4.3) requires that b(0) is dual to a(0), and (S1) is nothing
other than the symbol conditions (1.31) arising in the biorthogonal setting. Then the
bi-frame construction would suffer from the biorthogonal restrictions. Advantageously,
Theorem 4.1.3 allows for θ 6≡ 1, and this yields flexibility.

In comparison to the univariate ideas, Theorem 4.1.3 requires some particularities. The
dyadic univariate setting in [CHS02, DHRS03, Chr03] does only allow for n = 1 in (S2)
and (S2*), i.e., one directly factorizes η. We had to find a weaker concept since a con-
venient factorization of multivariate trigonometric polynomials is generally not possible.
We found a solution by allowing for a sum of products. However, since the length of the
sum determines the number of wavelets, we are still interested in small n. It turns out
that if b(0) := a(0) is interpolatory and if it has a suitable factorization, then all additional
symbols for (S2) can be constructed, and we achieve n = 2m− 3. Hence, in comparison
to Chapter 3, Theorem 4.1.3 provides a method for reducing the number of wavelets.
Finally, it should be mentioned that there still remains sufficient flexibility for the choice
of a(0).

According to the multiplication in (S2*), some of the wavelet masks’ supports are
slightly larger than those of the refinable function’s mask. Thus, our construction pays
fewer wavelets than in Chapter 3 at the price of larger support of some wavelets. Never-
theless, we think, reducing the number of wavelets is worth the price.

Proof of Theorem 4.1.3. By applying η = 1− θ, we obtain

a(0)(ξ + γ)b(0)(ξ)θ(M⊤ξ) +

m−1+n∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ)

= a(0)(ξ + γ)b(0)(ξ)θ(M⊤ξ) +
m−1∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ)

+

n∑

ν=1

a(0)(ξ + γ)b(0)(ξ)η(ν)(M⊤ξ)η̃(ν)(M⊤ξ)

= a(0)(ξ + γ)b(0)(ξ)θ(M⊤ξ) +

m−1∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ)

+ a(0)(ξ + γ)b(0)(ξ)η(M⊤ξ)

= a(0)(ξ + γ)b(0)(ξ) +

m−1∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ) = δ0,γθ(ξ).
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Hence, (II-c) is satisfied. Since a(0) and b(0) satisfy the sum rules of order 1 and a(0)(0) =
b(0)(0) = 1, we have θ(0) = 1. The number of vanishing moments is the direct consequence
of the assumptions (S1*) and (S2*).

4.2 The Applicability of the General Construction Idea

4.2.1 Polyphase Conditions

In the present subsection, we express (S1) on page 70 in polyphase terms, i.e., we sub-
stitute (S1) by an equivalent condition in terms of subsymbols. Given a symbol family
{(a(µ), b(µ)) : µ = 0, . . . , n}, recall that we denote by

a :=
(
a(µ)(·+ γν)

)
ν=0,...,m−1
µ=0,...,n

, b :=
(
b(µ)(·+ γν)

)
ν=0,...,m−1
µ=0,...,n

their modulation matrices, cf. Subsection 1.1.4. Their polyphase matrices are given by

A =
(
A

(µ)
γ∗

ν

)
ν=0,...,m−1
µ=0,...,n

, B =
(
B

(µ)
γ∗

ν

)
ν=0,...,m−1
µ=0,...,n

where A
(µ)
γ∗

ν
and B

(µ)
γ∗

ν
, γ∗ ∈ Γ∗

M , are the subsymbols of a(µ) and b(µ), respectively, see
(1.39).

Then note that (S1) is equivalent to

ab⊤ = diag(θ(·), . . . , θ(·+ γm−1)). (4.4)

In order to formulate (S1) in terms of polyphases, we denote the subsymbols of θ by Θγ∗ ,
γ∗ ∈ Γ∗

M . Then the following theorem extends the condition (1.46) of the biorthogonal
setting since it allows for θ 6≡ 1 and n ≥ m− 1:

Theorem 4.2.1. Given a symbol family {(a(µ), b(µ)) : µ = 0, . . . , n} and a symbol θ, then

ab⊤ = diag(θ(·), . . . , θ(·+ γm−1)) iff AB⊤ =
(
Θγ∗

ν−γ∗
µ

)
ν=0,...,m−1
µ=0,...,m−1

. (4.5)

Proof. Let the matrix U be given by (1.43). Then the relations (1.44), (1.45) still hold
for n ≥ m− 1. Hence, we have

a(ξ) =
1

m
U(ξ)A(M⊤ξ), b(ξ) =

1

m
U(ξ)B(M⊤ξ).

This leads to

a(ξ)b⊤(ξ) =
1

m2
U(ξ)A(M⊤ξ)B⊤(M⊤ξ)U⊤(ξ).

Thus, the left-hand side of (4.5) is equivalent to

U(ξ)A(M⊤ξ)B⊤(M⊤ξ)U⊤(ξ) = m2 diag(θ(ξ), . . . , θ(ξ + γm−1)). (4.6)

By applying UU
⊤

= m·Im, (4.6) is equivalent to

A(M⊤ξ)B⊤(M⊤ξ) = U⊤(ξ) diag(θ(ξ), . . . , θ(ξ + γm−1))U(ξ)

=
( ∑

γ∈ΓM

e2πi(γ∗
µ−γ∗

ν )·(ξ+γ)θ(ξ + γ)
)

ν=0,...,m−1
µ=0,...,m−1

=
(
Θγ∗

µ−γ∗
ν
(M⊤ξ)

)
ν=0,...,m−1
µ=0,...,m−1

,
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where the last equality is a consequence of (1.42). Since M⊤ is invertible, we conclude
the proof.

Remark 4.2.2. As for the equivalence of (S1) to (4.4), it can be verified that (II-c) on
page 68 is equivalent to

ab⊤ = diag(θ(·), . . . , θ(·+ γm−1)),

where we substitute b(0)(ξ + γ) by b(0)(ξ + γ)θ(M⊤ξ) in b
⊤

only. By a straightforward

computation, the subsymbols of b(0)(ξ)θ(M⊤ξ) are given by B
(0)
γ∗ θ, for γ∗ ∈ Γ∗

M . Thus,
applying Theorem 4.2.1 yields the equivalence

(4.1) iff A
(0)
γ∗

ν
B

(0)
γ∗

ν′
θ +

n∑

µ=1

A
(µ)
γ∗

ν
B

(µ)
γ∗

ν′
= Θγ∗

ν−γ∗

ν′
for ν, ν ′ = 0, . . . ,m− 1. (4.7)

In short, we have rephrased (II-c) on page 68 in terms of subsymbols. As far as we know,
(4.7) has not yet been stated elsewhere.

The right-hand side of (4.5) looks quite complicated, and the polyphase setting does
not seem to provide any advantages. So far, we did not incorporate the special structure
of θ. Since θ shall be given by (4.3), it is ΓM -periodic. This simplifies the situation:

Corollary 4.2.3. Let {(a(µ), b(µ)) : µ = 0, . . . , n} be a symbol family, and let θ be ΓM -
periodic, then (4.5) reduces to

ab⊤ = θ ·Im iff AB⊤ = Θ0 ·Im. (4.8)

Proof. The collection Γ∗
M is a complete set of representatives of Z

d/MZ
d. Hence,

γ∗ν − γ∗µ ∈MZ
d iff ν = µ .

By (1.42), the ΓM -periodicy of θ, and (1.41), we obtain

Θγ∗
ν−γ∗

µ
(M⊤ξ) =

∑

γ∈ΓM

e2πi(γ∗
ν−γ∗

µ)·(ξ+γ)θ(ξ + γ)

= θ(ξ)e2πi(γ∗
ν−γ∗

µ)·ξ ∑

γ∈ΓM

e2πi(γ∗
ν−γ∗

µ)·γ

= mθ(ξ)δν,µ.

Thus, Theorem 4.2.1 implies (4.8).

4.2.2 A Variant of the Matrix Completion Problem

Given a(0) and b(0), in this section, we derive additional symbols for (S1) on page 70. In
order to apply the polyphase formulation of (S1) in (4.8), we need a representation of Θ0

in terms of subsymbols of a := a(0) and b := b(0):

Lemma 4.2.4. Given θ by (4.3), we have

Θ0 =
∑

γ∗∈Γ∗

M

Aγ∗Bγ∗ .
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Chapter 4 Wavelet Bi-Frames with Few Wavelets

Proof. From the proof of Corollary 4.2.3, we have Θ0(M
⊤ξ) = mθ(ξ). By applying (4.3)

and (1.40), we obtain

Θ0(M
⊤ξ) = m

∑

γ∈ΓM

a(ξ + γ)b(ξ + γ)

= m
∑

γ∈ΓM

1

m

∑

γ∗∈Γ∗

M

Aγ∗(M⊤ξ)e2πiγ∗·(ξ+γ) 1

m

∑

eγ∗∈Γ∗

M

Beγ∗(M⊤ξ)e−2πieγ∗·(ξ+γ)

=
1

m

∑

γ∗,eγ∗

Aγ∗(M⊤ξ)Beγ∗(M⊤ξ)
∑

γ∈ΓM

e−2πi(eγ∗−γ∗)·(ξ+γ).

According to (1.41), this yields

Θ0(M
⊤ξ) =

1

m

∑

γ∗,eγ∗

Aγ∗(M⊤ξ)Beγ∗(M⊤ξ)mδeγ∗,γ∗

=
∑

γ∗∈Γ∗

M

Aγ∗(M⊤ξ)Bγ∗(M⊤ξ).

Since M⊤ is invertible, we conclude the proof.

The following proposition generalizes Lemma 1.1.20. Hence, for a(0) interpolatory, it
also generalizes the results in [JRS99]:

Proposition 4.2.5. Given a(0), b(0), and θ by (4.3), we define polyphase matrices by

A :=




A0 −Bγ∗

1
. . . −Bγ∗

m−1

...

...

(
Θ0Im−1 − (Aγ∗

ν
Bγ∗

µ
)ν=1,...,m−1
µ=1,...,m−1

)

...

Aγ∗

m−1




(4.9)

and

B⊤ :=




B0 Bγ∗

1
. . . Bγ∗

m−1

−Aγ∗

1
... Im−1

−Aγ∗

m−1


 . (4.10)

If a(0) is interpolatory, then

AB⊤ = Θ0 ·Im.

Proof. Since a(0) is interpolatory, the subsymbol A0 equals 1, cf. [DM97]. Then the
application of Lemma 4.2.4 yields

(
A0,−Bγ∗

1
, . . . ,−Bγ∗

m−1

)
·B⊤ = (Θ0, 0, . . . , 0) .
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4.2 The Applicability of the General Construction Idea

For ν = 1, . . . ,m− 1, we obtain with A0 ≡ 1

(
Aγ∗

ν
,−Aγ∗

ν
Bγ∗

1
, . . . ,Θ0 −Aγ∗

ν
Bγ∗

ν
,−Aγ∗

ν
Bγ∗

ν+1
, . . .

)
·




B0

−Aγ∗

1
...

−Aγ∗

m−1




= Aγ∗
ν

(m−1∑

µ=0

Aγ∗
µ
Bγ∗

µ
−Θ0

)
= 0.

Finally, we calculate

(
Aγ∗

ν
,−Aγ∗

ν
Bγ∗

1
, . . . ,Θ0 −Aγ∗

ν
Bγ∗

ν
,−Aγ∗

ν
Bγ∗

ν+1
, . . .

)
·




Bγ∗

1
. . . Bγ∗

m−1

1 0
. . .

0 1




=
(
0, . . . , 0, Aγ∗

ν
Bγ∗

ν
+ Θ0 −Aγ∗

ν
Bγ∗

ν
, 0 . . . , 0

)

= (0, . . . , 0,Θ0, 0, . . . , 0) .

Due to (1.40), the polyphase matrices (4.9), (4.10) implicitly provide symbols a(1),
. . . , a(m−1) and b(1), . . . , b(m−1), which satisfy (S1). They are specified in the following
corollary:

Corollary 4.2.6 (Step 1). Using the notation of Theorem 4.1.3, let the symbols a(0) and
b(0) satisfy the sum rules of order 2s and a(0)(0) = b(0)(0) = 1. Additionally, let a(0) be
interpolatory. For µ = 1, . . . ,m− 1, we define

a(µ)(ξ) = e−2πiγ∗
µ·ξ

∑

γ∈ΓM\{0}

(
a(0)(ξ + γ)− a(0)(ξ)e−2πiγ∗

µ·γ
)
b(0)(ξ + γ), (4.11)

b(µ)(ξ) =
1

m
e−2πiγ∗

µ·ξ
∑

γ∈ΓM\{0}

(
1− e−2πiγ∗

µ·γ
)
a(0)(ξ + γ). (4.12)

Then (S1) in Theorem 4.1.3 is satisfied, and (S1∗) holds for s1 = 2s.

Proof. Let a(1), . . . , a(m−1) and b(1), . . . , b(m−1) be the symbols associated to the poly-
phase matrices (4.9), (4.10). In the following, we verify that they coincide with (4.11)
and (4.12), respectively.

By applying (1.42) and (1.40), a direct computation yields

a(µ)(ξ) = e−2πiγ∗
µ·ξθ(ξ)− a(0)(ξ)

∑

γ∈ΓM

e−2πiγ∗
µ·(ξ+γ)b(0)(ξ + γ),

b(µ)(ξ) =
1

m

(
e−2πiγ∗

µ·ξ −
∑

γ∈ΓM

e−2πiγ∗
µ·(ξ+γ)a(0)(ξ + γ)

)
.
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The definition of θ in (4.3) leads to

a(µ)(ξ) = e−2πiγ∗
µ·ξ
( ∑

γ∈ΓM

(
a(0)b(0)

)
(ξ + γ)− a(0)(ξ)

∑

γ∈ΓM

e−2πiγ∗
µ·γb(0)(ξ + γ)

)

= e−2πiγ∗
µ·ξ
( ∑

γ∈ΓM\{0}

(
a(0)b(0)

)
(ξ + γ)− a(0)(ξ)

∑

γ∈ΓM \{0}
e−2πiγ∗

µ·γb(0)(ξ + γ)
)

= e−2πiγ∗
µ·ξ

∑

γ∈ΓM\{0}

(
a(0) (ξ + γ)− a(0) (ξ) e−2πiγ∗

µ·γ
)
b(0)(ξ + γ).

Since the symbol a(0) is interpolatory, we obtain

b(µ)(ξ) =
1

m
e−2πiγ∗

µ·ξ
( ∑

γ∈ΓM

a(0)(ξ + γ)−
∑

γ∈ΓM

e−2πiγ∗
µ·γa(0)(ξ + γ)

)

=
1

m
e−2πiγ∗

µ·ξ
( ∑

γ∈ΓM\{0}
a(0)(ξ + γ)−

∑

γ∈ΓM\{0}
e−2πiγ∗

µ·γa(0)(ξ + γ)
)

=
1

m
e−2πiγ∗

µ·ξ
∑

γ∈ΓM\{0}

(
1− e−2πiγ∗

µ·γ
)
a(0)(ξ + γ).

So far, A and B in Proposition 4.2.5 are the associated polyphase matrices of the symbol
family {(a(µ), b(µ)) : µ = 0, . . . ,m−1} given by (4.11) and (4.12). By applying Proposition
4.2.5 and Corollary 4.2.3, the associated modulation matrices a and b satisfy (S1).

According to the representations (4.11) and (4.12), the sum rules of a(0) and b(0) imply
vanishing moments of the wavelet symbols.

Remark 4.2.7. Although b(0) is not necessarily dual to a(0), Corollary 4.2.6 provides the
same symbols as Lemma 1.1.20. Moreover, provided that m = 2, a direct computation
yields that the symbols

a(1)(ξ) = e−2πiγ∗·ξb(0)(ξ + γ), b(1)(ξ) = e−2πiγ∗·ξa(0)(ξ + γ) (4.13)

solve (S1). In this situation, we do not have to assume that a(0) is interpolatory. Hence,
even Example 1.1.19 provides a solution to (S1).

Proposition 4.2.5 as well as the proof of Corollary 4.2.6 is a simple combinatorial
approach. Certainly, Corollary 4.2.6 can be directly proven without any polyphase de-
composition, see Appendix A.2 for details.

Next, we derive an alternative solution of (S1), which also addresses noninterpolatory
symbols. The results in [RS92] yield the following lemma with respect to dyadic dilation.
It even provides the coincidence of primal and dual wavelet symbols.

Lemma 4.2.8. Let M = 2Id. Given a real-valued symbol a(0), let there exist a function
ϑ : {0, 1}d → {0, 1}d with ϑ(0) = 0 such that, for all γ∗1 , γ

∗
2 ∈ {0, 1}d, γ∗1 6= γ∗2 , the usual

inner product on R
d

(
ϑ(γ∗1) + ϑ(γ∗2)

)
·
(
γ∗1 + γ∗2

)
(4.14)

is odd. Then the choice

a(γ∗)(ξ) := e−2πiϑ(γ∗)·ξa(0)(ξ + 1
2γ

∗), for γ∗ ∈ {0, 1}d,
yields a family {a(γ∗) : γ∗ ∈ {0, 1}d}, whose modulation matrix a satisfies aa⊤ = θ ·I2d ,
where θ is given by (4.3) with b(0) = a(0).
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In the univariate setting, a possible choice for ϑ in Lemma 4.2.8 is ϑ(0) = 0 and
ϑ(1) = 1. A bivariate choice is given by ϑ(0) = 0 and

(1, 0) 7→ (1, 1), (0, 1) 7→ (0, 1), (1, 1) 7→ (1, 0).

In case d = 3, the mapping ϑ(0) = 0 with

(1, 0, 0) 7→ (1, 1, 0), (0, 1, 0) 7→ (0, 1, 1), (1, 1, 0) 7→ (1, 0, 0),

(0, 0, 1) 7→ (1, 0, 1), (1, 0, 1) 7→ (0, 0, 1), (0, 1, 1) 7→ (0, 1, 0),

(1, 1, 1) 7→ (1, 1, 1),

satisfies (4.14), see [RS92]. However, according to [RS91], there does not exist a mapping
ϑ : {0, 1}d → {0, 1}d such that (4.14) holds for d > 3. Thus, Lemma 4.2.8 only provides
a solution of (S1) for d = 1, 2, and 3.

Let us summarize the results of the present subsection. We can solve (S1) provided
that a(0) is interpolatory, see Corollary 4.2.6. For m = 2, we also find a solution for
noninterpolatory a(0), cf. Remark 4.2.7. In case of dyadic dilation and real-valued a(0),
Lemma 4.2.8 yields symbols for (S1) provided that the dimension is less than 4.

4.2.3 Splitting into a Sum of Products

In [LS], Lai and Stöckler construct bivariate compactly supported tight wavelet frames
from box spline refinable functions. Their construction is different from Theorem 4.1.3,
but there is a similarity to (S2). For box spline symbols b(0) = a(0) and η given by (4.3),
they decompose η into a sum of squares, i.e., they find symbols η(ν), ν = 1, . . . , n, such
that

η =
n∑

ν=1

∣∣∣η(ν)
∣∣∣
2
.

Thus, their approach is more restrictive than our decomposition into a sum of products. In
fact, their construction really suffers from this restriction since their resulting compactly
supported wavelets have only one vanishing moment.

We use our add-on in flexibility to obtain a high number of vanishing moments. Inter-
polatory symbols play a key role:

Lemma 4.2.9. Under the assumptions of Corollary 4.2.6 and the notation of Theorem
4.1.3, let also b(0) be interpolatory. Then, η has 2s vanishing moments.

Proof. Since both symbols a(0), b(0) are interpolatory, we obtain

1 =
∑

γ∈ΓM

a(0)(ξ + γ)
∑

γ̃∈ΓM

b(0)(ξ + γ̃)

=
∑

γ∈ΓM

a(0)(ξ + γ)b(0)(ξ + γ) +
∑

γ 6=γ̃

a(0)(ξ + γ)b(0)(ξ + γ̃).

This leads to
η(ξ) =

∑

γ 6=γ̃

a(0)(ξ + γ)b(0)(ξ + γ̃). (4.15)

Applying the sum rules, we obtain that η has 2s vanishing moments.
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In (4.15), we already have a sum of products but it does not lead to vanishing moments
because a(0)(0) = b(0)(0) = 1. If a(0) has a suitable factorization, then we obtain η(ν) and
η̃(ν), ν = 1, . . . , n, with a high number of vanishing moments:

Proposition 4.2.10 (Step 2). Under the assumptions of Corollary 4.2.6 and the notation

of Theorem 4.1.3, let b(0) = a(0). Moreover, let there exist symbols c(0) and d(0) satisfying
the sum rules of order s such that a(0) = c(0)d(0). For µ = 1, . . . ,m − 1 and ν =
1, . . . ,m− 2, we define

η(µ)(ξ) := c(0)(ξ)d(0)(ξ + γµ), η̃(µ)(ξ) := 2d(0)(ξ)c(0)(ξ + γµ),

η(m−1+ν)(ξ) := a(0)(ξ + γν), η̃(m−1+ν)(ξ) := 2
∑m−1

j=ν+1 a
(0)(ξ + γj).

Then, (S2) and (S2∗) in Theorem 4.1.3 are satisfied with n = 2m− 3 and s2 = s.

Proof. Since b(0) = a(0), the assumptions of Lemma 4.2.9 are satisfied. Thus, we can
apply (4.15):

η(ξ) =
∑

γ 6=γ̃

(c(0)d(0))(ξ + γ)(d(0)c(0))(ξ + γ̃)

= 2
∑

0≤i<j≤m−1

c(0)(ξ + γi)d(0)(ξ + γj) d(0)(ξ + γi)c
(0)(ξ + γj)

=

m−1∑

µ=1

c(0)(ξ)d(0)(ξ + γµ)2d(0)(ξ)c(0)(ξ + γµ)

+

m−2∑

ν=1

c(0)(ξ + γν)d(0)(ξ + γν)2

m−1∑

j=ν+1

c(0)(ξ + γj)c(0)(ξ + γj)

=
n∑

ν=1

η(ν)(ξ)η̃(ν)(ξ).

The sum rules for c(0) and d(0) imply the vanishing moments in (S2∗).

Steps 1 and 2 provide all components required for Theorem 4.1.3. It yields 3m − 4
wavelets, and they have at least s vanishing moments. Thus, in comparison to Chapter
3, we reduced the number of wavelets from m2 − 1 to linear dependency on m. For the
desirable case m = 2, we reduce three wavelets in Chapter 3 to two wavelets in the present
chapter.

Remark 4.2.11. The assumption about the factorization of the symbol a(0) is not as
restrictive as it seems. Most of the well-known interpolatory symbols are obtained by some
iteration process. Thus, the symbols c(0) and d(0) are already known, see for example
[Der99, JRS99] as well as Lemma 3.2.3, Section 3.3, and the following Section 4.3 in the
present thesis.

4.3 Examples of Optimal Wavelet Bi-Frames

In the sequel, we present wavelet bi-frames constructed from the refinable functions ad-
dressed in Section 3.3. The first example provides arbitrarily smooth wavelet bi-frames
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N 1 2 3 4

mask a(0) ♦3 ♦7 ♦11 ♦15

s∞ 2 3.5 4.7 ≥ 5.8

sum rules 4 8 12 16

vm 2 4 6 8

card(wavelets) 2 2 2 2

optimality

sum rules yes

smoothness yes

card(wavelets) yes

approx. order yes

symmetry yes

Table 4.1: Optimal multivariate bi-frame Checkerboard (N)R

in arbitrary dimensions with only two wavelets. They satisfy all optimality conditions
introduced in Section 2.3.

Example 4.3.1 (Checkerboard). We recall the notation for the construction of the
Checkerboard bi-frames in Subsection 3.3.1. Let

ǎ(z) :=

(
1 + z

2

)N

·
(

1 + 1/z

2

)N

,

b̌(z) :=

(
1 + z

2

)N

·
(

1 + 1/z

2

)N

· P2N

(
1−

(
1 + z

2

)
·
(

1 + 1/z

2

))

denote univariate symbols. We define multivariate symbols by

a(0)(ξ1, . . . , ξd) := ǎ(ξ1), b(0)(ξ1, . . . , ξd) := b̌(ξ1),

and let M be given by (2.27), (2.28). Since the univariate symbol ǎb̌ is interpolatory
and ΓM = {0, (1

2 , . . . ,
1
2)⊤}, see (2.17), the multivariate symbol a(0)b(0) is interpolatory

with respect to M , and Step 1 is applicable. Since a(0)b(0) trivially inherits a suitable
factorization, Step 2 is also applicable. Thus, we obtain a wavelet bi-frame from the same
refinable function as the bi-frame Checkerboard (N) in Section 3.3. Since it only requires
two wavelets, we call the bi-frame Checkerboard (N)R, where R stands for “reduced
number of wavelets”. According to the discussion in Subsection 4.1.1, two wavelets are
regarded as the optimal number of wavelets.

It should be mentioned that the wavelet symbols still inherit the symmetry of a(0)b(0).
For increasing N , we obtain arbitrarily smooth bi-frames in arbitrary dimensions. They
are optimal with respect to all criteria considered in Subsection 2.3.5, see Table 4.1 for
details.

Next, we address the quincunx dilation matrix. We obtain wavelet bi-frames with only
two wavelets from the refinable function of the Laplace (N1-N2) bi-frame:

Example 4.3.2 (Laplace). First, we recall the construction of the underlying refinable
function of Laplace (N1-N2). Given the quincunx dilation matrix

M =

(
1 −1
1 1

)
,

let

c̃(z1, z2) :=
1

2

(
1 +

1

4
z1 +

1

4
z−1
1 +

1

4
z2 +

1

4
z−1
2

)
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Chapter 4 Wavelet Bi-Frames with Few Wavelets

N 1 2

mask a(0) ♦3 ♦7

s∞ 1.3 2.5

sum rules 4 8

vm 2 4

card(wavelets) 2 2

optimality

sum rules yes

smoothness –

card(wavelets) yes

approx. order yes

symmetry yes

Table 4.2: Laplace (N -N)R

be the Laplace symbol. We choose

c(0) := c̃N1 ,

d(0) := c̃N2PN1+N2(1− c̃).

Then, a(0) = c(0)d(0) is interpolatory, and it trivially inherits a suitable factorization.
Hence, both Step 1 and Step 2 are applicable. They provide a wavelet bi-frame with only
two wavelets, which we call Laplace (N1-N2)R.

As for Laplace (N1-N2), the wavelets inherit the full symmetries of the underlying
refinable function. We also have optimality with respect to sum rules, number of wavelets,
and approximation order, see Table 4.2. Figure 4.2 shows the refinable function and the
wavelets of Laplace (1-1)R.

In the following example, we address fundamental box splines obtained in [RS97a].

Example 4.3.3 (Box Spline). Let M = 2I2 and, for N = 1, 2, 3, and 4, let

c(0)(z) :=

(
1 + z1

2

)N

·
(

1 + z2
2

)N

·
(

1 + z1z2
2

)N

·
(

1

z1z2

)N

be the symbol of the three-direction box spline with equal multiplicities N . In [RS97a],
a symbol d̃ was constructed such that

a(0)(z) :=

(
1 + z1

2

)2N

·
(

1 + z2
2

)2N

·
(

1 + z1z2
2

)2N

·
(

1

z1z2

)2N

· d̃(z) (4.16)

is interpolatory and nonnegative. Hence, we have the factorization

a(0) = c(0)d(0), (4.17)

where d(0) = c(0)d̃. Notice that c(0) and d(0) are real-valued and nonnegative. It turns
out that the mask of a(0) is G-symmetric with

G =

{
±I2,±

(
0 1
1 0

)
,±
(

1 0
1 −1

)
,±
(

0 1
−1 1

)
,±
(

1 −1
1 0

)
,±
(
−1 1
0 1

)}
.

Applying Lemma 4.2.8 yields that

a(1)(z1, z2) := z1z2a
(0)(−z1, z2),

a(2)(z1, z2) := z2a
(0)(z1,−z2), (4.18)

a(3)(z1, z2) := z1a
(0)(−z1,−z2).
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4.3 Examples of Optimal Wavelet Bi-Frames

(a) underlying refinable function

(b) first wavelet

(c) second primal wavelet

(d) second dual wavelet

Figure 4.2: Laplace (1-1)R
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Chapter 4 Wavelet Bi-Frames with Few Wavelets

N 1 2 3 4

mask a(0) �3 �7 �11 �15

s∞ 2 3.5 4.7 ≥ 5.8

sum rules 4 8 12 16

vm 2 4 6 8

card(wavelets) 8 8 8 8

optimality

sum rules yes

smoothness yes

card(wavelets) –

approx. order yes

symmetry –

Table 4.3: Box Spline (N)R of Example 4.3.3

satisfies
aa⊤ = θ ·I4,

where θ is given by (4.3) with b(0) = a(0). Then let b := a. Hence, our first three primal
and dual wavelets coincide. By using (4.17), Step 2 is applicable. We obtain a bi-frame
with 8 wavelets, which we call Box Spline (N)R. The wavelet masks are Gi-symmetric
for different subgroups Gi ⊂ G:

G1 :=

{
±I2,±

(
0 1
1 0

)}
, a(3), a(6), b(6), b(8) are G1-symmetric.

G2 :=

{
±I2,±

(
−1 1
0 1

)}
, a(2), a(5), b(5), a(8) are G2-symmetric.

G3 :=

{
±I2,±

(
1 0
1 −1

)}
, a(1), a(4), b(4), a(7), b(7) are G3-symmetric.

Thus, the bi-frame does not have optimal symmetry. Nevertheless, we have optimality
with respect to sum rules and approximation order. Moreover, we obtain the same
estimates of the L∞(R2)-critical exponent s∞ as for the univariate reference function
in Theorem 2.3.6, which is optimal, see Table 4.3 for properties and optimality results.

Let us compare Box Spline (N)R with the construction in Subsection 3.3.3. There, we
derived a wavelet bi-frame Box Spline (1) from the same refinable function as Box Spline
(1)R. However, Box Spline (1) requires 15 wavelets, and some of them are only symmetric
with respect to G4 = {±I2}. Hence, the approach of the present example provides more
symmetry, fewer wavelets, and it is applicable to smoother box splines.
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Chapter 5

The Characterization of Function Spaces

Function spaces are related to many fields of applied mathematics. For instance, operator
equations, partial differential equations, and many kinds of variational problems require
the consideration of smoothness classes, cf. [DD97, DDU02, DDD04]. In order to derive
fast practical algorithms for the solution of such problems, a discretization is required.
Thus, one looks for certain basis-like systems, which characterize the smoothness class.
This means that each f in the space has a series expansion, that there is a predefined
rule for the choice of its coefficients, and that the original smoothness norm is equivalent
to a sequence norm of coefficients obtained from this rule.

Many smoothness spaces allow for nicely structured discretizations. For instance, Mod-
ulation spaces are characterized by Gabor systems, wavelets constitute the above men-
tioned basis-like systems in Besov spaces, and so-called Gabor wavelets provide a char-
acterization of Alpha-Modulation spaces, see the textbooks [FS03, Grö01] and references
therein.

In the aforementioned problems, Besov spaces are the arising smootheness classes.
The characterization of Besov spaces by dyadic orthonormal wavelet bases was derived
by DeVore, Jawerth, and Popov in the early nineties, cf. [DJP92]. It turns out that the
range of smoothness parameters of the Besov spaces is restricted by the smoothness of the
wavelets and their vanishing moments. Lindemann extended the characterization to pairs
of biorthogonal wavelet bases with general isotropic scalings, see [Lin05]. Recently, Borup,
Gribonval, and Nielsen characterized Besov spaces by wavelet bi-frames, cf. [BGN04].
However, their results are restricted to dyadic dilation. In the present chapter, we extend
the results to general isotropic dilation matrices.

To point out the difficulties of the extension, we shall explain the main idea of the bi-
frame approach in [BGN04]. Initially, one chooses a dyadic orthonormal basis character-
izing the Besov space. Recall that the characterization requires sufficient smoothness, and
one can choose a tensor product of Meyer wavelets or of sufficiently smooth Daubechies
wavelets, cf. [Dau92]. Then one applies a certain localization technique, i.e., the bi-frame
is localized to the dyadic orthonormal wavelet basis such that the orthonormal charac-
terization carries over to the wavelet bi-frame, see Subsection 5.3.1 for details. Hence,
the orthonormal basis plays the role of a reference system. In order to address general
isotropic scalings, there arise two problems. First, we have to extend the localization
technique from dyadic to isotropic dilation. Second, for many isotropic dilation matri-
ces, it is not clear whether there exist smooth compactly supported orthogonal wavelets.
Hence, we need another reference system.

We proceed as follows: first, we introduce Besov spaces in detail. Then we recall their
characterization by pairs of biorthogonal wavelet bases with general isotropic scalings.
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Chapter 5 The Characterization of Function Spaces

Since, for most of the known dilation matrices, there exist smooth compactly supported
biorthogonal wavelets, see for instance [Der99, JRS99], they constitute promising sub-
stitutes for the orthogonal wavelet basis. Next, we generalize the localization technique
regarding isotropic dilation and biorthogonal reference systems. Then the biorthogonal
characterization carries over to the wavelet bi-frame. Finally, we apply the results to our
bi-frames constructed in the previous Chapters 3 and 4.

5.1 Besov Spaces

The present section is dedicated to the introduction of Besov spaces on R
d. They are

divided into homogeneous and nonhomogeneous spaces. Nevertheless, for the range of
smoothness parameters, which are required for our characterization by wavelets, they
essentially describe the same functions class. First, we recall the nonhomogeneous spaces.

5.1.1 Nonhomogeneous Besov Spaces

Nonhomogeneous Besov spaces on R
d can be defined in two different ways. In approxi-

mation theory, one generally describes the spaces by means of differences since it allows
for a simple and direct extension to arbitrary domains. The harmonic analysis approach
applies Fourier based methods to define Besov spaces. Fortunately, both approaches are
equivalent for the range of parameters we are addressing. First, following [Tri83, RS96],
we recall the Fourier approach.

Let Φ(Rd) be the collection of all φ = (φj)j∈N0
contained in the Schwartz space S(Rd),

such that the following holds:

(i) there exist positive constants A,B,C with

supp(φ0) ⊂ {x ∈ R
d : ‖x‖ ≤ A},

supp(φj) ⊂ {x ∈ R
d : B2j−1 ≤ ‖x‖ ≤ C2j+1}, for j = 1, 2, 3, . . . ,

(ii) for every α ∈ N
d
0,

sup
x∈Rd

sup
j∈N0

2j|α| |∂αφj(x)| <∞,

(iii) and, for all x ∈ R
d,

∞∑

j=0

φj(x) = 1.

Let s ∈ R, 0 < p, q ≤ ∞, and φ ∈ Φ, then

Bs
p,q(R

d) :=
{
f ∈ S ′(Rd) : ‖f‖φBs

p,q
<∞

}

is called the nonhomogeneous Besov space, where

‖f‖φBs
p,q

:=

∥∥∥∥
(
2js
∥∥F−1 (φjFf)

∥∥
Lp

)
j∈N0

∥∥∥∥
ℓq

. (5.1)

Here, F denotes the Fourier transform on the space of tempered distributions S ′(Rd),
cf. Appendix A.1. It turns out that the definition of Bs

p,q(R
d) does not depend on the
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5.1 Besov Spaces

choice of φ, and different choices yield equivalent expressions, see [RS96, Tri83]. We

do not distinguish between them, and we write ‖f‖Bs
p,q

instead of ‖f‖φBs
p,q

. The space

Bs
p,q(R

d) is complete, hence, for 1 ≤ p < ∞, 1 ≤ q ≤ ∞, it is a Banach space. For
0 < p < 1 or 0 < q < 1, the expression in (5.1), is only a quasi-norm, i.e., the triangular
inequality holds up to a constant factor, see for instance [Tri83], and we have a quasi
Banach space.

Many known function spaces, such as Sobolev, Hölder, and Lipschitz spaces, are covered
by the scale of Besov spaces. For instance, we have with equivalent norms

W s(L2(R
d)) = Bs

2,2(R
d), 0 < s,

W s(Lp(R
d)) = Bs

p,p(R
d), 0 < s /∈ N, 1 ≤ p <∞,

Cs(Rd) = Bs
∞,∞(Rd), 0 < s /∈ N,

Lip
(
s, Lp(R

d)
)

= Bs
p,∞(Rd), 0 < s /∈ N, 1 ≤ p ≤ ∞,

see [Coh03, DL93, RS96, Tri83]. The index q is of minor interest, and Besov spaces are
mainly determined by s and p since, for 0 < ε,

Bs+ε
p,∞(Rd) →֒ Bs

p,q(R
d), (5.2)

Bs
p,q(R

d) →֒ Bs
p,q+ε(R

d) →֒ Bs
p,∞(Rd), (5.3)

see for instance Section 2.3 in [Tri83] or Chapter 2 in [RS96]. For fixed 1 < p < ∞, we
apply the short-hand notation

Bs := Bs
τ,τ (R

d), 1
τ

= s
d

+ 1
p
, 0 < s. (5.4)

These spaces arise in the context of nonlinear approximation as described in Chapter 6
of the present thesis. Then given 1 < p <∞ and 0 < ε, the following embeddings hold,

Bs+ε →֒ Bs, (5.5)

Bs →֒ Lp(R
d), (5.6)

cf. Chapter 2 in [RS96]. Figure 5.1 provides a visualization.

Nonhomogeneous Besov Spaces by Means of Differences
In approximation theory, it is often more convenient to work with a definition of Besov
spaces by means of differences since it allows for a simple and unified definition on ar-
bitrary domains. Nevertheless, we only require R

d. For f : R
d → C and h ∈ R

d, the
difference of order l with l ∈ N is recursively given by

∆1
hf := f(·+ h)− f(·), ∆l

h := ∆1
h∆l−1

h .

Then, for f ∈ Lp(R
d), 0 < p ≤ ∞, and t ≥ 0, we define the modulus of smoothness of

order l by

ωl(f, t)Lp := sup
|h|≤t

∥∥∥∆l
hf
∥∥∥

Lp

. (5.7)

Note that the difference of order 1 has already been used in the context of Lipschitz
spaces, and the modulus of smoothness of order 1 equals the modulus of continuity, see
Appendix A.1.
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1
τ

= s
d

+ 1
p

Embedding Line
Sobolev

Lp
L∞

Bs

Bs−ε
τ,τ

1
τ

Bs−ε

Lτ

s

Bs
∞,∞

W s(L2)

L1L2

Figure 5.1: Embeddings of Besov Spaces.

Definition 5.1.1. For 0 < p, q ≤ ∞, 0 < s < ∞, the Besov space Bs
q(Lp(R

d)) is the

collection of all f ∈ Lp(R
d) such that the Besov semi-norm

|f |Bs
q (Lp) :=

{(∫∞
0

(
t−sωl(f, t)Lp

)q dt
t

) 1
q , for 0 < q <∞,

sup0<t<∞(t−sωl(f, t)Lp), for q =∞,
(5.8)

is finite, where l is an integer such that l > s.

It should be mentioned that, for 0 < p < 1 or 0 < q < 1, the Besov semi-norm is only
a quasi-semi-norm. Different choices of l provide equivalent semi-norms, and the Besov
space Bs

q(Lp(R
d)) is equipped with the Besov norm

‖f‖Bs
q (Lp(Rd)) := ‖f‖Lp + |f |Bs

q (Lp), (5.9)

cf. Chapter 2 in [DL93]. For 0 < p < 1 or 0 < q < 1, expression (5.9) is only a quasi-norm,
but in the following, we suppress these distinctions. It is often more convenient to work
with the following equivalent discretization of the original Besov semi-norm, i.e.,

|f |Bs
q(Lp) ∼

∥∥∥
(
2sjωl(f, 2

−j)Lp

)
j∈Z

∥∥∥
ℓq

. (5.10)

The index set Z can also be substituted by N0, cf. Chapter 2 in [DL93], and according to
the results of Section 4.3 in [Lin05], the number 2 in (5.10) can be replaced by any fixed
number greater than 1.

Let us explore the spaces Bs
q(Lp(R

d)) in more detail. The parameter s measures

smoothness in Lp(R
d). In this sense, they are closely related to the fractional Sobolev

spaces W s(Lp(R
d)), cf. Appendix A.1. For 0 < ε, we have the embeddings as in (5.2),

(5.3), and (5.6),

Bs+ε
∞ (Lp(R

d)) →֒ Bs
q(Lp(R

d)), (5.11)

Bs
q(Lp(R

d)) →֒ Bs
q+ε(Lp(R

d)) →֒ Bs
∞(Lp(R

d)), (5.12)

Bs
τ (Lτ (R

d)) →֒ Lp, 1 < p <∞, 1
τ

= s
d

+ 1
p
, (5.13)
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1
τ

= s
d

+ 1

s

Bs
τ (Lτ )Bs

p(Lp)

B
d( 1

p
−1)

p (Lp)

δ

L1 Lp
1
τ

Figure 5.2: Range of Besov Spaces with Bs
p,q(R

d) = Bs
q(Lp(R

d)).

cf. Chapters 2 and 12 in [DL93] or Chapters 3 and 4 in [Coh03].
Let us finally determine the range of parameters, for which the Fourier bases approach

and the method by means of differences yield the same spaces. For 0 < s, 1 ≤ p ≤ ∞,
and 0 < q ≤ ∞, we have the identity

Bs
q(Lp(R

d)) = Bs
p,q(R

d), (5.14)

with equivalent norms, see Section 2.5 in [Tri83] or Chapter 2 in [RS96]. Hence, the new
definition of Besov spaces coincides with our old one. An extension of the identity (5.14)
to the range 0 < p < 1 needs some fine distinctions. For 0 < p < 1, 0 < s, and s

d
+ 1 < 1

p
,

the Dirac distribution δ is contained in Bs
p,q(R

d), see Section 2.5.3 in [Tri83]. Then (5.14)

does not hold since δ 6∈ Lp(R
d). For the reverse inequality s

d
+1 > 1

p
, the spaces coincide,

see Section 2.3 in [RS96] or Section 2.5.12 in [Tri83] for the following result:

Proposition 5.1.2. Given 0 < s, we have with equivalent norms

Bs
q(Lp(R

d)) = Bs
p,q(R

d), for 0 < p, q ≤ ∞ and s
d

+ 1 > 1
p
. (5.15)

Note that (5.15) includes the spaces Bs in (5.4), i.e., for 1 < p <∞,

Bs = Bs
τ (Lτ (R

d)), 1
τ

= s
d

+ 1
p
.

See Figure 5.2 for a visualization of the above discussion.

5.1.2 Homogeneous Besov Spaces

Similar to their nonhomogeneous counterparts, homogeneous Besov spaces can be de-
scribed by some Fourier based approach and by means of differences. The characteriza-
tion by wavelets as well as Chapters 6 and 7 address a range of smoothness parameters,
where both approaches yield identical spaces. Moreover, for this range, homogeneous and
nonhomogeneous spaces essentially describe the same functions.
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Chapter 5 The Characterization of Function Spaces

First, we recall the Fourier based approach, and we modify Φ(Rd) in Subsection 5.1.1.
In short, we replace N0 by Z. Let Φ̇(Rd) be the collection of all φ = (φj)j∈Z

contained in

the Schwartz space S(Rd), such that the following holds:

(i) there exist positive constants B,C with

supp(φj) ⊂ {x ∈ R
d : B2j−1 ≤ ‖x‖ ≤ C2j+1}, for j ∈ Z,

(ii) for every α ∈ N
d
0,

sup
x∈Rd

sup
j∈Z

2j|α| |∂αφj(x)| <∞,

(iii) and, for all x ∈ R
d, ∑

j∈Z

φj(x) = 1.

Similar to the nonhomogeneous Besov norm, for f ∈ S ′(Rd), we consider

∥∥∥∥
(
2js
∥∥F−1 (φjFf)

∥∥
Lp

)
j∈Z

∥∥∥∥
ℓq

. (5.16)

According to [RS96, Tri83, Tri92], f is a polynomial iff (5.16) equals zero. Hence, it is
natural to consider the quotient S ′(Rd)/Π(Rd), where Π(Rd) denotes the collection of all
d-dimensional polynomials. This space is essentially a dual space, which we shall specify:
given

Z(Rd) :=
{
f ∈ S(Rd) : (∂αFf) (0) = 0, for all α ∈ N

d
0

}

equipped with the induced topology of the Schwartz space, its topological dual Z ′(Rd)
can be identified with S ′(Rd)/Π(Rd), see Chapter 5 in [Tri83] for details. Let φ ∈ Φ̇ be
fixed, then, for s ∈ R and 0 < p, q ≤ ∞,

Ḃs
p,q(R

d) :=

{
f ∈ Z ′(Rd) : ‖f‖φ

Ḃs
p,q

<∞
}

is called the homogeneous Besov space, where ‖f‖φ
Ḃs

p,q

is given by (5.16). Similar to

its nonhomogeneous counterpart, different choices of φ provide equivalent expressions.
Hence, we may write ‖f‖Ḃs

p,q
instead of ‖f‖φ

Ḃs
p,q

. Then Ḃs
p,q(R

d) is complete, but for

0 < q < 1 or 0 < p < 1, the expression ‖ · ‖Ḃs
p,q

is only a quasi-norm, see Section 2.6 in

[RS96] or Section 5.1 in [Tri83]. Finally, the estimate

‖f(λ·)‖Ḃs
p,q

. λ
s− d

p ‖f‖Ḃs
p,q
,

for all λ > 0 and f ∈ Ḃs
p,q(R

d), justifies the term “homogeneous”, cf. Section 2.6 in [RS96]
or Section 5.1 in [Tri83].

Comparing the definitions of homogeneous and nonhomogeneous Besov space, one may
expect some close relation between them. In fact, for a large range of parameters, they
essentially describe the same spaces, see for instance Section 2.6 in [RS96] for the following
result:
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Proposition 5.1.3. For 0 < s, 0 < p, q ≤ ∞ with s
d

+ 1 > 1
p
, we have

‖f‖Bs
p,q
∼
(
‖f‖

Ḃs
p,q

+ ‖f‖Lp

)
.

Hence, for the range of parameters in Proposition 5.1.3, Bs
p,q(R

d) equals Ḃs
p,q(R

d) ∩
Lp(R

d) equipped with the usual norm of the intersection space.

Homogeneous Besov Spaces by means of Differences
Let H be a quasi-normed complete, translation invariant subspace of S ′(Rd) or of
complex-valued functions on R

d. Then the l-th modulus of smoothness in (5.7) can
be extended by

ωl(f, t)H := sup
|h|≤t

∥∥∥∆l
hf
∥∥∥

H

.

Following Kyriazis in [Kyr96], for 0 < s < ∞ and 0 < q ≤ ∞, denote Ḃs
q(H ) the

collection of all f ∈H such that

‖f‖H :=

{(∫∞
0 (t−sωl(f, t)H )

q dt
t

) 1
q , for 0 < q <∞,

sup0<t<∞(t−sωl(f, t)H ), for q =∞,

is finite, where l > s. Different choices of l provide equivalent expressions. Hence,
for H = Lp(R

d), the space Ḃs
q(Lp(R

d)) essentially contains the same functions as its

nonhomogeneous counterpart Bs
q(Lp(R

d)) in Definition 5.1.1. However, Ḃs
q(Lp(R

d)) is
equipped with the Besov semi-norm, i.e., ‖f‖Ḃs

q(Lp) = |f |Bs
q(Lp). In [Kyr96], Kyriazis

explores the equivalence of the homogeneous Besov spaces Ḃs
q(Hp(R

d)), Ḃs
q(Lp(R

d)), and

Ḃs
p,q(R

d), cf. Appendix A.1 for the Hardy space Hp(R
d):

Theorem 5.1.4. For 0 < s <∞, 0 < q ≤ ∞, and 0 < p <∞, we have

Ḃs
q(Hp(R

d)) = Ḃs
p,q(R

d) (5.17)

with equivalent norms. If we additionally restrict the range of parameters to s
d

+ 1 > 1
p
,

then (5.17) also holds with respect to Ḃs
q(Lp(R

d)).

Next, we introduce the homogeneous counterpart of the notation (5.4): given 1 < p <
∞, let

Ḃs := Ḃs
τ (Lτ (R

d)), 1
τ

= s
d

+ 1
p
. (5.18)

Since 1 < p <∞, we have s
d

+ 1 > 1
τ
. This provides

Ḃs = Ḃs
τ,τ (R

d), 1
τ

= s
d

+ 1
p
. (5.19)

By applying (5.19), the results in [Jaw77] yield the continuous embeddings

Ḃs+ε →֒ Ḃs, for all ε > 0,

and according to [DJP92], we have

Ḃs →֒ Lp(R
d), (5.20)

which constitutes a stronger version of (5.6).
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5.2 The Characterization by Means of Biorthogononal Wavelets

Homogeneous Besov spaces are characterized in [DJP92] by dyadic orthonormal wavelet
bases, see also the survey article [DeV98]. In [Lin05], Lindemann extends the character-
ization to biorthogonal wavelets with general isotropic scalings. However, he considers
nonhomogeneous Besov spaces. Then contrary to [DJP92], the wavelet coefficients are
only involved on the scales j ∈ N0. The negative scales are covered by the coefficients of
the underlying refinable function. In the sequel, we characterize the homogeneous Besov
space by pairs of biorthogonal wavelet bases with general isotropic scalings. Then the
underlying refinable function is not involved, and one incorporates wavelet coefficients on
the entire range of scales j ∈ Z.

The homogeneous Besov space Ḃs is embedded in Lp(R
d), see (5.20). In order to

derive a convenient framework for further considerations, we extend the Definition 1.1.9
of a multiresolution analysis in L2(R

d) to Lp(R
d). According to (M-4), this requires an

extension of stability. We say a function f ∈ Lp(R
d) is ℓp-stable if, for all (ck)k∈Zd ∈

ℓp(Z
d), the series

∑
k∈Zd ckϕ0,k converges in Lp(R

d) and

∥∥∥∥∥∥
∑

k∈Zd

ckϕ0,k

∥∥∥∥∥∥
Lp

∼
∥∥(ck)k∈Zd

∥∥
ℓp
.

For compactly supported functions, ℓp- and ℓ2-stability are equivalent, see [JM90] for the
following theorem.

Theorem 5.2.1. Given 1 ≤ p ≤ ∞ and a compactly supported function f ∈ L2(R
d) ∩

Lp(R
d), then f is ℓp-stable iff it is ℓ2-stable.

Next, we extend the multiresolution analysis framework to Lp(R
d):

Definition 5.2.2. Given 0 < p <∞, an increasing sequence (Vj)j∈Z of closed subspaces
in Lp(R

d) is called a multiresolution analysis in Lp(R
d) if the following holds:

(M-1) f ∈ Vj iff f(M−j·) ∈ V0,

(M-2)
⋃

j∈Z
Vj is dense in Lp(R

d),

(M-3)
⋂

j∈Z
Vj = {0},

(M-4) there exists an ℓp-stable ϕ ∈ V0 such that V0 is the closed linear span of its integer
shifts.

The function ϕ in (M-4) is called the generator of the multiresolution analysis.

Let ϕ be a compactly supported generator of a multiresolution analysis in L2(R
d).

Given 1 ≤ p ≤ ∞, if ϕ is also contained in Lp(R
d), then it is ℓp-stable, cf. Theorem 5.2.1.

Hence, by defining

Vj := closLp

(
span

{
ϕj,k : k ∈ Z

d
})

, j ∈ Z, (5.21)

ϕ constitutes a candidate for a generator of a multiresolution analysis in Lp(R
d). How-

ever, in order to obtain sufficient conditions, we still require some preparation. Given a
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5.2 The Characterization by Means of Biorthogononal Wavelets

nonempty open subset A ⊂ R
d, we say a compactly supported distribution ϕ has linearly

independent integer shifts on A if

∑

k∈Zd

ckϕ(· − k) = 0 on A,

implies

ckϕ(· − k) = 0 on A, for all k ∈ Z
d.

Moreover, recall that for an isotropic dilation matrix M , we denote the modulus of its
eigenvalues by ρ. The following proposition is one of the fundamental results in [Lin05]:

Proposition 5.2.3. Suppose that M is isotropic. Given 0 < p < ∞ and 0 < q ≤ ∞,
let ϕ ∈ Lp(R

d) be a compactly supported refinable function. Additionally, let the integer
shifts of ϕ be linearly independent on a bounded open cube in R

d, and let (Vj)j∈Z be as
in (5.21). Then the following holds:

(a) If ϕ reproduces polynomials up to order l, then

dist(f, Vj)Lp . ωl(f, ρ
−j)Lp , for all f ∈ Lp(R

d) and j ∈ Z. (5.22)

(b) If ϕ ∈W s(L∞(Rd)), s ∈ N, then for s < l ∈ N,

ωl(f, t)Lp . min{1, tρj}s‖f‖Lp , for all f ∈ Vj and j ∈ Z, t ≥ 0. (5.23)

Let ϕ satisfy the assumptions of Proposition 5.2.3. One easily verifies that linear
independence on some cube implies global linear independence in (1.36). Then according
to [JM90], ϕ is ℓp-stable. Thus, the spaces Vj in (5.21) satisfy (M-1) and (M-4). Due to
the results in [CT97], the inequalities (5.22) and (5.23) in Proposition 5.2.3 imply (M-2)
and (M-3), respectively. Hence, ϕ is a generator of a multiresolution analysis in Lp(R

d).

Remark 5.2.4. According to [Coh03, Lin05], the assumption about linear independence
over some cube is always satisfied if there exists a second compactly supported refinable
function ϕ̃, which has biorthogonal integer shifts with respect to ϕ. Hence, Proposition
5.2.3 is applicable in the setting of biorthogonal wavelet bases. Moreover, then ϕ is stable,
which implies ϕ̂(0) 6= 0, see for instance [Lin05]. Since ϕ is compactly supported, the
assumption in part (b) yields ϕ ∈ W s(L1(R

d)). Thus, by applying Theorem 1.2.6, ϕ
reproduces polynomials up to order l with s < l ≤ s + 1. Then the assumption of part
(b) implies the requirements of part (a).

Proposition 5.2.3 also provides some kind of characterization of Besov spaces by a
multiresolution analysis, see [DJP92] for the dyadic case of the following theorem and
[Lin05] for a different version addressing the nonhomogeneous Besov norm:

Theorem 5.2.5. Under the assumptions of Proposition 5.2.3, let ϕ be contained in
W s(L∞(Rd)), s ∈ N, and suppose ϕ̂(0) 6= 0. Then, for 0 < α < s and for all f ∈ Lp(R

d),

‖f‖Ḃα
q (Lp) ∼

∥∥∥
(
ραj dist(f, Vj)Lp

)
j∈Z

∥∥∥
ℓq

. (5.24)
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In comparison to the dyadic setting, the main difficulty of the proof of Theorem 5.2.6
with respect to isotropic dilation is the verification of Proposition 5.2.3. If the proposition
is once established, then we may follow DeVore, Jawerth, and Popov in [DJP92], and we
derive the theorem. For the sake of completeness, we present a detailed proof in Appendix
A.2.

Biorthogonal wavelet bases yield complementary spaces for the underlying multireso-
lution analysis in L2(R

d), see Subsection 1.1.3. According to the results in [CT97], these
decompositions also hold in Lp(R

d), and then applying Theorem 5.2.5 provides the char-
acterization of Besov spaces in terms of biorthogonal wavelets. However, before we can
explicitly state the result in the following theorem, we still require some preparation. Let

ψ
(µ),p
j,k (x) := m

j
pψ(µ)(M jx− k), for j ∈ Z, k ∈ Z

d, x ∈ R
d,

denote the Lp(R
d)-normalization of ψ

(µ)
j,k , and let us use the short-hand notation

ψp
λ = ψp

µ,j,k := ψ
(µ),p
j,k ,

where λ = (µ, j, k) and

Λ := {1, . . . ,m− 1} × Z× Z
d.

We do so for the dual wavelets as well. Then according to [CT97], Theorem 5.2.5 implies
the following characterization of homogeneous Besov spaces:

Theorem 5.2.6. Let M be an isotropic dilation matrix, and let 1 < p <∞, 1
p

+ 1
p′

= 1.
Suppose that

X({ψ(1), . . . , ψ(m−1)}), X({ψ̃(1), . . . , ψ̃(m−1)})

are a pair of compactly supported biorthogonal wavelet bases, whose underlying refinable
functions ϕ and ϕ̃ are contained in Lp(R

d) and Lp′(R
d), respectively. Let ϕ be also

contained in W s(L∞(Rd)), s ∈ N. Then, for all 0 < α < s and f ∈ Ḃα, the series
expansion

f =
∑

λ∈Λ

〈
f, ψ̃p′

λ

〉
ψp

λ (5.25)

holds in Lp(R
d), and

‖f‖Ḃα ∼
∥∥∥
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

∥∥∥
ℓτ

, (5.26)

where 1
τ

= α
d

+ 1
p
.

It should be mentioned that the inner products in (5.25) and (5.26) make sense as
the duality mappings between Lp(R

d) and Lp′(R
d) since Ḃα is a subset of Lp(R

d), see
(5.20). Moreover, according to the norm equivalences (5.26), the partial sums of the series
(5.25) constitute a Cauchy sequence in Ḃα. Since this space is complete, the series also
converges in Ḃα.
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5.3 The Characterization by Means of Wavelet Bi-Frames

In Theorem 5.2.5, we established an equivalence between the homogeneous Besov norm
and a weigthed sequence norm involving the multiresolution analysis. Since biorthogonal
wavelets yield complementary decompositions of the underlying multiresolution analysis,
this approach provides the characterization in terms of a pair of biorthogonal wavelet
bases in Theorem 5.2.6, cf. [CT97]. Wavelet bi-frames do generally not provide such a
complementary decomposition. Thus, the characterization of Besov spaces by this weaker
concept requires a different tool.

In a series of papers, Gröchenig et al. consider localized frames, i.e., frames, whose
Gramian matrices have certain decay outside the diagonal, see [Grö03, Grö04, GC04,
GF05]. In some sense, we follow these ideas. We also address Gramian type matrices, and
we estimate the decay of their entries outside the diagonal. However, we apply localization
to two different frames, i.e., we consider their mixed Gramian matrices. Finally, we
establish that the mixed Gramian matrix of bi-frame wavelets and biorthogonal wavelets
constitutes a bounded operator on certain sequence spaces. Then by applying some
results about wavelet bi-frame expansions in Lp(R

d), the biorthogonal characterization
carries over to the bi-frame.

5.3.1 A Localization by the Mixed Gramian

Let {fκ : κ ∈ K}, {gκ′ : κ′ ∈ K′} be two Bessel sequences in a Hilbert space H. Then
their synthesis operators F and G are bounded, see Subsection 2.1.1. Thus, G∗F is a
bounded operator on ℓ2(K). It coincides with the mixed Gramian matrix operator

(cκ)κ∈K 7→
(∑

κ∈K
〈fκ, gκ′〉 cκ

)

κ′∈K′

.

The following theorem shows that, for wavelet systems, the mixed Gramian is bounded
on a large scale of ℓτ -spaces. It is our main result of this section, and it extends the
dyadic results in [BGN04] to general isotropic scalings. Note that we do not assume
strong differentiability as they do in [BGN04]. We only require weak differentiability.

Theorem 5.3.1. Let M be isotropic and s, s′ ∈ N. For µ ∈ E := {1, . . . , n} and
µ′ ∈ E′ := {1, . . . , n′}, let compactly supported functions

f (µ) ∈W s(L∞(Rd)) and g(µ′) ∈W s′(L∞(Rd))

have s′ and s vanishing moments, respectively. Given 1 ≤ p < ∞ and 1 = 1
p

+ 1
p′

, we
consider the matrix operator

T : (cλ)λ∈Λ 7→
(∑

λ∈Λ

〈
fp

λ , g
p′

λ′

〉
cλ

)

λ′∈Λ′

,

where Λ = E × Z × Z
d and Λ′ = E′ × Z × Z

d. Then T : ℓτ (Λ) → ℓτ (Λ
′) is bounded for

any τ in the range

p

(
s′

d
+ 1

)
> τ >





(
s
d

+ 1
p

)−1
, for s

d
+ 1

p
≥ 1,

p
(
1− s

d

)
, for s

d
+ 1

p
≤ 1.
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1
τ

s

11
p

1
τ

= s
d

+ 1
p

Figure 5.3: Range of τ

For the application of Theorem 5.3.1 in Subsection 5.3.3, the upper bound of τ is of
minor interest since we only require p ≥ τ . However, the lower bound is critical, and it
yields a restriction. Unfortunately, it can not be improved in general, see [BGN04] for a
counterexample. A visualization is given in Figure 5.3.

The proof of Theorem 5.3.1 keeps us busy for the remainder of the present subsection.
One of the two fundamental ingredients is the following lemma. It extends the dyadic
Lemma 8.10 in [MC97] also allowing for isotropic dilation matrices.

Lemma 5.3.2. Let M be isotropic, and let d < δ. For j ∈ Z, consider the matrix
operator Tj given by

(dk)k∈Zd 7→





(∑
k∈Zd

(
1 +

∥∥k −M−jk′
∥∥)−δ

dk

)
k′∈Zd

, for j > 0,
(∑

k∈Zd

(
1 + ‖M jk − k′‖

)−δ
dk

)
k′∈Zd

, for j ≤ 0.

Then, Tj is bounded on ℓτ (Z
d), for any 1 ≤ τ ≤ ∞, and its operator norm satisfies

‖Tj‖ℓτ→ℓτ
.

{
m

j
τ , j > 0,

m− j

τ ′ , j ≤ 0,

where 1
τ

+ 1
τ ′ = 1.

Proof. First, we address j ≤ 0, and we consider τ = 1 and τ = ∞. For 1 < τ < ∞, we
apply the Riesz-Thorin Interpolation Theorem, see Theorem A.3.1 in the Appendix.

Let us choose τ = 1. In order to derive

‖Tj‖ℓ1→ℓ1 . 1, (5.27)

we split M jk into the sum l+ r with ‖r‖∞ < 1, where ‖r‖∞ denotes the maximum norm
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on R
d. This yields

∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ .
∑

k′∈Zd

(1 + ‖l + r − k′‖∞)−δ

=
∑

k′∈Zd

(1 + ‖r − k′‖∞)−δ.

Applying the reverse triangle inequality |‖r‖∞ − ‖k′‖∞| ≤ ‖r − k′‖∞ provides

∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ .
∑

k′∈Zd

(
1 +

∣∣‖r‖∞ − ‖k′‖∞
∣∣)−δ

.

Since ‖r‖∞ < 1 and d < δ, we obtain

∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ .
∑

k′∈Zd\{0}
(‖k′‖∞)−δ + 1 . 1.

For (dk)k∈Zd ∈ ℓ1(Zd), this yields

∥∥Tj

(
(dk)k∈Zd

)∥∥
ℓ1

=
∑

k′∈Zd

∣∣∣∣∣∣
∑

k∈Zd

(1 + ‖M jk − k′‖)−δdk

∣∣∣∣∣∣

≤
∑

k∈Zd

∑

k′∈Zd

(1 + ‖M jk − k′‖)−δ|dk|

.
∥∥(dk)k∈Zd

∥∥
ℓ1
.

Thus, (5.27) holds.
Now, let us address τ =∞. In the following, we verify

‖Tj‖ℓ∞→ℓ∞ . m−j. (5.28)

This requires the introduction of a special norm: for isotropic dilation matrices M , there
exists a norm ‖ · ‖M on R

d such that

‖Mx‖M = ρ‖x‖M , for all x ∈ R
d, (5.29)

where ρ is the modulus of the eigenvalues of M , cf. [Jia98]. Since all norms on R
d are

equivalent, this leads to
∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ .
∑

k∈Zd

mj(1 + ‖M jk − k′‖M )−δ

=
∑

k∈Zd

mj(1 + ‖M j(k −M−jk′)‖M )−δ .

Due to j ≤ 0, we have M−jk′ ∈ Z
d. This provides with mj = ρjd

∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ =
∑

k∈Zd

mj(1 + ‖M jk‖M )−δ

.
∑

k∈Zd

ρjd(1 + ‖ρjk‖)−δ .

95



Chapter 5 The Characterization of Function Spaces

Since the last term is a Riemann sum of the integrable function x 7→ (1 + ‖x‖)−δ , we
obtain ∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ . 1.

For (dk)k∈Zd ∈ ℓ∞(Zd), the Cauchy-Schwartz inequality and the last estimate imply

∥∥Tj

(
(dk)k∈Zd

)∥∥
ℓ∞→ℓ∞

= sup
k′∈Zd

∣∣∣∣∣∣
∑

k∈Zd

(1 + ‖M jk − k′‖)−δdk

∣∣∣∣∣∣

≤ m−j sup
k′∈Zd

∑

k∈Zd

mj(1 + ‖M jk − k′‖)−δ |dk|

= m−j sup
k′∈Zd

∥∥∥
(
mj(1 + ‖M jk − k′‖)−δdk

)
k∈Zd

∥∥∥
ℓ1

≤ m−j sup
k′∈Zd

∥∥∥
(
mj(1 + ‖M jk − k′‖)−δ

)
k∈Zd

∥∥∥
ℓ1

∥∥(dk)k∈Zd

∥∥
ℓ∞

. m−j
∥∥(dk)k∈Zd

∥∥
ℓ∞
.

Thus, (5.28) holds.
By applying the Riesz-Thorin Interpolation Theorem to (5.27) and (5.28), we obtain,

for all 1 ≤ τ ≤ ∞,

‖Tj‖ℓτ→ℓτ
. m− j

τ ′ ,

where 1
τ

+ 1
τ ′ = 1.

In order to address j > 0, we observe that, for 1 ≤ τ <∞, the operator T−j : ℓτ ′ → ℓτ ′

is the dual matrix operator of Tj : ℓτ → ℓτ . Thus,

‖Tj‖ℓτ→ℓτ
= ‖T−j‖ℓτ ′→ℓτ ′

. m
j
τ .

Since Tj : ℓ∞ → ℓ∞ is the dual of T−j : ℓ1 → ℓ1, this inequality still holds for τ = ∞,
which concludes the proof.

By following the lines of the proof in [BGN04], Lemma 5.3.2 implies the next Proposi-
tion.

Proposition 5.3.3. Let M be isotropic, and let 1 ≤ p <∞, δ > d, and s, s′ ∈ N. Then
the matrix operator

(cj,k)j,k 7→



∑

k∈Zd,
j≤j′

m
(j−j′)

“
s
d
+ 1

p

”

cj,k

(1 + ‖k −M j−j′k′‖)δ
+
∑

k∈Zd,
j>j′

m
(j′−j)

“
s′

d
+ 1

p′

”

cj,k

(1 + ‖k′ −M j′−jk‖)δ




j′,k′

is bounded on ℓτ (Z × Z
d), for

p

(
s′

d
+ 1

)
> τ >





d
δ
, for s

d
+ 1

p
≥ δ

d
,(

s
d

+ 1
p

)−1
, for 1 < s

d
+ 1

p
≤ δ

d
,

p(1− s
d
), for s

d
+ 1

p
≤ 1.
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The second fundamental ingredient for the proof of Theorem 5.3.1 is the following
version of the Bramble-Hilbert Lemma, see [DL04]. Such inequalities are also known as
Whitney estimates:

Theorem 5.3.4. Given Ω ⊂ R
d convex, s ∈ N, and 1 ≤ p ≤ ∞, let f ∈ W s(Lp(Ω)).

Then there exists a polynomial q ∈ Πs−1 such that

|f − q|W l(Lp(Ω)) . diam(Ω)s−l|f |W s(Lp(Ω)), l = 0, . . . , s,

where
|f |W s(Lp) :=

∑

|β|=s

‖∂βf‖Lp

denotes the Sobolev semi-norm of order s.

The following proposition results by combining Proposition 5.3.3 with Theorem 5.3.4.

Proposition 5.3.5. Let M be isotropic, s, s′ ∈ N, and suppose that compactly supported
functions f ∈ W s(L∞(Rd)) and g ∈ W s′(L∞(Rd)) have s′ and s vanishing moments,
respectively. Given 1 ≤ p <∞ and 1 = 1

p
+ 1

p′
, we consider the matrix operator

T : (cj,k)j,k 7→


 ∑

j∈Z,k∈Zd

〈
fp

j,k, g
p′

j′,k′

〉
cj,k




j′,k′

.

Then T is bounded on ℓτ (Z× Z
d) for any τ in the range

p

(
1 +

s′

d

)
> τ >





(
s
d

+ 1
p

)−1
, for s

d
+ 1

p
≥ 1,

p
(
1− s

d

)
, for s

d
+ 1

p
≤ 1.

Proof. Fix δ > d sufficiently large. First, we address j′ ≥ j. Let R > 0 such that

supp(g) ⊂ G := {x ∈ R
d : ‖x‖M ≤ R},

where ‖ · ‖M denotes the norm in (5.29). Then G is convex and M j−j′G ⊂ G. According
to the vanishing moments and the Hölder inequality, we obtain

∣∣∣
〈
fp

j,k, g
p′

j′,k′

〉∣∣∣ = m
j
pm

j′

p′

∫

Rd

f(M j−j′x+M j−j′k′ − k)g(x)m−j′dx

= m(j−j′) 1
p inf

q∈Πs−1

∫

G

(
f(M j−j′x+M j−j′k′ − k)− q(x)

)
g(x)dx

≤ m(j−j′) 1
p inf

q∈Πs−1

∥∥∥f(M j−j′ ·+M j−j′k′ − k)− q(·)
∥∥∥

L∞(G)
‖g‖L1(G).

The space Πs−1 is affine invariant, i.e., q ∈ Πs−1 yields q(A ·+t) ∈ Πs−1, for all A ∈ R
d×d

and t ∈ R
d. Thus, Theorem 5.3.4 with l = 0 implies

∣∣∣
〈
fp

j,k, g
p′

j′,k′

〉∣∣∣ . m
(j−j′) 1

p inf
q∈Πs−1

‖f − q‖L∞(Mj−j′G+Mj−j′k′−k)

. m(j−j′) 1
p diam(M j−j′G)s|f |W s(L∞(Mj−j′G+Mj−j′k′−k))

. m
(j−j′) 1

pm(j−j′) s
d |f |W s(L∞(G+Mj−j′k′−k)).
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Since f is compactly supported, there exists r > 0 such that, for all v ∈ R
d with ‖v‖ ≥ r,

the intersection (G + v) ∩ supp(f) is empty. Hence, the Sobolev semi-norm can be
estimated by

|f |W s(L∞(G+Mj−j′k′−k)) ≤
{
|f |W s(L∞(Rd)), for ‖M j−j′k′ − k‖ < r,

0, for ‖M j−j′k′ − k‖ ≥ r.

This provides the final inequalities

∣∣∣
〈
fp

j,k, g
p′

j′,k′

〉∣∣∣ . m(j−j′)( s
d
+ 1

p
)|f |W s(L∞(Rd))

(
1 + r

1 + ‖M j−j′k′ − k‖

)δ

.
m(j−j′)( s

d
+ 1

p
)

(1 + ‖M j−j′k′ − k‖)δ
.

Next, we address j > j′. Following the lines above with interchanged roles of f and g,
we obtain

∣∣∣
〈
fp

j,k, g
p′

j′,k′

〉∣∣∣ .
m

(j′−j)( s′

d
+ 1

p′
)

(1 + ‖M j′−jk − k′‖)δ
.

By applying Proposition 5.3.3, the operator T is bounded on ℓτ .

Proposition 5.3.5 addresses single f and g. In order to consider a finite number of
functions as in Theorem 5.3.1, one applies norm coherences between ℓτ (E ×Z×Z

d) and
ℓτ (Z× Z

d). We omit the detailed elaboration.

5.3.2 Hilbertian Dictionaries

Given a pair of biorthogonal wavelet bases, then, under the assumptions of Theorem
5.2.6, for f ∈ Ḃα, the series expansion

∑

λ∈Λ

〈
f, ψ̃p′

λ

〉
ψp

λ

converges towards f in Lp(R
d). This subsection provides some fundamentals, in order to

generalize this statement regarding wavelet bi-frames. Given a wavelet system {ψλ : λ ∈
Λ}, we derive a classical decay condition on the sequence (cλ)λ∈Λ such that

∑

λ∈Λ

cλψ
p
λ (5.30)

converges in Lp(R
d).

Naturally, convergence problems as in (5.30) also arise in more abstract settings. In
order to point out the key ingredients of its solution, we study the problem in a general
framework. Let X be a Banach space. A countable subset D in X is called a dictionary if
its elements are normalized in the sense of ‖g‖X ∼ 1, for all g ∈ D. Although we mainly
think of complete dictionaries, i.e., their linear span is dense in X, we do not suppose its
completeness in advance.

In order to obtain a sufficient variety of decay conditions, we recall the following family
of sequence spaces:
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5.3 The Characterization by Means of Wavelet Bi-Frames

Definition 5.3.6. For 0 < p <∞, 0 < q ≤ ∞ and a countable index set K, the Lorentz
space ℓp,q(K) is the collection of bounded sequences (cκ)κ∈K satisfying ‖(cκ)κ∈K‖ℓp,q

<∞,
where

‖(cκ)κ∈K‖ℓp,q
:=





(∑∞
j=1(j

1
p c∗j )

q 1
j

) 1
q
, for 0 < q <∞,

supj≥1(j
1
p c∗j), for q =∞,

(5.31)

while (c∗j )j∈N denotes a decreasing rearrangement of (|cκ|)κ∈K.

Note that ℓp(K) = ℓp,p(K). Hence, Lorentz spaces refine the scale of ℓp spaces. Since
(c∗j )j∈N is a decreasing sequence, Cauchy’s condensation test provides the norm equiva-
lences

‖(cκ)κ∈K‖ℓp,q
∼





(∑∞
j=0(2

j
p c∗2j )

q
) 1

p
, for 0 < q <∞,

supj≥0{2
j
p c∗

2j}, for q =∞.
(5.32)

According to the results of Section 4.3 in [Lin05], the number 2 in (5.32) can be replaced
by any fixed integer greater than 1. It is often more convenient to work with (5.32) than
with the original norm (5.31). For instance, by applying (5.32), the ideas at the end of
Chapter 2 in [DL93] provide the following continuous embeddings, for 0 < ε,

ℓp+ε,∞(K) →֒ ℓp,q(K), (5.33)

ℓp,q(K) →֒ ℓp,q+ε(K) →֒ ℓp,∞(K). (5.34)

Hence, similar to Besov spaces, the index q is only of minor interest. Recall that, for
f ∈ Lp(R

d), the modulus of smoothness ωl(f, t)Lp is decreasing as t decreases. Then
(5.10) and (5.32) provide

|f |Bs
q (Lp) ∼

∥∥∥∥
(
ωl(f,

1
j
)Lp

)
j∈N

∥∥∥∥
ℓ 1

s ,q

.

Following [BGN04, GN04], we introduce a specific family of dictionaries:

Definition 5.3.7. A dictionary D = {gκ : κ ∈ K} in a Banach space X is called ℓp,q(K)-
hilbertian if the synthesis-type operator

F : ℓp,q(K)→ X, (cκ)κ∈K 7→
∑

κ∈K
cκgκ

is well-defined and bounded.

For q = 1, hilbertian dictionaries are characterized in the following Proposition.

Proposition 5.3.8. Let D = {gκ : κ ∈ K} be a dictionary in a Banach space X and
1 ≤ p <∞. Then the following properties are equivalent:

(i) D is ℓp,1(K)-hilbertian.

(ii) For all index sets KN ⊂ K of cardinality N and every choice of signs
∥∥∥∥∥∥
∑

κ∈KN

±gκ

∥∥∥∥∥∥
X

. N
1
p .
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Chapter 5 The Characterization of Function Spaces

(iii) For all index sets KN ⊂ K of cardinality N and every sequence (dκ)κ∈KN
∈ ℓ(KN )

∥∥∥∥∥∥
∑

κ∈KN

dκgκ

∥∥∥∥∥∥
X

. N
1
p max

κ∈KN

|dκ|. (5.35)

The equivalence between (i) and (ii) has already been derived in [GN04]. We extend
the result to condition (iii).

Proof. Obviously, (iii) implies (ii). Let us show that (i) implies (iii): for a given sequence
(dκ)κ∈KN

∈ ℓ(KN ), we define a second sequence (cκ)κ∈K by

cκ :=

{
dκ, for κ ∈ KN ,

0, otherwise.

Since (cκ)κ∈K ∈ ℓp,1(K), applying (i) yields
∥∥∥∥∥∥
∑

κ∈KN

dκgκ

∥∥∥∥∥∥
X

. ‖(cκ)κ∈K‖ℓp,1
=

∞∑

j=1

j
1
p
−1c∗j

≤ max
κ∈KN

|cκ|
N∑

j=1

j
1
p
−1

= max
κ∈KN

|dκ|N
1
p

1

N

N∑

j=1

(
j

N

) 1
p
−1

.

A Riemann sum argument provides

1

N

N∑

j=1

(
j

N

) 1
p
−1

≤
∫ 1

0
x

1
p
−1
dx = p.

This concludes the proof.

In the sequel, we establish that a compactly supported wavelet system, properly nor-
malized in Lp(R

d), is ℓp,1-hilbertian. In order to derive the result, the following statement
about overlapping supports is helpful:

Lemma 5.3.9. Let a finite number of compactly supported functions ψ(µ), µ = 1, . . . , n,
be given. Then their dilates and shifts satisfy the following overlapping condition:

(a)
∣∣∣supp

(
ψ

(µ)
j,k

)∣∣∣ . m−j.

(b) Let µ and k be fixed. Then, for all j ∈ Z
d,

card
{

(ν, l) : supp
(
ψ

(µ)
j,k

)
∩ supp

(
ψ

(ν)
j,l

)
6= ∅
}

. 1.

The result of Lemma 5.3.9 is well-known for dyadic dilation, cf. [Coh03]. Essentially,
its proof does not depend on the dilation, but see Appendix A.2 for the extension to
general scalings.

The following lemma is a standard component in nonlinear approximation theory for
dyadic dilation, cf. [Coh03, DeV98]. A proof for general isotropic scalings can be found
in [Lin05]. Note that it is stated under an additional basis assumption. An analysis of
the proof yields that the assumption is not necessary. One only uses the overlapping
conditions of Lemma 5.3.9.
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5.3 The Characterization by Means of Wavelet Bi-Frames

Lemma 5.3.10. Let ψ(µ), µ = 1, . . . , n, be compactly supported functions in L∞(Rd).
Assume 1 ≤ p <∞. Then, for all ΛN ⊂ {1, . . . , n} × Z× Z

d of cardinality N and every
sequence (dλ)λ∈ΛN

∈ ℓ(ΛN )

∥∥∥∥∥∥
∑

λ∈ΛN

dλψλ

∥∥∥∥∥∥
Lp

. N
1
p max

λ∈ΛN

‖dλψλ‖Lp
. (5.36)

Actually, (5.36) is just a rephrasing of (5.35) involving the Lp(R
d)-normalization:

Corollary 5.3.11. Let ψ(µ), µ = 1, . . . , n, be compactly supported functions in L∞(Rd)
and 1 ≤ p <∞. Then, with Λ = {1, . . . , n} × Z× Z

d, the Lp-normalized wavelet system

{
ψp

λ : λ ∈ Λ
}

is an ℓp,1(Λ)-hilbertian dictionary in Lp(R
d).

Proof. Given ΛN ⊂ Λ, card (ΛN ) = N , and (dλ)λ∈ΛN
∈ ℓ(ΛN ), define (cλ)λ∈ΛN

∈ ℓ(ΛN )
such that cλψλ = dλψ

p
λ, for λ ∈ ΛN . Then Lemma 5.3.10 yields

∥∥∥∥∥∥
∑

λ∈ΛN

dλψ
p
λ

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥
∑

λ∈ΛN

cλψλ

∥∥∥∥∥∥
Lp

. N
1
p max

λ∈ΛN

‖cλψλ‖Lp

= N
1
p max

λ∈ΛN

∥∥dλψ
p
λ

∥∥
Lp

. N
1
p max

λ∈ΛN

|dλ| .

The last inequality holds because ψp
λ is normalized in Lp(R

d). By applying Proposition
5.3.8, we conclude the proof.

According to Corollary 5.3.11, the series
∑

λ∈Λ cλψ
p
λ converges in Lp(R

d) if (cλ)λ∈Λ is
contained in ℓp,1(Λ). In order to consider wavelet bi-frame expansions

f =
∑

λ∈Λ

〈
f, ψ̃p′

λ

〉
ψp

λ (5.37)

in Lp(R
d), there still remain two problems. First, we have to verify that the coefficient

sequence
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

is contained in ℓp,1(Λ). Then the right-hand side of (5.37) con-

verges in Lp(R
d). Second, we have to verify that the series converges towards f . Both

problems are addressed in the following Subsection 5.3.3.

5.3.3 Norm Equivalences for Homogeneous Besov Spaces

In this subsection, we finally derive the characterization of the homogeneous Besov space
by wavelet bi-frames with general isotropic scalings. The following theorem extends
dyadic results in [BGN04].

Theorem 5.3.12. Given 1 < p <∞, 1
p

+ 1
p′

= 1, let

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)})
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Chapter 5 The Characterization of Function Spaces

be a compactly supported wavelet bi-frame. In addition, suppose that

X({η(1), . . . , η(m−1)}), X({η̃(1), . . . , η̃(m−1)})

is a pair of compactly supported biorthogonal wavelet bases. Given s, s′ ∈ N, then let, for
µ = 1, . . . , n and ν = 1, . . . ,m− 1,

ψ(µ), η(ν) ∈W s(L∞(Rd)) and ψ̃(µ), η̃(ν) ∈W s′(L∞(Rd))

have s′ and s vanishing moments, respectively. If the pair of biorthogonal wavelet bases
characterizes Ḃα in the sense of Theorem 5.2.6, then we have, for α in the range

0 < α <




s, for s

d
+ 1

p
≥ 1,

s

p(1− s
d)
, for s

d
+ 1

p
≤ 1,

and for all f ∈ Ḃα, that

f =
∑

λ∈Λ

〈
f, ψ̃p′

λ

〉
ψp

λ (5.38)

holds in Ḃα (and so in Lp(R
d)) and

‖f‖Ḃα ∼
∥∥∥
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

∥∥∥
ℓτ (Λ)

, (5.39)

where 1
τ

= α
d

+ 1
p

and Λ = {1, . . . , n} × Z× Z
d.

Remark 5.3.13. Theorem 5.3.12 requires the existence of a biorthogonal reference
wavelet system, which already characterizes the Besov space. In the dyadic setting of
[BGN04], this assumptions is not explicitly mentioned since one can simply choose tensor
products of sufficiently smooth orthonormal Daubechies wavelets or the Meyer wavelet,
see [Dau92]. As far as we know, it is still an unanswered question, whether, for each
isotropic dilation matrix, one can find families of arbitrarily smooth compactly supported
pairs of biorthogonal wavelet bases. Hence, we had to formulate the existence of a refer-
ence system as an assumption in Theorem 5.3.12. We should point out, that, for many
nondyadic scalings, these families exist, cf. [Der99, JRS99], and the characterization is
applicable. Finally, we conjecture that the above question has a positive answer. Since
one allows for arbitrarily large support sizes, we expect that the overwhelming majority
of isotropic dilation matrices has such biorthogonal reference wavelets.

One may worry that large supports of pairs of biorthogonal wavelet bases also force
large constants in the biorthogonal characterization. Then the norm equivalence (5.39)
may also inherit very large constants since they depend on those for the biorthogonal
wavelets as well as on the localization technique itself. Hence, Theorem 5.3.12 is only
a qualitative result. Nevertheless, we expect that our method is far-off from providing
optimal constants. The true ones should be much better, and this point of view is
supported by the successful application of the norm equivalences (5.39) to image denoising
in Chapter 7.

For preparation, we need the following simple lemma, see Appendix A.2 for the proof.
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5.3 The Characterization by Means of Wavelet Bi-Frames

Lemma 5.3.14. Let 1 ≤ q < p ≤ ∞ and let fn ∈ Lp(R
d) ∩ Lq(R

d), n ∈ N, converge to
f in Lp(R

d) and to g in Lq(R
d). Then f = g up to a set of measure zero.

Proof of Theorem 5.3.12. Let f ∈ Ḃα and Λ′ = {1, . . . ,m− 1} × Z× Z
d, then

f =
∑

λ′∈Λ′

〈
f, η̃p′

λ′

〉
ηp

λ′

holds in Lp(R
d) and

‖f‖Ḃα ∼
∥∥∥
(〈
f, η̃p′

λ′

〉)
λ′∈Λ′

∥∥∥
ℓτ

. (5.40)

For s
d

+ 1
p
≥ 1, we have

1

τ
=
α

d
+

1

p
<
s

d
+

1

p
.

Hence,

p > τ >

(
s

d
+

1

p

)−1

,

and τ is in the admissible range of Theorem 5.3.1. For s
d

+ 1
p
≤ 1, we have

1

τ
=
α

d
+

1

p
<

s

p(d− s) +
1

p

=
d

p(d− s) =
1

p
(
1− s

d

) .

Thus, Theorem 5.3.1 can be applied in both cases. Then we obtain

∥∥∥
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

∥∥∥
ℓτ

=

∥∥∥∥∥∥

(∑

λ′∈Λ′

〈
f, η̃p′

λ′

〉〈
ηp

λ′ , ψ̃
p′

λ

〉)

λ∈Λ

∥∥∥∥∥∥
ℓτ

(5.41)

.
∥∥∥
(〈
f, η̃p′

λ′

〉)
λ′∈Λ′

∥∥∥
ℓτ

. (5.42)

With (5.40), this implies ∥∥∥
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

∥∥∥
ℓτ

. ‖f‖Ḃα . (5.43)

For the reverse estimate, wavelet bi-frame and biorthogonal wavelets change roles in
the localization process. First, we establish (5.38). According to Corollary 5.3.11, the
primal bi-frame wavelets {

ψp
λ : λ ∈ Λ

}

are ℓp,1-hilbertian. Hence, the synthesis-type operator

F : ℓp,1 → Lp(R
d), (dλ)λ∈Λ 7→

∑

λ∈Λ

dλψ
p
λ

is well-defined and bounded. By applying (5.43), the analysis-type operator

F̃ ∗ : Ḃα → ℓτ , f 7→
(〈
f, ψ̃p′

λ′

〉)
λ′
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Ḃα
eF ∗

−−−−→ ℓτyι̇

yι̇

Lp(R
d)

F←−−−− ℓp,1

Figure 5.4: Mapping diagram for analysis- and synthesis-type operators, where ι̇ denotes
the canonical embedding

is bounded (the notation may only remind of the original analysis operator (2.2) on
Hilbert spaces. The present operator F̃ ∗ is neither considered as any adjoint on Hilbert
spaces nor any dual operator on Banach spaces). Note that the embedding

ℓτ (Λ) →֒ ℓp,1(Λ)

holds. Then in order to establish that the diagram in Figure 5.4 commutes, we consider
the bounded operator

FF̃ ∗ : Ḃα → Lp(R
d)

more closely.

Since Ḃα is contained in Lp(R
d), cf. (5.20), Lemma 5.3.14 and the bi-frame expansion

(2.9) in L2(R
d) imply that FF̃ ∗ is the identity on Ḃα∩L2(R

d). According to the results of
Chapter 1 in [RS96], the intersection Ḃα∩L2(R

d) is dense in Ḃα. Hence, the continuity of
FF̃ ∗ finally yields that (5.38) holds in Lp(R

d), and the diagram in Figure 5.4 commutes.

By following (5.41), (5.42) with interchanged roles of ψ̃, η̃ as well as η replaced by ψ,
we obtain the reverse estimate of (5.43).

We still have to address the convergence of (5.38) in Ḃα. Since primal and dual
wavelets are not required to be biorthogonal, the partial sums of the series (5.38) may

have different wavelet coefficients than the 〈f, ψ̃p′

λ 〉, λ ∈ ΛN , which appear in the sum
itself, i.e., for a subset ΛN ⊂ Λ of cardinality N , we could face

F̃ ∗
( ∑

λ∈ΛN

〈
f, ψ̃p′

λ

〉
ψp

λ

)
6=
(〈
f, ψ̃p′

λ

〉)
λ∈ΛN

.

Thus, the norm equivalence (5.39) does not directly imply that the partial sums constitute

a Cauchy sequence. Nevertheless, the matrix operator
(〈
ψp

λ, ψ̃
p′

λ′

〉)
λ,λ′

is bounded on

ℓτ (Λ), see Theorem 5.3.1. By applying this additional ingredient, the norm equivalences
provide the Cauchy property. According to the completeness of Ḃα, we can conclude the
proof.

In Chapters 3 and 4, we obtained several smooth wavelet bi-frames with isotropic
dilation and a high number of vanishing moments. Then, according to Theorem 5.3.12,
they characterize Besov spaces. Since they have sufficient vanishing moments, as for
biorthogonal wavelets, the range of Besov spaces is only restricted by their smoothness:

Example 5.3.15. Let 1 < p <∞. Then the wavelet bi-frame Laplace (3-2) as well as its
reduced counterpart Laplace (3-2)R is contained in W 3(L∞(R2)) and all wavelets have at
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least four vanishing moments. Note that there exists a pair of biorthogonal wavelet bases,
which can play the role of the reference system in Theorem 5.3.12, cf. [Der99, JRS99]
(recall that the support sizes are allowed to be as large as necessary). Thus, the bi-frame
characterizes the bivariate Besov spaces Ḃα, for all 0 < α < 3.

We explicitly establish the following particular result since it is required in Chapter 7.

Example 5.3.16. Laplace (2-2) is contained in W 2(L∞(R2)) and each wavelet has at
least four vanishing moments. Thus, it characterizes Ḃ1 with d = p = 2.

We even obtain the characterization for the complete range of multivariate Besov spaces
Ḃα, α > 0, since the dilation matrix of the Checkerboard wavelet bi-frames in Sec-
tion 3.3.1 and Example 4.3.1 allows for arbitrarily smooth pairs of compactly supported
biorthogonal wavelet bases.

Example 5.3.17. Let 1 < p < ∞. For each fixed 0 < s ∈ N, there exists a sufficiently
large N , such that the multivariate wavelet bi-frames Checkerboard (N) and (N)R are
contained in W s(L∞(Rd)), and all wavelets have s vanishing moments. Thus, they char-
acterize the multivariate Besov spaces Ḃα, for all 0 < α < s.

Finally, we apply Theorem 5.3.12 to our bi-frames Box Spline (N)R in Example 4.3.3.
Since it involves dyadic dilation, the following example can also be derived by the results
in [BGN04].

Example 5.3.18. Let 1 < p < ∞. Then the wavelet bi-frame Box Spline (4)R is
contained in W 5(L∞(R2)) and all wavelets have at least 8 vanishing moments. Hence, it
characterizes the bivariate Besov spaces Ḃα, for all 0 < α < 5.
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Chapter 6

N-Term Approximation by Wavelet
Bi-Frames

In order to analyze a function, we decompose it into simple building blocks. These blocks
also provide a series expansion, which reconstructs the original function. In computational
algorithms, the series has to be replaced by a finite sum. Hence, we must approximate
from N terms. There arise two fundamental problems, which have to be solved. First,
let the approximation class essentially collect all functions, whose best choice of N terms
yields a specific rate of approximation. It is important to express the approximation
class in terms of classical function spaces since the class serves as a benchmark in order
to evaluate different selections of N terms. Second, in practical algorithms, we require a
realization of the best N -term approximation, i.e., we must look for a simple rule of the
selection of N particular terms such that they provide the same rate of approximation as
the best N -term approximation.

In wavelet theory, one approximates functions from dilates and shifts. For dyadic or-
thonormal wavelets, at least up to a certain rate, the approximation class equals a Besov
space and thresholding the coefficients of the series expansion realizes the best N -term
approximation, cf. [Coh03, DeV98]. The results require certain smoothness and vanish-
ing moments of the wavelets as well as a linear independence condition on the under-
lying refinable function. In [Lin05], Lindemann generalized the dyadic results regarding
biorthogonal wavelet bases with isotropic dilation. Borup, Gribonval, and Nielsen address
wavelet bi-frames in [BGN04]. However, their results are restricted to dyadic dilation. In
the present chapter, we try to extend their results to more general scalings.

First, we recall the basic elements of best N -term approximation in Banach spaces,
cf. [DL93]. In order to characterize the approximation class, one has to establish so-called
matching Jackson and Bernstein inequalities. They imply that the approximation space
equals a so-called interpolation space. Fortunately, interpolation is well-studied, and,
in many particular situations, these classes can be identified with classical smoothness
spaces, which yields the final characterization of the approximation class.

For wavelet bi-frames with idempotent scaling, we establish matching Jackson and
Bernstein inequalities. Hence, their approximation classes are interpolation spaces. Since
the arising interpolation spaces coincide at least for certain parameters with Besov spaces,
we solved the first problem mentioned above. Facing the second problem, we derive that
the best N -term approximation rate can be realized by thresholding the wavelet bi-frame
expansion.

The limitation to idempotent scalings is not too restrive since our wavelet bi-frames
in Chapters 3 and 4 are included. In the remainder of the chapter, we verify that they
satisfy the assumptions of the Jackson and Bernstein inequalities.
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6.1 Best N-Term Appoximation

6.1.1 The Approximation Class

Given some dictionary D in a Banach space X, let ΣN (D) be the collection of all linear
combinations of at most N elements of D. For any given f ∈ X,

σN (f,D)X := dist(f,ΣN (D))X

is called the error of best N -term approximation. In order to approximate elements in X
from ΣN (D), it is important to determine those f ∈ X providing the approximation rate
α, i.e.,

σN (f,D)X . N−α, for all N ∈ N,

where the constant may depend on f . This question leads to the following definition:

Definition 6.1.1. Let D be a dictionary in some Banach space X. For 0 < s < ∞,
0 < q ≤ ∞, the approximation class As

q(X,D) is the collection of all f ∈ X such that

|f |As
q(X,D) :=

{(∑∞
N=1 (N sσN (f,D)X)q 1

N

) 1
q , for 0 < q <∞,

supN≥1(N
sσN (f,D)X), for q =∞,

(6.1)

is finite. It is quasi-normed by

‖f‖As
q(X,D) := ‖f‖X + |f |As

q(X,D). (6.2)

If we choose q = ∞, then the space As
∞(X,D) precisely consists of all f in X having

approximation rate s. For 0 < q <∞, membership in As
q(X,D) means a slightly stronger

condition: since σN (f,D)X is decreasing in N , the Lorentz space embeddings (5.33) and
(5.34) provide, for all ε > 0,

As+ε
∞ (X,D) →֒ As

q(X,D), (6.3)

As
q(X,D) →֒ As

q+ε(X,D) →֒ As
∞(X,D), (6.4)

see also Chapter 7 in [DL93]. According to (6.4), we obtain, for all f ∈ As
q(X,D),

σN (f,D)X . N−s‖f‖As
∞

. N−s‖f‖As
q
. (6.5)

Hence, in (6.5), we explicitly establish that membership in As
q(X,D) is slightly stronger

than having approximation rate s.

Remark 6.1.2. Originally, we are interested in As
∞(X,D). In approximation theory,

one is often not able to characterize this spaces, but one can describe the slightly smaller
space As

q(X,D) at least for a certain q. Since the differences are only marginal and both
classes correspond to approximation rate s, this characterization is sufficient for most
purposes.

Next, we recall some results of best N -term approximation in Lp(R
d), where the dic-

tionary consists of wavelets. The following theorem addresses biorthogonal wavelet bases
with isotropic dilation, cf. [Lin05]:
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6.1 Best N -Term Appoximation

Theorem 6.1.3. Let M be an isotropic dilation matrix, and let X({ψ(1), . . . , ψ(m−1)}),
X({ψ̃(1), . . . , ψ̃(n)}) be a pair of compactly supported biorthogonal wavelet bases with un-
derlying primal refinable function ϕ ∈ W s(L∞(Rd)). Given 1 < p < ∞, then for
0 < α < s,

A
α
d
τ

(
Lp,X({ψ(1) , . . . , ψ(m−1)})

)
= Ḃα,

where 1
τ

= α
d

+ 1
p
.

For compactly supported wavelet bi-frames, the results in [BGN04] imply the following
theorem. Note the restriction to dyadic dilation, and see Section 5.2 for linear indepen-
dence on open sets:

Theorem 6.1.4. Given the matrix M = 2Id and 1 < p < ∞, let X({ψ(1), . . . , ψ(n)}),
X({ψ̃(1), . . . , ψ̃(n)}) be a compactly supported wavelet bi-frame with compactly supported
refinable functions ϕ ∈ Cs(Rd), s ∈ N, and ϕ̃ ∈ C1(Rd), respectively. Moreover, let ϕ have
linearly independent integer shifts on (0, 1)d. If all ψ̃(µ), µ = 1, . . . , n, have s vanishing
moments, then for

0 < α <




s, for s

d
+ 1

p
≥ 1,

s

p(1− s
d)
, for s

d
+ 1

p
≤ 1,

we have
A

α
d
τ

(
Lp,X({ψ(1) , . . . , ψ(n)})

)
= Ḃα,

where 1
τ

= α
d

+ 1
p
.

It should also be mentioned that the results in [BGN04] still hold for noncompactly
supported dual wavelets satisfying certain decay conditions. However, then the range of
admissible α is smaller, see [BGN04] for details.

Remark 6.1.5. In comparison to the biorthogonal results in Theorem 6.1.3, the bi-
frame setting requires stronger assumptions. First, we compare the assumptions on the
primal refinable function. For bi-frames, it is supposed to be strongly differentiable and
its integer shifts are linearly independent on the unit cube. The biorthogonal results in
Theorem 6.1.3 only require weak differentiability, and the linear independence assumption
is unnecessary. In fact, a weaker form of linear independence is implicitly provided by
the biorthogonality relations, see Remark 5.2.4.

Second, bi-frames require s vanishing moments. For the biorthogonal result in Theorem
6.1.3, we do not explicitly assume any vanishing moments. Nevertheless, since ϕ ∈
W s(L∞(Rd)) is compactly supported, it is also contained in W s(L1(R

d)) and Theorem
1.2.7 yields the reproduction of polynomials up to order s + 1. Then according to the
biorthogonality relations, dual wavelets even have s + 1 vanishing moments. Since the
bi-frame setting does not provide any biorthogonality relations, Theorem 6.1.4 requires
the assumption of s vanishing moments.

Third, for small s, i.e, s
d

+ 1
p
≤ 1, the bi-frame setting yields further restrictions on the

range of admissible α. They arise from the localization method, see [BGN04] as well as
Subsection 5.3.1.

Theorem 6.1.4 is restricted to dyadic dilation. The results of the present chapter provide
an extension to idempotent dilation matrices, see Subsection 1.1.2. Moreover, we derive
that, as in the biorthogonal setting, weak differentiability assumptions already suffice.
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Chapter 6 N -Term Approximation by Wavelet Bi-Frames

6.1.2 To Do List

In this subsection, we describe a general procedure to characterize the approximation
class. Let X be some Banach space and let Y be a normed, quasi-normed, or even quasi-
semi-normed linear space, which is continuously embedded in X. In the sequel, we define
some intermediate spaces by the so-called real method of interpolation. First, for f ∈ X
and t > 0, let

K(f, t,X, Y ) := inf
g∈Y
‖f − g‖X + t|g|Y

denote the Peetre K-functional. It measures the distance between f and Y with a penalty
term depending on t. Then for 0 < θ < 1, 0 < q ≤ ∞, the (real)interpolation space
[X,Y ]θ,q consists of all functions f ∈ X such that the semi-norm

|f |[X,Y ]θ,q
:=

{(∫∞
0

(
t−θK(f, t,X, Y )

)q dt
t

) 1
q , for 0 < q <∞,

sup0<t<∞(tθK(f, t,X, Y )), for q =∞,
(6.6)

is finite. It is equipped with the norm

‖f‖[X,Y ])θ,q
:= ‖f‖X + |f |[X,Y ]θ,q

,

and the semi-norm can be substituted by an equivalent discretization

|f |[X,Y ]θ,q
∼


∑

j∈Z

(
2θjK(f, 2−j ,X, Y )Lp

)q




1
q

, (6.7)

see Chapter 7 in [DL93] as well as the survey article [DeV98]. Moreover, similar to the
Lorentz spaces, the number 2 can be replaced by any fixed integer greater than 1.

The definition of interpolation spaces yields the continuous embeddings

Y →֒ [X,Y ]θ,q →֒ X.

Hence, the interpolation space is an intermediate space.
The real method of interpolation is a well-studied topic, and in many situation, the

interpolation space is known to be a classical function space. Given 1 < p < ∞, let s0,
s1 ∈ N0 with s0 < s1. Then, for 1 ≤ q ≤ ∞, s0 < α < s1, we have

[
W s0(Lp(R

d)),W s1(Lp(R
d))
]

α−s0
s1−s0

,q
= Bα

q (Lp(R
d)), (6.8)

see [DL93, Tri92]. In other words, Besov spaces refine the scale of Sobolev spaces. For
s0 = 0, (6.8) reduces to

[
Lp(R

d),W s(Lp(R
d))
]

α
s

,q
= Bα

q (Lp(R
d)),

for all 0 < α < s ∈ N. At least for a certain parameter, the interpolation of specific Besov
spaces yields again a Besov space: given 1 < p < ∞, 0 < s0, s1 < ∞, let s0 < α < s1,
then

[Bs0, Bs1] α−s0
s1−s0

,τ
= Bα, (6.9)

110



6.1 Best N -Term Appoximation

where 1
τ

= α
d

+ 1
p
, see [DL93, Tri92]. According to Chapter 11 in [Pee76], this identity

also holds with respect to the homogeneous Besov spaces. Moreover, the interpolation
between Lp(R

d) and Ḃs provides again a homogeneous Besov space, i.e., for 1 < p <∞,

[
Lp(R

d), Ḃs
]

α
s

,τ
= Ḃα, (6.10)

where 1
τ

= α
d

+ 1
p
, cf. [Kyr01], see also [DJP92, CDH00] and the survey article [DeV98].

The real method of interpolation is an important tool for the characterization of the
approximation class. The following so-called Jackson and Bernstein estimates provide
the connection between approximation and interpolation, cf. [DeV98] and Chapter 7 in
[DL93]:

Theorem 6.1.6. Given 0 < s < ∞ and a Banach space X, let Y be continuously
embedded in X.

(a) If the Jackson inequality

σN (f,D)X . N−s|f |Y , for all f ∈ Y , N ∈ N, (6.11)

holds, then the continuous embedding [X,Y ]α
s

,q →֒ Aα
q (X,D) holds, for all 0 < α < s

and 0 < q ≤ ∞.

(b) If the Bernstein inequality

|f |Y . N s‖f‖X , for all f ∈ ΣN (D), N ∈ N,

holds, then the reverse embedding [X,Y ]α
s

,q ←֓ Aα
q (X,D) holds, for 0 < α < s and

0 < q ≤ ∞.

Theorem 6.1.6 is a first step towards the characterization of approximation spaces. By
establishing matching Jackson and Bernstein estimates, the approximation class equals
an interpolation space. In a next step, one still has to describe the interpolation class by
classical function spaces.

We consider best N -term approximation of a wavelet bi-frame. The error is measured
in Lp(R

d), i.e, we require the characterization of the approximation class

As
τ

(
Lp(R

d),X({ψ(1) , . . . , ψ(n)})
)
.

By following the above procedure, in the next section, we establish matching Jackson and
Bernstein inequalities with respect to the homogeneous Besov space Ḃs. This provides

A
α
d
τ

(
Lp(R

d),X({ψ(1) , . . . , ψ(n)})
)

=
[
Lp(R

d), Ḃs
]

α
s

,τ
.

Then, for 1
τ

= α
d

+ 1
p
, according to (6.10), the right-hand side equals the Besov space Ḃα.
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Chapter 6 N -Term Approximation by Wavelet Bi-Frames

6.2 The Characterization of the Approximation Classes

6.2.1 Jackson Estimates

In order to establish a Jackson inequality for wavelet bi-frames with isotropic scalings, we
recall a very general Jackson estimate for ℓp,1-hilbertian dictionaries in Banach spaces.
Then we apply this general result to wavelet bi-frames in Lp(R

d).
Let D = {gκ : κ ∈ K} be a dictionary in some Banach space X. For 0 < τ < ∞,

0 < q ≤ ∞, and 0 < r <∞, denote by Kτ,q(X,D, r) the collection

closX

{
f ∈ X : f =

∑

κ∈K′

cκgκ, K′ ⊂ K, card(K′) <∞, ‖(cκ)κ∈K′‖ℓτ,q
≤ r
}
.

Then according to [DT96], the sparsity class is defined by

Kτ,q(X,D) :=
⋃

r>0

Kτ,q(X,D, r),

and it is quasi-semi-normed by

|f |Kτ,q
:= inf {r > 0 : f ∈ Kτ,q(X,D, r)} .

Given 1 < p < ∞, let D = {gκ : κ ∈ K} be an ℓp,1-hilbertian dictionary. Then the
sparsity class has a simpler representation: according to [BGN04, GN04], for 0 < τ < p,

Kτ,τ (X,D) =
{∑

κ∈K
cκgκ ∈ X : (cκ)κ∈K ∈ ℓτ (K)

}
(6.12)

and
|f |Kτ,τ

∼ inf
{
‖(cκ)κ∈K‖ℓτ

: f =
∑

κ∈K
cκgκ

}
, (6.13)

where the infimum on the right-hand side is actually a minimum.
The following theorem from [GN04] provides a Jackson inequality with respect to the

sparsity class:

Theorem 6.2.1 (General Jackson Estimate). Given 1 < p < ∞ and D be an ℓp,1-
hilbertian dictionary in a Banach space X, let 0 < α < ∞, 0 < q ≤ ∞, and 1

τ
= α

d
+ 1

p
,

then
σN (f,D)X . N−α

d |f |Kτ,q
, for all f ∈ Kτ,q(X,D), N ∈ N. (6.14)

Next, in the setting of wavelet bi-frames with isotropic dilation, it turns out that we
may replace the sparsity class in Theorem 6.2.1 by a homogeneous Besov space:

Theorem 6.2.2. Let M be isotropic and 1 < p < ∞. Given a compactly supported
wavelet bi-frame X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}), let the assumptions of Theo-
rem 5.3.12 hold. If α is in the range

0 < α <




s, for s

d
+ 1

p
≥ 1,

s

p(1− s
d)
, for s

d
+ 1

p
≤ 1,

then

σN (f,X({ψ(1), . . . , ψ(n)}))Lp . N−α
d ‖f‖Ḃα , for all f ∈ Ḃα, N ∈ N. (6.15)
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Proof. By Corollary 5.3.11, the system
{
ψp

λ : λ ∈ Λ
}

is ℓp,1(Λ)-hilbertian. Thus, Theorem 6.2.1 is applicable to the sparsity class

Kτ,τ

(
Lp(R

d), {ψp
λ : λ ∈ Λ}

)
,

where 1
τ

= α
d

+ 1
p
. This provides

σN (f,X({ψ(1), . . . , ψ(n)}))Lp . N−α
d |f |Kτ,τ

.

We still have to estimate the sparsity norm. Let 1
p

+ 1
p′

= 1, then according to Theorem

5.3.12, for all f ∈ Ḃα,

f =
∑

λ∈Λ

〈
f, ψ̃p′

λ

〉
ψp

λ

holds in Lp(R
d) and (〈

f, ψ̃p′

λ

〉)
λ∈Λ
∈ ℓτ (Λ).

By applying (6.12) and (6.13), this yields

|f |Kτ,τ
.
∥∥∥
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

∥∥∥
ℓτ

.

Then the norm equivalence of Theorem 5.3.12 concludes the proof.

6.2.2 Bernstein Estimates

In this subsection, we establish a Bernstein inequality for wavelet bi-frames. It is based
on the generalization of the following dyadic Bernstein inequality from [Jia93]:

Theorem 6.2.3. Given M = 2Id and 1 < p < ∞, let ϕ ∈ W s(L∞(Rd)), s ∈ N, be a
compactly supported refinable function with linearly independent integer shifts on (0, 1)d.
Then, for each 0 < α < s,

‖f‖Ḃα . N
α
d ‖f‖Lp(Rd), for all f ∈ ΣN (X({ϕ})) .

By following the lines of the proof in [Jia93], one verifies that Theorem 6.2.3 still holds
for a dilation matrix M = hId, where h ∈ N. This observation is the key ingredient for
the proof of the following corollary. It generalizes the dyadic result in [BGN04] regarding
idempotent dilation matrices M (recall from Subsection 1.1.2 that a dilation matrix M
is called idempotent if there exist l, h ∈ N such that M l = hId).
Corollary 6.2.4. Given an idempotent dilation matrix M and 1 < p < ∞, let ϕ ∈
W s(L∞(Rd)) be a compactly supported refinable function with finitely supported mask
and with linearly independent integer shifts on (0, 1)d. Moreover, let ψ(1), . . . , ψ(n) be

wavelets with finitely supported sequences
(
a

(µ)
k

)
k∈Zd such that

ψ(µ)(x) =
∑

k∈Zd

a
(µ)
k ϕ(Mx − k), for µ = 1, . . . , n. (6.16)

Then, for 0 < α < s,

‖f‖Ḃα . N
α
d ‖f‖Lp(Rd), for all f ∈ ΣN(X({ψ(1) , . . . , ψ(n)})). (6.17)
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Proof. According to (6.16), we have for each µ = 1, . . . , n,

ψ(µ)(M jx− k′) =
∑

k∈Zd

a
(µ)
k ϕ(M j+1x−Mk′ − k), for all j ∈ Z, k′ ∈ Z

d.

Thus, there exists a constant C1 such that

ψ
(1)
j,k , . . . , ψ

(n)
j,k ∈ ΣC1(X({ϕ})). (6.18)

This implies

ΣN (X({ψ(1), . . . , ψ(n)})) ⊂ ΣC1N (X({ϕ})). (6.19)

Let (ak)k∈Zd be the finitely supported mask of ϕ, and let l and h be contained in N

such that M l = hId. In the sequel, we verify that there exists a uniform constant C2

such that, for all j′ ∈ Z and k′ ∈ Z
d

ϕ(M j′x− k′) ∈ ΣC2({ϕ(hjx− k) : j ∈ Z, k ∈ Z
d}). (6.20)

Note that we can find u ∈ Z and r ∈ N, r < l such that

j′ + r = lu.

Then r-times applying the refinement equation provides

ϕ(M j′x− k′) =
∑

k1,...,kr

ak1 · · · akr
ϕ(M rM j′x−M r−1k1 − . . .−Mkr−1 − kr)

=
∑

k1,...,kr

ak1 · · · akr
ϕ(M lux−M r−1k1 − . . .−Mkr−1 − kr).

According to M l = hId, the last term is contained in

ΣCr({ϕ(hjx− k) : j ∈ Z, k ∈ Z
d}),

where C denotes the number of nonzero entries of the mask (ak)k∈Zd . Since r < l, (6.20)
holds with C2 = C l−1.

From (6.20), we derive

ΣN (X({ϕ})) ⊂ ΣC2N ({ϕ(hjx− k) : j ∈ Z, k ∈ Z
d}),

which provides with (6.19)

ΣN (X({ψ(1) , . . . , ψ(n)})) ⊂ ΣC2C1N ({ϕ(hjx− k) : j ∈ Z, k ∈ Z
d}).

Then applying Theorem 6.2.3 to hId yields

‖f‖Ḃα
τ (Lτ (Rd)) . (C2C1N)

α
d ‖f‖Lp(Rd)

. N
α
d ‖f‖Lp(Rd),

for all f ∈ ΣN (X({ψ(1) , . . . , ψ(n)})).
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Remark 6.2.5. The Bernstein inequality of Corollary 6.2.4 is restricted to idempotent
dilation matrices. Fortunately, many isotropic dilation matrices addressed in the litera-
ture satisfy this additional requirement. Moreover, all our wavelet bi-frames in Chapters
3 and 4 are scaled by idempotent matrices.

Second, we address the arising constants. According to the localization technique, they
are already far from being optimal in the Jackson inequality of Theorem 6.2.2, see also
Remark 5.3.13. However, our proof of the Bernstein inequality yields to a certain extent
an explosion since the constants linearly depend on the number of nonzero entries of the
underlying masks and they even exponentially depend on the idempotence of the scaling.
Nevertheless, we could derive the qualitative result, and we are convinced that the true
constants for the Bernstein inequality are much better than those we used in its proof.

The Bernstein inequality in Corollary 6.2.4 requires that the shifts of the underlying
refinable function are linearly independent on the unit cube. Jia conjectures in [Jia93] that
the assumption can be removed. However, there is no proof so far, and the application
of the corollary requires the verification of this condition. In Section 6.4, we examine the
underlying refinable functions of our bi-frames in Chapters 3 and 4 with respect to the
linear independence. It turns out that it holds for all examples except for those of the
quincunx matrix. Nevertheless, we do not worry since the Bernstein estimate is only a
negative statement. The positive Jackson estimate holds without any linear independence
assumptions.

6.2.3 Approximation Classes as Besov Spaces

By collecting the results of the previous subsections, it turns out that approximation
classes of wavelet bi-frames are essentially Besov spaces. If the assumptions of Theorem
6.2.2 and Corollary 6.2.4 are satisfied, then Theorem 6.1.6 provides

A
α
d
τ

(
Lp(R

d),X({ψ(1) , . . . , ψ(n)})
)

=
[
Lp(R

d), Ḃs
]

α
s

,τ
.

As already mentioned in Subsection 6.1.2, for 1
τ

= α
d

+ 1
p
, the right-hand side equals the

Besov space Ḃα.
The following theorem explicitly establishes the final result.

Theorem 6.2.6. Given an idempotent dilation matrix M and 1 < p <∞. Let

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)})

be a compactly supported wavelet bi-frame. Suppose, that the assumptions of Theorem
5.3.12 hold. Moreover, let their primal refinable function ϕ ∈ W s(L∞(Rd)), s ∈ N, have
linearly independent integer shifts on (0, 1)d. Then for the range

0 < α <




s, for s

d
+ 1

p
≥ 1,

s

p(1− s
d)
, for s

d
+ 1

p
≤ 1,

we have
A

α
d
τ

(
Lp(R

d),X({ψ(1) , . . . , ψ(n)})
)

= Ḃα, (6.21)

where 1
τ

= α
d

+ 1
p
.
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In order to apply Theorem 6.2.6 to the wavelet bi-frames constructed in Chapters 3 and
4, we have to verify that their underlying refinable functions have linearly independent
integer shifts on the unit cube. Since it turns out that it is not so easy and it requires
some effort, we address this topic in the final Section 6.4 of the present chapter. Before,
we complete the theoretical framework, and we derive a realization of the best N -term
approximation rate in the following Section 6.3.

6.3 N-Term Approximation by Thresholding

Theorem 6.2.6 describes best N -term approximation. In order to implement practical
algorithms, we still need a rule for the selection of N particular terms. In other words,
we want to realize the best N -term approximation rate. For pairs of biorthogonal wavelet
bases, one can simply select the N largest coefficients of the series expansion, cf. [DeV98,
Lin05]. This procedure also works for dyadic wavelet bi-frames by thresholding the bi-
frame expansion, see [BGN04] for details.

In the following, we extend these results to wavelet bi-frames with general isotropic
scalings. Moreover, we allow for more general thresholding operators. They are consid-
ered in [BN] with respect to unconditional bases. An analysis of the proof yields that the
results hold true for wavelet bi-frames as well. The critical ingredients are the following:

•
{
ψp

λ : λ ∈ Λ
}

is ℓp,1-hilbertian,

•
∥∥∥
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

∥∥∥
ℓτ

. ‖f‖Ḃα , for all f ∈ Ḃα and 1
τ

= α
d

+ 1
p
.

Given a wavelet bi-frameX({ψ(1), . . . ψ(n)}), X({ψ̃(1), . . . ψ̃(n)} satisfying the assumptions
of Theorem 6.2.2, these points are satisfied. Then following [BN], we call a function
̺ : C× R+ → C a thresholding rule if

|x− ̺(x, δ)| . min(|x|, δ)

and |x| . δ implies ̺(x, δ) = 0. Given a thresholding rule ̺, then

T̺ : Ḃα × R+ → Lp(R
d), (f, δ) 7→

∑

λ∈Λ

̺
(〈
f, ψ̃p′

λ

〉
, δ
)
ψp

λ (6.22)

is called the thresholding operator. Since
(〈
f, ψ̃p′

λ

〉)
λ∈Λ

is contained in ℓτ (Λ), the se-
ries (6.22) is actually a finite sum. Note that the operator is applied to the bi-frame
coefficients, and one does not allow for thresholding an arbitrary expansion. By denoting

Nf,δ := card
{
λ ∈ Λ : ̺

(〈
f, ψ̃p′

λ

〉
, δ
)
6= 0
}
,

thresholding operators realize best N -term approximation:

Theorem 6.3.1. Under the notation and the assumptions of Theorem 5.3.12, let ̺ be a
thresholding rule. Then we have, for α in the range

0 < α <




s, for s

d
+ 1

p
≥ 1,

s

p(1− s
d)
, for s

d
+ 1

p
≤ 1,
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and for all f ∈ Ḃα,

‖f − T̺(f, δ)‖Lp
. N

−α
d

f,δ ‖f‖Ḃα .

According to Theorem 6.3.1, the best N -term approximation rate as described in The-
orem 6.2.6 can be realized by thresholding the wavelet bi-frame expansion. Note that
Theorem 6.3.1 does not require any linear independence. Hence, even if the assump-
tions of the Bernstein inequality are not satisfied and so the best N -term approximation
is not completely described, thresholding still provides the same approximation rate as
predicted by the Jackson inequality.

In the sequel, we consider some simple thresholding rules, see Figure 6.1 for their
visualizations. Then, we apply Theorem 6.3.1 to our wavelet bi-frames in Chapters 3 and
4. First, we recall hard- and soft-thresholding. For instance, these rules were already
been successfully applied to wavelet expansions in [CDLL98, Tao96].

Example 6.3.2. (a) The rule

̺h(x, δ) =

{
x, for |x| > δ,

0, otherwise,

is called hard-thresholding.

(b) Soft-thresholding is given by

̺s(x, δ) =

{
x− x

|x|δ, for |x| > δ,

0, otherwise.

Hard-thresholding yields discontinuities, and soft-thresholding shrinks all coefficients.
The following rule essentially avoids such drawbacks, see [Gao98]:

(c) The thresholding rule

̺g(x, δ) =

{
x− δ2

x
, for |x| > δ,

0, otherwise,

is called garotte-thresholding. It is continuous, and large coefficients nearly remain
unaltered.

Next, we consider N -term approximation by the wavelet bi-frames in Chapters 3 and
4.

Example 6.3.3. Given a thresholding rule ̺ and 1 < p < ∞, we address the wavelet
bi-frame Laplace (3-2) or Laplace (3-2)R. According to Theorem 6.3.1, the thresholding
operator provides

‖f − T̺(f, δ)‖Lp
. N

−α
2

f,δ ‖f‖Ḃα ,

for all 0 < α < 3.

Thresholding is also applicable to our Checkerboard wavelet bi-frames in Section 3.3.1
as well as to their reduced counterparts in Example 4.3.1. They provide N -term approx-
imation in arbitrary dimensions with an arbitrarily high approximation rate:
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Figure 6.1: Thresholding rules ̺h, ̺s, and ̺g for δ = 20

Example 6.3.4. For arbitrarily large 0 < s ∈ N, there exist Checkerboard bi-frames
contained in W s(L∞(Rd)) with s vanishing moments. Hence, we have

‖f − T̺(f, δ)‖Lp
. N

−α
d

f,δ ‖f‖Ḃα ,

for all 0 < α < s.

6.4 The Linear Independence on the Unit Cube

The Bernstein inequality in Corollary 6.2.4 requires that the underlying primal refinable
function of the wavelet bi-frame has linearly independent integer shifts on the unit cube.
The present section is dedicated to verifying this property for our wavelet bi-frames in
Chapters 3 and 4.

The linear independence of integer shifts on the unit cube implies global stability as
introduced in (1.36). In the dyadic univariate setting, the converse also holds, see [Ron99]:

Theorem 6.4.1. Let ϕ be a compactly supported univariate continuous refinable function
with respect to dyadic dilation. If its integer shifts are globally linearly independent, then
they are also linearly independent on (0, 1).

All our refinable functions in the examples of Chapters 3 and 4 are fundamental. Thus,
they have globally linearly independent integer shifts. Unfortunately, there exist multi-
variate refinable functions with globally linearly independent integer shifts, which are not
linearly independent on (0, 1)d. Hence, Theorem 6.4.1 does not extend to arbitrary mul-
tivariate refinable functions, and our aim requires a finer analysis of linear independence.

6.4.1 Box Spline Wavelet Bi-Frames

The present subsection is dedicated to verifying the linear independence condition on
(0, 1)d for the underlying refinable functions of the box spline bi-frames in Subsection
3.3.3 and Example 4.3.3.

In the multivariate setting, Theorem 6.4.1 still holds for box splines, cf. [Jia85]. How-
ever, our box spline bi-frames are not constructed from pure box splines, but a box spline
convolved with some distribution. Thus, the theorem is not applicable, and we have to
find a different approach.
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Following [Ron99], we reformulate linear indepence on (0, 1)d in terms of masks. Given
a symbol a generating a continuous refinable function ϕ with respect to dyadic dilation,
suppose that (ak)k∈Zd is supported on [0, L]d, L ∈ N. Let

K := [0, L− 1]d ∩ Z
d,

fix an order for K, and let

Φ(x) := (ϕ(x+ k))k∈K , for x ∈ [0, 1)d.

Moreover, with Γ∗
2Id

= {0, 1}d, we address

Aγ∗ :=
(
aγ∗+2k−k′

)
k,k′∈K

, γ∗ ∈ Γ∗
2Id
.

Then let V denote the minimal common invariant subspace of the collection
{
Aγ∗ : γ∗ ∈

Γ∗
2Id

}
, which still contains Φ(1

2 , . . . ,
1
2 ). Finally, letM be a card(K)×dim(V) matrix such

that its columns form a basis for V. This notation holds throughout the present section.
Then the following theorem from [Ron99] completely characterizes refinable functions’
linear independence on (0, 1)d in terms of their masks:

Theorem 6.4.2. Let a symbol a with supp (ak)k∈Zd ⊂ [0, L]d generate a continuous
refinable functions ϕ with respect to dyadic dilation. Then ϕ has linearly independent
integer shifts on (0, 1)d iff the nonzero rows of the matrix M are linearly independent.

The application of Theorem 6.4.2 requires the computation of Φ
(

1
2 , . . . ,

1
2

)
. Advanta-

geously, the refinement equation provides

Φ
(

1
2 , . . . ,

1
2

)
= A(1,...,1)Φ(0),

cf. [Ron99]. Hence, we merely need to find Φ(0), which is often already known. For
instance, if ϕ is fundamental and the order of K starts with 0, then Φ(0) = (1, 0, . . . , 0)⊤.

Theorem 6.4.2 also requires that the refinable mask is supported on [0, L]d. Since the
masks of the refinable functions in Chapters 3 and 4 are centered around zero, we shift
them. The following elementary result yields that such shifts do not affect the linear
independence:

Lemma 6.4.3. Let M be a dilation matrix, l ∈ Z
d, and let ϕ be (ak)k∈Zd refinable. Then

the following holds:

(a) The function ϕ(· − l) is (ak−Ml+l)k∈Zd refinable.

(b) If ϕ has linearly independent integer shifts on A, then also ϕ(·+ l), l ∈ Z
d.

(c) If ϕ has linearly independent integer shifts on A, then also on A+ l, l ∈ Z
d.

We skip the proof of Lemma 6.4.3 since it is direct and elementary. With the help
of Theorem 6.4.2, we derive the linear independence on (0, 1)2 of one of our underlying
wavelet bi-frame refinable functions:
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Example 6.4.4. Let ϕ be the underlying refinable function of the wavelet bi-frame Box
Spline (1) as well as Box Spline (1)R. It is fundamental and refinable with respect to
dyadic dilation. Denote by (ak)k∈Z2 its mask. It is supported on [−3, 3]2. In order to
apply Theorem 6.4.2, we consider the shifted mask (ak−(3,3)⊤)k∈Z2 . According to Lemma
6.4.3, this only yields a shift of ϕ. Hence, Φ(0) still consists of zeros except for one single
entry, which is equal to one. Finally,

(
ak−(3,3)⊤

)
k∈Z2 is supported on [0, 6]2. Then L = 6

and card(K) = 36. The following results are derived by the computer algebra software
Maple. First, we calculate dim(V) = 30, i.e., M has 30 linearly independent rows. Then
we verify that there are 6 zero rows in M. Since M has only 36 rows, its nonzero rows
are linearly independent. By applying Theorem 6.4.2, ϕ has linearly independent integer
shifts on (0, 1)2.

Our smoother box spline examples of Chapter 4 also satisfy the linear independence
assumption of Theorem 6.2.3:

Example 6.4.5. Let ϕ be the underlying refinable function of the wavelet bi-frame Box
Spline (2)R. Note that it is fundamental. Similar to Example 6.4.4, we first apply some
shift. Then we have L = 14 and card(K) = 196. Using Maple, we obtain dim(V) = 154.
Moreover, M has 42 zero rows. Since M has exactly 196 rows, the nonzero rows are
linearly independent. By applying Theorem 6.4.2, ϕ has linearly independent integer
shifts on (0, 1)2.

Since Examples 6.4.4 and 6.4.5 provide the linear independence on (0, 1)2, we can apply
Theorem 6.2.6 to the characterization of our box spline wavelet bi-frames’ approximation
classes:

Example 6.4.6. Denote ψ(1), . . . , ψ(n) the primal wavelets of the bivariate wavelet bi-
frame Box Spline (1), (1)R, or (2)R. Given 1 < p <∞, then

A
α
2
τ

(
Lp(R

2),X({ψ(1) , . . . , ψ(n)})
)

= Ḃα

holds for all 0 < α < 1 with respect to Box Spline (1), (1)R, and it holds for all 0 <
α < 3 with respect to Box Spline (2)R. According to Theorem 6.3.1, the best N -term
approximation rate can be realized by an arbitrary thresholding rule.

We did not verify the local linear independence for Box Spline (3)R and (4)R. Since
their refinable functions share the same structure as those in Examples 6.4.4 and 6.4.5,
we are convinced that the independence condition holds.

6.4.2 Quincunx Wavelet Bi-Frames

Next, we address the examples for the quincunx dilation matrix Mq in (3.22). At first
glance, Theorem 6.4.2 is useless since it only applies to dyadic dilation. With some trick
in the following example, we can circumvent this restriction:

Example 6.4.7. Let ϕ be the refinable function of the Laplace symbol a in (3.23).
Note that ϕ is fundamental. According to the symmetry of the mask (ak)k∈Z2 , ϕ is also
refinable with respect to the box spline dilation matrix Mb in (1.6), see [Han04] for details.
Since M2

b = 2I2, one easily verifies that ϕ is also refinable with respect to dyadic dilation

120



6.4 The Linear Independence on the Unit Cube

and symbol a(ξ)a(M⊤
b ξ). After a suitable shift, we obtain a mask, which is supported

on [0, 4]2. Then Maple computes dim(V) = 16. Since card(K) = 16, the rows of M are
linearly independent, and Theorem 6.4.2 provides the linear independence of the integer
shifts on (0, 1)2.

Unfortunately, the underlying refinable function ϕ of our wavelet bi-frames Laplace
(1-1) and (1-1)R does not satisfy the linear independence assumption:

Example 6.4.8. Let ϕ be the underlying refinable function of Laplace (1-1) and (1-1)R,
and let (ak)k∈Z2 be the mask. According to its symmetry, ϕ is also refinable with respect
to the dilation matrix Mb. Since M2

b = 2I2, ϕ is refinable with respect to dyadic dilation
with symbol a(ξ)a(M⊤

b ξ). After a suitable shift, we obtain a mask, which is supported
on [0, 12]2. Then Maple computes dim(V) = 119 and M has 12 zero rows. Hence, its
nonzero rows are linearly dependent, and ϕ does not have linearly independent integer
shifts on (0, 1)2.

Note that our symmetry trick in Examples 6.4.7 and 6.4.8, i.e., the changeover from
Mq to 2I2, enlarges the mask sizes. Hence, already for Laplace (2-2), the complexity
is enormous. Nevertheless, since all underlying refinable functions of Laplace (N1-N2)
and (N1-N2)R share the same structure, we are convinced that none of them has lin-
early independent integer shifts on (0, 1)2. For the same reasons, we are also convinced
that the underlying refinable function of the bi-frame DGM does not satisfy the linear
independence assumption required in Corollary 6.2.4.

6.4.3 Wavelet Bi-Frames in Arbitrary Dimensions

In order to verify the linear independence on (0, 1)d for our Checkerboard wavelet bi-
frames in Subsection 3.3.1 and in Example 4.3.1, we require the introduction of another
version of linear independence:

Definition 6.4.9. We say a compactly supported distribution ϕ has locally linearly in-
dependent integer shifts if its integer shifts are linearly independent on each open subset
in R

d.

According to [Ron99], Theorem 6.4.1 extends to local linear independence:

Theorem 6.4.10. Let ϕ be a univariate, continuous, dyadic refinable function with com-
pact support. If its integer shifts are globally linearly independent, then they are also
locally linearly independent.

We proceed as follows: we verify that local linear independence of integer shifts is invari-
ant under tensor products of univariate refinable functions. Then according to Theorem
6.4.10, the global linear independence provides that the tensor product has locally lin-
early independent integer shifts. Finally, we verify that the local linear independence of
the tensor product carries over to the underlying refinable functions of the Checkerboard
bi-frames.

Proposition 6.4.11. Let ϕ0 be a univariate, continuous, dyadic refinable function with
compact support. If its integer shifts are globally linearly independent, then the tensor
product ϕ =

⊗d
i=1 ϕ0 has locally linearly independent integer shifts.
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The following proof of Proposition 6.4.11 is direct. In Appendix A.2, we present an
alternative proof in terms of the mask of the refinable function.

Proof. Given a nonempty open subset A in R
d, let x be an arbitrary point in A. Then

there exists an open cube Ux ⊂ A, whose edges are parallel to the coordinate axis, and x
is contained in Ux. Thus, we have open subsets Uxi

in R, i = 1, . . . , d, such that

Ux = Ux1 × · · · × Uxd
.

According to Theorem 6.4.10, ϕ0 has locally linearly independent integer shifts. Hence,
for each i = 1, . . . , d, the collection

Bi := {ϕ0(· − ki) : supp(ϕ0(· − ki)) ∩ Uxi
6= ∅, ki ∈ Z}

is linearly independent. Since linear independence is invariant under tensor products, the
collection

B1 ⊗ · · · ⊗Bd = {ϕ(· − k) : supp(ϕ0(· − ki)) ∩ Uxi
6= ∅, ki ∈ Z, i = 1, . . . , d}

=
{
ϕ(· − k) : supp(ϕ(· − k)) ∩ Ux 6= ∅, k ∈ Z

d
}

is also linearly independent. Thus, ϕ has linearly independent integer shifts on Ux. Since
A =

⋃
x∈A Ux, the integer shifts of ϕ are linearly independent on A. This concludes the

proof.

Lemma 6.4.12. Let ϕ : R
d1 → C have locally linearly independent integer shifts, and let

D ∈ Z
d1×d2 be an integer matrix of rank d1. Then ϕ(D·) : R

d2 → C has locally linearly
independent integer shifts.

Proof. Given some nonempty open subset A in R
d2, let

∑

k∈Zd2

ckϕ(D(· − k)) = 0, on A.

This implies ∑

k∈Zd2

ckϕ(· −Dk) = 0, on DA.

A trivial zero extension yields

∑

k∈Zd2

ckϕ(· −Dk) +
∑

k∈Zd1\DZd2

0 · ϕ(· − k) = 0, on DA.

Since D : R
d2 → R

d1 is linear and onto, it constitutes an open mapping, i.e., DA is an
open subset of R

d1. Hence, the local linear independence of ϕ provides

ckϕ(· −Dk) = 0, on DA, for all k ∈ Z
d2.

Finally, this yields
ckϕ(D(· − k)) = 0, on A, for all k ∈ Z

d2 ,

which concludes the proof.
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By applying Proposition 6.4.11 and Lemma 6.4.12, we derive the local linear indepen-
dence for the underlying refinable function of the Checkerboard bi-frames:

Example 6.4.13. Let ϕ be the underlying refinable function of the d-dimensional
Checkerboard bi-frame in Subsection 3.3.1 or its reduced counterpart in Example 4.3.1.
Then according to (3.18), ϕ is given by

ϕ(x) = ϕ0 ⊗ · · · ⊗ ϕ0 (Dx) ,

where ϕ0 is a univariate fundamental refinable function, and D is a square matrix with
ones in the diagonal as well as above, and zeros elsewhere. Since ϕ0 is fundamental, it
has globally linearly independent integer shifts. Then according to Proposition 6.4.11,
ϕ0 ⊗ · · · ⊗ ϕ0 has locally linearly independent integer shifts. Finally, the application of
Lemma 6.4.12 yields that ϕ has locally linearly independent integer shifts.

Example 6.4.13 verifies that Theorem 6.2.6 can be applied to the Checkerboard bi-
frames:

Example 6.4.14. Given 1 < p < ∞ and an arbitrarily large number 0 < s ∈ N, the
Checkerboard family of Subsection 3.3.1 provides a wavelet bi-frame of three wavelets
with sufficient smoothness and a sufficient number of vanishing moments such that

A
α
d
τ

(
Lp(R

d),X({ψ(1), ψ(2), ψ(3)})
)

= Ḃα, for all 0 < α < s,

see Theorem 6.2.6. Note that the above equality holds in arbitrary dimensions with only
three wavelets. Moreover, for its reduced counterpart of Example 4.3.1, we even derive
such an equality with only two wavelets. According to Example 6.3.4, the best N -term
approximation rate can be realized by an arbitrary thresholding operator.
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Chapter 7

Removing Noise by Solving Variational
Problems

In recent years, variational approaches became a valuable tool in signal and image pro-
cessing concerning compression, noise removal or segmentation, cf. [CDLL98, ROF92].
They are also successfully applied to many other fields of applied mathematics, such as
the treatment of operator equations and inverse problems, cf. [DDD04] and references
therein.

In the present chapter, we consider variational image and signal denoising. Then given
some noisy measurement f , the variational problem consists of finding an approximation
g of f , which minimizes the sum of a distance measure and some penalty term. The last-
mentioned penalty term usually depends on a so-called regularization parameter, which
determines the amount of noise removal, and a careful choice is essential for the success
of the method. According to Chambolle, DeVore, Lee, and Lucier in [CDLL98], penalty
terms involving a Besov norm provide good results in noise removal from images, but see
also [ROF92] for different choices.

In order to derive solutions from practical algorithms, one has to discretize the vari-
ational problem. In [CDLL98], the characterization of Besov spaces by biorthogonal
wavelet bases reduces the original problem to a discrete variational problem in terms of
wavelet coefficients. Then the discrete problem can be explicitly solved, which provides
an approximate minimizer of the original one.

One still requires a method for the choice of the regularization parameter, in order to
determine a convenient amount of noise removal. Montefusco and Papi proposed the so-
called H-curve criterion in [MP03]. It seems a promising approach since it does not need
any a-priori knowledge of the noise, and the criterion already provided good results for
variational image denoising with respect to the discretization by an orthonormal wavelet
basis.

This chapter is dedicated to verifying the potential of multivariate wavelet bi-frames
for applicational purposes. We attempt to derive an approximate solution of variational
problems with the help of wavelet bi-frames instead of biorthogonal bases, and we hope
to verify that the H-curve criterion provides satisfactory results for bi-frames as well.

At first, we establish the variational problem under consideration, and we introduce the
H-curve method. Then we recall the discretization by biorthogonal wavelet bases. Since
we characterized Besov spaces by means of wavelet bi-frames in Chapter 5, we can also
formulate the original variational problem in terms of bi-frame coefficients. As the bases
approach in [CDLL98], the solution of the discrete problem provides an approximate
minimizer of the original one.

In our numerical experiments of noise removal from images, we discretize the original
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problem with respect to the bi-frame Laplace (2-2), and we choose the regularization
parameter according to the H-curve criterion. We consider additive white noise with
different intensities as well as salt&pepper noise. It turns out that the H-curve method
provides better denoised images with respect to the visual perception than the choice of
the regularization parameter according to the mean square error minimization. Moreover,
we also address multiplicative noise, which is much harder to treat than additive noise
since it highly depends on the original image. Then the mean square error minimization
already provides very good results. Fortunately, the H-curve method yields close mean
square errors and the visual results are almost identical. In conclusion, the H-curve
criterion is not restricted to orthonormal bases, it provides promising outcomes for bi-
frames as well.

7.1 Variational Image Denoising

7.1.1 The Variational Approach

Given some noisy signal f , the reconstruction of the original unperturbed signal f̄ either
requires some information on f̄ or on the noise, and best results can only be expected
if one has both. Nevertheless, in order to be very flexible, we consider large classes of
noise variants in the following, and we focus on the a-priori knowledge about the original
signal, which we may express in terms of membership in a function space. Certainly, the
space highly depends on the application, and, for instance, medical images force different
classes than radar data or geological measurements. In the present chapter, we consider
images without any further specification. Then since ordinary images usually consist of
smooth parts and some edges, the space BV (R2) of functions of bounded variation seems
a good choice for the collection of image representations, see Appendix A.1 for its precise
definition, and [ROF92] for its successful applications to image processing. The bivariate
Besov space Ḃ1, p = 2, is known to be very close to BV (R2), i.e.,

Ḃ1 ⊂ BV (R2) ⊂ Ḃ1
∞(L1(R

2)),

cf. [CDPX99, Mey01], and it constitutes the collection of images in our present setting.
In signal and image processing, many noise variants, such as different kinds of back-

ground noise, lead to additive models, i.e.,

f = f̄ + ε1, (7.1)

where ε1 is noise. Since we suppose that f̄ is contained in Ḃ1, and that ε1 is outside,
noise removal means, we try to solely approximate those parts of f , which are contained
in Ḃ1, while avoiding outer parts.

Contrary to additive noise in (7.1), multiplicative noise is generally much harder to
treat since it depends on the signal, i.e.,

f = f̄ + ε2f̄ . (7.2)

Then noise in a digital camera finally requires the consideration of the superposition of
additive and multiplicative noise, i.e.,

f = f̄ + ε1 + ε2f̄ , (7.3)
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cf. [TFG01]. The variational approach, which we shall explain in the following, is ap-
plicable to all three noise models (7.1), (7.2), and (7.3). Hence, it is a very flexible
tool.

Let us describe the variational noise removal as discussed in [CDLL98] by Chambolle,
DeVore, Lee, and Lucier. Since the approach is not restricted to Ḃ1, we consider a more
general setting with multivariate f̄ ∈ Ḃs, where 1

τ
= s

d
+ 1

2 and Ḃs = Ḃs
τ (Lτ (Rd)). If we

assume ε1 ∈ L2(R
d) and ε2 ∈ L∞(Rd), then f given by (7.3) is contained in L2(R

d) since
Ḃs ⊂ L2(R

d), cf. (5.20). Then for fixed δ > 0, we address the minimization

min
g∈Ḃs

(
‖f − g‖2L2

+ δ‖g‖τ
Ḃs

)
. (7.4)

The exponents 2 and τ are only inserted for computational convenience, and a minimizer
g[δ] approximates f in L2(R

d) such that its norm in Ḃs is not too large. Hence, it may
constitute a denoised signal.

The parameter δ controls the emphasis of the penalty term
∥∥g[δ]

∥∥τ

Ḃs , and it determines
the amount of noise removal. We shall discuss its choice in the following Subsection 7.1.2.

Remark 7.1.1. We are kind of sloppy concerning the domain of an image. Naturally,
the original image f̄ as well as the noisy one are represented by some function on a square
or a rectangle. This necessitates an extension of the noisy and the original image, and
we require a linear extension operator, which is bounded on the addressed Besov spaces.
Such operators are derived in [DDD97] and [CDD00]. See also [Ryc99] for some kind
of universal extension operator. Note that the one in [DS93] is not applicable since it
is nonlinear. Finally, f in (7.4) is already considered as a certain extension from the
rectangle to R

2.

7.1.2 The Choice of the Regularization Parameter

Once found a minimizer g[δ] of (7.4), we still have to choose a specific δ such that the
minimizer provides a good representation of the denoised image. In fact, this is a hard
problem. On the one hand, if we choose δ too small, then there remains too much noise
in the image. On the other hand, large δ provides oversmoothing and we lose too many
details.

In order to choose δ, we apply the so-called H-curve criterion as proposed by Mon-
tefusco and Papi in [MP03]. Let us explain the main idea. Varying δ > 0 provides a
curve (

log
(
‖f − g[δ]‖2L2

)
, log

(
‖g[δ]‖τ

Ḃs

))
(7.5)

in R
2. Then one claims that the curve is concave on a reasonable range of δ, see Figures

7.2, 7.4, and 7.6 for d = 2 and s = 1, and one chooses δH according to the maximum
absolute value of the curvature. This choice may provide a good balance between the
penalty term and the error of approximation in L2(R

d). Note that the approach does not
require any information about the noise. Hence, it is a very flexible tool, and it should
be mentioned that is has already been successfully applied to variational noise removal
involving orthonormal wavelet bases in [MP03].
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7.2 Discretization

In order to derive the minizer of (7.4) by a practical algorithm, we have to discretize the
original problem. Such discretizations do usually not provide an exact minimizer, but
only an approximate minimizer g[δ] of (7.4), i.e., for all g ∈ Ḃs,

∥∥∥f − g[δ]
∥∥∥

2

L2

+ δ
∥∥∥g[δ]

∥∥∥
τ

Ḃs
. ‖f − g‖2L2

+ δ‖g‖τ
Ḃs .

Fortunately, it turns out that these approximate solutions of (7.4) are sufficient for ap-
plicational purposes, cf. [CDLL98].

7.2.1 Discretization by Biorthogonal Wavelets

In the present subsection, we follow [CDLL98], and we discretize the problem (7.4) by a
given pair of biorthogonal wavelet bases

X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}) (7.6)

characterizing Ḃs as in Theorem 5.2.6. Let

F̃ ∗ : L2(R
2)→ ℓ2(Λ), f 7→

(〈
f, ψ̃λ

〉)
λ∈λ

,

be the associated analysis operator, then according to the characterization of L2(R
d) and

Ḃs, the problem (7.4) can be replaced by the discrete minimization problem

min
w∈ℓτ

(∥∥∥F̃ ∗f − w
∥∥∥

2

ℓ2
+ δ‖w‖τℓτ

)
. (7.7)

Let w[δ] be an exact minimizer of (7.7). Since we assume that (7.6) constitute Riesz
bases, the operator F̃ ∗ is boundedly invertible, and

g[δ] = (F̃ ∗)−1w[δ] (7.8)

provides an approximate minimizer of the original variational problem (7.4), see [CDLL98]
for details. Advantageously, the discrete minimization (7.7) is decoupled, and it can be
separately minimized for each λ ∈ Λ, i.e., we minimize

min
wλ

(
|vλ −wλ|2 + δ|wλ|τ

)
,

where v := F̃ ∗f . Thus, we reduced the complicated continuous minimization to a much
simpler discrete problem.

According to the results in [CDLL98], the hard-threshold choice

wλ =

{
vλ, for |vλ| > δ

1
2−τ ,

0, otherwise,
(7.9)

provides a good approximation of w[δ] since it minimizes (7.7) within a factor of 4 of the
exact minimum. In other words, it provides an approximate minimizer of the discrete
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7.2 Discretization

problem. For general values of s, one only has an implicit description of the exact
minimizer, but as s goes to infinity and so τ goes to zero, the exact minimizer w[δ]

of (7.7) converges to hard-thresholding

w
[δ]
λ =

{
vλ, for |vλ| >

√
δ,

0, otherwise,

cf. [Lor07]. For the specific case s = 1
2d, the exact minimizer w[δ] can be explicitly

determined by soft-thresholding

w
[δ]
λ =

{
vλ − vλ

|vλ|
δ
2 , for |vλ| > δ

2 ,

0, otherwise,
(7.10)

see [CDLL98].
Recall that hard- and soft-thresholding also arised as a realization of best N -term

approximation, cf. Example 6.3.2 in Chapter 6. Hence, variational noise removal can be
considered as an N -term approximation of f , where the number of terms determines the
amount of noise removal.

Remark 7.2.1. In [DJ94], Donoho and Johnston address the problem of image denoising
via some statistical approach. They derive some soft-thresholding algorithm, and an
asymptotically optimal threshold parameter is determined. However, their results are
restricted to orthonormal bases and additive white noise. In the present chapter, we
require more flexibility with respect to the wavelet system, and we also consider different
noise models beyond additive white noise, see (7.2) and (7.3). Hence, we address a more
far-reaching setting.

We still have to choose δH according to the H-curve criterion. The discretization of
the curve in (7.5) yields

(
log
(
‖v − w[δ]‖2ℓ2

)
, log

(
‖w[δ]‖τℓτ

))
, (7.11)

and then we determine δH according to the maximal curvature of this curve.

7.2.2 Discretization by Wavelet Bi-Frames

In the previous Subsection 7.2.1, we discretized the original variational problem with re-
spect to a pair of biorthogonal wavelet bases. In the following, we extend the discretization
to wavelet bi-frames.

Let the collection in (7.6) constitute a wavelet bi-frame with respect to isotropic scaling
and no longer a pair of biorthogonal bases. Given s > 0, let k denote an integer strictly
larger than s and d

2 . We assume that all wavelets of the bi-frame have at least k vanishing
moments and that they are contained in W k(L∞(Rd)). Then according to Theorem
5.3.12, we still have the norm equivalences provided that there exists a pair of biorthogonal
reference bases. However, the dual analysis operator F̃ ∗ is no longer onto, i.e., it is not
invertible, and (7.8) makes no sense any more. One has to restrict the minimization to
the range of F̃ ∗. From a computational point of view, this is problematic.

We circumvent the restriction by the following alternative. First, we do not care about
the range of F̃ ∗, and we minimize (7.7) on ℓτ (Λ). Then applying the orthogonal projection
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Chapter 7 Removing Noise by Solving Variational Problems

onto the range of F̃ ∗ seems to be a good compromise between exactness and computational
efficiency. The orthogonal projection is provided by

P : ℓ2(Λ)→ ℓ2(Λ), (cλ)λ∈Λ 7→
(∑

λ∈Λ

〈
S̃−1ψ̃λ, ψ̃λ′

〉
cλ

)

λ′∈Λ

, (7.12)

where S̃ = F̃ F̃ ∗ is the dual frame operator, see Section 5.3 in [Chr03]. This means
P = F̃ ∗FeS , where FeS is the synthesis operator with respect to the canonical dual frame

of {ψ̃λ : λ ∈ Λ}.
However, the orthogonal projection (7.12) inherits some drawbacks since it requires the

inversion of the frame operator S̃ and the elements S̃−1ψ̃λ might not possess the wavelet
structure. In order to avoid such invonveniences, let us apply the bi-frame concept once
more, and we consequently substitute the primal wavelets ψλ for S̃−1ψ̃λ. In other words,
the orthogonal projection (7.12) is replaced with the operator F̃ ∗F , where

F : ℓ2(Λ)→ L2(R
2), (cλ)λ∈Λ 7→

∑

λ∈Λ

cλψλ

is the primal synthesis operator. This still provides a nonorthogonal projection onto the
range of F̃ ∗.

According to Theorem 5.3.1, F̃ ∗Fw[δ] is contained in ℓτ (Λ). Since the dual wavelets
constitute a frame, F̃ ∗ is injective, i.e., it is invertible on its range, and we can define

g[δ] :=
(
F̃ ∗
| range( eF ∗)

)−1
F̃ ∗Fw[δ] = Fw[δ]. (7.13)

Remark 7.2.2. Note that g[δ] = Fw[δ] in (7.13) finally yields that we do not require any
projection.

Since F maps ℓτ (Λ) into Ḃs, the function g[δ] is indeed contained in Ḃs, and in the
sequel, we shall verify that it is an approximate minimizer of (7.4). By applying the norm
equivalences of Theorem 5.3.12 and since FF̃ ∗ equals the identity, we obtain

∥∥∥f − g[δ]
∥∥∥

2

L2

+ δ
∥∥∥g[δ]

∥∥∥
τ

Ḃs
.
∥∥∥F̃ ∗f − F̃ ∗g[δ]

∥∥∥
2

ℓ2
+ δ

∥∥∥F̃ ∗g[δ]
∥∥∥

τ

ℓτ

=
∥∥∥F̃ ∗FF̃ ∗f − F̃ ∗Fw[δ]

∥∥∥
2

ℓ2
+ δ

∥∥∥F̃ ∗Fw[δ]
∥∥∥

τ

ℓτ

.

Since we have a bi-frame, the operator

F̃ ∗F : (cλ)λ∈Λ 7→
(∑

λ∈Λ

〈
ψλ, ψ̃λ′

〉
cλ

)

λ′∈Λ

,

is bounded on ℓ2(Λ), and, according to Theorem 5.3.1, it is also bounded on ℓτ (Λ). This
yields ∥∥∥f − g[δ]

∥∥∥
2

L2

+ δ
∥∥∥g[δ]

∥∥∥
τ

Ḃs
.
∥∥∥F̃ ∗f − w[δ]

∥∥∥
2

ℓ2
+ δ

∥∥∥w[δ]
∥∥∥

τ

ℓτ

.

By applying that w[δ] is a minimizer of (7.7), we obtain, for all g ∈ Ḃs,

∥∥∥f − g[δ]
∥∥∥

2

L2

+ δ
∥∥∥g[δ]

∥∥∥
τ

Ḃs
.
∥∥∥F̃ ∗f − F̃ ∗g

∥∥∥
2

ℓ2
+ δ

∥∥∥F̃ ∗g
∥∥∥

τ

ℓτ

,
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7.2 Discretization

and then the norm equivalences of Theorem 5.3.12 lead to

∥∥∥f − g[δ]
∥∥∥

2

L2

+ δ
∥∥∥g[δ]

∥∥∥
τ

Ḃs
. ‖f − g‖2L2

+ δ ‖g‖τ
Ḃs .

Thus, g[δ] is an approximate minimizer of the original variational problem (7.4).
For s = d

2 , soft-thresholding yields the exact minimizer of the discret problem. At least
in this case, it turns out that each thresholding rule provides an approximate minimizer
of the original problem:

Theorem 7.2.3. Given s = d
2 , a thresholding rule ̺, and an isotropic dilation matrix M ,

let X({ψ(1), . . . , ψ(n)}), X({ψ̃(1), . . . , ψ̃(n)}) be a compactly supported wavelet bi-frame,
which characterizes Ḃs. Then the thresholding operator

T̺(f, δ) =
∑

λ∈Λ

̺
(〈
f, ψ̃λ

〉
, δ
)
ψλ

provides an approximate minimizer of (7.4).

Proof. We have already verified that an exact discrete minimizer yields an approximate
minimizer of the original problem. By following the lines once more, one verifies that an
approximate discrete minimizer already suffices. In the sequel, we verify that thresholding
provides such an approximate minimizer of the discrete problem.

Since ̺ is a thresholding rule, there are two positive constants C1 and C2 such that,
for all x ∈ C and δ > 0,

|x− ̺(x, δ)| ≤ C1 min(|x|, δ), (7.14)

and |x| ≤ C2δ implies ̺(x, δ) = 0. Given the exact discrete minimizer w[δ], we apply the
short-hand notation

Kλ :=
∣∣∣vλ − w[δ]

λ

∣∣∣
2
+ δ

∣∣∣w[δ]
λ

∣∣∣ ,

Gλ := |vλ − ̺(vλ, δ)|2 + δ |̺(vλ, δ)| .

Note that w[δ] can be derived by soft-thresholding of (vλ)λ∈Λ. In order to verify that
Gλ . Kλ, where the constant is independent on λ, vλ, and δ, we consider five cases.
First, for 0 ≤ |vλ| ≤ min( δ

2 , C2δ), we have Gλ = Kλ.

Second, if δ
2 ≤ |vλ| ≤ C2δ, then on the one hand, we obtain

Gλ = |vλ|2 ≤ C2
2δ

2.

On the other hand, we have

Kλ =
δ2

4
+ δ

∣∣∣∣vλ −
δ

2

∣∣∣∣ ,

which yields Gλ ≤ 4C2
2Kλ.

Third, we consider C2δ ≤ |vλ| ≤ δ
2 . Since (7.14) also yields |̺(vλ, δ)| ≤ (C1 +1)|vλ|, we

obtain

Gλ ≤ C2
1 min(|vλ|2, δ2) + δ|̺(vλ, δ)|

≤ C2
1 |vλ|2 + C−1

2 |vλ|(C1 + 1)|vλ|
≤ (C2

1 + C−1
2 C1 + C−1

2 )|vλ|2 = (C2
1 + C−1

2 C1 + C−1
2 )Kλ.
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Fourth, if max( δ
2 , C2δ) ≤ |vλ| ≤ δ, then we have

Gλ ≤ C2
1 min(|vλ|2, δ2) + δ|̺(vλ, δ)|

≤ C2
1δ

2 + δ(C1 + 1)|vλ| ≤ (C2
1 + C1 + 1)δ2.

Then applying

Kλ =
δ2

4
+ δ

∣∣∣∣vλ −
δ

2

∣∣∣∣ ≥
δ2

4

yields Gλ ≤ 4(C2
1 + C1 + 1)Kλ.

Fifth, given max(δ, C2δ) ≤ |vλ|, we obtain

Gλ ≤ C2
1 min(|vλ|2, δ2) + δ|̺(vλ, δ)|

≤ C2
1δ

2 + δ(C1 + 1)|vλ|.

Since the reverse triangle inequality yields

Kλ =
δ2

4
+ δ

∣∣∣∣vλ −
δ

2

∣∣∣∣ ≥
δ2

4
+ δ

∣∣∣∣|vλ| −
δ

2

∣∣∣∣ ≥
δ2

4
+ δ|vλ|

1

2
,

we have estimated Gλ ≤ 4max(C2
1 ,

1
2(C1 + 1))Kλ.

Finally, we established that an arbitrary thresholding rule provides an approximate
minimizer of the discrete variational problem. This concludes the proof.

Concerning the H-curve method, we can also discretize the curve (7.5) by a wavelet
bi-frame. Then the discrete version in terms of bi-frame coefficients looks like the one in
(7.11).

7.3 Numerical Results

For our experiments, we suppose that the noisy image f is still contained in L2(R
2), while

the unperturbed image is an element of Ḃ1. Then we consider the variational problem

min
g∈Ḃ1

(
‖f − g‖2L2

+ δ‖g‖Ḃ1

)
. (7.15)

We discretize (7.15) with respect to the bi-frame Laplace (2-2), which characterizes the
bivariate Besov space Ḃ1, see Example 5.3.16. Then according to Theorem 7.2.3, each
thresholding rule provides an approximate minimizer of (7.15). Nevertheless, we derive
g[δ] by applying soft-thresholding since it corresponds to the exact minimizer of the asso-
ciated discrete problem. Then we determine the threshold parameter δH by the H-curve
criterion. In order to evaluate its choice, we compare the results with another choice δMSE

according to the minimization of the mean square error, i.e., for X,Y : {1, . . . , 512}2 → R

representing the pixel values of images of size 512× 512, we consider

MSE(X,Y ) :=
1

5122

512∑

i,j=1

|Xi,j − Yi,j|2,

RSME(X,Y ) :=
√

MSE(X,Y ),
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7.3 Numerical Results

(a) ‘lena’ (b) ‘barbara’ (c) ‘peppers’

Figure 7.1: Original images

and then let δMSE be the threshold parameter, which corresponds to a minimal MSE. It
should be mentioned that the MSE is one of the standard error measures in literature,
but such mathematical error measures do often not reflect the visual perception. Finally,
our numerical considerations are dedicated to verify that δH outperforms δMSE. In other
words, we attempt to verify that the H-curve criterion yields better results with respect
to the visual perception than the MSE minimization.

We consider 8-bit grayscale images ‘lena’, ‘barbara’, and ‘peppers’ of size 512 × 512,
see Figure 7.1. Then we corrupt them by different kinds of noise, such as additive and
multiplicative noise in (7.1), (7.2), and (7.3). In order to decompose the image almost
completely in wavelet coefficients, we calculate 10 scales of the transform. To avoid
random anomalies, we average over 20 iterations.

Remark 7.3.1. Since implementations of the extension operators addressed in Remark
7.1.1 are very complicated, we simply apply the periodic extension of an image. This
method is very popular in image processing, cf. [Mal99, SN96]. However, it has to be
mentioned that it is not admissible by our theory. One may overcome this looseness with
the concept by periodic wavelets, so that the Besov characterization can be applied to
periodic functions, cf. [Dau92].

7.3.1 Additive Gaussian White Noise

In order to simulate background noise, we shall consider additive Gaussian white noise,
which leads to the noise model (7.1), where ε1 is essentially Gaussian distributed with
zero mean, cf. [Mal99]. We address standard deviations σ1 = 10, 25, and 40, which we
refer to low, medium, and strong noise.

It turns out that, for all three test images, the discrete analog of the curve in (7.5) is
concave, and the H-curve criterion is applicable, cf. Figure 7.2 for ‘lena’ and σ1 = 10,
Figure 7.4 for ‘barbara’ and σ1 = 25, and Figure 7.6 for ‘peppers’ and σ1 = 40.

At first, let us remove noise from ‘lena’. A comparison of the threshold parameter δH
of the H-curve method with the MSE minimizer δMSE as well as their RSMEs is presented
in Table 7.1. For low noise, δH is larger than δMSE, but both RMSEs are still quite
close. Considering stronger noise such as σ1 = 25, 40, the threshold δH is smaller than

133



Chapter 7 Removing Noise by Solving Variational Problems

σ1 δH δH/δMSE RMSE δH RMSE δMSE

10 13.61 1.30 6.17 5.94

25 25.40 0.74 11.35 10.62

40 35.72 0.56 17.69 13.78

Table 7.1: ‘lena’, Gaussian white noise
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Figure 7.2: ‘lena’, Gaussian white noise, σ1 = 10, left: concave curve, top right:
curvature/δ, down left: RMSE/δ with δMSE (∗) and δH (◦).
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7.3 Numerical Results

σ1 δH δH/δMSE RMSE δH RMSE δMSE

10 23.06 1.88 11.33 9.59

25 29.21 0.93 14.69 14.65

40 38.09 0.67 19.93 17.96

Table 7.2: ‘barbara’, Gaussian white noise

σ1 δH δH/δMSE RMSE δH RMSE δMSE

10 13.21 1.28 6.28 6.09

25 26.43 0.78 11.31 10.79

40 36.64 0.59 17.53 14.12

Table 7.3: ‘peppers’, Gaussian white noise

δMSE, and we remove less noise than with δMSE. Nevertheless, we may hope for more
details, and this is supported by Figure 7.3, where the noisy image is on the left, in the
center is the H-curved denoised image, and we have the optimal choice with respect to
MSE minimization on the right. For σ1 = 25, the choice δH keeps more details than δMSE

and so in the H-curve denoised image remains slightly more noise. Since it is generally
more important to preserve details than removing all the noise, one may consider δH as
the better choice. In case of stronger noise σ1 = 40, this effect is more obvious. Then
δMSE almost removes all the noise, but one also loses most of the details. The choice
δH allows for more noise, but one can still recognize a lot of details. Thus, the H-curve
method leads to far better visual results, although its MSE is noticeably larger than the
minimum. Especially for stronger noise, the MSE minimization does not seem to reflect
the visual perception of a minimal error, and the bi-frame is well suited for the H-curve
method.

For low noise σ1 = 10, both denoised images are more or less visually identical. Maybe,
δH provides some more smoothing, but it is hard to recognize.

Next, we address ‘barbara’ with the same noise levels as before, see Table 7.2 and
Figure 7.4 for the numerical results. In order to evaluate the visual results, see Figure
7.5. For low noise, the choice δH seems slightly too large, and one might prefer δMSE.
Nevertheless, the visual differences are very small. For σ1 = 25, both δH and δMSE are
very close, and they provide satisfactory visual results. For strong noise, we definitely
prefer δH , although there still remains more noise, because we also preserve much more
details. In conclusion, ‘barbara’ supports the good performance of the H-curve method
with respect to ‘lena’, and especially for stronger noise, the choice by the H-curve criterion
provides better results with respect to the visual perception than the MSE minimization.

Finally, we address ‘peppers’, corrupted by additive Gaussian white noise, see Table
7.3 and Figure 7.6 for numerical results. The denoised images are presented in Figure
7.7. For low noise, δH and δMSE yield very similar results. Given σ1 = 25, the H-curve
criterion is better since it keeps more details than δMSE. For strong noise, the effect is
more noticeable, and δH is obviously the better choice.

In conclusion, for all three test images, the H-curve method provides better visual
results with respect to additive Gaussian white noise than the MSE minimization.
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Figure 7.3: ‘lena’, Gaussian white noise, from top to down: σ1 = 10, 25, 40, from left to
right: noisy, δH , δMSE
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Figure 7.4: ‘barbara’, Gaussian white noise, σ1 = 25, left: concave curve, top right:
curvature/δ, down right: RMSE/δ with δMSE (∗) and δH (◦).

image δH δH/δMSE RMSE δH RMSE δMSE

‘lena’ 51.92 0.42 27.17 20.29

‘barbara’ 50.58 0.41 29.78 23.93

‘peppers’ 53.39 0.42 22.64 29.45

Table 7.4: Salt&Pepper noise

7.3.2 Salt&Pepper Noise

In digital cameras, there often occur pixel errors, which can be simulated by salt&pepper
noise, i.e., one flips a certain percentage of pixels either to 0 or to 255. We consider a
uniformly distributed spatial density of 15%.

The results of all three test images are presented in Figure 7.8 and Table 7.4. For
δMSE, the denoised images look very blurry, and it is obvious that the MSE minimiza-
tion removes too many details. The threshold δH is less than 1

2δMSE, and it allows for
remaining noise. Nevertheless, since the choice δH also keeps a lot more details, it defi-
nitely provides the best results with respect to the visual perception. In conclusion, for
salt&pepper noise, the H-curve method outperforms the MSE minimization.

7.3.3 Multiplicative Gaussian White Noise

Removal of multiplicative noise is generally much harder than removing additive noise
since it depends on the signal. We address (7.2), where ε2 is Gaussian white noise.
While one considers the standard deviations 0.1 and 0.2 in [HP05], we choose the average
σ2 = 0.15, see Figure 7.9 for the denoised images. The numerical results are given
in Figure 7.10, where we visualize the differences between δH and δMSE as well as the
different RMSEs. It turns out that δMSE is already a very good choice with respect to
the visual perception. Fortunately, the H-curve criterion provides a threshold δH , which
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Figure 7.5: ‘barbara’, Gaussian white noise, from top to down: σ1 = 10, 25, 40, from left
to right: noisy, δH , δMSE
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Figure 7.6: ‘peppers’, Gaussian white noise, σ1 = 40, left: concave curve, top right:
curvature/δ, down right: RMSE/δ with δMSE (∗) and δH (◦).

is very close to δMSE. Hence, their denoised images are visually identical, and δH also
provides optimal results. Note that Figure 7.10 shows that δH and δMSE almost coincide,
and so do their RMSEs.

7.3.4 Additive and Multiplicative Gaussian White Noise

Since the simulation of noise in a digital camera of a so-called CMOS photodiode active
pixel sensor (APS) requires the combination of additive and multiplicative white noise,
cf. [TFG01], we finally consider (7.3), where ε1 and ε2 are Gaussian white noise with
standard deviation σ1 = 20 and σ2 = 0.1, respectively. The denoised images are presented
in Figure 7.12, while Figure 7.11 provides a visual comparison between δH and δMSE. The
MSE minimization already yields good visual results and δH is very close to δMSE. Hence,
the H-curve method provides a satisfactory choice.
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Figure 7.7: ‘peppers’, Gaussian white noise, from top to down: σ1 = 10, 25, 40, from left
to right: noisy, δH , δMSE
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Figure 7.8: Salt&pepper noise, from left to right: noisy, δH , δMSE
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Figure 7.9: Multiplicative Gaussian white noise, σ2 = 0.15, from left to right: noisy, δH ,
δMSE
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Figure 7.10: Multiplicative Gaussian white noise, σ2 = 0.15, above: curvature/δ, below:
RMSE/δ with δMSE (∗) and δH (◦)
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Figure 7.11: Additive and multiplicative Gaussian white noise, σ1 = 20, σ2 = 0.1, above:
curvature/δ, below: RMSE/δ with δMSE (∗) and δH (◦)
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Figure 7.12: Additive and multiplicative Gaussian white noise, σ1 = 20, σ2 = 0.1, from
left to right: noisy, δH , δMSE
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7.3.5 Summary of the Numerical Results

We corrupted three images ‘lena’, ‘barbara’, and ‘peppers’ by different kinds of noise.
Then we compared the H-curve criterion for the bi-frame Laplace (2-2) with the MSE
minimization. For medium and strong additive Gaussian white noise, the choice of the
threshold parameter by the H-curve method provides better visual results than its choice
with respect to a minimal MSE. Concerning salt&pepper noise, the H-curve criterion
definitely outperforms the MSE minimization. For multiplicative as well as for a super-
position of additive and multiplicative noise, both threshold choices yield satisfactory
denoised images. In conclusion, we verified that the H-curve method is not only appli-
cable to orthonormal wavelet bases but to bi-frames as well, and it provides very good
results with respect to the visual perception. Finally, the present chapter indicates that
bi-frames constitute a promising tool for applicational purposes.
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Conclusion

In the present thesis, we studied multivariate wavelet frames with compact support. For
a summary of our results, we revisit the problems (P1), (P2), (P3), and (P4) formulated
in the introduction.

We have constructed smooth multivariate wavelet bi-frames with small supports and
few wavelets, which are symmetric and have a high number of vanishing moments. Since
primal and dual wavelets are derived from one single refinable function, they share exactly
the same smoothness. The underlying refinable function is even fundamental, which is im-
possible within the concept of biorthogonal wavelets. Among others, we constructed two
families of arbitrarily smooth bivariate wavelet bi-frames, Laplace (N1-N2) and Laplace
(N1-N2)R, for the quincunx dilation matrix with three and two wavelets, respectively.
Moreover, we derived two families of arbitrarily smooth wavelet bi-frames in arbitrary
dimensions, Checkerboard (N) and Checkerboard (N)R, from three and two wavelets,
respectively. The constructions we presented provide significantly smaller supports than
comparable biorthogonal approaches. In conclusion, we have overcome the restrictions of
biorthogonal wavelet bases, and we solved (P1) completely.

In order to verify that our wavelet bi-frames provide superior properties with respect to
other wavelet frame constructions in the literature, we established a variety of optimality
constraints addressing smoothness, approximation order, the number of wavelets, and
symmetry. It turned out that the family Checkerboard (N)R satisfies all of the optimality
conditions. Hence, we also solved (P2) completely.

Next, we verified that Besov spaces are also characterized by wavelet bi-frames with
isotropic scalings. We then addressed best N -term approximation, and by establishing
matching Jackson and Bernstein inequalities and applying an interpolation result, we
derived that the approximation classes of wavelet bi-frames with idempotent scalings are
actually Besov spaces. Moreover, the best N -term approximation rate can be realized by
an arbitrary thresholding rule applied to the bi-frame expansion. The findings provide
a considerable extension of dyadic wavelet frame results in the literature, and they yield
the solution to (P3). We also verified that the approximation classes of our multivari-
ate wavelet bi-frames Checkerboard (N), (N)R as well as the bivariate bi-frames Box
Spline (1), (1)R, and (2)R are Besov spaces. Unfortunately, the bi-frames Laplace (N1-
N2) and Laplace (N1-N2)R do not satisfy the assumptions for the Bernstein inequality.
Hence, we cannot completely determine their approximation classes. Nevertheless, the
Jackson inequality holds and thresholding the bi-frame expansion provides the predicted
approximation rate.

Finally, we considered a variational problem for image denoising, and we discretized
the problem with respect to the bi-frame Laplace (2-2). Then, we experimentally demon-
strated that the H-curve method is also applicable to the wavelet bi-frame discretization
and that it yields better results than the mean square error minimization with respect to
the visual perception. Since the outcomes are promising, we solved (P4).
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Conclusion

In the following, let us address some suggestions for future research. High-dimensional
signal processing is a growing field, especially in medical imaging. With higher dimen-
sions, the dyadic wavelet transform has a high complexity since the number of wavelets
increases exponentially. One can circumvent these problems with dilation matrices satis-
fying m = 2, such as in (2.28). They also provide a much finer scaling, which may yield a
better visual impression when changing the resolution by zooming in and out. The asso-
ciated bi-frames Checkerboard (N), (N)R are nonseparable and promising candidates for
high-dimensional applications. Finally, the implementation of efficient high-dimensional
algorithms for nonseparable wavelet bi-frames could be addressed in a future research
project.

On the one hand, our constructive approaches in Chapters 3 and 4 lead to optimal
wavelet bi-frames. On the other hand, the requirements of specific applications may often
differ from the somehow abstract optimality criteria considered in the present thesis. In
order to construct the most appropriate bi-frames, one must identify key properties for
specific applications. This requires extensive numerical experiments, which might offer a
second subject for future research.

In recent years, anisotropic Besov spaces have been the focus in the field of image
and signal processing. In comparison to the Besov spaces we considered, they measure
smoothness weighted in predefinable directions. Hence, they can express directional de-
pendencies in an image, which is, for instance, advantageous in edge detection. In a third
research project, one could attempt to characterize these spaces by wavelet bi-frames with
general anisotropic dilation matrices. However, as far as we know, the characterization
has not yet been completely clarified in terms of wavelet bases, see [GHT04, Hoc02] for
some results on diagonal anisotropic matrices.
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A.1 Function Spaces, Distributions, and the Fourier Transform

The Schwartz Space
The Schwartz space S(Rd) is the collection of all f ∈ C∞(Rd) such that

pα,β(f) := sup
x∈Rd

∣∣∣xα∂βf(x)
∣∣∣

is finite for all α, β ∈ Nd
0. Equipped with the collection of semi-norms

{
pα,β : α, β ∈ Nd

0

}
,

it constitutes a Fréchet space, cf. [Trè67] for details.

The Fourier Transform and Tempered Distributions
For f ∈ L1(R

d) ∩ L2(R
d), let

f̂(ξ) :=

∫

Rd

f(x)e−2πix·ξdx,

denote the Fourier transform of f . We also apply the notation Ff := f̂ . Then F is an
automorphism of S(Rd), and it extends to an isometric automorphism on L2(R

d).
The Schwartz space’s topological dual space S ′(Rd) is called the collection of tempered

distributions. Then F extends to an automorphism of S ′(Rd) by

(Ff) (η) := f(Fη), for f ∈ S ′(Rd) and η ∈ S(Rd).

For more details about distributions and the Fourier transform as well as for the support
of a distribution, their translation, dilation, and convolution, we refer to [Trè67].

Sobolev Spaces
Let Ω be an arbitrary domain in R

d. For s ∈ N0 and 1 ≤ p ≤ ∞, denote

W s(Lp(Ω)) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω), for all |α| ≤ s}

the Sobolev space of smoothness s in Lp(Ω), where ∂αf means α weak partial derivatives
of f . Equipped with the norm

‖f‖W s
p (Ω) :=

∑

|α|≤s

‖∂αf‖Lp

it is a Banach space. As required in Theorem 5.3.4, we denotes by

|f |W s
p (Ω) :=

∑

|α|=s

‖∂αf‖Lp

the Sobolev semi-norm.
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Next, we address fractional s. For 0 < s 6∈ N, let s = k+ ν with k ∈ N0 and 0 < ν < 1.
Then for 1 ≤ p <∞, the fractional Sobolev space is given by

W s(Lp(Ω)) :=
{
f ∈W k(Lp(Ω)) : ‖f‖W s(Lp) <∞

}
,

where

‖f‖p
W s(Lp) := ‖f‖p

W k(Lp)
+
∑

|α|=k

∫

Ω

∫

Ω

|∂αf(x)− ∂αf(y)|p
|x− y|d+νp

dxdy.

Hölder Spaces
Denote C(Rd) the collection of all bounded and uniformly continuous functions f : R

d →
C. For s ∈ N0, let

Cs(Rd) :=
{
f : ∂αf ∈ C(Rd), for all |α| ≤ s

}
.

The smoothness parameter s can be extended to fractional s > 0: let k be an integer
such that s = k + ν, 0 ≤ ν < 1, then the Hölder space Cs(Rd) is the collection of all
f ∈ Ck(Rd) such that

|∂αf(x+ h)− ∂αf(x)| . ‖h‖ν , for all h ∈ R
d, |α| = k.

Lipschitz Spaces

Given f : R
d → C and h ∈ R

d, denote

∆1
hf := f(·+ h)− f(·) (A.1)

the difference of order 1. For f ∈ Lp(R
d), 0 < p ≤ ∞, and t ≥ 0, the modulus of

continuity is defined by

ω(f, t)Lp := sup
|h|≤t

∥∥∆1
hf
∥∥

Lp
. (A.2)

The Lipschitz space Lip
(
s, Lp(R

d)
)
, for 0 < s ≤ 1 ≤ p ≤ ∞, consists of all f ∈ Lp(R

d)
such that

ω(f, t)Lp . ts, for all t > 0.

For s > 1, let k be an integer such that s = k+ν, 0 < ν ≤ 1. The Lipschitz space extends
to the range s > 1 by

Lip
(
s, Lp(R

d)
)

:=
{
f ∈ Lp(R

d) : ∂αf ∈ Lip
(
ν, Lp(R

d)
)
, for all |α| = k

}
.

For f ∈ Lp(R
d), we call

sp(f) := sup
{
s ≥ 0 : f ∈ Lip

(
s, Lp(R

d)
)}

its Lp-critical exponent. Due to [DL93], provided that s ∈ N and 1 < p ≤ ∞, the Lipschitz
space equals the Sobolev space, i.e.,

Lip
(
s, Lp(R

d)
)

= W s(Lp(R
d)). (A.3)
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A.2 Some (Alternative) Proofs

Thus, s∞(f) provides a tool for verifying membership in W s(L∞(Rd)): if 0 < s∞(f) =
k + ν, k an integer and 0 < ν ≤ 1, then f ∈W k(L∞(Rd)).

For all 0 < ε < s, the fractional Sobolev spaces provide the following inclusions

W s(L2(R
d)) ⊂ Lip

(
s, L2(R

d)
)
⊂W s−ε(L2(R

d)), (A.4)

see for example [Jia99]. This yields

s2(f) =
{
s ≥ 0 : f ∈W s(L2(R

d))
}
.

Next, we derive an interpretation of s∞(f): if s > 0 is not an integer, then

Lip
(
s, L∞(Rd)

)
= Cs(Rd),

see [DL93]. Thus, the L∞-critical exponent s∞(f) measures Hölder smoothness, i.e., for
f ∈ L∞(Rd),

s∞(f) =
{
s ≥ 0 : f ∈ Cs(Rd)

}
. (A.5)

The Hardy Space

Following [FS72], we briefly recall Hardy spaces. Given f ∈ S ′(Rd) and φ ∈ S(Rd) with
φ̂(0) = 1, let

f⋆(x) := sup
|x−y|<t

∣∣F−1 (φ(t·)Ff) (y)
∣∣ .

Then the Hardy space Hp(R
d), for 0 < p <∞, is the collection of all f ∈ S ′(Rd) such that

‖f⋆‖Lp
is finite. It turns out that Hp(R

d) = Lp(R
d), for 1 < p <∞, see [FS72, Tri92] for

this result and for a more detailed discussion about Hardy spaces.

Functions of Bounded Variation

We only require the space of bivariate functions of bounded variation, and we follow the
approach in [CDPX99]. Given f ∈ L1(R

2), let

v(f) := sup
0<h

1

h

2∑

j=1

∥∥∥∆1
hej
f
∥∥∥

L1

denote the variation of f , where e1, e2 denote the two coordinate vectors in R
2 and ∆1 is

the difference of order one as in (A.1). Then BV (R2) is the collection of all f ∈ L1(R
2)

such that the norm

‖f‖BV := v(f) + ‖f‖L1

is finite. For details about BV (R2), we refer to [CDPX99] and [Mey01].

A.2 Some (Alternative) Proofs

Proof of Lemma 1.1.3

Lemma. Each idempotent dilation matrix is isotropic.
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Proof. Let l, h ∈ N with M l = hId. Since each eigenvalue ρi of M satisfies ρl
i = h, they

have the same modulus, i.e., |ρi| = ρ, i = 1, . . . , d. Next, we address the diagonalization.
Since M l−hId = 0, the minimum polynomial of M is a divisor of the polynomial xl−h.
Hence, it has pairwise distinct zeros, which provides that M can be diagonalized, see a
standard textbook on linear algebra.

Proof of Lemma 1.3.1
Lemma. Given a pair of compactly supported biorthogonal wavelet bases, let their as-
sociated refinable functions ϕ and ϕ̃ be generated by symbols a and b, respectively, with
a(0) = b(0) = 1. If both refinable functions are fundamental, then m > 2.

Proof. We supposem = 2. The biorthogonality of ϕ and ϕ̃ implies that b is a dual symbol
of a. Hence, their subsymbols satisfy

A0B0 +Aγ∗

1
Bγ∗

1
= 2,

see Subsection 1.1.4. Since both ϕ and ϕ̃ are fundamental, their subsymbols A0 and B0

are equal to 1, cf. [DM97]. This yields

Aγ∗

1
Bγ∗

1
= 1,

which implies
Aγ∗

1
(ξ) = Bγ∗

1
(ξ) = te−2πil·ξ,

for some l ∈ Z
d and t ∈ C with |t| = 1. The normalization a(0) = b(0) = 1 yields t = 1.

So far, we have

a(ξ) = b(ξ) =
1

2

(
1 + e−2πi(Ml+γ∗

1 )·ξ
)
.

According to [GM92], the generated refinable functions of such symbols are character-
istic functions. Hence, ϕ and ϕ̃ are not continuous, which contradicts that they are
fundamental.

Proof of Corollary 1.2.5
Corollary. Given an idempotent dilation matrix M , let ϕ be a compactly supported con-
tinuous refinable function in L2(R

d) with ϕ̂(0) 6= 0. Then ϕ reproduces polynomials up
to order s iff its multiresolution analysis provides approximation order s.

Proof. Since idempotent dilation matrices are isotropic, one direction of the equivalence is
provided by Theorem 1.2.4. In order to address the reverse implication, let the underlying
multiresolution analysis provide approximation order s, i.e.,

dist(f, Vj)L2 . ρ−js. (A.6)

Let l, h ∈ N such that M l = hId. Applying l-times the refinement equation yields that ϕ
is also refinable with respect to hId. Hence, ϕ also generates the multiresolution analysis
(Vlj)j∈Z with scaling hId. Obviously, (A.6) and ρl = h imply

dist(f, Vlj)L2 . ρ−ljs = h−js.

Hence, (Vlj)j∈Z provides approximation order s. By applying Theorem 1.2.3, we conclude
the proof.
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A.2 Some (Alternative) Proofs

Proof of Lemma 2.1.6

Lemma. Given a frame {fκ : κ ∈ K} for H, let {f̃κ : κ ∈ K} ⊂ H be a biorthogonal
sequence, i.e., 〈

fκ, f̃κ′

〉
= δκ,κ′ , for all κ, κ′ ∈ K.

Then both systems constitute a pair of biorthogonal Riesz bases for H.

Proof. The synthesis operator

F : ℓ2(K)→H
of the frame {fκ : κ ∈ K} is well-defined and onto. Due to the biorthogonality, it is also
injective. Hence, {fκ : κ ∈ K} constitutes a Riesz basis. In the sequel, we verify that the
collection {f̃κ : κ ∈ K} is also a Riesz basis. Given f ∈ H, we have

f =
∑

κ∈K
cκfκ,

for a sequence (cκ)κ∈K ∈ ℓ2(K). According to the biorthogonality relations, the sequence
of inner products

(
〈f, f̃κ〉

)
κ∈K equals (cκ)κ∈K, which means it is also contained in ℓ2(K).

Then the analysis operator

F̃ ∗ : H → ℓ2(K), f 7→ (〈f, f̃κ〉)κ∈K

is well-defined, and so is the synthesis operator

F̃ : ℓ2(K)→H, (cκ)κ∈K 7→
∑

κ∈K
cκf̃κ.

Thus, {f̃κ : κ ∈ K} is at least a Bessel sequence. By applying the biorthogonality, we
have 〈

f −
∑

κ∈K
〈f, fκ〉 f̃κ , fκ′

〉
= 0, for all κ′ ∈ K.

Since {fκ : κ ∈ K} is complete in H, the synthesis operator F̃ is onto, which means that
the collection {f̃κ : κ ∈ K} is a frame. Then by repeating the above arguments, we can
conclude the proof.

An Alternative Proof of Corollary 4.2.6

Corollary (Step 1). Using the notation of Theorem 4.1.3, let the symbols a(0) and b(0)

satisfy the sum rules of order 2s and a(0)(0) = b(0)(0) = 1. Additionally, let a(0) be
interpolatory. For µ = 1, . . . ,m− 1, we define

a(µ)(ξ) = e−2πiγ∗
µ·ξ

∑

γ∈ΓM\{0}

(
a(0)(ξ + γ)− a(0)(ξ)e−2πiγ∗

µ·γ
)
b(0)(ξ + γ), (A.7)

b(µ)(ξ) =
1

m
e−2πiγ∗

µ·ξ
∑

γ∈ΓM\{0}

(
1− e−2πiγ∗

µ·γ
)
a(0)(ξ + γ). (A.8)

Then (S1) in Theorem 4.1.3 is satisfied, and (S1∗) holds for s1 = 2s.
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Proof. Given a(µ) and b(µ), µ = 1, . . . ,m−1, as in (A.7) and (A.8), respectively. A direct
calculation yields

a(µ)(ξ) = e−2πiγ∗
µ·ξ
(
θ(ξ)− a(0)(ξ)

∑

γ∈ΓM

e−2πiγ∗
µ·γb(0)(ξ + γ)

)
. (A.9)

Since a(0) is interpolatory, we obtain

b(µ)(ξ) =
1

m
e−2πiγ∗

µ·ξ
(
1−

∑

γ∈ΓM

e−2πiγ∗
µ·γa(0)(ξ + γ)

)
. (A.10)

The following change of notation simplifies the remainder of the proof. Let us denote
a := a(0) and b := b(0). Let then a(0) and b(0) be redefined by (A.9), (A.10) for µ = 0, while
a and b remain unchanged. Note that then the interpolation condition yields b(0) = 0,
which trivially implies

m−1∑

µ=1

a(µ)(ξ + γ)b(µ)(ξ) =

m−1∑

µ=0

a(µ)(ξ + γ)b(µ)(ξ). (A.11)

Applying the identity (1.41) yields

m−1∑

µ=0

a(µ)(ξ + γ)b(µ)(ξ) =
1

m

m−1∑

µ=0

(
e2πiγ∗

µ·γθ(ξ)− θ(ξ)
∑

γ̌∈ΓM

e−2πiγ∗
µ·(γ̌−γ)a(ξ + γ̌)

− a(ξ + γ)
∑

γ̌∈ΓM

e2πiγ∗
µ·(γ̌+γ)b(ξ + γ + γ̌)

+ a(ξ + γ)
∑

γ̌,eγ∈ΓM

e2πiγ∗
µ·(γ̌+γ−eγ)b(ξ + γ + γ̌)a(ξ + γ̃)

)

= δ0,γθ(ξ)− θ(ξ)a(ξ + γ)− a(ξ + γ)b(ξ)

+ a(ξ + γ)
∑

eγ∈ΓM

b(ξ + γ̃)a(ξ + γ̃)

= δ0,γθ(ξ)− θ(ξ)a(ξ + γ)− a(ξ + γ)b(ξ) + a(ξ + γ)θ(ξ)

= δ0,γθ(ξ)− a(ξ + γ)b(ξ).

Since b(0) = 0, this concludes the proof.

Proof of Theorem 5.2.5

Theorem. Under the assumptions of Proposition 5.2.3, let ϕ ∈ W s(L∞(Rd)), s ∈ N,
and suppose ϕ̂(0) 6= 0. Then, for 0 < α < s and for all f ∈ Lp(R

d),

‖f‖Ḃα
q (Lp) ∼

∥∥∥
(
ραj dist(f, Vj)Lp

)
j∈Z

∥∥∥
ℓq

. (A.12)

For preparation, we need the following Hardy-type inequalities:
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A.2 Some (Alternative) Proofs

Lemma A.2.1. Let (xj)j∈Z, (yj)j∈Z be nonnegative real numbers and let u > 1 be fixed.
Given 0 < β <∞ such that

xj . u−jβ

j∑

i=−∞
uiβyi, for all j ∈ Z,

then, for all 0 < α < β and 1 ≤ τ ≤ ∞,
∥∥∥
(
ujαxj

)
j∈Z

∥∥∥
ℓτ

.
∥∥∥
(
ujαyj

)
j∈Z

∥∥∥
ℓτ

.

Proof. For u = 2, a proof is contained in [Jia93]. With the result for u = 2 in hand,
the general statement follows by the changeover from β and α to β log2(u) and α log2(u),
respectively.

In the following proof, we combine Proposition 5.2.3 and Lemma A.2.1. It extends the
dyadic results in [DJP92]:

Proof of the Theorem. Since ϕ is compactly supported, it is also contained in the space
W s(L1(R

d)). Then according to Theorem 1.2.6, it reproduces polynomials up to order
s + 1, and one direction of the equivalence follows directly by applying (5.22). Next, we
address the reverse estimate. Given f ∈ Lp(R

d), let fj ∈ Vj such that

‖f − fj‖Lp ≤ 2 dist(f, Vj)Lp . (A.13)

For the range 0 < p < 1, the space Lp(R
d) is only quasi-normed. Nevertheless, we have

‖f + g‖ϑLp
≤ ‖f‖ϑLp

+ ‖g‖ϑLp
, (A.14)

for the complete range 0 < p <∞, where ϑ = min(1, p), cf. Chapter 2 in [DL93]. Given
0 < ϑ ≤ 1, the mapping t 7→ tϑ is concave on the positive real line. Hence, the inequality
(A.14) holds for all 0 < ϑ ≤ min(1, p), which provides

ωl (f + g, t)ϑ
Lp
≤ ωl (f, t)

ϑ
Lp

+ ωl (g, t)
ϑ
Lp
. (A.15)

Let us fix ϑ by
ϑ := min{1, p, q}.

Note that (A.13), (A.14), and 0 ∈ Vj imply

‖fj‖ϑLp
≤ ‖fj − f‖ϑLp

+ ‖f‖ϑLp

≤ 2ϑ dist(f, Vj)
ϑ
Lp

+ ‖f‖ϑLp

≤ (2ϑ + 1)‖f‖ϑLp
,

which yields
‖fj‖ϑLp

. ‖f‖ϑLp
. (A.16)

For j0 < j, the application of (A.15) provides

ωl(f, ρ
−j)ϑLp

≤ ωl(f − fj, ρ
−j)ϑLp

+

j∑

i=j0

ωl(fi − fi−1, ρ
−j)ϑLp

+ ωl(fj0−1, ρ
−j)ϑLp

. (A.17)
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Since, for s < l ∈ N, the inequality (5.23) implies

ωl(f, ρ
−j)Lp . min{1, ρj0−j}s‖f‖Lp , for all f ∈ Vj0, j, j0 ∈ Z, (A.18)

we obtain with (A.16)

ωl(fj0−1, ρ
−j)ϑLp

. ρs(j0−1−j)ϑ ‖fj0−1‖ϑLp

. ρs(j0−1−j)ϑ ‖f‖ϑLp
,

which converges to zero as j0 goes to minus infinity. With the rough estimate

ωl(f, t)Lp . ‖f‖Lp ,

we obtain from (A.17)

ωl(f, ρ
−j)ϑLp

. ‖f − fj‖ϑLp
+

j∑

i=−∞
ωl(fi − fi−1, ρ

−j)ϑLp
.

By applying fi − fi−1 ∈ Vi and (A.18), this yields

ωl(f, ρ
−j)ϑLp

. ‖f − fj‖ϑLp
+

j∑

i=−∞
ρ(i−j)sϑ‖fi − fi−1‖ϑLp

≤ ‖f − fj‖ϑLp
+

j∑

i=−∞
ρ(i−j)sϑ‖fi − f‖ϑLp

+

j∑

i=−∞
ρ(i−j)sϑ‖f − fi−1‖ϑLp

= ‖f − fj‖ϑLp
+

j∑

i=−∞
ρ(i−j)sϑ‖fi − f‖ϑLp

+

j−1∑

i=−∞
ρ(i+1−j)sϑ‖f − fi‖ϑLp

.

j∑

i=−∞
ρ(i−j)sϑ‖f − fi‖ϑLp

,

where a factor ρsϑ is contained in the constant, in order to derive the last estimate.
According to (A.13), we have

ωl(f, ρ
−j)ϑLp

. ρ−jsϑ

j∑

i=−∞
ρisϑ dist(f, Vi)

ϑ
Lp
.

Now, we apply the Hardy inequalities of Lemma A.2.1 with

xj := ωl(f, ρ
−j)ϑLp

,

yi := dist(f, Vi)
ϑ
Lp
,

as well as u = ρ, β = sϑ, and τ = q
ϑ
≥ 1. This concludes the proof.

Proof of Lemma 5.3.9
Lemma. Let a finite number of compactly supported functions ψ(µ), µ = 1, . . . , n, be
given. Then their dilates and shifts satisfy the following overlapping condition:
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(a)
∣∣∣supp

(
ψ

(µ)
j,k

)∣∣∣ . m−j .

(b) Let µ and k be fixed. Then, for all j ∈ Z
d,

card
{
(ν, l) : supp

(
ψ

(µ)
j,k

)
∩ supp

(
ψ

(ν)
j,l

)
6= ∅
}

. 1. (A.19)

Proof. (a): One easily verifies

supp
(
ψ

(µ)
j,k

)
= M−j

(
supp

(
ψ(µ)

)
+ k
)
.

Then for
C := max

µ=1,...,n

∣∣∣suppψ(µ)
∣∣∣ ,

we obtain ∣∣∣supp
(
ψ

(µ)
j,k

)∣∣∣ = m−j
∣∣∣supp

(
ψ(µ)

)∣∣∣ ≤ Cm−j.

(b): On the scale j = 0, there is only a finit number of overlappings because of the
compact support. On scale j, we have

supp
(
ψ

(µ)
j,k

)
∩ supp

(
ψ

(ν)
j,l

)
= M−j

(
supp

(
ψ(µ)

)
+ k
)
∩M−j

(
supp

(
ψ(ν)

)
+ l
)

= M−j
((

supp
(
ψ(µ)

)
+ k
)
∩
(
supp

(
ψ(ν)

)
+ l
))

,

where the last equality is valid because M−j is an injective mapping. Thus, the number
of overlappings does not depend on the scale.

Proof of Lemma 5.3.14
Lemma. Let 1 ≤ q < p ≤ ∞ and let fn ∈ Lp(R

d) ∩ Lq(R
d) converge to f in Lp(R

d) and
to g in Lq(R

d). Then f = g up to a set of measure zero.

Proof. Let K ⊂ R
d be compact. Then fn · 1K converges to f · 1K in Lp(R

d) and to g · 1K

in Lq(R
d), where 1K denotes the characteristic function of the set K. By applying the

embedding
Lp(K) →֒ Lq(K),

we obtain

‖f − g‖Lq(K) ≤ ‖f − fn‖Lq(K) + ‖fn − g‖Lq(K)

. ‖f − fn‖Lp(K) + ‖fn − g‖Lq(K).

The right-hand side goes to zero as n tends to infinity. Thus, f = g on K up to a set
of measure zero. Finally, the space R

d can be exhausted by a countable collection of
compact sets. This concludes the proof.

An Alternative Proof of Proposition 6.4.11
In the sequel, we present a proof of Proposition 6.4.11 in terms of masks. Similar to
linear independence on (0, 1)d, local linear independence can also be expressed in terms
of the underlying mask, cf. [Ron99]:
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Theorem A.2.2. Let a symbol a with supp (ak)k∈Zd ⊂ [0, L]d generate a continuous re-
finable functions ϕ with respect to dyadic dilation. Then ϕ has locally linearly independent
integer shifts iff, for all 0 ≤ ν ≤ 2Nd

and γ∗1 , . . . , γ
∗
ν ∈ {0, 1}d, the nonzero rows of the

matrix Aγ∗

1
· · ·Aγ∗

ν
M are linearly independent.

It should be mentioned that Theorem A.2.2 seems useless for practical computations.
Especially in the multivariate setting, the dimensions of the matrices become very large,
and since ν varies between 0 and 2(Ld), the number of matrices to be checked explodes.
We avoid such difficulties since we merely apply the theorem in a theoretical sense. Before
we can do so, we still need preparation. Let ⊙ denote the Kronecker product of matrices,
i.e., for A = (αi,j) and B some matrices of arbitrary dimensions with entries in C,

A⊙B := (αi,jB) .

According to [Duf56], we have the two relations

rank(A⊙B) = rank(A) · rank(B), (A.20)

(A⊙B) (C ⊙D) = (AC)⊙ (BD) , (A.21)

where C,D should be matrices with compatible dimensions. The application of (A.20)
and (A.21) yield the following lemma:

Lemma A.2.3. Given some univariate dyadic symbol a with (ak)k∈Z
⊂ [0, L], let it

generate a continuous refinable function ϕ. Then let ã =
⊗d

i=1 a be the d-dimensional

tensor symbol considered with respect to dyadic dilation. Moreover, let K̃ := [0, L]d be
ordered by

{
(0, . . . , 0)⊤, (0, . . . , 0, 1)⊤, ...

}
. Then the following holds:

(a) Let γ∗ = (γ∗1 , . . . , γ
∗
d)⊤ ∈ {0, 1}d then Ãγ∗ =

⊙d
i=1 Aγ∗

i
.

(b) The vector Φ̃ is given by Φ̃(x) =
⊙d

i=1 Φ(xi).

(c) The matrix M̃ can be chosen by M̃ =
⊙d

i=1M.

Proof. (a) One simply verifies the following equalities:

Ãγ∗ =
(
ãγ∗+2k−k′

)
k,k′∈ eK =

(
d∏

i=1

aγ∗

i +2ki−k′

i

)

k,k′∈ eK

=

d⊙

i=1

(
aγ∗

i +2ki−k′

i

)
k,k′∈K

=

d⊙

i=1

Aγ∗

i
.

(b) The refinable function of ã is given by the tensor product
⊗d

i=1 ϕ, cf. [Dau92]. Then
we have

Φ̃(x) = (ϕ̃(x− k))
k∈ eK =

(
d⊗

i=1

ϕ(xi − ki)

)

k∈ eK

.

Finally, the last term equals
⊙d

i=1 Φ(xi).
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A.2 Some (Alternative) Proofs

(c) The columns of M constitute a basis for the minimal common invariant subspace
V of {Aγ∗ : γ∗ ∈ {0, 1}} containing Φ(1

2). Let Ṽ denote the linear space generated

by the columns of
⊙d

i=1M. By applying (A.20), these columns are linearly inde-

pendent. Hence, they constitute a basis for Ṽ. According to (c), Φ̃(1
2 , . . . ,

1
2) is

contained in the span of the columns of
⊙d

i=1M. Hence, it is also contained in Ṽ.
For γ∗ ∈ Γ2Id

, the relations (A.21) and (b) yield

Ãγ∗

( d⊙

i=1

M
)

=

d⊙

i=1

Aγ∗

i
M. (A.22)

Since the columns of Aγ∗

i
M are contained in V, they can be spanned by the columns

ofM. Thus, Ãγ∗Ṽ ⊂ Ṽ, and Ṽ is a common invariant subspace of
{
Ãγ∗ : γ∗ ∈ Γ2Id

}
,

which contains Φ̃(1
2 , . . . ,

1
2). Since V is minimal, Ṽ is also minimal. This concludes

the proof.

Applying the relations of Lemma A.2.3 provides an alternative proof of Proposition
6.4.11. Since we only deal with the mask, it requires a reformulation of the result:

Proposition A.2.4. Given a univariate dyadic symbol a with supp (ak)k∈Z
⊂ [0, L],

let it generate a continuous refinable function ϕ with globally linearly independent integer
shifts. Then the d-dimensional tensor product ϕ̃ =

⊗d
i=1 ϕ has locally linearly independent

integer shifts.

Proof. Due to Theorem 6.4.1, ϕ has locally linearly independent integer shifts. Note that
ϕ̃ is continuous, and it is refinable with respect to the symbol ã :=

⊗d
i=1 a. In order to

simplify notation, we confine ourselves to d = 2. The general multivariate setting can be
proven in a similar way, but with much complexer notation. For l ∈ N0, let

γ∗1 =

(
γ∗1,1

γ∗1,2

)
, . . . , γ∗l =

(
γ∗l,1
γ∗l,2

)
∈ {0, 1}2.

Then we have

Ãγ∗

1
· · · Ãγ∗

l
M̃ =

(
Aγ∗

1,1
⊗Aγ∗

1,2

)
· · ·
(
Aγ∗

l,1
⊗Aγ∗

l,2

)
(M⊗M)

=
(
Aγ∗

1,1
· · ·Aγ∗

l,1
M
)
⊗
(
Aγ∗

l,2
· · ·Aγ∗

l,2
M
)
.

Let us use the short-hand notation

L̃ := Ãγ∗

1
· · · Ãγ∗

l
M̃

as well as

L1 := Aγ∗

1,1
· · ·Aγ∗

l,1
M, L2 := Aγ∗

1,2
· · ·Aγ∗

l,2
M.

We have card(K̃) = card(K)2 and L̃ = L1⊗L2. Let us denote by zr and nzr the number
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of zero and nonzero rows of a matrix, respectively. This yields

rank(L̃ ) = rank (L1) · rank (L2)

=
(
card(K)− zr(L1)

)
·
(
card(K)− zr(L2)

)

= card(K)2 −
(
zr(L1) · card(K) + card(K) · zr(L2)− zr(L1) · zr(L2)

)

= card(K)2 −
(
zr(L1) · card(K) + (card(K)− zr(L1)) · zr(L2)

)

= card(K)2 −
(
zr(L1) · card(K) + nzr(L1) · zr(L2)

)
.

Since
zr(L1) · card(K) + nzr(L1) · zr(L2)

is precisely the number of zero rows in L̃ , and card(K̃) = card(K)2, we obtain

rank(L̃ ) = card(K̃)− zr(L̃ ).

Hence, the nonzero rows of L̃ are linearly independent. This concludes the proof.

A.3 Auxiliary Notation and Results

Filter Bank Notation
In the sequel, we introduce some filter bank notation. The convolution of a symbol
a = 1

m

∑
k∈Zd ake

−2πik·ξ with a sequence (ck)k∈Zd means the ordinary convolution with
its coefficient sequence. However, our normalization requires the introduction of a factor

1√
m

, i.e,

a ∗ (ck)k∈Zd :=
1√
m

(ak)k∈Zd ∗ (ck)k∈Zd . (A.23)

The downsampling operator ↓M means

(ck)k∈Zd ↓M := (cMk)k∈Zd ,

and upsampling ↑M is given by

(ck)k∈Zd ↑M :=

({
cl, for k = Ml

0, otherwise

)

k∈Zd

.

Note that if we take ↓M and ↑M as operators on ℓ2(Z
d), then they are adjoint to each

other.

The Riesz-Thorin Interpolation Theorem
The following theorem is known as the Riesz-Thorin Interpolation Theorem, see for in-
stance the textbook [Wer97]. In order to reduce effort, we only recall the result concerning
matrix operators on sequence spaces:

Theorem A.3.1. Given 1 ≤ p1, p2, q1, q2 ≤ ∞ and 0 ≤ θ ≤ 1, let U be a matrix operator,
which is bounded from ℓpi

to ℓqi
with operator norm Ci, i = 1, 2. Then, for

1

p
= (1− θ) 1

p1
+ θ

1

p2
,

1

q
= (1− θ) 1

q1
+ θ

1

q2
,

U is bounded from ℓp to ℓq with operator norm C1−θ
1 Cθ

2 .
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[Grö03] , Localized frames are finite unions of riesz sequences, Adv. Comp.
Math. 18 (2003), 149–157.
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