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Summary

This thesis consists of two major parts. The first part focuses on the theoreti-

cal study on the construction of band-limited framelets with good time-frequency

localization property in low-dimensional Euclidean spaces. Based on the univari-

ate Meyer’s refinable function, this thesis provides a systematic approach to con-

struct non-separable band-limited refinable functions, Riesz wavelets, orthonormal

wavelets as well as wavelet tight frames (framelets) in 2D and 3D Euclidean spaces.

With the newly constructed band-limited framelets in hand, the second part of

the thesis focuses on the application of non-separable band-limited framelets and

tensor-product spline framelets in colour image restoration. The main applica-

tion explored in this thesis is on repairing over-exposed and under-exposed regions

in regular digital colour photographs. By using wavelet tight frame based regu-

larization methods and some tone mapping analogy, we develop in this thesis a

comprehensive computational method to simultaneously (i) recover brightness val-

ues clipped due to over/under-exposure, (ii) enhance the contrast of under-exposed

regions so that more visible image details could be revealed, and (iii) restore the

chromatic values damaged due to over-exposure. Experimental results show that

xi



xii Summary

the proposed method outperforms existing approaches in the test data set.



Basic Concepts and Notations

• In this thesis, we use Z, Z∗, Z+, R to denote the set of integers, nonnegative

integers, positive integers, and real numbers respectively.

• For any positive integer N , we use ZN to denote the quotient set Z/NZ (or

equivalently the set {0, 1, · · · , N − 1}).

• Cartesian product. Given n sets Aj, j = 1, 2, . . . , n, we denote

A1 × A2 × · · · × An = {(x1, x2, . . . , xn) : x1 ∈ A1, . . . , xn ∈ An}.

In particular, if A1 = A2 = · · · = An = A, then we denote A1×A2×· · ·×An
as An for simplicity.

• For any d ∈ Z+, we let Rd denote the d-dimensional Euclidean space with

the inner product given by

x · y =
d∑

j=1

xjyj, for x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ Rd.

1



2 Summary

• For a countable index set I, we let `p(I), 1 6 p 6 ∞, be the set of all

complex-valued sequences on I such that

‖c‖p :=





(∑
k∈I |c(k)|p

)1/p
<∞, 1 6 p <∞;

supk∈I |c(k)| <∞, p =∞.

• For any n ∈ Z∗, we let Cn(Rd) denote the set of functions on Rd that have

continuous derivatives up to order n, and C∞(Rd) denote the set
⋂
n∈Z∗ C

n(Rd).

• Lp(Rd) (1 6 p 6 ∞) spaces. Lp(Rd) is the set of Lebesgue measurable

functions on Rd such that

‖f‖Lp(Rd) :=





(∫
Rd |f(x)|pdx

) 1
p <∞, 1 6 p <∞;

ess sup{|f(x)|, x ∈ Rd} <∞, p =∞.

In particular, when p = 2, the space L2(Rd) is a Hilbert space with its norm

induced by the inner product 〈·, ·〉 defined as follows

〈f, g〉 =

∫

Rd
f(x)g(x) dx, ∀f, g ∈ L2(Rd),

where g(x) is the complex conjugate of g(x).

• Fourier transform. For any function f ∈ L1(Rd), its Fourier transform f̂ is

defined as

f̂(ξ) :=

∫

Rd
f(x) exp(−iξ · x)dx, ξ ∈ Rd.

The definition of Fourier transform can be naturally extended to L2(Rd) as

well as tempered distributions. Particularly, for any f ∈ L2(Rd), one has the

following Parseval’s identity:

‖f‖2
L2(Rd) =

1

(2π)d
‖f̂ |2L2(Rd).

So f ∈ L2(Rd) if and only if f̂ ∈ L2(Rd). Moreover, Fourier transform is

invertible in L2(Rd), and the inversion formula is formally given by

f(x) =
1

(2π)d

∫

Rd
f̂(ξ) exp(ix · ξ)dξ, x ∈ Rd.
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• Discrete Fourier transform. Given a d-dimensional signal u defined on the

grid N := ZN1 × ZN2 × · · · × ZNd , the discrete Fourier transform of u is a

discrete signal F(u) defined on the grid K := (2πZN1/N1) × (2πZN2/N2) ×

· · · × (2πZNd/Nd) such that

F(u)[k] =
1√
|N|

∑

n∈N

u[n] exp(ik · n),

where |N| = N1N2 · · ·Nd. Discrete Fourier transform is also invertible: for

any v define on the grid K, its inverse discrete Fourier transform is

F−1(v)[n] =
1√
|N|

∑

k∈K

v[k] exp(−in · k), ∀n ∈ N.

• Circular convolution. Given two finite signals u, v ∈ RN1 ×RN2 × · · · ×RNd ,

Nn ∈ Z+, n = 1, . . . , d, their circular convolution u ~ v is a finite signal

of dimension N1 × N2 × · · · × Nd such that, for any [k1, k2, . . . , kd] with

0 6 ki < Ni, i = 1, 2, . . . , d,

u~ v[k1, k2, . . . , kd]

=

N1−1∑

n1=0

. . .

Nd−1∑

nd=0

up[k1 − n1, k2 − n2, . . . , kd − nd]vp[n1, n2, . . . , nd],

where up and vp are the N1 × N2 × · · · × Nd-periodic extension of u and v

respectively, i.e.

up[n1, . . . , nd] = u[n1 mod N1, . . . , nd mod Nd]

and

vp[n1, . . . , nd] = v[n1 mod N1, . . . , nd mod Nd]

for any [n1, . . . , nd] ∈ Zd.



4 Summary

• Fourier series and Fourier coefficients. For any c ∈ `2(Zd), its Fourier series

ĉ is a 2π-periodic function defined by

ĉ(ξ) =
∑

k∈Zd
c[k] exp (−ik · ξ).

Conversely, for any 2π-periodic function g, Fourier coefficients of g are formed

by a sequence c := {c[k], k ∈ Zd} such that

c[k] =
1

(2π)d

∫

[−π,π)d
g(ξ) exp (ik · ξ)dξ, k ∈ Zd.

• Bracket product. For any f ∈ L2(Rd) and any g ∈ L2(Rd), their bracket

product [f, g] defined as

[f, g](ξ) =
∑

k∈Zd
f(ξ + 2πk)g(ξ + 2πk), ∀ξ ∈ Rd.

In particular,

[f, f ] =
∑

k∈Zd
|f(ξ + 2πk)|2.

It is easy to see by definition that [f, g] is 2π-periodic and [f, g] ∈ L1(Td),

where Td := Rd/(2πZd).



Chapter 1
Introduction

Wavelets, which have been a fast growing research topic in the last few decades, are

a versatile tool that possesses both rich mathematical content and great potential

for applications. The versatility of wavelets is reflected in its various understand-

ing from different groups of researchers. For instance, some people view wavelets

as bases for certain function spaces, and some people view wavelets as a tool for

spatial-frequency analysis. In general, wavelets are a special type of oscillatory

functions with good spatial-frequency localization property. The oscillation na-

ture of wavelets make them effective in capturing discontinuities or sharp spikes in

data and functions, which induces a very powerful mathematical tool called wavelet

transform. By applying (dyadic) dilations and translations, a set of wavelet pro-

totype functions (usually referred as the set of mother wavelets) will generate a

basis. This basis can provide a powerful tool for cutting up data and functions

into different frequency bands and then analyzing each band with the desired scale

or resolution.

5



6 Chapter 1. Introduction

Given a set of mother wavelets Ψ ⊂ L2(Rd), we can apply dilations and trans-

lations to it and consequently obtain a basis as follows

X(Ψ) := {ψj,k := 2jd/2ψ(2j · −k), ψ ∈ Ψ, j ∈ Z, k ∈ Zd},

where the dilation factor 2j controls the scale of wavelets and the translation

factor k indicates the position. Then for any generic signal (or function) f with

finite energy (i.e.
∫
|f(t)|2dt < ∞), we can analyze f over its wavelet coefficients

computed as follows

cψ,j,k = 〈f, ψj,k〉, ψ ∈ Ψ, j ∈ Z, k ∈ Zd.

In particular, when certain constraints (like high order vanishing moments) are

imposed for those mother wavelets, the derived basis would define sparse repre-

sentations of piecewise regular signals – namely, most wavelet coefficients are close

to zero except those located at the neighbourhood of singular points. The sparse

representation of given data and signal could be of help to certain post-processing

techniques, like compression, denoising, etc.

Early development of wavelets is largely devoted to orthonormal cases. In 1909,

A. Haar proposed the first example of orthonormal wavelet, which is currently

known by the name of Haar wavelet. Theoretical study of wavelet and its rigor-

ous formulation dated back to late 1970s and early 1980s. A major breakthrough

for wavelet theory is the introduction of multiresolution analysis (MRA) by Mal-

lat and Meyer [51, 56], whose emergence has greatly facilitated the construction

of wavelets. Specially, a class of MRA-based compactly supported orthonormal

wavelets was successfully constructed by Daubechies [26, 27], which is now widely

recognized as the family of Daubechies wavelets. Daubechies wavelets are quite

popular currently, and they have been adopted in many scientific research fields.

Along with the study of orthonormal wavelet basis, there had been a continuing

research effort in the study of wavelet frames. In history, frames were introduced
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by Duffin and Schaeffer in 1952 to study non-harmonic Fourier series [38]. The

major difference between frames and orthonormal bases is that frames can be over-

complete (or to say redundant). Univariate wavelet frames were early explored by

Daubechies, Grossmann and Meyer in [29] in 1986. Similar as the case of orthon-

romal wavelet basis, the formulation of MRA [51, 56] is a major breakthrough for

constructing wavelet frames as well. However, the original formulation of MRA

is mainly designed for understanding and constructing orthonormal wavelet frame

bases rather than redundant wavelet frame bases. In order to construct redun-

dant wavelet frame bases, the originally MRA formulation was inevitably adapted

and generalized. For example, J. Benedetto and S. Li proposed the notion of

frame multiresolution analysis (FMRA) in [1], consequently several type of uni-

variate FMRA based wavelet frames were constructed. Following a similar route,

the construction of FMRA-based multivariate tensor-product wavelet frames was

pushed forward in [2] in 2007. In contrast to Mallat and Meyer’s original MRA

and FMRA, a more general concept of MRA was formulated in [5], which has been

a major motivation to the construction of wavelets and wavelet frames since its

formulation. Yet, the MRA structure itself does not suggest the characterization

of wavelet frames. A general characterization of multivariate wavelet frames was

obtained by Ron and Shen in [62] in 1997. This characterization was also explic-

itly obtained by B. Han in [46]. However, this wavelet frame characterization is

usually quite difficult to verify, which severely limits its practical use. Ron and

Shen were able to combine the frame characterization with the MRA formulation

raised in [6], and consequently proposed the renowned unitary extension principle

and oblique extension principle for constructing wavelet tight frames [62]. Com-

pared to other wavelet frame characterizations, the conditions indicated in the two

extension principles are practically easy to check, which makes the construction of

wavelet tight frames painless [62, 28].
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This thesis is devoted to both the theory and the application of wavelets and

wavelet frames, in which two major topics would be covered:

• low-dimensional band-limited wavelets and wavelet tight frames (framelets),

• wavelet tight frame based digital colour image restoration.

In this opening chapter, we first give a brief introduction on the above two topics

to be studied in this thesis. After that, we will present the organization of this

thesis.

1.1 Band-limited wavelets and wavelet frames

In the development of wavelet theory, the study of compactly supported wavelets

and wavelets frames is the main stream. For instance, the renowned Harr wavelet,

Daubechies wavelets [27] and spline wavelet frames [62] and pseudo-spline wavelet

frames [28, 33] are all compactly supported. These wavelet constructions have

been adopted and utilized in many different scientific research fields. However,

there are certain cases in which the use of compactly supported wavelets would

be inappropriate. For example, in certain applications the targeted signals would

have their frequency components restricted to certain bands, the so-called band-

limited case. As a compactly supported function can never be band-limited unless

it is trivially zero, compactly supported wavelets and wavelet frames are unlikely

to provide an efficient tool to analyze and process such band-limited signals. So

in that case, the desired type of wavelets would be band-limited wavelets, i.e. the

type of wavelets whose support in frequency domain is compact.

To date, well-known examples of band-limited wavelets include the orthonormal

Shannon wavelets and the Meyer’s wavelets [55]. Besides these two renowned ex-

amples, a systematic study of band-limited wavelet frames using FMRA was given
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by Benedetto and Li in [1]. Recently, Chen and Goh gave a comprehensive study of

univariate band-limited wavelets and wavelet frames derived using extension prin-

ciples in [22]. However, most of these studies concentrate on the 1D case, while

2D and higher-dimensional cases are handled via the tensor product of 1D band-

limited wavelets (see e.g. [52, 2]). 2D tensor-product band-limited wavelets have

been used in various image processing tasks. For instance, the Meyer’s wavelets

are used in [35] for image deblurring and used in [66] for image compression. To

the best of our knowledge, the systematic construction of non-separable multi-

variate band-limited wavelets had not been well studied in the past. Compared

to tensor-product multivariate band-limited wavelets, non-separable band-limited

wavelets have more degrees of freedom, which is likely to result in better designs

such as smaller frequency support with fast rate of spatial decay.

In this thesis, we provide a systematic study on band-limited non-separable

wavelets and wavelet tight frames in low-dimensional Euclidean spaces including

R2 and R3. Our major contributions include:

• the introduction of a new class of non-separable band-limited refinable func-

tions, and the construction of their associated band-limited non-separable

wavelet tight frames.

• the introduction of a new class of non-separable stable band-limited refin-

able functions, and the construction of their associated band-limited Riesz

wavelets as well as orthonormal wavelets.

Band-limited wavelets always vary smoothly in spatial domain. The oscillatory

and smoothness nature make them effective in capturing smoothness variations

in data sets and signals. Those smoothness variations are not rare to see in life.

For example, when light is reflected on a surface of the same material with similar

reflection property, the lightness intensities observed around the surface would
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have smooth variations. However, such strong reflections are often associated with

image degradation like over-exposure, a phenomenon that can be frequently seen in

many digital colour photographs. In digital photography, over-exposure can often

produce regions with pixel lightness values clipped at the maximum supporting

limit, so those regions would be almost totally flat without any lightness variations.

In view of the above discussion, the constructed band-limited framelets in this

thesis is likely to be a good tool for restoring the lightness variations within those

clipped regions due to over-exposure. However, for restoring digital colour pho-

tographs, besides lightness degradation, the chromatic degradation needs to be

considered as well. This leads us to the problem of digital colour image restora-

tion.

1.2 Digital colour image restoration

Image restoration is a general topic, which includes sub-topics like image denoising,

deblurring, inpainting, super-resolution, etc. The main difficulty for image restora-

tion relies on the fact that those problems are commonly ill-posed. To resolve the

ill-posedness of those problems, some regularization methods are needed. In recent

years, wavelet frame based `1-regularization methods have been demonstrated to

be very effective in image restoration (see, e.g. [17, 19, 16, 8, 15, 10, 13]).

Regular image restoration models are usually designed for 2D greyscale im-

ages. The complexity of colour perception and rendering in digital photography

makes colour image restoration problem practically difficult. As we know, digital

photography is about capturing photographs of scenes and objects using a cam-

era equipped with electronic sensors. The captured photographs are then digitized

and stored in computer file format for viewing or further post-processing. To shoot

digital photographs with reasonable fair quality, there are several camera settings
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to consider, including white balance, shutter speed, ISO, aperture, focal length,

lens focus, etc. Among all those digital camera settings, the shutter speed, ISO

and aperture are known to determine the exposure of the resulting digital pho-

tograph. In digital photography, exposure controls how much light can reach the

digital sensors and the lightness of a photograph is determined by the amount of

light shown. Inappropriate exposure may cause the loss of scene details in the final

output. Besides that, there is a physical limitation on the dynamic range (ratio of

maximum lightness and minimum lightness) that a camera can endure. An out-

door scene with strong or harsh lighting often has a much larger dynamic range

than the bearing capacity of a regular image sensor, which then will lead to a loss

of highlight/shadow details in the resulting photograph. For example, the dynamic

range of a regular digital camera is about 103 : 1 while the dynamic range of an

outdoor scene on a sunny day ranges from 105 : 1 to 109 : 1. When recording such

a high dynamic range (HDR) scene using a low dynamic range (LDR) camera, the

out-coming digital photograph would often be degraded. Typically in that case,

some bright parts of the scene would be recorded as “white”, which is described

as over-exposure; in the mean time, some dark areas would be indistinguishable

from“black” in the image, which is described as under-exposure. In other words,

the lightness values of those over-exposed pixels are clipped at the maximum value

(e.g. 100) such that these pixels only show white colour, as the values of three

colour channels (red, green, blue) at these pixels are also the maximum value.

Similarly, the lightness values of under-exposed pixels are too small, close to the

minimum value (e.g. 0), such that the image details can hardly be visually per-

ceived. See Figure 1.1 for an illustration of photographs with over-exposed and

under-exposed regions.

In summary, for restoring digital colour photographs with over/under-exposed

regions, the following issues need to be handled:
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(a) (b)

Figure 1.1: Two sample photographs with over/under-exposures. In the image shown
in (a), the foreground leaves appear over-exposed and background behind looks under-
exposed. In the image shown in (b) from [40], many regions of the church are over-
exposed and many parts of the wall with plants are under-exposed.

(i) the clipped lightness values due to over/under-exposure,

(ii) the nearly invisible image details in under-exposed regions,

(iii) the missing chromatic information in the over-exposed regions.

Among all 3 issues listed as above, the 1st and 2nd one are about the lightness

information of the photograph, while the 3rd one is about the chromatic infor-

mation of the photograph. Typically, the lightness values and chromatic values

have significantly different behaviour in digital photographs. For instance, in re-

gions around clipped pixels due to over/under-exposure, lightness values tend to

vary smoothly, which could possibly be fitted by smooth enough basis functions

like band-limited framelets. However, around the same regions, the chromatic

values possess more visible variations that are not smooth in appearance, which

reflects the corresponding image details. In view of these facts, the strategy for

recovering clipped lightness values and the one for restoring the missing chromatic

information should be carefully designed so as to reveal these differences.

In this thesis, we proposed a wavelet tight frame based method for restoring
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digital colour photographs with over/under-exposed regions. Our main contribu-

tions include:

(i) a band-limited framelet based regularization method for recovering clipped

lightness values in over/under-exposed regions;

(ii) a new lightness attenuation function for simultaneously accommodating the

recovered lightness and improving the contrast of under-exposed regions with-

out amplifying image noise;

(iii) a tensor-product spline framelet based inpainting method for recovering the

missing chromatic details of over-exposed regions.

1.3 Organization of this thesis

The rest of this thesis is organized as follows. Firstly in Chapter 2, we will give

some preliminaries including multiresolution analysis (MRA), wavelets and wavelet

frames, colour spaces and wavelet tight frame based image restoration models.

Then in Chapter 3, we will introduce the construction of non-separable band-

limited wavelet tight frames in low-dimensional Euclidean spaces including R2 and

R3. Next in Chapter 4, we will focus on the construction of non-separable band-

limited Riesz wavelets and orthonormal wavelets in R2 and R3. Finally in Chapter

5, we will turn to the application part, and present the details of our approach for

digital colour image restoration using wavelet tight frames. Numerical results and

discussions will be provided in this chapter as well.





Chapter 2
Preliminaries

In this chapter, we will present some preliminaries for the main objectives of this

thesis. Firstly in section 1, we introduce the framework of multiresolution analy-

sis (MRA), together with some basic knowledge on Riesz wavelets, orthonormal

wavelets and wavelet frames. In particular, we will introduce the renowned uni-

tary extension principle (UEP) and oblique extension principle (OEP) for deriving

MRA based wavelet tight frames. Next in section 2, we review some basic knowl-

edge on band-limited functions for studying band-limited wavelets and wavelet

frames. Then in section 3, we present some basic knowledge on digital colour

images (photographs). Particularly, we will introduce a few colour spaces that

are frequently used for representing, understanding or processing colours in digital

photography. Finally in section 4, we review several wavelet tight frame based

mathematical models for image restoration.

15
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2.1 Multiresolution analysis, Riesz wavelets and

wavelet frames

2.1.1 Multiresolution analysis

The original framework of multiresolution analysis (MRA) is given by Mallat

and Meyer [51, 56], which provides a systematic way for understanding orthonor-

mal wavelets. Examples of MRA-based orthonormal wavelets can be found in

[55, 27]. In this thesis, we adopt a more generalized version of MRA proposed by

de Boor, DeVore and Ron [6]. For any subspace V ⊆ L2(Rd), we let cls
(
V
)

denote

the L2-closure of V (i.e. the smallest closed subspace of L2(Rd) that contains V ),

then an MRA is a nested sequence (Vj)j∈Z of closed subspaces of L2(Rd) satisfying:

(i) · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ; (2.1)

(ii) cls
(⋃

j∈Z Vj
)

= L2(Rd); (2.2)

(iii)
⋂
j∈Z Vj = {0}. (2.3)

To construct MRA, one usually starts with a function φ ∈ L2(Rd), and set

Vj := cls
(
span{φ(2j · −k) : k ∈ Zd}

)
, j ∈ Z. (2.4)

Then, it is implied by the following result that the MRA condition (2.3) is trivially

satisfied for the sequence {Vj : j ∈ Z} defined in (2.4).

Theorem 2.1. [6] Let φ ∈ L2(Rd), then the sequence {Vj : j ∈ Z} defined via

(2.4) satisfies MRA condition (2.3).

Now we turn to the MRA condition (2.1), then the following theorem is needed

for characterizing each subspace Vj, j ∈ Z, of L2(Rd) defined as in (2.4).
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Theorem 2.2. [6] Let φ ∈ L2(Rd), then for the sequence {Vj : j ∈ Z} defined in

(2.4), one has

Vj = {f : f̂(ω) = τ(2−jω)φ̂(2−jω) ∈ L2(Rd) with τ being 2π-periodic and measurable.}.

Viewing from the above characterization, to ensure that the sequence defined in

(2.4) satisfies MRA condition (2.1), we need to further assume that φ is refinable.

Definition 2.1. A function φ ∈ L2(Rd) is said to be refinable if there exists a

(measurable) 2π-periodic function â(ω) such that

φ̂(2ω) = â(ω)φ̂(ω). (2.5)

In this case, â(ω) is called the refinement mask of φ.

Remark. For a refinable function φ, its refinement mask is not necessarily unique

(in Lebesgue sense). In particular, the definition of â(ω) can be arbitrarily changed

on the set {ω : [φ̂, φ̂](ω) = 0}. However, by appropriately setting the definition

of refinement mask on {ω : [φ̂, φ̂](ω) = 0}, we can always assume without loss of

generality that the refinement mask â(ω) of φ ∈ L2(Rd) is finite almost everywhere

(a.e.).

Example 2.1. [65] (Cardinal B-spline refinable functions) For any m ∈ Z+, let

φ be the function of L2(R) defined by

φ̂(ω) = e−iK(m)ω sinm(ω
2
)

(ω
2
)m

, ∀ω ∈ R, (2.6)

where

K(m) =





1, m odd,

0, m even.
(2.7)

Then clearly one has

φ̂(2ω) = e−iK(m)ω/2 cosm(
ω

2
)φ̂(ω).



18 Chapter 2. Preliminaries

Note that e−iK(m)ω/2 cosm(ω
2
) is 2π-periodic, thus φ is refinable with refinement

mask e−iK(m)ω/2 cosm(ω
2
).

Example 2.2. [55, 52, 27] The Meyer’s refinable function QΩ , with π
2
< Ω 6 2

3
π,

is defined by

Q̂Ω(ω) =





1, if |ω| < 2π − 2Ω,

h( |ω|
2

), if 2π − 2Ω ≤ |ω| ≤ 2Ω,

0, otherwise.

(2.8)

The transition function h is chosen such that

(1) h(π − Ω) = 1, h(Ω) = 0 and 0 < h(·) < 1 on the interval (π − Ω,Ω).

(2) Q̂Ω satisfies

[Q̂Ω, Q̂Ω](ω) = 1,∀ω ∈ R. (2.9)

Then it is seen that QΩ is refinable with refinement mask τΩ, which is a 2π-periodic

function whose definition on [−π, π) is

τΩ(ω) =





h(|ω|), if |ω| ∈ [π − Ω,Ω],

1, if |ω| < π − Ω,

0, otherwise,

(2.10)

i.e. Q̂Ω(2ω) = τΩ(ω)Q̂Ω(ω). Moreover, it is implied by (2.9) that τΩ satisfies the

following conjugate mirror filter (CQF) condition

|τΩ(ω)|2 + |τΩ(ω + π)|2 = 1.

See Figure 2.1 for brief sketch of Q 2
3
π and Q̂ 2

3
π.

By combining Theorem 2.2 and (2.5), we can conclude that:

Corollary 2.3. If φ ∈ L2(Rd) is refinable, then the sequence defined in (2.4)

satisfies MRA condition (2.1).
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Figure 2.1: A sketch of the Meyer’s refinable function Q 2
3
π in (a) spatial domain

and (b) frequency domain.

Now we know from Theorem 2.1 and Corollary 2.3 that, if φ ∈ L2(Rd) is

refinable, then the sequence {Vj : j ∈ Z} defined in (2.4) should satisfy MRA con-

ditions (2.1) and (2.3). To further ensure that the sequence {Vj : j ∈ Z} defined in

(2.4) satisfies MRA condition (2.2) as well, we need the following characterization.

Theorem 2.4. [6] Let φ ∈ L2(Rd) be a refinable function, then the sequence

{Vj, j ∈ Z} as in (2.4) satisfies the MRA condition (2.2) if and only if

⋂

j∈Z

(2jZ(φ̂)) is a set of measure zero, (2.11)

where Z(φ̂) is the zero set of φ̂.

The condition (2.11) is not difficult to fulfill. For example, when φ̂ is non-zero

over some region R around the origin, one has

⋂

j∈Z

(2jZ(φ̂)) ⊆
⋂

j∈Z

(2j(Rd\R))) = Rd\
⋃

j∈Z

(2jR) = Rd\Rd = ∅.

Thus if φ̂ is continuous at the origin with φ̂({0}) 6= 0, based on Theorem 2.4, the

sequence in (2.4) would satisfy (2.2) automatically.
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In summary, by combining Theorem 2.1, Corollary 2.3 and Theorem 2.4, the

following corollary can be easily derived.

Corollary 2.5. Let φ ∈ L2(Rd) be refinable. If φ̂ is continuous at the origin with

φ̂({0}) 6= 0, then φ is an MRA generator, i.e. the sequence {Vj : j ∈ Z} defined

in (2.4) satisfies MRA conditions (2.1), (2.2) and (2.3).

Specially, it is seen from the above corollary that the cardinal B-spline refinable

functions in Example 2.1 and Meyer’s refinable function in Example 2.2 are all

MRA generators.

2.1.2 Riesz wavelets and wavelet frames

Definitions of Riesz basis and frame

Riesz basis and frame are two important concepts in functional analysis, particu-

larly in the study of Hilbert spaces. Generally speaking, Riesz basis is a relaxation

of the orthogonal (orthonormal) basis by allowing non-orthogonality, and frame

is a further extension of Riesz basis by admitting linear dependency. Thus com-

pared to orthonormal basis, Riesz basis and frame are more flexible to design, yet

both of them have their corresponding stable decomposition and reconstruction

algorithms, just like the regular orthogonal (orthonormal) basis does. Moreover,

wavelet frames are potentially redundant and the redundancy may become crucial

in some applications.

Now we explain the definitions of these two concepts in detail.

Definition 2.2. In a Hilbert space H, a sequence {xi : i ∈ I} ⊂ H (where I is a

countable index set) is called a Riesz basis of H if the linear span of {xi : i ∈ I}

is dense in H, and there exist some A,B with 0 < A 6 B <∞ such that

A‖c‖2
`2(I) 6 ‖

∑

i∈I

cixi‖2 6 B‖c‖2
`2(I), ∀c = (ci)i∈I ∈ `2(I).
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Furthermore, if A = B = 1 in the above inequality, then the sequence {xi : i ∈ I}

is said to be an orthonormal basis of H.

Definition 2.3. In a Hilbert space H, a sequence {zi : i ∈ I} ⊂ H, where I

is a countable index set, is called a frame of H if there exist some A′, B′ with

0 < A′ 6 B′ <∞, such that

A′‖z‖2 6
∑

i∈I

|〈z, zi〉|2 6 B′‖z‖2, ∀z ∈ H. (2.12)

In this case, A′ is called the lower frame bound and B′ is called the upper frame

bound. Moreover, if A′ = B′ = 1 in (2.12), then the sequence {zi : i ∈ I} is said

to be a tight frame or a Parseval frame of H.

Introduction to affine wavelet system

At this stage, we introduce the kind of wavelet systems that we are mainly inter-

ested in – affine wavelet system.

Definition 2.4. Given a collection of functions Ψ ⊆ L2(Rd), the affine system

X(Ψ) generated by Ψ is

X(Ψ) := {2jd/2ψ(2j · −k) : j ∈ Z, k ∈ Zd, ψ ∈ Ψ}. (2.13)

In this case, Ψ is referred as the set of generators. Specially, X(Ψ) is called

finitely generated if Ψ is a finite set; X(Ψ) is called MRA-based if there exists an

MRA sequence {Vj : j ∈ Z} such that Ψ ⊂ V1.

In principle, wavelet systems should provide ‘good’ bases – namely, orthonormal

bases, Riesz bases, or frames for signal spaces of interest. In this thesis, we are

only interested in the collection of functions Ψ such that (i) X(Ψ) is MRA-based,

and (ii) X(Ψ) forms a Riesz basis or a frame of L2(Rd).
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Finding a set of functions Ψ such that X(Ψ) is MRA-based is a relatively easy

task. For example, suppose that we have an MRA {Vj : j ∈ Z} generated by

a refinable function φ ∈ L2(Rd), whose refinement mask is τ0(ω). Then a set of

generators Ψ := {ψ1, . . . , ψL} can be obtained by setting

ψ̂`(ω) := τ`(
ω

2
)φ̂(

ω

2
), ` = 1, . . . , L, (2.14)

where {τ` : ` = 1, . . . , L} is a set of 2π-periodic measurable functions such that

τ`φ̂ ∈ L2(Rd), ` = 1, . . . , L. Thus Ψ ⊂ L2(Rd). Using Theorem 2.2, we can

conclude that Ψ ⊂ V1, so the affine system X(Ψ) is MRA-based. Under this

setting, {τ` : ` = 1, . . . , L} is referred as the set of wavelet masks. It is seen from

(2.14) that, the key issue for deriving MRA-based affine wavelets and wavelet

frames relies on ‘finding’ the appropriate set of wavelet masks.

If the affine system X(Ψ) is a Riesz basis of L2(Rd), then any generator ψ ∈ Ψ

is called a Riesz wavelet. Specially, if X(Ψ) is an orthonormal basis of L2(Rd),

then any generator ψ ∈ Ψ would be referred as an orthonormal wavelet or simply

wavelet.

If the affine system X(Ψ) forms a tight frame of L2(Rd), then any generator

ψ ∈ Ψ is called a framelet.

Riesz basis and frame characterization in principle shift-invariant spaces

The study of principle shift-invariant (PSI) spaces is of particular importance for

Riesz basis and frame characterization in affine systems. Recall that, a principle

shift-invariant (PSI) space is a subspace of L2(Rd) with the form

S(φ) = cls
(
span{φ(· − k) : k ∈ Zd}

)
, φ ∈ L2(Rd), (2.15)

i.e. S(φ) is the L2-closure of the space spanned by {φ(· − k) : k ∈ Zd}. Then we

have the following results.
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Theorem 2.6. [62] For any function φ ∈ L2(Rd), the sequence {φ(·−k) : k ∈ Zd}

forms a Riesz basis of S(φ) defined in (2.15) if and only if there exist A,B with

0 < A 6 B <∞ such that

A 6 [φ̂, φ̂] 6 B, a.e. on Rd. (2.16)

The function φ is said to be stable if it satisfies (2.16). In particular, if A =

B = 1 in (2.16), then φ is said to be orthonormal.

Theorem 2.7. [62, 1] For any (non-zero) function φ ∈ L2(Rd), the sequence

{φ(· − k) : k ∈ Zd} forms a frame of S(φ) defined in (2.15) if and only if there

exist A′, B′ with 0 < A′ 6 B′ <∞ such that

A′ 6 [φ̂, φ̂] 6 B′, a.e. on σ(S(φ)), (2.17)

where σ(S(φ)) := {ξ ∈ Rd : [φ̂, φ̂](ξ) > 0} is called the spectrum of S(φ). Spe-

cially, the sequence {φ(· − k) : k ∈ Zd} forms a tight frame of S(φ) if and only if

A′ = B′ = 1 in (2.17).

It is seen that, the set {φ(· − k) : k ∈ Zd} forms a Riesz basis rather than a

frame of S(φ) only if the spectrum σ(S(φ)) is differed from Rd by a set of Lebesgue

measure zero.

2.1.3 Extension principles for derving MRA-based wavelet

tight frames

At this stage, we would like to introduce the two renowned extension principles

for deriving MRA-based wavelet tight frames. However, deriving Riesz wavelets

or wavelet frames from generic MRAs is always a challenging task. To facilitate

the construction, usually some mild conditions need to be assumed for the choice

of refinable function that generates the corresponding MRA. In this thesis, the
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following condition is imposed for any refinable function φ ∈ L2(Rd) within the

discussion of this section:

φ̂ is continuous at the origin with φ̂({0}) = 1 and [φ̂, φ̂] is (essentially) bounded.

(2.18)

Specially, according to Corollary 2.5, the refinable function φ would be an MRA

generator when condition (2.18) is assumed.

Unitary extension principle and oblique extension principle

For deriving MRA-based wavelet tight frames, we have the following renowned

Unitary Extension Principle (UEP):

Proposition 2.8. Unitary Extension Principle (UEP) [62]. Let φ ∈ L2(Rd)

be a refinable function with mask τ0 and {τ` : ` = 1, . . . , L} be a set of 2π-

periodic functions. Assume that φ satisfies (2.18) and the masks {τ0, τ1, . . . , τL}

are essentially bounded and measurable. For a given Ψ = {ψ` : ` = 1, . . . , L}

defined by (2.14), the associated affine system X(Ψ) forms a tight frame of L2(Rd)

provided that the masks {τ0, τ1, . . . , τL} satisfy the following equalities:

L∑

`=0

τ`(ω)τ`(ω + πν) = δν,{0}, ∀ ν ∈ Zd2, (2.19)

for almost all ω ∈ {γ ∈ Rd : [φ̂, φ̂](γ) > 0}.

If the affine system X(Ψ) forms a tight frame of L2(Rd), then it follows from

the definition of tight frame that, for any f ∈ L2(Rd),

‖f‖2 =
∑

j∈Z

L∑

`=1

∑

k∈Zd
|〈f, ψj,`,k〉|2, (2.20)

where ψj,`,k = 2jd/2ψ`(2
j · −k). Note that (2.20) is equivalent to

f =
∑

j∈Z

L∑

`=1

∑

k∈Zd
〈f, ψj,`,k〉ψj,`,k, (2.21)
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which can be seen as an infinite level decomposition of f . However, in practice

we seldom decompose a given function down to the level of negative infinity. The

good thing is, when Ψ = {ψ` : ` = 1, . . . , L} is derived from certain refinable

function φ using UEP, we can decompose a function down to any given level J ,

and still obtain a tight frame system as follows:

{2Jd/2φ(2J · −k), ψj,`,k : 1 6 ` 6 L, j > J, k ∈ Zd}.

Theorem 2.9. [62, 34] Let Ψ := {ψ` : 1 6 ` 6 L} be the set tight framelets

constructed from the refinable function φ using UEP. Then for any J ∈ Z, the

system

X(φ,Ψ; J) := {φJ,k, ψj,`,k : 1 6 ` 6 L, j > J, k ∈ Zd},

where φJ,k := 2Jd/2φ(2J · −k), forms a tight frame of L2(Rd). In other words, for

any f ∈ L2(Rd),

f =
∑

k∈Zd
〈f, φJ,k〉φJ,k +

L∑

`=1

∑

j>J

∑

k∈Zd
〈f, ψj,`,k〉ψj,`,k. (2.22)

Construction 2.1. [62] Let φ be the cardinal B-spline of order m as in (2.6),

then φ is refinable with mask τ0(ω) = e−iK(m)ω
2 cosm(ω

2
). Then we define

τk(ω) :=

√(
m

k

)
e−iK(m)ω/2ik sink(ω/2) cosm−k(ω/2), 1 6 k 6 m,

where K(m) is defined in (2.7). Then, the combined mask set {τ`}m`=0 satisfies

m∑

`=0

τ`(ω)τ`(ω) =
(

sin2(ω/2) + cos2(ω/2)
)m

= 1,

and
m∑

`=0

τ`(ω)τ`(ω + π) =
(

sin(ω/2) cos(ω/2)
)m

(1− 1)m = 0.

Thus according to UEP, for Ψ := {ψk : ψ̂(·) = τk(·/2)φ̂(·/2), 1 6 k 6 m}, the

affine system X(Ψ) forms a tight frame of L2(R).
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Example 2.3. (The piecewise linear spline framelet system) If m = 2 in (2.6),

then the refinable function φ is simply the cardinal B-spline of order 2, i.e.

φ̂(ω) =
sin2 (ω/2)

(ω/2)2

with refinement mask

τ0(ω) = cos2 (ω/2) =
1

2
(cos (ω) + 1) =

1

4

(
exp (iω) + 2 + exp (−iω)

)
.

Following Construction 2.1, we get two wavelet masks τ1 and τ2 such that

τ1(ω) =
√

2i cos (ω/2) sin (ω/2) =

√
2

2
i sin (ω) =

√
2

4

(
exp (iω)− exp (−iω)

)

(2.23)

and

τ2(ω) = − sin2 (ω/2) =
1

2
(cos (ω)− 1) =

1

4

(
exp (iω)− 2 + exp (−iω)

)
. (2.24)

Using the masks τ1 and τ2 as defined in (2.23) and (2.24), one can obtain two

corresponding wavelet tight framelets, which are denoted as ψ1 and ψ2 respectively.

See Figure 2.2 for brief sketch of φ, ψ1 and ψ2.

It is seen that, the Fourier coefficients of the mask set {τ0, τ1, τ2} are associated

with the following discrete finite filters respectively:

h0 =
1

4
[1 2 1], h1 =

√
2

4
[1 0 − 1], h2 =

1

4
[1 − 2 1].

As an extension of UEP, the so-called oblique extension principle (OEP)

is proposed.

Proposition 2.10. Oblique Extension Principle (OEP) [28]. Let φ be a

refinable function with mask τ0 and {τ` : ` = 1, . . . , L} be a set of 2π-periodic

functions. Assume that φ satisfies (2.18) and the masks {τ0, τ1, . . . , τL} are essen-

tially bounded and measurable. For a given set Ψ = {ψ` : ` = 1, . . . , L} defined as
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Figure 2.2: The piecewise linear spline framelet system.

(2.14), if there exists a 2π-periodic function Θ which is non-negative, essentially

bounded, continuous at the origin with Θ({0}) = 1 such that

τ0(ω)τ0(ω + νπ)Θ(2ω) +
L∑

`=1

τ`(ω)τ`(ω + νπ) = δν,{0}Θ(ω), ∀ ν ∈ Zd2, (2.25)

for almost all ω ∈ {γ ∈ Rd : [φ̂, φ̂](γ) > 0}, then the resulting affine system X(Ψ)

forms a wavelet tight frame of L2(Rd).

It is seen that OEP coincides with UEP when Θ ≡ 1, so the statement of OEP

is more general. The flexibility of choosing Θ and the wavelet masks would greatly

facilitate the search for new constructions in practice. Yet, it is a bit surprising

that OEP can also be derived from UEP, thus the two are actually equivalent to

each other. Interested readers may find the proof of this fact in [28, 34].

Quasi-affine systems and their associated algorithms

Shift-invariance is a desirable property in many applications (see, e.g. [23, 36]).

However, it is easy to see that the affine system X(Ψ) defined in (2.13) is not

shift-invariant. Given an affine system X(Ψ), Ron and Shen introduced the shift-

invariant counterpart of it – the quasi-affine system [62] Xq(Ψ), which is raised

for studying the frame characterization of X(Ψ).
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Definition 2.5. For any affine system X(Ψ) with Ψ ⊂ L2(Rd), its associated

quasi-affine system Xq(Ψ) is obtained by replacing each ψj,k = 2jd/2ψ(2j · −k), for

ψ ∈ Ψ, j < 0 and k ∈ Zd, by a set of 2−jd functions as follows

2jdψ2j(·+α)−k, ∀α ∈ Zd2−j .

The frame characterization of X(Ψ) and Xq(Ψ) is closely related, as revealed

by the following result.

Theorem 2.11. [62] The affine system X(Ψ) is a frame of L2(Rd) if and only if

its quasi-affine counterpart Xq(Ψ) is a frame of L2(Rd), and they share the same

frame bounds. In particular, X(Ψ) is a tight frame of L2(Rd) if and only if Xq(Ψ)

is a tight frame of L2(Rd).

It follows that one can use UEP to derive MRA-based quasi-affine tight frame

systems as well. Underlying a quasi-affine system, one has, for any f ∈ L2(Rd),

the multi-level decompositions similar as in (2.21) and (2.22).

In practice, signals are usually given in the form of finite (discrete) data. Fi-

nite signal processing by wavelets or wavelet frames is realized by using the set

of masks (including the refinement mask and wavelet masks) of the MRA-based

wavelet frame system as filters. In the following, we provide the framelet decompo-

sition and reconstruction algorithm for MRA-based quasi-affine tight frame system

derived from UEP.

Let φ ∈ L2(R) be a refinable function with refinement mask τ0, and {τ`}L`=1 be

a set of 2π-periodic functions such that the condition (2.19) is satisfied. Then

Algorithm 2.1 Given any signal v ∈ RN1×· · ·×RNd with Ni ∈ Z+, i = 1, 2, . . . , d,

setting c0,0 = v, and
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(1) Decomposition: for j = 1, 2, . . . , J

(a) obtaining the level-j approximation of v

c0,j = F−1
(
τ0(2j−1·)F(c0,j−1)

)
;

(b) obtaining the level-j framelet coefficients of v

c`,j = F−1
(
τ`(2j−1·)F(c0,j−1)

)
, ` = 1, 2, . . . , L.

(2) Reconstruction: For j = J, J − 1, . . . , 1, setting c̃0,J = c0,J , and

c̃0,j−1 = F−1
(
τ0(2j−1·)F(c̃0,j)

)
+

L∑

`=1

F−1
(
τ`(2

j−1·)F(c`,j)
)
.

Proposition 2.12. [9, 34] The reconstruction of Algorithm 2.1 is perfect, i.e.

c̃0,0 = c0,0 = v.

For future reference, we use W h
j (f) to denote the set of wavelet coefficients of

f up to level j, i.e.

W h
j : f 7→ [c>1,1, c

>
2,1, · · · , c>L,1, · · · , c>1,j, c>2,j, · · · , c>L,j]>.

As revealed by the convolution theorem (see, e.g. [52]), frequency filtering is

equivalent to spatial convolution. Particularly, when all masks are trigonometric

polynomials with real (or complex) coefficients, the multi-level discrete framelet

transform for MRA-based quasi-affine tight frame system can be interpreted as

an iterated convolution scheme, where all Fourier coefficients of the mask set are

utilized as discrete filters.

Let φ ∈ L2(R) be a refinable function with refinement mask τ0, and {τ`}L`=1

be a set of 2π-periodic functions such that the condition (2.19) is satisfied. If
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τ`(ω) :=
∑

n∈Zd h`[k] exp(−ik · ξ), ` = 0, . . . , L, are all trigonometric polynomials,

we denote

h`,j[k] =





h`[k/2
j], if k ∈ 2jZd,

0, otherwise,

and let

h̃`,j = h`,j[−·]

for 0 6 ` 6 L, j ∈ Z∗. Then for any j ∈ Z+, the J-level framelet decomposition

and reconstruction algorithm is implemented as

Algorithm 2.2 Given any signal v ∈ RN with N ∈ Z+, let c0,0 = v, then

(1) Decomposition: for j = 1, 2, . . . , J

(a) obtaining the level-j approximation of v

c0,j = h̃0,j−1 ~ c0,j−1;

(b) obtaining the level-j framelet coefficients of v

c`,j = h̃`,j−1 ~ c0,j−1, ` = 1, 2, . . . , L.

(2) Reconstruction: For j = J, J − 1, . . . , 1,

c0,j−1 =
L∑

`=0

h`,j−1 ~ c`,j.

The above algorithm is essentially the same as a filter bank algorithm called algo-

rithme á trous (see [47]), which was developed earlier for orthogonal and biorthog-

onal wavelet systems.
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2.1.4 For the construction of Riesz wavelets and orthonor-

mal wavelets in low dimensions

The constraint (2.18) is mild and easy to satisfy, which makes the searching of

candidate refinable functions painless. Those candidate refinable functions, or

those after minor modifications, could then be used to derive wavelet tight frames

via UEP or OEP. However, when shifting to the construction of MRA-based Riesz

wavelets, we have to consider the linear-independence nature of Riesz basis and

put our discussions into a narrower setting. In order to construct Riesz wavelets

from a candidate refinable function φ, we further impose the following constraint:

φ is stable, and φ̂ is real-valued. (2.26)

In particular, φ would be central skew-symmetric in spatial domain if φ̂ is real-

valued. It is widely recognized that symmetry is a crucial factor for wavelets

and wavelet tight frames, and the utilization of refinable functions with symmetry

would greatly facilitate the derivation of wavelets with symmetry.

If a refinable function φ ∈ L2(Rd), with d = 2 or 3, satisfying (2.18) and (2.26)

is provided, we can then follow a scheme as in [60] to construct Riesz wavelets

from φ. To be explicit, we first introduce the following mapping η : Zd2 7→ Zd2 for

d = 2 or 3, where

for d = 2, the map η is

(0, 0) 7→ (0, 0), (1, 0) 7→ (1, 1), (0, 1) 7→ (0, 1), (1, 1) 7→ (1, 0);

for d = 3, the map η is

(0, 0, 0) 7→ (0, 0, 0), (1, 0, 0) 7→ (1, 1, 0), (0, 1, 0) 7→ (0, 1, 1),

(1, 1, 0) 7→ (1, 0, 0), (0, 0, 1) 7→ (1, 0, 1), (1, 0, 1) 7→ (0, 0, 1),

(0, 1, 1) 7→ (0, 1, 0), (1, 1, 1) 7→ (1, 1, 1).

(2.27)
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Next we can define a set of functions Ψd = {ψκ, κ ∈ Zd2\{0}} by setting

ψ̂κ(ξ) = exp
(
iη(κ)

ξ

2

)
τ0(

ξ

2
+ κπ)[φ̂, φ̂](

ξ

2
+ κπ)φ̂(

ξ

2
), κ ∈ Zd2\{0}, (2.28)

Then we have the following result:

Theorem 2.13. [60] Let φ ∈ L2(Rd), d = 2 or 3, be a refinable function satisfying

(2.18) and (2.26), and Ψd = {ψκ : κ ∈ Zd2\{0}} be a set of functions determined

by (2.28). Then the affine system X(Ψd) generated by Ψd as in (2.13) forms a

Riesz basis of L2(Rd). If in addition that the refinable function φ is orthonormal,

then for the set Ψd = {ψκ : κ ∈ Zd2\{0}} determined by (2.28), the affine system

X(Ψd) forms an orthonormal basis of L2(Rd).

2.2 Band-limited functions

In this section, we introduce some basic facts on band-limited functions, which

would be helpful to the theoretical study of band-limited wavelets and wavelet

frames.

The definition of band-limited functions is directly linked to the notion Fourier

transform, and a function is called band-limited if its Fourier transform is com-

pactly supported. Fourier transform is naturally defined on L1(Rd), and can be

further extended to L2(Rd) and tempered distributions. Moreover, we have the

following renowned Plancherel’s theorem

‖f‖2
L2(Rd) =

1

(2π)d
‖f̂‖2

L2(Rd)

for any f ∈ L2(Rd). Thus, Fourier transform induces an isometry (up to a positive

scalar) in L2(Rd). Hence an L2(Rd) function can also be uniquely determined by

its Fourier transform, which is also in L2(Rd). In other words, we can always

define an L2(Rd) function in terms of its Fourier transform. Particularly, this rule
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applies to all band-limited functions with bounded Fourier transforms. To avoid

any ambiguity, in the following discussion we only consider square integrable band-

limited functions whose Fourier transforms are integrable in Lebesgue sense. This

constraint is to guarantee that the original functions can be pointwise evaluated

by their Fourier transforms (via the inverse transform).

Renowned examples of band-limited functions in wavelet research and study

include Shannon’s refinable function, Meyer’s refinable function and their derived

wavelets. As we have already got a clear view of Meyer’s refinable function in

Example 2.2, in the following we give a brief introduction to Shannon’s refinable

function. Recall that, a Shannon refinable function φ is defined in the Fourier

(frequency) domain as

φ̂(ξ) = 1[−π,π)d(ξ),

which is exactly the characteristic function of the cube [−π, π)d. Then by taking

inverse Fourier transform, one can evaluate that

f(x) =
d∏

j=1

sinc(xj), x = (x1, x2, . . . , xd),

where the sinc function is the univariate function defined as

sinc(t) =





sin(πt)
πt

, t 6= 0,

1, t = 0.

Then along the direction determined by any axis, the typical asymptotic rate of

(spatial) decay for f is O( 1
‖x‖2 ), which is commonly considered to be slow. This

typical slow asymptotic rate of decay is caused by the (essential) discontinuity of

f in frequency domain.

It is well-known that for any univariate function, if it has higher order of

smoothness in Fourier domain, then it would have fast asymptotic rate of decay

in spatial domain (see, e.g. [30]). When moving to the multivariate functions,
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the relation between spatial decay rate and frequency domain smoothness is a

bit complicated, yet similar principle still follows. Note that, for a multivariate

function, we only need to consider its decay rate over the real line when the single

variable approaches infinity. However, for a univariate band-limited function, we

must consider its decay rate with respect to different reference points and different

orientations. Typically, if a reference point x̄ ∈ Rd and a specific orientation −→n

are given, then for any band-limited function g, the decay rate of g along −→n with

respect to x̄ is revealed in the behavior of the univariate function g(x̄ + −→n t) as t

approaches infinity. Note that g(x̄+−→n t) can be evaluated from ĝ via

g(x̄+−→n t) =
1

(2π)d

∫

Rd
ĝ(ξ) exp (i(x̄+−→n t) · ξ)dξ.

Let V be the space spanned by −→n in Rd, and let V ⊥ be the orthogonal complement

of V in Rd, then if ĝ is band-limited and ĝ(ξ) ∈ Cm(Rd), by Fubini’s theorem one

has

g(x̄+−→n t) =
1

(2π)d

∫

V

∫

V ⊥
ĝ(ξ) exp (ix̄ · ξ) exp (it−→n · ξ)dξV ⊥dξV

=
1

(2π)d

∫ ∞

−∞

( ∫

V ⊥
ĝ(s−→n + ξV ⊥) exp (ix̄ · ξ) exp (it−→n · (s−→n + ξV ⊥))dξV ⊥

)
ds

=
1

(2π)d

∫ ∞

−∞
exp (is(t+ x̄ · −→n ))

( ∫

V ⊥
ĝ(s−→n + ξV ⊥) exp (ix̄ · ξV ⊥)dξV ⊥

)
ds.

We define h(s) =
∫
V ⊥

ĝ(s−→n + ξV ⊥) exp (ix̄ · ξV ⊥)dξV ⊥ , then h(s) is band-limited.

Moreover, by Leibniz’s integral rule one has h(s) ∈ Cm(R) . Therefore, one can

derive that

g(x̄+−→n t) =
1

(2π)d

∫ ∞

−∞
exp (is(t+ x̄ · −→n ))h(s) ds

=
1

(2π)d
im

(t+ x̄ · −→n )m

∫ ∞

−∞
exp (is(t+ x̄ · −→n ))h(m)(s) ds.

By Riemann-Lebesgue lemma, the term
∫∞
−∞ exp (is(t+ x̄ · −→n ))h(m)(s) ds goes to

0 as t goes to infinity. Thus the asymptotic rate of g(x̄ + −→n t) when t goes to
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infinity is at o( 1
|t|m ). This approximation of asymptotic rate of spatial decay is

very coarse, yet it is enough to show the fact that: the smoother a band-limited

function is in frequency domain, the faster asymptotic rate of decay it has in

spatial domain. As in discussions of next two chapters, all constructed multivariate

wavelets and framelets only have explicit definitions in frequency domain, their

order of smoothness in frequency domain would become an important measurement

for their asymptotic rate of decay in spatial domain.

2.3 Colour spaces

In this section, we present some fundamental knowledge on colour spaces. Colour

spaces are recognized as specially designed systems for representing colours accord-

ing to human vision and perception. Since the application part of this thesis is on

colour image restoration, so the problem could be appropriately handled only if we

comprehend colour in a correct way. However, the topic of colour is so broad that

we are only able to do a very brief introduction to it. For more detailed knowledge

on colours and colour spaces, the readers could refer to some standard textbooks

(e.g. [64, 57, 42]).

Colour is a conception that is originated from human vision. As scientific

research indicates, light sensors (cones) in human eye are sensitive to light in dif-

ferent wavelengths, typically red, green and blue (RGB). Thus by mixing those

three primary colours with different percentage, one should be able to produce all

colours that could be discerned by human eye. This fact also indicates that, to

represent the set of colours that can be discerned by human eye, it is enough to use

3 parameters, e.g. red, green, blue colour values. Yet, colour representation is not

restricted to the RGB setting. Different ways of representing and comprehending
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colours (commonly using 3 colour values) lead to different colour models. Typi-

cal colour models including RGB colour model, CMY (cyan,magenta and yellow)

colour model and HSI (hue, saturation and intensity) colour model, etc.

However, a colour model does not provide a comprehensive description of

colours unless its colour values are associated with absolute colours that are phys-

ically determined. The association of colour models with absolute colours pro-

duces various complete colour descriptors called colour spaces. In the following,

we introduce several typical colour spaces that are frequently used either in colour

perception, colour specification or practical applications.

2.3.1 The CIEXYZ colour space

The CIEXYZ colour space is one of the first mathematically defined colour spaces

in the study of colour perception. It was created by the International Commission

on Illumination (CIE) in 1931. The derivation of the CIE colour space is based

on the experimental work of W. D. Wright and J. Guild in the late 1920s. In this

model, channel Y measures the luminance (or brightness), and X and Z channels

are to measure the chromaticity (roughly, X stimulates human eye’s response to

red, and Z stimulates human eye’s response to blue). More precisely, the CIE

defined a set of three colour matching functions x(λ), y(λ) and z(λ), which can

be considered as the spectral sensitivity curves of three types light receptors of a

standard observer. Then, the tristimulus values (X,Y ,Z) of a colour with spectral

distribution I(λ) can be evaluated by

X =

∫ 740

380

I(λ)x(λ)dλ, Y =

∫ 740

380

I(λ)y(λ)dλ, Z =

∫ 740

380

I(λ)z(λ)dλ,

where λ stands for the wavelength, and the interval [380, 740] covers the spectral

range (or spectrum) of visible light. It is noted that the mechanism for deriving

the CIEXYZ colour space is quite similar to human eye’s perception of colours,
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Figure 2.3: Three colour matching functions for the CIEXYZ colour space.

only with different sensitivity curves (colour matching functions versus human

sensitivity curves with respect to red, green and blue).

2.3.2 The CIExyY colour space and the CIExy chromatic-

ity diagram

Although the nature of human eye’s perceptional mechanism indicates that a full

description of visible colours should be done by using three parameters, the con-

cept of colour can be merely divided into two parts: brightness and chromaticity.

Particularly, in the CIEXYZ colour space the channel (or parameter) Y is specially

designed to measure the brightness (luminance) only. As to the specification of

chromaticity, one can use the following two normalized values x, y such that

x =
X

X + Y + Z
, y =

Y

X + Y + Z
.

The above definition of chromaticity specifiers induces the CIExyY colour space,

which is widely used to specify colours in practice. It is seen that the conversion

from CIExyY tristimulus values and CIEXYZ tristimulus values is fairly simple:
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CIExy Chromaticity Diagram
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Figure 2.4: (a) the CIExy chromaticity diagram, (b) the sRGB triangle and Adobe
RGB chromaticity triangle, (c) the RGB cube.

the Y values stay unchanged and

X =
x

y
Y, Z =

1− x− y
y

Y.

All chromaticities that can be discerned by human eye can be depicted in the

CIExy plane, and this gives birth to a chromaticity representation known as the

CIExy chromaticity diagram (see Figure 2.4 (a)).

2.3.3 RGB colour space

RGB colour model is no doubt the most commonly used one for representing colour

images or producing colours in colour displaying devices. This is not surprising

because its mechanism is consistent with human eye’s perception of colours. Based

on the RGB colour model, various RGB colour spaces can be derived, like the

standard RGB (sRBG) colour space, Adobe RGB colour space, etc. Among them,

sRGB colour space is most widely used, particularly in consumer digital cameras

and monitors.

In an RGB colour space, the typical range for each primary colour value is

[0, 255], thus all colours that could be represented in an RGB colour space are
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within the following cube:

{(R,G,B) : 0 6 R,G,B 6 255}.

The above cube in R3 is often referred as the RGB-cube (see Figure 2.4 (c)).

RGB colour spaces are additive colour spaces. So when the red, green and blue

additive primaries are determined in the CIExy chromaticity diagram (gamut), any

chromaticity within the triangle defined by the three primaries can be produced,

see Figure 2.4 (b) for a brief illustration. To complete the description of a colour

space, one also has to specify the illumination (brightness) and thus a white point

is needed. CIE Standard Illuminant D65 (which corresponds to X = 95.047,

Y = 100.000, Z = 108.883) is a frequently-used standard white point for many

RGB colour spaces including sRGB, Adobe RGB, Apple RGB and so on.

The following table shows key parameters for the two most commonly used

colour spaces – sRGB colour space and Adobe RGB colour space, where the three

primaries are determined by their coordinates in the CIExy chromaticity diagram.

Colour Space Red Primary Green Primary Blue Primary

sRGB (x, y) = (0.64, 0.33) (x, y) = (0.30, 0.60) (x, y) = (0.15, 0.06)

Adobe RGB (x, y) = (0.64, 0.33) (x, y) = (0.21, 0.71) (x, y) = (0.15, 0.06)

It is seen that the chromaticity triangle enclosed by the three Adobe RGB pri-

maries is larger than that of the three sRGB primaries, so Adobe RGB colour

space is able to display more colours, see Figure 2.4 (b) for a simple illustration.

In other words, Adobe RGB colour space has larger gamut compared to sRGB

colour space, which makes it popular among the circle of professional photographic

artists.
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2.3.4 HSV colour space

As we have mentioned previously, the perception of colour can be divided into

two parts: brightness (luminance) and chromaticity. The chromaticity part can

be further divided into two parts called hue and saturation. Although RGB is

consistent with human eye’s perception colours, representing colours in terms of

brightness, hue and saturation is more natural to human brain’s recognition of

colour. Among those three colour descriptors, Hue is an essential colour attribute

that describes a pure colour, while saturation measures the degree to which a pure

colour is diluted by white light.

A typical way of representing colours in terms of brightness, hue and satura-

tion is to use the HSV colour space, where H, S represent hue and saturation

respectively, and V stands for value, which is simply an alternative way of saying

brightness (luminance or intensity). HSV colour space is usually considered to

be a deformation of RGB colour space. If we see RGB colour models as colour

representations in regular Cartesian coordinates, then HSV is simply cylindrical-

coordinate representations of those RGB points. In the cylindrical model, the

angle around the central axis corresponds to the hue component, whereas the dis-

tance from the central axis stands for saturation, and the ‘height’ along the central

axis corresponds to value, see Figure 2.5 (a) for a brief illustration. The definition

of an HSV colour space would depend on its associated absolute (RGB) colour

space (e.g. sRGB and Adobe RGB colour spaces both can be used to derive HSV

colour spaces with the same conversion formula, however, their derived HSV colour

spaces would be different).
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(a) (b)

Figure 2.5: Brief illustrations of the HSV and Lab colour models: (a) HSV colour
model, (b) Lab colour model.

2.3.5 LAB colour space

Although RGB colour space is consistent with the colour perception of human eye,

and HSV colour space is consistent with human interpretation of colours, these two

colour spaces suffer from the same difficulty in computational photography. That

is, the Euclidean metric defined on the two colour spaces is not perceptionally

uniform. To overcome this difficulty, a new class of colour spaces are designed, and

now they are commonly known as Lab colour spaces (here the term Lab does not

stand for the word ‘lab’ but rather three separate alphabets with special meaning).

In any Lab colour space, the L-coordinate represents the lightness of colour, the

a-coordinate represents its position between red/magenta and green, and the b-

coordinate represents its position between yellow and blue, see Figure 2.5 (b) for

a brief illustration. One typical Lab colour space is the CIELAB colour space,

which happens to be the most complete colour space specified by CIE as well.

In this thesis, the conversion between sRGB colour space and CIELAB colour
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space is involved. So in the following, we provide the corresponding conversion for-

mulas. To convert sRGB colour representation to CIELAB colour representation,

we need to firstly set r = R/255, g = G/255, and b = B/255, and then obtain the

(X ′, Y ′, Z ′) values via the following linear transform



X ′

Y ′

Z ′


 = A




r

g

b




where

A =




0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505


 . (2.29)

Next, by setting X = 100X ′, Y = 100Y ′ and Z = 100Z ′, the CIELAB colour

values (L∗, a∗, b∗) can be obtained by




L∗ = 116g(Y/Yw)− 16,

a∗ = 500[g(X/Xw)− g(Y/Yw)],

b∗ = 200[g(Y/Yw)− g(Z/Zw)],

where (Xw, Yw, Zw) are the coordinates of the reference white point (e.g. D65) in

CIEXYZ colour space, and

g(t) =




t
1
3 , if t > ( 6

29
)3,

1
3
(29

6
)2t+ 4

29
, if t 6 ( 6

29
)3.

(2.30)

The conversion from CIELAB values (L∗, a∗, b∗) to sRGB values (R,G,B) is

realized by simply reversing the prescribed procedure. That is, firstly we obtain

the (X, Y, Z) values via




Y = Ywg
−1( 1

116
(L∗ + 16)),

X = Xwg
−1( 1

116
(L∗ + 16) + 1

500
a∗),

Z = Zwg
−1( 1

116
(L∗ + 16)− 1

200
b∗),
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where g−1 is the inverse function of g in (2.30), and Xw, Yw, Zw are the coordinates

of the reference white point (e.g. D65) in CIEXYZ colour space. Then, by setting

X ′ = X/100, Y ′ = Y/100 and Z ′ = Z/100, we derive the normalized RGB values

(r, g, b) from



r

g

b


 = A−1




X ′

Y ′

Z ′


 ,

where A−1 is the inverse of A defined in (2.29). Finally, we obtain the regular

sRGB values (R,G,B) by setting R = 255r,G = 255g and B = 255b.

2.4 Wavelet tight frame based image restoration

models

In this section, we review several mathematical models for 2D (greyscale/monochromatic)

image restoration. This review would serve us as mathematical preparations for

the colour image restoration problem, and it also introduces the numerical tools

that are to be used in the application part of this thesis.

The classical image restoration problem is to estimate the underlying clean

image from the corrupted (or degraded) observed image data. Typical image

corruptions (or degradations) include blurring, missing of pixels, missing of colours

or fine details, etc. Besides, almost all images suffer more or less from noise. If we

view a 2D corrupted image as a vector (by concatenating its columns), then those

corruption or degradation operators usually would have matrix representations.

To be general, we let A be any kind of degradation operator, then the corruption

process can be mathematically modeled as

g = Af + e, (2.31)
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where f is the original image vector, e is the additive noise component, and g

is the observed/available image data. Following the image degradation model

as in (2.31), the image restoration task is to recover the original image f from

the degraded noisy observation g. However, with the present of noise and other

degradation operators, exact recovery is rare. A more realistic thinking is to find

a ‘good’ or ‘reasonable’ estimator of the original image f from the observed data

g.

One common approach for estimating f from g is to solve the following least

square problem

min
h
‖Ah− g‖2

2. (2.32)

It is easy to see that the first order optimality condition of the above least square

problem is a linear equation system as follows

ATAh = ATg, (2.33)

where AT is the transpose of A. Thus, if the matrix ATA is invertible, we can

obtain the following kind of least square solution

h = (ATA)−1ATg.

However, it can happen that the matrix ATA is not invertible (e.g., in the image

inpainting problem, A is a diagonal matrix with 1s and 0s in its main diagonal,

where the 0 entries represent the position of missing pixels, thus ATA = A is not

invertible). And even when ATA is invertible, it is usually ill-conditioned. In this

case, the noise component in the observed data g would inevitably be magnified

by (ATA)−1, and the final outcome would be immersed by the magnified noise

component.

To resolve the ill-posedness of the least square problem in (2.33), some regular-

ization techniques need to be applied. In the literature, Tikhonov regularization
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method was often applied for alleviating such ill-posedness:

min
h
‖Ah− g‖2

2 + c‖h‖2
2, (2.34)

where c > 0 is a positive scalar. The model (2.34) is again a least square problem

with first optimality condition

(ATA+ cI)h = ATg, (2.35)

where I is the identity map (matrix). Tikhonov regularization scheme in (2.34)

had been very favored in many applications because of its easiness to incorporate

prior information, and the existence of a closed form solution in (2.35). However,

Tikhonov regularization scheme also suffers a few weaknesses. In particular, it

tends to attenuate strong image edges and often makes the resulting image overly

smoothed.

Tikhonov regularization method is essentially an `2-regularization method,

whose solution can be obtained by solving a linear system as in (2.35). So `2-

regularization models are often referred as linear models. For handling (ill-posed)

image restoration problem, a major breakthrough is moving from linear mod-

els to non-linear models, like total variation (TV) based regularization models

(see, e.g. [63, 41]) and wavelet tight frame based regularization models (see,

e.g. [17, 19, 9, 14, 34]). Compared to the previous linear methods, non-linear mod-

els can often lead to results with better quality (see, e.g. [14]). Besides, although

non-linear models do not have closed form solutions as those linear models do, they

still can be solved by efficient iterative algorithms like proximal forward backward

splitting (PFBS) [24, 17], accelerated projected gradient (APG) [68], split Bregman

[41, 14], etc. In this thesis we mainly focus on wavelet tight frame (framelet) based

image restoration models and their associated numerical solvers.



46 Chapter 2. Preliminaries

2.4.1 The general framelet based image restoration model

In this subsection, we introduce several wavelet tight frame (framelet) based math-

ematical models for 2D image restoration. For notional convenience, we let W be

the framelet transform operator, A be some image degradation operator, and g

be the observed image data. Then, the general image restoration model (see, e.g.

[34, 67]) can be expressed as

min
α

1

2
‖AW Tα− g‖2

2 +
κ

2
‖(I −WW T )α‖2

2 + ‖diag(λ) · α‖1, (2.36)

where I is the identity map, and 0 6 κ 6∞ is a nonnegative scalar. So to obtain

the approximated image f , we first need to find an optimal solution α∗ to (2.36),

and synthesize the f from α∗ by setting f = W Tα∗.

The first term in (2.36) is an alternative way of writing the least square (2.32),

which is usually referred as the fidelity term. The meaning of the second term in

(2.36) is a bit complicated, yet it is easy to see that if α = Wh for some h, then

this term would vanish. The third term in (2.36) is the `1-norm of the framelet

coefficient vector α, which can be seen as a sparsity constraint for the framelet

coefficients, and λ is the weight function of the coefficient set α.

2.4.2 Synthesis based model, analysis based model and

balanced model

With a general image restoration model defined as in (2.36), different settings of

the value κ therein would result in three different specific image restoration models

that are described as follows:

• κ = 0, so

min
α

1

2
‖AW Tα− g‖2

2 + ‖diag(λ) · α‖1,

and the above model is called the synthesis based model.
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• 0 < κ <∞, so

min
α

1

2
‖AW Tα− g‖2

2 +
κ

2
‖(I −WW T )α‖2

2 + ‖diag(λ) · α‖1, (2.37)

which looks the same as (2.36), but one should keep in mind now that 0 <

k <∞. In this case, (2.37) is called the balanced model.

• κ =∞, in this case the term ‖(I−WW T )α‖2
2 has to vanish, so α−WW Tα =

0. By letting u = W Tα, one has α = Wu, so (2.36) can be rewritten as

min
u

1

2
‖Au− g‖2

2 + ‖diag(λ)Wu‖1, (2.38)

which is called the analysis based model.

It is noted that when the rows of W constitute an orthonormal basis, then we have

WW T = I and hence the three models are exactly the same. However, when the

rows of W form a redundant tight frame, then WW T 6= I and hence the three

models are mutually different and cannot be derived from each other. It is also

observed that the `1-minimization models in compressed sensing closely resemble

the synthesis model, while the TV -norm regularization model [63] is analysis based

model in nature.

The effectiveness of the three image restoration models largely depends on the

given data sets and applications. For the analysis based model, the framelet co-

efficients Wu is often linked to the smoothness of u. Thus for image restoration

tasks, the framelet based analysis model tends to generate smoother images than

synthesis based model, as shown in many experimental works (e.g. [14]). On the

contrary, the synthesis model explores the sparse representation of the underlying

solution in the redundant frame system, which usually enhances edges while bring-

ing in artifacts as well (see, e.g. [9]). In comparison, the balanced model balances

the smoothness of the underlying image as well as the sparsity of coefficients of
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the image in the redundant frame system (see, e.g. [8, 9, 10, 18, 19]), thus it serves

us as a bridge between the analysis based model and synthesis based model.

2.4.3 Numerical solvers of image restoration models

Although different in form, algorithms and convergence analysis of synthesis based

model and balanced model are quite the same, so in the following context we put

the two together as a whole and call it the general balanced model [34].

For simplicity, we view the coefficient set α as a vector of dimension m (i.e.

α ∈ Rm), and then the proximal forward-backward splitting (PFBS) algorithm (see,

e.g. [9, 10, 15, 16, 17, 24]) can be applied to solve the general balanced model.

For notation convenience, we write the general balanced model as

min
α
F1(α) + F2(α) (2.39)

with F1(α) := ‖diag(λ)α‖ and

F2(α) :=
1

2
‖AW Tα− g‖2

2 +
κ

2
‖(I −WW T )α‖2

2, 0 6 κ <∞.

It is obvious that F2 is L − Lipschitz continuous for some L 6 ρmax(A
TA) + κ.

Then, PFBS algorithm for solving the general balanced model is implemented as

follows:

Algorithm 2.3: Proximal Forward-backward Splitting (PFBS) Method

Given λ ∈ Rm
+ , we set up the initial guess α0. Then for k = 0, 1, 2, . . ., we gener-

ate αk+1 from αk based on the following iterations until the pre-defined stopping

criterion is fulfilled:

(i) set βk = αk −∇F2(αk)/L;
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(ii) set αk+1 = Tλ/L(βk), where

Tλ/L(βk) = [tλ1/L(βk,1), · · · , tλn/L(βk,n)]

is the soft-thresholding operator with threshold vector λ/L

tλi/L(βk,i) = sign(βk,i) ·max (|βk,i| − λi/L, 0), 1 6 i 6 n.

As a final step for image restoration, the approximated image is then obtained

by setting f = W Tαk+1.

Step (i) and step (ii) in the above PFBS algorithm can be combined as a single

step as follows:

αk+1 = proxF1/L(αk −∇F2(αk)/L),

where the proximal operator proxF with respect to function F is defined as

proxF (α) = arg min
γ
F (γ) +

1

2
‖γ − α‖2

2.

The convergence analysis of the PFBS algorithm is seen in the following theorem.

Theorem 2.14. [34] Consider a minimization problem with the form of (2.39),

where F1(α) = ‖diag(λ)α‖1 and F2(α) : Rm 7→ R is continuous, differentiable

with L-Lipschitz continuous gradient. Let F := F1 + F2 and α∗ be any solution of

(2.39). Then the sequence {αk : k = 0, 1, . . .} generated by Algorithm 2.3 satisfies

F (αk)− F (α∗) 6 L
‖α∗ − α0‖2

2

2k
.

Consequently, given any ε > 0, we have

F (αk)− F (α∗) 6 ε, whenever k > L
‖α∗ − α0‖2

2

2ε
.

Moreover, when the solution to (2.39) is unique, we have

lim
k→∞
‖αk − α∗‖2 = 0.
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It is seen from the above analysis that the PFBS algorithm generates an ε-

optimal solution of (2.39) in O(L/ε) iterations. Although the speed is reasonably

fast, there are even faster algorithms available. A typical example is the accelerated

proximal gradient (APG) algorithm [68], which is obtained by adjusting step βk =

αk −∇F2/L and can be explicitly described as follows:

Algorithm 2.4: Accelerated Proximal Gradient (APG) Method

Given λ ∈ Rn
+, set up α0 = α−1 ∈ Rn, t0 = 1 and t−1 = 0. Then for k = 0, 1, 2, . . .,

we generate αk+1 from αk based on the following iteration until the pre-defined

stopping criterion is satisfied:

(i) set βk = αk + tk−1−1

tk
(αk − αk−1);

(ii) set γk = βk −∇F2(βk)/L;

(iii) set αk+1 = Tλ/L(γk);

(vi) compute tk+1 =
1+
√

1+4t2k
2

.

The following theorem shows that, to obtain an ε-optimal solution, we only need

to apply approximately O(
√
L/ε) iterations of APG. The speed of convergence

of the APG algorithm is thus considerably faster compared to that of the PFBS

algorithm.

Theorem 2.15. [34] Let {αk : k = 0, 1, . . .}, {βk : k = 0, 1, . . .} and {tk : k =

0, 1, . . .} be the sequences generated in Algorithm 2.4. Then for any k > 1 and any

optimal solution α∗ to the general balanced model in the form of (2.36), we have

F (αk)− F (α∗) 6 2L
‖α∗ − α0‖2

2

(k + 1)2
,
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where F is the objective function of (2.36) with 0 6 κ < ∞. Consequently, given

any ε > 0, we have

F (αk)− F (α∗) 6 ε, whenever k >

√
2L

ε
‖α∗ − α0‖2 − 1.

Moreover, if the solution to the general balanced model is unique, then

lim
k→∞
‖αk − α∗‖2 = 0.

As to the analysis based model defined in (2.38), for notation convenience we

write H(u) = 1
2
‖Au− g‖2

2, then the analysis based model becomes

min
u
H(u) + ‖diag(λ)Wu‖1. (2.40)

The main difficulty for solving the analysis based model (2.40) lies in the fact that

the term ‖Wu‖1 is both non-smooth and non-separable, as compared to the general

balanced model. The main idea for overcoming this difficulty is to transfer (2.40)

into the a problem with separable non-smooth terms only. A typical approach for

doing this is to replace the term Wu in (2.40) by a new variable d, and then add

a new hard constraint d = Wu therein. Then (2.40) becomes

min
u,d

H(u) + ‖diag(λ)d‖1 subject to d = Wu. (2.41)

The model (2.41) can be solved by an alternating algorithm based on the Breg-

man distance with an inexact solver. This algorithm is currently well-known by

the name of split Bregman algorithm [41, 14], whose detailed implementation is

given as follows:

Algorithm 2.5: Split Bregman Method
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(i) Set up initial guess d0 and b0, and choose some δ ∈ (0, 1] and µ > 0.

(ii) For k = 0, 1, . . . do the following iterations until the pre-defined convergence

criterion is satisfied




uk+1 = (ATA+ µI)−1
(
ATg + µW T (dk − bk)

)
,

dk+1 = Tλ/µ(Wuk+1 + bk),

bk+1 = bk + δ(Wuk+1 − dk+1).

Convergence of the split Bregman algorithm is illustrated in the following the-

orem

Theorem 2.16. [14, 34] Assume that there exists at least one solution u∗ of

(2.40). Assume that 0 6 δ 6 1 and µ > 0. Then, the following properties hold for

the unconstraint split Bregman algorithm:

lim
k→+∞

‖diag(λ)Wuk‖1 +H(uk) = ‖diag(λ)Wu∗‖1 +H(u∗).

Furthermore, lim
k→+∞

‖uk − u∗‖2 = 0 whenever the solution to (2.40) is unique.

The split Bregman algorithm can handle additional linear equality constraints

as well, which leads to the so-called constraint split Bregman algorithm (see,

e.g. [14]). More precisely, given the constraint analysis based model defined as

follows:

‖diag(λ)Wu‖1 subject to Au = g,

where A is a linear operator, we can solve it using the following iterative scheme:

Algorithm 2.6: Constraint Split Bregman Method
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(i) Set up initial guess d0 and b0 and c0, and choose δi ∈ (0, 1], i = 1, 2, µ > 0

and ρ > 0.

(ii) For k = 0, 1, . . . do the following iterations until the pre-defined convergence

criterion is satisfied




uk+1 = (ρATA+ µI)−1
(
ρAT (g − ck) + µW T (dk − bk)

)
,

dk+1 = Tλ/µ(Wuk+1 + bk),

bk+1 = bk + δ1(Wuk+1 − dk+1),

ck+1 = ck + δ2κ(Auk+1 − g).

Convergence of the above algorithm is guaranteed, similar to the non-constraint

case (see, e.g. [14]).





Chapter 3
Band-limited Tight Frames in Low

Dimensions

As mentioned in Chapter 2, this thesis only involves MRA-based constructions of

wavelets and wavelet tight frames. So, to construct non-separable band-limited

wavelet frames, we first provide the construction of their corresponding non-

separable band-limited refinable functions.

3.1 On the construction of non-separable band-

limited refinable functions

The main idea for our construction of non-separable band-limited refinable function

originates from the construction of box splines [7, 59], i.e. multiplying univariate

Meyer’s refinable function along multiple orientations given by the standard box-

spline direction matrices. More explicitly, suppose ϕ ∈ L2(R) is a univariate

refinable function such that ϕ̂ is (essentially) bounded. Let τ be its refinement

mask and Ξ be a d× n full rank direction matrix with integer entries and n > d,

55
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then we can define a refinable function φΞ ∈ L2(Rd) as follows:

φ̂Ξ(ξ) =
∏

r∈col(Ξ)

ϕ̂(r · ξ), ξ = (ξ1, . . . , ξd)
T ∈ Rd, (3.1)

where col(Ξ) enumerates all column vectors of the direction matrix Ξ.

The function φΞ in (3.1) may also be defined by tempered distribution. In

fact, when ϕ ∈ L1(R)∩L2(R), we can set an n-variate separable function f(u) :=
∏n

j=1 ϕ(uj), u = (u1, · · · , un)T . Then we can define the multivariate F-truncated

powers associated with f and Ξ (see [71]), which is a tempered distribution such

that

Tf (· | Ξ)(h) =

∫

Rn
f(u)h(Ξu)du

for any rapidly decreasing function h in Rd. From the above definition of Tf (· | Ξ),

one can derive that

̂Tf (· | Ξ)(h) = Tf (· | Ξ)(ĥ)

=

∫

Rn
f(u)ĥ(Ξu)du

=

∫

Rn
f(u)

∫

Rd
h(ξ) exp(−iΞu · ξ)dξdu.

By Fubini’s theorem, one can change the order of integration of the last integral,

thus

̂Tf (· | Ξ)(h) =

∫

Rd
h(ξ)

∫

Rn
f(u) exp(−iΞu · ξ)du dξ

=

∫

Rd
h(ξ)

∫

Rn
f(u) exp(−iu · Ξ>ξ)du dξ

=

∫

Rd
h(ξ)

∫

Rn

n∏

j=1

ϕ(uj) exp(−iu · Ξ>ξ)du dξ

=

∫

Rd

∏

r∈col(Ξ)

ϕ̂(r · ξ)h(ξ)dξ,

which implies ̂Tf (· | Ξ) =
∏

r∈col(Ξ)

ϕ̂(r · ξ), so

Tf (· | Ξ) = φΞ.



3.2 Auxiliary lemmas, theorems and corollaries 57

This equivalence between Tf (· | Ξ) and φΞ is established in [71]. Moreover, it is

also shown in Proposition 3.1 of [71] that

φΞ(x) =
1√

det(ΞΞT)

∫

u∈Ξ−1x,u∈Rn
f(u)dµ, ∀x ∈ Rd,

where Ξ−1 is the inverse map of Ξ, and µ is the n−d dimensional Lebesgue measure

of the hyper plane Ξ−1x.

Clearly, the function φΞ defined in (3.1) is still refinable as

φ̂Ξ(2ξ) =
∏

r∈col(Ξ)

ϕ̂(2r · ξ) =
∏

r∈col(Ξ)

τ(r · ξ)ϕ̂(r · ξ) = τΞ(ξ)φ̂Ξ(ξ), ξ ∈ Rd,

and τΞ(ξ) =
∏

r∈col(Ξ)

τ(r · ξ) is a 2π-periodic function of Rd, since all elements of r

are integers and τ is a 2π-periodic function.

Prior to the derivation any tight frames from the above class of band-limited

refinable functions, we present a few results as theoretical preparations.

3.2 Auxiliary lemmas, theorems and corollaries

We first introduce a lemma concerning the map η as defined in (2.27), which is

taken from the proof of Theorem 2.12 in [60].

Lemma 3.1. Let τ be a real-valued measurable 2π-periodic function defined on

Rd, d = 2 or 3, and

τν(ξ) = exp (iη(ν) · ξ)τ(ξ + νπ), ν ∈ Zd2.

Then for any κ ∈ Zd2\{0}, one has

∑

ν∈Zd2

τν(ξ)τν(ξ + κπ) = 0.
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Proof. It can be verified by direct calculation that, for either d = 2 or 3, the map

η defined in (2.27) satisfies the following property:

for any ν1, ν2 ∈ Zd2, if ν1 6= ν2, then (η(ν1)− η(ν2))(ν1 − ν2) is an odd number.

Let κ ∈ Zd2\{0} be fixed. We view Zd2 as an additive group modulo 2, so for any

ν ∈ Zd2, there exists a unique ν̃ ∈ Zd2 different from ν such that ν̃ = ν + κ in

Zd2. Conversely one has ν + κ = ν̃ in Zd2 as well. Since τ is 2π-periodic, one has

τ(ξ + νπ + κπ) = τ(ξ + ν̃π) and τ(ξ + ν̃π + κπ) = τ(ξ + νπ). Then

τν(ξ)τν(ξ + κπ) + τν̃(ξ)τν̃(ξ + κπ)

= τ(ξ + νπ)τ(ξ + ν̃π)
(

exp(iη(ν) · ξ) exp(−iη(ν) · (ξ + κπ))

+ exp(iη(ν̃) · ξ) exp(−iη(ν̃) · (ξ + κπ)
)

= τ(ξ + νπ)τ(ξ + ν̃π)
(

exp(−iη(ν) · κπ) + exp(−iη(ν̃) · κπ)
)

= τ(ξ + νπ)τ(ξ + ν̃π) exp(−iη(ν) · κπ)
(

1 + exp(−i(η(ν̃)− η(ν)) · κπ)
)

= τ(ξ + νπ)τ(ξ + ν̃π) exp(−iη(ν) · κπ)
(

1 + exp(−i(η(ν̃)− η(ν)) · (ν̃ − ν)π)
)

= τ(ξ + νπ)τ(ξ + ν̃π) exp(−iη(ν) · κπ)(1 + (−1))

= 0.

Thus
∑

ν∈Zd2

(
τν(ξ)τν(ξ + κπ) + τν̃(ξ)τν̃(ξ + κπ)

)
= 0. (3.2)

Note that when ν enumerates all Zd2, ν̃ would enumerate all Zd2 as well, hence (3.2)

is

2
∑

ν∈Zd2

τν(ξ)τν(ξ + κπ) = 0,

so
∑
ν∈Z2

τν(ξ)τν(ξ + κπ) = 0 is shown and the proof is complete.
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To facilitate the derivation of MRA-based wavelet tight frames using extension

principles as well as the above lemma, we assume in this chapter that any refinable

function φ in discussion satisfies the following condition:

φ̂ is real-valued, continuous at the origin with φ̂({0}) = 1,

and [φ̂, φ̂] is essentially bounded.
(3.3)

Now, let φ be a refinable function with mask τ satisfying (3.3). Suppose there exists

a set of real-valued measurable 2π-periodic functions, denoted by {p(ξ), as(ξ) : s =

1, . . . , N}, satisfying the following condition:

∑

κ∈Zd2

|τ(ξ + κπ)|2 +
N∑

s=1

∑

µ∈Zd2

|as(ξ + µπ)|2 + |p(ξ)|2 = 1, (3.4)

then we may define a set of 2π-periodic functions

{τκ, as,µ : κ ∈ Zd2\{0}, µ ∈ Zd2, s = 1, . . . , N}

as follows:




τκ(ξ) = exp(iη(κ) · ξ)τ(ξ + κπ), κ ∈ Zd2\{0};

as,µ(ξ) = exp(iη(µ) · ξ)as(ξ + µπ), µ ∈ Zd2, s = 1, . . . , N.
(3.5)

The following theorem shows that the above set of 2π-periodic functions defines

the generators of a wavelet tight frame of L2(Rd), d = 2, 3.

Theorem 3.2. Let φ ∈ L2(Rd) be a band-limited refinable function with mask

τ satisfying (3.3). Suppose that {p(ξ), as(ξ) : s = 1, . . . , N} is a set of real-

valued measurable 2π-periodic functions satisfying (3.4) and let {τκ, as,µ : κ ∈

Zd2\{0}, µ ∈ Zd2, s = 1, . . . , N} be given as (3.5). Define a set of functions Ψ as

follows:

Ψ = {ψκ : κ ∈ Zd2\{0}} ∪ {ψs,µ : µ ∈ Zd2, s = 1, . . . , N} ∪ {ψp} (3.6)
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where 



ψ̂κ(ξ) = τκ(
ξ
2
)φ̂( ξ

2
), κ ∈ Zd2\{0};

ψ̂s,µ(ξ) = as,µ( ξ
2
)φ̂( ξ

2
), µ ∈ Zd2, s = 1, . . . , N ;

ψ̂p(ξ) = p(ξ)τ( ξ
2
)φ̂( ξ

2
) = p(ξ)φ̂(ξ).

(3.7)

Then the affine system X(Ψ) generated by Ψ as in (2.13) forms a tight frame of

L2(Rd).

Proof. Define

P (ξ) = 1−
N∑

s=1

∑

µ∈Zd2

|as(ξ + µπ)|2 −
∑

κ∈Zd2

|τ(ξ + κπ)|2,

and let B(ξ) = p(2ξ)τ(ξ),Θ(ξ) = 1− P (ξ). Then we have |p(ξ)|2 = P (ξ) and

Θ(2ξ)τ(ξ)τ(ξ) +
∑

κ∈Zd2\{0}

τκ(ξ)τκ(ξ) +
N∑

s=1

∑

µ∈Zd2

as,µ(ξ)as,µ(ξ) +B(ξ)B(ξ)

= −P (2ξ)τ(ξ)τ(ξ) + 1− P (ξ) + |p(2ξ)|2τ(ξ)τ(ξ)

= −P (2ξ)τ(ξ)τ(ξ) + 1− P (ξ) + P (2ξ)τ(ξ)τ(ξ)

= 1− P (ξ) = Θ(ξ),

i.e.

Θ(2ξ)τ(ξ)τ(ξ) +
∑

κ∈Zd2\{0}

τκ(ξ)τκ(ξ) +
N∑

s=1

∑

µ∈Zd2

as,µ(ξ)as,µ(ξ) +B(ξ)B(ξ) = Θ(ξ).

(3.8)

Let τ{0} = τ . By Lemma 3.1, we have for all ν ∈ Zd2\{0}

∑

κ∈Zd2

τκ(ξ)τκ(ξ + νπ) = 0, and
∑

µ∈Zd2

as,µ(ξ)as,µ(ξ + νπ) = 0, s = 1, . . . , N.
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Thus for any ν ∈ Zd2\{0},

Θ(2ξ)τ(ξ)τ(ξ + νπ) +
∑

κ∈Zd2\{0}

τκ(ξ)τκ(ξ + νπ) +
N∑

s=1

∑

µ∈Zd2

as,µ(ξ)as,µ(ξ + νπ)

+B(ξ)B(ξ + νπ)

= −P (2ξ)τ(ξ)τ(ξ + νπ) + |p(2ξ)|2τ(ξ)τ(ξ + νπ)

= −P (2ξ)τ(ξ)τ(ξ + νπ) + P (2ξ)τ(ξ)τ(ξ + νπ)

= 0.

(3.9)

The equalities in (3.8) and (3.9) imply that the set of combined masks

{τκ(ξ), as,µ(ξ), B(ξ) : κ ∈ Zd2, µ ∈ Zd2, s = 1, . . . , N ; }

satisfies (2.25) in OEP. Together with condition (3.3) on φ, one can conclude via

OEP that the system X(Ψ) as (2.13), with Ψ given as (3.6), forms a tight frame

of L2(Rd).

In the case that the function p(ξ) vanishes in (3.4), the corresponding wavelet

ψp defined in (3.7) also vanishes and we have the following corollary.

Corollary 3.3. Suppose that φ ∈ L2(Rd) is a band-limited refinable function satis-

fying (3.3). Let its mask τ and {as : 1 6 s 6 N} be a set of real-valued measurable

2π-periodic functions satisfying

N∑

s=1

∑

µ∈Zd2

|as(ξ + µπ)|2 +
∑

κ∈Zd2

|τ(ξ + κπ)|2 = 1. (3.10)

Define

Ψ′ = {ψκ : κ ∈ Zd2\{0}} ∪ {ψs,µ : µ ∈ Zd2, s = 1, . . . , N}, (3.11)

where ψκ and ψs,µ are given as (3.7). Then the affine system X(Ψ′) generated by

Ψ′ as in (2.13) forms a tight frame of L2(Rd).
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Remark. The above corollary can also be proved straightforwardly using UEP.

Theorem 3.2 and Corollary 3.3 provide explicit construction schemes to con-

struct wavelet tight frames of L2(Rd), d = 2, 3. The requirement for applying

Theorem 3.2 and Corollary 3.3 is that there exists a refinable function φ that sat-

isfies (3.3) and a set of 2π-periodic functions {p(ξ), as(ξ) : s = 1, . . . , N} that

satisfies (3.4) or (3.10). It is noted that (3.3) imposed on refinable functions is

very mild. In contrast, some other types of wavelet tight frames were constructed

by (e.g. [1, 2]) by requiring that the refinable function φ not only generates an

MRA but also satisfies

{φ(· − k) : k ∈ Zd} is a tight frame of V0 := S(φ), (3.12)

which, according to Theorem 2.7, is equivalent to

[φ̂, φ̂](ξ) = 1 a.e. on σ(S(φ)).

Thus, if {φ(· − k) : k ∈ Zd} forms a tight frame but not an orthonormal basis

of S(φ), then the spectrum set σ(S(φ)) := {γ : [φ̂, φ̂](γ) > 0} differs from Rd by

a set of non-zero measure (see [61, 1]). In this case, the term [φ̂, φ̂] cannot be

continuous. So in summary, if φ is a band-limited refinable function satisfying

(3.12), then φ̂ will not be continuous unless it is degenerated to the orthonormal

case. Such a refinable function with discontinuities in frequency domain decays

very slowly in spatial domain. On the contrary, the refinable function φ needed

in Theorem 3.2 or Corollary 3.3 can be arbitrarily smooth in frequency domain,

as long as it satisfies (3.3). Such refinable functions can have very rapid decay in

spatial domain. In summary, the UEP/OEP based Theorem 3.2 or Corollary 3.3

provides a very convenient way to construct wavelet tight frames with fast decay

in spatial domain.
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3.3 Constructions of band-limited wavelet tight

frames

To apply Theorem 3.2 or Corollary 3.3, we need to construct refinable functions

that satisfy condition (3.3), and sets of 2π-periodic functions {p(ξ), as : s =

1, . . . , N} that satisfy (3.4) or (3.10). Based on the univariate Meyer’s refinable

function QΩ, we first construct a class of non-separable band-limited refinable

functions that satisfies (3.3) using the representative box-spline direction matrices

Ξ. For instance, in R2,

m1︷ ︸︸ ︷ m2︷ ︸︸ ︷ m3︷ ︸︸ ︷

Ξ =


 1 · · · 1

0 · · · 0

0 · · · 0

1 · · · 1

1 · · · 1

1 · · · 1


 ,

(3.13)

and in R3,

m1︷ ︸︸ ︷ m2︷ ︸︸ ︷ m3︷ ︸︸ ︷ m4︷ ︸︸ ︷

Ξ =




1 · · · 1

0 · · · 0

0 · · · 0

0 · · · 0

1 · · · 1

0 · · · 0

0 · · · 0

0 · · · 0

1 · · · 1

1 · · · 1

1 · · · 1

1 · · · 1


 .

(3.14)

Plugging any above direction matrix into (3.1), we have a refinable function φΩ
d,m ∈

L2(Rd) defined by

φ̂Ω
d,m(ξ) =

∏

r∈col(Ξ)

Q̂Ω(r · ξ) = Q̂Ω

md+1
(
d∑

j=1

ξj)
d∏

j=1

Q̂Ω

mj
(ξj) (3.15)

for any ξ = (ξ1, . . . , ξd)
T ∈ Rd, where QΩ is the Meyer’s refinable function as in

(2.8), π
2
< Ω 6 2π

3
, and m = (m1, . . . ,md+1) ∈ (Z+)d+1 for d = 2 or 3. The

associated refinement mask of φΩ
d,m is

τd,m(ξ) = τ
md+1

Ω (
d∑

j=1

ξj)
d∏

j=1

τ
mj
Ω (ξj), ξ = (ξ1, . . . , ξd)

T ∈ Rd, (3.16)
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where τΩ is the refinement mask of the univariate function QΩ defined by (2.10).

The refinable function defined by (3.15) indeed satisfies (3.3), as we will show

later in the proof of Theorem 3.4. The remaining is then about constructing a

set of measurable 2π-periodic functions {p(ξ), as(ξ) : s = 1, . . . , N} such that

(3.4) or (3.10) holds. The solution to (3.4) is certainly not unique. One trivial

solution is setting as = 0, s = 1, . . . , N and p(ξ) = (1 −
∑

κ∈Zd2
|τ(ξ + κπ)|2)1/2.

However, the resulting wavelet ψ̂p may not be continuously differentiable, even

though φ̂ is sufficiently smooth. In the next theorem, we propose a solution to (3.4)

whose resulting wavelets have sufficient smoothness in frequency domain. More

specifically, suppose that the univariate Meyer’s refinable function QΩ satisfies

Q̂Ω ∈ Cn(R) for some nonnegative integer n. We are seeking for the wavelet set Ψ

defined in (3.6) (or Ψ′ defined in (3.11)) such that ψ̂ ∈ Cn(Rd), for any ψ ∈ Ψ (or

Ψ′).

Theorem 3.4. Let φΩ
d,m be a refinable function defined as (3.15) with its mask

τd,m given by (3.16) and π
2
< Ω 6 2π

3
, m ∈ (Z+)d+1 for d = 2 or 3. Define a set of

2π-periodic functions {hj, j = 1, . . . , d+ 1} as follows:




hj(ξ) =

√
1− τ 2(mj−1)

Ω (ξj)
∏j

s=1 τΩ(ξs)
∏d

t=j+1 τ
mt
Ω (ξt), j = 1, . . . , d;

hd+1(ξ) = τΩ(
∑d

j=1 ξj + π)
√

1 +
∑md+1−1

s=1 τ 2s
Ω (
∑d

j=1 ξj)
∏d

j=1 τ
mj
Ω (ξj),

(3.17)

where τΩ is the refinement mask of QΩ given by (2.10). Then we have φd,m satisfies

(3.3), and
d+1∑

j=1

∑

ν∈Zd2

|hj(ξ + νπ)|2 +
∑

ν∈Zd2

|τd,m(ξ + νπ)|2 = 1. (3.18)

Proof. We first verify that the function φΩ
d,m in (3.15) satisfies (3.3) Since the

function φ̂Ω
d,m is finitely supported, [φ̂Ω

d,m, φ̂
Ω
d,m] is a finite summation of the sequence

{|φ̂Ω
d,m|2(·+ 2πk), k ∈ Zd} in any finite interval. Thus, [φ̂Ω

d,m, φ̂
Ω
d,m] is continuous as

long as |φ̂Ω
d,m|2 is continuous. The facts that φ̂Ω

d,m(0) = 1 and φ̂Ω
d,m(2πk) = 0 for all

k ∈ Zd\{0} lead to [φ̂Ω
d,m, φ̂

Ω
d,m](0) = 1. The verification of (3.3) on φΩ

d,m is done.
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Secondly, it is seen that hj given by (3.17) is real for j = 1, . . . , d, d + 1.

Moreover,



|hj(ξ)|2 =

(
1− τ 2(mj−1)

Ω (ξj)
)∏j

s=1 τ
2
Ω(ξs)

∏d
t=j+1 τ

2mt
Ω (ξt), j = 1, . . . , d;

|hd+1(ξ)|2 =
(
1− τ 2md+1

Ω (
∑d

j=1 ξj)
)∏d

j=1 τ
2mj
Ω (ξj).

Thus, we have

|τd,m(ξ)|2 + |hd+1(ξ)|2 = τ
2md+1

Ω (
d∑

j=1

ξj)
d∏

j=1

τ
2mj
Ω (ξj) +

(
1− τ 2md+1

Ω (
d∑

j=1

ξj)
) d∏

j=1

τ
2mj
Ω (ξj)

=
d∏

j=1

τ
2mj
Ω (ξj),

By induction, we have

|τd,m(ξ)|2 + |hd+1(ξ)|2 +
s∑

j=1

|hj(ξ)|2 =
s∏

j=1

τ 2
Ω(ξj)

d∏

j=s+1

τ
2mj
Ω (ξj), (3.19)

holds for any s, s = 1, . . . , d. Plugging s = d into (3.19), we have

|τd,m(ξ)|2 +
d+1∑

j=1

|hj(ξ)|2 = |τ(ξ)|2 + |hd+1(ξ)|2 +
d∑

j=1

|hj(ξ)|2 =
d∏

j=1

τ 2
Ω(ξj).

By the fact that τ 2
Ω(·) + τ 2

Ω(·+ π) = 1,

∑

ν∈Zd2

(
|τd,m(ξ + νπ)|2 +

d+1∑

j=1

|hj(ξ + νπ)|2
)

=
∑

ν∈Zd2

d∏

j=1

τ 2
Ω(ξj + νjπ)

=
d∏

j=1

(
τ 2

Ω(ξj) + τ 2
Ω(ξj + π)

)
= 1.

Therefore
∑

ν∈Zd2

(
|τd,m(ξ + νπ)|2 +

d+1∑

j=1

|hj(ξ + νπ)|2
)

= 1,

which is (3.18). The proof is done.

Theorem 3.4 provides a solution to (3.10). Together with Theorem 3.2, we have



66 Chapter 3. Band-limited Tight Frames in Low Dimensions

Corollary 3.5. Let φΩ
d,m be a refinable function defined as (3.15) with its mask

τd,m given by (3.16) and π
2
< Ω 6 2π

3
, m ∈ (Z+)d+1 for d = 2 or 3. Define





τκ(ξ) = exp(iη(κ) · ξ)τd,m(ξ + κπ), κ ∈ Zd2\{0};

hµj (ξ) = exp
(
iη(µ) · ξ

)
hj(ξ + µπ), µ ∈ Zd2, j = 1, . . . , d+ 1,

(3.20)

where {hj, j = 1, . . . , d+ 1} is given by (3.17). Let

Ψ = {ψκ : κ ∈ Zd2\{0}} ∪ {ψ
µ
j : µ ∈ Zd2, j = 1, . . . , d+ 1},

where 



ψ̂κ(ξ) = τκ(
ξ
2
)φ̂( ξ

2
), κ ∈ Zd2\{0};

ψ̂µj (ξ) = hµj ( ξ
2
)φ̂( ξ

2
), µ ∈ Zd2, j = 1, . . . , d+ 1.

(3.21)

Then the dyadic affine system X(Ψ) generated by Ψ as (2.13) forms a tight frame

of L2(Rd). Moreover, if Q̂Ω ∈ Cn(R) for some n ∈ Z∗, then ψ̂ ∈ Cn(Rd) for any

ψ ∈ Ψ.

Proof. Firstly, by Theorem 3.4 and Corollary 3.3, the affine system X(Ψ) of the

form (2.13) is a tight frame of L2(Rd) for the set Ψ defined by (3.21). Secondly,

suppose that Q̂Ω ∈ Cn(R) for some n ∈ Z∗, then for the function φΩ
d,m defined

by (3.15), we have φ̂Ω
d,m ∈ Cn(Rd) and τΩ ∈ Cn(R). Then for hd+1 in (3.17),√

1 +
∑md−1

s=1 τ 2s
Ω (
∑d

j=1 ξj) ∈ Cn(Rd) since
∑md−1

s=1 τ 2s
Ω (
∑d

j=1 ξj) ∈ Cn(Rd) is non-

negative. Thus, we observe that

√
1− τ 2(mj−1)

Ω (ξj) =





0 ∈ Cn(Rd), if mj = 1;

τΩ(ξj + π)

√
1 +

∑mj−2
`=1 τ 2`

Ω (ξj) ∈ Cn(R), if mj > 2.

Hence

√
1− τ 2(mj−1)

Ω (ξj) ∈ Cn(R), which leads to hj ∈ Cn(Rd), j = 1, 2, . . . , d.

Since the exponential function exp
(
iη(ν)·ξ

)
is C∞ for all ν ∈ Zd2, the set of wavelet

masks defined in (3.20) satisfies

{τκ, hµj : κ ∈ Zd2\{0}, µ ∈ Zd2, j = 1, . . . , d+ 1} ⊂ Cn(Rd).
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By the definition (3.21) of the framelets Ψ and the fact that φ̂Ω
d,m ∈ Cn(Rd), we

have ψ̂ ∈ Cn(Rd) for any ψ ∈ Ψ. The proof is done.

3.4 Examples

In this section, we will apply the results developed in previous sections to construct

some examples of non-separable band-limited framelets. The construction of these

framelets starts with the univariate Meyer’s refinable function. Same as [27], the

term h in the mask τΩ of the form (2.10) corresponding to the Meyer’s refinable

function is given as follows:

h(ξ) = cos
(π

2
· β
(1

2
(
|2ξ| − π
2Ω− π

+ 1)
))
, (3.22)

where β(x) = (
∫ 1

0
tn(1 − t)ndt)−1

∫ x
0
tn(1 − t)ndt for some nonnegative integer n.

The smoothness of the associated Meyer’s refinable function in frequency domain

is closely related to the value of n. More specifically, let QΩ denote the Meyer’s

refinable function determined by (3.22) and (2.10). Then Q̂Ω will be differentiable

up to order n, i.e., Q̂Ω ∈ Cn(R) (see [52] for more details). Through all examples

constructed in this thesis, we always set n = 3 such that

β(x) = x4(35− 84x+ 80x2 − 20x3),

and start with the Meyer’s refinable function defined by (2.10) and (3.22) with

Ω = 2
3
π, denoted by Q 2

3
π.

Example 3.1. In this example, we use the direction matrix of the form (3.13)

with m = (1, 1, 1), to generate the non-separable refinable function φ ∈ L2(R2) as

follows:

φ̂(ξ1, ξ2) = Q̂ 2
3
π(ξ1)Q̂ 2

3
π(ξ2)Q̂ 2

3
π(ξ1 + ξ2).
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Then the refinable mask of φ is given by (3.16),

τ2,m(ξ1, ξ2) = τ 2
3
π(ξ1)τ 2

3
π(ξ2)τ 2

3
π(ξ1 + ξ2),

where τ 2
3
π is the mask of the Meyer’s refinable function given by (2.10). Following

(3.17), we define





h1(ξ1, ξ2) =
√

1− τ 2×0
2
3
π

(ξ1)τ 2
3
π(ξ1)τ 2

3
π(ξ2)τ 2

3
π(ξ1 + ξ2) = 0,

h2(ξ1, ξ2) =
√

1− τ 2×0
2
3
π

(ξ2)τ 2
3
π(ξ2)τ 2

3
π(ξ1)τ 2

3
π(ξ1 + ξ2) = 0,

h3(ξ1, ξ2) = τ 2
3
π(ξ1 + ξ2 + π)τ 2

3
π(ξ1)τ 2

3
π(ξ2).

By Corollary 3.5, we have a framelet system for L2(R2) whose associated masks

are given as follows:





τκ = exp
(
iη(κ) · ξ

)
τ(ξ + κπ), κ ∈ Z2

2\{0};

hµ3 = exp
(
iη(µ) · ξ

)
h3(ξ + µπ), µ ∈ Z2

2,
(3.23)

where ξ = (ξ1, ξ2)T . See Figure 3.1 for the plots of the refinable function φ and the

seven framelets derived from (3.23) in spatial domain.

Example 3.2. In this example, the power vector m = (2, 1, 1) is used to generate

the following non-separable refinable function φ ∈ L2(R2):

φ̂(ξ1, ξ2) = Q̂ 2
3
π

2
(ξ1)Q̂ 2

3
π(ξ2)Q̂ 2

3
π(ξ1 + ξ2).

Then by (3.16), the refinable mask of φ is given as

τ2,m(ξ) = τ 2
2
3
π
(ξ1)τ 2

3
π(ξ2)τ 2

3
π(ξ1 + ξ2).

If we apply Corollary 3.5 to the refinable function φ defined as above, then one

can easily check that there would be a total of 11 framelets introduced. However,

by directly using Theorem 3.2, we can construct from φ a tight frame system of
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(a) φ (b) ψ1 (c) ψ2 (d) ψ3

(e) ψ4 (f) ψ5 (g) ψ6 (h) ψ7

Figure 3.1: Graphs of the refinable function and its associated framelets as intro-
duced in Example 3.1. (a) Refinable function; and (b)–(h) the associated framelets.

L2(R2) with fewer number framelets, and all framelets would still retain the same

order of smoothness as that of φ in Fourier domain. More explicitly, we define

a1(ξ) = τ 2
2
3
π
(ξ1)τ 2

3
π(ξ2)τ 2

3
π(ξ1 + ξ2 + π)

and

p(ξ) =
√

2τ 2
3
π(ξ1)τ 2

3
π(ξ1 + π).

Then the set of 2π-periodic functions {p(ξ), τ(ξ), a1(ξ)} satisfies (3.4):

|p(ξ)|2 +
∑

κ∈Z2
2

|τ(ξ + κπ)|2 +
∑

µ∈Z2
2

|a1(ξ + µπ)|2 = 1.

By Theorem 3.2, we have a framelet system with eight tight framelets for L2(R2),

whose associated masks are given as follows:




exp
(
iη(κ) · ξ

)
τ(ξ + κπ), κ ∈ Z2

2\{0};

exp
(
iη(µ) · ξ

)
a1(ξ + µπ), µ ∈ Z2

2;

p(2ξ)τ(ξ) .

(3.24)

In our example, τ 2
3
π is given by (3.22) such that τ 2

3
π ∈ C3(R), and thus all masks

defined by (3.24) are also in C3(R2). As a result, the Fourier transforms of the
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(a) φ (b) ψ1 (c) ψ2

(d) ψ3 (e) ψ4 (f) ψ5

(g) ψ6 (h) ψ7 (i) ψ8

Figure 3.2: Graphs of the refinable function and its associated framelets as intro-
duced in Example 3.2. (a) Refinable function; and (b)–(i) the associated framelets.

associated framelets are in C3(R2) too. See Figure 3.2 for the graphs of the refinable

function and its associated eight framelets in spatial domain.



Chapter 4
Non-separable Band-limited Stable

Refinable Functions, Riesz Wavelets and

Orthonormal Wavelets in Low

Dimensions

In the previous chapter, we have introduced a class of non-separable band-limited

refinable functions for deriving band-limited framelets. However, a major technical

difficulty is encountered when we change topic to the construction of Riesz wavelets

and orthonormal wavelets. We note that, in order to use Theorem 2.13 to construct

MRA-based Riesz wavelets (and orthonormal wavelets) in low dimensions, one

needs to require that the corresponding refinable function is stable. Unfortunately,

any refinable function constructed via (3.15) in the previous chapter simply fails

to be stable.

Proposition 4.1. Let φΩ
d,m, d = 2 or 3, be a refinable function defined as (3.15),

where QΩ is the univariate Meyer’s refinable function with π
2
< Ω 6 2π

3
, then φΩ

d,m

71
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is not stable.

Proof. This is a corollary of Theorem 4.5 with π
2
< Ω 6 2π

3
.

Thus, in order to construct Riesz wavelets and orthonormal wavelets in low

dimensions using Theorem 2.13, we need to construct a new class of band-limited

stable refinable functions satisfying (2.18). Before going deep into the details of

this issue, we first introduce two results on the refinable and stable properties of

band-limited functions, which would become useful in later sections of this chapter.

4.1 Two results on band-limited refinable func-

tions

The following result implies that it is fairly ‘easy’ to construct band-limited refin-

able functions.

Lemma 4.2. For any φ ∈ L2(Rd), suppose that the set S1 = supp
(
φ̂
)

is a subset

of [−4
3
π, 4

3
π]d and the set S2 = {ξ : φ̂(2ξ) 6= 0} ∩ {ξ : φ̂(ξ) = 0} is of measure zero.

Then there exists a 2π-periodic measurable function τ (not necessarily unique) such

that

φ̂(2ξ) = τ(ξ)φ̂(ξ) a.e. on Rd,

i.e. φ is refinable with mask τ .

Proof. Firstly, we define a compactly supported function b(ξ), such that

b(ξ) =





φ̂(2ξ)

φ̂(ξ)
, if φ̂(ξ) 6= 0;

0, otherwise.

By the definition of b(ξ), we have

φ̂(2ξ) = b(ξ)φ̂(ξ), ∀ξ ∈ {γ : φ̂(γ) 6= 0} ∪ {γ : φ̂(γ) = 0, φ̂(2γ) = 0}.
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Since the complement of {γ : φ̂(γ) 6= 0} ∪ {γ : φ̂(γ) = 0, φ̂(2γ) = 0} is the set

{γ : φ̂(2γ) 6= 0}∩{γ : φ̂(γ) = 0}, which is of Lebesgue measure zero, we have then

φ̂(2ξ) = b(ξ)φ̂(ξ) a.e. on Rd.

Secondly, since supp(φ̂) ⊆ [−4π
3
, 4π

3
]d, then

supp
(
b(ξ)

)
⊆ [−2π

3
,
2π

3
]d ⊂ (−π, π)d.

by its definition. Let τ be a 2π-periodic extension of b such that

τ(ξ) = b(ξ), ∀ ξ ∈ [−π, π)d,

or equivalently

τ(ξ) =
∑

k∈Zd
b(ξ + 2πk), ξ ∈ Rd.

Then we have

τ(ξ)φ̂(ξ) = b(ξ)φ̂(ξ) = φ̂(2ξ) a.e. on [−π, π)d. (4.1)

For those ξ ∈ Rd\[−π, π)d, τ(ξ)φ̂(ξ) 6= 0 only if ξ ∈ supp(τ) ∩ supp(φ̂). Note

that supp(τ) is a subset of
⋃
k∈Zd

(
[−2π

3
, 2π

3
]d + 2πk

)
, and supp(φ̂) is a subset of

[−4
3
π, 4

3
π]d, thus

(
Rd\[−π, π)d

)
∩ supp(τ) ∩ supp(φ̂) is a subset of

(
Rd\[−π, π)d

)
∩
( ⋃

k∈Zd

(
[−2π

3
,
2π

3
]d + 2πk

))
∩ [−4

3
π,

4

3
π]d, (4.2)

It is seen that the set defined in (4.2) is contained within ∂([−4
3
π, 4

3
π]d) (the set of

all boundary points of the cube [−4
3
π, 4

3
π]d), which is of Lebesgue measure zero in

Rd. Thus, the set
(
Rd\[−π, π)d

)
∩ supp(τ) ∩ supp(φ̂) is of Lebesgue measure zero

in Rd. In other words,

τ(ξ)φ̂(ξ) = 0 = φ̂(2ξ), a.e. on Rd\[−π, π)d. (4.3)
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By both (4.1) and (4.3), we have

φ̂(2ξ) = τ(ξ)φ̂(ξ) a.e. on Rd.

The proof is complete.

In order to construct MRA-based band-limited Riesz wavelets with good time-

frequency localization property, we shall require the corresponding refinable func-

tion to be well time-frequency localized. In particular, the candidate refinable

functions at least should be continuous in frequency domain. Then, the following

lemma serves as an easy-to-use tool for checking their stableness.

Lemma 4.3. Let φ be a band-limited refinable function on Rd. If φ̂ is continuous,

then φ is stable if and only if [φ̂, φ̂](ξ) > 0 for all ξ ∈ [−π, π]d.

Proof. Since φ̂ is continuous and compactly supported, [φ̂, φ̂] is also continuous by

its definition. If φ is stable, then by definition there exists some constant c > 0

such that [φ̂, φ̂] > c a.e. on Rd. Since [φ̂, φ̂] is continuous, we have [φ̂, φ̂](ξ) > c for

all ξ ∈ Rd, which implies that [φ̂, φ̂](ξ) > 0 for all ξ ∈ Rd, and the same inequality

holds for all ξ ∈ [−π, π]d.

If [φ̂, φ̂](ξ) > 0 for all ξ ∈ [−π, π]d, then since [φ̂, φ̂] is continuous and [−π, π]d

is compact, the infimum of [φ̂, φ̂] can be achieved and it is greater than 0, i.e.,

there exists a positive constant c1 such that [φ̂, φ̂] > c1 on [−π, π]d. Also since

[φ̂, φ̂] is continuous, the supremum of [φ̂, φ̂] on the compact set [−π, π]d is less than

infinity, i.e., there exists a positive constant c2 such that [φ̂, φ̂] 6 c2 on [−π, π]d.

Then since [φ̂, φ̂] is 2π-periodic, we conclude 0 < c1 6 [φ̂, φ̂] 6 c2 < ∞ on Rd,

which implies that φ is stable. The proof is complete.
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4.2 The construction of band-limited stable re-

finable functions and wavelets

4.2.1 The construction of non-separable band-limited sta-

ble refinable functions

To gain stableness for the type of refinable functions defined as in (3.1), the basic

idea is to use a class of specially designed direction matrices Ξ. Motivated by the

direction matrices of the form (3.13) and (3.14), we propose the following direction

matrices for the construction of stable refinable functions in R2 and R3:

in R2,
m1︷ ︸︸ ︷ m2︷ ︸︸ ︷ m3︷ ︸︸ ︷

Ξ =


 1 · · · 1

0 · · · 0

0 · · · 0

1 · · · 1

ρ−1 · · · ρ−1

ρ−1 · · · ρ−1


 ,

(4.4)

and in R3,

m1︷ ︸︸ ︷ m2︷ ︸︸ ︷ m3︷ ︸︸ ︷ m4︷ ︸︸ ︷

Ξ =




1 · · · 1

0 · · · 0

0 · · · 0

0 · · · 0

1 · · · 1

0 · · · 0

0 · · · 0

0 · · · 0

1 · · · 1

ρ−1 · · · ρ−1

ρ−1 · · · ρ−1

ρ−1 · · · ρ−1


 ,

where ρ is a positive scalar and mi, i = 1, . . . , 4 are positive integers. By adopt-

ing direction matrices as mentioned above, we define the following band-limited

functions in L2(Rd) for d = 2, 3:

φ̂ρ,Ωd,m(ξ) = Q̂Ω

md+1(
ρ−1(

d∑

j=1

ξj)
) d∏

j=1

Q̂Ω

mj(
ξj
)

(4.5)

for any ξ = (ξ1, . . . , ξd) ∈ Rd, where QΩ is the Meyer’s refinable function of the

form (2.8), π
2
< Ω 6 2

3
π, and m = (m1, . . . ,md+1) ∈ (Z+)d+1 for d = 2 or 3. For

the support of φ̂ρ,Ωd,m in (4.5), we have the following observation
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Proposition 4.4. Let φρ,Ωd,m be a band-limited refinable function defined by (4.5),

then φ̂ρ,Ωd,m(ξ) > 0 if and only if ξ = (ξ1, . . . , ξd) satisfies the following two condi-

tions:

(i) ξ ∈ (−2Ω, 2Ω)d;

(ii) −2ρΩ <
∑d

j=1 ξj < 2ρΩ.

Proof. The necessity and sufficiency of the two conditions can be easily justified by

the definition (4.5) and the fact that Q̂Ω(γ) > 0 if and only if γ ∈ (−2Ω, 2Ω).

Then, we can have the following result for characterizing the refinability and

stableness of band-limited functions defined via (4.5).

Theorem 4.5. The function φρ,Ωd,m defined in (4.5), with d = 2 or 3 and π
2
< Ω 6

2
3
π, is refinable whenever ρ > 0. Moreover, the function φρ,Ωd,m is stable if and only

if

ρ >
d(π − Ω)

Ω
. (4.6)

We would temporarily give a proof of Theorem 4.5 for d = 3 only, as later we

will prove a more general result concerning the case of d = 2, and the proof of

Theorem 4.5 for d = 2 would be automatically covered there.

Proof of Theorem 4.5 for d = 3: The entire proof is divided into two separate

parts.

Part I, the refinability of φρ,Ωd,m.

Given a band-limited function φρ,Ω3,m defined in (4.5), we have φρ,Ω3,m ∈ L2(R3). More-

over, one can verify that for any ρ > 0,

(i) supp
(
φ̂ρ,Ω3,m

)
⊆ [−2Ω, 2Ω]3 ⊆ [−4π

3
, 4π

3
]3, since Ω 6 2

3
π,

(ii) {ξ : φ̂ρ,Ω3,m(2ξ) 6= 0} is a subset of {ξ : φ̂ρ,Ω3,m(ξ) 6= 0}, which implies the set

{ξ : φ̂ρ,Ω3,m(2ξ) 6= 0} ∩ {ξ : φ̂ρ,Ω3,m(ξ) = 0} is empty.
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Therefore by Lemma 4.2, any band-limited function φρ,Ω3,m as in (4.5) is refinable.

Part II, the stableness of φρ,Ωd,m.

Sufficiency of (4.6). By Lemma 4.3, to verify φρ,Ω3,m is stable, we only need to

verify that

[φ̂ρ,Ω3,m, φ̂
ρ,Ω
3,m](ξ) > 0, ∀ ξ ∈ [−π, π]3. (4.7)

We prove (4.7) on two disjoint subsets of [−π, π]3 = S1 ∪ S2, where

S1 = {ξ : ξ = (ξ1, ξ2, ξ3) ∈ [−π, π]3, |
3∑

j=1

ξj| < 2ρΩ},

and

S2 = {ξ : ξ = (ξ1, ξ2, ξ3) ∈ [−π, π]3, |
3∑

j=1

ξj| > 2ρΩ}.

If ξ ∈ S1, then by the definition of φρ,Ω3,m, one has φ̂ρ,Ω3,m(ξ) > 0, which implies

[φ̂ρ,Ω3,m, φ̂
ρ,Ω
3,m](ξ) > 0. The next is to verify the inequality (4.7) holds for all ξ ∈

S2. Suppose ξ = (ξ1, ξ2, ξ3) ∈ S2. Without loss of generality, we may assume
∑3

j=1 ξj > 2ρΩ and ξ1 = max{ξ1, ξ2, ξ3}, then

3ξ1 >
3∑

j=1

ξj > 2ρΩ. (4.8)

By substituting (4.6), i.e. ρ > 3(π−Ω)
Ω

into (4.8), we get

3ξ1 > 2
3(π − Ω)

Ω
Ω = 6(π − Ω),

or equivalently

ξ1 − 2π > −2Ω.

Meanwhile, since ξ1 6 π, we have

ξ1 − 2π 6 π − 2π = −π < 0 < 2Ω.
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Together with the fact that ξj ∈ [−π, π] ⊂ (−2Ω, 2Ω), j = 1, 2, 3, we can conclude

that the point (ξ1− 2π, ξ2, ξ3) satisfies Condition (i) of Proposition 4.4. Moreover,

we have

(ξ1 − 2π) + ξ2 + ξ3 6 3π − 2π = π < 6(π − Ω) < 2ρΩ

and

ξ1 − 2π + ξ2 + ξ3 > 2ρΩ− 2π > 6(π − Ω)− 2π = 4π − 6Ω > 0 > −2ρΩ.

Thus, the point (ξ1 − 2π, ξ2, ξ3) satisfies Condition (ii) of Proposition 4.4. By

Proposition 4.4, we have φ̂ρ,Ω3,m(ξ1 − 2π, ξ2, ξ3) > 0. This implies, via the definition

of the bracket product [·, ·], that

[φ̂ρ,Ω3,m, φ̂
ρ,Ω
3,m](ξ) > 0, ξ = (ξ1, ξ2, ξ3).

The proof for the sufficiency of (4.6) is complete.

Necessity of (4.6). We show it by contrapositive. Let us assume that (4.6) fails,

i.e. ρ 6 3(π−Ω)
Ω

holds, then we consider the point ξ̃ = (ξ1, ξ2, ξ3) ∈ [−π, π]3, with

ξ1 = ξ2 = ξ3 = 2(π − Ω). Since
∑3

j=1 ξj = 6(π − Ω) > 2ρΩ, one can conclude

that ξ̃ fails to fulfill item (ii) of Proposition 4.4, which leads to φ̂ρ,Ω3,m(ξ̃) = 0. Next

observing that 2(π − Ω) − 2π = −2Ω, one has ξ̃ − 2kπ /∈ (−2Ω, 2Ω)3 for any

k ∈ Z3
2\{0}3. Consequently, for the point ξ̃ − 2kπ with any k ∈ Z3

2\{0}3, item (ii)

of Proposition 4.4 also fails. As for those k ∈ Z3\Z3
2, clearly one has ξ̃ − 2kπ lies

beyond the cube (−2Ω, 2Ω)3, thus φ̂(ξ̃ − 2kπ) = 0 for all k ∈ Z3\Z3
2. To sum up,

the previous arguments show that if ρ 6 3(π−Ω)
Ω

, then for ξ̃ =
(
2(π − Ω), 2(π −

Ω), 2(π − Ω)
)
∈ [−π, π]3, one has φ̂ρ,Ω3,m(ξ̃ − 2kπ) = 0 for all k ∈ Z3, which implies

[φ̂ρ,Ω3,m, φ̂
ρ,Ω
3,m](ξ̃) = 0.

Thus by Lemma 4.3, φρ,Ω3,m must be unstable, whence the necessity part is shown,

and the entire proof is complete. �
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By Theorem 4.5, the refinable function defined by (4.5) with Ω = 2
3
π is stable

if and only if ρ > 1 for R2, and ρ > 3
2

for R3. Moreover, a direct calculation shows

that the area of the support of the stable refinable function in R2 in frequency

domain satisfies

inf
ρ>1

area of supp(
̂
φ
ρ, 2

3
π

2,m ) =
48

9
π2.

In the next result, we show that, by using some other type of directional matri-

ces, it is possible to construct stable refinable functions in R2 with smaller support

in frequency domain. The direction matrix for R2 we discussed is defined as follows:

m1︷ ︸︸ ︷ m2︷ ︸︸ ︷ m3︷ ︸︸ ︷

Ξ =


 1 · · · 1

0 · · · 0

0 · · · 0

1 · · · 1

σ−1 cos θ · · · σ−1 cos θ

σ−1 sin θ · · · σ−1 sin θ


 .

(4.9)

The above choice of direction matrix leads to the following class of band-limited

functions in L2(R2):

φ̂σ,θm,Ω(ξ) = Q̂Ω

m1

(ξ1)Q̂Ω

m2

(ξ2)Q̂Ω

m3(
σ−1(ξ1 cos θ + ξ2 sin θ)

)
(4.10)

for any ξ = (ξ1, . . . , ξd) ∈ Rd, where QΩ is the Meyer’s refinable function of the

form (2.8), π
2
< Ω 6 2

3
π, m = (m1,m2,m3) ∈ (Z+)3, σ > 0, and 0 6 θ 6 π

2
. We

have the following observation for the support of φ̂σ,θm,Ω defined as in (4.10)

Proposition 4.6. Let φσ,θm,Ω be a band-limited refinable function defined by (4.10),

then φ̂σ,θm,Ω(ξ) > 0 if and only if ξ = (ξ1, ξ2) satisfies the following two conditions:

(i) ξ ∈ (−2Ω, 2Ω)2;

(ii) −2σΩ < ξ1 cos θ + ξ2 sin θ < 2σΩ.

Proof. The necessity and sufficiency of the two conditions can be easily justified by

the definition (4.10) and the fact that Q̂Ω(γ) > 0 if and only if γ ∈ (−2Ω, 2Ω).
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It is easy to see that the direction matrix defined by (4.4) is indeed a special

case of the matrix defined by (4.9) with θ = π
4

and σ =
√

2
2
ρ. Then, we have the

following characterization for the type of refinable functions defined in (4.10).

Theorem 4.7. The function φσ,θm,Ω defined in (4.10), with π
2
< Ω 6 2π

3
and σ > 0,

is refinable. Moreover, for any θ ∈ [0, π
2
], φσ,θm,Ω is stable if and only if σ > σ0(θ,Ω),

where σ0(θ,Ω) is defined by

σ0(θ,Ω) =





π cos θ
2Ω

, 0 6 θ 6 arctan 2Ω−π
2(π−Ω)

;

(π−Ω)(cos θ+sin θ)
Ω

, arctan 2Ω−π
2(π−Ω)

< θ < π
2
− arctan 2Ω−π

2(π−Ω)
;

π sin θ
2Ω

, π
2
− arctan 2Ω−π

2(π−Ω)
6 θ 6 π

2
.

(4.11)

Proof. Similar as in Theorem 4.5, the entire proof is divided into two parts.

Part I, the refinability of φσ,θm,Ω.

Firstly, for any band-limited function φσ,θm,Ω in (4.10), one can verify that

(i) supp(φ̂σ,θm,Ω) ∈ [−2Ω, 2Ω]2 ⊆ [−4
3
π, 4

3
π]2, since Ω 6 2π

3
,

(ii) the set {ξ : φ̂σ,θm,Ω(2ξ) 6= 0} is a subset of {ξ : φ̂σ,θm,Ω(ξ) 6= 0}, which implies

that the set {ξ : φ̂σ,θm,Ω(2ξ) 6= 0} ∩ {ξ : φ̂σ,θm,Ω(ξ) = 0} is empty.

Then by Lemma 4.6, any band-limited function φσ,θm,Ω as in (4.10) is refinable.

Part II, the stableness of φσ,θm,Ω. By the definition of φσ,θm,Ω in (4.10), we have

φ̂σ,θm,Ω(ξ1, ξ2) = φ̂
σ,π

2
−θ

m,Ω (ξ2, ξ1) for any θ ∈ [0, π
2
]. Thus, we only need to prove the

result for θ ∈ [0, π
4
].

Sufficiency. We first prove that if σ > σ0(θ,Ω), then φσ,θm,Ω is stable. By Lemma

4.3, the stability of φσ,θm,Ω is guaranteed as long as

[φ̂σ,θm,Ω, φ̂
σ,θ
m,Ω](ξ) > 0, ∀ ξ ∈ [−π, π]2 (4.12)
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for any σ > σ0(θ,Ω). We prove the above inequality (4.12) on two separate subsets

of [−π, π]2 = S1 ∪ S2, where

S1 = {(ξ1, ξ2) : (ξ1, ξ2) ∈ [−π, π]2, |ξ1 cos θ + ξ2 sin θ| < 2σΩ},

and

S2 = {(ξ1, ξ2) : (ξ1, ξ2) ∈ [−π, π]2, |ξ1 cos θ + ξ2 sin θ| > 2σΩ}.

The inequality (4.12) on S1 is obvious. The fact that φ̂σ,θm,Ω(ξ) > 0 for any ξ ∈ S1

implies

[φ̂σ,θm,Ω, φ̂
σ,θ
m,Ω](ξ) > 0, ∀ξ ∈ S1.

The next step is to prove (4.12) for any ξ ∈ S2. By the symmetry of S2, it is

sufficient to prove that (4.12) holds on the subset S3 ⊂ S2 given by

S3 = {(ξ1, ξ2) : (ξ1, ξ2) ∈ [−π, π]2, ξ1 cos θ + ξ2 sin θ > 2σΩ}.

Furthermore, by the definition of [·, ·], the inequality (4.12) holds for all ξ ∈ S3 as

long as the following statement holds: ∀ ξ = (ξ1, ξ2) ∈ S3,





φ̂σ,θm,Ω(ξ1 − 2π, ξ2) > 0, if ξ1 > ξ2;

φ̂σ,θm,Ω(ξ1, ξ2 − 2π) > 0, otherwise.
(4.13)

The proof of the two inequalities in (4.13) is based on Proposition 4.6. We will only

give a detailed proof of the first inequality and the proof of the second inequality

in (4.13) is essentially the same as that of the first. Assume that ξ1 > ξ2:

The case of 0 6 θ 6 arctan 2Ω−π
2(π−Ω)

. Since ξ1 > ξ2, (ξ1, ξ2) ∈ S3, we have

ξ1(cos θ + sin θ) > ξ1 cos θ + ξ2 sin θ > 2σΩ.

Since σ > σ0(θ,Ω) = π cos θ
2Ω

and 0 6 tan θ 6 2Ω−π
2(π−Ω)

, we have then

ξ1 >
2σΩ

cos θ + sin θ
>

2Ωπ cos θ
2Ω

cos θ + sin θ
=

π

1 + tan θ
>

π

1 + 2Ω−π
2(π−Ω)

= 2(π − Ω),
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which implies

ξ1 − 2π > −2Ω.

Together with the fact that ξ1 − 2π 6 −π < 0 as ξ1 6 π, we have

(ξ1 − 2π, ξ2) ∈ (−2Ω, 2Ω)2.

Hence (ξ1 − 2π, ξ2) satisfies Condition (i) of Proposition 4.6. Next, the inequality

ξ1 cos θ + ξ2 sin θ > 2σΩ implies that for σ > π cos θ
2Ω

,

(ξ1 − 2π) cos θ+ ξ2 sin θ > 2σΩ− 2π cos θ > π cos θ− 2π cos θ = −π cos θ > −2σΩ.

Meanwhile since ξ1 6 π, ξ2 6 π, and 0 6 θ 6 π
4
,

(ξ1 − 2π) cos θ + ξ2 sin θ 6 (π − 2π) cos θ + π sin θ = π(sin θ − cos θ) 6 0.

The above two inequalities imply that Condition (ii) of Proposition 4.6 also holds

for σ > π cos θ
2Ω

since

−2σΩ < (ξ1 − 2π) cos θ + ξ2 sin θ 6 0 < 2σΩ.

The first inequality in (4.13) is then proved by Proposition 4.6.

The case of arctan 2Ω−π
2(π−Ω)

< θ 6 π
4
. Since ξ1 cos θ+ξ2 sin θ > 2σΩ and ξ1 > ξ2,

we have

ξ1(cos θ + sin θ) > ξ1 cos θ + ξ2 sin θ > 2σΩ.

Since σ > σ0(θ,Ω) = (π−Ω)(cos θ+sin θ)
Ω

, we have then

ξ1 >
2σΩ

cos θ + sin θ
>

2σ0(θ,Ω)Ω

cos θ + sin θ
= 2(π − Ω),

which leads to

ξ1 − 2π > 2(π − Ω)− 2π = −2Ω.

Together with

ξ1 − 2π 6 π − 2π = −π < 2Ω, −2Ω < −π 6 ξ2 6 π < 2Ω,
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we have (ξ1 − 2π, ξ2) ∈ (−2Ω, 2Ω)2. Thus (ξ1 − 2π, ξ2) satisfies Condition (i) of

Proposition 4.6. Next, by the fact that ξ1 cos θ+ξ2 sin θ > 2σΩ and σ > σ0(θ,Ω) =

(π−Ω)(cos θ+sin θ)
Ω

, we have

(ξ1− 2π) cos θ+ ξ2 sin θ+ 2σΩ > 4σΩ− 2π cos θ > cos θ
(
4(π−Ω)(1 + tan θ)− 2π

)
.

Notice that tan θ > 2Ω−π
2(π−Ω)

, we have then

(ξ1 − 2π) cos θ + ξ2 sin θ + 2σΩ > cos θ ·
(
4(π − Ω)(1 +

2Ω− π
2(π − Ω)

)− 2π
)

= 0.

Thus

(ξ1 − 2π) cos θ + ξ2 sin θ > −2σΩ. (4.14)

Meanwhile, we have

(ξ1 − 2π) cos θ + ξ2 sin θ 6 (π − 2π) cos θ + π sin θ = π(sin θ − cos θ) 6 0 < 2σΩ,

since (ξ1, ξ2) ∈ [−π, π]2 and 0 6 θ 6 π
4
. Together with (4.14), we have

−2σΩ < (ξ1 − 2π) cos θ + ξ2 sin θ < 2σΩ.

Thus (ξ1−2π, ξ2) satisfies Condition (ii) of Proposition 4.6 and the first inequality

is justified.

Necessity. In this part, we prove the necessity by contrapositive, that is, if

0 < σ 6 σ0(θ,Ω), then φσ,θm,Ω in (4.10) is not stable. Suppose that 0 < σ 6 σ0(θ,Ω)

as defined by (4.11), i.e.





0 < σ 6 π cos θ
2Ω

, 0 6 θ 6 arctan 2Ω−π
2(π−Ω)

;

0 < σ 6 (π−Ω)(cos θ+sin θ)
Ω

, arctan 2Ω−π
2(π−Ω)

< θ 6 π
4
.

(4.15)

The case when θ ∈ [0, arctan 2Ω−π
2(π−Ω)

]. Consider the point ξ̃ = (π, 0) ∈

[−π, π]2. It is seen via (4.15) that π cos θ + 0 sin θ = π cos θ > 2σΩ, which con-

tradicts Condition (ii) of Proposition 4.6. Thus, φ̂σ,θm,Ω(ξ̃) = 0. Next, for the point
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(−π, 0) = ξ̃ − 2π(1, 0). Similarly we have −π · cos θ+ 0 · sin θ 6 −2σΩ, which also

contradicts Condition (ii) of Proposition 4.6. Thus, φ̂σ,θm,Ω(ξ̃−2π(1, 0)) = 0. For the

point (π,−2π) = ξ̃ − 2π(0, 1), we have (π,−2π) /∈ (−2Ω, 2Ω)2, which contradicts

Condition (i) of Proposition 4.6, thus φ̂σ,θm,Ω(ξ̃ − 2π(0, 1)) = 0. So far, we have

verified that for ξ̃ = (π, 0), one has φ̂σ,θm,Ω(ξ̃ − 2πk) = 0, for k = (0, 0), (1, 0) and

(0, 1). For any other k ∈ Z2, clearly φ̂σ,θm,Ω(ξ̃ − 2πk) = 0 as ξ̃ − 2πk lies outside of

the support of φ̂σ,θm,Ω. In summary, [φ̂σ,θm,Ω, φ̂
σ,θ
m,Ω](ξ̃) = 0, for ξ̃ = (π, 0). By Lemma

4.3, φσ,θm,Ω is not stable.

The case when arctan 2Ω−π
2(π−Ω)

< θ 6 π
4
. Consider the point ξ̃ =

(
2(π −

Ω), 2(π − Ω)
)
∈ [−π, π]2. By (4.15), we have

2(π − Ω) cos θ + 2(π − Ω) sin θ = 2(π − Ω)(cos θ + sin θ) > 2σΩ,

which implies φ̂σ,θm,Ω(ξ̃) = 0. Also, since 2(π − Ω)− 2π = −2Ω, we have ξ̃ − 2πk /∈

(−2Ω, 2Ω)2 for k = (1, 0), (0, 1) and (1, 1). Thus, φ̂σ,θm,Ω(ξ̃−2πk) = 0, for all k ∈ Z2
2.

For any other k ∈ Z2, φ̂σ,θm,Ω(ξ̃ − 2πk) = 0 as ξ̃ − 2πk is outside of the support of

φ̂σ,θm,Ω. All together, we have φ̂σ,θm,Ω(ξ̃ − 2πk) = 0 for all k ∈ Z2, which implies

[φ̂σ,θm,Ω, φ̂
σ,θ
m,Ω](ξ̃) = 0, for ξ̃ =

(
2(π − Ω), 2(π − Ω)

)
.

By Lemma 4.3, φσ,θm,Ω is not stable. The proof is complete.

For a given Ω, the area of the support of φ̂σ,θm,Ω defined by (4.10) with σ =

σ0(θ,Ω) will achieve its minimum at θ = arctan 2Ω−π
2π−2Ω

. For the Meyer’s refinable

function QΩ with Ω = 2
3
π (the value of Ω commonly used), the value of θ should

be set as θ = arctan 1
2

to minimize the support of the resulting stable refinable

function in frequency domain. A direction calculation leads to

inf
σ>σ0(arctan 1

2
, 2
3
π)

area of supp(
̂

φ
σ,arctan 1

2

m, 2
3
π

) =
46

9
π2.
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4.2.2 Construction of band-limited Riesz wavelets and or-

thonormal wavelets

Once a stable refinable function φ is constructed via (4.5) or (4.10), a set of Riesz

wavelets Ψd of L2(Rd) can be immediately constructed using Theorem 2.13, with

Ψd =

{
ψµ : ψ̂µ(ξ) = exp

(
iη(µ) · ξ

2

)
[φ̂, φ̂](

ξ

2
+ µπ)τ(

ξ

2
+ µπ)φ̂(

ξ

2
), µ ∈ Zd2\{0}

}
,

where τ is the refinement mask of φ. Suppose that Q̂Ω ∈ Cn(R) for some n ∈ Z∗,

then φ̂ ∈ Cn(Rd) by its definition.

Moreover, any band-limited stable refinable function φ given by (4.5) or (4.10)

can also be used to construct orthonormal band-limited wavelets using the classical

orthonormalization technique. That is, given any band-limited stable refinable

function, we can define a new band-limited function φ̃ by setting

̂̃
φ :=

φ̂√
[φ̂, φ̂]

. (4.16)

Then we have [
̂̃
φ,
̂̃
φ] ≡ 1, i.e., φ̃ is orthonormal. Moreover,

̂̃
φ(2ξ) =

φ̂(2ξ)√
[φ̂, φ̂](2ξ)

=

√
[φ̂, φ̂](ξ)

√
[φ̂, φ̂](2ξ)

τ(ξ)
̂̃
φ(ξ),

where τ is the mask of φ. Thus, the refinement mask τ̃ of φ̃ is

τ̃(ξ) =

√
[φ̂, φ̂](ξ)

√
[φ̂, φ̂](2ξ)

τ(ξ). (4.17)

Again using (2.13), we can immediately obtain a set of non-separable band-limited

orthonormal wavelets Ψ̃d of L2(Rd):

Ψ̃d =

{
ψ̃µ :

̂̃
ψµ(ξ) = exp

(
iη(µ) · ξ

2

)
τ̃(
ξ

2
+ µπ)

̂̃
φ(
ξ

2
), µ ∈ Zd2\{0}

}
, (4.18)
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where τ̃ is the mask of φ̃.

It is seen that, once we have a band-limited stable refinable function in hand,

the construction of band-limited orthonormal wavelets is very easy by the simple

normalization technique (4.16). In contrast, the construction of orthonormal com-

pactly supported wavelets is much more difficult. One reason is that a compactly

supported function in spatial domain will extend the support of the resulting

function to infinity after applying (4.16), while a band-limited function is still

band-limited after applying (4.16). Thus, the normalization (4.16) can be used for

constructing orthonormal wavelets with compact support in frequency domain,

but cannot be used for constructing orthonormal wavelets with compact support

in spatial domain. In the end, we summarize the spatial decay property of the

orthonormal wavelets defined by (4.18) in terms of their smoothness in frequency

domain in the following proposition.

Proposition 4.8. Let φ be a stable band-limited refinable function defined by (4.5)

or (4.10), and let φ̃ be defined by (4.16). Suppose that Q̂Ω ∈ Cn(R) for some

n ∈ Z∗. Then
̂̃
φ ∈ Cn(Rd) and for the set of orthonormal wavelets Ψ̃d defined by

(4.18), we have
̂̃
ψ ∈ Cn(Rd),∀ ψ̃ ∈ Ψ̃d.

Proof. Firstly, notice that φ̂ is nonnegative as Q̂Ω is nonnegative. Together with

the fact that φ̂ ∈ Cn(Rd), |φ̂|2 = φ̂2 ∈ Cn(Rd). Moreover, φ̂ is compactly supported

implies that [φ̂, φ̂](·) =
∑

k∈Zd |φ̂|2(· + 2πk) is a finite summation of the sequence

{|φ̂|2(· + 2πk), k ∈ Zd} in any finite interval. Thus, [φ̂, φ̂] ∈ Cn(Rd). Since φ is

stable, there exists some c > 0 such that [φ̂, φ̂] > c. Then we have 1√
[φ̂,φ̂]
∈ Cn(Rd)

and thus
̂̃
φ ∈ Cn(Rd).

Secondly, given any ψ̃ ∈ Ψ̃, to prove that ψ̃ ∈ Cn(Rd), it is sufficient to show
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τ̃ ∈ Cn(Rd). Recall that the refinement mask τ of φ is defined as

τ(ξ) =
∑

k∈Zd
b(ξ + 2πk), ξ ∈ Rd,

where b(ξ) = φ̂(2ξ)

φ̂(ξ)
if φ(ξ) > 0 and 0 otherwise, as shown in the proof of Lemma 4.2.

Indeed, we have that b(·) = φ̂(2·) ∈ Cn(Rd) which can be proved as follows. By

the definition (4.5) or (4.10) of φ, it is easy to see that φ̂(ξ) = 1 if φ(2ξ) > 0,

which implies b(ξ) = φ̂(2ξ) if φ(2ξ) > 0. If φ(2ξ) = 0, b(ξ) = 0. Thus, b(·) = φ̂(2·).

Notice that the support of b(ξ) is strictly within (−π, π)d, we have τ(ξ) ∈ Cn(Rd).

Since φ is stable, there exists a constant c > 0 such that [φ̂, φ̂] > c, together with

[φ̂, φ̂] ∈ Cn(Rd), we have

√
[φ̂,φ̂](ξ)√
[φ̂,φ̂](2ξ)

∈ Cn(Rd). Putting all together, we have then

τ̃ ∈ Cn(Rd) by its definition (4.17). The proof is complete.

4.3 Examples

Example 4.1. In this example, we use the direction matrix of the form (4.4), with

m = (1, 1, 1) and ρ = 5
4
, to generate the band-limited function φ ∈ L2(R2) defined

as follows:

φ̂(ξ1, ξ2) = Q̂ 2
3
π(ξ1)Q̂ 2

3
π(ξ2)Q̂ 2

3
π

(4

5
(ξ1 + ξ2)

)
.

By Theorem 4.5, φ is refinable and stable. After obtaining a stable refinable func-

tion, we can then use the construction scheme proposed in (2.28) to construct a

Riesz wavelet system of three wavelets, whose associated masks are given as follows:

exp(iη(κ) · ξ)[φ̂, φ̂](ξ + κπ)τ(ξ + κπ), κ ∈ Z2
2\{0},

where τ is the refinable mask of φ. See Figure 4.1 for the graphs of the refinable

function and its associated three Riesz wavelets in spatial domain.
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(a) φ (b) ψ1

(c) ψ2 (d) ψ3

Figure 4.1: Graphs of the refinable function and its associated three Riesz wavelets
as introduced in Example 4.1. (a) Refinable function, and (b)–(d) the associated
Riesz wavelets.
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Example 4.2. In this example, we use the direction matrix of the form (4.9),

with m = (1, 1, 1), σ =
√

5
2

and θ = arctan 1
2
, to generate the band-limited function

φ ∈ L2(R2) defined as follows:

φ̂(ξ1, ξ2) = Q̂ 2π
3

(ξ1)Q̂ 2π
3

(ξ2)Q̂ 2π
3

(
ξ1 +

1

2
ξ2

)
. (4.19)

By Theorem 4.7, φ is refinable and stable. Then, by using the standard orthonor-

malization technique, we have an orthonormal refinable function φ̃ defined by

̂̃
φ =

φ̂√
[φ̂, φ̂]

,

and the refinable mask τ̃ of φ̃ is τ̃(ξ) =

√
[φ̂,φ̂](ξ)√
[φ̂,φ̂](2ξ)

τ(ξ), where τ is the refinable mask

of φ in (4.19). Again, using the scheme of (2.28), we can construct a wavelet

system of three orthonormal wavelets from φ̃, whose masks are given as follows:

exp(iη(κ) · ξ)τ̃(ξ + κπ), κ ∈ Z2
2\{0}.

See Figure 4.2 for the graphs of the refinable function and its associated three

orthonormal wavelets in spatial domain.
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(a) φ̃ (b) ψ1

(c) ψ2 (d) ψ3

Figure 4.2: Graphs of the refinable function and its associated orthonormal
wavelets as introduced in Example 4.2. (a) Refinable function; and (b)–(d) the
associated three orthonormal wavelets.



Chapter 5
Recovering Over/Under-exposed Regions

of Digital Colour Photographs

This chapter constitutes the application part of this thesis. More precisely, by

using wavelet tight frames (framelets) as the main tool, we propose a method for

restoring digital colour photographs with over/under-exposed regions. As in the

opening chapter of this thesis, we have introduced some related background on the

origination of the over/under-exposed regions recovery problem. Now in this new

chapter, we provide the detailed procedures for handling this problem. Firstly, we

start with the rigorous formulation of over/under-exposed regions recovery prob-

lem and provide the basic scheme for solving this problem. Secondly, we briefly

review some most related works. Thirdly, we present the detailed implementa-

tion and explanation for the proposed method. Finally, we show some numerical

experiments and discussions for evaluation.

91
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5.1 Problem formulation and the workflow

5.1.1 Problem formulation

At first glance, it seems that the over-exposure correction can be re-formulated

as certain well studied image restoration task. For example, one might treat it

as an image inpainting problem and use some existing image inpainting approach

to directly recover the colour details of over-exposed regions. The missing colour

information of over-exposed regions is then inferred either from its neighbouring

regions or by some self-similarities existing in the image. However, by doing so, the

overall brightness of the inpainted over-exposed regions will be in general equal

to or slightly lower than that of their neighbouring well-exposed regions. As a

result, the local contrast and the reflection shown in the area around the over-

exposed regions look very artificial, since the over-exposed regions are supposed

to be brighter than its neighbouring regions. The picture does not appear to be

taken under some realistic lighting condition in real life. See Figure 5.1 for an

illustration.

(a) (b) (c)

Figure 5.1: Demonstration of over-exposure correction by directly inpainting over-
exposed regions. (a) The input photograph; (b) the result from inpainting the over-
exposed regions using the wavelet-based inpainting method [9]; (c) the result from the
proposed method.
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(a) (b) (c)

Figure 5.2: Demonstration of over-exposure correction using existing HDR reconstruc-
tion and tone mapping techniques. (a) the input photograph; (b) the result obtained
by directly using the tone mapping operator proposed in [40]; (c) the result obtained
by firstly using the HDR reconstruction proposed in [58] to construct an HDR image,
followed by the tone mapping process [40]; (d) the result from the proposed method.

One may also directly apply some tone mapping technique to remove the white-

ness of the over-exposed regions by compressing the dynamic range. However, such

an approach cannot recover the chromatic information and image details of the

over-exposed regions. See Figure 5.1 (b) for an illustration. A better way is to

first create an HDR image from the input LDR image and then apply the tone

mapping technique to reconstruct an LDR image. However, most existing software

based HDR reconstruction methods need to take multiple images with different

exposure times as the input. The single-image based HDR reconstruction is much

less reliable in practice. Moreover, most existing single-image based HDR tech-

niques usually aim at creating an HDR image with its dynamic range much wider

than the dynamic range allowed in LDR image. As a result, after using the tone

mapping technique to compress such a hallucinated dynamic range back to the low

dynamic range, the colour of those over-exposed regions still looks washed out. See

Figure 5.2 (b) for an illustration.

In other words, the over/under-exposure correction is an image recovery prob-

lem different from many existing image recovery problems including inpainting,
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HDR reconstruction and tone mapping. There are certain needs for developing

a specific restoration method to correct over/under-exposure of the digital colour

photographs taken by regular LDR cameras. In recent years, there have been a

few methods proposed for over-exposure correction (see e.g. [72, 54, 45]). Both [72]

and [54] are for recovering ‘partial over-exposure’, i.e. the colour of over-saturated

regions is not completely white. The applicability of these two approaches is quite

limited, as they usually fail to correct the over-exposed regions where only bright

white is shown. The correction of fully over-exposed regions is first considered by

Guo et al. in [45]. Suppose that colour is represented in CIELAB space [L; a; b]:

L denotes the lightness value, and [a; b] represents two chromatic values (see e.g.

[64]). Guo et al. [45] decompose the problem of over-exposure correction into the

following two sub-problems:

1. a tone mapping problem in the lightness channel L for lowering the lightness

of the over-exposed regions;

2. an image inpainting problem in the two colour channels [a; b] for recovering

the colour and image details of the over-exposed region.

It is noted that lowering the lightness of the over-exposed region is a necessary

step to show true colour of over-exposed regions, since the colour will appear white

as long as L is close to the maximum value (i.e., 100). The method proposed by

Guo et al. [45] shows much better performance on over-exposure correction than

other generic colour restoration methods in [72, 54]. However, Guo et al.’s method

is far from satisfactory, and there is still a lot of room for improvement: firstly,

the lightness channel of the result is not fully utilized by only considering the

compression of the dynamic range; secondly, the tone mapping technique used in

[45] is designed for re-mapping the dynamic range of an HDR image to that of an

LDR image which may erase shadow details in under-exposed regions; lastly, the
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recovery of image details of the over-exposed regions by [45] is not very satisfactory.

5.1.2 Basic idea and the workflow

In this thesis, we propose another approach to better correct over/under-exposures

in digital colour photographs. Our approach considers the simultaneous correction

of both over-exposed and under-exposed regions, since they are often co-existing for

scenes with very high dynamic range (see Figure 1.1 for an illustration). Different

from [45], we propose to decompose the problem of over/under-exposure correction

to the following three sub-problems:

1. an inpainting problem for recovering clipped values of over-exposed regions

in lightness channel L;

2. a tone mapping problem for adjusting the inpainted lightness channel to fit

the range allowed in LDR images;

3. an inpainting problem in two colour channels [a; b] for recovering colour de-

tails in over-exposed regions.

Decomposition   Synthesization

Lightness
Inpainting

Lightness 
Adjustment

Chromatic 
Recovery

Input Output

Chromatic
channels a, b

Recovered
channels a, 
b

Lightness 
channel L

In-painted 
lightness 
channel

Adjusted
lightness
channel

Figure 5.3: Workflow of the proposed method
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The first sub-problem is about how to recover the lightness values of over/under-

exposed pixels that are clipped to be inside the physical range [0, 100] supported

by LDR image. After the recovery, the range of the lightness channel will usually

be slightly larger than the physical range (see Figure 5.8 (d)). Then the second

sub-problem is about how to adjust the lightness of the whole image such that

it fits the physical range while not destroying any visible image details with low

lightness values. In our setting, such a tone mapping has an additional function,

i.e. magnifying the lightness values of under-exposed pixels to increase the local

contrast and seamlessly blend the corrected pixels back to the whole image. Recall

that the colour of over-exposed regions is completely white since the lightness is set

to the maximum. Thus, the third sub-problem is about how to recover the missing

colour details of over-exposed regions from the information of its neighbouring

well-exposed regions.

The proposed approach is applicable to photographs with both fully over-

exposed regions and severely under-exposed regions. As shown in the experiments,

there are several advantages of the proposed method over the existing ones, in-

cluding more effective use of lightness range, better recovery of chromatic details

in over-exposed regions, and better local contrasts of the under-exposed regions.

See Figure 5.1 (c) and Figure 5.2 (d) for an illustration.

5.2 Review of Related works

Over-exposure and under-exposure happen when the dynamic range of a scene is

higher than the dynamic range supported by the camera. As a result, the colour

information of the over-exposed regions is completely lost by only showing white

colour; or similarly the colour information of the under-exposed regions are hardly

perceived by showing nearly black colour. The colour correction is a challenging
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task, as the human perception of colour is a very profound process which is still

not fully understood. In the past, there were many well-studied image restoration

tasks that are related to the colour correction, including HDR reconstruction, tone

mapping and inpainting. Until very recently, there have been some work focusing

on over-exposure correction. In the following, we give a very brief review on some

most related techniques.

Since the over/under-exposure happens due to the limitation of dynamic range

allowed in LDR camera, one solution is to render an HDR image of the scene by

using multiple LDR images taken under different exposure times (see e.g. [31, 53,

44, 43]). These multiple images based approaches either require costly additional

hardware instruments or are only applicable to certain configurations. For exam-

ple, when using multiple exposures, both the camera and the scene need to be

static in order to avoid motion blurring. There have been some previous works on

hallucinating an HDR image from a single LDR image. Wang et al. [69] recovered

the missing details of the over-exposed regions of an LDR image by using some

texture synthesis technique. In their approach, the user needs to manually input

the locations of well-exposed regions that are similar to the over-exposed regions.

Rempel et al. [58] proposed an approach to recover the lightness of the picture

by increasing the upper bound of the dynamic range. The basic idea is to fit a

smooth function on an over-exposed region and its neighbourhood. This method

is mainly for recovering the lightness of the picture and the chromatic details are

not recovered in their method.

The tone mapping technique is an inverse process of HDR creation. It is about

synthesizing an LDR image out of an HDR image for regular display. The dynamic

range of the HDR image needs to be compressed in order to fit the range allowed in

LDR image. There have been plenty of tone mapping methods proposed by many

researchers in the literature. Some methods use tone reproduction curves, such
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as Gamma curve, to re-map the global lightness values (see e.g. [70, 48]). Some

use more sophisticated spatially-varying local operators (see e.g. [40, 39, 50]) for

tone mapping. In general, local tone mapping operators are more favorable than

the global tone reproduction curves, as they perform better on preserving images

details when compressing the dynamic range (see e.g. [40, 50]).

There have been an abundant literature on image inpainting, which is first

proposed by [3] to recover damaged pixels from un-damaged pixels in images.

There are many representative image inpainting approaches. One is the PDE-

based variational approach which propagates information from un-damaged pixels

to damaged pixels in the direction of the isophotest (see e.g. [3, 4]). One is treating

the image inpainting problem as a linear inverse problem and solve it via some

regularization methods. For example, the TV (total variation) based regularization

[20, 21] and the wavelet tight frame based regularization [9, 14, 32] have been used

for general image inpainting. Another one is the template-based approach which

covers the image patches in the damaged regions by using similar patches from

un-damaged regions (see e.g. [25, 37]).

There have been relatively few works on designing specific methods for over-

exposure correction. Earlier works assume that only ‘partial over-exposure’ occurs

in the input photograph. That is, at least one colour channel is not fully saturated

among all three colour channels: red, green and blue. Zhang and Brainard [72]

estimated the global ratios among three colour channels using well-exposed regions

of the image. Then the saturated colour channels for over-exposed regions are

recovered by applying the estimated ratios on unsaturated channels. Masood et

al. [54] improved the results of [72] by using a spatially varying ratio function to

recover the saturated colour channels of over-exposed regions. The applicability of

these two approaches are quite limited, as many real-life digital colour photographs

are mainly degraded by ‘total over-exposure’ (i.e. all three colour channels fully
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saturated) rather than ‘partial over-exposure’.

The over-exposure correction for fully over-exposed regions is first considered

by Guo et al. in [45] with a much more sophisticated approach. There are two main

components in Guo et al.’s approach: (i) applying some tone mapping technique

to compress dynamic range of the given picture to make room for the recovered

lightness of over-exposed regions; and (ii) estimating the colour of over-exposed

pixels by image inpainting. In [45], the tone mapping technique proposed by

Fattal et al. [40] is modified and adopted for dynamic range compression. The

inpainting process in two colour channels [a; b] is done via a modified version of

the colourization method proposed by Levin et al. [49], in which the colour of the

targeted pixel is propagated from its neighbouring similar pixels. The similarity

of pixels are determined from their lightness and chromatic values.

5.3 The main algorithm

In this section, we give a detailed description on the proposed approach that follows

the workflow illustrated in figure 5.3. It is seen that the lightness information and

the chromatic information of pixels are processed in different modules. The main

steps of our approach are outlined in the following.

Outline of the main algorithm

1. Converting the RGB channels of the given image I into the CIELAB channels

[L; a; b];

2. Inpainting the lightness channel L to reconstruct a new lightness channel L̃

with its range beyond the limitation of LDR image
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3. Adjusting the lightness channel L̃ to fit the range allowed in LDR image and

increase the local contrast of under-saturated regions. Denote the resulting

lightness channel by L∗.

4. Recovering the missing chromatic details of the over-exposed regions in two

chromatic channels [a, b] to obtain the recovered chromatic channels [a∗, b∗].

5. Synthesizing the new colour photograph using the three channels [L∗; a∗; b∗].

Among the five major steps, Step 100 and Step 5 are standard colour conversion

routines between RGB colour representation and CIELAB colour representation

(see [64] for more details). The main components are Step 2, Step 3 and Step 4.

The detailed discussion on Step 2 and Step 3 will be given in Section 5.3.1 and

Section 5.3.2. Section 5.3.3 will cover the discussion of Step 4 as well as Step 5.

5.3.1 Inpainting in lightness channels L

In an LDR photograph with over-exposed pixels, the ‘true’ lightness values of those

over-exposed pixels are clipped at the maximum value(i.e. 100). As a result, the

over-exposed regions are white regions without any chromatic details. These over-

exposed pixels are easy to detect by checking their lightness values. In practice,

the colour of the pixels whose lightness values are close to 100 is indistinguishable

from white in human perception. Similarly, the colour of the pixels whose lightness

values close to 0 is nearly invisible in human perception. Thus we treat all pixels

whose lightness values close to 100 or 0 as over/under-exposed pixels. The clipped

region Γ for inpainting is then defined by

Γ := {p : L(p) > K1} ∪ {p : L(p) < K2}, (5.1)
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where K1 (close to 100), K2 (close to 0) are two positive real numbers. See Fig-

ure 5.4 for an illustration of the result of our lightness inpainting method under

different settings of K1 and K2. Based on the contour shape of inpainted lightness

region, we set K1 = 98 and K2 = 0.2 through all experiments.

The goal of this section is then to develop an inpainting method for recovering

the lightness values of over/under-exposed pixels in the set Γ, the set of those pixels

with lightness values close to 100 or 0. It is observed that the part associated with

each clipped lightness region for inpainting usually belongs to the surface made by

the same material in physical world which should have the same surface reflection

property. Thus, we may assume that the change of lightness within each individual

clipped region is smooth, and assume as well that the transition between a clipped

region and its neighbouring well-exposed regions is smooth. These two assumptions

lead to the following minimization model for inpainting in lightness channel L:

L̃ = argminU
1

2
‖D1U‖2

2 +
σ

2
· ‖D2U‖2

2

subject to U |Γc = L|Γc ,
(5.2)

where Γc denote the complement of the index set Γ given in (5.1), D1, D2 are

the level-1 and level-2 framelet decomposition operator associated with the band-

limited framelet system raised in Example 3.1, and σ > 0 is the weight assigned

to the level-2 regularized term (whose value is set to 0.2 in all experiments).

In the following, we give a brief explanation on the model (5.2). It is known

that the wavelet frame coefficients characterize the local variation of the signal.

Thus, by minimizing the framelet coefficients of lightness channel, the solution

tends to have smooth wavelet coefficients which in turn lead to lightness channel

with smooth variations. In addition, the use of band-limited framelets in (5.2) is

also quite helpful for characterizing the smooth variations of clipped regions, since

band-limited framelets are infinitely smooth in spatial domain.



102
Chapter 5. Recovering Over/Under-exposed Regions of Digital Colour

Photographs

305
310

315
320

325

215

220

225

230

235
92

94

96

98

100

102

305
310

315
320

325

215

220

225

230

235
92

94

96

98

100

102

305
310

315
320

325

215

220

225

230

235
92

94

96

98

100

102

305
310

315
320

325

215

220

225

230

235
92

94

96

98

100

102

(a) (b) input (c) K1 = 96 (d) K1 = 98 (e) K1 = 99.5

150
152

154
156

158
160

390

395

400
−1

−0.5

0

0.5

1

150
152

154
156

158
160

390

395

400
−1.5

−1

−0.5

0

0.5

1

150
152

154
156

158
160

390

395

400
−1.5

−1

−0.5

0

0.5

1

150
152

154
156

158
160

390

395

400
−1.5

−1

−0.5

0

0.5

1

(f) (g) input (h) K2 = 0.2 (i) K2 = 0.6 (j) K2 = 1.0

Figure 5.4: Demonstration of lightness of over/under-exposed region inpainted using
different K1 and K2 as in (5.1). (a) The input image with over-exposed region marked
out by red rectangle; (b)–(e) the contours of lightness of over-exposed region before
and after inpainting; (f) the input image with under-exposed region marked out by
red rectangle; (g)–(j) the contours of lightness of under-exposed region before and after
inpainting.

The minimization model (5.2) is a least squares problem with linear constraints

for which there exist many numerical solvers. More specifically, define

A := DT1D1 + σDT2D2

and B the projection matrix that maps U to U |Γc , then there exists a vector Λ of

size |Γc| such that the concatenated vector V := (L∗>,Λ>)> is exactly the solution

of the following linear system:

DX = Y,

where D :=


 A B>

B 0


 and Y :=


 0

L|Γc


. See Figure 5.4 for an illustration of

the inpainting in lightness channel using 2 levels of framelet decomposition.
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5.3.2 Lightness adjustment

The range of the lightness channel L̃ recovered by solving (5.2) would usually be

slightly larger than the physical range of [0, 100] of LDR images (see Figure 5.8 (d)).

Also, the under-exposed regions are still of low contrast. Our next step is then to

adjust the lightness channel to fit the dynamic range supported by LDR image.

Such an adjustment should keep image details visible in well-exposed regions and

increase the contrast of under-exposed regions. This is closely related to the tone

mapping that converts an HDR image to an LDR image. Similar to some popular

tone mapping methods (e.g. [39, 40]), the lightness adjustment in our approach is

done in the logarithm domain of lightness channel:

R̃ := log (L̃+ δ), (5.3)

where δ is some positive constant to guarantee that L̃+ δ > 0. In experiments, we

use

δ =





0.5, if min L̃ ≥ 0;

−min L̃+ 0.5, if min L̃ < 0.

Most widely-used tone mapping for adjusting lightness channel is to adjust the

image edges of lightness channel, instead of directly adjusting the intensity values

in lightness channel. During the adjustment, strong image edges and weak image

edges are treated differently. The reason is that, despite the smaller magnitudes,

weak image edges represent fine details. A straightforward compression will erase

out these fine image details, and consequently the quality of the image will be

noticeably degraded. Thus, to keep the visual quality of the input image, an

effective lightness compression method should aggressively attenuate the strength

of strong image edges while conservatively attenuate the strength of weak image

edges.
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Figure 5.5: Flowchart of the lightness modification algorithm.

In our approach, we use the high-pass spline framelet coefficients as the mea-

surement of image edges, as those framelet coefficients naturally encode the image

gradients of different orders in a multi-scale fashion. In our implementation, the

2D tensor-product piecewise linear spline framelet system (see Example 2.3) is

adopted. Recall that the piecewise linear spline framelet system is associated with

a set of three masks {τ0, τ1, τ2}, whose Fourier coefficients form the following 3

discrete filters respectively:

h0 =
1

4
[1 2 1], h1 =

√
2

4
[1 0 − 1], h2 =

1

4
[1 − 2 1].

Then, the 2D tensor-product piecewise linear spline framelet system is simply

associated with the following mask set

{hi ⊗ hj, 0 6 i, j 6 2},

where h0 ⊗ h0 is the refinement mask and others are wavelet masks. Specifically,

piecewise linear spline framelets can capture both first-order and second-order

derivative information of the image along different directions [11].

The basic procedure of the proposed lightness adjustment is to first calculate

the Q levels of high-pass piecewise linear spline framelet coefficients W h
QR̃ for

the logarithm of lightness channel R, followed by the attenuation of W h
QR̃ by

applying an attenuation function Θ on W h
QR̃. Then the adjusted lightness channel

is reconstructed using the attenuated framelet coefficients Θ(W h
QR̃). See Figure 5.5

for the illustration of a flowchart of the lightness adjustment.
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It is noted that the workflow of our proposed lightness adjustment is similar to

the tone mapping technique in [40], except that ours is done in framelet domain

and that one is done in finite difference domain. Another main difference between

ours and the existing one lies in the design of the attenuation function, which

plays an important role in the lightness adjustment. In the following, we first give

a detailed discussion on the design of attenuation function, and then we present the

numerical scheme of constructing lightness channel from the attenuated framelet

coefficients of the logarithm of the input lightness channel.

Design of the attenuation function Θ

The attenuation function, which we denote as Θ, plays an important role in the

lightness adjustment. The function Θ in our approach takes W h
QR̃, i.e. the framelet

coefficient of the logarithm of lightness channel, as the input. The basic principle

is to attenuate more on framelet coefficients with large magnitude and attenuate

less on framelet coefficients with small magnitude. For each image pixel p, a multi-

scale measurement of strength of image edges centering at the pixel p is defined

as

~H(p) = (H1(p), H2(p), . . . , HQ(p))> = (‖~c1(p)‖2, ‖~c2(p)‖2, . . . , ‖~cQ(p)‖2)>,

where ~cj denotes the level-j high-pass framelet coefficients centered at the pixel.

Note that ~cj ∈ R8 for the linear spline framelet. In other words, the j-th element of

~H(p) measures the overall energy of R around the pixel p in all high-pass channels

at the scale 2j−1, for j = 1, 2, . . . , Q. It is noted that at each scale 2j−1, there

are in total eight high-pass channels in a piecewise linear spline framelet system,

which account for image gradients with different orders and orientations. After

defining the multi-scale strength measurement of image edges for each pixel p, we

propose the following discrete attenuation function Θ : W 1
HR 7→ C̃1 pixel-wisely



106
Chapter 5. Recovering Over/Under-exposed Regions of Digital Colour

Photographs

that

Θ
(
~c1(p)

)
7→ θ(p)~c1(p), (5.4)

where the weight θ(p) is some measurement of the overall strength of local image

edges around the pixel p, which is defined as

θ(p) =
[ Q∏

j=1

Hj(p)

c′E(Hj)

]β−1

, (5.5)

where E(Hj) is the average of Hj(p) for all pixels p, that is, the average of the

whole j-th level high-pass framelet channels. There are two parameters in (5.5),

c′ > 0 and β ∈ [0, 1] which control the adjustment behaviour of the lightness

channel. See Figure 5.7 for an illustration of how these two parameters change

the lightness channel. In our implementation, we set β = 0.88 and c′ = 0.2 for a

3-level piecewise linear framelet decomposition (i.e. Q = 3 in (5.5)).

As it is seen from the definition of Θ in (5.5), the degree of the attenuation on

each framelet coefficient depends on its magnitude. The larger is the magnitude

of the frame coefficient, the more attenuation is applied on it.

Construction of lightness channel from the attenuated framelet coeffi-

cients

Let R̃ denote the logarithm of the lightness channel L defined by (5.3), W h
QR̃

denote its piecewise linear spline framelet coefficient vector, and Θ denote the at-

tenuation function applied on the framelet coefficient vector W h
QR̃. Then, the goal

is to construct a new lightness channel L∗ from the attenuated framelet coefficient

vector:

C̃Q = Θ(W h
QR̃) = Θ

(
W h
Q log (L̃+ δ)

)
. (5.6)

We propose to construct the new lightness channel L∗ by setting

L∗ := exp(R∗), (5.7)
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with R∗ to be the solution of the following minimization problem:

R∗ := argminR
1

2
‖W h

1 R− C̃1‖2
2 + η‖W h

1 R‖1, (5.8)

subject to
∑

j R(j) =
∑

j R̃(j), where C̃1 denotes the attenuated single-level

framelet coefficient vector given by (5.6) with Q = 1 and η is the regulariza-

tion parameter. There are two terms in the objective function of (5.8). The first is

the fidelity term and the second is the sparsity prompting regularization term on

framelet coefficient vector of the solution. The `1 norm related regularization term

is for suppressing image noise while keeping sharp edges [14]. The reconstruction

is not very sensitive to the value of regularization parameter η as long as η is

reasonably small (e.g., when η 6 1 × 10−3); see Figure 5.6 for an illustration of

the results using different regularization parameters. In our implementation, η is

set to 5× 10−4. It is noted that only single-level framelet coefficients are used for

reconstruction of the lightness channel. The main reason is that in (5.8), the re-

construction from multi-level attenuated framelet coefficients tends to yield some

undesirable effects like halos.

The adjusted lightness channel L∗ obtained from (5.7) and (5.8) is usually

severely squeezed. We thus re-scale it back to the physical range of the lightness

channel of the original input image:

L∗ ←↩ L∗ −min (L∗)

max (L∗)−min (L∗)

(
max(L)−min(L)

)
+ min (L), (5.9)

where L is the lightness channel of the original input photograph. The minimiza-

tion model (5.8) can be effectively solved by the split Bregman method. The

following is a detailed description of the solver. Empirically, two parameters µ

and ρ are set to be 1 × 10−3 and 5 × 10−4 respectively in real implementation of

the algorithm.
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(a) η = 5× 10−2 (b) η = 1× 10−2 (c) η = 5× 10−3 (d) η = 1× 10−3

(e) η = 5× 10−4 (f) η = 1× 10−4 (g) η = 5× 10−5 (h) η = 1× 10−5

Figure 5.6: The results of lightness reconstruction with different η as in (5.8).
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Algorithm 1. Numerical algorithm for solving (5.8)

1. Initialize u0, d0, r0, and c0.

2. For k = 0, 1, 2, . . ., generate uk+1 from uk according to the following iteration:

(a) uk+1 ←− arg min
u

1
2
‖W h

1 u − C1‖2
2 + µ

2

∥∥∑
j u(j) −

∑
j R̃(j) + ck

∥∥2

2
+

ρ
2

∥∥W h
1 u− dk + rk

∥∥2

2
;

(b) dk+1 ←− Tη/ρ
(
W h

1 u
k+1 + rk

)
;

(c) rk+1 ←− rk + (W h
1 u

k+1 − dk+1);

(d) ck+1 ←− ck + (
∑

j u
k+1(j)−

∑
j R̃(j));

until ‖uk+1 − uk‖2 ≤ ε for some tolerance ε.

3. R∗ ←− uk+1.

The overall algorithm for inpainting and adjustment of the lightness channel is

summarized in Algorithm 2. See Figure 5.8 for an illustration of the changes on the

overall lightness and the distribution of lightness values after applying Algorithm 2

on a sample image.

Algorithm 2. Inpainting and adjustment of the lightness channel

Input: the original lightness channel L.

Output: the inpainted and adjusted lightness channel L∗

Steps:
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1. Obtaining the inpainted lightness channel L̃ from L by solving (5.2);

2. Converting L̃ to its logarithm R̃ via (5.3) and computing the associated

framelet coefficients W h
1 R̃;

3. adjusting the framelet coefficients W h
1 R̃:

(a) define the pixel-wise attenuation weights θ as (5.5) using a Q(= 3)-level

framelet decomposition W h
3 R̃;

(b) computing adjusted framelet coefficients Θ(W h
1 R̃) by applying Θ on

W h
1 R̃ as in (5.4).

4. Reconstructing a new lightness channel L∗ from adjusted coefficients Θ(W h
1 R̃):

(a) constructing R∗ from Θ(W h
1 R̃) by solving (5.8), and then taking expo-

nential of R∗ to get the adjusted lightness channel L∗;

(b) re-scaling the values of the adjusted lightness channel L∗ as in (5.9).

5.3.3 Recovering the chromatic channels [a; b]

Clearly, for those over-exposed pixels as defined by (5.1) in Section 5.3.1, both

chromatic channels [a; b] are saturated such that the original chromatic information

is erased. It thus becomes an inpainting problem in two chromatic channels on how

to recover the erased chromatic information. Similar to the inpainting approach

in the lightness channel stated in Section 5.3.1, the pixels for recovery are first

identified and then recovered by an inpainting process.

The strategy of defining pixels for recovery in two chromatic channels is slightly

different from that in the lightness channel. The visual perception of the colour

in human is very complicated. A slight change in two chromatic channels may
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(a) input (b) β = 0.75 (c) β = 0.80 (d) β = 0.85 (e) β = 0.90 (f) β = 0.95

(g) c′ = 0.05 (h) c′ = 0.10 (i) c′ = 0.20 (j) c′ = 0.40 (k) c′ = 0.80

Figure 5.7: The lightness adjustment using different β and c′ as in (5.5). (a) The input;
(b)–(f) the lightness adjustment results using different β and c′ = 0.2; (g)–(k) the results
using different c′ and β = 0.88.

lead to a fairly large change in human colour perception. Thus, to avoid some

rapid changes along the boundary between the over-exposed regions and the well-

exposed regions, one good approach is to define a super-set of pixels for recovery.

In other words, the set of pixels for recovery could contain not only those over-

exposed pixels, but also all pixels whose lightness values are sufficiently large and

whose chromatic values are sufficiently small in magnitude. Moreover, similar to

[45], the assignment of pixels for recovery is done in a “soft” manner, instead of

a“hard” manner as (5.1). More specifically, pixels for chromatic recovery should

be

(i) of high lightness intensities (i.e., close to 100),

(ii) of inadequate chromatic information (i.e., both a, b values close to 0).

Based on the above argument, the likeliness measure of a pixel p being a pixel

for recovery in two chromatic channels is defined by the following measurement as
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Figure 5.8: Illustration of lightness inpainting and adjustment by Algorithm 2. (a)
The input lightness channel, (b) the lightness channel after inpainting and adjustment
by Algorithm 2, (c) the histogram of the input lightness channel, (d) the histogram of
the lightness channel after lightness inpainting; and (e) the histogram of the lightness
channel after lightness inpainting and adjustment. It is seen from (d) that the lightness
range of lightness channel is [−5, 115] after applying lightness inpainting method, which
goes beyond the physical range [0, 100]. Also, it is seen from (e) that the pixels of
lightness close to 0 or 100 are fewer in the output of Algorithm 2.
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proposed in [45]:

M(p) =
1

2

(
tanh

( 1

60
((L(p)− `0) + (c0 −

√
a2(p) + b2(p)))

)
+ 1
)
, (5.10)

where `0 and c0 are two constants related to the values along the boundary of

over-exposed regions. Same as in [45], the values of `0 and c0 are set empirically

to be 80 and 40 respectively in (5.10) in implementations. A pixel p is defined as

a pixel for recovery in two chromatic channels if M(p) > τ for some pre-defined

positive constant τ ∈ (0, 1), so the index set of pixels for chromatic recovery is

determined via

Ω = {p : M(p) > τ}. (5.11)

Since the value of τ in (5.11) is to determined the over-exposed regions that need

chromatic recovery, thus it cannot be very large, otherwise the over-exposed regions

would not be fully covered; the value of τ cannot be very small either, otherwise

the detected region for chromatic recovery would be too large and some existing

chromatic details would be erased. We suggest to set τ in (5.11) inside the range

[0.4, 0.7]. See Figure 5.9 for an illustration of the results using different τ . In all

experiments of this thesis, we simply set τ = 0.5.

The appearance of two chromatic channels of natural images is quite different

from that of the lightness channel. There are much more visible variations in

two chromatic channels than the lightness channel, which account for the fine

details of the photograph. Motivated by the successes of sparsity prior of natural

greyscale images in wavelet tight frame for various image restoration tasks (e.g.

[14, 32, 12]), we propose to use the `1 norm of wavelet tight frame coefficients as the

sparsity prompting functional to regularize the inpainting process. The following

minimization model is proposed for the recovery of the chromatic channel a (the

same for the recovery of the channel b):

a∗ = argminu‖diag(λ)Wu‖1, subject to u|Ωc = a|Ωc , (5.12)
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(a) τ = 0.4 (b) τ = 0.5 (c) τ = 0.6 (d) τ = 0.7 (e) τ = 0.8 (f) τ = 0.9

Figure 5.9: Over/under-exposure correction using different τ as in (5.11). The input
photograph is the one shown in Figure 5.2 (a). It is seen that if τ is set too large, e.g.
τ = 0.8 or 0.9, the colour shown on the recovered over-exposed regions is less vivid.

where Ω is the index set of the pixel for recovery, and Ωc denotes its complement

(see Figure 5.9). The diagonal matrix diag(λ) is the weighting matrix whose

diagonal elements are determined by the likeliness measure of the corresponding

pixel being saturated in the channel a. Intuitively, the larger is the likeliness

measure of the pixel being saturated in the channel a, the larger the associated

weight should be. Thus, the assigned weights should be monotone increasing with

respect to the likeliness measure M(p) as defined in (5.10). Based on the empirical

observations, in our implementation, the following weighting matrix is proposed

to enhance the performance

λ(cj,k(p)) = (M(p) +
1

5
)2 +

2

5
.

To better regularize images with edges of multiple orientations, we use the

wavelet tight frame system consisting of two framelet systems. One is the standard

2D tensor product of 1D piecewise linear framelet; and the other is the 2D tensor

product of 1D piecewise linear framelet rotated by 45 degree. It is empirically

observed that such a two-system tight frame system propagates the chromatic

information from the well-exposed pixels to pixels for recovery better than that
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of a single tight frame system. The minimization (5.12) is the so-called analysis-

based approach (see [67]), which, similar as (5.8), can also be efficiently solved by

the split Bregman method.

Moreover, it is observed that a direct reconstruction of the colour photograph

from the corrected [L; a; b] channels will lead to some visual distortions on the

colour of recovered pixels, due to the complex nature of how human perceive

colour. Thus, we propose further adjustments on the two chromatic channels

to keep the consistency of colour perception by normalizing the two chromatic

channels as follows

a∗ ←−
(L∗
L

) 1
2
a∗ and b∗ ←−

(L∗
L

) 1
2
b∗,

where L is the original lightness channel, L∗ is the recovered lightness in (5.9).

The final photograph is then synthesized from the three channels [L∗; a∗; b∗]. A

detailed description of the numerical solver for (5.12) is given in Algorithm 3. Two

parameters in Algorithm 3 is set as follows: µ = 0.4 and ρ = 0.5. See Figure 5.10

for an illustration of the recovery of the two chromatic channels for a sample

photograph.

Algorithm 3. Numerical algorithm for recovering the chromatical channel

a (b)

1. Initialize u0, d0, r0, and c0.

2. Let PΩc denote the sample operator that only keeps the elements whose index

in the set Ωc. Then, for k = 0, 1, 2, . . ., generate uk+1 from uk according to

the following iteration:

(a) uk+1 ←− arg min
u

µ
2

∥∥PΩc(u− a) + ck
∥∥2

2
+ ρ

2

∥∥Wu− dk + rk
∥∥2

2
;
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(a) (c) (e)

(b) (d) (f)

Figure 5.10: Illustration of chromatic recovery. (a) The input photograph; (b) the
synthesized photograph after lightness inpainting, adjustment and colour recovery; (c)
input a-channel; (d) recovered a-channel; (e) input b-channel; (f) recovered b-channel.

(b) dk+1 ←− Tλ/ρ
(
Wuk+1 + rk

)
;

(c) rk+1 ←− rk + (Wuk+1 − dk+1);

(d) ck+1 ←− ck + PΩc(u
k+1 − a);

until ‖uk+1 − uk‖2 ≤ ε for some tolerance ε.

3. a∗ ←−
(
L∗

L

) 1
2
uk+1.

In the end, the proposed approach for correcting overall over/under-exposure

in photograph is summarized in Algorithm 4.

Algorithm 4. Wavelet tight frame based method for recovering over/under-

exposed regions
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1. Converting the RGB channels of the given image I into the CIELAB channels

[L; a; b];

2. Inpainting and adjusting lightness channel L.

(a) Recovering the lightness channel L̃ by inpainting the lightness values

of over/under-exposed regions with clipped pixels by solving the mini-

mization problem in (5.2).

(b) Adjusting the lightness channel L̃ of high dynamic range to obtain the

lightness channel L∗ of low dynamic range without losing visible image

details using Algorithm 2.

3. Recovering the missing chromatic details of the over-exposed regions in two

chromatic channels [a; b] by solving the minimization problem in (5.12) us-

ing Algorithm 3, and as a consequence obtaining the recovered chromatic

channels [a∗; b∗].

4. Synthesizing the new colour photograph using the three channels [L∗; a∗; b∗].

5.4 Numerical experiments and discussions

The proposed algorithm for correcting over/under exposure is evaluated on several

real photographs taken by a regular LDR camera. Some tested images are from
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[45] and [40]. Some are captured by our own using a Canon DSLR camera. The

average time for processing a colour image of size 500 × 800 is around 3 minutes

by using MATLAB (version 7.10.0) implemented on a laptop PC with Intel T9400

CPU (2.53 GHz) and 4 GB RAM.

5.4.1 Experimental evaluation

The proposed method is compared against several other existing methods. The

methods for comparison include two existing over-exposure correction methods:

Masood et al.’s method [54], Guo et al.’s method [45]. These two methods are

specifically designed for correcting over-exposure in photograph. Also, to illustrate

the differences between the problem of over-exposure correction and other colour

correction problems, we also include two other related colour correction methods

in the comparison. One is the spline framelet based generic image inpainting

method [14], and the other is the combination of the HDR reconstruction method

[58] and the tone mapping method [40]. The results of those methods are either

directly quoted from the referenced research articles or computed from the authors’

implementation downloaded from the web. The results using the proposed method

and four other methods are shown in Figure 5.11–5.14 for visual comparison.

In the test image shown in Figure 5.11 (a), several regions on the leaves appear

to be over-exposed with very high reflection. In the result from Masood et al.’s

method, some existing details are erased. In the result produced by the HDR

plus tone mapping method, the lost chromaticity information within the over-

exposed regions has not been restored as they still appear shine white. Cai et al.’s

method restores the lost colour information of the over-exposed regions, but the

repaired over-exposed leaves look slightly darker than their neighbourhoods. Such

a reflection is not realistic in real life. In contrast, two over-exposure correction
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method: Guo et al.’s method and ours do a better job on correcting over-exposure

with realistic reflection. But the result from Guo et al.’s method appears to be a

little bit too dim. The reason is that only tone mapping is done in Guo et al.’s

method that will lower the overall brightness of the image. Our method does not

have this problem and the result looks well-exposed.

In the image shown in Figure 5.12 (a), several regions on the boy’s body are

over-exposed. Masood et al.’s method partially recovers the damaged colour in-

formation, but it also degrades the visual quality of some well-exposed regions

like the boy’s cheek. In the result produced by Cai et al.’s inpainting method,

the damaged chromatic information has been largely recovered. But the resulting

image still suffers from the un-realistic local contrast on those repaired regions. In

the result produced by the HDR plus tone mapping method, there is no significant

improvement shown for those over-exposed regions. In contrast, our method and

Guo et al.’s method both recover the damaged chromatic information in the over-

exposed regions and preserve local lightness contrasts. Again the overall brightness

of our result is better balanced than that from Guo et al.’s method. The results

shown in Figure 5.13 and Figure 5.14 also are consistent with what we observed

in Figure 5.11 and Figure 5.12.

In summary, the two related restoration methods are not very suitable for

correcting over-exposure in photograph. The image inpainting method will recover

the colour but will not produce correct brightness of over-exposed regions. As

a result, the local contrast and the reflection in the area around over-exposed

regions do not appear to be realistic with respect to natural light conditions. The

combination of general-purpose HDR and tone mapping method is not suitable for

correcting over-exposure neither. They are designed for dealing with large change

on dynamic range, not for the case of over-exposure correction which only need

about no more than 20% of change in dynamic range. Masood et al.’s method
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(a) Input (b) Masood et al. [54] (c) Guo et al. [45]

(d) Cai et al. [14] (e) HDR [58] + tone mapping [40] (f) Our result

Figure 5.11

often cannot find correct colour of over-exposed regions, since their approach only

considers the case of partial over-exposure. The best two performers are Guo et

al.’s method and the proposed method. However, the results from Guo et al.’s

method often seem to be the images taken with in-sufficient exposure time. The

reason is that there is not any process similar to HDR reconstruction involved in

their approach. In contrast, our approach produces well-exposed images.

5.4.2 Conclusions and future work

We present a new wavelet frame based approach for correcting pixels that are

affected by over- and under-exposure in an input photograph. Numerical results on
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(a) Input image from [45] (b) Masood et al. [54] (c) Guo et al. [45]

(d) Cai et al. [14] (e) HDR [58] + tone mapping [40] (f) Our result

Figure 5.12
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Photographs

(a) Input image from [45] (b) Masood et al. [54] (c) Guo et al. [45]

(d) Cai et al. [14] (e) HDR [58] + tone mapping [40] (f) Our result

Figure 5.13

(a) Input image from [40] (b) Masood et al. [54] (c) Guo et al. [45]

(d) Cai et al. [14] (e) HDR [58] + tone mapping [40] (f) Our result

Figure 5.14
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(a) (b)

Figure 5.15: Demonstration of the failure in the presence of chromatic aberration by
our algorithm.

real photographs show that our algorithm can more efficiently improve the visual

quality of both over-exposed and under-exposed regions of the input photograph

than some existing methods. There are still a few issues remaining when dealing

with certain types of over-exposure. One is chromatic aberration occurring near

the boundary of over-exposed regions (see Figure 5.15). In the proposed approach,

these aberrant values might be propagated into the over-exposed regions during

the chromatic recovery procedure, consequently unfaithful colourized result might

be produced. Another issue is the small halo-like artifacts shown in the image

with over-exposure. Currently there is no mechanism in our approach for removing

these halo-like artifacts. In the future, we will examine how to develop more robust

recovery procedure to handle this chromatic aberration problem and suppress halo-

like artifacts in photographs with over/under-exposure.
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