56,270 research outputs found

    Permutation orbifolds of heterotic Gepner models

    Get PDF
    We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed. We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three family models occur with abundance comparable to two or four.Comment: 49 pages, 4 figure

    ADE string vacua with discrete torsion

    Full text link
    We complete the classification of (2,2) string vacua that can be constructed by diagonal twists of tensor products of minimal models with ADE invariants. Using the \LG\ framework, we compute all spectra from inequivalent models of this type. The completeness of our results is only possible by systematically avoiding the huge redundancies coming from permutation symmetries of tensor products. We recover the results for (2,2) vacua of an extensive computation of simple current invariants by Schellekens and Yankielowitz, and find 4 additional mirror pairs of spectra that were missed by their stochastic method. For the model (1)9(1)^9 we observe a relation between redundant spectra and groups that are related in a particular way.Comment: 13 pages (LaTeX), preprint CERN-TH.6931/93 and ITP-UH-20/93 (reference added

    Applications of the Brauer complex: card shuffling, permutation statistics, and dynamical systems

    Get PDF
    By algebraic group theory, there is a map from the semisimple conjugacy classes of a finite group of Lie type to the conjugacy classes of the Weyl group. Picking a semisimple class uniformly at random yields a probability measure on conjugacy classes of the Weyl group. Using the Brauer complex, it is proved that this measure agrees with a second measure on conjugacy classes of the Weyl group induced by a construction of Cellini using the affine Weyl group. Formulas for Cellini's measure in type AA are found. This leads to new models of card shuffling and has interesting combinatorial and number theoretic consequences. An analysis of type C gives another solution to a problem of Rogers in dynamical systems: the enumeration of unimodal permutations by cycle structure. The proof uses the factorization theory of palindromic polynomials over finite fields. Contact is made with symmetric function theory.Comment: One change: we fix a typo in definition of f(m,k,i,d) on page 1

    Higher melonic theories

    Full text link
    We classify a large set of melonic theories with arbitrary qq-fold interactions, demonstrating that the interaction vertices exhibit a range of symmetries, always of the form Z2n\mathbb{Z}_2^n for some nn, which may be 00. The number of different theories proliferates quickly as qq increases above 88 and is related to the problem of counting one-factorizations of complete graphs. The symmetries of the interaction vertex lead to an effective interaction strength that enters into the Schwinger-Dyson equation for the two-point function as well as the kernel used for constructing higher-point functions.Comment: 43 pages, 12 figure

    On the refined counting of graphs on surfaces

    Full text link
    Ribbon graphs embedded on a Riemann surface provide a useful way to describe the double line Feynman diagrams of large N computations and a variety of other QFT correlator and scattering amplitude calculations, e.g in MHV rules for scattering amplitudes, as well as in ordinary QED. Their counting is a special case of the counting of bi-partite embedded graphs. We review and extend relevant mathematical literature and present results on the counting of some infinite classes of bi-partite graphs. Permutation groups and representations as well as double cosets and quotients of graphs are useful mathematical tools. The counting results are refined according to data of physical relevance, such as the structure of the vertices, faces and genus of the embedded graph. These counting problems can be expressed in terms of observables in three-dimensional topological field theory with S_d gauge group which gives them a topological membrane interpretation.Comment: 57 pages, 12 figures; v2: Typos corrected; references adde
    corecore