53 research outputs found

    Artificial Intelligence and Human Error Prevention: A Computer Aided Decision Making Approach: Final Report

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryFederal Aviation Administration / FA79-WA-436

    Building well-performing classifier ensembles: model and decision level combination.

    Get PDF
    There is a continuing drive for better, more robust generalisation performance from classification systems, and prediction systems in general. Ensemble methods, or the combining of multiple classifiers, have become an accepted and successful tool for doing this, though the reasons for success are not always entirely understood. In this thesis, we review the multiple classifier literature and consider the properties an ensemble of classifiers - or collection of subsets - should have in order to be combined successfully. We find that the framework of Stochastic Discrimination provides a well-defined account of these properties, which are shown to be strongly encouraged in a number of the most popular/successful methods in the literature via differing algorithmic devices. This uncovers some interesting and basic links between these methods, and aids understanding of their success and operation in terms of a kernel induced on the training data, with form particularly well suited to classification. One property that is desirable in both the SD framework and in a regression context, the ambiguity decomposition of the error, is de-correlation of individuals. This motivates the introduction of the Negative Correlation Learning method, in which neural networks are trained in parallel in a way designed to encourage de-correlation of the individual networks. The training is controlled by a parameter λ governing the extent to which correlations are penalised. Theoretical analysis of the dynamics of training results in an exact expression for the interval in which we can choose λ while ensuring stability of the training, and a value λ∗ for which the training has some interesting optimality properties. These values depend only on the size N of the ensemble. Decision level combination methods often result in a difficult to interpret model, and NCL is no exception. However in some applications, there is a need for understandable decisions and interpretable models. In response to this, we depart from the standard decision level combination paradigm to introduce a number of model level combination methods. As decision trees are one of the most interpretable model structures used in classification, we chose to combine structure from multiple individual trees to build a single combined model. We show that extremely compact, well performing models can be built in this way. In particular, a generalisation of bottom-up pruning to a multiple-tree context produces good results in this regard. Finally, we develop a classification system for a real-world churn prediction problem, illustrating some of the concepts introduced in the thesis, and a number of more practical considerations which are of importance when developing a prediction system for a specific problem

    A data-assisted approach to supporting instructional interventions in technology enhanced learning environments

    Get PDF
    The design of intelligent learning environments requires significant up-front resources and expertise. These environments generally maintain complex and comprehensive knowledge bases describing pedagogical approaches, learner traits, and content models. This has limited the influence of these technologies in higher education, which instead largely uses learning content management systems in order to deliver non-classroom instruction to learners. This dissertation puts forth a data-assisted approach to embedding intelligence within learning environments. In this approach, instructional experts are provided with summaries of the activities of learners who interact with technology enhanced learning tools. These experts, which may include instructors, instructional designers, educational technologists, and others, use this data to gain insight into the activities of their learners. These insights lead experts to form instructional interventions which can be used to enhance the learning experience. The novel aspect of this approach is that the actions of the intelligent learning environment are now not just those of the learners and software constructs, but also those of the educational experts who may be supporting the learning process. The kinds of insights and interventions that come from application of the data-assisted approach vary with the domain being taught, the epistemology and pedagogical techniques being employed, and the particulars of the cohort being instructed. In this dissertation, three investigations using the data-assisted approach are described. The first of these demonstrates the effects of making available to instructors novel sociogram-based visualizations of online asynchronous discourse. By making instructors aware of the discussion habits of both themselves and learners, the instructors are better able to measure the effect of their teaching practice. This enables them to change their activities in response to the social networks that form between their learners, allowing them to react to deficiencies in the learning environment. Through these visualizations it is demonstrated that instructors can effectively change their pedagogy based on seeing data of their students’ interactions. The second investigation described in this dissertation is the application of unsupervised machine learning to the viewing habits of learners using lecture capture facilities. By clustering learners into groups based on behaviour and correlating groups with academic outcome, a model of positive learning activity can be described. This is particularly useful for instructional designers who are evaluating the role of learning technologies in programs as it contextualizes how technologies enable success in learners. Through this investigation it is demonstrated that the viewership data of learners can be used to assist designers in building higher level models of learning that can be used for evaluating the use of specific tools in blended learning situations. Finally, the results of applying supervised machine learning to the indexing of lecture video is described. Usage data collected from software is increasingly being used by software engineers to make technologies that are more customizable and adaptable. In this dissertation, it is demonstrated that supervised machine learning can provide human-like indexing of lecture videos that is more accurate than current techniques. Further, these indices can be customized for groups of learners, increasing the level of personalization in the learning environment. This investigation demonstrates that the data-assisted approach can also be used by application developers who are building software features for personalization into intelligent learning environments. Through this work, it is shown that a data-assisted approach to supporting instructional interventions in technology enhanced learning environments is both possible and can positively impact the teaching and learning process. By making available to instructional experts the online activities of learners, experts can better understand and react to patterns of use that develop, making for a more effective and personalized learning environment. This approach differs from traditional methods of building intelligent learning environments, which apply learning theories a priori to instructional design, and do not leverage the in situ data collected about learners

    Reusable modelling and simulation of flexible manufacturing for next generation semiconductor manufacturing facilities

    Get PDF
    Automated material handling systems (AMHS) in 300 mm semiconductor manufacturing facilities may need to evolve faster than expected considering the high performance demands on these facilities. Reusable simulation models are needed to cope with the demands of this dynamic environment and to deliver answers to the industry much faster. One vision for intrabay AMHS is to link a small group of intrabay AMHS systems, within a full manufacturing facility, together using what is called a Merge/Diverge link. This promises better operational performance of the AMHS when compared to operating two dedicated AMHS systems, one for interbay transport and the other for intrabay handling. A generic tool for modelling and simulation of an intrabay AMHS (GTIA-M&S) is built, which utilises a library of different blocks representing the different components of any intrabay material handling system. GTIA-M&S provides a means for rapid building and analysis of an intrabay AMHS under different operating conditions. The ease of use of the tool means that inexpert users have the ability to generate good models. Models developed by the tool can be executed with the merge/diverge capability enabled or disabled to provide comparable solutions to production demands and to compare these two different configurations of intrabay AMHS using a single simulation model. Finally, results from simulation experiments on a model developed using the tool were very informative in that they include useful decision making data, which can now be used to further enhance and update the design and operational characteristics of the intrabay AMHS

    Towards an Expert System for the Analysis of Computer Aided Human Performance

    Get PDF

    Building well-performing classifier ensembles : model and decision level combination

    Get PDF
    There is a continuing drive for better, more robust generalisation performance from classification systems, and prediction systems in general. Ensemble methods, or the combining of multiple classifiers, have become an accepted and successful tool for doing this, though the reasons for success are not always entirely understood. In this thesis, we review the multiple classifier literature and consider the properties an ensemble of classifiers - or collection of subsets - should have in order to be combined successfully. We find that the framework of Stochastic Discrimination provides a well-defined account of these properties, which are shown to be strongly encouraged in a number of the most popular/successful methods in the literature via differing algorithmic devices. This uncovers some interesting and basic links between these methods, and aids understanding of their success and operation in terms of a kernel induced on the training data, with form particularly well suited to classification. One property that is desirable in both the SD framework and in a regression context, the ambiguity decomposition of the error, is de-correlation of individuals. This motivates the introduction of the Negative Correlation Learning method, in which neural networks are trained in parallel in a way designed to encourage de-correlation of the individual networks. The training is controlled by a parameter λ governing the extent to which correlations are penalised. Theoretical analysis of the dynamics of training results in an exact expression for the interval in which we can choose λ while ensuring stability of the training, and a value λ∗ for which the training has some interesting optimality properties. These values depend only on the size N of the ensemble. Decision level combination methods often result in a difficult to interpret model, and NCL is no exception. However in some applications, there is a need for understandable decisions and interpretable models. In response to this, we depart from the standard decision level combination paradigm to introduce a number of model level combination methods. As decision trees are one of the most interpretable model structures used in classification, we chose to combine structure from multiple individual trees to build a single combined model. We show that extremely compact, well performing models can be built in this way. In particular, a generalisation of bottom-up pruning to a multiple-tree context produces good results in this regard. Finally, we develop a classification system for a real-world churn prediction problem, illustrating some of the concepts introduced in the thesis, and a number of more practical considerations which are of importance when developing a prediction system for a specific problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Algebraic Topology for Data Scientists

    Full text link
    This book gives a thorough introduction to topological data analysis (TDA), the application of algebraic topology to data science. Algebraic topology is traditionally a very specialized field of math, and most mathematicians have never been exposed to it, let alone data scientists, computer scientists, and analysts. I have three goals in writing this book. The first is to bring people up to speed who are missing a lot of the necessary background. I will describe the topics in point-set topology, abstract algebra, and homology theory needed for a good understanding of TDA. The second is to explain TDA and some current applications and techniques. Finally, I would like to answer some questions about more advanced topics such as cohomology, homotopy, obstruction theory, and Steenrod squares, and what they can tell us about data. It is hoped that readers will acquire the tools to start to think about these topics and where they might fit in.Comment: 322 pages, 69 figures, 5 table

    Defining Dicta

    Get PDF
    The doctrine of stare decisis applies only to holdings of past cases, but scholars and courts have paid far more attention to stare decisis doctrine than to the distinction between holding and dicta, particularly in recent years. The lack of attention that the distinction receives may reflect a sense among legal analysts that they know dicta when they see it, but the problem is considerably more analytically complex than it may at first appear. In this Article, Professors Abramowicz and Stearns identify a number of structural problems that may affect whether statements in judicial opinions should be classified as holding or dicta. Drawing on a theoretical model that illustrates the role of the holding-dicta distinction in disciplining the application of stare decisis, they then develop four normative criteria and apply those criteria to each of the structural problems. After describing the weaknesses in various previous attempts to identify the holding-dicta line, the authors offer their own definitions. A holding consists of those propositions along the chosen decisional path or paths of reasoning that are actually decided, are based upon the facts of the case, and lead to the judgment. A proposition in a case that is not holding is dicta
    • 

    corecore