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Abstract

The design of intelligent learning environments requires significant up-front resources and expertise. These

environments generally maintain complex and comprehensive knowledge bases describing pedagogical ap-

proaches, learner traits, and content models. This has limited the influence of these technologies in higher

education, which instead largely uses learning content management systems in order to deliver non-classroom

instruction to learners.

This dissertation puts forth a data-assisted approach to embedding intelligence within learning environ-

ments. In this approach, instructional experts are provided with summaries of the activities of learners who

interact with technology enhanced learning tools. These experts, which may include instructors, instructional

designers, educational technologists, and others, use this data to gain insight into the activities of their learn-

ers. These insights lead experts to form instructional interventions which can be used to enhance the learning

experience. The novel aspect of this approach is that the actions of the intelligent learning environment are

now not just those of the learners and software constructs, but also those of the educational experts who may

be supporting the learning process.

The kinds of insights and interventions that come from application of the data-assisted approach vary with

the domain being taught, the epistemology and pedagogical techniques being employed, and the particulars

of the cohort being instructed. In this dissertation, three investigations using the data-assisted approach

are described. The first of these demonstrates the effects of making available to instructors novel sociogram-

based visualizations of online asynchronous discourse. By making instructors aware of the discussion habits of

both themselves and learners, the instructors are better able to measure the effect of their teaching practice.

This enables them to change their activities in response to the social networks that form between their

learners, allowing them to react to deficiencies in the learning environment. Through these visualizations it

is demonstrated that instructors can effectively change their pedagogy based on seeing data of their students’

interactions.

The second investigation described in this dissertation is the application of unsupervised machine learning

to the viewing habits of learners using lecture capture facilities. By clustering learners into groups based

on behaviour and correlating groups with academic outcome, a model of positive learning activity can be

described. This is particularly useful for instructional designers who are evaluating the role of learning

technologies in programs as it contextualizes how technologies enable success in learners. Through this

investigation it is demonstrated that the viewership data of learners can be used to assist designers in

building higher level models of learning that can be used for evaluating the use of specific tools in blended

learning situations.

Finally, the results of applying supervised machine learning to the indexing of lecture video is described.

Usage data collected from software is increasingly being used by software engineers to make technologies

that are more customizable and adaptable. In this dissertation, it is demonstrated that supervised machine
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learning can provide human-like indexing of lecture videos that is more accurate than current techniques.

Further, these indices can be customized for groups of learners, increasing the level of personalization in

the learning environment. This investigation demonstrates that the data-assisted approach can also be used

by application developers who are building software features for personalization into intelligent learning

environments.

Through this work, it is shown that a data-assisted approach to supporting instructional interventions

in technology enhanced learning environments is both possible and can positively impact the teaching and

learning process. By making available to instructional experts the online activities of learners, experts can

better understand and react to patterns of use that develop, making for a more effective and personalized

learning environment. This approach differs from traditional methods of building intelligent learning envi-

ronments, which apply learning theories a priori to instructional design, and do not leverage the in situ data

collected about learners.
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Chapter 1

Introduction

One of the problems facing institutes of higher education is how to provide adequate support for learning

that scales across departments, disciplines, and courses. Higher education increasingly makes use of courses

with large cohorts of learners and smaller instructor-to-learner ratios. Bloom [17] demonstrated that learners

who are taught in one-on-one learning have, on average, summative assessment marks two standard deviations

higher than those taught in a traditional classroom setting. Given this finding, a move to more individualized

learning seems appropriate.

One kind of technological solution aiming to provide personalized learning, and the result of decades of

academic research, is intelligent tutoring systems. These systems form models of learners and adapt the

learning environment based on learner performance, much the way a human tutor would. Despite several

commercial successes (e.g., [34],[113]) and continued development of the research field1, intelligent tutoring

systems have been deployed only in a few isolated cases and have introduced minimal changes in day-to-day

teaching and learning in higher education. In part this is an effect of the expense and labour required to build

an intelligent tutor: it requires the work of a domain expert to outline how concepts relate to one another, a

pedagogical expert to provide a method for determining when a learner has made a mistake and what should

be done to mediate the issue, and a content expert to build initial and remedial content to be delivered to

learners. Instructors in higher education rarely have such resources available to them, and instead have to

rely upon their own understanding of each of the aforementioned areas, understanding which may be limited

and which may be difficult to implement as an automated computational tutor.

Partly as a result of these difficulties, many institutions have taken a different approach to enhancing

learning with technology. Over the last decade universities and colleges have rapidly deployed online learning

technologies and learning management systems as an alternative to intelligent tutors, with cost effectiveness

and scalability in mind. These learning management systems include content creation and delivery solutions,

synchronous and asynchronous discussion forums, and multimedia streaming, capture, and playback systems,

and provide infrastructure support for learning activities. They are widely used across higher education

institutions, and augment both traditional teaching and learning experiences as well as distance and online

learning.

1In particular see the Intelligent Tutoring Systems (ITS) and Artificial Intelligence in Education (AIED) conference series,
as well as the Journal of User Modeling and User-Adapted Interaction (UMUAI).
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In learning management systems the focus is not on personalization of content as much as it is on antici-

pating the general types of misconceptions that learners may have and planning for them. The environments

are, in a sense, non-intelligent tutoring systems, where personalization of course content is difficult and the

instructor is relied upon to make an a priori identification of the kinds of problems learners may have. Fol-

lowing this, the instructor forms some hypotheses as to how the problems would be best dealt with, builds

content to address these concerns, and finally determines where the content should be put in the learning

environment such that the appropriate learners will see it. Through successive offerings of the same course,

the instructor refines the hypotheses and content as appropriate, until a change disrupts this process such as

the course being taught by another instructor, the curriculum changes, or the backgrounds of the learners

taking the course change.

These non-intelligent systems benefit from a reduction in the number of experienced programmers and

knowledge engineers needed, which has helped scalability and thus led to greater adoption in higher education.

Despite this, these systems suffer from some of the same resource issues that affect intelligent tutoring systems.

In order to ensure that all learners are supported, a breadth of content needs to be developed that fits the

expected needs and goals of those learners. In sufficiently large or diverse courses this results in a team of

instructional design experts being used to build a comprehensive and pedagogically sound course offering.

The end result is the same in terms of a priori effort: building instructional interventions requires significant

up front modelling of learners, pedagogical approaches, and domain-specific content.

Learning management systems do afford some flexibility for instructors to make interventions if learners

are having problems. These interventions are often in response to explicit problems that a learner encounters,

such as a message requesting help being posted to an online discussion forum. Using their knowledge of

the domain, the instructor can respond to these problems in an ad hoc manner, even seeking out new

knowledge in order to respond to the learner, something intelligent tutoring systems do not do. Yet, the

learning management system emphasizes up-front development of learning content, and does not encourage

the personalization of this content to different learners. Further, instructors can only respond to that which

they observe; as more interaction happens between the learner and the learning content management system,

the instructor’s ability to see the problems that the learners face and the ability to intervene in a timely

manner is reduced.

1.1 Problem

The question I address in this dissertation is how insights based on the behaviours of learners can be formed,

and how instructional experts might use those insights to form instructional interventions. In a traditional

teaching situation, insights are gained in situ from the interaction the instructional experts (such as instruc-

tors, instructional designers, and tutorial assistants) have with learners. In technology enhanced learning

situations the interaction is generally between the learner and the learning environment, and learning man-
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agement systems do not make these interactions available to instructional experts, hampering their ability

to make interventions. Instead of relying so heavily on a team of experts who have mapped out the space

of possible challenges, difficulties, and misconceptions learners might encounter a priori, I believe that the

instructional experts involved in delivering a course can use learner interaction data and make use of their

contextual knowledge of the content, cohort, and pedagogy to provide a more individualized learning ex-

perience. By considering the issues that learners face while the course is being offered, a smaller highly

contextual problem space (e.g., how to teach a specific concept that a specific group of learners are having

issues with) need be considered instead of a broader general problem space (e.g., the design of a whole course

for learners with a variety of backgrounds). This has potential to reduce efforts and costs in providing more

individualized learning across institutional contexts.

Coming up with remedies for all conceptual problems (as in intelligent tutoring systems), or expert hypoth-

esized problems (as in learning management systems) is time consuming. Instead, by focusing instructional

activities on observed learner interactions and dealing with the actual problems a given cohort of learners is

facing, the up-front planning of instructional remediation is minimized. This new approach, a data-assisted

approach, is flexible with respect to both changes in curriculum as well as changes in learner demographics

and pedagogical approaches. As courses evolve and learners with new characteristics interact with resources

in new ways, the instructor can be made well-informed of learner activities, and use his or her expertise to

identify and mediate problems that arise.

Instructors often employ pedagogical interventions as a part of their normal teaching practice in traditional

lectures – it is well known that master teachers observe the behaviours of their students and adapt instruction

on demand [33] – but as course sizes grow and interaction moves online, both the observation of social cues

that inform the instructor as well as the ability of that instructor to intervene based on those behaviours

becomes more difficult. In this dissertation, I show how making the hidden behaviours of learners visible to

the instructional expert allows him or her to form insights, and enables him or her to react to these insights

from technology enhanced learning environments with instructional interventions.

1.2 Solution

The solution I propose to the issue of improving personalized learning experiences in technology enhanced

learning environments is to enable instructional experts with an in situ data-assisted approach based on the

interactions of learners. Instead of pre-loading the learning environment with knowledge about the learning

process (as in the intelligent tutoring system approach), this data-assisted approach sees the instructor

and learning environment work together to augment the learner experience. As learners interact with the

environment, their activities are summarized and presented to the instructional expert for consideration.

With knowledge of the domains involved, the expert explores, labels, and acts on this knowledge by creating

instructional interventions, either inside or outside of the learning environment. Thus the data-assisted
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approach embraces and enables the contributions of instructional experts throughout the learning process,

unlike many other solutions.

The key aspect of the data-assisted approach to supporting instructional interventions in technology

enhanced learning environments is that both the insights and the interventions are the result of a dialogue

between the intelligence in the system and intelligence of the instructional expert. Traditionally there are two

forms of intelligent learning environments: those that are adaptive, and those that are adaptable. Adaptive

environments are those described as intelligent systems that automatically change in response to user activity

based on some pre-programmed knowledge base and rule set. This classification places intelligence in the

software system itself. Adaptable environments are those which are personalizable based on direct requests

from the learner. This represents a view that the intelligence exists in the learner alone. The continuum

between these two approaches is referred to as the locus of control, and historically has placed artificial

intelligence techniques at one end and human computer interaction techniques at the other. Any particular

system can exist along this continuum, however, trading off control of the adaptation process to either the

system or the end user.

In most higher education circumstances, such a diametric view of intelligence need not be accepted.

Instructional experts are often directly responsible for maintaining the teaching and learning environment, and

the knowledge of these experts can be leveraged by including them in the process of adaptation, fundamentally

changing the locus of control. Whereas adaptive environments require much up-front planning, and adaptable

environments are often limited in the depth of support they can provide, data-assisted environments use

instructional expertise to provide deep pedagogical support as needed without additional upfront development

costs. This inclusion of instructional experts as active participants in the intelligent educational environment

is what makes the data-assisted approach novel. By including these experts, the data-assisted approach offers

opportunity for minimal up-front design of the learning environment while providing deep and meaningful

instructional interventions.

The data-assisted approach can been seen as being made up of two pieces. The first of these aims to gener-

ate pedagogical insight for instructional experts based on behaviours of learners. To do this, these behaviours

are captured, aggregated, and represented in a way that experts can make sense of them. Sensemaking is not

easily defined, as different kinds of instructional experts might form different kinds of conclusions based on a

given visualization or statistical representation. However, through interaction with behaviour data, experts

such as instructors can gain a sense of learners’ progress and problems in a course, instructional design-

ers can compare courses to one another and understand how they are similar or different, and educational

technologists can understand how learners using a system are similar to one another.

The second piece of the data-assisted approach is the support of instructional interventions based upon

these insights. To do this, the insights should be pedagogically relevant, and mechanisms should exist to

tie insights to customizations of the learning environment. Not all learning scenarios call for a fine-grained

instructional intervention such as the suggestion of new content (common in adaptive hypermedia solutions)
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or the generation of a new problem set (common in intelligent tutoring systems). However, insights should

lead to interventions within the teaching and learning process, and these interventions may be non-automated

and high level (e.g., broad pedagogical changes made by an instructor) or automated and low level (e.g., the

adaptation of content within a software system).

Satisfying these two goals enables a form of individualization of learning in higher education that is

different from that of traditional adaptive or adaptable systems. The amount of up-front modelling and

knowledge engineering required which is typically high in adaptive systems is reduced, while use of the deep

pedagogical knowledge of the instructional expert (which is missing from adaptable systems) is increased.

There is a cost in terms of time or effort on the part of the instructional experts themselves; however, these

experts are already devoted to doing this kind of work in institutes of higher education.

In this dissertation I define the data-assisted approach to supporting instructional interventions in tech-

nology enhanced learning environments. I provide examples of this approach, and demonstrate how this

approach can generate insights in different kinds of instructional experts. I describe how these insights can

be turned into instructional interventions, which can positively impact the learning environment.

1.3 Contributions

Creating teaching and learning interventions in technology enhanced learning environments is difficult. This

difficulty comes from a lack of support in making the interactions learners have with the learning environ-

ment available to instructional experts. The solution is to assist these experts with data relating to these

interactions, making it easier for the expert to achieve insight into their learners and provide instructional

interventions as appropriate.

This work is multi-disciplinary in nature, and uses techniques from Computer Science to make contribu-

tions to the disciplines of Computer Science, Education, and the emerging discipline of Technology Enhanced

Learning. Sitting at the intersection of Computer Science and Education, Technology Enhanced Learning

involves the creation, exploration, and understanding of new technologies and how these can be used for

teaching and learning.

The techniques from Computer Science used in this dissertation come primarily from the fields of Artificial

Intelligence and Human Computer Interaction. In particular, data mining, machine learning, and information

visualization are used to demonstrate, discover, and verify claims of human and machine performance in

forming insights from data and providing appropriate instructional interventions.

At a broad level, this work is a reformulation of intelligent learning environments to explicitly include

the behaviours of learners and the sensemaking capabilities of instructional experts as they interact in the

teaching and learning process. Whereas the traditional view of intelligent learning environments is one in

which the software is imbued with artificial intelligence and replaces instructional experts at run time, this

conceptualization takes a systems view of the technology enhanced teaching and learning process and includes
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experts as in situ actors who can respond to learner behaviours. This reduces the need for a priori design

and development of instructional interventions for situations that might not occur as the responses of the

system are grounded in the behaviours of actual learners and their interacts with the learning environment.

In demonstrating this approach, several secondary contributions to areas relating to artificial intelligence

and human computer interaction have been made. These contributions include:

• A demonstration that showing instructors the interactions of learners with technology-based learning

environments support making high level pedagogical decisions. This dissertation provides evidence of

how insight is generated using both online and blended teaching modalities, and is of interest to the

communities of computer supported collaborative learning and user modelling.

• The improvement of methods for creating navigational indices in lecture video through the use of end-

user data. This dissertation also provides a method by which to compare the suitability of a set of

indices for a set of users. These results are an example of automated instructional interventions, and

are relevant to the communities of artificial intelligence in education and educational data mining.

• The replicable discovery of a correlation between formal assessment outcomes and the patterns of

behaviour of learners in lecture capture environments. This dissertation provides a method for model

formulation and quantification of precision of said models, the results of which are useful in generating

insight into the student use of learning technologies, a topic of interest to the communities of educational

data mining and learning analytics.

1.4 Dissertation Outline

This dissertation is separated into eight chapters. A brief overview of related literature will be discussed

in Chapter 2 with a focus on the area of learner modelling. Many different approaches have been explored

to support a personalized learning experience, and the theories and techniques of learner modelling are at

their core. After this, a more in-depth discussion of the data-assisted approach will be outlined in Chapter

3. This discussion will step through the details of the approach, focusing on how it might be implemented

by software developers and how it relates to modern learner modelling theory.

The data-assisted approach offers a broad contribution to the field of technology enhanced learning,

and can be realized in various ways. To motivate this, three scenarios involving different kinds of courses

and instructional experts will be presented in Chapter 4. Each scenario will then be related to a chapter of

detailed work showing how exposing learner behaviours generates insight (chapters 5–6) which is used to form

instructional interventions (Chapter 7). The work concludes by looking at avenues for further investigation

(Chapter 8).
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Chapter 2

Background

This chapter surveys the activities that have taken place over the last thirty-five years towards achieving

personalized and adaptive learning in computational educational environments. The literature is both broad

and deep, and the focus presented here is on overview of the field of learner modelling which, broadly

described, aims to create computational structures or processes that describe the activities or mental states of

learners. These models are then used in intelligent tutoring systems or other interactive learning environments

to personalize the learning experience. These models are also important for the data-assisted approach where

they are reflected back to instructional experts through visualizations or statistical representations.

Section 2.1 provides an overview of the field of learner modelling focusing on the historical and traditional

techniques used to create models. A description of the more recent efforts towards data-driven modelling is

presented in §2.2. Finally, this chapter ends with a brief discussion of some of the methods that have been

used for the creation of adaptive learning experiences in §2.3.

2.1 Traditional Learner Modelling

2.1.1 Overlay Models

One of the earliest approaches to learner modelling which is still in use today is that of the knowledge overlay

[35]. In this method, student behaviour is compared directly to known “correct” behaviour of an expert. As

a learner makes a choice in the learning environment, a computational coach determines whether the decision

corresponds to a portion of the expert model and updates the learner model as appropriate. The learner

model then acts as a hypothesis of what the learner knows, and other computational processes can use this

model to customize interaction with the learner.

This approach is effective in well-defined domains, but requires known correct solutions which often

entails ontological modelling of the domain (which can be time consuming). The strictness of overlay models

introduces tractability problems in ill-defined domains where the model is not a set of possibilities known

a priori. The lack of an explicit representation of the assumptions leading to the formulation of the model

can lead to inconsistencies as a learner may appear to understand a concept (for example, by guessing on an

exam) that contains prerequisites the learner has demonstrated a lack of understanding in (by answering a

related question on an exam incorrectly).

7



Most often, overlay models do not maintain the how of the user modelling activity, only the what. This

tends to make them less suitable for dynamic learner modelling and probabilistic learner modelling as updates

to the model limit the ability for future iterations of reasoning because the context leading to the formation

of the model has been lost.

2.1.2 Stereotypes

In general, learner modelling suffers from many of the cold-start problems that other model-based artificial

intelligence techniques suffer from: an accurate and detailed model requires a bulk of observation that is

difficult to obtain before a model is already in place. The use of expert defined knowledge bases (stereotypes)

for a canonical set of users is often used to try and alleviate these problems.

Rich [104] is one of the first to introduce the use of stereotypes in learner modelling through a book

recommendation system, Grundy. In this system, a single-rooted directed acyclic graph represents classes of

traits of users with increasing levels of specificity. Classes in the earlier levels of the graph might be very

broad (e.g., the learner is a “religious person”), while classes further down the hierarchy a more specific class

would override the traits of the general class (e.g., the learner is a “christian”). Triggers denote an action

that determines when a stereotype should be applied to a learner.

Grundy disambiguates between the user model formed through inheriting stereotype information and the

model that is formed through direct observation or inference from user action. Together the two models join

to form the user synopsis (USS), which is probabilistic in nature.

Stereotypes can be built either by soliciting expert input or through machine learning, and even the early

work on Grundy was done with an eye towards adapting stereotype attributes based on how well they fit

actual learners. In Grundy, stereotypes are a set of triples containing a string description (facets), a relative

strength by which the facet applies to the stereotype (values, a number1from -5 to 5), and the level of certainty

with which the facet applies (ratings, a number from 0 to 1,000). Stereotypes are updated by modifying both

the value and rating for a particular facet. In the case of reinforcement of a facet, the stereotype value is

changed using equation 2.1, while the stereotype rating is changed using equation 2.2.

new value =
old value× const+ new info value

const+ 1
(2.1)

new rating = old rating +
new info rating

old rating
(2.2)

More recent learner modelling approaches use automated clustering techniques such as k-means, hierar-

chical clustering, or fuzzy clustering, to form stereotypes based on bottom-up data. For instance, [55] uses a

combination of all three clustering techniques on both behaviour and perception data from learners. Some

of the resultant clusters created by these techniques are then correlated with a high significance to cognitive

1Grundy also supported facets that were string literals, but did not provide a means for updating stereotypes based on these.
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style (in particular, field dependance as outlined by [123]) and level of expertise.

It should be noted that the nature of a stereotype as an incomplete body of knowledge about a user makes

it more appropriate to use stereotypes with inductive reasoning approaches [78]. The output of applying a

stereotype in the reasoning process is a model (or piece of a model) that has some probability of being correct,

and computational processes acting upon this model should consider this uncertainty appropriately.

2.1.3 Knowledge Tracing

The goal of knowledge tracing is to build a cognitive model of a learner’s skill acquisition over the learning

process. This technique seeks to “monitor students’ changing knowledge state as they practice a complex

cognitive skill, to individualize the practice sequence to enable students to master the skill efficiently and to

accurately predict student performance” page 254 of [39].

The foundation of knowledge tracing is Anderson’s ACT-R theory of skill knowledge [2], refined from the

ACT* production system work done earlier [3]. In brief, the theory suggests that cognitive skills are composed

of production rules: small operations of data manipulation organized around atomic goals. Resolution of rules

is done repeatedly with the facts available to a learner, causing them to demonstrate a particular higher level

cognitive skill. Inability to resolve these rules in such a way that a skill is demonstrated indicates a lack of

having the correct rules, and suggests a need for modification to the rules (learning).

Classical knowledge tracing applies this idea directly, and considers a learner model as a set of these

production rules with each rule in one of two states, either learned or unlearned. State for a given rule

can only change from unlearned to learned; there is no procedure to model forgetting a rule once learned.

Learners are compared against the ideal learner model at each step in a problem solving situation, and the

probability that a learner has learned a given rule is the sum of the probability that a rule was learned

previously and the probability that the rule will transition to a learned state given the current opportunity.

The comparison of a learner’s current state to that of an expert bears remarkable similarities to over-

lay models, with the ideal model of the former directly equivalent to the expert model of the latter. The

distinctive difference between these two methods is the process by which the model is constructed; overlay

models consider learner knowledge as a declarative artifact and do not make any assumptions about the

way a learner’s knowledge can change given a particular model, while knowledge tracing observes learners

transitioning through a procedural space similar to a state transition graph.

In some of the early work of knowledge tracing, applications included incorrect models of production rules

as buggy models [3] to be used in building intelligent tutoring capabilities. This has been expanded upon to

cover situations where learners make mistakes (called slips) or guess [2], to include individualized learning

rates [3, 100] for these and other parameters to support personalization, and to include support for evidence

obtained from noisy environments [13].

As a technique, knowledge tracing has proven to be very robust, and various large scale systems have

been built with this approach (e.g., [34]). Its principal weakness is that it suffers from many of the same
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downsides as overlay models; e.g., that models must be complete, correct, and thorough, and are ideally

suited for well-defined domains where domain experts are able to perform knowledge engineering tasks.

2.1.4 Constraint-Based Models

Constraint-based modelling encodes domain knowledge into a set of rules that describe the appropriateness

of a particular solution state. These rules include both a relevance clause and a satisfaction clause, with the

former determining whether the rule is applicable to the given situation and the latter determining whether

the solution is correct or not [87]. A learner model is then represented as the set of solution states that the

individual has violated.

This form of modelling is described in Ohlsson’s theory of learning based on performance errors. In this

work, he argues that it is through making mistakes and correcting them that we demonstrate learning [98].

Providing a correct answer does not signify the learner understands; instead, the learner may just not yet

have made a mistake and may have inadvertently answered correctly. It is the times the learner demonstrates

mistakes that indicate learning is happening.

Ohlsson provides further insight with respect to remediation based on learner models:

“[i]t is not useful for a tutoring system to know that student S has bug A rather than bug B,
unless the system has in its repertoire some instructional action that is more relevant for A than
for B. If all its instructional actions are equally appropriate (or inappropriate) for both bugs, then
the distinctions between the two bugs does not matter...” (From [97])

In this he argues that the support a tutoring system is capable of giving is a factor in determining the

appropriate learner modelling approach.2 The constraint-based approach more easily captures the vastness

of false knowledge: a constraint designer doesn’t need to consider all of the steps a learner has taken to get

to their current understanding, just whether the learner is violating any particular constraint.

The direct comparison of constraint-based modelling and knowledge tracing has been done by several

scholars [91, 82, 92, 81] as both techniques aim to capture learner knowledge, and both techniques have been

the root of successful tutoring implementations (see [87, 113, 91] for a partial list). There is no consensus

over which method is more appropriate for a given situation, but the two methods can be compared more

generally:

• Constraint-based modelling takes a declarative approach and describes a lack of knowledge, while model

tracing takes a procedural approach and formalizes the steps of learning.

• Constraint-based modelling does not require an expert model as model tracing does, but requires

expertise in the formulation of domain constraints. It is unclear, and likely both application and domain

2Ohlsson is not the only scholar to consider the question of what a tutoring system should be using learner models for. John
Self, in his seminal work summarizing the challenges of learner modelling, provides four ‘slogans’ for learner model usage by
intelligent tutors; (1) avoid guessing – get the learner to tell you what you need to know; (2) don’t diagnose what you can’t treat;
(3) empathize with the learner’s believes, don’t label them as bugs; (4) don’t feign omniscience – adopt a ‘fallible collaborator’
role [108]. Slogan two in particular reaffirms Ohlsson’s statement as to whether diagnosis is a worthwhile endeavour, while the
other slogans become a sort of genesis for the open and scrutable modelling techniques described in §2.1.7.
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specific, whether the creation of constraints is as difficult to obtain as an expert model, suggesting that

in different circumstances one approach may be more suitable than the other.

• Constraint-based modelling is not affected by the size of the task state space, but by the size of

the domain solution space. A model tracing system is affected by the task space size but not the

domain solution space. For procedural domains where the task space and the domain solution space

are the same, both methods have the same scalability issues though may have different computational

tractabilities depending on how they are implemented.

• Both constraint-based modelling and model tracing can recognize misconceptions and provide remedi-

ation. Model tracing uses buggy models [3] while constraint-based modelling uses buggy constraints

[82], though the latter approach has been criticized as not being required, and that a violation of a

constraint is demonstration enough of a theoretical bug [92].

• Feedback at a fine grained level (both fine grained in a domain sense as well as in a temporal sense) is

more natural for model tracing systems while less common in constraint-based modelling systems [91].

The most significant critique of constraint-based modelling is that while it can be used to determine

whether a learner is at a solution state, it does not necessarily identify how the learner arrived there, and

thus may not be able to remediate appropriately [82]. Whether remediation can be provided (or the detail

to which it can be provided) depends on how the domain is modelled, and whether the constraint authors

have used buggy or path constraints in their modelling.

Some authors have suggested that the creation of model tracing production rules is more difficult than

constraints [82]. The difference in perceptions of difficulty may lie in the level of expertise and cognitive

load required to consider a domain holistically when authoring constraints or production rules. Creating

constraints requires a broad view of the domain and an understanding of how concepts in it relate to one

another at a deep level. This suggests that the knowledge engineer must have the ability to reflect on the

domain, generally seen as a high order meta-cognitive skill. A procedural understanding of the domain, which

is lower in educational taxonomies such as [16, 4] and may be more ingrained from practitioners’ day-to-day

experiences, aligns better with the knowledge tracing approach. The question of which approach is most

suitable might then be considered from a resource availability perspective: if domain experts who have deep

meta-cognitive and conceptual knowledge about the domain are available it may be better to use constraint-

based modelling. Conversely, if domain practitioners with more procedural experience are available it may

be more appropriate to use the knowledge tracing approach.

The question of scope and knowledge engineering process when building a learner modelling system might

also be important to considering which approach to use, and the constraint-based approach offers a quick way

to provide basic modelling. By creating broad general constraints, a system can be iteratively built (perhaps

as knowledge tracing information is being collected) and refined. This tradeoff allows for a balance between

simplicity and tractability versus precision.
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2.1.5 Episodic Models

Episodic learner modelling [120] is based on Levine’s investigations in concept learning [85]. In this model

it is suggested that learners follow set hypotheses, modifying them only when demonstrated incorrectly, and

only then modifying them such that the hypothesis is satisfiable. Learners don’t change their method of

enquiry until they have exhausted the search for their currently held hypothesis.

The learner model in these systems takes the form of a series of episodes made up of examples learners

may have studied in course material as well as solutions they have provided through exercises. These cases are

built up through the use of a diagnostic system which has access to task descriptions, domain knowledge, and

learner artifacts created during learning (in Weber’s original work on the topic these were LISP code fragments

[120]). Domain knowledge is represented as a hierarchical arrangement of concepts and generalizations or

specializations of these concepts. Rules are provided with the concepts, and can capture optimal answers,

suboptimal but correct answers, or incorrect answers. The first of these two sets of rules align roughly with

knowledge tracing production rules, while the last is equivalent to a buggy model. Tasks in the episodic

system are represented as algorithms that can be applied to solve a particular problem. These algorithms

are hierarchical arrangements of concept rules that describe the task, and the learner model is thus a series

of instantiations of concepts describing a path through problem tasks.

Episodic learner modelling can be thought of as a superset of knowledge tracing, where the knowledge

gained about individuals is not lost between tutoring sessions. At any given stage in problem solving, the

historic trace of the learner can be examined to customize feedback or perform evaluation of the learner’s

knowledge. Episodic learner modelling differentiates itself from overlay models in that it may relate to but

does not stress the expert model. An expert model can be used to evaluate the correctness of a given

episode, but feedback for the learner is compiled both from this as well as from the historical perspective of

user actions.

Individualization done by tutors using this approach is broader than in the case of knowledge tracing

or constraint based modelling, because of this historic record. For instance, two learners who demonstrate

an identical conceptual understanding of content may be tutored in different ways depending upon previous

attempts those learners have made to understand that content. This could be included in both constraint-

based and knowledge tracing methods, but would require explicitly representing the historical attempts of

learners as either constraint satisfaction conditions or production rules, and would not be in keeping with

the underlying theories for these approaches ([98] and [2] respectively).

2.1.6 Active Modelling

The active learner modelling paradigm proposed by McCalla et al. [89] leverages many of the ideas present in

episodic modelling, but emphasises the need to create ad hoc representations of learners for specific purposes.

The paradigm is best described in the authors’ own words:
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“It is common to think of a ‘learner model’ as a global description of a student’s understanding
of domain content. We propose a notion of learner model where the emphasis is on the modelling
process rather than the global description. In this re-formulation there is no one single learner
model in the traditional sense, but a virtual infinity of potential models, computed ‘just in time’
about one or more individuals by a particular computational agent to the breadth and depth
needed for a specific purpose. Learner models are thus fragmented, relativized, local, and often
shallow.” (Page 53 of [89])

In addition to reconsidering the trend of monolithic model creation, the active learner modelling approach

was used in large scale systems that demonstrated learner modelling in non-tutoring environments. For

instance, in the I-Help environment, computational agents are used to match learners to one another to

receive help for particular problems they may be encountering. Each agent maintained a model of the learners’

knowledge, interests, cognitive style, eagerness, helpfulness, interaction preferences, opinions of peers, and

user actions [28]. A decentralized negotiation between agents was used to determine who should be helping

whom in an on demand fashion [118]. The S/UM learner modelling environment [25] is tutoring-based, but

similar to I-Help it focuses on matching human tutors to one another for collaborative and reciprocal writing

sessions. The learner models that result from these situations are used only to match peers together and not

to provide automated remediation to learner misconceptions as was the case of constraint-based tutoring and

knowledge tracing paradigms.

The active modelling approach embraces diverse sources of information as well as the involvement of non-

computational entities in the learner modelling process.3 In both the I-Help and S/UM systems, learners

could self identify their own knowledge level as well as both the knowledge level and how willing a peer was

to help. The breadth of the sources of data makes contradictory statements both possible and probable.

Similar to episodic systems, contradictions must be solved during the reasoning process itself.

The domains in which the active modelling approach has been deployed makes evaluation of the approach

uncertain. Unlike the rigorous and quantitative experimentation used in knowledge tracing experiments,

systems built on the active learner modelling paradigm tend to be qualitatively evaluated without control

populations. While there doesn’t exist evidence to suggest that the active learner modelling approach is

limited to non-traditional cognitive tutoring, the flexibility of the input data makes it particularly appropriate

in these kinds of situations.

2.1.7 Scrutable and Open Modelling

Most user models are hidden from end users, and are created from evidence only indirectly manipulated by

the learner being modelled. Scrutable and Open modelling change this and include the user as a first class

participant in both the production and consumption of learner models.

3Neither of these features are expressly forbidden in the previous outlined approaches, but implementations of other forms
of learner modelling did not typically take this information into account. While it might be tempting to attribute this change
to the active approach, it is more likely the result of increased interest in building learner models for non-tutoring environments
as is described more in §2.1.7, as well as the increased level and diversity of technology used by learners.
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Scrutable user modelling and the foundations of making models available to learners comes from the

seminal work of Judy Kay (notably [75], also [38] and [77]). In these she argues that the end user should be

able to know the process by which a user model is formed, the terms and nomenclature that the user model

uses, and that the user should be able modify the model and observe how their actions change the model.

She goes on to argue that in doing so privacy is better achieved, accountability is strengthened, accuracy and

correctness of the model can be better determined, and that reflective learning and meta-cognitive understand

can be better supported. This is supported by statements by Paiva et al. and their work on externalizing

learner models [99], where they suggest that supporting the inspection of learner models, by computational

or human agents, also provides important self assessment mechanisms and allows the user to aid the system

in preventing misconceptions.

Kay identifies three actors in a user modelling system: the end user, the programmer (focusing on the

intent the programmer had in developing the system), and the system itself (referred to as the machine).

Each of these actors has knowledge which they share with others (public knowledge), and each has knowledge

that they keep to themselves (private knowledge). She argues that for a model to be scrutable, each aspect of

it must be attributed to a programmer who is responsible for providing an explanation of how the tool works.

This requirement necessarily ties the scrutabiltiy of a model with the tool being used to update, generate,

and evaluate that model; a requirement that is not present in other learner modelling paradigms.

At first consideration the use of stereotypes as used in Grundy [104] in overlay modelling doesn’t seem

as relevant to scrutable outcomes. A stereotype is a sort of shortcut to fit users into different coarse grained

categories, and this doesn’t correspond with the high individualization requirements of scrutability. Inter-

estingly, Kay outlines that stereotypes are useful, and beyond the creation of the user model itself. Instead,

stereotypes have value in the reflective activity learners undergo when they interrogate their learner models

for information. For instance, when answering the broad questions of a learner as to whether they are “...a

beginner?” or “What would be different if I were an expert?”, stereotypes of other learners can be useful

in understanding how one’s own model differs from experts [76]. This offloads both the identification and

remediation of the novice-expert gap onto the learner as opposed to onto a computational tutor found in

knowledge tracing or constraint based modelling systems.

While scrutable user models were being developed, other researchers were working on a similar concept

dubbed open learner modelling [26]. This approach relaxes the conditions set out by Kay in scrutable

modelling, and argues that it is the content of the model that users need to access, and not necessarily the

method by which the content was determined. Thus the goal of open learner modelling is on displaying the

model and letting users interact with it, making the models inspectable [27]. The display of models is largely

done graphically, and interaction can take many different forms for different purposes including awareness and

reflection (which has developed as a whole sub-field of open learner modelling [18]), argumentation [126, 19],

evaluation [19], or summarization.

To whom a learner model is made available is another question that open learner modellers have studied.
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While the vast majority of open models are intended directly for use by the learner, work has been done

making models available to other learners [32], instructors [31], and parents [84].4For instance, Bull et al. [30]

allowed learners to control whether others could see the learners model, and allowed the learner to make the

models available in a psuedenomenous form (e.g., “User 65’s model”) or a form that revealed their identity.

These learners could then share their models with instructors or peers, and experimental results demonstrated

that learners were more willing to open their models to other learners in their course, especially when those

learners were also their friends. Hansen [66] goes further and gives fine grained access to learner models in

the iHelp Courses learning content management system. These models are created by the instructor using a

query tool which allows for the inclusion of both fine grained dynamic information (e.g., page views, number

of postings in discussion forums, etc.) and static information (e.g., name, email address, etc.). Models can

then be shared with different cohorts of learners depending on the purpose; online learners might be able to

see detailed models in order to increase a sense of community, while in class learners may be limited to more

privacy preserving models. Different stakeholders in the academic process may have different levels of access

as well; tutors may not be able to see learner email addresses or names, while instructors may be able to see

everything (if they so choose). This approach blends the open learner modelling and active learner modelling

approaches [65].

Providing learner models to individuals on the periphery of the learning activity has also been investigated.

Most notably models of young learners where parents are involved ensuring that motivation and outcomes

remain high. Lee and Bull [84] have involved parents by creating separate language and visualizations for

them in order to summarize more quickly the kinds of misconceptions their child may have. Zapata-Rivera

et al. [127] provide similar summarized performance visualizations for parents of learners who are taking

part in national testing, while learners received more in-depth comparisons of their performance compared

to their peers.

A discussion of open and scrutable learner modelling is not complete without acknowledging the bur-

geoning field of learning analytics. Siemens refers to learning analytics as the “use of data, learner-produced

data, and analysis models to discover information and social connections, and to predict and advise on learn-

ing” [110]. Researchers working in the field of learning analytics rarely identify themselves as doing learner

modelling per se, but both the techniques and outcomes are similar to those who are doing open learner

modelling. A more full discussion of learning analytics as a field is addressed in §2.2.1.

2.1.8 Group Modelling

Modelling groups of people has been broadly investigated in the fields of management, human resources, and

psychology. Even within the fields of education and computer mediated communication, there are dozens

of conferences and journals that describe how people interact in groups. Instead of providing an overview

4A comprehensive overview of the many open learner modelling systems can be found in [29].
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of this literature, this section will focus on specific efforts to characterize learning groups within the field of

learner modelling, where the result of the modelling effort is to enable an intelligent learning environment.5

Hoppe [71] approaches the intelligent tutoring task as a question of how to best form groups of individuals

in an effort to support cooperative learning and social constructivism. In this work, he posits that the

cognitive models of learners can be used to generate three interesting situations where groups of learners are

useful:

• Where a competency imbalance allows one learner to take the role of a tutor, thus leading to an increase

in competency of the second learner.

• Where a competency balance between two learners encourages competitive behaviour, and thus an

increase in competency for both learners.

• Where a problem requires specialized knowledge that no single learner can provide, and thus can only

be solved by creating a group of learners with complementary competencies.

Hoppe continues to explicitly describe these situations and inputs as parameters in a formal sense using

overlay models; given s as a particular student, T as a particular skill or topic that mastery has been achieved

in, and K as the set of all possible knowledge elements (where T ⊆ K). A student model for student s is

SM(s) where SM(s) ⊆ K. He then defines primitive functions describing whether a student knows some

topic (equation 2.3) has difficulties with the topic (equation 2.4), and whether a particular problem P is

solvable by a group of learners (equation 2.5).

knows(s, T )⇔ T ⊆ SM(s) (2.3)

has difficulties(s, T )⇔ T − SM(s) 6= ∅ (2.4)

solvable(P, s)⇔ for each t ∈ P : knows(s, t) where p ⊆ K (2.5)

A competency imbalance is then described as:

can help(s1, s2, T )⇐ knows(s1, T ) ∧ has difficulties(s2, T ) (2.6)

A competency balance, and thus competitive situation, is described as:

competes(s1, s2)⇐ ∀t ∈ T : knows(s1, T )⇔ knows(s2, T ) (2.7)

5For an overview of the field from an educational psychology perspective, the interested reader is directed to the work of
Dillenbourg et al. [44]
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And the specialization knowledge situation as:

Given group G = {s1, ..., sn}, P is adequate for G⇐ not exists i ∈ {1..n}

such that solvable(P,Gi) ∧ solvable(P,∪SM(G−Gi))
(2.8)

Winter [122] broadens the investigation of group modelling, and looks at larger sizes of collaborative

learners and domains beyond the cognitive. In his work, teams of nine learners are put together and asked to

do software development activities over an academic term. He models the cognitive knowledge and skills of

each person, as well as teamwork skills (using Belbin’s team role taxonomy [14]), and a measure of personality

characteristics which he refers to as “social intelligence”. He includes in his model a characterization of the

task, showing strong relationship to the active learner modelling paradigm described in §2.1.6. Winter goes

on to use C4.5 data mining to develop a decision tree which can be used to predict group success based on

individual learner models.

The work on the I-Help 1-to-1 system [117] leveraged many of the ideas of Hoppe’s working in a running

tutoring system. In it, learner models included a self-diagnosed cognitive element, as well as the willingness of

a learner to help and their availability. Learners could search the system for peers and a matchmaker process

would determine those peers who were best suitable to help in real time. Like Hoppe’s work, teams were

limited to two individuals, and the implementation of the matchmaking algorithm favoured the unbalanced

criteria where one learner was in the role of the tutor. Later iterations of the tool included a market-based

incentive mechanism to provide extrinsic motivation for learners to help their peers.

Various authors have taken the approach of modelling groups of learners as an aggregation of individual

learner models. This is most prevalent in the open modelling research (e.g. in [30, 127, 79, 66]), where

learners or tutors are often able to graphically compare their knowledge or progress through curriculum to

other learners. In addition to work done by learner modelling researchers, the use of graphical methods to

compare learners has also been well studied in the fields of computer supported collaborative learning and

social network analysis.

Groups of learners in social networks have also been modelled using visual techniques. Notable here

is the work of Erickson and Kellogg [49] on Social Translucence. In this work, graphical proxies are used

to represent participants in situational interactions. For instance, a wedge might be used to represent a

lecture, with the lecturer identified by a small circle at the tip of the wedge, and the audience members each

identified by small circles at the broad portion of the wedge. As audience members interject with questions

or comments, their circular proxy moves towards the lecturer, indicating a change of status. Erickson and

Kellogg indicate such social proxies have four basic characteristics [from [49]]:

1. Figure-Ground. A social proxy typically consists of two components: a relatively large geometric shape

with an inside and an outside and sometimes other features that represent the online situation or

context (e.g. a circle), and much smaller shapes positioned relative to the larger shape (e.g. small
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colored dots) that represent participants.

2. Relative Movement. The presence and activities of participants in an online context are reflected in the

location and movement of the smaller shapes relative to the larger one. Most often, the relationships

and movements of the proxys visual elements have a metaphoric correspondence to the position and

movement of peoples bodies in face-to-face analogs of the online situation

3. Public Not Personal. Social proxies are public representations. That is, everyone who looks at a

social proxy for a given situation, sees the same thing. It is not possible for participants to customize

their views of a social proxy. This is important because it is what supports mutual awareness and

accountability: I know that if I see something in the social proxy, that all other viewers can see it as

well.

4. Third Person Perspective. Social proxies are represented from a third-person point of view. When

I look at a social proxy, I see myself represented in it in the same way that other participants are

represented. This opens an important avenue for learning. As I act within system, I can see how my

actions are reflected in my personal representation, and thus I can begin to make inferences about the

activities of others.

This is similar to the work of Upton and Kay in Narcissus [116], which builds a visual group model of

learner interactions with software development systems. Like the social translucence modelling of Erickson

and Kellogg, the group model is shown as an aggregation of individual models of learners. Unlike the social

translucence work, each participant in Narcissus has a detailed individual model (in the open/scrutable sense)

which is inspectable when observing the group model. This allows for learners to compare themselves to their

team members when considering the overall group model.

Finally, measuring a group of learners over time as a multivariate entity has been the goal of researchers

interested in quantifying social capital. This measurement is often done through analysis of artifacts of

interaction (for instance, discussion forum messages or collaboratively authored documents). The work of

Daniel at al. [42, 41], for example, uses data mining of learning artifacts to determine initial probability values

for an expert-generated Bayesian Belief Network (BBN). This BBN models elements of the community such

as trust, shared understanding, hospitality, and task awareness. When loaded with values, the effect of the

actions of learners on the community can be observed. As the learners’ progress introduce new actions, the

values in the group model can be updated giving a constant understanding of the changing social capital.

2.1.9 Conclusions

Initially, learner modelling activities were focused on building models in the cognitive domain for intelligent

tutoring systems. The two dominant modelling techniques for tutoring systems were and continue to be the

knowledge tracing and constraint-based modelling approaches. The community has been unable to clearly
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distinguish which method is a better approach and, despite attempts by several authors to do so, there

remains a lack of clarity as to when one approach should be used instead of another [82, 92, 81].

The differences between the two approaches relate to the educational theories which they are based

upon; one could create a constraint-based model which effectively described the set of production rules of a

knowledge tracing system, and such a system would be functionally equivalent to knowledge tracing system.

Similarly, one could invoke production rules that describe only the set of errors a learner could make and is

thus functionally equivalent to the constraint-based satisfaction clauses.

Perhaps the more useful consideration between the two approaches is in the initial formalization of the

production rules or satisfaction clauses. Consider for a moment educational taxonomies such as Bloom’s [16]

or Anderson’s [4] reformulation; if subject matter experts with meta-cognitive knowledge of the domain are

available, then it may be more efficient to have them use the constraint-based approach over the knowledge

tracing approach, while the reverse maybe be true if the experts available have hands-on practical experience

with the domain but not meta-cognitive knowledge of it. Thus a distinguishing feature between the two

approaches is on how they are positioned towards different groups of modellers, and not so much as on how

they can be used to describe learners. This consideration has yet to be explored in the literature.

The storage and computational ability of modern computers has pushed both the boundaries of techniques

and the purposes for which a model was needed beyond the intelligent tutoring system; it has become possible

to store every interaction a learner had with a system such that the purpose for modelling could be dynamic

(as in the episodic and active approaches), and interaction with the learner about their model became a

desired featured (as in either the open or scrutable approaches).

It is unclear if these newer techniques are as appropriate for the original goal of cognitive modelling

inside of intelligent tutoring systems. For instance, if one is creating an intelligent tutor for the domain of

atmospheric physics, is using an active and episodic approach appropriate, or is a constraint-based model

more accurate and efficient? Are multiple episodes compatible with production rules and, if so, how does one

include reasoning over previous interactions with respect to the current state of the learner? These issues are

poorly addressed by the current body of literature; instead, each technique is typically introduced with new

purposes for which that technique may be well suited.

2.2 Data-driven Learner Modelling

Data-driven approaches use a statistical analysis of the behaviours of learners to form or inform descriptive

models. This approach is a significant divergence from the techniques described previously in §2.1. Compared

to cognitive modelling methods (such as knowledge tracing and constraint-based modelling) which tend to

have deep roots in cognitive psychology, data-driven approaches provide for learner models which see their

structure emerge from end-user interaction and not theory.

The division between the theory-driven and data-driven approaches does not have to have to be a hard
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boundary, and a growing amount of work in the area is recognizing this. Learner modelling researchers can use

data-driven modelling techniques to verify theory and, conversely, use theory to make tractable the problem

of what data and techniques should be chosen for understanding learner behaviour. In this way data-driven

approaches can work with theoretical approaches in a sort of feedback loop, constantly validating theories

yet providing new hypothesis for further investigation.

The move to a descriptive understanding of learners based on their actions prompts another interesting

shift for the field. Previously, theory drove implementation and implementations were used to change learner

behaviours. Achieving statistical significance has been problematic for researchers in the field, but the

end goal was either a positive increase in learning or one of the many indicators linked to learning.6 The

descriptive understanding made available by data-driven approaches is now much more akin to categorization

activities in other sciences, such as early taxonomy creation in the field of Biology. Instead of proactively

determining the cause and effects of interventions through experimentation, the learner modelling researcher

can act in a completely observational capacity and characterize learners as they go through the learning

process. A side effect is that it is relatively easy to outfit educational tools with data collection features, and

many data-driven models have risen from large cross-domain studies where statistical significance has been

achieved.

Research in this subfield of e-learning primarily comes largely out of a series of workshops, conferences,

and journals on educational data mining and learning analytics which are described in more detail in the

remainder of this section.

2.2.1 Educational Data Mining and Learning Analytics

The term Educational Data Mining (EDM) has been recently popularized in learner modelling research

circles as a focal-point for data-driven approaches to learner modelling. The kinds of data used are varied

and purpose-driven, and Ryan Baker, generally seen as one of the founders of the area, provides a definition:

“Educational Data Mining is an emerging discipline, concerned with developing methods for
exploring the unique types of data that come from educational settings, and using those methods
to better understand students, and the settings which they learn in.” (Page 4 of [10])

Baker goes on to an analysis of the literature to date [10] and indicates four different significant pur-

poses which EDM researchers are aiming to understand: student modelling, domain knowledge modelling,

pedagogical support, and validation of educational theory.

Romero [105] provides an insight into the target of EDM research by adding academics (administrators)

and educators as principal entities e-learning systems must interact with. Whereas the bulk of traditional

learner modelling research is aimed at learner-facing systems such as intelligent tutoring systems, it is common

6Although some researchers have managed to provide large cross-domain investigations of their technologies, most results are
limited to within a domain or even within a cohort of learners.
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to see EDM researchers building systems to be used by instructors, instructional designers, and administra-

tors.

Learning Analytics (LAK) has much overlap with EDM. Formed independently, and made up of a body

of researchers that includes some EDM researchers as well as others, learning analytics has been defined by

Siemens as:

“...the measurement, collection, analysis and reporting of data about learners and their contexts,
for purposes of understanding and optimising learning and the environments in which it occurs.”

(Page 1 of [112])

Siemens goes on to differentiate learning analytics from institutional analytics or business intelligence, by

suggesting that the target audience for learning analytics is explicitly not administrators, but learners and

educators [112]. This differentiation isn’t universally agreed upon; other definitions of learning analytics, such

as the following by Educause Next Generation Learning Challenges program [46], include administrators as

a participant in the system:

“[T]he real-time use of learning analytics by students, instructors, and academics advisors to
improve student success.” (From [47] as cited by [48], page 4)

2.2.2 Motivations and Techniques

In a review of the literature, Baker [10] distills a number of different techniques commonly used in the field

of EDM (summarized in Table 2.1). Frias-Martinez et al. provide a more comprehensive description of

these techniques, though they aim their work specifically at the User Modelling and Adaptive Hypermedia

communities [54]. A high level summary of these works is that there are two broad approaches to data

mining, unsupervised and supervised, and that these approaches correspond to techniques for the labelling of

data (clustering) or the discovery of rules between variables in the data (association rule mining, classifying)

respectively.7

Unsupervised methods, such as k-means, fuzzy k-means, expectation maximization, and hierarchical

clustering can be used to take data and group instances into categories. Kardan and Conati [74] used k-

means to group learners into categories of “high” and “low” clusters depending on whether or not there

were significant learning gains after they interacted with in an online courseware system. Hershkovitz and

Nachmias [68] used between-groups linkage methods (a hierarchical clustering technique) to group learners

into three motivation-based groups corresponding to “engagement” if learners are highly motivated, “source”

if learners have extrinsic motivation, or “energization” if learners were quick and highly performant. Brooks et

al. [22] use k-means to group learners into six different categories based on their amount of usage of a lecture

playback system, corresponding to learning strategies the students may be employing over an academic term.

Merceron and Yacef [90] use a number of data mining techniques, including k-means clustering, to cluster

7Frias-Martinez et al. provide much more than this high level discussion, and those interested in understanding how specific
techniques work is encouraged to read [54] for details.
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Category of Method Goal of Method Key applications
Prediction Develop a model which can infer

a single aspect of the data (pre-
dicted variable) from some com-
bination of other aspects of the
data (predictor variables)

Detecting student behaviors (e.g.,
gaming the system, off- task be-
havior, slipping); Developing do-
main models; Predicting and un-
derstanding student educational
outcomes

Clustering Find data points that naturally
group together, splitting the full
data set into a set of categories

Discovery of new student behav-
ior patterns; Investigating sim-
ilarities and differences between
schools

Relationship Mining Discover relationships between
variables

Discovery of curricular associa-
tions in course sequences; Discov-
ering which pedagogical strate-
gies lead to more effective/robust
learning

Discovery with Models A model of a phenomenon devel-
oped with prediction, clustering,
or knowledge engineering, is used
as a component in further predic-
tion or relationship mining.

Discovery of relationships be-
tween student behaviors, and stu-
dent characteristics or contextual
variables; Analysis of research
question across wide variety of
contexts

Distillation of Data for Human
Judgement

Data is distilled to enable a hu-
man to quickly identify or classify
features of the data.

Human identification of patterns
in student learning, behavior, or
collaboration; Labeling data for
use in later development of pre-
diction model

Table 2.1: Data mining techniques commonly found in EDM research, from [9] as cited in [10].
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learners based on the mistakes they made in academic exercised. Regardless of the method used to cluster

learners, labels are applied to the clusters by the investigators and are often motivated by qualitative or

theoretical research.

Supervised methods require annotated data, usually provided by human experts. This data is made up

of a set of instances, each of which is made up of a set of attributes and a category label. Machine learning

algorithms, such as C4.5, k-nearest neighbour, or support vector machines, use this data to create models

describing relationships between the attributes and the categories that exist. These models can then be used

to predict the category of future instances without requiring manual labelling. Breşfelean [51] provides a fairly

simple example of this, where learners were given questionnaires about their background (such as secondary

school enrolment characteristics, gender, etc.) and goals (an undergraduate diploma, a post graduate degree,

etc.). Using the C4.5 algorithm, a J48 decision tree was created that was able to model which background

attributes would affect learner goals, to an accuracy of 88.68%. Rus et al. [106] provide a more elaborate

use of supervised learning which is more indicative of the current state of the field. In this work a variety

of techniques were used to create learner mental models as either “high” “intermediate” or “low” based on

a set of 284 learner-provided essays. Each essay was analyzed using three different methods; an expert-

defined taxonomy, n-grams, and expert-defined descriptions, and each method corresponds to a different set

of attributes to be considered (from seven taxonomical entries for the first method, to over 1,038 weighted

words for the last method). The investigators showed that an accuracy of 76.31%(κ = 0.63) could be achieved

using Bayesian belief networks when considering expert-defined descriptions.

It is common for educational data mining researchers to cluster or classify data with multiple methods

using the WEKA toolkit [69]. Consumption of analytics information tends to be done through different

forms of information visualization. It is not uncommon to compare learner data through a myriad of bar

charts, line graphs, or other tools common in data mining suites such as pentaho [102] and Tableau [114],

and various researchers have built platforms on these methods, such as the Student Activity Monitor [59].

Novel visualizations of learner data are often purpose driven and more limited in their scope. The Purdue

University project Course Signals [115] provides an example of a very simple visualization backed by 20

indicators of success from the Blackboard learning content management system. In this system, learners are

shown a traffic-light inspired image for each course they are involved with: green indicating the learner is on

track, yellow indicating the learner could do better, and red indicating that the learner is in danger of not

meeting criteria.

2.2.3 Differentiating between EDM and LAK

Differentiating the fields of educational data mining and learning analytics has been a concern of several

researchers. Siemens takes the position that educational data mining encompasses both learning analytics and

academic analytics, [112] the former of which is aimed at governments, funding agencies, and administrators

instead of learners and faculty. This distinction is not one that all agree with: Baepler and Murdoch, for
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instance, define academic analytics as an area that “...combines select institutional data, statistical analysis,

and predictive modeling to create intelligence upon which learners, instructors, or administrators can change

academic behavior” page 3 of [8]. Baepler and Murdoch go on to attempt to disambiguate educational data

mining from academic analytics based on whether the process is hypothesis driven or not:

“Analytics is associated with a scientific, hypothesis-driven approach, while data mining has a
legacy with strategic business techniques and marketing. The fact that the latter method – data
mining – typically lacks a hypothesis to drive an investigation can seem troubling, but it’s a
distinction that might be rendered immaterial when it produces insights. That is to say, if a
model works, even if one does not understand exactly how it works, the results may still be
valuable even if they lack an originating hypothesis.” (Page 2 of [8])

The authors also claim that the work done in the EDM field is exploratory in nature, but do not provide

specifics about how they come to this conclusion. A brief review of past EDM conferences suggests that

much of the published work in the field is scientific work iterating on previous results [96, 58, 60, 95], making

the distinction of EDM as exploratory in comparison to LAK questionable. Further, the level of statistical

rigour required for publication at the EDM conference series is much higher than the LAK conference series,

while the latter provides venues for a more diverse form of publication.8

Perhaps a better distinction between the EDM and LAK communities is in the roots of where each

community originated. Authorship at the EDM annual conference is dominated by researchers coming

from the intelligent tutoring paradigm. These researchers are most often associated with computer science

departments, and the community has strong roots in publishing at the Artificial Intelligence in Education

(AIED) and Intelligent Tutoring Systems (ITS) conferences.9 These communities model learners with the

end goal of creating intelligent learning environments; the models are runnable, prescriptive, and papers often

include a discussion of interventions or meditations that take place because of aspects of the learner models.

The authorship at the LAK annual conference is also heavily participated in by researchers from com-

puter science departments, but includes a mix of researchers from philosophy and education departments as

well. Papers presented at the last LAK conference did not focus on intelligent learning environments, and

topics such as visualization for human intervention and the analysis of analytic information received more

attention.10 Thus the modelling of learners is often to gain deeper insight into their behaviours, but not to

build any particular software system which automatically adapts or mediates based on this behaviour.

Regardless of the differences between the LAK and EDM communities, the two areas have significant

overlap both in the objectives of investigators as well as in the methods and techniques that are used in the

investigation.

8The 2011 EDM conference provided traditional peer-reviewed, short and long papers, and a demonstration track. The 2012
LAK conference included these forums, as well as tutorials, workshops, panels, and a design briefing track.

9Before the conference series was founded in 2008 workshops run at a mixture of predominantly computer science confer-
ences, including several AIED and ITS conferences, as well as the User Modelling and Adaptive Hypermedia (UMAP) and the
Association for the Advancement of Artificial Intelligence (AAAI) conferences.

10No papers from the 2011 proceedings for this conference mentioned intelligent tutoring systems by name, and only four of
the papers (including this author’s) mentioned artificial intelligence explicitly as an area of study, though techniques commonly
attributed to the area of artificial intelligence were commonly used.
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2.2.4 Ecological Approach

The ecological approach [88] developed by McCalla builds on previous work including active modelling [89]

and purpose-based [94] modelling. The approach considers the codification of the interaction of learners with

learning resources to be the key element in creating usable and situated learner models. This process is best

described by the author himself:

“In a phrase, the approach involves attaching models of users to the information they interact with,
and then mining these models for patterns that are useful for various purposes. The information
and the data mining algorithms interact with one another in an ecosystem where the relevance
and usefulness of information is always being adjusted to suit the changing needs of learners and
teachers and to fit changes in the external environment and the system’s perception.”

(Page 1 of [88])

McCalla divides the learner model into two parts; the first representing the characteristics of a learner

that may be true for multiple learning activities. These characteristics include items such as gender, affective

state, learning style, etc. The second portion of the model is the episodic history, which covers a range of

information relating to a single learning activity, such as learner evaluation of content, results of interaction

with the content, or even keystroke level details captured during interaction with the content. Both portions

of the model are associated with content after it has been interacted with by a learner, and these learner

model attachments become the basis for high level activities of an intelligent learning environment such as

content adaptation, recommendation, or customization.

These models are then associated with learning objects in the system, and reasoned over for particular

purposes in an on-demand manner:

“This gradual accumulation of information and the focus on end use are two key aspects of the
ecological approach. The third key aspect of the ecological approach is the purpose - based use
(in the sense of McCalla, Vassileva, Greer and Bull, 2000) of the information associated with the
content, to achieve a particular goal...it is the purpose that determines what information to use
and how it is to be used. Further this determination is made actively (in the sense of McCalla,
Vassileva, Greer and Bull, 2000) at the time the purpose is invoked: no apriori interpretation
needs to be given to the information.

Thus, the ecological approach for educational domains boils down to this: each time a learner is
interacting with a learning object, the learner model for that learner (in its current instantiation,
of course) is attached to the learning object. Over time this means that each object collects many
learner models and these can be mined for patterns of particular use to a given application.”

(Page 5 of [88])

McCalla suggests that the ecological approach is most suited for learner-centric constructivist pedagogies,

although he provides references to his own work with others that includes elements of social constructivism

and situated cognition [117]. A criticism of the ecological approach presented by Frielick [56] paints it as a

“...neo-Darwinian attempt to apply artificial intelligence to education...” where human traits are “...reduced

to other kinds of disembodied ‘objects’ that, like the earth, can be ‘mined’ for useful resources...”. Frielick

goes on to suggest this is an antithesis of ecological11and espouses the work of Bateson [12] suggesting that the
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mind is an emergent property of the larger mental systems in which we exist. He then poses a redefinition of

what an ecological approach might be, as an “ecosystemic process of transforming information into knowledge,

in which teacher, subject and student relationships are embedded or situated in a context where complex

interacting influences shape the quality of learning outcomes” [56]. This description shares a similar quality

with McCalla’s in that context is an important factor for determining success of learning. It differentiates

from McCalla’s in that it only considers interaction between persons to be valuable: content in the form of

intelligent learning environments or static learning objects plays little to no value in forming expertise, which

he claims “can only be gained in the real presence of intercorporeal engagement with a master or expert”

[56].

Several researchers have outlined systems similar to the ecological approach12. The Massive User Mod-

elling System [23] by this author and others describes a decentralized semantic-web system for collecting

learner interactions. Each interaction of significance is represented in an opinion, which is temporal in nature

and may be described using any number of ontologies.13 Opinions are routed to software systems called

consumers who either reason over opinions for immediate use (e.g., content recommendation) or enrich the

opinion with more information and rebroadcast it. In this way, a collection of different e-learning tools can

share information about learners for on-demand interventions. Similar to this is the attention metadata effort

from Najjar [93], Wolpers [124], and Duval [45] which, while currently only applied to e-learning, is aimed

at the broader effort of realizing interaction-based data-driven approaches in a general case. Compared to

the MUMS approach, the attention metadata schema is more rigid and has several predefined categories

for technical, semantic, and contextual information surrounding the content use. Several kinds of learning

environments (blogs, instant messaging applications, browsers, content management systems, etc.) have been

modified to produce attention metadata.

2.2.5 Conclusions

Data-driven approaches have had an impact on how and why learner modelling is practised. In the traditional

approach, a learner model was created by a pedagogical expert for a specific purpose and perhaps even a

specific group of learners. The model was a codification of important attributes of the learner as envisioned by

the expert, and was tied to the pedagogical theory the expert practised. Data-driven approaches change this

in that the model emerges from the interaction data of the learners with learning systems: this interaction

is often multi-modal, and can be with content, software applications, or with other learners and instructors.

11Frielick further attacks this as part of the “...modernistic reductionism that plague much of the literature on instructional
design, learning objects, and e-learning environments” [56] In this statement he is not wrong; the ecological approach, and all
of educational data mining, views learners as complex entities that can be modelled by considering various sources of evidence,
usually learner-system interactions. Learning objects are also reductionist attempts to describe content and its structure.

12It might be useful to note that while authors of these systems seem to share much in mind with McCalla’s approach, none
of the systems actually attach learner models directly to the learning content. Instead of being learning object focused, they are
interaction metadata focused, and use the metadata that forms the learner models as the principal artifact of interest. Further,
neither work explicitly indicates their goal to adhere with the ecological approach.

13Opinions are codified as RDF fragments.
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The diminishing role of the content expert is particularly stark given that the exciting work in the field a

decade ago was largely based on the semantic web, a technology that required human expertise.

Data-driven approaches have largely been made more tractable by the increased use of technology in daily

lives: in the most extreme cases, all interactions except for internal processes of a learner are mediated and

monitored through computational devices.14The broad deployment of learning management systems within

institutes of higher education has furthered the ability of researchers to investigate data-driven approaches.

Whereas early learner modelling activities required a dedicated cohort of students willing to use the system

(and a researcher willing to support this use), many data-driven activities can be done on the activities of

students in whole programs, departments, or universities with minimal extra effort.

2.3 Instructional Remediation Through Adaptation

Remediation of the learning process by adapting content or the presentation thereof is commonplace through-

out many forms of education, formal and informal. In higher education this is largely done by the instructor

who notes the behaviours of learners as they interact in a course and changes lectures, assignments, exam-

inations, or other learning activities as appropriate. Instructional designers can also play a critical role in

determining appropriate remediation, and use their knowledge of educational theory, pedagogy, and content

to build adaptations that increase the motivation and performance of learners. The focus of this section of

the background work is on a brief survey of automated adaptation techniques – those interventions which are

done by intelligent systems instead of by the instructor or instructional designer. While traditional remedi-

ation can be used with the data-assisted approach, and will briefly be discussed in Chapter 4, the emphasis

here is on describing the automatic or semi-automatic methods that are currently used in conjunction with

learner modelling.

2.3.1 Content Adaptation & Sequencing

By far the most common instructional intervention done in intelligent learning systems is content adaptation

and re-sequencing of content. The area of Adaptive Hypermedia in particular provides many different examples

of content adaptation based on learner models. Popular techniques include adapting the form of content to

fit the learning style or personality style of the learner [7, 24, 70, 61], the level of granularity of the content

to appropriately address the particular issues a learner may be facing [119], or the sequence of content pieces

that change how the learner navigates between various topics in the system [73, 52]. In a survey on the area,

Conlan describes four axis of adaptation [37]:

• Adaptive Navigation: Customization of the link structure of content based on a learner model. The

navigation presented by the system determines the amount of guidance and freedom a learner is given.

14With the work being done in correlating learner behaviours with neurological indicators such as [67], it’s perhaps a question
of when and not if we might be able to broadly data mine learners’ internal processes.
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Evidence has been shown that depth of knowledge in a topic leads to less linear navigation.

• Structural Adaptation: Customization of the spatial structure of content based on a learner model.

Techniques such as maps, fisheye lenses, filters, and pivot browsing can be used to adapt the selections

that are available to the learner.

• Historical Adaptation: Adapting content to show the temporal nature of access throughout the system.

Techniques such as footprints, breadcrumbs, or landmarks that are made by the learner as they progress

through content can be used. More recently, and outside the description given in [37], collaborative

historical adaptations can be shown (e.g., [11]).

• Adaptive Presentation: Customizing content based on a learner model. Conlan suggests that artifacts

of adaptation can begin at the word level, and be aggregated up into sentances, paragraphs, and pagelets

which describe an atomic topic. Different pagelets can be created for different learners based on various

aspects of the learner model.

One of the larger activities that has been done to support the delivery and adaptation of content in learning

content management systems has been the work on learning objects. This has led to a standardization of the

format of content (IMS Content Packaging), the metadata that describes this content (IEEE Learning Object

Metadata), and the order in which content should be presented (IMS Learning Design).15 All significant

learning content management systems now adhere to these standards (or derivatives thereof, such as SCORM).

These standards focus on interoperability issues of online learning content, and provide some minimal learner

modelling and adaptive sequencing opportunities. A more full description of this area can be found in this

authors’ previous work [20].

Comparing the adaptation capabilities of adaptive hypermedia systems versus learning content manage-

ment systems is similar to the discussion of how intelligent tutoring systems differ from learning content

management systems; adaptive hypermedia systems are largely small scale systems that have a high speci-

ficity to some context (domain, particular pedagogical approach, etc.) while learning content management

systems are widely deployed across contexts but provide minimal flexibility or adaptation. In both cases,

significant a priori work is required to encode instructional information into the learning environment.

One technique of content sequencing and adaptation that reduces the need for extensive knowledge en-

gineering is collaborative filtering such as in [125]. This technique is used heavily in product selection for

e-commerce, the quintessential examples being Amazon book recommendations and Netflix movie recom-

mendations. In this approach learners are suggested content that was consumed by peers they are most

similar with. Several challenges exist with collaborative filtering as an adaptive tools for e-learning: First,

collaborative filtering algorithms must determine which learning artifacts and learner behaviours adaptation

takes place on. There is minimal exploration capability. Second, the instructional expert is largely removed

15See [103] for an overview of these various e-learning standards.
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from the system and unable to correct poor recommendations. For instance, if a common negative behaviour

pattern manifests itself (such as the misidentification of a core concept and the reading of content unrelated

to the problem) this will be reinforced by recommending non-optimal content to other learners. Third, col-

laborative filtering techniques only help to identify what content should be recommended, not when it should

be recommended. Thus, techniques to identify when an adaptation should take place are required as well.

Finally, collaborative filtering is susceptible to the cold start problem, where a lack of historical information

early on leads to poor or incomplete recommendations.

Making content navigation more adaptable has also been well explored. Common methods of doing this

include faceted browsing and pivot browsing. In the former, content is tailored through a set of filtering criteria

the user provides, and results of searches or navigation indices are pruned accordingly. Pivot browsing is

similar, but the list of criteria on which to filter is made up of a set of folksonometric tags that users have

put on content. When viewing a list of content that is tagged with multiple values (for instance, one that

is tagged with the values “social”, “constructivism”, and “newton’s method”), the learner can pivot their

view of recommendations by clicking on a particular tag (for instance, to see more pieces of content about

newton’s method, they may click on the last tag). These forms of adaptation are almost entirely end-user

driven, though one could imagine hybrid systems that use both collaborative filtering as well as faceted

browsing or pivot browsing to form accurate yet flexible navigation for learners.

2.3.2 Expertise Recommendation

Recommending experts or peer learners to interact with has also been explored in the area of artificial

intelligence in education and adaptive hypermedia. Notably, the I-Help system [28, 117] was designed to

model learners and recommend to them peers with similar interests. Recommendation was user-driven, and

a variety of social and economic mechanisms were employed to encourage participation. Learners could chat

with one another in real-time, and leave feedback about the expertise and helpfulness of their peer when help

sessions ended. The I-Help system then included this feedback in future recommendations.

Cristea and Ghali [40] suggest a system that hybridizes expertise and content recommendation into one

tool, the My Online Teacher (MOT) system. Similar to the I-Help system, the intent of the recommendation

is to find a peer who can act as a tutor for the learner seeking help. MOT also includes a domain model,

unlike I-Help, and uses it to identify social groups that might be appropriate for the learner, as well pieces of

content. Formal evaluations, such as learner results on quiz questions, are included in the MOT pedagogical

model, which allows it to “unlock” new content when a sufficient level of achievement has been reached.

2.3.3 Adaptive Testing

While not done within the same research communities as content and expertise recommendation, adaptive

testing is a widely used technique amongst educational psychologists. In adaptive testing systems, the results

of asking one question are used to determine which question to ask next. It is often used for physiological
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or mental state testing (e.g., [64, 57]) in order to reduce the overall burden on the subject being tested. It

can also be used across domains quite easily, and the results of adaptive testing have been shown to correlate

with the results obtained from traditional testing [86].

Adaptation in adaptive testing is most often hidden from the end user, intending not to be of obvious

benefit to themselves.

2.3.4 Assessment for Learning

Institutes of higher education typically use grades to assess student performance. These grades are ordinal

in form, and are often expressed through numbers (e.g., 1 through 4, where 4 is a better grade), letters (e.g.,

A through D, where A is a better grade) or percentages (0–100%, where 100% is a better grade). Grades

can be assigned to learners in many different ways, with two common methods being criterion assessment,

where better grades indicate mastery of the subject, and normative assessment, where learners are ranked

against one another through their grades. Grades are then used throughout the institution (and beyond)

to determine the qualifications of individuals for various purposes, often relating to certification (e.g., being

awarded a degree) or acceptance for studies (e.g., indicating that prerequisite courses have been completed

satisfactorily).

The assessment for learning movement differentiates itself from this typical use of grades and instead

emphases the role assessment can have in enhancing the learning process. It has its roots in an extensive

literature review conducted by Black and William [15] which conclude that using assessment mechanisms

to aid learning instead of to evaluate learning can lead to sizable learning gains (an effect size between 0.4

and 0.7). The breadth of their review describes many different strategies used by teachers to incorporate

assessment into the learning process and, from this, the Assessment Reform Group16 identifies the core of the

area as “...the process of seeking and interpreting evidence for use by learners and their teachers to decide

where the learners are in their learning, where they need to go and how best to get there” [5]. In the same

publication, this group identified ten key principles that should be followed in the classroom in order to make

learning gains:

• Assessment for learning should be part of effective planning of teaching and learning

• Assessment for learning should focus on how students learn

• Assessment for learning should be recognised as central to classroom practice

• Assessment for learning should be regarded as a key professional skill for teachers

• Assessment for learning should be sensitive and constructive because any assessment has an emotional

impact

16The Assessment Reform Group [6] was an informal group of 14 researchers who were involved in a number of British and
European collaborative partnerships between 1989 and 2010.

30



• Assessment should take account of the importance of learner motivation

• Assessment for learning should promote commitment to learning goals and a shared understanding of

the criteria by which they are assessed

• Learners should receive constructive guidance about how to improve

• Assessment for learning develops learners capacity for self-assessment so that they can become reflective

and self-managing

• Assessment for learning should recognise the full range of achievements of all learners

Research on assessment for learning has focused activities instructors and learners can do to change the

learning process by using assessment mechanisms. It seems reasonable for technology to contribute to this

as well and, while the area of learner modelling has little mention of its compatibility with the assessment

for learning field, many of the principles described here show up as explicit core activities of specific learner

modelling paradigms. Scrutable and open learner modelling in particular focus on communicating to learners

details of their progress and goals, focusing on building meta-cognitive awareness of learning activities.

Similarly, some of the activities of intelligent tutoring systems can be considered as approaches compatible

with assessment for learning, depending on whether feedback delivered aim to promote meta-cognitive skills.

Methods from educational data mining are highly relevant as well, as long as they are used to inform

instructional activities instead of just characterizing cohorts of learners. Finally, Shute et al. [109] describe

an adaptive testing system that not only maintains a quality assessment of learning (e.g., for ranking learners),

but also contributes to individual learning by tailoring user feedback.

2.3.5 Conclusions

Adaptable and adaptive learning environments are built from a broad range of techniques, and while content

adaptation is most common, there are other aspects of the learning process that have been more adaptive.

Broader still is the area of instructional interventions, which includes non-electronic adaptations such as

question and answer sessions with an instructor or one-on-one interaction with tutors. The goal of this

chapter of the work was to provide a brief overview of some of the more common adaptive methods used in

current-generation intelligent learning environments.

The data-assisted approach aims to empower an instructional expert with knowledge of learners based on

learner behaviours. The intent of this empowerment is that instructional interventions can be formed that

are customized to the groups of learners that the instructor has discovered. This dissertation does not make

the claim that such interventions must be electronic in nature, and Chapter 4 will provide some motivating

examples of how the data-assisted approach can be used with traditional face-to-face forms of instruction.

Nonetheless, the investigation provided in Chapters 5 through 7 apply the data-assisted approach, including

instructional interventions in the form of customized navigation, in online educational environments.
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Chapter 3

The Data-Assisted Approach to Supporting

Instructional Interventions in Technology Enhanced

Learning Environments

The data-assisted approach is intended to generate insight which leads to and supports instructional

interventions. It is different from traditional methods of building intelligent educational systems in that it

explicitly acknowledges the role of instructional experts. It is in these experts that insight is generated, and

from these experts that instructional interventions come.

Before talking about methods of generating insight or interventions, it is useful to talk about the experts

themselves. Instructional experts for a particular environment can be many different people with different

tasks. These experts can be instructors, instructional designers, content creators, tutors, markers, or peer

learners. The experts can have a formal role in the course, or can be informal actors that engage with

the environment through happenstance. There is already a body of work that examines how learners gain

insights about their own actions (e.g., open or scrutable learner modelling), as well as how learners can

adapt an environment to their own needs (e.g., adaptable systems). But how instructors tune learning

environments through a sensemaking process has been largely unaddressed by the technology enhanced

learning environment community.

The data-assisted approach starts with the collection of information about learners as they interact with

tools in the learning environment. This information describes the behaviours of learners, and may be collected

through a variety of means across a variety of different tools (see §3.1). The data must then be summarized

and correlated to identify groups of learners based on some educational attributes, tasks, or goals.

The process of aggregating and correlating data with pedagogical goals requires that the instructional

experts interact with computational elements of the system. A number of different computational approaches

can be used, and this dissertation will demonstrate how two approaches in particular, information visualiza-

tion and unsupervised machine learning, can be successful in identifying aggregations of learners. Regardless

of the computational technique involved, it is the instructional expert who gives meaning to the groups, and

identifies or parameterizes appropriate instructional interventions.

One of the differences between the data-assisted approach and traditional intelligent learning environ-

ments (e.g., intelligent tutoring systems) is that the interventions are largely based on the expertise of the
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instructional expert and not on a priori domain, curriculum, or pedagogical knowledge that has been for-

malized and loaded into the system. The intelligence is in the overall system which includes the learners, the

software, and the instructional expert, and not in software alone. This does not forbid intelligent software

from interacting inside a data-assisted approach, but contextualizes the main focus of this work.

The nature of interventions can be varied, and this work will demonstrate both broad high-level interven-

tions (e.g., the decision by an instructor to change assignment details) as well as narrow low-level interventions

(e.g., the visibility of navigational cues shown to learners).

As the data-assisted approach relies upon the instructional expert to provide pedagogical knowledge, it is

compatible with many learning theories and instructional design approaches. For instance, an instructor who

observes a deficiency of learning in one set of learners might decide that a social constructivist approach is

appropriate as a particular intervention, and perhaps configure an online learning environment to send learners

to a blogging activity. Another instructor might, after seeing the same grouping of learners, modify the

curriculum to include another assignment that focuses on experiential learning. Regardless, both instructors

can use the data-assisted approach to get insights into students in their courses and to customize the course

for those learners.

3.1 What is Meant by Data in the Data Assisted Approach?

As learners interact with educational environments, traces of their activities can be logged. These traces link

actors (e.g., learners, instructors, instructional assistants) and artifacts (e.g., videos, tests, web pages) with

interaction behaviours (e.g., watching, answering, clicking). Most educational environments already have

some form of trace logging, although many don’t separate functional traces (those that pertain to the correct

operation of the system) from informational traces (those that are useful specifically for data analysis).

The granularity of the data collected is an important factor to consider when creating an educational

environment. One approach is to capture low level interactions such as key presses or mouse movements

(sometimes referred to as clickstreams [88, 101]), while another is to use more coarse-grained events such as

whether or not an answer to a question was correct. The choice between a fine or coarse level of granularity

affects the types of behaviours that are available for analysis of learners. A fine level of granularity (e.g.,

individual key presses) may require the end-user to aggregate data in order to form meaningful insights that

they believe are useful (e.g., concepts in a course), while a coarse level of granularity (e.g., a grade on an

online examination) may not be decomposable in order to relate to the same meaningful insight. A number

of pragmatic concerns around the capture and storage of user data also exists – collecting mouse pointer

data as a user interacts with an online content management system, for instance, would create a significant

amount of data that would need to be transferred back to a central location for storage. In addition, this

level of trace data would almost certainly need to be summarized in order to be useful as an attribute in

either automated reasoning or visualization techniques.
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A number of authors have considered how semantics can be added to learner trace data to make analysis

easier, including [93, 23]. Building tools to support the data-assisted approach requires a consideration of

how data is collected and labelled such that it is meaningful, but this activity takes place outside of the

adaptation process, and is largely one of traditional knowledge engineering and system design.

3.2 What Does it Mean to Assist in the Data Assisted Approach?

The summarization of learner traces into meaningful insights can be considered a form of learner modelling,

where the underlying data for the modelling process comes from the interactions learners have had with the

learning environment, and the model itself is represented by the insights that are generated from this data.

An important differentiator between the data-assisted approach and other forms of learner modelling is that

in the data-assisted approach the instructional expert is considered the key actor in the modelling processes.

Instead of loading instructional intelligence into the software a priori, there is a reliance on the instructional

expert to form hypotheses of learning activity, validate the pedagogical relevance of patterns, and form

instructional interventions as appropriate. Thus, software to support data-assisted investigation must collect

data about learners, allow instructors to parameterize the analysis of this data as needed, summarize and

present patterns of behaviours to the instructors, and map instructional interventions to groups of learners

as instructed. The intelligence in such software may be quite limited depending on the data being collected

and the mechanisms being used to present this to instructors; on one end of the spectrum, a data-assisted

system may rely totally on information visualization techniques with minimal filtering to provide a summary

to the instructor, while at the other end of the spectrum a data-assisted approach may provide sophisticated

artificial intelligence techniques such as unsupervised machine learning mechanisms to aggregate learners into

cliques. It is through the application of these techniques that assistance is given to instructional experts to

complete the modelling process.

Embedding the instructor in the learner modelling process aims to increase the scalability of adaptive

e-learning systems. While current intelligent learning environments scale well to many learners, they do not

scale well between domains, and require a significant amount of domain and pedagogy modelling when being

applied to new curricula. By helping instructors to form groups of learners based on behaviours, the data-

assisted approach seeks to be a generalizable approach to building adaptive learning environments. Human

intelligence in the form of the instructor is used to provide the labelling of groups and their relationships

to adaptive components, while artificial intelligence and information visualization can be used to provide

a statistical and graphical understanding of the relationships between observed behaviours and groups of

learners.

The use of human intelligence in the data-assisted approach fits well with the notion of sensemaking as

a principle goal of the field of learning analytics as described by Siemens [111]. Klein et al. [80] describe

sensemaking as a process by which events can be understood with consideration of perspectives, which they
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refer to as a frames:

“We can express frames in various meaningful forms, including stories, maps, organizational
diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames
define what count as data, they themselves actually shape the data (for example, a house fire
will be perceived differently by the homeowner, the firefighters, and the arson investigators).
Furthermore, frames change as we acquire data. In other words, this is a two way street: Frames
shape and define the relevant data, and data mandate that frames change in nontrivial ways.”

(Page 88 of [80])

The process of the instructional expert interacting with the data collection and analysis aspects of the

learning environment can be thought of as a dialogue; as the instructional expert elicits the formation of

groups of learners from the system, he or she can form new hypotheses as to the state of learning happening

in each group, and modify how course attributes such as content, sequencing, activities, or tools are made

available. The dialogue is bi-directional – the instructor uses the environment to better understand learners,

and shares this understanding of learners with the system through labelling. The system takes these labels,

and the associated adaptations provided, and applies them to learners who fall within the groups based on

learner behaviours.

The dialogue between system and instructional expert is also an ongoing one. As learners continue to

interact, or as new learners begin to interact, with the tools in a learning environment, new data and new be-

haviours can be presented to the instructional expert. This expert creates, deletes, and modifies instructional

interventions as they apply to learning objectives and pedagogical approach. Thus, the modelling process is

intended to fit within the day-to-day activities of an instructional expert such as a course instructor, and not

be an activity that takes place before learners are present, as much traditional instructional design activity

does. This is not to say there is no place for a priori design in electronic learning environments or that, when

available, resources to build intelligent tutoring systems should not be utilized. Instead, the suggestion here

is that the data-assisted approach is a complementary method to both instructional design activities and

intelligent tutoring methods, and requires a different kind of resource that may be more readily available in

the context of higher education (e.g., the instructional expert).

3.3 Contrasting with the Ecological Approach

The data-assisted approach most closely resembles elements of McCalla’s ecological approach [88] described

in §2.2.4. There are several aspects of the two approaches that are different. First, and most importantly,

the ecological approach does not explicitly position instructional experts as a key actor in the sensemaking

process. Instead, the emphasis is on automated “data-mining algorithms” interacting with information. The

data-assisted approach, however, is focused on leveraging instructional experts in the adaptation process in

order to gain scalability between domains. The vision is to engage all forms of instruction expertise, including

not only the instructor, but teams of persons such as tutorial assistants, instructors, instructional designers,

content experts, or even the students themselves if the resources are available.

35



An important aspect of the ecological approach is the notion of purpose-based adaptation:

“That is, contextual information such as the purpose, the particular learner(s) involved, the ap-
plication goals, etc., determine how (and even whether) the information in the learner models and
learner model instances is used. The choice of clustering algorithm and/or data mining algorithm,
and the particular constraints put on each such algorithm is highly contextualized. Many other
algorithms are also similarly contextualized, such as the experiential summarization algorithms
in the recommender system example. Thus, much research is needed into what algorithms work,
where, and for what purposes.” (Page 10 of [88])

In the data-assisted approach the purpose for which adaptation is taking place is held completely within

the instructional expert. The software system never needs to know the semantics of the purpose, and the

amount of explicit pedagogical modelling that needs to happen is diminished. The model of the learner that

results from the software/expert dialogue is the only formalized evidence of a particular purpose. While the

ecological approach calls for explicit description of purposes to determine which elements of the learner model

should be used, the data-assisted approach integrates the purpose for the learner model within the model

itself through the activity of the instructional expert during the creation of insights. New purposes require

new consideration of the data by instructional experts, and thus generate new learner models.

Where the two approaches are similar is most readily seen in the use of interaction data. Both the

ecological and data-assisted approaches use the learner interactions within the learning environment as the

principal artifact around which modelling and adaptation takes place. They are both approaches that focus

on modelling learners in situ instead of a priori. The on-demand nature of these perspectives leads to a more

data-driven process of creating learner models which has implications for the scalability of software solutions.

Learning environments which must make customizations of the environment to a large number of learners

within a single domain may be better served through traditional learner modelling techniques. Learning

environments which must make customizations across a variety of domains may find scalability gains with

the ecological or data-assisted approaches.
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Chapter 4

Realizing the Data-Assisted Approach

The goal of this chapter of the dissertation is to elaborate on how the data-assisted approach could be

used in real-world contexts. This chapter will follow the investigations and decisions instructional experts

might make as they use the data-assisted approach throughout an academic term. Each of the scenarios

presented explores what tool support for the data-assisted approach might look like through the use of low

fidelity mock-ups, and a number of different parameters affecting the size of the student cohort, domain,

pedagogical approach, and instructional expert role are considered.

The first of these scenarios (§4.1) will consider an introductory Computer Science course that is taught

completely online and at a distance to a small cohort. This course makes use of a number of educational

support tools, the most important of which is a learning content management system that has an asynchronous

discussion forum. In this scenario, the instructor adapts her pedagogical approach based on visualization

tools that describe the hidden traces students leave behind when they interact with the learning environment.

The second scenario (§4.2) describes the perspective of an instructional designer as she supports a second

year Chemistry course. The course is taught by multiple instructors, and one of the instructors has elected

to have his lectures recorded and made available to learners regardless of the section they are in. In this

scenario, the instructional designer will be focused on both the immediate support of the learners as well as

the longer term trends of how learners use technology to support their learning.

The final scenario (§4.3) will follow an educational technologist as he seeks to build adaptivity features into

an educational environment. Based upon experiences with lecture capture tools, the technologist believes that

different learners approach navigation in video differently. Using the data-assisted approach, the technologist

will test this hypothesis and then parametrize an adaptive learning environment based on groups of similar

learners.

The scenarios presented here are fabricated but rooted in actual investigations. Each will be paired with

a full chapter of work (chapters 5 through 7) that provides a more detailed investigation into one or more of

the success conditions for that scenario. The emphasis of these chapters is not on completely satisfying the

requirements of the scenario, but in providing evidence which demonstrates that the data-assisted approach

is a satisfactory method of solving a particular problem.

37



4.1 Scenario One: Visualizing Community Interactions

Katheryn is a faculty member who regularly teaches introductory Computer Science for non-majors. This

course is typically moderate in size (50-100 students) and made up of learners from a wide variety of disciplines.

This year, Katheryn is teaching the course in an online capacity instead of in a traditional lecture format.

Learners have access to an online content management system which includes sets of web pages describing

content as well as an asynchronous discussion forum. There are 20 learners enrolled, and because of the

distance component the majority of evaluation is weighted on the final examination and assignments.

The content for the course is broad in nature, and Katheryn feels that encouraging group discussion will

be one key to keeping learners engaged. She is concerned that the distance modality of the course will cause

learners to shy away from interpersonal interactions, and scaffolds this aspect of the course by making weekly

reading assignments. Each week, she will post questions to the discussion forums and learners will have to

reply with their thoughts on the issues. By having learners read one another’s posts, she hopes they will

form a shared sense of community, resulting in greater engagement and deeper learning.

In a traditional discussion forum system, Katheryn can see only that students have written messages, as

well as the content of those messages. All other interactions, such as traces related to the reading of postings,

are inaccessible to her. With tools built for using the data-assisted approach, Katheryn can understand

more deeply how learners are collaborating by showing these hidden interactions. Consider a mockup of a

visualization tool for discussion forums showing in figure 4.1. This mockup categorizes forum participants

into three different levels of engagement; those who have not used the system but were able to, those who

only read messages but do not post (lurkers), and those who interact with one another by posting messages.

The tool differentiates learners from instructional experts (which might include tutorial assistants or lab

assistants) using lighter or darker colours for nodes. Katheryn can click on individual learners of interest in

the course to find out more about them, including a list of topics they have posted in the discussion forum.

An important aspect of the data-assisted approach is that the underlying data is summarized as it is

presented to the instructional expert, and the expert is actively involved in the summarization process.

The intelligence in the system is thus a mediated and emergent property; it exists because of the interaction

between the domain and pedagogy expert and the data-rich learning environment. In this scenario, Katheryn

has some specific thoughts as to what active engagement means; i.e. that learners are reading and considering

one another’s messages. Katheryn can aid in the summary of the data by modifying the visualization to

render traces differently based on her goals, the learning environment provides a clearer understanding of

collaboration between learners in her course.

Figure 4.2 shows how Katheryn might explore the sociogram-based visualization. Katheryn chooses

the customize tab in the right hand pane, and creates a new rule (bottom right). In this mock up, rules

are described in equation 4.1. The set of objects includes nodes and edges, the set of attributes depends

on whether a node or edge is selected, and includes items such as colour, line width, outline form, or
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Figure 4.1: A mock up of a discussion forum information visualization system. The sociogram on
the left is made up of three concentric rings of users: the outermost ring holds those users who have
not used the system, the middle ring holds those users who have only read forums posts but not
written any (lurkers), while the inner ring contains users who have written discussion forum posts.
The ring containing lurkers puts users closer to the centre of the sociogram if they have read many
forum postings, and puts users closer to the edge of the sociogram if they have read few forums posts.
The inner ring connects users based on whether their post is a reply or a new thread. Instructional
experts are shown using darker colours. Details about a particular user that might be select (e.g., the
dark (red) node that represents Katheryn in the middle) are shown to the right of the sociogram.
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directionality. Values depend on the object attribute, and include changing of colours, shapes, line forms,

and other visual representations. Many values will be from closed vocabularies, but some might be free-form

and allow Katheryn to use variables the system maintains. In this example, Katheryn wants to change the

size of the node based on whether that person has had many of their messages read. The system might

maintain a variable such as others read number to represent this, and the final rule would look like the one

in equation 4.2. The complexity of the rule creation depends in part on the level of expressiveness the

information visualization tool gives, and usability analysis would be required in order to build such a tool for

a particular group of users.

<rule> ::= <object> <attribute> is <value> if person <conditional> (4.1)

<rule> ::= node size is 2 * others_read_number if person true (4.2)

In the visualization environment, Katheryn has indicated that users who had written messages that have

been read a lot should show up as bigger circles in the visualization, and those learners who have not logged

into the system within the last two weeks should show up as dotted circles. By adding more of these graphical

rules to the system, Katheryn is able to see that many of her learners are still quite active (very few dotted

circles), but that only her posts (the dark grey circle) are read by learners in the class (as most of the

learner circles are still very small, Figure 4.2 left hand side). This insight based on hidden traces suggests

to Katheryn that she must do something else to to increase collaboration between her learners. Katheryn

decides to change the format of her weekly assignments; instead of just posting a synopsis of their thoughts

on an issue, learners are also required to reply to at least one other student message. By saving her graphical

rules and loading them at a later date, she can see the effects her changes have made on the classroom

dynamics.

The data-assisted approach for supporting instructional interventions is made up of two activities: the

summarization of usage data to generate insight, and the support for making instructional interventions

based on this insight. This scenario has focused on the first of these, and demonstrates that by revealing

to instructors the the hidden behaviours of learners (such as the reading of a message), an instructor can

understand the affects of their pedagogical practice. The data-assisted approach does not require that

instructional interventions take place directly in the technology enhanced learning environment; insights

can be leveraged to form traditional instructional interventions, such as curriculum changes or changes to

assignment activities (as Katheryn did). By providing mechanisms to compare visualizations over time,

instructional experts can compare the effects of their actions and deepen their understanding of both the

learning cohort as well as their pedagogical practice.

A number of questions remain as to whether such an insight is truly practical: is it possible to augment a

discussion forum system to capture the hidden traces that were described in this scenario? Can an instructor
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Figure 4.2: A mock up of a discussion forum system similar to the one in figure 4.1. In this system,
the circles representing users are sized depending upon how often a users forum postings are read.
Large nodes represent users who are read by many other users, while small nodes represent users who
are read by few users. In this example, only the one instructional expert node is large, suggesting
that only that users forum postings are of interest to the community. Nodes that have a dotted
outline represent users who have not logged into the system in the last two weeks. Customization of
the sociogram is done via rules which are shown at the top right. In this case, there are three rules
defined which control node colour, size, and line outline. Hyperlinks allow the instructional expert to
modify rules, while new rules can be defined using the form controls at the bottom right portion of
the application.
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derive enough meaning from a visualization that they are able to modify their pedagogical practice? These

questions will be considered in Chapter 5 in more depth by exploring a visualization system similar to the

one discussed in this scenario.

4.2 Scenario Two: Measuring Educational Impact

Michelle is an instructional designer supporting a second year undergraduate Chemistry course. This course

serves as both a service course for other colleges (Agriculture, Engineering, Medicine) as well as for the

core Chemistry program. The course is taught by five different instructors with a common curriculum and

common set of examinations. The course reaches a total of six hundred learners in a given semester. One

instructor has agreed to have his lectures recorded using a lecture capture and playback system. These

recordings are then made available (asynchronously) to all students enrolled in the course.

Michelle’s responsibility with the course is to manage both the short-term and long-term instructional

design. The lecture recording system is new this year, and Michelle is interested in better understanding how

learners use recorded lectures and the effect they have on performance. In particular, Michelle is interested

in understanding whether the students who use the lecture capture system incorporate it regularly into their

study habits, or whether they just use it only during the examination period. If there is a difference in

performance between these groups she will adjust the course content as appropriate, guiding the learners to

more effective study habits.

The data-assisted approach is ideal for Michelle as she is interested in both exploring the effect of introduc-

ing a new tool as well as tuning the course to take best advantage of that tool. Michelle has deep knowledge

of different instructional interventions, but lacks an awareness of the the underlying activities of learners

on which to base these. In a traditional classroom Michelle could go to lectures and observe attendance,

a time consuming process. Further, the lack of time shifting tools in a traditional setting (such as lecture

recording) can cause learners to rely on traditional methods for consuming content (e.g., notes or textbooks)

which Michelle can not easily observe. With the data-assisted approach, learning tools are augmented with

tracking features that log the activities of learners and make them available to experts like Michelle. While

there may still exist modalities of learning outside these, the set of tools that collect learner traces along with

methods of summarizing and acting upon these traces form the basis of the learning environment. Michelle

is now able to watch in real-time as learners use the system, and leverage her pedagogical expertise to change

the way in which the course is taught.

Michelle’s interest in seeing groups of related students fits well with unsupervised machine learning tech-

niques (clustering). Using an interface like the one shown in Figure 4.3, Michelle can choose the attributes

to which she is interested in applying machine learning. In this case, she is interested in grouping learners

by their weekly access patterns in the lecture capture system, so she selects the first nine weeks of accesses

in the left hand pane. A number of other attributes from other tools are available (e.g., comments posted in
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Figure 4.3: A mock up of a clustering-based learning analytics tool which allows instructional experts
to explore the interactions learners have had within a learning environment. Instructional experts
choose attributes to cluster on in the left hand window (in this case, lecture capture viewing habits),
with the results of clustering being shown using a treemap of cluster sizes in the upper right. Each
cluster can be labelled by the expert by clicking on the cluster, and details about the cluster are shown
in the membership tab of the bottom window. In this case, five clusters were found ranging from four
learners to 89 learners.

discussion boards, blog posts in the content management system, or interactive simulations finished), but for

her current investigation they are unnecessary.

As attributes are selected, they are clustered by the system and the results are returned to Michelle. A

treemap visualization (shown in the upper right of Figure 4.3) is particularly useful for clustering because it

identifies not only the number of clusters found but also the relative sizes of clusters. Larger squares indicate

a cluster with more learners, and the number of clusters returned can be controlled by the underlying

clustering algorithm. In this example, every learner is placed into one cluster only, and a total of five clusters

are returned by the clustering tool.

Michelle is able to explore the membership of a cluster and the relationship the cluster has with other

variables interactively using the explorer in the bottom right pane. This pane shows the centroid of the

cluster (sometimes called a prototype), which describes what the ideal learner in this cluster would look like.
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Figure 4.4: A mock up of the variables tab from the application shown in Figure 4.3. This tab allows
the instruction expert to select those variables they are interested in correlating with the currently
selected cluster. In this case, Michelle has selected to view the relationship between Midterm 1 and
Midterm 2 variables for the current cluster.

The pane also includes a list of all of the learners who fit in the cluster, and details about how well they

fit. From this, Michelle can determine how appropriate the clustering was, and consider the centroid of the

cluster with respect to her pedagogical goals. Labels for clusters are not able to be determined automatically;

they instead require that the instructional expert use their knowledge of the domain to describe the content

of the cluster. In this example, Michelle has already labelled one cluster as midterm watchers, and is in the

process of labelling another as high activity, since the centroid for the cluster involves the viewing of lecture

at a weekly level. Once labelled, clusters can be used in automated interventions as will be described in more

detail in the §4.3.

Michelle’s goal in this scenario is to compare the results of clustering to other educational variables such

as assessment. By clicking on the variables tab (Figure 4.4) in the cluster explorer, Michelle is able to see

correlations between variables and the current cluster, as well as whether those correlations are statistically

significant or not. Designing a tool to do this kind of analysis requires paying close attention to the roles and

use cases of users. For instance, it is not unreasonable for Michelle to have some basic statistical knowledge,

but if the tool were to be used by faculty or system designers, such an expectation might not be reasonable.

To facilitate external statistical analysis export capabilities to encourage off-the-shelf tool use.

This scenario has demonstrated a number of attributes of teaching and learning in higher education that

are well addressed by the data-assisted approach. First, courses are often large multi-section offerings made

up of hundreds of learners where a visual in-person analysis of activity is either difficult or impossible. As

learning opportunities increasingly happen outside of the classroom (e.g., through time shifting of lectures

using lecture capture), the need to capture interaction between learners and technology grows. The data-
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assisted approach is built on the premise that these interactions allow instructional experts to gain valuable

insights into how learners interact with the educational environment.

Second, the data-assisted approach puts the instructional expert at the centre of the sensemaking process.

In this scenario, it is Michelle who determines whether the clusters fit with her pedagogical approach and

are relevant to her investigation. The educational environment helps aggregate and correlate behaviours,

but it is the expert who validates the results and forms interventions. How these findings might be tied to

interventions is largely omitted from this scenario, but will be described in the following section (§4.3).

A number of assumptions about technological approaches have been made to illustrate this scenario.

In particular, it has been assumed that by clustering learners based on their viewing habits, pedagogically

relevant groups can be discovered. Is this a reasonable assumption? If so, do these groups relate to formal

assessment as Michelle was interested in, or are other variables, such as self-reported satisfaction of learners, a

more useful indicator of learning? Is it reasonable to do this kind of investigation in mid-semester, as Michelle

is attempting to, or is this form of clustering only useful in multi-year comparisons? Each of these questions

will be addressed in section Chapter 6, where data from an actual lecture capture system is analysed.

4.3 Scenario Three: Adapting Learning Environments to Tasks

The previous scenarios have described how an instructor and an instructional designer might use data-assisted

approach tools in their daily activities. As put forth in the previous chapter, intelligent learning environ-

ments typically offer automatic adaptivity in response to learner behaviours. The data-assisted approach

is appropriate for configuring and building of these systems by bringing technologists into the sensemaking

process. Whereas in a traditional intelligent learning environment the sensemaking is done a priori by tech-

nologists, a data-assisted intelligent learning environment encourages the creation of adaptive features, or

the configuration of existing adaptive features, in response to new patterns of behaviours observed.

This scenario follows Adam, an educational technologist with a software engineering background, who is

supporting a lecture capture system similar in nature to the one Michelle is using. Adam has received a lot

of feedback from instructors that the navigation in the application is hard for students, especially since the

principal method of navigation through the video is by selecting from a series of index thumbnails that are

generated from the captured data projector every five minutes of recording (Figure 4.5). Some instructors

want index thumbnails more often, while others want fewer thumbnails that are more like chapter markers

in traditional DVD media.

Adam understands the perspectives the instructors have shared, and he believes that students navigate

through the videos according to their needs. He examines the behaviours of learners using visualization tools

for the lecture capture system that have similar capabilities as the ones Katheryn used in §4.1. Students

rarely use the same indices when navigating, but he uses clustering tools (such as described in §4.2) to find

three clusters of activity which he labels as reviewing for frequent use of many indices, watching for those
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Figure 4.5: A mock up of a lecture capture environment. The images down the left hand side control
navigation through the video, and allow a user to seek to a particular chapter directly. The video
playback component on the upper right includes video of both the instructor and the data projector,
as well as a traditional scrubber that allows for non-chapter seeking. Additional tools such as note
taking components, discussion forums, or suggested readings are available underneath the video.
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students who seem to only use a few indices that refer to significant breaks in the lecture, and images for a

cluster of access that appears to focus on images in slide content (e.g., chemical drawings in material sciences

courses, paintings shown in art history courses, or diagrams used in paediatric nursing courses).

Adam has identified that it is possible to parameterize the indexing functionality of the lecture capture

system to present indexes in different ways. At a high level, the indexing functionality works by converting the

lecture video to a set of images, then chooses an image to act as an index marker when content has changed

significantly. Adam modifies this functionality by providing a new indexing algorithm that outputs three

different sets of indices, one appropriate for each of the groups of learners he has identified. This algorithm

works using supervised machine learning (classification). In short, each group of learners is represented by

a set of index markers from their behaviour data, similar to the centroid described in the previous scenario.

Adam trains the classification algorithms to provide customized results based on these centroids. The result

of training is a set of content models (one for each of the three circumstances which are represented by

centroids) which can be applied to new lecture videos in order to form sets of indices. Adam then programs

the system to provide different groups of navigational indices to learners, with the default being those indices

the learner has most often used. The end result is that learners are shown a new interface with three tabs

on the left-hand side, one for each kind of indexing corresponding to the centroids Adam has discovered.

Students are automatically shown the tab that their behaviour most closely represents, but are free to choose

from the alternative indexing schemes as they see fit (Figure 4.6).

In this scenario, Adam has used the data-assisted approach to understand how learners are using the

lecture recording tools. He has identified patterns of behaviour using tools similar to those used by Katheryn

and Michelle. As shown in this section, the data-assisted approach does not have to end with just the detection

of patterns. While Katheryn and Michelle were able to leverage insights to change their pedagogical approach

and instructional designs respectively, Adam is making the results of the patterns available to the educational

environment by labelling clusters. With labels attached to prototypical behaviours (the student centroids),

learners can be classified into groups and the appropriate indices can be shown automatically.

This scenario prompts a number of questions both theoretical and pragmatic. On the theoretical side do

groups of learners really agree on where an index should be placed, or are their preferences for navigational

aides more varied? If the former is true, then Adam’s approach may well yield a more personalized and efficient

navigation structure, where the latter would suggest individualized navigation would be more appropriate.

On the pragmatic side it is worth considering whether it is appropriate to use supervised machine learning

to build indices, and how such an approach might compare to the algorithms that already exist. Supervised

machine learning is strong technique when dealing with complex data which has a clear set of attributes.

However, is it appropriate to deal with lecture videos in this manner? If so, can such a technique out

perform hand-tuned algorithms which already exist? Each of these questions will be investigated in Chapter

7 through laboratory studies involving learners and actual recordings available from a production lecture

capture system.
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Figure 4.6: An adaptive lecture capture system mock up nearly identical to the one shown in figure
4.5. In this system, Adam has customized the navigational indices at the left hand side to be different
depending upon the tab that is active. Each tab contains different indices as appropriate for tasks
that Adam has trained for using supervised machine learning. Users can change tasks by selecting a
tab; by default they are shown the tab that most closely matches their system behaviours.
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4.4 Conclusion

This chapter has provided three scenarios designed to demonstrate how the data-assisted approach can be

used in real world contexts. The scenarios do not fully describe the capabilities of the approach, but are

instead intended to motivate how different instructional experts might interact with learning environments

that collect end-user behaviour data. To this end, a number of different actors (instructors, instructional

designers, and educational technologists) with different use cases (supporting learners, analyzing effectiveness

of tools, and customizing the learning environment) using different instructional modalities (online distance

learning and traditional face-to-face lecture learning) teaching to different sized class are considered.

Each of the scenarios has introduced questions as to the feasibility and utility of the data-assisted approach

as a solution for further enhancing technology enhanced learning environments. While the scenarios have not

been implemented in full, the key questions raised have been answered through laboratory experiments and

wide scale field deployments. Chapters 5 through 7 take each of these scenarios presented here in turn, and

address the key issues that have been raised.
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Chapter 5

Visualizing Community Interactions

The data-assisted approach for supporting instructional interventions is made up of two activities: us-

ing traces of learners to generate insight, and supporting instructional experts as they create instructional

interventions from this insight.

One way the data-assisted approach is different from other methods of creating intelligent learning en-

vironments is in the way insight is generated. In the data-assisted approach, insight is created through an

interaction between an instructional expert and data that represents a particular cohort of interest (a group of

learners). A more traditional intelligent learning environment approach would be to fully describe the learn-

ing space before the system is deployed, then categorize learners and react accordingly. The data-assisted

approach is more reactive, and focuses on in situ exploration of learner activities.

Similarly, instructional interventions can be constructed and delivered through multiple methods. A

traditional intelligent learning environment such as an intelligent tutoring system or adaptive hypermedia

system changes content delivered to a learner in reaction to their activity. These systems will not often react

by changing pedagogical approach, however, unless they have been specifically pre-programed to do so. In

contrast, human instructors often react by considering how they might restructure aspects of a course. By

giving these experts control over how instructional interventions are formed, larger pedagogical changes can

be made with minimal a priori consideration.

This chapter explores how the traces learners leave as they interact with the learning environment can

be made available to instructors using information visualization techniques. The scenario presented in §4.1

raised two questions which will be considered in more depth, namely:

1. Is it possible to augment a discussion forum system to capture the hidden traces that were described

in this scenario?

2. Can an instructor derive enough meaning from a visualization that they are able to modify or improve

upon their pedagogical practice?

These questions will be addressed in §5.1 and §5.2 respectively.
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Figure 5.1: The iHelp Discussion forum system c.2006. The left side shows the different forums that
a user has access to, in this case a number of course related forums as well as social and employment
forums. Forums are heirarchical, and may include sub forums related to special topics. Each forum is
made up of heirarchical threads of discussion as shown in the top window. Content for a given posting
in a thread is shown in the middle of the application, and other e-learning tools (such as a synchronous
chat system) can be shown at the bottom of the application.

5.1 Augmenting an Asynchronous Discussion Forum with Visual-

izations

5.1.1 iHelp Discussions

The iHelp Discussions learning environment (Figure 5.1) is a Web 2.0 asynchronous discussion forum intended

for use within higher education. It was developed out of the I-Help research project ([62]) with the goal of

increasing usability and scalability of a technology enhanced learning environment supporting peer help.

The system was deployed within the Department of Computer Science from 2004 – 2010, and was used by

thousands of students in dozens of courses annually. When it was retired from general use by the Department

in 2010, it contained over 75,000 messages in over 2,200 forums created by over 3,300 users.

This environment is different from other web discussion forums in that it has been augmented to record
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learner interactions at a fine-grained level. Where other systems typically would show all of the messages

within a thread at one time, iHelp Discussions has nested lists of messages which allow the system to record

when a user requests a message and how long the user stays with the message open. Further, the forums

are heirarchical in nature, and access to forums are logged using similar mechanisms. Over the six years it

was deployed, more than 3,000,000 read requests were issued by users, with the top message being read over

1,700 times.

The use of iHelp Discussions as a forum ranged broadly by instructor and course. It was commonly used in

large cohort undergraduate courses, and there were several department-wide “off topic” forums that students

used to discuss issues of technology, philosophy, and politics (amongst others). Access to the forums was

restricted through an institutional username and passwords, and public access to messages was not available.

In some forums learners were permitted to post anonymously, though the back end system is still able to

disambiguate usernames if needed. Instructors were free to structure sub-forums however they wanted, and

it was common for topic-based, course structure-based, or a flat single forum environment to be used.

One unique aspect of the iHelp Discussions deployment situation is how access is granted to instructional

experts. It was not uncommon for instructional experts such as instructors and tutorial/lab assistants to

be routinely given access to all of the undergraduate forums. This, along with the detailed usage tracking,

makes it possible to study the behaviour of instructional experts as well as learners

5.1.2 Visualization of Learner Activities

Sociograms are a common method of visualizing asynchronous discussions, and have been used by a number

of researchers to visualize email correspondence in particular (e.g., [121]). These visualizations are graph-

based structures where nodes represent individuals in the community and arcs between nodes represent the

creation of replies to a message. Nodes are typically rendered using different sizes to represent the status

of an individual in the community or the amount of discussion the individual has contributed (e.g., [121]).

Nodes can be arranged in a number of ways: a strict hierarchy which outlines the abilities or status of groups

of nodes is common, as is a physics-based “force graph” which moves nodes closer to one another depending

on the characteristics they share.

A representation for the iHelp Discussion forums has been formulated using a sociogram where nodes

indicate particular persons involved in a course with directed edges between those nodes indicate that a

person has replied to another person. To clearly indicate the difference between learners and instructional

experts (e.g., Instructors, Tutorial Assistants, and Markers), each node is colour coded to be either a learner

(light grey), or an expert (red). As the iHelp Discussion forums are available to many instructional experts

(faculty and assistants assigned to other courses) regardless of the content of the forum, there are typically

many red circles in the sociogram.

In large courses (e.g., those with more than 100 students) this formulation quickly became unwieldy. To

address this, individuals are further broken up into membership of one of three categories:
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Figure 5.2: Portion of a sociogram from an introductory computer science course which was taught in
a blended fashion and had approximately 200 students and contained 254 discussion postings. Darker
(red) nodes indicate facilitators, while lighter (grey) coloured nodes indicate learners. The inner circle
is made up of participants, four of which are very important to the community (as shown by having
a larger node size). A casual observation of this network indicates that, while some learners write a
fair bit (many interconnected nodes in the middle), there are lots of learners who havent ever read
anything (the outer ring of non-users), and many lurkers who read very little (as they tend to be closer
to the outside of the middle ring instead of the inside of that ring). Note that the ring of non-users
includes a disproportionately high number of facilitators as our currently deployment gives access to
this forum to most staff and faculty in the department.

• Participants: Those individuals who have written messages, either on their own or as replies to other

messages.

• Lurkers: Those individuals who have read postings but have not written any.

• Non-users: Those individuals who have never read nor written a posting.

Each category of users is put into their own sociogram that aligns nodes along the exterior of a circle.

The different sociograms are then layered on top of one another such that the non-users are farthest from

the centre of the sociogram, the participants are closest to the centre of the sociogram, and the lurkers were

in between (Figure 5.2). This corresponds well both with the perceived participation rate of individuals

(participants are more central than lurkers who in turn are more central than non-users), as well as with the

sizes of the different categories of individuals (generally there are more non-users than there are lurkers, and

more lurkers than there are participants).

Lurking is modelled as a continuous variable – one individual can lurk more than another by reading more

forum postings. To support this in the visualization, lurking ratios are calculated and node distances are

varied from the outer edge of the lurker region to the inner edge, where lurkers who are closer to the inner
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edge of the sociogram have read more content. This further reinforces the idea that users who are central in

the overall visualization are participating more in the course than learners that are close to the edge of the

screen.

Initial feedback from instructors indicates that the act of posting a message does not mean that a user has

contributed in a meaningful way. To represent a measure of importance in a course, the size of an individual

node is varied by the number of persons who have read a users postings. The calculation for an individual’s

importance is given in equation 5.1.

importance =
number of people who read my postings

(number of participants+ number of lurkers) ∗ number of postings
(5.1)

A number of observations about the sociograms can be made based on informal interactions with instruc-

tors who reviewed the prototype. In particular, it was observed that:

• A highly connected graph indicates that learners are communicating with one another, while a graph

where many nodes are connected only to an instructional expert indicate little peer collaboration.

• The degree of edges coming out of expert (red) nodes indicates how much direct control an instructor

has over conversations. Instructors who wait to answer questions have very few arrow heads pointing

at their node, while instructors who provoke discussion have many arrow heads point at their node.

• Lurking rates are highly variable, and the majority of lurkers read fewer than 30% of the postings. This

includes non-learners (e.g., tutorial assistants or other instructors), a result that surprised many of the

instructors who saw the visualizations.

The next four sections provide specific examples of how this visualization has been used by instructors,

and demonstrate the effect of making learner traces more readily available.

5.2 Effect of Visualization of Traces on Pedagogical Practice

This section of the work describes the different investigations that have been conducted in order to under-

stand better how instructors can make pedagogical decisions based on visualizations of learner interactions.

While the results here are largely anecdotal, they each describe how actual cohorts were visualized and the

instructional interventions that were executed by instructors.

5.2.1 Case study: Online Small Cohort Course

Many instructors change their pedagogical approach when teaching in online environments, in order to match

the needs of learners. In these situations, learners can more easily lose a sense of shared community or shared

purpose as the activities and actions of their classmates may be hidden from them. The instructor feels this
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change too, and many of the consequential awareness indicators that they would normally get from an in-

person teaching environment (e.g., attendance and interaction in the lecture, or students coming to tutorials

and office hours for assistance) are missing. By revealing indicators of activity in discussion forum systems,

the data-assisted approach can help instructors to understand what the virtual classroom interaction looks

like.

The Department of Computer Science offered an introductory course for non-majors on the topic of basic

Computer Science history, principles, and techniques. In c2006 this course was taught simultaneously to a

large cohort of over 100 learners in a blended manner, and to a small online group of 20 learners who had no

face-to-face instruction. While taught by different instructors, the online instructor was also the creator of

content, assignments, and examinations for both sections..

The online instructor was a firm believer in using the iHelp Discussion forums to build a sense of commu-

nity amongst the students. Especially in the online course, she saw the discussion forums as the main method

of engaging with learners. To this end, one of the weekly requirements was to write an online forum posting

about a prescribed course topic and this requirement was mandatory for the online learners only. She would

post the initial message indicating what the weekly topic was, and learners were expected to respond with

details of content they found on the Internet. Her reasoning was that by sharing the results of this activity

publicly, learners would form a sense of community with one another. A number of weeks into the course,

the instructor was shown visualizations for both the in-class and online discussion forums (Figure 5.3).

The visualization was explained to her, and she showed particular interest to the way size of nodes was

generated. She was bothered by the fact that she could easily identify herself as the large dark (red) node

who was connected to most students. She wanted students to communicate and form a community with one

another, and not just herself. That the pattern existed in both the online and the traditional cohort didn’t

surprise her, but she felt that traditional learners had other mechanisms by which they form a shared sense

of community and thought that making the assignment mandatory for the online learners would be enough

to encourage broader use of the discussion forums. In a subsequent offering of the course, the instructor

changed the weekly assignments to be more problem solving based, and set the evaluation criteria such that

learners would interact more. The result was a discussion graph that was more fully connected and where

learner nodes varied in size (thus importance) as the instructor (Figure 5.4).

The use of the data-assisted approach provided insight that was otherwise lost to the instructor. By visu-

alizing the hidden traces learners leave, the instructor became able to understand the effect of her pedagogy,

and make interventions that were reflected through subsequent visualizations. Further, the instructor was

able to compare the familiar traditional face-to-face cohort to a new mode of teaching, and create the kind

of learning environment she thought was important for online learners.
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(a) Traditional face-to-face course (b) Online course

Figure 5.3: Visualizations of an introductory Computer Science course for non-majors. Figure
5.3a shows interactions amongst learners who attend traditional lectures, while figure 5.3b shows
interactions amongst learners in a completely online environment. In the traditional course there are
many lurkers who have read only a few messages, while the online course required participation of
learners and thus has very few lurkers (only other instructional experts). In both cases the instructor
is the principal actor in the social network (large dark (red) node), and learners rarely reply to anyone
but the instructor.
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Figure 5.4: A visualization of a subsequent offering of an online introductory Computer Science
course for non-majors. This course was offered after the instructor made pedagogy changes aimed at
having learners interact more with one another. In this example, there are several learners who are
important to the community as shown by their large node size and high level of connectedness.
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5.2.2 Case study: Face-to-Face Large Cohort Course

In traditional face-to-face courses, instructors have the ability to make direct observations of learners. But

these observations are minimal in bandwidth, especially when dealing with large cohorts, and tend to only

give instructors a broad understanding of the issues learners face. Especially in introductory courses where

many of the learners are new to both the discipline and higher education, there is often a hesitancy to speak

up in the classroom. The hidden traces of online activities can be leveraged in these circumstances if the

traditional course is augmented with technology and taught in a blended mode. Blending a course generally

changes the lectures minimally, but offers other avenues for help and exploration (such as discussion forums).

A visualization (Figure 5.5) of a large cohort of learners involved in introductory Computer Science courses

for majors was shown to one of the instructors who teaches in a blended fashion. Unlike the study described in

§5.2.1, all learners taking this course (regardless of section) were shown one discussion forum. The instructor

shown the visualization was both a lecturer as well as the overall administrative organizer for the course, and

he would often leave the discussion forums open throughout the day so he could answer student questions.

He immediately identified the nodes that represented himself and one of his tutorial assistants (large dark

(red) nodes), and theorized on the identities of several of the learner nodes using the size and in-degree. He

seemed comfortable with the visualization as an interpretation of the community formed in his course, and

felt that the results he had achieved were those he set out to achieve.

A follow-up interview with the instructor provided surprising results; despite being pleased with the

interpretation that resulted from the visualization of his course, he still modified his pedagogical approach.

He indicated that for the first portion of his course he would typically answer questions as soon as they

appeared in the discussion forums. He knew from the volume of questions being asked that learners used the

system heavily, and he wanted to address those questions publicly as fast as possible in order to minimize

their waiting. However, after seeing several large learner nodes in the visualization (e.g., several learners

were read regularly by their peers), he felt that the community had reached a level where peer help would be

sustainable without his intervention. In short, he felt he could reduce the speed at which he replied to learners

without negatively affecting their learning experience, as their peers were active both in writing responses to

questions and in having those responses read by classmates. He was shown a follow up image of the social

network for his course after some time, and remained satisfied that interactions were still happening at a

good pace.

In this case, the data-assisted approach was used to confirm a belief an instructor held which would have

been otherwise untestable. By aggregating the low level read events captured by the forum system into a

simple metric (importance), a small feature of the visualization became enough to convince the instructor of

the self-sustaining nature of his course discussions.
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Figure 5.5: A visualization of an introductory course in Computer Science for majors. This visual-
ization is made up of several sections of learners, each with their own instructor. The high degree of
connectedness along with large student nodes (light grey in colour) supported the instructor’s notion
that course discussion would be sustainable if he reduced his level of involvement.
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(a) Traditional face-to-face course (b) Game Club

Figure 5.6: Visualization of a general discussion forum (figure 5.6a) and a more specialized discussion
forum which is unrelated to course content (figure 5.6b). The user cohort is the same, though qualitative
remarks about participation in and importance of the discussions can be made by comparing visual
aspects of the two renderings.

5.2.3 Case study: Comparison of Visualizations based on Granularity

The heirarchical nature of the iHelp Discussion forum system allows instructors to create niche topics for their

courses. One such example of this comes from an introductory course in Computer Science for majors, where

most of the discussion happened in a general discussion forum (726 of 901 messages), but some happened in

topic-specific forums. This course taught general principles of Computer Science, but based on the interests of

the instructor and the students a subforum called the Game Club was created to talk about video game related

issues. These two discussion forums can be visualized individually (Figure 5.6) and, while no discussion with

the instructors about this forum took place, some high level qualitative comments can be made.

First, it is easy to see that there is much more activity in the general discussion forum than the game

forum by looking at the in-degree of participants (higher in general forum) and the number of persons in

the non-user sociogram (higher in game forum). Second, the rate of lurking is higher in the more specialized

game forum, though the cause of this is unknown (it might be that there are just fewer postings, so it is

easier for the keen learners to read them all, or there is an initial surge of activity where the community has

promise but then dies out). Finally, it is worth noting that a number of instructional experts sit very close

to the participation ring in the game forum, but do not write new messages or reply to messages to become

participants. The precise role of the instructional experts here is not clear and it is difficult to draw specific

conclusions; they may be instructors who are keeping an eye on developments, or tutorial assistants who are
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peer students and very much interested in the content of the discussions.

Insight coming out of use of the data-assisted approach is very much about making visible the invisible

– instructional experts cannot regularly see interactions learners make and thus do not involve them when

making pedagogical decisions. In this example, an end user looking at discussion forum postings without

the visualization would assume that only the couple of instructional experts who have written messages in

the game forum are interested in the topic. The visualization, however, makes it clear that this is not the

case, in that there are eight other instructional experts who have read almost every message posted in that

forum. By making visible the hidden traces users leave as they interact with the learning environment,

instructional experts are better positioned to make both short term and long term pedagogical decisions.

Given the keenness of learners to view this game related forum, it might not be unreasonable for similar

content to find its way into the standard curriculum for the course in future offerings.

5.2.4 Case study: Comparing Pedagogical Approaches

A modified version of the sociogram visualization tool was prepared for a specific investigation into how

different kinds of conversation scaffolding can affect the engagement of students. In this version of the

sociogram the non-users were excluded as all students were required to post, and node size was varied by the

perceived quality of the messages a learner wrote (no instructors were involved in posting to the discussion

forums). Our subjects included twenty senior level undergraduate education majors, and conversations were

scaffolded either as a debate or as a role play on alternating weeks of the course.

Through a discussion with the instructor, a number of observations of these visualizations were made.

First, there is a greater quality variation among students’ postings in debates as opposed to role-plays.

For instance, the large nodes in Figure 5.7a represent students who made several good contributions, while

small nodes indicate students who made poorer contributions. Comparing with Figure 5.7b, we see that

the differences in quality of contributions are much larger in the debate. Note that quality is subjective;

however, node size was based directly on the information the instructor supplied about the quality of each

student contribution. Using an evaluation rubric, the instructor calculated a weekly grade for each student’s

participation. These grades were converted to normalized values for each student for each week of the course.1

Second, the rate of lurking was measured over time, and regardless of the pedagogy being applied this

rate stayed relatively constant. The top third of active lurkers for any particular week were generally in the

top third of lurkers throughout the whole course, supporting the notion that lurking is a learning style.

Finally, there is less interconnectedness of nodes in the role play approach versus the debate approach.

In the debate, many learners replied to one another, which in the role play two learners controlled the

conversation (Christopher and Brian). These two learners also received high marks for their contributions,

a potentially interesting relationship for further study.

1All names in this set of visualizations were fabricated and are not those of the learners being represented.
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(a) Debate Scaffolding (b) Role Play Scaffolding

Figure 5.7: Visualization of two weeks of conversations, the first in debate style (figure 5.7a) and the
second in role playing style (figure 5.7b). Learner nodes were named so that direct comparisons between
the two sociograms could be made, though names were randomly assigned. Node size corresponds to
quality of messages as determined by the instructor (directly related to the student grade), and a force
directed layout was used to show interconnections between learners.

The data-assisted approach is appropriate not only for consequential discovery of pedagogical effect,

as demonstrated in the first three cases, but also for intentional investigations into different instructional

approaches. While no direct intervention was formed in this investigation, the instructor was interested in

the differences between the two methods given that it was the same students participating every week.

5.3 Conclusions

The data-assisted approach for supporting instructional interventions is made up of two activities: the

explanation of usage-data to generate insight, and the support for the creation of instruction interventions

based on this insight. In this chapter of the work, the human computer interaction techniques of information

visualization were used to aggregate traces of learner activities and make them available to instructional

experts. Through augmenting an asynchronous discussion forum, instructors have been able to modify their

pedagogical practice (§§5.2.1–5.2.2), understand the effects of different pedagogical approaches (§5.2.4), and

gain insight into how learners interact in niche communities (§5.2.3). This chapter demonstrates that applying

the data-assisted approach can lead to insights in instructional experts which they can use to modify their

teaching practice.

This chapter has focused on how an instructor might use data-assisted tools in order to understand
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their course. In many institutions, program administrators or instructional designers are interested in similar

understandings but across different offerings of a course. The following chapter will describe how data-assisted

tools have been used to generate insights into learner behaviours across courses and disciplines.
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Chapter 6

Measuring Educational Impact

As shown in the previous chapter, the data-assisted approach can be used to generate insight which

instructors can use to modify their teaching activity. Each of the case studies described broad changes in

pedagogy that could be made based on understanding the hidden behaviours of learners. But the data-assisted

approach is not limited to just instructors nor broad changes; it is possible for instructional designers, for

instance, to leverage similar techniques to make changes that affect only a portion of the learner population.

This chapter1 describes how learner behaviour data can be statistically described and related directly to

educational outcomes. It further provides methods to model learners and associate them with pedagogically

sound groups where more individualized interactions can take place. In doing this, this chapter will address

three questions that were raised by the motivation scenario in §4.2, namely:

• Can learners be clustered based on their viewing habits into pedagogically relevant groups?

• If so, do these groups differ in their formal assessment measure, or are other variables, such as self-

reported learner satisfaction, more useful indicators of learning?

• Is it reasonable to do this kind of clustering investigation in mid-semester, or is forming of clusters of

like learners only useful in multi-year comparisons?

These questions will be addressed in §§6.2–6.4 respectively.

6.1 The Recollect System

A key consideration of the data-assisted approach is whether learner interactions within the learning environ-

ment can be correlated with pedagogical goals and measures of learning outcomes. These interactions can be

either explicitly made by learners (e.g., through the filling out of a survey) or implicitly made as a by-product

of the learning activity itself (e.g., navigating through content). Sometimes referred to as clickstream data

or traces, these interactions are difficult to understand on their own in part because of the large amount of

data collected (potentially millions of data points) and the low level meaning that the data represents (e.g.,

1Portions of this chapter appear in [22]
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Figure 6.1: A screenshot of the Recollect lecture capture system. The system shows thumbnails of
upcoming slides on the left of the window to allow for navigation. The right side of the player shows
video of the classroom as well as video captured from the data projector.

the clicking of a single link or keystroke on the keyboard). The data must first be summarized, and then

linked to learner goals in order to be made actionable.

One learning environment that collects this low level learner behaviour data is the Recollect lecture

capture solution (Figure 6.1), developed at the University of Saskatchewan in part by the author. This

system records in-person classroom lectures and stores them for playback by students for both the initial

viewing of and reviewing of content. Recollect records a number of user behaviours, including the time spent

streaming a lecture (discretized into thirty second intervals), clicks on any buttons in the user interface (e.g.,

volume change), searching through lecture slide content, seeking within the video using the video scrubber,

and navigating within the video using section thumbnails. Each of these behaviours is linked to the time in

which they were observed, the student who initiated the behaviour, and the particular video that was being

watched.

6.2 Formal Assessment

The Recollect system was deployed for a number of sections of a second year Chemistry course in both

the 2010 and 2011 academic years. Students were allowed to use the system how they saw fit, and every

lecture from a single section taught by one professor was shared with students in all sections of the course.

Instructors did not change grading criteria based on the presence of the recorded lectures, and midterm and
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final examinations were common across all sections of the course.

Lecture capture is only one resource learners had available to them, and consistent patterns are difficult

to see from the raw data. The viewing behaviours for Chemistry 2010 learners were cleaned2and summarized

into viewing habits broken down by calendar week. In this model, learners were deemed to have either

watched or not watched lecture content during the twelve weeks of the course. Out of 636 learners registered

in the course, 133 were included in the study (participation rate of 36.6%) by virtue of their use of the

Recollect system.

The weekly viewing rates of learners were used as attributes with k-means clustering (k = 5) to create

a model of learner behaviours. Five clusters were chosen based on preconceived hypotheses of how learners

might use the system (see the authors’ previous work at [22] for more details). The form of the clusters is

summarized in Table 6.1, and error for clusters ranged from 5% to 25% (x̄ = 5.37%).

The results of the clustering activity provide a number of insights into learner activities. For instance, some

learners only watch lectures during the week of the midterm, while others watch fairly regularly. Regardless

of viewing patterns, the last two weeks of the course (corresponding to the time between the end of classes

and the final examination) tended to have a high amount of disagreement between participants and the

centroids. The disagreement for these weeks, ranging from 19% to 40%, suggests that activity throughout

the term isn’t indicative of behaviours between the end of term and the final exam, and thus only data during

the teaching portion of the term was used for further analysis.

2A threshold of at least five minutes of viewing was arbitrarily chosen to remove behaviours that were deemed to be tool
experimentation over tool use for learning. As the time period for this course was in the second semester of the academic year,
the one week of data over midterm break was excluded from analysis.
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From this data, a high level model of viewing habits can be considered. The goal of developing such a

model is to be able to accurately partition learners in a course into groups with behaviours corresponding

to pedagogically meaningful patterns. Models can then be validated across multiple offerings of a course,

disciplines, and year of study to understand the effect each of these clusters has on how learners use learning

tools. The models can also be correlated with learning outcomes, such as final grade or perceived value of a

course.

Using the data from Table 6.1, a model for five idealized clusters was developed. For instance, the first

cluster has learners who habitually watch lectures throughout the term, so they were labelled high activity

learners. The second cluster is made up of learners who observed the lecture the week before the midterm

examination, so they were labelled as just-in-time learners. The third and fourth cluster appear to correspond

to (roughly), the first and second half of the course, so they were labelled as disillusioned learners and deferred

learners respectively3, 4. Finally, the last cluster is made up of learners who habitually did not watch lectures.

To be included in the study learners in this group must have watched at least five minutes of video in a given

week, but the overall pattern of behaviour from these minimal activity learners suggests that the tool is used

sparingly throughout the course instead of primary study aid, perhaps to catch up on missed lectures. As

discussed, the relevance of the time between the end of lectures and the final exam did not seem indicative

of the clusters as a whole, and was discarded from the general model.

With this general model in defined, a learner from any cohort can be placed into a particular group

based on similarity. Put another way, a learner can be fitted into the cluster which minimizes the difference

between the weekly list of learner interactions and the cluster centroids. For instance, a learner who watches

video every week except for the first and sixth weeks will be placed into the high activity cluster. Despite

this learner not fitting perfectly with this cluster, his or her activity patterns are most closely related to it.

Similarly, a learner who watches during the midterm week and week 12 will be placed in the just-in-time

cluster. That the learner watched lectures during week 12 contributes to the error the cluster centroids have

(in this case, 0.04). Thus the centroids are not only the interesting aspects of the clusters, but also the

amount of error for any given week of that cluster. Table 6.1 shows the amount of disagreement learners in

a cluster have with the centroid of that cluster (error). Some weeks have large disagreement (e.g., week 1 of

the high activity cluster, where 50% of the learners in that cluster did not watch video, or weeks eight and

nine of the deferred cluster where 38% and 23% of the learners in that cluster did not watch video), while

others have perfect agreement (e.g., week eight in the high activity cluster).

3It is useful to note that there is some overlap with the learners that used the lecture capture tool in the second half of
the semester and those who used the tool only for preparation for the midterm examination. The discretization of the data
into week-long time periods makes analysis sensitive to alignment issues with respect to the day of the week. There is some
evidence to suggest that access to Recollect by learners is cyclical with respect to day of week. Previous work [22] ignored day of
week, but for comparison and generalization of models between academic terms it is may be more principled to consider weekly
accesses as starting on the first working day of the calendar week (as is done here).

4It is somewhat unclear where the division boundary between the disillusioned learners and the deferred learners should be.
For the purpose of this work the division is considered to be the overlap of the midterm examination week which is included in
both categories, but it is highly likely that the academic withdrawal schedule would impact learner decisions. Regardless, such a
labelling is to be done by the educational expert, and they could experiment themselves with determining the most appropriate
range of values as will be described in in §4 of the final dissertation.
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n Ideal (k = 5) Model Model-Ideal
Chemistry 2010 232 0.063 0.067 0.005
Chemistry 2011 333 0.099 0.109 0.010

Table 6.2: Comparison of mean disagreement between an ideal clustering and a pedagogical model
within the Chemistry 2010 and 2011 data sets. The values can range between 0 (perfect fit) and 1

(complete disagreement), and are given by the equation
∑

x∈s

[∑w
i=0(|xi−cluster(x)i|)

]
n∗w , where n is the

number of students, w is the number of weeks data exists for, s is the set of students being considered,
and cluster(x) is the vector of cluster centroids that the student best fits. Ideal clusters were restricted
by k = 5.

Cluster Label Midtermx̄ Midtermσ Finalx̄ Finalσ Overallx̄ Overallσ
High Activity Learners 77.32 15.71 75.43 22.19 80.14 14.49
Disillusioned Learners 64.71 15.72 58.98 17.81 66.82 13.85
Just-In-Time Learners 68.14 15.92 60.49 23.68 70.69 14.39
Minimal Activity Learners 64.30 15.36 58.98 22.89 68.41 14.71
Deferred Learners 63.33 12.20 59.83 20.21 69.04 12.43

Table 6.3: Midterm, final examination, and overall grade averages and standard deviations broken
down by cluster in percentages for the Chemistry 2011 course. Students who did not use the system
(n = 216) had midterm examination marks of x̄ = 65.19, σ = 16.21 and final examination marks of
x̄ = 61.75, σ = 21.29 and overall examination marks of x̄ = 68.59, σ = 15.34. Group ANOVA provided
support for significance for midterm marks (f = 3.05, p = 0.02) and overall marks (f = 2.435, p =
0.0472) but not final marks (f = 1.71, p = 0.15).

An overall description of how well the model fits a particular course can be obtained by applying the

model to all learners in that course who have used the system, and summing and normalizing the error

for each learner. Table 6.2 demonstrates this using the original cohort upon which the model was formed

(Chemistry 2010), and a cohort from the following year (Chemistry 2011). While overall disagreement went

up between the two offerings of the course this was mostly an effect of an increasing number of learners, and

the model introduced extremely small error in comparison to the ideal clusters (0.010).

Instructional goals are often represented by midterm and final examinations and, while marks are not a

complete measure of learning, they are often used by learners, instructors, and adaptive systems as a proxy

for learning. Correlating patterns of behaviours with differences in marks provides evidence of detecting

learning from activity. Learners use lecture capture as one tool to aid in learning, but many other tools and

methods contribute to learning (e.g., online quizzes, in class lectures, textbooks, study groups) and make

identifying the effect of any single tool difficult. A pairwise tukey test for the midterm examination, final

examination, and overall marks for the 2011 cohort (Tables 6.4 through 6.6) demonstrates there is an effect

on marks for one cluster of learners in particular, the high activity learners, and that the effect’s significance

ranges between the levels of p = 0.021 and p = 0.240.
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n Ideal (k = 5) Model Model-Ideal
Biomolecules 2011 190 0.133 0.163 0.0298

Table 6.7: Comparison of mean disagreement between an ideal clustering and a pedagogical model
within the Biomolecules 2011 data set. The values can range between 0 (perfect fit) and 1 (complete
disagreement), and are given by the equation described in Table 6.2. Ideal clusters were restricted by
k = 5.

Cluster Label Overallx̄ Overallσ
High Activity Learners 78.53 12.20
Disillusioned Learners 66.5 15.67
Just-In-Time Learners 68.58 17.82
Minimal Activity Learners 67.47 18.82
Deferred Learners 67.6 16.05

Table 6.8: Overall grade averages and standard deviations broken down by cluster in percentages for
the BMSC-200 2011 course. Group ANOVA provided does not show strong support for significance
for overall marks (f = 1.286, p = 0.2773).

Forming a model on the Chemistry 2010 dataset and verifying its utility on the Chemistry 2011 dataset

provides a baseline that might be adapted to other courses. To show cross-course validity of this model, data

was collected from a second year Biomolecules course in 2011. This course has many of the same attributes as

the Chemistry 2011 course: it was made up of a large cohort of learners (n = 190), had a single midterm, and

required some of the same prerequisites as Chemistry 2011. The course was taught by a different instructor,

and all students were in a single section.

Quantification of the amount of error when applying the model to the data set is shown in table 6.7. It

is useful to note that the Biomolecules 2011 data set does not cluster as well to five clusters compared to the

Chemistry 2010 or Chemistry 2011 values. Whereas the Chemistry courses had ideal values with under 0.1

error (0.063 and 0.099 respectively), the Biomolecules ideal k = 5 cluster had 0.133 error, which corresponds

to roughly one misclassified week of interactions per learner. Despite this, the application of the five high

level cluster descriptions in the model to the Biomolecules courses introduced minimal new error (0.0298),

suggesting a reasonable fit.

While the Biomolecules 2011 course had midterm and final examples similar to the Chemistry 2011 course,

only the overall grade of learners was available for analysis. This grade includes the aggregate of examinations,

assignments, and laboratory exercises‘, and may be curved or scaled. Nonetheless, it is worthwhile considering

Tukey honest significant difference [72] values to differentiate clusters to see how well the model performs

(Table 6.9). The pattern of p-values (e.g., lower for the cluster of high activity versus all other clusters) is

similar to that of the the Chemistry 2011 final marks (Table 6.6), though with less confidence.

This section of the work has demonstrated how interaction data can be used to form a model of inter-

activity for a cohort, how this model ties to formal evaluation goals, and how this model can be applied to

similar courses with relative success. An important question around the pragmatics of this model still exists:

Can the model be applied throughout the academic term to predict cluster membership with accuracy? The
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High Activity Disillusioned Just-In-Time Minimal Activity
Disillusioned p = 0.472 *
Just-In-Time p = 0.335 p = 0.997 *
Minimal Activity p = 0.179 p = 0.9998 p = 0.997 *
Deferred p = 0.456 p = 1.000 p = 0.9997 p = 1.000

Table 6.9: Tukey HSD confidence values between pairs of clusters using overall course marks for
Biomolecules 2011.

answer to this question depends on what accuracy is necessary for a particular goal, and how long data

collection can take place before a prediction of membership is necessary. This is the topic of the following

section.

6.3 Actionability of Model

In the design of a tool to make use of interaction data that has been fitted to a complete model it is important

to consider of how that model can be applied when only partial data exists. Consider the previously described

model of user lecture video accesses throughout an academic term; if the intent is to make a prediction engine

such as in [115], it is important to know what categorizational power the model holds at a particular time.

Is it appropriate to use this model only at the end of the course for reflecting on learning, or can it be used

by an instructor during the teaching period? Is it useful to use this model in the first week of a course, or is

it only useful after midterm examinations? This section of the work will investigate how prediction accuracy

of the model changes as more interaction data about learners is collected.

Table 6.10 shows the prediction accuracy of cluster membership using the Chemistry 2011 cohort. At

each week five values are given for each cluster; a) the number of learners who are predicted to be in a given

cluster by the end of the term and who, from their activity, already best fit this cluster (true positives), b)

the number of learners who are predicted to be in another cluster by the end of the term and whose data thus

far suggests they do not fit this cluster well (true negatives), c) the number of learners who are predicted to

be in this cluster by the end of the term but whose data thus far suggests they best fit another cluster (false

positives), d) the number of learners who are predicted to be put into this cluster by the end of the term

but whose data suggests they do not fit this cluster the best thus far (false negatives), and e) the number of

learners who are predicted as best fitting into this cluster (either as a true positive or a false positive) but

who could optimally fit into at least one other cluster (borderline).
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The clustering model developed uses a series of attributes relating to the week of lecture with a binary

value of either watched or not-watched. It is impossible to differentiate clusters after the first week of

data alone, as several clusters have the same pattern of usage (e.g., the pattern for the high activity and

disillusioned learners is denoted by watching the first week of lecture, while the activity pattern for the just-

in-time, deferred, and minimal activity learners are all denoted by not watching the first week of lecture). At

the seventh week, it is possible to differentiate the just-in-time learners from the minimal activity learners,

and by week eight it is possible to differentiate all of the clusters from one another.

Depending on the instructional intervention being instigated, different values of the actionability table

may be interest. For instance, if it is in week five and the instructor is planning to e-mail learners who do not

fit into the high activity cluster to encourage them to watch more video, then the instructor should be aware

that a portion of the learners they are not emailing (in this case, twenty-one, which is the value for week five

for the high activity false positives) will actually end up in the disillusioned cluster. Similarly, if it is week

nine and the instructor has asked tutorial assistants to get in contact will all of the disillusioned learners,

they should be aware that several of these learners (in this case six, given by the value for the disillusioned

false positives) will not best fit this cluster by the end of the term. Thus it is important to contextualize that,

with this model as a predictor, there is error that depends in part on the purpose for which an intervention

is being made.

Although this error cannot be measured accurately until the end of the term, there are some broad

comments that can be made. The false values drop significantly after clusters can be disambiguated from

one another (table 6.2). As mentioned, in week seven it is possible to differentiate the just-in-time learners

from the minimal activity learners, and the total false positives drop dramatically. In week eight it is possible

to differentiate between the just-in-time and deferred learners, which reduces the borderline value for the

just-in-time cluster. These are two different kinds of error; in the first case, the error is a mis-prediction

caused by inaccuracy in the model. The model does not fit a particular learner well, and the solution may

be to include more attributes in the model or form a larger set of models (increase k). In the second case,

the error is caused by cluster ambiguity; the clusters are too similar to one another to distinguish where a

particular learner goes. The solution for this problem is the same as the first; ambiguity is not necessarily

a problem depending on the instructional intervention being taken. For instance, in the first example given

previously where an instructor wanted to e-mail all learners who are not in the high activity cluster, it does

not matter if he or she is unable to distinguish between the minimal activity cluster or the just-in-time cluster

as both clusters contain contain learners of interest.

The previous section described how a pedagogically relevant model can be built based on learner interac-

tions by correlating these actions with assessment. This section extends the understanding of the model by

describing how it could be applied to data collected throughout the term, and how the prediction accuracy

changes over time. However, marks are not the only indicator of learning, and learner sentiment into the

perceived usefulness of a learning environment and how it impacts their activities may be useful as well. The
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Figure 6.2: Graphs plotting the prediction accuracy of learners versus week in the term. Generally,
as more information is collected about learners, the correct predictions increase and the mispredictions
decrease. Borderline learners are those who fit equally well in multiple clusters based on their activity.
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following section will apply the same methods described previously to subjective self-reported views of the

Recollect lecture capture system with the goal of forming a model by which these views can be predicted

from interaction data.

6.4 Learner Goals

Forming a relationship between behaviours and subjective questionnaire data allows for future instructional

interventions to be made based on the behaviours alone. For instance, if a relationship is discovered between

low use of lecture capture and negative opinions of the technology, the instructional expert may be able to

change the learning environment in the future to accommodate learners who would prefer alternative tools

based on their activity alone. While this section demonstrates some statistically significant differences were

found, the differences between clusters is limited and (in this case) may not be strong enough for an instructor

to act on. Nonetheless, this section acts as a further example of how unsupervised machine learning might

be applied to interaction data through the data-assisted approach.

Formal assessment of educational activities through examination marks has long been criticized as not

being completely indicative of learning. Learning itself is difficult to measure, and a number of proxies

or determinants for learning have been considered by others including collaboration and discussion between

learners, self-assessment of the value of activities, or affective state of the learner. The data-assisted approach

encourages the exploration of the data by instructional experts. Armed with their knowledge of the domain

and pedagogy, the experts can query the system to gain a deeper understand of how learners are acting

within groups. Such queries are likely to be driven by hypotheses based on curiosity, preconceptions based

on training, and instincts based on years of practice. To emulate this investigation, seven questions on the

usefulness of the system and perceived workload were examined with respect to how well they fit clusters

(k = 2)5based on two behaviours: The number of minutes the learner watched and the number of unique

videos the learner watched. The goal in doing this was to see if activity could be linked to statistically

significant differences in learner opinions. If so, an instructor could, from behaviour alone, differentiate

between the mental state of learners and form better adaptations for the two groups.

Learners (n = 636) in the Chemistry 2011 cohort were surveyed as to the relevance and usefulness of

the Recollect system in this class. The questions asked covered a mixture of technical, pedagogical, and

policy questions issues, and a number of these questions were designed to elicit beliefs learners had about

their learning (response rate of n = 229, %30). The full survey instrument is included in Appendix A. The

seven questions examined in more detail included questions four and five which asked learners to identify the

final grade they were trying to obtain and to estimate the grade they thought they would actually obtain.

In additions, questions six, nine, 21, 22, and 24 were asked, all dealing with perceptions on workload and

5The choice of the number of clusters (i.e. the value of k) to make affects outcomes greatly. This was an initial investigation
to determine if unsupervised machine learning approaches can be used for clustering of subjective responses response data.
Given the results shown here it is reasonable to continue exploration with an aim to find ideal values for k.

76



satisfaction. These questions were all zero indexed likert-based, with zero representing the strong affirmative

(e.g., “Very High” or “Very Important”) and four representing the strong negative (e.g., “Very Low” or “Not

Important”). From the survey instrument, the questions text were:

• Q4: I am working in this class to try and get a mark in range:

• Q5: Reflecting on my performance in the class so far, I think my mark will actually be in the range:

• Q6: My workload this term including all of the courses I am in as well as other commitments is:

• Q9: How important do you feel that watching the recording of the lecture was for your success in this

class?

• Q21: If you used the lecture capture system, how important was it for reviewing content you hadn’t

seen (e.g., missed classes).

• Q22: If you used the lecture capture system, how important was it for reviewing content you saw but

didn’t understand or couldn’t remember?

• Q24: If you used the lecture capture system, how important was it for studying for examinations?

The analysis of these questions with the clusters formed is shown in Table 6.11. Labels on clusters were

chosen by the author, and learners were segmented into a smaller cluster (n = 12) of users who watched a

large number of videos (on average, 28) for a mean time of 19 hours and three minutes. A larger number of

learners (n = 115) watched fewer videos (on average, six) for a mean time of three hours and 56 minutes.

Only questions six, nine, 22, and 24 showed statistically significant results (p ≤ 0.05), though the means

between clusters for question six were of little meaningful difference.

This section of the work has shown how qualitative opinions from learners can be correlated with their

behaviours. By clustering learners into groups based on their coarse grained usage data, the results of survey

questions can be linked to activity. An instructional expert can then use these clusters as a proxy for survey

results, and provide interventions without having to poll learners directly. Unfortunately, the particulars of

the answers given by learners did not provide overly deep insight. While it was shown that learners who

used the system more rated the importance of using lecture capture as higher, this is a minor (and perhaps

common sense) result. Nonetheless, this section acts as a demonstration of how traces of learner behaviour

can be linked to qualitative data that is not based on performance.

6.5 Conclusion

The data-assisted approach enables adaptivity in learning environments by presenting the traces of learner in-

teractions to instructional experts. The instructional experts then investigate, interpret, and label collections

of traces which are linked to instructional interventions. The interaction traces that learners leave behind are
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Attribute
Clusters

ANOVA p-valueKeen (n = 12) Less Keen (n = 115)
x̄ σ x̄ σ

Minutes Watched 1143.25 414.3705 187.3043 236.5078 ≤0.001
Unique Videos 28.25 7.085517 6.930435 6.425991 ≤0.001
q4 1 1.044466 1.156522 1.005173 0.610
q5 1.5 1.314257 1.695652 1.077472 0.559
q6 0.5833333 0.7929615 0.7913043 0.7665788 0.037
q9 0.4166667 0.5149287 1.191304 1.033608 0.012
q21 0.25 0.8660254 0.4434783 0.9660128 0.507
q22 0.1666667 0.3892495 0.9913043 1.301117 0.031
q24 0.5 0.797724 1.252174 1.276257 0.048
Midterm 72.08333 18.45859 71.32609 15.13942 0.872
Final 72.22222 21.15137 70.4116 20.00128 0.767
Overall 77 15.32081 75.74783 13.15017 0.758

Table 6.11: Student behaviour clusters based on the number of minutes watched and unique videos
watched with k = 2. Cluster labels, keen and less keen were added by the author as descriptive
elements only, and are arbitrary. The only strong correlation with questionnaire data existed for
questions six, nine, 22, and 24. See appendix A for question details.

numerous, and finding ways to summarize these interactions to instructional experts is an important problem

in making the data-assisted approach tractable. This section of the dissertation demonstrates that the traces

learners leave behind when using a lecture capture and playback system can be data-mined and related to

educational outcomes and goals.

The first of these demonstrations (§6.2) showed how learners could be clustered based on coarse-grained

viewing habits. These clusters were the basis for an abstract model, which was then verified on two addi-

tional cohorts of learners. Clusters in this model represented different learning strategies, and one group

in particular, the high activity learners, correlated well with an increased achievement compared to other

groups. With this knowledge, the instructor could apply clustering to future students and build instructional

interventions aimed at particular groups. For instance, if it is the instructor’s belief that the correlation re-

lationship between regular lecture video watching and higher marks is a causal relationship, he or she might

send out an alert to all learners who are not watching videos to encourage them to watch more consistently.

The second demonstration (§6.3) extended the clustering of learners by describing how the model’s pre-

dictive power changes over time. This is an important practical factor when using the model to form real

time instructional interventions for learners. This section also contextualized the kinds of errors (false and

borderline) that exist in the model, and how they might affect intervention decisions.

Finally, §6.4 demonstrated how learner’s subjective opinions of the usefulness of the learning environment

can be correlated with their behaviour patterns. While the particular patterns identified in this study couldn’t

be confirmed through replication, they serve to illustrates a second method of how a pedagogically interesting

model can be built using data-assisted approaches.

In all of these examples the parameters of and meaning of clusters needs to be defined or interpreted by

the instructional expert. Relying on this expert for domain, content, and pedagogical reasoning increases
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the generalizability of the data-assisted approach. Instead of exploring these domains ahead of time through

a knowledge engineering process (for instance, through semantic web ontology creation or intelligent tutor

development), the instructional expert can investigate data in situ and prune away aspects of the search

space that have limited relevance to their context.

By providing labels for discovered groups back to the system along with some instructions on how adap-

tation should take place, future interactions with learners can be customized. In this way, the system and

the instructional expert work together to form a personalized experience for learners. The next chapter will

explore how this activity might happen from the perspective of an educational technologist.
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Chapter 7

Adapting Learning Environments to Tasks

The scenario presented in §4.3 followed an educational technologist, Adam, who used the data-assisted

approach to understand how learners are using the lecture recording tools. More than just gaining insight,

Adam was interested in building instructional interventions of an automated manner. The previous chapter

demonstrated how clusters of learners could be formed from their behaviour data. Using this, it is possible

for an instructional expert like Adam to identify interesting groups of learners, and create an intervention.

Thus far, however, only broad pedagogical interventions executed by instructors or instructional designers

have been described. One of the interesting aspects of traditional intelligent learning environments (such as

intelligent tutoring systems) is that they respond automatically to learner actions. It is worth considering

whether this ability is lost in a data-assisted approach, where instructional experts are expected to be involved

in the sensemaking process.

This chapter1 describes how the data-assisted approach can be used to form low-level instructional inter-

ventions in lecture capture systems. To provide similar adaptations as one might find in intelligent learning

environments, this chapter will focus on a very small technical adaptation, the customization of navigational

elements in the Recollect system. In a production system these navigation element adaptations could grow

out of the sensemaking process described previously, and directly link the insight (in the form of labelled

clusters of learners) to the intervention (a change in navigational indexing scheme). The chapter goes fur-

ther, and suggests how the underlying data collected by the learning environment might be used to further

customize the indexing scheme. In doing so, specific learner behaviours not only influence insight, but also

influence the form of instructional intervention that is delivered.

The studies in this chapter use opinions from learners as a proxy for interaction data. Using learner

behaviours to determine significance would be preferable, however, measuring this would require significant

re-tooling of the Recollect learning environment. Further, there are also many competing methods by which

this might be done (a research question in its own right). For instance, one could imagine deploying a system

with näıve indexing and collecting the frequency by which learners use different index points. Over time, the

system could drop rarely used indices, and re-index portions of the lecture content. It may also be possible

to use the scrubber navigation data, or to bootstrapping the system with data from instructional experts.

Regardless, the laboratory studies described in this chapter focus on how behaviours can be turned into

1Portions of this chapter appear in [21].
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instructional interventions.

Considering again the scenario of Adam in §4.3 there were three main questions that needed to be

addressed:

• Do groups of learners really agree on where indices should be placed, or are their preferences for

navigational aids more varied? If the former is true, then the clustering methods described previously

may well yield a more personalized and efficient navigation structure.

• Is it appropriate to use supervised machine learning to build indices, and how might such an approach

compare to algorithms that already exist? Supervised machine learning is a strong technique when

dealing with complex data containing a clear set of attributes. However, is it appropriate to deal with

lecture videos in this manner? If so, can such a technique out-perform hand-tuned algorithms that

already exist?

Each of these questions will be investigated in §7.3 and §7.4 respectively, using laboratory studies involving

learners and actual recordings available from the Recollect lecture capture system.

7.1 Navigation in Recollect

The Recollect lecture capture environment (Figure 7.1) has multiple methods a learner can employ to navigate

through content. For instance, thumbnails across the left hand side of the environment allow for quick

“chaptering” of the content with image preview, while the scrubber along the bottom allows for precise

navigation throughout the video based on time. It is not unreasonable to think that navigational style might

differ depending on learning goal; a learner watching a lecture for the first time might not use either of these

navigational aids; a learner who is searching for a particular topic in the lecture might use the thumbnails

provided; a third kind of learner might use the scrubber to quickly replay video about a critical concept they

missed while watching.

Thumbnails in the Recollect environment were originally generated using a näıve algorithm – every five

minutes of video a still image would be copied from the video and metadata for the video would be updated

linking the image and its position in the video. More sophisticated methods have been proposed for the same

purpose; for instance, the Opencast Matterhorn system2uses a frame differencing algorithm with thresholds

for RGB colour values, while Dickson’s algorithm [43] is a multi-pass image processing function that examines

both pixel and block characteristics of video to determine stable events. Both of these algorithms were

designed to work with lecture video captured by similar hardware as used by the Recollect system, making

the potential for comparative study possible.

2In 2009 the University of Saskatchewan, through this author, joined the Opencast community and contributed ideas and
software from the Recollect system. This relationship has deepened over the years, and the University of Saskatchewan now
uses the Opencast Matterhorn product as its principal lecture capture system. While the author has worked on development of
Opencast Matterhorn, no contributions were made to the indexing algorithms described here at the time of writing.
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Figure 7.1: The Recollect lecture capture system, showing navigational thumbnails on the left hand
side. As users mouse over a given thumbnail, a small image opens up and shows what the data projector
feed recorded at the corresponding time in the video. All interactions involving the thumbnails such
as mousing over, clicking, or scrolling through the list, are recorded.
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7.2 Indexing Algorithms

There are several different approaches to indexing algorithms that have been taken by others. The most

simple of these, time-based indexing is a näıve method that does not take into account the behaviours of

learners or the content of the video. Index points are chosen every certain number of frames (e.g., every five

minutes), and navigation with time-based indexing is of minimal utility when the video scrubber can be used

as well. This method of generating indices is extremely simple and quick.

More sophisticated methods of generating indices tend to come by examining image content directly. The

Opencast Matterhorn3 system uses compares frames of the video using the difference between RGB colour

channels. A threshold is used to determine whether an image is stable or not in order to suppress indexes

when moving content is detected. This is common in lecture capture situations, as an instructor might show

a few web page items or play a youtube video, and an index should only be created at the start of these

events and not for every frame through the events.

A method provided by Dickson et al. [43] is similar to that of the one Opencast Matterhorn uses but

includes mechanisms to handle pixel shift. In this, the RGB differences between two frames are calculate

only if the difference is greater than 100 (8 bit images, thus 255 bits per pixel) and if there is no immediate

neighbouring pixel less than this amount. This handles issues of fuzziness resulting from the analog capture.

7.3 Grouping Learners by Navigation Usage

7.3.1 Comparing Users to Traditional Algorithms

A laboratory study was undertaken to determine whether indices of video could be created for lecture video

based on learner opinions of relevance. indices are used by Recollect as thumbnails for navigating through a

lecture, as shown in Figure 7.1, and correspond roughly with DVD chaptering.

Six human subjects who were unfamiliar with lecture capture systems were asked to go through four

different lectures and identify where significant events occurred. For the purposes of this study, we described a

significant event as “...the position in which a sub-chapter marker would be useful for students like [themselves]

in quickly navigating through the lecture[s] for review or study”. A screenshot was provided (Figure 7.1) of

the Recollect system to demonstrate the intended usage of these markers.

The tool provided to study subjects allowed for navigating through a video linearly both forwards and

backwards in one, five, 10, and 30 frame increments (each frame was equivalent to one second of video).

Subjects were also able watch the video at various speeds, though none used this option. No audio was

provided as it was not being considered part of the candidate feature space. Subjects were both observed

and given post-study questionnaires to elicit feedback.

3Version 1.2 of this system is described, see http://www.opencastproject.org
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Videos κ (n = 6) κ′(n = 5) κ′ppos κ′pneg κ′with Dickson
Video A 0.65 0.86 0.87 0.99 0.55
Video B 0.49 0.65 0.68 0.99 0.42
Video C 0.51 0.65 0.66 0.99 0.44
Video D 0.14 0.18 0.21 0.99 0.11

Table 7.1: Inter-rater reliability measures using Fleiss’ κ [53] for significant events in four lecture
videos. κ is calculated with n = 6, and κ′with (n = 5) by removing the one outlying rater (semantic
annotator). Higher agreement between raters is shown for Videos A through C, while lower agreement
is shown for the handwritten Video D. Adding in Dickson’s algorithm (adapted from [43] lowers overall
group agreement in all cases.

.

The lecture videos chosen for this study included two senior-level undergraduate courses that used Mi-

crosoft PowerPoint as the main classroom presentation mechanism, and included either mostly plain black

on white lettering (Video A) or more graphical slides with significant moments of Web-browsing during

the presentation (Video B). One graduate course was also included (Video C), as well as an introductory

undergraduate course which used handwritten lecture notes obtained by capturing instructor interaction

with the SMART Sympodium system (Video D). All lectures were in the domains of Computer Science or

Mathematics.

Observations and survey results from the subject participants identified that they used two distinct

mechanisms for identifying significant events: visual structure (e.g., slide advancement in PowerPoint, or

extending the canvas in the Sympodium) and semantics (topics being taught in the slides). Out of the six

participants, five used primarily visual structure to identify events, while the sixth used the semantics of the

lecture material. All participants indicated frustration at being unable to find good event times for a lecture

that was handwritten (Video D in Table 7.1), in part because the video was constantly changing and because

the ideal thumbnail for an index is not available until the end of the content it describes.4All of the videos

described in Table 7.1 were of content familiar to the subjects.

The effect of including the semantic rating used by the sixth annotator is clear throughout all videos.

Using the categories provided by Landis and Koch [83], we see that for one of the videos (Video A) agreement

increases to almost perfect (κ=0.86) when the semantic annotations of the sixth annotator are removed, and

increases from moderate to substantial agreement for two of the other videos (Video B and Video C).

In addition to reporting the significance between human raters, values including Dickson’s algorithm [43]

and positive and negative agreements are provided. Dickson’s algorithm reduces overall group agreement by

a significant amount as the similarity between its output and any human rater is quite small. The positive

and negative agreements were calculated using [107] on the advice of Feinstein and Cicchetti [50, 36] who

argue that binary ratings can result in misleading low kappa values. As κ′ppos values (e.g., the amount of

agreement that a slide is an index) are nearly equivalent to κ′, this supports the notion that κ′ is a reasonable

4A thumbnail from time t best describes the content starting at time t− δ ending at t. This may be similar for videos which
rely upon animations as well, depending on the purpose of the animations.
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statistic to use.

7.3.2 Comparing Users to One Another

The previous section demonstrated that learners could create indexing points at locations similar to one

another from a shared high level goal. A follow-up study was run to investigate why learners chose different

indices, and six participants (three men and three women) were recruited, all of whom were or had been in the

last two years undergraduate students but none of whom had used lecture capture in the past. Nine lectures

from a single undergraduate course were used, resulting in a total of 43,770 video frames. Participants were

asked to identify those images which indicated a new transition had taken place.

Study participants were instructed to mark index points (referred to in the study as transitions) in each

video using a tool that allowed them to navigate through the video on a frame-by-frame basis. A purpose-

based goal was used as a motivator for this task: learners were to “...mark all transitions as if [they] were

building the left hand navigation window for a lecture video player,“ and were shown the image similar to

the one in Figure 7.1 to help better understand the task. Based on previous results, learners were dissuaded

from semantically analyzing the content, and were asked to “mark transitions based on visual changes that

[they thought] would be helpful for this lecture and other similar lectures.“ Finally, subjects were asked to

limit their index choices to between fifteen and thirty indices per lecture video.

Study participants also filled out questionnaires and met for a structured debriefing in which they were

presented with collated results of the indexing activity, and participants shared with one another the methods

they used to find indices. They described visual changes in images, charts, and graphs as being significant

indicators, as well as changes in the titles on lecture slides, and the amount of time since they had last

marked a transition. However, each participant did not indicate that these features had the same effect on

their decisions, nor could they precisely agree on one heuristic that would best fit most cases. Coming to

consensus within the group did not happen.

One finding that came out of the structured debriefing was that perceived educational task affected

whether subjects thought a particular image was relevant as an index. This task was often described hy-

pothetically based on the subject’s experience; for instance, when talking about the choice of an index that

showed administrative information about the class, one subject said it was “useful, but only in the context

of this as the first lecture...in another context, if this was a lecture in the middle of the year, I might not

have caught it or cared.”.

This subject went on to distinguish between the task of reviewing a lecture versus viewing it the first

time, indicating that for her this tool might be useful for some tasks but not all: “...if I’m going to be using

this to review a lecture, it’s the context of the lecture that I’m getting, otherwise I’m just going to go back to

the book, go back to the notes, I’m looking for the context of the lecture that he’s giving...”. Another subject

followed this with a question about whether learners should “...be using this as a study instrument...”, while

a third suggest the whole point of index thumbnails was to “...just quickly review”.
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Figure 7.2: (a) contains pairwise κ between raters. (b) is an agreement map for 6 raters where
distances between nodes are approximately inversely proportional to κ thus raters closer together have
higher agreement. Node placement is done using a spring model layout. Edges are omitted for clarity
as the graph is fully connected.

The first subject went on to suggest that there was some domain specificity as well, and that choosing

an index might depend on the format of the learning that is happening in the class “ ...in an English class

you’re looking for a lot of context...you’re not going to talk about how did you get that number from that

example...if I’m taking a class where I’m going through say an accounting problem, and I don’t know how

you made [an] entry I can’t get to the next one until I find the first [entry]...”.

Finally, a number of subjects suggested that their choices for rating came from intrinsic values, such as

learning style: “...these seem important because they’re examples, so if someone’s a visual learner they’ll see

it [as important]”

Fleiss’ κ statistic was used to measure agreement between these raters, similar to the first study. Recall

that in the case where there are more than two raters, the value of κ measures overall group agreement, and

any individual within the group may agree differently with each of the others. The amount of change any

single rater can make to the overall level of agreement decreases with the number of raters, and one outlying

participant could only marginally decrease an otherwise high kappa. Thus, it is useful to measure all pairwise

κ’s (for this study, Figure 7.2b) to understand the significance of each individual’s ratings.

Using terminology from Landis and Koch [83], pairwise agreement values range from fair (κ = 0.395) to

substantial (κ = 0.777), confirming that human raters continue to maintain some reasonable overall degree of

agreement when choosing index points; there may be room to subdivide the population into multiple groups

that each have higher agreement individually.

7.3.3 Conclusions

This section has shown that learners are often unable to come to complete agreement on the choice of

appropriate navigational indices, even in a structured discussion session. The agreement between learners,

however, can be measured (Figure 7.2a). Measurements taken against current state-of-the-practice algorithms

demonstrated that agreement between learners alone is higher than agreement between learners with the

algorithm, suggesting that there is room for algorithm improvement (Table 7.1).
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The amount of agreement between individual learners is not constant, and changes based on the perceived

educational task, learning style, and end goal. In particular, the data from the second study shown in Figure

7.2a demonstrates that it is possible to form sub-groups of learners based on how alike they are. In that

example, learners three, five, and six are much more similar to one another than learners two and four are.

This suggests that forming a cluster to represent the first group of learners may be an appropriate method

of aggregating opinions of indexing when many (hundreds) of learners are considered.

The question that remains is whether it is possible to make instructional interventions based on these

results. The algorithms discussed here from Recollect, Opencast, and Dickson, all require no parametrization

and return a single set of images. But learners do not share a constant level of agreement of what denotes

an event worth indexing. The next section will provide a novel method for customizing indexing for a group

of learners, and demonstrate its effectiveness using the data from the two studies described here.

7.4 Adapting Navigation based using Supervised Machine Learn-

ing

Methods such as the one in Opencast Matterhorn and Dickson’s (described in §7.2) approach the issue of

forming indices in lecture video as an image recognition problem. The goal of these methods is to measure

the difference between two or more frames of video, and use this with some threshold value to determine

when a significant change has occurred. The problem with this approach is in the selection of attributes that

make up the difference function; they are not constant, and may need to be changed for different groups of

users.

The image recognition approach can be augmented with a method for choosing and weighting appropriate

attributes. By taking a representative set of indices for a group of learners, a selection criterion can be learned

using supervised machine learning techniques. This criterion can then be applied to the broader set of videos,

and indexing can be made more individualized.

Supervised machine learning methods take a set of instances, a set of attributes, and a set of classifications

and build a model that can be used to predict new classifications for further instances with similar attributes.

In the case described here, the set of instances are the video frames shown to subjects, the set of attributes

are the image characteristics for these frames which are determined automatically (see Table 7.2) and the set

of classifications is whether a given image is an index or is not. The output of a supervised method is a set

of rules which can be applied to new images to determine if, based on this training data, those images are or

are not indices.

To test the hypothesis that supervised machine learning can produce useful indexing, one human rater

5The GOCR framework was used, available at http://jocr.sourceforge.net
6All lectures were presented in English, though they may have contained non-English words, acronyms, domain-specific

language, or related formula that may have been discarded through the text cleaning process. The 5 desk dictionary word list
was used, available at http://wordlist.sourceforge.net.
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Attribute Description
Pixel Contrast The difference of contrast between pixels in each image as per Rec.

601. [1]
Pixel Histogram Intersection The minimum values of the histograms of two images summed across

all bands of the image.
Block Contrast (162) Similar to Pixel Contrast but the image is first partitioned in 16x16

pixel sized blocks.
Block Histogram Intersection (162) Similar to Pixel Histogram Intersection but the image is first parti-

tioned into 16x16 pixel sized blocks.
Block Contrast (322) Similar to Block Contrast (162) but with 32x32 pixel sized blocks.
Block Histogram Intersection (322) Similar to Block Histogram Intersection (162) but with 32x32 pixel

sized blocks.
Block Contrast (642) Similar to Block Contrast (162) but with 64x64 pixel sized blocks.
Block Histogram Intersection (642) Similar to Block Histogram Intersection (162) but with 64x64 pixel

sized blocks.
Difference The mean of the difference of pixel values in each band of two images.
Difference2 Similar to the above but it is the difference between the squares of

the differences for each image band.
Mean The average pixel value across all bands of one image compared to

its neighbor.
Root Mean Squared The difference between the root of the square of the means of each

image across each band.
OCR Set Difference Each image was run through an Optical Character Recognition

(OCR) engine5. Previous experience suggested that non-English
words and words less than three characters long are often the re-
sult of miss-recognitions by the OCR software. This attribute is the
number of words included in the OCR output for this set that are
longer than three characters, in the English dictionary, and not in
an adjacent images word set.6

OCR Set Difference 2 Similar to the above, but uses the previous images’ word set.
OCR Intersection The number of English words greater than three characters that

exist in the intersection of two image word sets.

Table 7.2: The series of visual attributes used to form supervised model. Each attribute was calcu-
lated for each image.
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Videos κJ48 κJ48ppos κJ48pneg κD κDppos κDpneg
Course A 0.72 0.75 0.99 0.36 0.01 0.99
Course B 0.66 0.63 0.99 -0.28 0.01 0.99
Course A ∪ B 0.67 0.66 0.99 0.37 0.01 0.99

Table 7.3: Comparison over one term of instruction from two classes, Course A and Course B, as
well as the union of these datasets. Each video was encoded by a single rater, and J48 decision trees
(κJ48) provided with Weka using ten-fold testing to minimize chances of Type III errors. The result
of applying Dickson’s algorithm to this data set is provided for performance comparison (κD).

was paid to annotate a term’s worth of video data for Video A as Course A and Video B as Course B using

the same tool the subjects were given in the study described in §7.3.1. The rater was familiar with the

project, and was instructed to use visual structure to do his annotations. He annotated roughly 59 hours of

presentation.

The frames from these videos (210,637 in total) were encoded as high quality JPEG images, and the image

characteristics described in §7.2 were calculated for each image. The annotated data and image characteristics

were fed into the Weka toolkit, and a trained model was generated.

Table 7.3 summarizes the results of the data mining process using the J48 decision tree classifier provided

with the Weka toolkit. While a number of classifiers were tried, the J48 classifier provided good results which

are easily interpreted and easy to codify within the Recollect system. In addition to comparing the classifiers’

performance on each video individually, the union of both videos was also compared.

The results indicated a substantial agreement (κ> 0.60) for all tests, along with corresponding ppos values,

which indicates that the results of the classification correlated well with human subject values. While it is

unfair to compare this agreement directly to κp values in Table 7.1 because of the difference in data set

sizes (κp examined only a single lecture), it is interesting to note that values fall roughly in the same range

of significance outlined by Landis and Koch [83]. Similar to previous results there was poor agreement

between Dickson’s algorithm and the human rater. When slides included minimal interactivity (e.g., Course

A) confidence was much higher, but still not significant. That κDpneg is so high may be why in practice

Dickson’s algorithm seems reasonable to most users - it doesn’t find “correct” indices, but is able to discount

most of the “incorrect” frames appropriately.

With this demonstration, it seems reasonable to consider that navigation elements within lecture capture

such as scene indices can be created using supervised machine learning of learners’ opinions, and that the

accuracy of these indices (measured as agreement with the original rater) is competitive with other algorithms.

The second study described in this chapter had six human raters. The results of the three different

algorithms described in §7.2 when added to the human rater values is shown in (Table 7.4), and only minimal

changes in κ were observed. This is the result of the original group of raters being large in size (six persons)

and largely in agreement; adding any new rater minimally affects the overall agreement. To more clearly see

the effect of any particular algorithm then, the value for κ should be contextualized as to how it can change.

Since it is more likely that a set of raters will disagree partially on any given instance than that they will
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Humans κ Bounds Comparison Algorithms Trained Algorithms
κ (n = 6) upper lower Time Opencast Dickson T1 T2 T3 T4 T5 T6

0.577 0.626 -0.15 0.391 0.370 0.448 0.574 0.565 0.565 0.537 0.530 0.487

Table 7.4: Group κ between all raters and predictors. upper and lower contextualize the range κ can
take when a new algorithm or rater is included. See §7.2 for descriptions of the Time, Opencast, and
Dickson algorithms. Six supervised machine learning methods were trained from data T1 through T6,
where T1 indicates that in order for an index to be chosen only one rater must have indicated so, T2

indicates that for an index to be chosen at least two raters must have indicated so, and so on.

agree unanimously, the maximum agreement an added artificial set of ratings could achieve is determined by

adding a rater who always agrees with the majority; the same is true for the minimum level of agreement,

obtained by adding a rater who disagrees with the majority. After constructing these two artificial raters, a

bound of possible κ values can be calculated for a group. Table 7.4 presents these lower and upper bounds

on κ and shows that any given algorithm can at best raise the group κ to 0.626, or at worst lower the group

κ to -0.15.

Six ten-fold cross-validated J48 decisions trees were formed using the data provided by the raters. The

trees were formed on modified versions of the training set, adjusting the threshold for the minimum agreement

among raters before an instance was considered an index. The thresholds were set such that T1 was given

a positive classification on all instances where at least one rater indicated there should be an index, T2 is

a tree trained on data where the threshold was two raters, and so on, until T6 required perfect agreement

between raters that an instance was an index. The goal was to see what effect different aggregation methods

would have on the resulting level of agreement. As shown in 7.4, the trained algorithms all out perform the

traditional methods of indexing, with the most stringent training method (T6) providing the worst results

(κ= 0.487) and the most lax training method (T1) providing the bext results (κ=0.574).

7.5 Conclusion

Once interesting insights have been discovered in learner interaction data, instructional interventions to

support learning can be created. These interventions can vary depending upon the pedagogical approach

being taken and the resources available to the instructional expert. This chapter of the dissertation has

explored the question of how a learning environment might be made adaptive based on the educational

tasks of learners. In particular, it demonstrates that the kinds of low level adaptations found in traditional

intelligent tutoring systems or adaptive hypermedia systems can be supported through the data-assisted

approach. By having educational technologists embed their insights in a learning environment (e.g. labelling

clusters as described in §4.3), fine grained instructional interventions can be created.

Using a mixture of qualitative and quantitative laboratory studies, a method for adapting the presen-

tation of navigational indices in the user interface of a lecture capture system was explored. By combining
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learner opinions of significance with supervised machine learning techniques, it has been demonstrated that

substantially higher levels of accuracy of navigational indices can be achieved (§7.4).

This chapter has laid the groundwork for addressing the question of how navigational elements might be

made even more personalized by considering educational task. In particular, this chapter has described how

learners disagree with one another in index selection activities; different end uses, such as reviewing versus

studying, as well as different contexts, such as the domain being reviewed or studied for, effected learner

opinions about what made an particular time period appropriate for indexing. By identifying similarities

between learners’ behaviours (as in Chapter 6), learners can be partitioned into groups based on educational

task, and opinions specific to the task can be used with supervised machine learning approaches to form even

more appropriate indices for navigation. These indices are more accurate than traditional methods of index

generation that ignore behaviour data.
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Chapter 8

Discussion and Conclusions

Students learn better in more individualized tutoring situations [17], a result that has spawned two

decades of intensive research in intelligent learning environments. These environments, such as intelligent

tutoring systems and adaptive hypermedia systems, deliver content to learners and form models of them

based on the a priori definition of pedagogical approaches, learner traits, and content semantics. This allows

for personalization of the learning environment which can realized by changing the content, navigation, or

structure of the learning environment for a particular group of learners.

This method of personalizing learning environments is expensive. It requires up front cost in design and

development and, as such, these methods are usually used within a single discipline or course. To scale across

different domains, institutions of higher education use simplified learning content management systems. These

systems offer instructors a thin technological wrapper around their existing content and learning activities,

and provide only minimal support for personalization.

The data-assisted approach presented in this dissertation supports learning in technology enhanced learn-

ing environments by generating insight for instructional experts and enabling this insight to be used to for

instructional interventions. Instead of replacing instructional experts, the data-assisted approach enables

them to see the hidden traces learners leave behind as they interact with the learning environments, to

understand these traces in light of educational goals, and to apply this insight to form instructional inter-

ventions.

8.1 Discussion of Findings

The principal contribution of this dissertation is a data-assisted approach to supporting instructional inter-

ventions in technology enhanced learning environments. This approach is novel: traditional support methods

for technology enhanced learning environments require significant up-front design of learning situations (e.g.,

intelligent tutoring systems), provide minimal data on student interactions (e.g., learning content manage-

ment systems), or focus attention on student-software interactions alone (e.g., adaptive hypermedia systems).

The data-assisted approach, however, makes learner interaction data available to instructional experts with

the aim of helping them to form insights into the learning process that will guide their instructional inter-

ventions. Thus the data-assisted approach explicitly embraces instructional experts as an on-going actor in
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the intelligent learning environment.

This section of the dissertation discusses this principal contribution in more detail, outlining the results

and impact of the various experiments described in chapters 5 through 7.

8.1.1 Forming Insight

There are many different kinds of instructional experts who might use data-assisted approaches: for example,

instructors, instructional designers, tutorial assistants, and educational technologists. Each of these groups

have different needs in order to generate insight. For instance, an instructor might need to be able to under-

stand what problems are faced by a particular cohort of students they are instructing, while an instructional

designer or an educational technologist might want to generalize trends across cohorts and obtain insight

about particular approaches or tools.

The data-assisted approach is general enough to address these different cases. Chapter 5 described a

situation where a variety of different instructors were shown visualizations of student interactions. These

instructors taught different courses with different modalities (e.g., online versus blended in §5.2.1 and §5.2.2),

different scopes (e.g., communities of interest in §5.2.3) and different pedagogical approaches (e.g., role-play

versus debate as described in §5.2.4). In each of these cases instructors were able to form insights into how

learners in their course were interacting, and were able to use this insight to change their teaching practice.

Instructional designers and education researchers are also actors that can engage with data-assisted ap-

proaches. Chapter 6 describes the use of unsupervised machines learning methods to discover clusters of

learners based on their lecture video viewing habits. These clusters correlate well with both pedagogical

expectations and educational outcomes. By making visible the hidden viewing habits of learners using a

lecture capture system, statements about the efficacy of lecture capture as a study aid can be made. For

instance, the evidence that learners who watch lectures regularly have higher outgoing grades suggests that

lecture capture may have an impact on learning, an important consideration when designing support for large

cohort courses.

The data-assisted approach creates insight with instructional experts through dialogue. In Chapter 5 this

dialogue takes the form of information visualization, and instructors could see different discussion forums

in their courses at different times. In Chapter 6 this dialogue was more interactive, and allows experts to

parametrize clustering and select attributes of interest. Regardless, it is the method of explicitly including the

instructional expert in the sensemaking process that makes the data-assisted approach suitable for building

intelligent educational environments in higher education.

Having discussed some of the different cases the data-assisted approach has been applied to, it is worth-

while considering how general the approach is. In the work described in this dissertation, discussion forum

and lecture capture tools were augmented with user tracking capabilities. Each of these tools has small

fine-grained activities (e.g., reading a posting or watching a video) that were useful in building models of

learners. Further, in each case the interactions being monitored were related to artifacts created by others –
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in the case of the discussion forum tool these were messages posted by peers, while in the case of the lecture

recording environment this was the instructors lecture. It seems reasonable to consider that tools with these

two characteristics might be augmented similarly. For instance, learning content management systems are

very similar to lecture capture systems in that the principal artifact is created by the instructor and that

learner interaction with this artifact is through reading. There is some evidence then to suggest that once

augmented, instructional experts may be able to draw insights from learner interactions here as well.

In the technology enhanced learning field there exist a number of tools that do not deal with collaborative

artifacts. An example of this would be e-portfolio systems, where the software system exists to house a

repository of a learner’s previous work. Learners can use these systems for various purposes, with reflection

and development of metacognitive skills being one well researched goal. Intelligent learning environments

have a place here – intelligent tutors might query learners as to reflect on their work, and open learner

modelling environments might share with the learner details about the tasks they have left to accomplish.

In both circumstances, data-mining of the learner-created artifacts would be an important consideration.

Are these kinds of environments suitable for the data-assisted approach? At first consideration there seem

like several kinds of events that might be tracked – logging in of learners, adding new pieces of evidence,

or writing a reflection on evidence. But is this enough to adequately inform instructional experts such that

they might make an intervention? If not, is the data-assisted approach necessarily about the interactions

learners have with artifacts, or should it include provisions for semantic analysis of the artifacts themselves?

This latter approach suggests more up-front modelling; for instance, topics in a particular domain might

need to be identified a priori in order to relate a learning artifact to that domain. Does such a broadening

of this approach make it too general to effectively use, and are hybrid techniques between the data-assisted

approach and others (e.g., knowledge engineering) a more appropriate description to make?

8.1.2 Creating Instructional Interventions

Once insight has been formed, instructional experts need a way to improve learning through instructional

interventions. Here again the different roles of experts change the way that instructional interventions are

made. For instance, in Chapter 5 instructors largely developed interventions outside of the technology-based

learning environment. One instructor, for instance, changed her assignment requirements which caused

learners to interact differently – an interaction pattern she saw as more pedagogically sound. Another

instructor used the insight generated from the data-assisted approach to reduce his level of interaction in the

class based on a perception that the current discussion environment was already sustainable. In both of these

scenarios, the instructor made these interventions based on visualizations resulting from the application of

the data-assisted approach.

Instructional interventions are not always broad pedagogical changes, and software systems such as adap-

tive hypermedia systems often focus on small customizations to the learning environment to improve learner

experience for individuals or groups of learners. Chapter 7 demonstrated that the data-assisted approach
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can be used to provide these forms of adaptations as well. Working from data representing ideal indices in

lecture video, supervised machine learning was be used to take prototypes of ideal indexing and apply these

to different video content. Many different prototypes for various situations can be formed – those learners

who want an overview might get one set of indices, while those who want visual navigation might get an-

other. These prototypes do not have to be formed by an expert; instead, they can come directly from the

learners themselves, and the expert (in this case an educational technologist) employs insight in designing a

technology enhanced learning environment.

It is interesting to consider the level of granularity at which different kinds of experts create instructional

interventions at. For instance, would it be appropriate for instructors to create the kind of indexing meth-

ods that Adam created in §4.3? In this dissertation instructors used the data-assisted approach for broad

pedagogical changes (e.g., those in §4.1). Is it reasonable that they could “parameterize” the educational

environment to take advantage of the insights they draw, or does this increase the demand on the instructor’s

time more is than appropriate?

There exists potential for novel hybrid techniques that use aspects of the data-assisted approach as well as

other intelligent learning environment methods. For instance, constraint-based tutors can be iteratively built

as new constraints are discovered. Here, the data-assisted approach offers the opportunity to identify cohorts

of learners who perform well in a tutoring system but poorly on formative assessment. These learners may

be holding misconceptions that the tutor does not handle, and an analysis of their actions could be useful in

updating the constraint domain model. Thus a simple tutor can be designed initially (minimizing up-front

modelling costs), and a more refined tutor can be developed over time. This refined tutor would have the

advantages that it was built from the data of actual students – if these students are similar to future students,

build a comprehensive domain model is not required.

8.1.3 Connecting Data to Insights and Insights to Interventions

While in this dissertation I demonstrate several different insights and interventions, it is less clear exactly

which data and data-processing techniques lead to these insights and interventions. This question is particu-

larly salient in light of the software engineering task of building personalized learning environments – to form

repeatable design patterns (“recipes” for successful software development) that can be used by software de-

velopers to build data-assisted software, these developers need to understand what data and data-processing

techniques will provide instructional insight.

This issue is multi-disciplinary in nature, and requires the consideration of education researchers, human-

computer interaction designers, and information retrieval experts. Further, each set of data, data-processing

technique, insight, and intervention can be considered at different levels of granularity, making the issue

potentially more complex. Table 8.1 provides initial formulations of what such a taxonomy might look like,

using the investigations provided in this dissertation. The spirit of the data-assisted approach is that the

intelligence of the system is the result of a dialogue between software and the instructional expert. In keeping
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Data Data-Processing
Technique

Insight Intervention

Student reading data of
asynchronous discussion
messages

Sociogram-based infor-
mation visualization

Discover community of
practice and level of so-
cial engagement

Scaffold discussion (in-
structor), contribute to
communities of interest
(instructor)

Student viewing of lec-
ture videos

Clustering of students
with K-Means and sta-
tistical treatment of as-
sessment

Identify students with
sub-optimal study
habits

Prompt change in study
habits (instructor), rec-
ommend lecture video
usage (system)

Student navigation in
lecture videos

Clustering of students
with K-Means

Discover popular
portions of lectures
(instructional expert),
identify segments of
lecture video (system)

Review heavily studied
concepts with extra ma-
terial (instructor), Pro-
vide better indexing of
video and adaptive nav-
igation (system)

Table 8.1: Outline of data, data-processing techniques, and the insight and instructional interventions
they might lead to when using the data-assisted approach.

with this, table 8.1 should be seen as some general guidelines towards design patterns, and not an exhaustive

list of which data and techniques lead to specific insights and interventions.

8.1.4 Primary Contribution

This dissertation has demonstrated that instructional experts are capable of gaining insight into their ped-

agogical practice and student cohorts which can be used to create various instructional interventions. The

form of the insight and interventions varies greatly depending on the expert role, the learning situation,

and the educational environment. By giving instructional experts an explicit role in the intelligent learning

environment, minimal a priori effort is needed to create pedagogically valuable adaptations.

8.2 Secondary Contributions

In addition to the primary contribution of the data-assisted approach, this dissertation has made several

three other meaningful contributions. First, several demonstrations that information visualizations of learner

reading patterns can affect pedagogical approaches in both online and blended learning situations (§5.2.1 and

§5.2.2) have been given. These demonstrations provide evidence that reading behaviours (e.g., lurking, or the

importance metric), which are not often used in social network visualizations or learning content management

system reports, are useful for instructional experts. Observing such behaviours in traditional classrooms is

difficult, but the movement into technology enhanced learning environments opens a new set of behaviours

instructional experts can use when trying to gain insight into their courses.

It was also shown that methods for creating navigational indices in lecture video (Chapter 7) could be

improved upon. Not only was significant improvement demonstrated (κ = 0.574 versus the best alternative
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of κ = 0.448, where −0.15 ≥ κ ≤ 0.626), but methods were described for quantifying the the bounds on the

amount of improvement as well as qualitatively characterizing the expectations of learners. This has direct

implications for the betterment of lecture capture systems. Further, there are methodological contributions

when training machine learning algorithms from multiple raters in disagreement. As the agreement of raters

change, so too does the amount of any possible change in κ.

Finally, there was the discovery of a correlation between formal assessment outcomes and the patterns

of behaviour of learners in lecture capture environments (§6.2). This discovery was replicated and it was

shown that similar trends in correlation exist in multiple cohorts. Further, a method for describing the

actionability of such a learner model (§6.3) as well as initial results in correlating learner behaviour with

self-reported goals were described (§6.4). These discoveries quantify how, in lecture capture environments,

learner activities can be used to predict their educational outcomes. These correlations are the first step

towards building predictive models for educational assessment based on lecture capture usage behaviours

alone.

8.3 Future Work

8.3.1 The Data-Assisted Approach

When building an intelligent learning environment there are many paradigms and approaches that can be

used. There is no clear guide as to which approach is best suited for a given purpose, and while Chapter

2 provides some modest suggestions of the suitability of different techniques, there have been very few

comparison studies published. The biggest resource cost with the data-assisted approach is in the time and

effort instructional experts put in. Quantifying this resource cost across different kinds of domains (e.g., ill-

defined versus well-defined domains), pedagogical approaches (e.g., active learning where many tools might be

used, versus environments that only use a few tools) and student types (e.g., higher education which is much

more free-formed learning, versus the classroom learning of primary school) is important in understanding

which situations the data-assisted approach excels in.

One growing method of instruction in higher education is the Massively Open Online Course (MOOC). To

date, these courses involve hundreds to hundreds of thousands of learners at once, and are taught completely

online, with the material for the course made up of a combination of lecture video, pre-recorded videos, live

chat sessions, wiki content, and hypermedia. What makes these courses an interesting testbed for technology

enhanced learning approaches is that they have some characteristics that intelligent tutoring systems excel at

(e.g., teaching a single domain with well-defined steps or solutions) as well as some that intelligent tutoring

systems are poor in supporting (e.g., a high diversity of learner background that is not known a priori).

It may be that these kinds of courses (as well as others), are well suited to hybrid techniques, where data-

assisted approaches are used for broad pedagogical direction and tutoring systems are used for particular

topics.
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8.3.2 Visualizing Community Interactions

One of the benefits of presenting visualizations as static images is that they can be shown quickly to instructors

without requiring knowledge of particular interaction techniques for manipulating the visualizations. Some of

the instructors who were showed the sociogram visualizations were interested in getting an idea of momentum.

Were lurkers starting to read more, or did they quit reading in the second week of class and never come back

to the tool? Was importance of participants growing uniformly, or were only a few individuals active at one

time? There are various mechanisms that might be used to show this, with telepointer trails [63] being one

promising direction.

Once there are tools in place to explore visualizations interactively (such as the tools Katheryn used in

§4.1), it would be interesting to consider sharing visualization parameters between instructors. For instance,

if Katheryn creates a visualization that demonstrates a deficiency in her course, is it useful for her to share

these parameters through a repository with other instructors so they can apply it to their courses? If so, is

it possible to create a set of antipatterns that describe various learning deficiencies, and form a community

of practice around these experiences?

8.3.3 Measuring Educational Impact

Identifying determinants of learning in order to positively affect student experience is a key goal of much

research in education. By demonstrating a correlative effect between regular usage of lecture capture and

high achievement, the question that is left is whether a causal model can be formed. If using lecture capture

regularly increases grades, learners should be encouraged to use the technology and deployment in more

disciplines should be made a priority. Some work has already begun on this, by examining the incoming

grades of learners in each cluster to determine if they are different. However, verification of the results across

multiple cohorts studying different disciplines is important.

Verifying results across contexts is an important issue and, while this work involved some verification

(three second year undergraduate STEM courses), it would be interesting to see if patterns of interaction

hold for many different kinds of courses. Especially in first year courses it would be beneficial to verify that

the clustering centroids chosen have minimal error with the ideal clusters. If not, are the clusters for these

courses still pedagogically motivating, and do they lend themselves to forming instructional instructional

interventions? If so, do the patterns of interaction exist with the same amplitude (e.g., same proportion of

learners per cluster), or does this change over the span of a learner’s degree? Answers to these questions

might help identify whether good study habits are learned, or intrinsic in the undergraduate population, and

might help to support efforts in designing secondary school transition programs.

Lecture capture is just one technology that students have access to and, as shown in §6.3, acting on

the results of lecture capture data at the beginning of a semester can involve a significant amount of false

information (false positives and false negatives). By using multiple tools to form predictive models of student
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success, it may be possible to make earlier interventions with more confidence. In particular, social network

indicators (such as those from Chapter 5) may be useful in forming a more well rounded predictive student

model, where both early and late predictions of educational outcomes could be made.

8.3.4 Adapting Learning Environments to Tasks

The method described in this work for generating indices in video is quite strong. It performs almost as well

as the original human set of raters, and the process of generating indices is reasonably fast. Future work in

this topic is split in three orthogonal directions. First, a reasonable method for getting training data from

learner interactions needs to be created. While creating training data using a small group of learners is a

reasonable first step, an automated method of getting training data from learners in a course would allow

index selection models to be customized for a particular group and set of content without human intervention.

This would add robustness to models and allow them to be used in new situations that the original model

was not trained on (e.g., highly interactive content).

Second, extending the set of attributes beyond the initial measures should provide an iterative improve-

ment to results described. In particular, only video data was considered, but lecture capture environments

may also include audio data, clicker data, or copies of the original media (e.g., PowerPoint or PDF files).

Including these as attributes may increase of quality of index markers. Further, speed is of concern and the

processing of video content is generally slow, but processing audio content (for instance) is quite quick. It

may be that some attributes are not needed for a given accuracy level, and can be omitted in order to speed

up the indexing process.

Finally, some work has already been done to apply this method to broader classification of video content.

For instance, if portions of the video can be classified to high level descriptions such as “web surfing”, “video

playback”, or “textual content”, these classifications may be useful in other features of the lecture capture

system. Of particular interest is automatically providing relevant links that might be detected from web

usage, dealing with potential copyright considerations by identifying when videos are playing images are

shown, and increasing search capabilities in video through optical character recognition of textual content.

8.4 Conclusion

Unlike most other methods of building intelligent learning environments, the data-assisted approach does not

seek to replace instructional experts but to actively engage with them. It does this in two ways; by generating

insight from data through a dialogue with the expert, and supporting experts as they act on this insight to

form instructional interventions. This allows institutions of higher educational to leverage the intellectual

support resources they already have (e.g., instructors, instructional designers, and educational technologies)

to provide more personalized learning experiences in technology enhanced environments.
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Appendix A

Student Survey Instrument

Department of Computer Science, University of Saskatchewan Informed Consent Form 

Research Project: Data mining implicit and explicit user-generated data for semantic reasoning of educational video

Investigators: Dr. Jim Greer, Professor, Department of Computer Science (966-2234), greer@cs.usask.ca
Dr. Carl Gutwin, Professor, Department of Computer Science (966-8646), gutwin@cs.usask.ca
Mr. Christopher Brooks, Department of Computer Science (966-1442), cab938@mail.usask.ca
Dr. Michel Gravel, Department of Chemistry
Ms. Jaymie Koroluk, University Learning Centre

This consent should give you the basic idea of what the research is about and what your participation will involve. If you would like more detail  
about something mentioned here, or information is not included here, please contact one of the study investigators listed above. Please take the time  
to read this form carefully and to understand any accompanying information. 

In this study you will be asked to answer questions about your experiences with the Recollect lecture capture system. The results of these questions  
will be correlated with your activity in the Recollect system, as well as anonymized university achievement data (marks), to give us deeper insight  
into the effectiveness of the system and how it is used.

The data collected from this study will be used in articles for publication in journals and conference proceedings. As one way of thanking you for  
your time, we will be pleased to make available to you a summary of the results of this study once they have been compiled. This summary will  
outline the research and discuss our findings and recommendations. 

All of the information we collect from you will be stored so that your name, student number, nsid, or email address is not associated with it. Any  
write-ups of the data will not include any information that can be linked directly to you. The research materials will be stored with complete security  
throughout the entire investigation. 

None of the information collected will be shared with your instructor in non-anonymized forms. None of the information collected will  
influence your grade in this or other courses. 

If you have further questions concerning matters related to this research, please contact one of the investigators listed above. By choosing the “yes”  
option below, you indicate that you have understood to your satisfaction the information regarding participation in the research project and agree to  
participate.  In  no  way does  this  waive  your  legal  rights  nor  release  the  investigators,  sponsors,  or  involved  institutions  from their  legal  and 
professional responsibilities. If you have further questions about this study or your rights as a participant, please contact: 

Mr. Christopher Brooks, PhD Student
Department of Computer Science 
(306) 966-1442,
cab938@mail.usask.ca

Alternatively, you can contact the University of Saskatchewan Research Ethics Office directly at:

Research Ethics Office,
University of Saskatchewan
1607 - 110 Gymnasium Place 
Box 5000 RPO University
Saskatoon, SK Canada S7N 4J8
ethics.office@usask.ca
(306) 966-2084

The remuneration for this study is an entry in a draw to win a prize.  As of March 1st, roughly 600 persons are eligible to win.   Prize  
winners will be contacted via email in mid to late April.  The prize is 1 of 10 $50 Computer Store Gift Certificates

If you would like a copy of this consent form please ask at the front of the room or contact one of the investigators listed above. This research has the  
ethical approval of the Office of Research Services at the University of Saskatchewan.

NSID: ___________________________________________  E-Mail:  ___________________________________________

Date: ___________________________________________ Signature: ___________________________________________
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Instructions

• Please write your NSID as well as fill in the student number bubbles at the top of your opscan sheet.

• Please answer multiple choice questions using the opscan sheet provided. If you do not understand a question, or do not have an opinion, 
please skip the question or ask for clarification

• When done, please hand in this booklet at the front, including the consent form.  You may take a copy of the loose consent form (at the 
front) for your records if you wish.

Thank you for helping us to make our research more effective!

Part 1: Demographics

1. What year of study are you in?
a) 1st 
b) 2nd 
c) 3rd 
d) 4th 
e) 5th or higher

2. Which group of student do you most identify with:
a) I’m in an agriculture program
b) I’m in an engineering program
c) I’m trying to get into a professional program such as Medicine, Pharmacy, Veterinary Medicine, etc
c) I’m in a natural sciences program
d) I’m in an arts, social sciences, or humanities program

3. I am taking this class because (mark all that apply)...
a) This class (specifically) is required for my program of study or a program I wish to be in.
b) I found content from similar classes interesting.
c) I have friends in this class.
d) I need a science credit.
e) It fit with my schedule.
f) The course description sounded interesting.

4. I am working in this class to try and get a mark in the range:
a) 90-100
b) 80-89
c) 70-79 
d) 60-69 
e) 50-59

5. Reflecting on my performance in the class so far, I think my mark will actually be in the range:
a) 90-100
b) 80-89
c) 70-79 
d) 60-69 
e) 50-59
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6. My workload this term including all of the courses I am in as well as other commitments is:
a) Very High
b) High
c) Average
d) Low
e) Very Low

7. Every student has different learning goals.  Please describe how you are approaching learning in this class (mark all that apply)?
a) I want to be able to remember the content.  For example, to be able to recall some of it at a later date, such as on a 
midterm, when asked about it.
b) I want to understand the content. For example, to infer, summarize, or explain pieces of it to people when asked by others.
c) I want to be able to apply the content.  For example, to use the knowledge in other courses, laboratories, or jobs I might 
have in the future.
d) I want to be able to analyze the content.  For example, to be able to break it down into smaller pieces or organize concepts 
based on my experiences to build a more comprehensive understanding of why it is important.

8. How important do you feel that attending the lecture in person was for your success in this class?
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat unimportant
e) Not at all important

9. How important do you feel that watching the recording of the lecture was for your success in this class?
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat unimportant
e) Not at all important

10. How important do you feel that reading the text book was for your success in this class?
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat unimportant
e) Not at all important

11. How important do you feel that attending peer study groups (formal or informal) was for your success in this class?
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat unimportant
e) Not at all important

12. How important do you feel that reading online notes or PowerPoints was for your success in this class?
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat not important
e) Not important
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13. How important do you feel that using the online quizzing system provided by the textbook publisher was for your success in this 
class?

a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat not important
e) Not important

14. How important were web searches and web content outside of that provided by your instructor for your success in this class (e.g. 
Googling for similar content or explanations)?

a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat not important
e) Not important

15. Did you purchase access to the online quizzing tools provided by the textbook publisher?
a) Yes
b) No

Part 2: Lecture Capture

16. If you used the lecture capture system, how valuable was it for you in this course?
a) Very valuable
b) Valuable
c) Not valuable
d) I didn't use it

17. Do you feel that having lectures recorded has lowered your attendance in this class?
a) Yes
b) No

18. Do you feel that having lectures recorded has lowered other students’ attendance in this class?
a) Yes
b) No

19. If you did not use the lecture capture system, why didn’t you use it?
a) I did not know that recorded lectures were available for this class
b) I did not have easy access to a computer or internet to access the videos
c) I thought the recorded lectures were not valuable
d) I did not feel I had time to view them adequately
e) Other

20. Do you think you will use the lecture recording system before the final exam in this course?
a) Yes
b) No
c) Maybe
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21. If you used the lecture capture system, how important was it for reviewing content you hadn’t seen (e.g. missed classes).
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat not important
e) Not important

22. If you used the lecture capture system, how important was it for reviewing content you saw but didn’t understand or couldn’t 
remember?

a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat not important
e) Not important

23. If you used the lecture capture system, how important was it for completing assignment questions?
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat not important
e) Not important

24. If you used the lecture capture system, how important was it for studying for examinations?
a) Very important
b) Somewhat important
c) Neither important nor unimportant
d) Somewhat not important
e) Not important

25. Check any of the following reasons you might have used the lecture system if they apply to you:
a) I missed a lecture because of weather.
b) I missed a lecture because of illness.
c) I missed a lecture because of work.

26. If you were able to watch a one hour “highlights” video that was made up of pieces of video from different lectures on topics 
relevant to the midterm, would you?

a) Yes
b) No

27. What features do you think would be useful with recorded lectures (check all that apply):
a) High speed playback (e.g. 150% speed)
b) Annotation or note taking during video content
c) Live streaming of lectures as they are being taught
d) Access to recorded lectures on mobile devices (e.g. iPod, smart phone, etc)
e) Linking of video content to other web resources of the same topic

28. Have you used lecture capture in any other courses?
a) Yes
b) No
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29. Do you think recorded lectures are something you would like to see in your other courses?
a) Yes
b) No

30. If you were unable to take a course because of scheduling conflict or because of course enrolment restrictions, would you be 
interested in taking it online using recorded lectures and other online tools (e.g. discussion forums, blackboard, online advisers, etc.)

a) Yes
b) No

31. If the university had to increase your tuition by $25 per course for each course that had recorded lectures, do you think this would 
be a reasonable expense?

a) Yes
b) No
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Appendix B

Behavioural Ethics Certificates
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