
Bournemouth University

PhD Thesis

Building Well-Performing Classifier
Ensembles: Model and Decision Level

Combination

Author:

Mark Eastwood

Supervisor:

Bogdan Gabrys

This thesis is submitted in partial fulfilment of the degree Doctor of Philosophy, awarded by
Bournemouth University.

December 1, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40025223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is under-
stood to recognise that its copyright rests with its author and due acknowledgement must
always be made of the use of any material contained in, or derived from, this thesis.

i

Authors Declaration

This thesis is the result of my own work and has not been submitted in candidature for any
other award.

ii

Acknowledgements

Thanks to my supervisor, Bogdan, for many hours spent reading, explaining, and helping
when needed, and also for patience and understanding through long periods when I was unable
to focus on work. Thanks also to my family for putting up with my eternal studentship, and
for their support. To Oli for many fun conversations and general Swissness, Sarah D. for the
badminton training and random trips, and Sarah N. for her advice and friendship. Lastly,
thankyou to my fellow PhD students, and other people I have met in my time here who have
brightened my stay in Bournemouth.

Thanks also to British telecom and EPSRC for the funding (through an EPSRC industrial
CASE studentship with British Telecom) which has supported this project.

iii

Abstract

There is a continuing drive for better, more robust generalisation performance from clas-
sification systems, and prediction systems in general. Ensemble methods, or the combining
of multiple classifiers, have become an accepted and successful tool for doing this, though the
reasons for success are not always entirely understood. In this thesis, we review the multi-
ple classifier literature and consider the properties an ensemble of classifiers - or collection
of subsets - should have in order to be combined successfully. We find that the framework
of Stochastic Discrimination provides a well-defined account of these properties, which are
shown to be strongly encouraged in a number of the most popular/successful methods in the
literature via differing algorithmic devices. This uncovers some interesting and basic links
between these methods, and aids understanding of their success and operation in terms of a
kernel induced on the training data, with form particularly well suited to classification.

One property that is desirable in both the SD framework and in a regression context,
the ambiguity decomposition of the error, is de-correlation of individuals. This motivates
the introduction of the Negative Correlation Learning method, in which neural networks are
trained in parallel in a way designed to encourage de-correlation of the individual networks.
The training is controlled by a parameter λ governing the extent to which correlations are
penalised. Theoretical analysis of the dynamics of training results in an exact expression for
the interval in which we can choose λ while ensuring stability of the training, and a value λ∗

for which the training has some interesting optimality properties. These values depend only
on the size N of the ensemble.

Decision level combination methods often result in a difficult to interpret model, and
NCL is no exception. However in some applications, there is a need for understandable
decisions and interpretable models. In response to this, we depart from the standard decision
level combination paradigm to introduce a number of model level combination methods. As
decision trees are one of the most interpretable model structures used in classification, we
chose to combine structure from multiple individual trees to build a single combined model.
We show that extremely compact, well performing models can be built in this way. In
particular, a generalisation of bottom-up pruning to a multiple-tree context produces good
results in this regard.

Finally, we develop a classification system for a real-world churn prediction problem,
illustrating some of the concepts introduced in the thesis, and a number of more practical
considerations which are of importance when developing a prediction system for a specific
problem.

Contents

Contents i

List of Figures iii

List of Tables 1

1 Introduction 3

2 Literature Review 10

2.1 Error Decompositions . 10
2.1.1 Squared Loss . 10
2.1.2 General Loss Functions . 12

2.2 Random Generation of an Ensemble . 17
2.2.1 Changing the data . 17
2.2.2 Changes in classifier generation . 19

2.3 Deterministic Generation of an Ensemble . 21
2.3.1 Changing the Data . 21
2.3.2 Changes in Classifier Generation . 24
2.3.3 Divide and Conquer Methods . 25

2.4 Selecting Classifiers for Combination . 27
2.4.1 Search Criteria . 27
2.4.2 Searching to Directly Generate an Ensemble 28

2.5 Combination methods . 28
2.5.1 Decision Level Combination Methods 28
2.5.2 Model Level Combination . 31

2.6 Summary . 33

3 Stochastic Discrimination 34

3.1 Stochastic Discrimination Framework . 36
3.2 Stochastic Discrimination Method . 38
3.3 Random Forests . 40
3.4 Support Vector Machines . 41
3.5 Boosting . 44
3.6 Discussion . 47
3.7 Conclusions . 48

4 Negative Correlation Learning 49

4.1 Introduction to NCL . 49
4.2 The NCL Method . 51
4.3 Setting the λ Parameter . 53

i

4.4 Dynamics of the fi as λ Varies . 55
4.5 Experimental Analysis . 58
4.6 Complexity of the NCL Method . 61
4.7 The meaning of λ = λ∗ . 64
4.8 Experimental Illustrations of Complexity . 65
4.9 Conclusions . 70

5 Model Level Combination 73

5.1 The Bagging-equivalent Tree . 75
5.1.1 Building the Tree . 76
5.1.2 Results and Discussion . 79

5.2 A Generalisation of Bottom-up Pruning to Tree Ensembles 84
5.2.1 Pruning Criteria . 85
5.2.2 Generalised Pruning Method . 89
5.2.3 Results and Discussion . 92

5.3 Model Level Combination of Tree Hyperboxes via GFMM 99
5.3.1 GFMMs on Hyperbox Samples . 100
5.3.2 Experimental Work and Discussion . 101

5.4 Conclusions . 108

6 Application to Churn Prediction 109

6.1 Background . 109
6.2 A Sequential HMM Approach . 112

6.2.1 Method . 112
6.2.2 Results and Discussion . 114

6.3 A Non-sequential KNN Approach . 116
6.3.1 Method . 117
6.3.2 Results and Discussion . 118

6.4 Churn Prediction Using NCL . 120
6.5 Conclusions . 121

7 Summary and Conclusions 123

7.1 Future Work . 125

Bibliography 127

A Dynamics of NCL with Sigmoid Outputs 134

B Listing of Datasets 136

B.1 Wisconsin Breast Cancer . 136
B.2 Pima Diabetes . 136
B.3 Liver . 137
B.4 Synthetic and Cone-torus Datasets . 137
B.5 Telecommunications Customer Churn . 137

ii

List of Figures

3.1 Kernels corresponding to the collection of all balls in R2 and R3 43
3.2 Kernels corresponding to cone collections of given solid angle 43

4.1 Example NC classification on the Synthetic dataset 52
4.2 Example NC classification on the Cone-Torus dataset 53
4.3 The synthetic dataset, and an example NCL classification 58
4.4 The dynamics of the individual outputs for various λ. The curves show, for

each individual, the average output of a single output node over all points
of the corresponding class. The ensemble size is 3. From top left we have
a) λ = 0.76, b)λ = λ∗ = 0.75, c) λ = 0.7, and d)λ = 0. 59

4.5 MSE and MCR on both training and testing sets as λ increases on the synthetic
dataset . 60

4.6 MSE and MCR on both training and testing sets as λ increases on the cancer
dataset . 61

4.7 MSE and MCR on both training and testing sets as λ increases on the liver
dataset . 62

4.8 An illustration of the architecture of an NCL network. The weights shown as
1
N

are fixed. For λ = 0 the networks are trained as individuals as indicated by
the dotted lines. For λ = λ∗ the network is trained as a whole. 65

4.9 MCR and MSE for differing numbers of nodes on the liver dataset. The en-
semble size is 3. 67

4.10 MCR and MSE for differing numbers of networks on the liver dataset. There
are 5 nodes per net. 67

4.11 MCR and MSE for differing numbers of nodes on the synthetic dataset. The
ensemble size is 3. 68

4.12 MCR and MSE for differing numbers of nets on the synthetic dataset. There
are 5 nodes per net. 68

4.13 MCR and MSE for differing numbers of nodes on the cancer dataset. The
ensemble size is 3. 69

4.14 MCR and MSE for differing numbers of nets on the cancer dataset. There are
20 nodes per net. 69

4.15 MCR and MSE for differing numbers of nodes on the cone-torus dataset. The
ensemble size is 3. 71

4.16 MCR and MSE for differing numbers of networks on the cone-torus dataset.
There are 5 nodes per net. 71

5.1 An illustration of the individual leaves into which a tree can be decomposed . 75
5.2 A sample of hyperboxes defined by overlaps of leaves in a 20-tree ensemble . 78

iii

5.3 Performance and complexity of the pruned and unpruned bagging-equivalent
tree for synthetic dataset . 80

5.4 Performance and complexity of the pruned and unpruned bagging-equivalent
tree for cone-torus dataset . 80

5.5 Pruned and unpruned trees built on hyperbox samples for synthetic dataset,
against threshold . 81

5.6 Pruned and unpruned trees built on hyperbox samples for cone-torus dataset,
against threshold . 82

5.7 Pruned and unpruned trees built on hyperbox samples for diabetes dataset,
against threshold . 82

5.8 Pruned and unpruned trees built on hyperbox samples for liver dataset, against
threshold . 82

5.9 Pruned and unpruned trees built on hyperbox samples for cancer dataset,
against threshold . 83

5.10 Illustration of the grafting operation . 85
5.11 Original ensemble trees . 90
5.12 Output merged tree . 90
5.13 Tree merging on cancer dataset . 93
5.14 Tree merging on cone-torus dataset . 93
5.15 Tree merging on liver dataset . 93
5.16 Tree merging on synthetic dataset . 94
5.17 Tree merging on diabetes dataset . 94
5.18 Tree merging on cancer dataset with feature resampling 96
5.19 Tree merging on cancer dataset using error-based pruning 96
5.20 Tree merging on cone-torus dataset using error-based pruning 97
5.21 Tree merging on liver dataset using error-based pruning 97
5.22 Tree merging on synthetic dataset using error-based pruning 97
5.23 Tree merging on diabetes dataset using error-based pruning 98
5.24 Membership function of a hyperbox fuzzy set 99
5.25 Example of a GFMM model on the synthetic dataset 100
5.26 Performance of GFMM models on liver dataset 102
5.27 Performance of GFMM models on diabetes dataset 102
5.28 Performance of GFMM models on cone-torus dataset 103
5.29 Performance of GFMM models on cancer dataset 103
5.30 Performance of GFMM models on synthetic dataset 104
5.31 Complexity of GFMM models on 2-D datasets 105
5.32 Performance of small sample GFMM models on cancer dataset 105
5.33 Performance of small sample GFMM models on liver dataset 106
5.34 Performance of small sample GFMM models on diabetes dataset 106
5.35 Performance of small sample GFMM models on synthetic dataset 107
5.36 Performance of small sample GFMM models on cone-torus dataset 107

6.1 The top line shows the combined performance using training sequences of
length 3. Average performance of individual models plotted against percentage
of sequences taken as predictions, for training sequences of length 3,4,5, and 6
are the lower plots (from top to bottom line). 114

6.2 g value vs Q for individual and combined HMM predictions, using histories as
labelled . 116

6.3 Performance vs Nearest Neighbor count, for histories and prediction time frame
as labeled . 118

iv

6.4 A plot of a sample of points where the last two events have been complaints.
A + denotes churn, a * non-churn. 120

6.5 g against lambda for NCL on the churn dataset 121

v

List of Tables

4.1 Summary of results for λ = 0 (independently trained networks) and λ = λ∗

(NCL ensemble with de-correlated outputs) 62
4.2 Table of the optimal (in terms of MCR on testing set) parameter settings out

of the experiments performed, for each dataset. 70

5.1 UCI datasets used in empirical work . 79
5.2 Summary of performance and complexity of approximate bagging trees for a

threshold of 0.8 . 83
5.3 Summary of performance and complexity of a merged ensemble of 21 trees . . 98

Notational Conventions

In the table below, common notational conventions and acronyms we will use throughout the thesis
can be found. In a few cases, symbols are allowed to have two meanings, and occasional departures
from these conventions have been unavoidable. However, in these cases it should be very clear by
context what is meant.

1

Letter/symbol Meaning

X Input space of features
Y = {ω1, ω2, ...}, Y = R Set of output classes ω (or output space in regression)
x Feature vector of an example
y Label of an example
{xi, yi} Set of example/label pairs
K Number of classes
K(x1,x2) Kernel function
n Number of examples
m Number of features (dimensionality of X)
N Number of classifiers, generic cardinality (clear by context)
k Iteration, or model index
L Loss function
h Base learner
M Subset of input space M ∈ X (model)
M Subset collection
D, D(•) Distribution of examples (of class •) in X
TR Training set
TE Testing set
g,f Functions/mappings
φ Transformed co-ordinates
IM , Icondition Indicator of a set M , or truth of condition
t, τ Node of decision tree, occasionally time
n(t) Number of examples in node t
e(t) Number of errors in node t
Tt Subtree rooted at node t
ǫ Generalisation error
d Target (regression)
E Error function
wi Weight
w · x + b = 0 Hyperplane with normal vector w

P(•)() Probability (over •). For simpler probabilities, short notation below is used.
p(•) Probability of •
E(•) Expectation (over •)
i, j Generic indices used to identify members of a collection
F Power set of X , F = 2X

µ, µij Class support (of classifier i for class j)
MCS Multiple Classifier System
MLC Model Level Combination
MLP Multiple Layer Perceptron
SD Stochastic Discrimination
NCL Negative Correlation Learning
RF Random Forest
SVM Support Vector Machine
MSE Mean Squared Error
MCR Misclassification Rate
GFMM General Fuzzy Min-Max

2

Chapter 1

Introduction

In many areas of human endeavor, it is necessary to classify things that have been observed,
or to identify patterns. Examples of this are everywhere. We communicate using classes;
language is in many respects a class system, and is an example of how powerful a good class
system can be for extracting and conveying useful information from raw data. An observed
object can be classified as a table, chair, spoon, mountain - and we can then communicate
a wealth of information about that object to another person familiar with our class system
simply by communication of the class. Decisions are also made based on the recognition of
patterns, usually with more abstract classes such as ’ill’, ’fraudulent’, etc. The act of classi-
fication is the transformation of raw data about an object into concise, useable information
in the form of a set of possible, meaningful classes. The human brain is thankfully able to
do this very efficiently in many cases.

In order to classify something, we need some sort of model which contains the knowledge
needed to identify an unknown object as a particular class. This information is usually
learned from a number of examples of objects of that class. Most information about the
world can with a little creativity be expressed as a set of numbers (visual data becomes
an array of pixels with varying levels of red, green, blue, or greyscale, sizes and many other
measurements naturally result in a number, categorical information can be mapped to discrete
values of a feature, etc). This realisation, together with the advent of powerful computers and
mass storage brings the possibility of expressing classification as a mathematical procedure,
a mapping of points in an input space of observations into an output space of classes. In
this form it is possible to replicate and automate this human gift of recognising patterns, by
creating an algorithm, or sequence of mathematical operations that can be performed using
a computer.

The reasons we may want to do this are many. A classification task may need to be
repeated many times, or it may need to be done very quickly. It may be too expensive to do
it manually, or it may be difficult for humans due for example to the quantity of examples or
number of features involved (humans have difficulty visualizing abstract data in more than 3
dimensions). A number of examples of areas of application for classification systems are:

• Fraud detection - credit card, insurance [97], etc;

• Customer behaviour prediction [50];

• Speech/image/character recognition [85];

• Quality control - identification of faults/defects;

• Process monitoring [132];

3

• Medical diagnosis [112];

• Email spam filtering [111];

• Astronomy.

Pattern recognition [32] is a branch of computer science whose aim is to do exactly this;
to translate the human ability to identify and classify to a computerised form. It is becoming
increasingly more important in commercial settings due to the steady increase in computing
power, data storage capacity and the growing usage of computerised systems in all aspects
of business, government and research. Huge amounts of potentially useful data are generated
and stored daily in all of these areas, however to make good use of it patterns must be
identified. The sheer volume of information in many areas makes the use of automated
pattern recognition systems highly attractive, if well performing, consistent methods can be
developed [96]. As part of this thesis, a classification system developed in the context of
telecom churn prediction [50] (predicting when customers may leave a company) will be used
as a case study for the potential uses of pattern recognition in industry.

Pattern recognition has in fact two closely related sub-branches, classification and regres-
sion [101]. The introduction has focussed on the concept of classification as this is the branch
this thesis is most concerned with, but regression should be mentioned also. The difference
between the two lies in how the information we try to extract is most naturally represented.
In classification problems, we try to extract categorical information - there is no continuum
of possible classes, and no concept of ’distance’ between classes. Examples would be clas-
sification of images into ’chairs’, ’tables’ and ’bookshelves’, or identification of handwritten
letters. In regression, we try to extract continuous information with a well-defined distance
measure, for example share price forecasting, or a temperature. We can to some extent recast
problems of one form into ones of the other, but it is a little unnatural. For example, given a
K class classification problem, we can cast this as a multiple regression problem by trying to
predict each of the continuous probabilities P (classi|data). This is not ideal as the data we
have for training is in categorical form, but can still be successful. Similarly, the continuous
value to be predicted in regression problems can be discretised, placing values into categories
corresponding to some interval. This is even more unnatural as we are essentially throwing
away valuable information, but again is useful in some cases. For the remainder of the thesis
we will implicitly assume the classification setting, and assume the recasting above whenever
we use regression methods for classification.

More mathematically, pattern classification is concerned with labeling an observation
with one of a number of identifiers, using knowledge from a number of example observations
[11]. An observation is a pair {x, y}, where x is a vector in an input space X = R

m of
m dimensions, and y exists in Y = {ω1, ω2, ...ωK}, a set of K classes. The elements of x

are called features and describe our knowledge of the object. The pattern recognition task
is as follows. Given a number n of labeled observations, or pairs {xi, yi}, learn a function
g(x) : X 7→ Y such that, given a new unlabeled example, the new example is labeled with
minimal error. This function g outputs our prediction of the class given an observation x. A
mapping such as this is called a classifier. It is possible for an observation with features given
by x to be one of a number of classes (our features may not be sufficiently distinctive, so
that g is non-deterministic). For this reason a probabilistic framework is introduced. We let
(X,Y) become an R

m × {ω1, ω2, ...ωK}-valued random pair. The probability of a given pair
(x, y) is governed by the distribution of (X,Y). Then the function g maps x to a prediction
for the y ∈ Y that maximises P (y = ωi|x).

There are many, many ways to represent, train and build these functions, or classifiers.
Some of the more popular ones will be covered in Chapter 2. Examples are:

4

• Decision trees: Classify examples via a tree-like hierarchy of (usually) binary tests.

• Neural Networks: A complex, flexible parametric function implemented through a net-
work of interconnected nodes.

• Kernel methods: The class probability distributions are modeled via a convolution of
a kernel with the training data.

This brings us to the important question of how a classifiers performance is quantified, in
order to choose which method it is best to use given a concrete problem. The basic challenge
when designing a classifier is to minimize the generalization error, the error when classifying
previously unseen data. It has been proven, unfortunately, that a universal best classification
rule does not exist. For any rule, there will exist distributions on which a different rule
will result in a better-performing classifier. This is the rather aptly named No Free Lunch
theorem [128]. However, this does not mean that some rules do not perform well on a wider
variety of distributions than others.

Given training data {xi, yi}, we have the generalisation error given by ǫ = P (g(x) 6=
y|{x1, ...,xn}), where P is averaged over the distribution of (X,Y). The classifier which
would minimise this probability of error is called the Bayes classifier; the minimum however
is only zero for distributions such that P (y|x) = 1 for some y, and for all x where P (x) 6= 0.
In general the Bayes error is non-zero and an error free classifier is not possible, however we
can still strive to build a classifier which performs well in most situations. The performance
of a classifier is usually predicted using a separate testing dataset, unseen during training, or
using cross-validation.

There are numerous challenges when attempting to build a well performing classifier [52].
Some of these are as follows.

• Poor/insufficient data. The methods used to label the data used in training are usually
expensive, difficult and/or time consuming. If this was not the case there would be little
motivation to automate. Therefore one challenge in pattern recognition is to build a
well performing classifier using minimal data. Data may also be noisy, include features
that are mostly irrelevant for the classification problem, or be incomplete. This poses
the additional problem of maintaining reasonable performance over a range of data
quality.

• Adaptability. In some application areas the input space, or the relationship between
output and input, changes over time. A good example of this is spam filtering. The
pattern here is the sequence of letters/words in an email, with a binary classification
scheme into spam and non-spam. As filters (classifiers) improve, the perpetrators of
spam attempt to fool the filter by miss-spelling words and numerous other strategies
which attempt to shift the location of their spam in the input space into an area which
would be classified as non-spam. Spam filter software must be able to continually adapt
to these shifts and maintain good performance.

• Generalisation. In order for a pattern recognition scheme to be useful, we must know
the performance we can expect from it. Thus some way of predicting a classifiers
performance is necessary. Good performance of the classifier on the training data is
not enough; it must generalise to new unseen observations. This is closely related to
the complexity of the classifier, and will be discussed in greater detail later. In brief,
an overly complex function can tune itself very closely to its training data. When this
happens a classifier may fit itself to outliers and noise in the data, and may perform very

5

badly on new points in a phenomenon called over-fitting. It is also related to the length
scale over which the function changes - if the fitted function has detail on a length scale
smaller than the distance between training points, it is likely we will overfit.

• Curse of dimensionality. As the dimensionality of the data increases, a sample of a
given size becomes sparser and most of the input space becomes empty. This can result
in poor performance of many classifiers, and also makes it hard to visualise the data
and resulting model.

Historically a variety of methods have been proposed to overcome these challenges. Pre-
processing of data can help improve the quality of data by for example attempting to remove
outliers. There are also methods to reduce the dimensionality of the data while retaining
essential information, mitigating problems related to irrelevant features and the curse of
dimensionality. Regularisation [6], pruning, cross-validation [20] and other methods were
developed to control complexity or predict performance in some classification schemes, and
so reduce over-fitting.

Different classifiers may have a similar performance while giving significantly different
decision boundaries. This suggests they extract slightly different information from the data;
the fact that there is no single best classifier for all problems also supports this view. Given
this insight, the idea of combining classifiers was proposed to help solve some of the above
problems. It has parallels with the way humans sometimes make decisions - important de-
cisions are often not made by one person alone, but are the combination of the decisions of
many people, for example in a vote. The combination of classifiers will be the focus of this
thesis.

Classifier combination first began to appear a few decades ago and rapidly gained pop-
ularity. It is now a vibrant area of research with a huge literature, both algorithmic and
theoretical. Its main attraction is improving the consistency of predictions by reducing vari-
ance [70], thus improving the performance. Some methods may also reduce bias; the concepts
of bias and variance are explained further in Chapter 2. A combined method reaches deci-
sions using a number of different base classifiers, or representations of the data, or parameter
settings, and as such is intuitively less subject to the vagaries of the individual. Where some
individuals would perform poorly in a specific problem or sampling of data, the combined
classifier should still retain reasonable performance. In addition to a method of building
a single classifier from data, there are two further elements necessary in the classification
framework to build a combined classifier, or Multiple Classifier System (MCS). Intuitively
classifiers must be diverse in order for gains to be made via combining, meaning some method
of diversifying classifiers is the first of these. The second element is the rule defining how a
final classifier is built from the individuals.

There are many ways of diversifying classifiers [18], and Chapter 2 will cover those found
in the literature. In overview, classifiers can be diversified mainly by changing the data used
to build them in various ways, or by changing the algorithm (rule) used to build each classifier.
Naturally in most combination schemes the individual performances are also important. It
is an ongoing challenge to find the most useful form of diversity for combining, and to find
methods of generating many classifiers that are both well-performing and diverse.

We also have numerous options for the final vital piece in a combination approach, the
combination method itself [75]. There are many ways of combining the outputs of many
classifiers, or we may opt to combine individuals at the model level. Again these methods
can be found in the literature review in Chapter 2. There are a few basic paradigms that can
be followed when building a MCS, both in the creation of the ensemble and in the method of
combination. In building an ensemble, we may create individuals from which we will select a

6

subset to build the final classifier, or individuals all of which will be used in the final classifier.
Which paradigm we follow guides our choice of diversification method, as we must be more
careful and principled in the individuals we create when all are expected to take part in the
final classifier. We will focus more on this latter, as we feel that this paradigm fits better
with the structured, theory-driven approach we wish to take to classifier combination.

In combining, there are three conceptually different approaches. The first, and probably
the simplest, is decision level combination. For a point x, some function of the decisions of
each classifier in the ensemble on that point is used as the final decision. Let g1(x), ..., gN (x)
be an ensemble of N classifiers. The outputs of each classifier on the point define a vector
in the N-dimensional intermediate space G of the ensemble. The final decision is given
by a function f mapping points in this intermediate space to the set of classes Y , that is
f : G → Y, f = f(g1(x), ..., gN (x)). This function is usually relatively simple; an oft-used
example is majority vote, where the function f is simply the mode of the g’s.

A second approach is to allow different classifiers in the ensemble to make the decision on
a point, depending on where in the input space this point lies. This is based on some measure
of the competence of individual classifiers in an area of the input space. Given a new point
x, the competence of each classifier at x is calculated and the point is classified using the
classifier with highest competence. This results in a partition of the input space. This could
alternatively be cast within the first paradigm by allowing the function f to depend on x.

The third is to combine components of the structure of individual classifier models to
make a combined classifier of similar type. Again these concepts will be covered in more
detail in the literature review.

There are very many proposed frameworks for building combined classifier systems, and
many are based mostly on heuristics and ad hoc ideas. One of the challenges of the field is
solidifying the basis on which combined methods are built. What is needed [65] is a concrete
theoretical framework identifying the properties of an ensemble which control performance,
and quantifying the dependence of the performance on these parameters. Understanding of
how well these parameters will generalize if we enforce them on a training set is essential for
relating any theory to generalization errors. This involves relating measures of diversity and
individual performance to combined performance, and developing methods to consistently
build classifiers with the desired properties. Decompositions of the error, such as generalised
bias variance decompositions and ambiguity decompositions (see Chapter 2), can help and
some methods which build upon this basis will be covered later (in particular in Chapter 4).
The framework of Stochastic discrimination which we will introduce in Chapter 3 also goes
some way toward providing a solid theory.

The aim of this thesis is to contribute to the development of combined classification
methods, in both algorithmic and theoretical directions. Its structure will be as follows. We
start the main body of the thesis with Chapter 2, a literature review of topics relevant to
MCS, and elaboration of some of the topics mentioned in this introduction. The aim is to
build a solid understanding of the issues that arise when building a MCS and methods in the
literature developed to address them.

The Stochastic Discrimination (SD) framework [67] is introduced in Chapter 3 as a theo-
retical structure in which we can understand the properties of a collection of subsets necessary
for successful combination. We will see how properties defined within this framework are en-
couraged by some of the more popular methods in the literature, and forge some interesting
links between the methods.

A method called Negative Correlation Learning (NCL) [84] is introduced in detail in
Chapter 4. It is a neural network combination method where networks are trained in parallel
with error functions designed to encourage useful diversity. The form of the error function

7

for each network is based on the ambiguity decomposition (see Section 2.1), and has a term
that penalises similarity to the other networks in the ensemble. The importance of this term
is governed by a parameter lambda. A theoretical investigation into the effects of lambda
on the dynamics of the training is the main subject of this Chapter, with some empirical
observations from other papers explained and an optimal (in some sense) lambda derived.
This is backed up by experiments.

Chapter 5 looks in more detail at the Model Level Combination (MLC) paradigm men-
tioned previously. This paradigm has seen by far the least coverage in the literature, and this
section will introduce a few new methods in MLC. Two methods of building a decision tree
whose structure is built by combining components of an ensemble of different trees are intro-
duced. In addition, a similar method which uses an ensemble of trees to provide a base set
of hyperbox fuzzy rules to be combined using a modified GFMM (General Fuzzy Min-Max)
framework [47] is presented.

An application of pattern recognition, and MCS in industry will be the subject of Chapter
6, with churn prediction in the telecommunication domain used as a case study. A churn event
occurs when a customer ceases to use some service a company offers, and naturally companies
wish to avoid this if possible. Churn prediction is the prediction of these churn events from
customer history information. Prior warning that this may occur allows companies to take
action to retain the customer, for example by offering a small incentive to stay. The methods
covered in previous chapters will be applied to this problem, together with other methods
from the literature which are particularly well suited for this problem. Some issues of data
relevance horizon (length of history to be used in prediction) are investigated, to guide our
choice of data to use when trying to predict churn.

Conclusions, comments on future work and a brief summary of the thesis will be presented
in the final Chapter, Chapter 7, and followed by References and Appendices.

The original contributions of this thesis can be summarised as follows:

• A synthesis of existing and original links between some popular methods in the lit-
erature, within the framework of Stochastic Discrimination (SD). These methods are
Random Forests, Stochastic discrimination (a classification method developed in par-
allel with the framework by its author), Support Vector Machines, and Boosting. The
methods are cast as inducing a kernel on the training data with desirable properties,
with classification performed by a separating hyperplane in the transformed space cor-
responding to this kernel. The use of the SD framework to understand these methods,
and the links between SD and the other three methods in particular constitutes an
original contribution.

• A theoretical analysis of various aspects of the Negative Correlation Learning method, in
particular regarding the effects of an important parameter, λ, on the training stability,
performance and complexity of the model built. This culminates in a derivation of a
value λ∗, depending only on N , for which properties of the training are particularly
desirable, and a range of λ over which training is stable. This theoretical work is
illustrated and tested empirically on a number of datasets.

• A proposal and investigation of three new methods for the model level combination of
multiple decision trees. These are:

– Building and pruning the bagging-equivalent single tree. This is done both directly
(on low dimensional datasets), and more generally in an approximate fashion. The
approximation is built by sampling leaves of the full bagging tree using a Monte-
Carlo method, and building a tree on these sampled, labelled hyperboxes. We also

8

experiment with pre-pruning of the samples before tree-building, both combined
and contrasted with standard post-pruning.

– A tree merging method in which we generalise bottom-up tree pruning to a tree
ensemble context, simultaneously combining and pruning the trees in the ensemble
in parallel. This is done by allowing grafting of subtrees from one ensemble member
onto a node of another. A modification of single tree pruning criteria is proposed
for use in this context, and tested empirically.

– A method combining hyperboxes sampled (in the same way as above for the
bagging-equivalent tree) from overlaps of trees in a bagging ensemble within the
GFMM framework. Pre-pruning of samples before combination is also investigated
here.

These methods provide a useful alternative when performance is not the sole require-
ment, as while the methods cannot compete performance-wise with the best decision
level methods, extremely compact and understandable models are produced. As a by-
product of the above investigations, an interesting theoretical link between minimum
error pruning and pessimistic pruning is derived.

• A combination method developed for application to the telecommunications churn pre-
diction problem. Additionally, the investigation of the relevance horizon of customer
data on this problem led to the development of a non-sequential representation of the
sequential raw data, allowing additional classes of predictor to be used on the problem
with some success.

The list of publications that have resulted from this thesis are as follows:

• The Dynamics of Negative Correlation Learning [35]

• Lambda as a Complexity Control in negative Correlation Learning [1]

• A Non-sequential Representation of Sequential Data for Churn Prediction [37]

• Building Combined Classifiers [36]

In addition, work is in progress on papers based on Chapters 3 and 5.

9

Chapter 2

Literature Review

In this Chapter we review the ensemble methods literature and a few related areas which
will be necessary for the understanding of later chapters. Literature related to the churn
prediction application investigated in Chapter 6 will be delegated to that Chapter, as it
would be of little help before the application area itself is introduced, and is not necessary
for understanding of previous chapters.

2.1 Error Decompositions

The most important measure of the performance of a classifier is the generalization error
[11]. It is the reduction of this that provides the driving force behind the development of
multiple classifier systems. Therefore we will start by looking more closely at the ensemble
error and how it depends on properties of the ensemble. Intuitively, we would expect that
the error of an ensemble of classifiers would depend on the individual errors of the classifiers,
and on some parameter(s) encoding the interaction between the errors of the classifiers. The
form of the dependence would be expected to vary between combination methods. The
decompositions below can help explain why certain combination methods work, in a similar
way to the framework we will introduce in chapter 3.

2.1.1 Squared Loss

The following decompositions attempt to quantify this intuition, for the ‘easy’ case of regres-
sion problems. In this case squared loss and (weighted) averaging are the natural choices for
loss function and combiner.

Bias-Variance Decomposition

Starting with a single predictor, we have the bias-variance decomposition [48]. Assume our
training data TR = {xi, di} is sampled from an underlying distribution D. We want the
average error of our predictor, not an error for one particular sampling, so we consider the
expectation ETR(ǫ) over all possible training sets TR sampled from D.

ETR(ǫ) = ETR(f − d)2 (2.1)

= ETR(f + ETR(f) − ETR(f) − d)2 (2.2)

= ETR[(f − ETR(f))2 + (ETR(f) − d)2 + 2(f − ETR(f))(ETR(f) − d)] (2.3)

= (ETR(f) − d)2 + ETR(f − ETR(f))2 (2.4)

10

The first term is the bias, indicating the loss when using the expected value of f to predict
d. The second term is variance, and gives us the expected added loss of using one particular
f whose average squared deviation from ETR(f) is the variance. When we have an ensemble
of N predictors, f becomes

∑N
i=1 wifi, a weighted average of the outputs of the predictors.

For an unweighted average wi = 1
N

the expression reduces to:

E

[(

1

N

∑

i

fi

)

− d

]2

= bias
2
+

1

N
var +

(

1 −
1

N

)

covar (2.5)

with

bias =
1

N

∑

i

(E(fi) − d) (2.6)

var =
1

N

∑

i

E(fi − E(fi))
2 (2.7)

covar =
1

N(N − 1)

∑

i

∑

j 6=i

E{(fi − E(fi))(fj − E(fj))} (2.8)

so we have a decomposition which is dependent on the components of the individual errors,
and an interaction term (the covariance). The first term is the ensemble bias, the other two
terms together are the ensemble variance. If the predictions of all the ensemble members are
independent the interaction term is zero. In this case the variance component of the ensemble
error is reduced by a factor of 1

N
compared to the average variance of the individuals. For

dependent (correlated) predictors the variance is reduced by a different factor which has been
shown [121] (assuming a common variance V for all classifiers) to be:

V ave
ens = V

(

1 + δ(N − 1)

N

)

(2.9)

where δ is the average correlation between predictions over all pairs of predictors. The im-
plication of this is that if we have predictors whose error is dominated by variance, then
by combining we can potentially gain large improvements over any one individual. Larger
improvements are gained for smaller δ (lower correlations) and higher N . The difficulty of
course is the generation of uncorrelated predictors. We can attempt to generate N uncor-
related predictors while maintaining individual accuracy, but this gets more difficult as N
increases. Some methods of doing this will be covered in later sections. Chapter 4 will analyse
one of these methods in greater detail

Unfortunately, in classification tasks decomposing the error is not so easy. Here the final
output of a classifier is one of a few discrete class labels. It is either the right label, or not;
there is no concept of ‘distance’. The labels could be numbers, but could just as easily be
strings or anything else, so it is not clear how to define bias and variance. Certainly the
standard definitions are of no use as they assume the space of possible output is closed under
addition/multiplication/division. This is not true for the classification case even if we use
numeric labels (which we can always do). In cases where the output label is based on some
continuously varying value with a specific target value, such as classifiers which approximate
the posterior probabilities of the classes, progress can be made. As Tumer and Ghosh have
shown [120], the squared error of the posterior estimates can be linearly related to the squared
error of the classifier decision boundary in approximating the true boundary. This is done
by assuming that the posterior probabilities are monotonic in the boundary region, and that
the approximated boundary is close to the true boundary. Under these assumptions, the

11

estimated posteriors at the point where they are equal (on the estimated boundary) can be
linearly expanded around the true boundary. This results in:

b =
ǫi(zb) − ǫj(zb)

p′j(z
∗) − p′i(z

∗)
(2.10)

where ǫi(zb) is the error of the classifier in approximating the posterior probability of class
ωi at zb, and b is the distance between the estimated boundary zb, and the true boundary z∗.
The denominator is a constant over different training sets and so does not need to be known.
In turn b2 can be shown to be directly proportional to the classification error rate. Thus the
bias-variance decomposition described above can be used in this case, as we have related the
misclassification rate to a squared error, even if only approximately. Many classifiers (such as
the tree classifier) cannot approximate the posterior probabilities in this way. Definitions of
bias and variance suitable for use with general loss functions when the classification problem
cannot be linked to a regression problem are given in Section 2.1.2.

The Ambiguity Decomposition

Another extremely important result due to Krogh and Vedelsby [72] for combining predictors
in the regression context is the ambiguity decomposition:

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (2.11)

This gives us a direct decomposition of the ensemble error into the average of the individ-
ual errors and a second term containing all interactions, called the ambiguity. It is reached
via similar manipulations to the bias-variance decomposition. Because the second term is
positive definite, in the case of regression problems we are guaranteed an improvement over
the average of the individual errors when combining. It also shows us that, keeping the aver-
age error of the predictors in the ensemble constant, we can reduce the ensemble error simply
by increasing the second term, making our predictors spread as widely about the ensemble
mean as possible. We will see some ensemble methods among those described in Section 2.4
for which this decomposition provides the driving force, and will look at one in particular in
more detail in Chapter 4.

2.1.2 General Loss Functions

In this section we will describe some of the bias-variance decompositions which have been
proposed for more general loss functions, one example of which is the zero-one loss widely
used in classification. The fact that a single decomposition cannot be given in this section
illustrates the current state of uncertainty in this area. It is an open question which of
the current definitions is more useful, or whether it is possible to do better than the current
definitions. The following two definitions have been derived specifically to provide an additive
decomposition of the error as well as encoding characteristics of the distribution of outputs
of different classifiers, and so are obtained starting from the expected error at a particular
point x:

P (error|x) = 1 −
∑

i

PD(ωi|x)P (ωi|x) (2.12)

where P (ωi|x) is the probability a given point x has true class ωi, and PD(ωi|x) is the
expected probability over all possible training sets sampled from D that it would be labeled

12

ωi. Adding and subtracting extra terms whose sum is 0, and grouping the terms can result
in different potential expressions for bias, variance and noise (Bayes error).

There are certain desirable characteristics we would like definitions of bias, variance and
noise to have. These are:

1. Any generalized definitions must reduce to the standard definitions in the case of
squared loss.

2. The variance should be non-negative, and should be 0 for a classifier which disregards
the training data.

3. The bias should be zero for the Bayes optimal classifier.

4. The definitions should provide an additive decomposition of the error.

As we shall see below, finding definitions which satisfy all these constraints is difficult.

Kohavi-Wolpert Definitions

Kohavi and Wolpert [69] propose the following definitions:

bias =
1

2

∑

ωi

(P (ωi|x) − PD(ωi|x))2

variance =
1

2

(

1 −
∑

ωi

PD(ωi|x)2

)

noise =
1

2

(

1 −
∑

ωi

P (ωi|x)2

)

The interpretation of the terms is as follows. The bias is the sum over ωi of the MSE in
approximating the posteriors P (ωi|x) with the probability over all training sets of a classifier
predicting ωi. The variance measures the spread of labels assigned to x by classifiers trained
on different training sets, and is related to the Gini index sometimes used in decision trees.
Using this definition of variance, the noise is then the variance of the Bayes classifier. The
Kohavi-Wolpert definitions above suffer from a bias term which may not be zero for the
Bayes optimal classifier, violating requirement 3. One advantage however is that it is a
continuous functional of the underlying distribution; An infinitesimal change in the underlying
distribution will result in an infinitesimal change in the above quantities. For the next set of
definitions given by Breiman this is not the case, as we will see.

Breiman’s Definitions

Breiman’s definitions [14] provide an alternative decomposition for which the bias of the
Bayes classifier is zero.

bias = (P (ω∗|x) − P (ω∗̂|x))PD(ω∗̂|x)

variance(‘spread‘) =
∑

ωi 6=ω∗̂

(P (ω∗|x) − P (ωi|x))PD(ωi|x)

noise = 1 − P (ω∗|x)

13

Here ω∗ is the label with the highest true probability given x, i.e. it is the decision of the
Bayes classifier. The label which is the most probable output for x over classifiers trained
on random samples from D is ω∗̂. Thus the noise is the error of the Bayes classifier, the bias
is the expected additional error of using ω∗̂ to label x instead of ω∗, and the variance is a
measure of the spread of outputs over classes other than ω∗ and ω∗̂.

Each set of definitions have their own advantages and disadvantages. Breiman’s bias
satisfies requirement 3, but the variance does not satisfy 2. It may be negative, and a classifier
which ignores the data may not have zero variance, and in fact may not even minimize the
variance. The bias and variance may also be discontinuous given an infinitesimal change in
the underlying distribution. If this change causes ω∗̂ to change, then although PD(ω∗̂|x) will
change only infinitesimally, P (ω∗̂|x) will not in general.

James’ and Domingos’ Definitions

James [59] has taken a slight departure from the approach taken in the previous two decom-
positions. The above definitions attempt to characterize in a sensible way the output of a
classifier by some measure of its systematic deviation from the target value over all possible
training sets and by its variation about its systematic value for differing training sets. At
the same time they also try to provide an additive decomposition of the error. James argues
that for general loss functions we cannot define a quantity which does both jobs well, and
proposes to split this dual role into separate definitions. By doing this he is able to satisfy
all the properties an intuitively sensible decomposition into bias and variance should have,
but at the cost of having a dual definition. He defines L(y, d) to be the loss, or cost incurred
if y is predicted when the target value is d. The prediction y is the prediction of a classifier
built on a particular training set sampled from the distribution of training examples D. In
the following, expectations are over training/test sets sampled from D. He proposes:

Define
y∗ = argminγ (E[L(y, γ)]) (2.13)

to be the systematic part of y (and similarly for d). Then Bias, Variance and Noise are:

B = L(d∗, y∗) (2.14)

V = E[L(y, y∗)] (2.15)

N = E[L(d, d∗)] (2.16)

and further define

V E(y, d) = E[L(d, y) − L(d, y∗)] (2.17)

SE(y, d) = E[L(d, y∗) − L(d, d∗)] (2.18)

Where V E (variance effect) and SE (systematic effect) give the effects of bias and variance
on the error, providing an additive decomposition. He shows experimentally that there is
usually a high correlation between bias and SE, and variance and V E. For the special case
of squared error loss, the definitions for variance and V E coincide and become the standard
definitions, as do the bias and SE.

Domingos [30] uses the same definitions of bias and variance, but show that for certain
loss functions, the error at a point x can be decomposed as follows:

E[L(d, y)] = α1N(x) + B(x) + α2V (x) (2.19)

14

Specifically, for zero-one loss the coefficients are:

α1 = PD(y = d∗) − PD(y 6= d∗)PD(y = d|d∗ 6= d) (2.20)

α2 = 1 if y∗ = d∗, and α2 = −PD(y = d∗|y 6= y∗) otherwise. (2.21)

An interesting property of this is that for points on which the classifier is unbiased (y∗ =
d∗) the variance adds to the error, and for biased points it subtracts from it. This does
not violate requirement 2, as the variance itself is always positive. This is intuitive - if the
classifier consistently predicts the wrong class for a point, then the more often it varies from
this most probable prediction, the more likely it will ‘accidentally’ give the correct class.

Domingos also points out that for two class problems the margin (see below) can be
written in terms of the bias and variance as defined above:

M(x) = ±[2B(x) − 1][2V (x) − 1] (2.22)

with a positive sign if y∗ = d∗, and negative otherwise.

Bias-Variance Decomposition and Combining SVM

Now that we have presented these alternative bias-variance decompositions, it would be illus-
trative to give an example of their use from the literature. In [124], Domingos’ decomposition
is applied to ensembles of support vector machines, to look at how the bias/variance of the
models changes when using different parameters for the model.

The interesting points to come out of this analysis are as follows. The authors find that
the SVM has quite a large ’stability’ range where good performance is achieved and sensitivity
to parameters is small. Bias is low, with the error concentrated mostly in un-biased variance.
Parameter choice within this range does affect the distribution of the error between terms,
but has little effect on their sum. This can be used to guide ensemble building. Firstly,
it can be inferred that bagging, as a method which does well given low-bias high variance
base learners, should be a good choice for SVM ensembles. Secondly, by varying parameters
over the stable region we can obtain classifiers with similar overall error but whose error
is distributed differently over the terms of the error decomposition. We can then use the
distribution to choose classifiers that are diverse in some sense and this may help when
constructing an ensemble.

Ambiguity Decomposition for General Loss

There is currently no direct analogue to the ambiguity decomposition for general loss, and
some debate as to whether one is possible at all. This is a very important question that
needs answering. The ambiguity decomposition relies on the fact that the function g(α) =
∑

i wi(fi−α)2 is a convex, symmetric (about f̄) function of α for given fi, with minimum at f̄
so that the distance |d− f̄ | is unique for a given g(d)−g(f̄) =

∑

i wi(fi−d)2−
∑

i wi(fi− f̄)2.
It is hard to imagine an analogue of this concept for something like zero-one loss.

For classification the ‘ambiguity’ type term which measures the effect on error of the
correlations between classifiers is not known, and so a variety of measures of ‘diversity’ or
the effect of correlations can be used instead (reviews are given in [18], [127], [79]). Many of
these are pairwise measures which measure 1st order coincidences of correct and/or incorrect
classification. These ignore higher order coincidences and thus are not particularly well-
correlated with the ensemble error. A more general framework of arbitrary order coincidences
has also been developed [107], and other non-pairwise measures such as entropy. These may
have a higher correlation with error, but lose their simplicity of interpretation and so are of

15

less use for guiding ensemble creation. The extreme case of this is to use the (normalized)
ensemble error directly [105], as we can always measure the ambiguity-like term simply by
calculating the difference between the average errors and the ensemble error. This can be
very useful for searching for the best subset of classifiers from a pool, but it gives us no
information about the characteristics of the subset resulting in a high/low value. Thus it is
of no use for guiding how we generate classifiers beyond telling us how good a subset is once
it has been generated.

There are theoretical analyses available for certain combination methods which provide
some sort of guideline for the patterns of errors of individual classifiers which result in larger
improvements in the error of the ensemble. These results provide guidance in the same way
as the ambiguity decomposition, but in a much more vague and less useful way. We will
briefly describe some of these.

The patterns of success and failure [74] for majority vote ensembles, tell us how it is best
to distribute the errors if we have classifiers of given error rates, and we can distribute these
errors over examples as we wish. Minimum ensemble error is when we either have examples
voted correctly by only one vote, or examples voted unanimously incorrectly. The worst case
is if examples are voted either unanimously correct, or incorrect by only one vote. These error
distributions are however unstable as they correspond to the minimum margin (see below).
Modified, stable patterns of success and failure have been given in [106].

There are some theoretic results [44], [102] giving the pattern of classifier accuracies where
weighted averaging (WA) is more effective than simple averaging or single best. Generally
two factors decide this. First, the larger the difference between the errors of the best and
worse classifiers, the more improvement will be seen for WA. Second, the more the ‘good’
classifiers are in the minority, the better WA performs.

The theory of margins [113] attempts to explain the success of boosting and support
vector machines [25] by the way that the certainty of the decisions are maximized. The
margin is the difference between the support given to the correct class, and the maximum
support for any other class. Small changes in the training data will cause very little change
in the classifier decisions with large margins. This will result in a more stable and hopefully
more accurate classifier.

Finding a framework within which the classification performance of ensemble methods can
be understood is an open problem. The Stochastic Discrimination framework we will look at
in Chapter 3 is a powerful candidate for such a framework. Properties are defined specifying
how a collection of subsets should be spread over training points in order for combination of
those subsets to be successful; a number of ensemble methods can be understood within this
framework. We will illustrate this in detail in Chapter 3.

16

2.2 Random Generation of an Ensemble

In Section 2.2 we have looked at some decompositions of the error and found that for regres-
sion problems, to make the most of an ensemble of classifiers the ambiguity decomposition
defines two quantities of interest. We can of course try to improve the individual performances
and so lower the first term in the ambiguity decomposition. Given an average individual error
we can also reduce ensemble error by trying to maximize the ambiguity term, making the in-
dividual predictions as different as possible. For classification problems it is not so clear-cut,
but we know that a similar principle applies and we can generally get better performance by
having individuals which make different errors even if we do not know an exact relationship.
In subsequent Chapters we will need to create classifiers which differ in some way; this section
and the following one will describe some methods for acheiving this. Whether all the classi-
fiers generated are expected to take part in the final classifier or whether a search/selection
stage will be implemented to decide a subset of the ensemble to combine is an important
consideration when generating classifier ensembles. Different generation methods naturally
lend themselves to one or the other of these. The methods described in this section create
differences randomly, and can be useful in both approaches above. Others described in Sec-
tion 2.4 are more directed in the characteristics of the differences they introduce, and are
generally more suited to the first approach.

It is first worth mentioning, that while we may try to generate classifiers with independent
errors, and theoretical work often assumes this to be the case, in reality the classifiers in an
ensemble are nearly always correlated to some extent. Some papers explore the effect of these
correlations, either theoretically (under strong assumptions) [121] or empirically [34].

A simple way to make classifiers different is to change something (anything!) randomly
and hope that we will get different classifiers out at the end. The methods in this section
follow this philosophy. There are a variety of things we could potentially change.

2.2.1 Changing the data

If we change the data somehow before training each classifier, we can expect each classifier to
differ in some way. We must compromise between changing the data more to make classifiers
differ more, and changing it less so that classifiers will still perform well on the ‘real’ data.
Possibilities are:

• Adding random noise;

• Using random subsets or feature subsets;

• Applying random transformations.

The idea behind these methods is to gain a number of different samplings or represen-
tations of the underlying distribution based on the original distribution. By training com-
ponents of the combined classifier on these different representations, it is expected that the
combined classifier will be less training-set specific. Therefore the classifier could be expected
to generalize better and be more stable.

Adding Random Noise

To generate a new classifier using this method, a training set is created by adding a random
vector to each input vector of the original data. The added noise is usually isotropic and
gaussian. The width of the gaussian may change for each point or may be the same for all

17

points of a given class. The most intuitive way of varying the widths would be to relate it
to the density of points in a neighborhood, so that points in less dense regions are spread
more. Any number of noisy points may be generated from each training point to give larger
noisy sets, or each new point can be generated by randomly picking a training point and
adding noise to it. This would be equivalent to combining the ideas of bagging (see next
subsection) and random noise. There is a compromise between adding noise with a wider
distribution in order to further de-correlate the classifiers, and adding less noise to maintain
individual accuracies. As was seen in Section 2.1 both de-correlation and good generalization
performance of the individuals contribute to good ensemble performance.

The adding of noise has been explored to a limited extent in [49] however there is relatively
little in the literature exploring this in the context of multiple classifier systems. This is
perhaps surprising as the aim of a classifier is to try to ‘fill in the gaps’ in generalizing to
non-training-set points. Exploring methods of splitting this filling of gaps between the data
level and the algorithmic level would seem a sensible approach. Usually only the extreme
cases are used. The parzen window classifier can be thought of as one extreme of such an
approach. If one imagines generating a dataset of size r|TR| by randomly adding noise to
the points in TR according to some kernel, and applying a multinomial (histogram) classifier
of N bins to the resulting dataset, then in the limit of {r → ∞, N → ∞ : r/N → ∞} the
resulting classifier would tend to a parzen classifier with the same kernel as that used to
generate the noise. The other extreme is the more usual case where spaces are filled entirely
on the algorithmic level, for example a tree classifier. It would be interesting to investigate
intermediate cases, especially in the context of multiple classifier systems as each data level
filling of points would be different.

Re-sampling Techniques

The idea behind resampling techniques is to simulate different samplings from the underlying
distribution by instead sampling the original training data. The samples can be of any size,
with or without replacement. In the most usual implementation, called bagging [12], the
samples are the same size as the original training set and are sampled with replacement.
Such samples are called bootstrap replicates of the original dataset. More generally, when
choosing a size for the subsets there is again a tradeoff between smaller subsets enabling
larger numbers of relatively uncorrelated datasets, and larger subsets which are more likely
to be representative of the underlying distribution. Bagging has been explored by various
authors and is known to be an effective way of generating ensembles. It’s effectiveness can be
explained by the reduction of variance [21]. Further, subject to some fairly strict assumptions
as to how the error is related to the displacement of the error from the true boundary (as in
Section 2.1 and [119]), the bagging error can be derived [45] as:

ǫ = ǫb + ETR

(

E
2
TB|TRǫ(xb(TB);TB) +

1

N
[VTB|TRǫ(xb(TB);TB)]

)

(2.23)

This shows that the added error (over the bayes error ǫb) of the N bagged classifiers due
to displacement of the predicted boundary xb from the true one is given by the expected error
of a bagged classifier over all bagged training sets TB from training sets TR (which is simply
the bias error of a bagged classifier), plus a second term which is 1

N
times the expectation

over TR of the variance of the bagged classifiers.
The consequences of this are:

• Bagging can be expected to work well with base classifiers which are unstable, and
hence have high variance.

18

• As the bagged ensemble becomes large, its error approaches the bias of an individual
trained on a bootstrap of the original training. data.

• Larger ensembles should perform strictly better, though with diminishing returns for
large N .

• The bagged ensemble should perform strictly better than an individual trained on a
bootstrap of the training data - note this does not imply better performance than an
individual trained on the training data, though one can imagine this will mostly be the
case given individuals with a large variance, as is confirmed by empirical results.

A method related to bagging is the random subspace method [53] in which a different
random subset of features is used for each classifier. Obviously this is only useful for fairly
high dimensional data for which there are many potential subsets of features which could
be used. For these problems it can be very effective because the ratio of the dimensionality
of the problem presented to each classifier to the number of training examples presented is
lowered, potentially making the problem easier to handle and quicker to solve. Because of
this and the fact that each classifier is trained on all training points, this method tends to
work better than bagging for small training sets [116].

The methods above are specific examples of a more general class of method which have
been very successful. This class of method was first identified by Breiman in [16] and given
the name Random Forests. The formal definition of a random forest ensemble is a set of N
classifiers each grown according to a random vector of parameters Θk. Each element of the
vector controls some aspect of the growth of a tree classifier. In practice what is often done is
to create a bootstrap sample for each tree to be grown on. During growth of the (unpruned)
tree, for each node a random feature is selected for splitting. In this case the random vector
would have a set of n random elements defining the index of each training sample in the
bootstrap replicate, and another set of random elements giving the feature for splitting at
each node.

This method has similarities with a number of other methods; we will look at these links
in more detail in Chapter 3.

Applying random transformations

The idea behind this method is to create different classifiers by first transforming the data in
some way so that although the same data is used each time it is presented to the classification
algorithm in a different way. One way of doing this which has been explored by Sharkey [114]
is to pass the inputs through different untrained or incomplete neural networks to create
the training sets for each ensemble member. New examples to be classified are first passed
through the distorting nets.

2.2.2 Changes in classifier generation

A classifier is a rule generated from the information in the training data, which predicts the
class of an input object. If we do not change the data, then in order to get different classifiers
we must change how the rule (classifier) is generated from the data instead. Possibilities are:

• Using different base classifiers;

• Changing parameters within a particular base classifier;

• Stochastic discrimination.

19

Differences in Base Classifiers

One way of getting classifiers with different decision regions from the same data is to use
different algorithms to generate them from the data. If an algorithm has some variable
parameter which controls some aspect of how it generates a classifier from the data, the
same effect can be gained by varying the parameter for each classifier while using the same
algorithm. Examples of this approach include the following:

• The random forests method already covered could just as easily have been placed here
due to the way in which the growth of the tree is changed between members of the
ensemble.

• Combinations of different base classifiers using various searching algorithms and selec-
tion criteria have been explored in [108].

• Methods of building ensembles of neural networks with different architectures have been
proposed, and will be covered in later Chapters (see Sections 2.4.2 and 2.5.7).

20

2.3 Deterministic Generation of an Ensemble

Many of the methods in the previous section also have deterministic counterparts, where sim-
ilar things are changed but in a more deterministic way to achieve well defined relationships
between individuals. The advantage of these methods is that they do not rely on chance to
provide us with complementary classifiers but will instead directly generate them. Often this
means we have to generate fewer classifiers than in random methods. These methods tend
to lend themselves more naturally to direct generation of ensembles as opposed to generating
a pool to be selected from. The downside of these methods is that they require from us
a greater understanding of the properties of an ensemble which enable us to build a good
combined classifier. If we are not going to rely on chance, then we need a clear idea of how we
want the classifiers to differ. This is where the ideas of Section 2.1 can be very useful, though
unfortunately the ideas there in the case of zero-one loss are not yet well enough developed
to provide exact guidance. Because of this many ideas are still ad hoc to varying degrees,
without a well defined theoretical underpinning.

2.3.1 Changing the Data

Among the deterministic methods of changing the data are:

• Re-sampling/re-weighting the data according to some criterion. The major example of
this method is boosting, in which the criterion is related to the difficulty in correctly
classifying a point.

• Training classifiers on different feature subsets chosen/generated via some criterion. A
good example of this is input decimation, where the criterion for each of K feature
subsets is correlation with class K.

• Creation of new datapoints labeled to force the classifiers to differ. This is an example of
data editing. DECORATE is the most successful algorithm of this type; new datapoints
are labeled in opposition to current ensemble predictions.

• Linear and nonlinear transformations to transform the data into some more ‘interesting’
basis, such as PCA and various extensions of this. More often used as a preproccessing
stage before creating a multiple classifier system, rather than an ensemble generation
method in its own right.

Boosting

This method due to Freund and Schapire [41] has been described as the best out-of-the-box
ensemble generation method currently available. It works by training classifiers sequentially
and focussing the training of the current classifier on those points which members of the
ensemble constructed thus far have misclassified most often. The final decision is reached by
voting with weights set according to the error of each classifier on the weighted training set
upon which it was trained. There are a number of variants; here we will look at one of the
most popular, adaboost. In more detail, the exact operation of the algorithm is as follows:

1. A set of weights wk
j are maintained, j running over the n training points and k denoting

the iteration. These are initialized to equal values w1
j = 1

n
.

2. At iteration k, a classifier hk is trained on the weighted training set, and it’s weighted
error is calculated: ǫk =

∑N
j=1 wk

j dk
j where dk

j = 0 if training point xj is correctly

21

classified by hk, and 1 otherwise. If the classifier cannot directly handle weighted
training data, training points are sampled according to the weights wj. The error
becomes ǫf = 1

n

∑

sample dk
j .

3. If ǫk = 0 or ǫk ≥ 0.5 discard hk, re-initialize the weights and continue.

4. Update the weights wk+1
j =

wk
j β

(1−d
j
k
)

k

∑N
i=1 wk

i β
(1−di

k
)

k

where βk = ǫk

1−ǫk
and store βk

5. Repeat from 2 until desired ensemble size is reached

Classification of a new input is achieved by weighted majority vote of the N classifiers,
with the support for class i

µi(x) =
∑

hk(x)=ωi

ln(
1

βk
) (2.24)

The method is designed for a weak base classifier, for which the weights will change quite
rapidly. It can have problems in the presence of noise and outliers, to which it may be
very sensitive, as there may be highly unrepresentative points which nevertheless are given
extremely high weights in the latter stages of boosting due to their difficulty. However it has
been shown to perform very well on a wide variety of problems [41].

Explaining this success is not so easy. One proposed explanation for its success in reducing
generalization error is that it has been found [113] to aggressively increase the minimal margin
(see Section 2.1) by which any point has been classified. This reduces the variance of the
combined classifier; intuitively, small changes in the training data should not affect the error
greatly. Initially changes should just reduce the margins by which points are classified,
with errors creeping in with larger changes. Bias is also reduced; the individuals, being
weak classifiers, are often highly biased. The final classifier can approximate much more
complicated decision boundaries and so has much smaller bias. Other explanations have
been offered in terms of bias and variance [14], or by casting boosting algorithms as the
fitting of an additive logistic regression model [42]. We will look at boosting more closely in
Chapter 3.

Many variants of boosting have been investigated, most of which involve changing the
expression used when updating the weights. Examples are Breimans arc-x4 [13], Friedman et
al’s logitboost [42]. The use of fuzzy combination methods in combining ensembles generated
by boosting has been explored in [78]. A regularized version of boosting is explored in [9].
There is a vast literature on boosting; the references in this section are only a few of the
many variants and proposed explanations to be found.

Input Decimation

Input decimation [122] is a deterministic counterpart to the random subspace method de-
scribed earlier. For a K class problem, this method trains K classifiers. Each classifier is
associated with a ‘favourite’ class, and is trained using only the features which show the
highest correlation to the presence or absence of this class. The classifier is still trained to
discriminate between all classes as the whole training set is still used. The number of features
can be set beforehand or could be optimized in some way during training. In general each of
the K classifiers could be an ensemble itself diversified by some other (none feature-based)
method. This has only been explored to a limited extent using random initial weights for
neural networks.

22

The advantages of this method over the random subspace method are twofold. Firstly,
each subspace is selected using a different criterion so that they can all be expected to be
different without relying on random differences. Secondly, each criterion individually will
tend to select subsets with higher discrimination ability (at least with respect to one class),
and so individual error rates can be expected to be better on average than for the RSM. This
is confirmed in empirical investigations. In fact the individuals are often better than the base
classifier trained on all features. The expectation is to create an ensemble of classifiers that
each have good individual error but complement each other by specializing on a different
class. This indeed seems to be the case as this method has been shown to perform well on
high dimensional data. The method is less useful for low-dimensional and few class data
where there are less likely to be irrelevant features and fewer classifiers can be built.

An interesting extension to this method could be by taking ideas from the mixture of
experts approach. A separate classifier producing soft outputs could be applied to new
inputs, with the supports for each class used to weight the ensemble members. Classifiers
whose favourite class is identified as a contender for being the true class are given more weight,
as it could be expected that these classifiers may be especially good for these instances.

DECORATE

To create a DECORATE [88] ensemble, a strong learner is chosen as a base classifier, and
classifiers are trained sequentially as follows. The first is trained on the unmodified training
set TR. For each subsequent classifier artificial datapoints are generated following the (class-
less) distribution of the training set. A simple gaussian fit to the classless data is used. These
datapoints are given label ωi with probability Pnew(ωi|x) inversely proportional to the class
membership probabilities P (ωi|x) given to each class by the previously trained ensemble:

Pnew(ωi|x) =

1
P (ωi|x)

∑

i
1

P (ωi|x)

(2.25)

The new classifier is trained on the union of the set of artificial points, whose size is chosen
to be λ|TR|, and the original training set. If the new classifier, when added to the ensemble,
results in a decrease in accuracy over the original training set, it is rejected and a new set
of artificial points generated. In this way classifiers which are usefully different in that they
reduce the ensemble training error are created. Experiments indicate that this method is
very effective when little training data is available, outperforming boosting. When larger
training sets are available the method performs quite well, but is outperformed slightly by
boosting. This is to be expected because DECORATE enforces diversity without sacrificing
any training points and so would be affected less by too small a training set.

Decorate uses as its ambiguity-like term the probability that a member of the ensemble
will disagree with the ensemble decision, and tries to directly increase it by the use of the
diversity data, while at the same time trying to encourage useful diversity by accepting only
classifiers that do not increase ensemble training error. It is probably the closest analogue for
general base classifiers to the Negative Correlation Learning method we look at in Chapter
4.

Linear and Non-linear Transformations

This section is concerned not so much with changing the data itself, but rather with changing
the representation of the data. The aim is to find a more natural basis in which to represent
the data (for a survey see [40]). Often we try to reduce the dimensionality of the problem

23

by finding a basis in which most of the variation in the data is explained by a few features.
Then we can safely discard the less relevant features. A popular way of doing this is principle
component analysis (PCA), see [62]. If we first calculate the mean µ of the data, and the
covariance matrix Σ, we can find a natural basis for the data by finding the basis for which
the covariance matrix is diagonal. PCA is a specific example of a more general class of
method called exploratory projection pursuit (EPP), so called because we explore the space
of possible projections in pursuit of large values of some objective function. The objective
function is defined to be largest for ‘interesting’ projections [54]. Possible projections we may
find interesting are:

• The directions of greatest variability (PCA);

• Projections in which the data appears most clustered;

• Projections in which the kurtotis (sharpness of the peak compared to a gaussian of the
same variance) or skew (asymmetry) have an extremum;

• The basis for which the components of the datapoints in each direction are the least
correlated (ICA), see [55].

In relation to multiple classifier systems these are potentially useful in a few ways. Firstly,
we may use them simply to select a natural basis set upon which to construct some multiple
classifier system. Secondly, somewhat in the spirit of the input decimation method, we may
train different classifiers on projections obtained via different criteria, and combine them.

2.3.2 Changes in Classifier Generation

There seem to be few methods of this kind. The main ones of note are a class of methods
which change the error landscape during training of neural networks by means of a penalty
term. We will describe the basic idea as used in negative correlation learning (NCL), and
briefly mention a few variations.

Negative Correlation Learning

An ensemble of neural networks are trained in parallel, in such a way as to de-correlate the
individual networks while retaining accuracy. This is achieved through a modification of
the error function for each network based on the ambiguity decomposition [84] (also note a
correction [19] to this paper). For each network, in addition to the usual squared error term
there is a penalty term proportional to the correlation of the network predictions with those
of all the other networks, making the error for a network:

Ei =
1

N

n
∑

j=1

Ei(xj) =
1

N

n
∑

j=1

1

2
(fi(xj) − dj)

2 +
1

N

n
∑

j=1

λpi(xj) (2.26)

where j runs over the n training examples. The penalty term is:

pi(xj) = (fi(xj) − f(xj))
∑

j 6=k

(fk(xj) − f(xj)) (2.27)

which measures and penalizes correlations between predictors. The method is attractive
because of its theoretical grounding and parallel training of individuals. It is explored in more
detail in Chapter 4, in which we analyse the training of the networks to better understand how
the parameter λ should be chosen. This parameter controls the importance of the penalty
term in the error functino above.

24

2.3.3 Divide and Conquer Methods

Another possibility is to split the problem into sub-problems. In this case each classifier solves
only a part of the problem. The classifiers are most definitely diverse and complimentary in
that they each solve different sub-problems, and all members of the ensemble are required
before we can classify a general point. Examples of this are:

• The ECOC (error correcting output code) methods [70] where each classifier is trained
on the same data that has been split in different ways into superclasses.

• Dynamic selection, in which the input space is split after all classifiers are trained. This
will be covered in Section 2.6.

• Mixture of experts [58], in which the split of the input space is learned during training
of the classifiers.

Error Correcting Output Codes

This method was first introduced in [28] taking inspiration from methods in the communi-
cations domain. Consider a K class problem with a training set TR = {xi, yi} with class
labels in Y = {ω1, ..., ωK}. We associate with each of the classes j a codeword of N bits
cj = (c1

j , .., c
N
j), j = 1,K to define a K × N matrix C = cn

j whose rows are the codewords.
Now, instead of training a single classifier to solve the K class problem we train N classifiers
on different two class problems. We define the targets for classifier h(n) to be Y (n) = {cn

ωi
},

i.e the classes are split according to the nth column of C. These each define a binary split of
the K classes into superclasses. Thus, given a new point to classify each classifier predicts
a different bit of an n-bit codeword and the point is assigned to the class whose codeword
is closest to the output codeword. The distance between codewords is usually taken to be
the hamming distance, which is the number of bits on which two codewords differ. Other
distances based on diversity measures are suggested in [76].

The advantage of the ECOC method is as follows. If we choose the codewords to be as
different as possible, so that the minimum hamming distance between any two is m, then any
floor(m

2)− 1 errors can be corrected. Of course, the minimum hamming distance possible is
limited by the length of the codeword. The length in turn cannot be longer than 2K−1 − 1,
the total number of distinct 2-class splits (taking into account that swapping all class labels
0 for 1 does not result in a new split from the classification perspective, and that all 1 or
all 0 is not a valid split). When creating the codeword matrix C there are two conflicting
goals. Recall the rows represent the codewords and the columns represent the class splits
presented to the nth classifier. We would like to make the rows as different as possible so
that we can correct more errors. We also want the columns to differ as much as possible
(remembering that a column’s complement represents the same split), because we expect
that the more varied the class splits used to train each classifier, the more de-correlated their
errors will be. As we have seen in Section 2.1 this is a highly desirable state. By increasing
N we can increase the potential distances between codewords, but the average distance we
can achieve between columns will decrease, increasing correlations and decreasing the gains
of increasing N . At some point the increasing complexity with N may not be worth the
performance gains, certainly by the time N = 2K−1 − 1 beyond which there could be no
performance improvement as we are forced to simply repeat columns (i.e. we are adding
identical classifiers). The challenge of this method is to find a good codeword matrix among
the many potential combinations. For small class sizes an exhaustive search may be feasible.
Otherwise a random search, or evolutionary algorithms (see Section 2.5) may be used. Its

25

success is because, as with most combination schemes, combining many classifiers reduces
variance [70]. In this case bias can be reduced also as each classifier is trained to approximate
an entirely different decision boundary.

Mixture of Experts

Mixture of experts [58] is designed for neural networks, and consists of a set of N ‘expert’
networks and one ‘gate’ network. The gate partitions the input space by assigning to each
expert a probability pi interpreted as the probability that network i is the best network for
a given input. The gate and the experts are trained in concert, with the gate learning to
split the input space based on the error of the experts on an input at the same time as the
experts are reducing their error on an input, weighted by the gate outputs. If expert i outputs
the support µij for class j, then the final decision of the system can be a weighted average
µj =

∑

i piµij or a stochastic decision with µij chosen with probability pi. In these cases the
input space is soft partitioned. A hard partition is obtained if the expert with maximum pi

is chosen to provide the final supports.
An attractive quality of this method is that both the experts and the gate are trained

within the same framework (usually either back-propagation or expectation maximization).
The major advantage over other divide and conquer methods is that the split is taken into
account during training (unlike dynamic selection), without having to specify the split in
advance as is done in some methods. It is, however, limited to neural networks.

26

2.4 Selecting Classifiers for Combination

Once an ensemble of classifiers has been generated, the members must be combined. Some
diversification methods allow us to produce very large ensembles. When computing resources
or memory are at a premium, or when dealing with large amounts of data, this can be a prob-
lem. Further, it is often possible to achieve similar, sometimes even improved, performance
using only a subset of the ensemble. Therefore, we can attempt to find a good subset of the
ensemble to combine via ensemble pruning.

For the overproduce and select methods we in fact rely on the fact that if we gener-
ate enough diverse classifiers, it is likely that some good, complementary classifiers will be
produced, while others may perform badly and be detrimental when included in the final
ensemble. We produce a large pool of classifiers, so it is more likely there is some good
subset, and then search for this best subset. For this approach the pruning stage is vital,
and this is the context in which search algorithms are most often seen. For the deterministic
methods it is often best to use the whole ensemble; indeed it may be necessary. In these cases,
individuals are engineered during the training process to be complementary, however even
here superfluous individuals can be produced and it can be possible to reduce the ensemble
size somewhat while losing little accuracy, which can be a worthwhile tradeoff in some cases.

The search can be conducted in various ways with differing trade-offs between optimality
and complexity. Some popular methods are [103], [115]:

• Exhaustive Search (ES);

• The genetic algorithm and similar methods;

• Greedy searches - Forward Search and Backward Search (FS and BS);

• Thinning and pruning algorithms.

Additionally, some methods search the space of possible classifiers directly to build the
ensemble, without the intermediate stage of generation of a pool. Recently searches in multi-
dimensional spaces have taken this further (see Section 2.5.7), attempting to optimize multiple
aspects of the MCS generation process simultaneously.

2.4.1 Search Criteria

In order to conduct a search, search criteria are needed. What should we search for? Our goal
is to build a combined classifier for which the generalization error is minimum. Therefore, a
sensible and popular choice is to search using this directly as a criterion. The generalization
error is estimated from the performance of the ensemble on a validation set, unseen during
training of individuals. There are a few problems with this:

• The search may over-fit, as the search can be viewed as a further form of training.
Over-fitting should not be huge though, unless a very flexible combiner or very large
pool is used.

• A separate validation set is needed, as combined generalization error will depend on
individual generalization errors and so cannot be well estimated on the training set.

• We are required to choose the combiner before searching.

Combined performance has however been shown [108] to be the best choice in most
situations. Other possible criteria are various measures of diversity as mentioned in Section
2.1, or individual performance. These measures however are not as well correlated with the
true generalization error. These criteria may be used individually or in combination.

27

2.4.2 Searching to Directly Generate an Ensemble

There are some methods which use these search algorithms directly to create an ensemble,
searching the space of all possible classifiers of a given type as opposed to searching the
space of possible subsets of a pre-generated set of classifiers. One example of this is the
ADDEMUP algorithm [95]. The base classifiers are neural networks. A genetic algorithm
is used with a search criterion (fitness) which is a combination of accuracy and ambiguity:
fitness = error + λ × ambiguity. Crossover and mutation operations are carried out on
the population architectures, and during training useful diversity is additionally encouraged
by weighting examples according to the current populations performance on them. These
new networks are then added to the pool, their fitness assessed, and the worst discarded
before repeating the cycle. The method combines ideas from boosting (in the weighting of
the examples) and NCL (in the form of the fitness function).

Another interesting method [109] searches over all possible ways of choosing combiner,
classifiers to be combined, and sets of features on which to train each classifier. For a
given problem, if the numbers of combiners, base classifiers and features are C,N and m
respectively, the number of possibilities is C×(2N −1)×(2m−1). Thus the complexity of the
search is extremely high. Genetic algorithms are used with fitness function the average testing
error, and 3-dimensional arrays of bits forming the chromosomes. A layer perpendicular to the
combiner dimension represents a specific MCS. The method has shown good results for fairly
small C,N and m where the search space is not prohibitively large. This good performance
can be attributed to the multidimensional nature of the optimization which captures the
interplay between the different aspects of selection.

2.5 Combination methods

2.5.1 Decision Level Combination Methods

There are many ways of extracting a single classification from the decisions of all the members
of the ensemble. Some ensembles are generated in a way requiring a particular method of
combination, such as the ECOC method described in Section 2.4. If this is not the case, we
have a wide variety to choose from (see [104] for an overview), some of which are:

• Majority vote (or weighted vote);

• Selection methods such as dynamic selection;

• Average (or weighted average), min, max;

• Fuzzy integrals;

• Decision templates.

The first two may be applied to label outputs or soft outputs; the latter three only to soft
outputs. They are described in a little more detail below.

Majority Vote

This is one of the most popular combination methods, as it is simple and intuitive yet
has been shown to be quite powerful. An example is labeled according to which class gets
the most votes from the ensemble. A weighted vote may be used if classifiers do not have
equal competence. These methods give decision boundaries which are a piece-wise ‘patching

28

together’ of the boundaries of the ensemble classifiers. As such, it could also be viewed
as a selection method with a suitable rule. The MV combiner has been subject to many
theoretical studies, for example [75],[106] proving results on the error bounds and optimal
vote distributions of MV.

Dynamic Selection

This section covers a type of divide and conquer method first introduced by Woods et al
[129] where the division of the space is not done until after the classifiers are trained. The
division of the input space is through some estimation of the competence or confidence of
each classifier when given an input x. This estimate can be obtained in several ways. If all
the classifiers to be selected between give normalized soft outputs, we may use the decision
of the classifier with the highest output, or the classifier for which the margin of the decision
(difference between highest and second highest outputs) is maximum. Otherwise we can
use estimates based in various ways on the accuracy of the classifiers decisions on nearby
members of the training set, possibly taking into account the decisions of each classifier on
the input while estimating competencies. We may require the difference in competencies pass
a statistical test, and if it is not significant we may want to combine the best few instead of
selecting just one.

The success of this method is heavily dependant upon the quality of the estimates of the
competencies. Also, the properties of the ensemble members needed for good performance
within this paradigm are a little different from the true fusion methods. Each classifier
must do very well on some region of the input space, and together these regions of good
performance must cover the whole space, but global error and local complementarity are no
longer important.

A natural extension to this idea is dynamic ensemble selection. Instead of considering
dynamic selection as an alternative to combination, we can consider it as complementary.
Many of the search methods in Section 2.5 return a population of best ensembles. We can
use such a population in a dynamic ensemble selection approach, choosing for each input
point not the most competent individual but the most competent ensemble. Using ensembles
as the base entities from which we dynamically select also opens up an alternate competence
measure. Ensembles where the decision is reached with a large margin can be considered
confident and therefore competent in the decision on that point, leading us to select for each
point the ensemble whose decision is reached with highest margin. This concept is explored in
[31], using a genetic algorithm to generate a population of ensembles whose members are both
diverse and accurate. Various measures of ensemble confidence including the classification
margin are used to select the most competent ensemble for classification.

Average, Min, Max

The average combiner, which is the extension of majority vote to soft labels, is also very
popular. It can be theoretically derived in various ways [75], each under strong assumptions,
but the fact that it can be derived from many different perspectives may help explain its
robustness. Again, weights can also be used, with various theoretical veiwpoints advocating
different dependencies of the weights on the errors. In general the use of weights has, as
intuition would suggest, been found to be most beneficial compared to simple averaging
when the individual performances are more highly imbalanced [44]. This is also true in the
MV case. Different weightings may also be used to calculate the support for different classes,
if certain classifiers are believed to be especially capable of discriminating certain classes.

29

Another method of weighting is to use a generalized mean:

µj(x, α) =

(

1

N

N
∑

i=1

µα
i,j(x)

)

1
α

(2.28)

where µi,j is the support individual i gives to class j. Values of α > 1 give more weight to
large supports, and values α < 0 to small supports. In the extremes of α = ±∞, we have the
Min and Max combiners.

Fuzzy Integrals

The idea of the fuzzy integral combiner [64] is to take into account a measure of the compe-
tencies of subsets of classifiers when calculating the ensemble decision. We look for the level
of support for which the minimum of support and competence of the subset giving at least
this support is maximum:

µj(x) = maxα{min(α, g(Hα))} (2.29)

where µj is the ensemble support for ωj and g(Hα) is the competence of the subset of the
ensemble giving support of at least α to class ωj. In other words, we give preference to
decisions for which support and competence are middling, over decisions for which one is
very high but the other very low. We find a compromise between support and competence.
This method has proved quite successful in the literature [78].

Decision Templates

If the decision profile of the ensemble is T = µi,j (with µi,j as defined above), templates are
found for each class by averaging T over all the training examples for that class. When a
new point is to be classified, the decision profile is calculated and compared to the templates.
The class of the closest template is assigned to the point. Usually the measure is either a
euclidian distance, or a fuzzy similarity measure. Various forms of the decision template have
been experimentally compared in [77]. A strength is that it is fairly intuitive, corresponding
to a nearest mean classifier in an intermediate feature space. This method is one of the more
popular among a large class of methods; in general, any classifier could be applied instead of
nearest mean in the intermediate space.

30

2.5.2 Model Level Combination

The combination methods we have seen so far combine classifiers at the decision level. That
is, the ensemble decision is a function of the N individual decisions, f(h1(x), ..., hN (x)). An
alternative possibility for combining multiple classifiers is model level combination (MLC).
The decisions of a classifier are calculated according to some model, and often the model
will have a structure such that parts of it can be removed, modified or aggregated. A good
example of this is a tree classifier. Pruning of a tree classifier involves the removal of a subtree
rooted at a certain node, or equivalently of aggregating the component nodes of that subtree
into one node with a single label. A tree classifier can also be decomposed into a set of
labelled hyperboxes, or rules, representing the leaves of the tree. Decomposable models open
up the possibility of combining parts of a multitude of models into a single model. The hope
is that by combining components from a number of models into a single model of similar
type, some of the benefits of combination methods can be gained, while retaining most of the
simplicity and interpretability of a single model.

There has been much less work on model level combination, in comparison to decision
level combination. One of the reasons for this is that different classification methods usually
give models with differing internal structure, so while decision-level combination methods can
usually be used with any base classifier, model level methods are much harder to generalize
and will often only apply to one particular base method. What then is the advantage of
model level combination? The main advantage is the fact that a single classifier is output
at the end, with the advantages of smaller memory requirements and faster implementation
over calculating the decisions of a large ensemble of classifiers, with subsequent combination.
The decisions of a single classifier are also much more understandable, especially in the case
of decision trees. This is an advantage especially in a business setting. Thus there has been
a little work in this area, which we will review below.

Merging of Rulesets from Decision Trees

There has been some previous work on the model level combination of decision trees. In
the paper [51] trees are converted into rulesets, and these rules are combined into a single
ruleset by merging similar rules, and resolving conflict between competing rules. This has
similarities with the GFMM classifier we use in Section 5.3. The decision trees are generated
in parallel, on disjoint subsets of the original data. Conflict resolution is done by finding the
set of points covered by both rules and upon which they disagree in labelling, and adjusting
the rules to minimise the number of mis-classifications made on this set. In adjusting the
rules, a ’gap’ in the coverage of the space by these rules may be created. If this gap is not
covered by another rule within the set of rules, a new one will be created.

Approximation of an Ensemble by a Single Classifier

Another method that is worth mentioning which, while not a model level combination method,
achieves a similar goal (i.e. combining many models to give a single model) is discussed in
[29]. Here a voted ensemble classifies many synthetic examples and then a single tree is
trained on these synthetic examples, to approximate the ensemble decision boundary.

The new training set is generated as follows. Artificial examples are sampled uniformly
from the distrbution implicit in the model representation used. The authors use C4.5, a
decision tree, so as such the proability distribution is peicewise-uniform, with points generated
uniformly within a leaf node in proportion to the number of training examples that lie within
it. These artificial examples are labelled using the ensemble classifier, and the base learner
is trained on the union of these and the original dataset.

31

This has the advantage that it can be used with any base classifier, but has the disad-
vantage that many artificial points may need to be generated to approximate well a given
ensemble, especially in problems with high dimensionality. This would have an impact on
performance, possibly making such an approach infeasible for some problems. On a variety
of datasets the authors found that approximately 60% of the improvement that would be
given by the bagging ensemble could be acheived, with a single classifier usually 2-6 times
more complex than a typical member of the ensemble. The trade-off between accuracy and
complexity could to some extent be controlled by the use of more artificial examples to give a
better approximation of the ensemble decision, at a loss of speed and increace in complexity.

A similar piece of work in [39] defines various similarity measures between classifiers’
outputs, and uses the calculated similarity on a large artificially generated dataset to choose,
from a large number of individuals, the one that is most similar in its decisions to the ensemble.
A number of similarity measures calculated from the confusion matrix of the labelings of the
two classifiers being compared are used, for example:

θ =
K
∑

i=1

ci,j

n
(2.30)

where n is the number of artificial examples, K the number of classes and ci,j are confusion
matrix elements. This is simply the fraction of artificial examples on which the two classifiers
agree. We will introduce other MLC methods for the combination of decision tree ensembles
in Chapter 5.

MLC of Neural Networks

Neural networks also hold some potential for model level combination. In these models, the
individual components are the nodes of the network, and nodes can be added or removed,
or have their weights modified. In this case however it is difficult to localise the effects of
a given node to one area of the input space, and thus it is difficult to associate two nodes
from different networks in order to meaningfully combine them. However the possibility is
still worth considering. One piece of work which tries to do this is the method in [123], which
gets around the problem of associating nodes by training a single network partially, and then
building an ensemble using this as a base, with a small amount of additional training on
resampled data. The resulting networks are peturbations of the base network, and thus the
nodes can be expected to be still doing a similar job in each network allowing an averaging
of the weights to be performed to give a final combined network.

This works as follows. Given a training set TR, training the neural network results in
a vector of weights w. A round of cross-validation is then performed, and individuals are
trained on TR/TRi where the {TRi} are a disjoint partitioning of TR. The resulting sets
of weight vctors {wi} are combined by averaging them, wav = 1

N

∑

i wi. The average of the
cross-validation errors gives an estimate of the final networks generalisation error.

In empirical tests, the authors found that weight averaging as described above performed
slightly better than combining the individuals at the decision level, although the difference
was not statistically significant. The weight averaging does, however, provide a benefit in
terms of storage and speed as the resulting classifier is a single network.

Kernel Combination for SVM

There are other model classes which are amenable to MLC schemes too, which we will briefly
mention below. A class of models, such as the parzen classifier, which approximates the class

32

posterior probabilities through the sum of a collection of basis functions could be combined
in an MLC scheme. In this case the individual components are functions defined on the input
space, often gaussians. Radial basis function networks also fall into this category of model.
It is also possible to combine kernels within Support Vector Machines, as shown in [80, 81].
The first of these optimises, within a semi-definite programming framework, the coefficients
of a linear combination of kernel matrices. The second takes a different approach, optimising
a composition of the individual kernel matrices as opposed to a (weighted) averaging of them,
in order not to lose any information.

General Fuzzy Min-Max Network

Similar to a ruleset approach is an approach in [47] in which models consisting of a col-
lection of hyperbox fuzzy sets are built on the data, and combined. A hyperbox fuzzy set
consists of min and max points V and W for the hyperbox, and a parameter γ controlling
how quickly partial membership drops off outside the hyperbox of full membership. The
classifier can be trained incrementally or agglomeratively. The first focusses on adding new
hyperboxes or expanding existing ones when presented with each new training pattern, while
the second focusses on slowly agglomerating many small hyperboxes (that are initially just
the datapoints themselves). One advantage of the method is that it can deal naturally with
missing/uncertain values, as the initial hyperboxes representing the training points can be
elongated along the dimension that is missing/uncertain.

Hyperboxes from multiple models can be combined in a very intuitive way, using the same
mechanism as for the training. Hyperboxes are combined via agglomeration and resolution
of overlaps. In Section 5.3 we will see that there is also potential to use this aggregation
approach to combine hyperbox collections generated in other ways too, in particular those
defined by overlaps of leaves in a tree ensemble.

2.6 Summary

As we have seen in this Chapter, a huge array of ensemble methods have been developed.
Many methods are based more or less on ad hoc ideas, and there is little theoretical grounding
to provide guidance as to when a method might work well, and under what conditions it may
have problems. This can make it difficult to know which method to chose given a concrete
problem to solve. It is a field in which it is easy to lose oneself in creating ever more variations
on a theme, or new methods based on various heuristics.

To make sense of this maze of methods, it is important to have a theoretical framework
within which we can try to understand classifier combination, and the properties an ensemble
must have for combination to succeed. Some of the ideas in Section 2.1 can help in this
regard, but none are especially satisfactory. In the next Chapter we will look at a theoretical
framework called Stochastic Discrimination (SD), which will provide another extremely useful
tool for understanding ensemble methods.

We have reviewed a number of approaches to combining an ensemble of classifiers, most
of which follow a decision level combination paradigm. These methods result in complex but
well performing classifiers. The complementary approach of MLC tends to produce less well
performing but much simpler classifiers, and in this area there is much less work to be found
in the literature. In Chapter 5 we will introduce some new methods of combining decision
trees at the model level.

33

Chapter 3

Stochastic Discrimination

In this Chapter we will introduce the Stochastic Discrimination framework, and a method of
the same name based upon it. We will take three other highly successful methods from the
literature and show how they can be understood within this famework.

If we have a general way of discriminating between any two classes of object we can,
by repeated 2-class discrimination, extend this to the discrimination of objects of multiple
classes. Thus we will focus our attention on the 2-class case to make the concepts introduced
clearer. If the objects of interest are represented as points in an input space x ∈ X, with
objects of class y ∈ {1,−1} distributed according to D+ and D−, identifying objects that
are (most likely to be) of a given class corresponds to identifying the largest subset M of the
space X such that D+(x) > D−(x) for all x ∈ M .

Given a set of n examples TR = {{x1, y1}, ..., {xn, yn}}, every subset M ∈ 2X of the space
X contains information on the distributions D+ and D− through the cardinalities of examples
from each class contained within it, N+ and N−. The question we are interested in is, given
only a collection M ⊆ 2X of subsets of X and a training set TR, what are the properties
we must impose on this collection of subsets such that we can successfully discriminate the
class of new points in X using only the information induced on the subset collection M by
the training set TR?

The Stochastic Discrimination (SD) framework introduced by Kleinberg in [67] is essen-
tially a theory of solvability specifying these properties within a well-defined mathematical
framework. In addition, the theory also details how, given a collection of subsets satisfying
these properties, one can classify new points in X.

One of the most interesting things about this framework is that it treats all subsets
on an equal footing, regardless of whether the subset is in some sense ’large enough’ to
be considered a classifier in the classical sense (we will here consider a classifier to be a
partitioning of the space giving better error than the trivial rule which classifies everything
according to the majority class in TR). To illustrate this, imagine two subsets A and B for
which the probability of class +1 over training points contained in it is PA(+1) = PB(+1) >
PTR(+1) > 0.5. Subset A is ’large’, it contains enough of the training examples that we
can also infer PA(−1) > 0.5 and we can therefore classify training points with better error
than simply predicting the majority class by predicting +1 in A and -1 in A. B contains
only a small fraction of TR, such that we do not have PA(−1) > 0.5. The subset B contains
useful information, however we cannot build a classifier as defined above from it alone. The
SD framework allows us to build classifiers from multiple subsets like B, as well as multiple
larger subsets like A. This equality allows some interesting links to be drawn between some
classification methods which perhaps are not immediately obvious, as we will see later.

Because of this distinction, we call the sets in the theory of SD models, as opposed

34

to classifiers. SD is thus a very general theory of solvability which includes in the same
framework ensemble methods, combinations of more general subsets, and single classifiers as
a special, albeit trivial, case.

The properties a collection of subsets must have for solvability can informally be described
as follows:

• Enrichment: They must be enriched with respect to one class, i.e. the subset must have
an imbalance in the proportion of each class it captures from the training set. We must
have

PTR+(x ∈ M) > PTR−
(x ∈ M) (3.1)

or vice-versa.

• Uniformity: Points in the training set which share a class must be covered by (i.e
contained in) an equal number of subsets of a given enrichment.

• Projectability: As always in machine learning, the subsets must be large enough so that
the properties above generalize to an unseen testing set.

The theory then goes on to show how, given a method of sampling from a collection of
such subsets, one can generate a classifier for points in X. The precise mathematical details
will be briefly covered in the next section, or can be found in greater depth in [66]. In the
following sections, we will look at some popular methods in machine learning and try to
link and understand them within the concepts of the SD framework. These methods are
introduced briefly below.

Firstly, the ’method of SD’. This is a method developed by Kleinberg [67] to directly
implement the concepts presented in the theory, and essentially creates a stream of simple
subsets of the space X and proceeds to filter them to encourage enrichment and uniformity,
thus simulating sampling from an enriched, uniform collection of subsets of X. Classification
is performed via a random variable whose expectation over subsets is +1 for points of class
1 and -1 for points of class -1, given uniformity and enrichment. The mean over the sample
of subsets produced as above is calculated for a new point to be classified, and thresholded
to give a classification. Conceptually, in 2D what we are doing can be imagined as taking
lots of cut out shapes of 2 different colours, and sprinkling one colour over the space such
that the thickness of paper over all training points of class +1 is equal, and is greater than
the (uniform) thickness at all points of class -1. The opposite (with respect to class) is done
with the other colour. Classification of new points is done according to which colour paper
is thicker at that point.

The second is Random Forests, a class of ensemble methods first identified by Breiman
[16], and which includes methods developed by Ho [53], Brieman [12] and others [4]. Essen-
tially, decision trees whose growth depends on some random vector θ are grown on the data.
Many trees are grown, each with different θ, with the ensemble voted to give a final decision.
The vector θ may for example control dimensions for splitting, or modify the training set
upon which the tree is grown. The trees are usually unpruned.

Support Vector Machines (SVM) due to Vapnik and Cortes [25] transform training data
into a very high dimensional space, in which an optimal margin hyperplane [10] is calculated
to separate the classes. This is done without explicitly performing the transformation via
a mathematical tool known as the Kernel trick [2], which allows dot products in certain
high dimensional spaces to be expressed as a simple function on X × X. Discrimination
methods which rely only on dot products (such as the optimal margin hyperplane) may then
be calculated without explicit transformation of points to the high dimensional space.

35

Finally, boosting [113] is a well known method in which an ensemble of classifiers are
generated iteratively with a (usually weak) base learner, with the training set adjusted at
each iteration to give more weight to the examples missclassified in the previous iteration. A
weighted vote provides the ensemble decision. There are various implementations of boosting
which differ in the exact form of the weight updates, however all follow the same basic
approach.

These methods seem on the surface to be very different in concept and methodology, yet
produce ensembles with very similar properties as described in the SD framework. This allows
us to forge connections between these methods. Before we begin to look into these individual
methods to find specific links between them, we note an interesting property common to
each of these methods. In each method, as the number of classifiers/models/dimensions
in the model is allowed to grow, generalization performance usually continues to increase,
tending to some limiting value - the methods seem not to suffer from overfitting as the
ensemble becomes in some sense more complex. This is the first hint that these methods
share more in common than first appears. Further hints also appear in the literature. Freund
and Schapire [113] note certain links between SVM and boosting, while Breiman conjectures
[16] similarities between random forests and the latter stages of boosting. In addition, one
particular implementation of random forests - that of Ho [53] - was originally inspired by
consideration of the requirements of the SD framework. However, these links are fragmentary
and appear in isolation. Here, we will solidify these links, fill in some that are missing, and
view them within a single conceptual framework. The framework we will use is that of SD.
We believe this will aid the understanding of these methods and ensemble methods in general,
and perhaps indicate how the concepts found in the SD framework may point towards new
ensemble methods.

The remainder of this chapter will proceed as follows. In the next section we will introduce
the SD framework, followed by Kleinbergs classification method based upon it. We will then
proceed to look at RF, SVM and boosting in turn, linking them to the SD framework and to
each other and emphasising the common concepts in each. This will be followed by a brief
discussion and some conclusions and final comments.

3.1 Stochastic Discrimination Framework

We will assume an input space X, with power set F = 2X . Given a subset collection M ⊂ F
and a set of training examples TR, what properties must this collection (or some subset of
it) satisfy so that we can build a model from only it and the training set with which we
can classify unseen points? This is the question answered by the Stochastic Discrimination
theory.

SD extends the concept of a classifier, defining a ’weak model’ as simply a subset of the
space X. This naming is a little misleading as, even though the models in the implementation
of SD developed by Kleinberg are weak, there is nothing in the theory, or framework, of SD
to say that the models must be weak. Indeed, we are considering in the theory the power set
F = 2X of X, and so in a 2 class problem some A ∈ F will in fact be the Bayes classifier,
the strongest model possible. Thus we will depart from Kleinbergs nomenclature of weak
models a little, simply referring to them as models. Some subsets of X have the property
ETRyIA(x) > 0 and ETRyIA(x) < 0, thus allowing us to discriminate with success better than
simply guessing the majority class using A and A to model the classes +1 and -1 respectively.
We may consider these subsets as classifiers in their own right. The framework of SD allows
us to treat this special case of subsets satisfying the above property together with much
weaker subsets for which this may not be true.

36

Enrichment and uniformity are the generalisations in SD of the concepts of individual
error and correlation or diversity as applied to classifiers. For an in-depth explanation of the
theory see [66]; we will only briefly define the most important properties here.

Enrichment

The first necessary property is enrichment. In the following TR+ and TR− will denote the
set of training examples with label +1 and −1 respectively.

Definition 1. For a subset M ∈ M, the enrichment is e = |r(M,TR+) − r(M,TR−)| and
for a subset collection M, the enrichment degree is

eM = inf {|r(M,TR+) − r(M,TR−)| | M ∈ M} (3.2)

where r(A,B) = |A∩B|
|B| , or the fraction of a set B captured by a second set A.

We require a non-zero enrichment degree for a collection of subsets to be forged into a
classification system, i.e. all members of the subset collection must have a non-zero enrich-
ment. Enrichment is a measure of the discriminating power of a subset of X, and is the
translation into SD theory of individual error. For example, when the number of examples of
each class in the training set are equal, we have probability of error of a classifier ǫ = 1

2(1−e)
where e is the enrichment of A with respect to class +1 (and also that of A with respect to
-1).

Uniformity

The second property is uniformity. Let Mc,A denote the M ∈ M such that r(M,A) = c, for
some subset A ∈ 2X . Then:

Definition 2. M is A-uniform if, for any c such that Mc,A is non-empty, and for any points
p and q ∈ A, the probability relative to Mc,A that p is captured by a random member of
Mc,A is equal to the probability that q is captured, i.e.

PMc,A
(p ∈ M |M ∈ Mc,A) = PMc,A

(q ∈ M |M ∈ Mc,A) (3.3)

In addition to the requirement on enrichment, we will also need M to be TR-uniform. A
subset collection M is uniform on another subset A if the subsets in it are sufficiently well
spread over the members of A, so we are here requiring that the subsets in M are sufficiently
spread over the training examples, or that M provides a uniform cover of the training set
TR. Uniformity is the diversity condition specified in SD theory. Classifiers of equal error (or
enrichment), making independant errors on the training set would, given sufficient classifiers,
provide a uniform cover of the training set. Any correlation between them would result in
a loss of uniformity. Uniformity and enrichment are also related to the concept of margins
in classifier ensembles - a low spread of margins over points corresponds to high uniformity,
and a high mean margin corresponds to high enrichment.

Projectability

The final property we require is projectability or indiscernability. In essence, this is a require-
ment that properties of M look the same on two independently sampled sets of examples TR
and TE. It is defined mathematically in [66], however we will not repeat the definition here
as there is relatively little that can be done in practice to enforce it apart from making models
sufficiently ’thick’. It is the familiar requirement in pattern classification that for a model
to perform well the properties we have enforced on it for the training data must translate
reasonably well to unseen data also.

37

Classification

If a collection of subsets M satisfies the above conditions, i.e. if M contains a projectable
subset collection which has a non-zero degree of enrichment and is also TR-uniform, it is
shown that we can classify points as follows. Define a random variable

χ(x,M) = 2

(

IM (x) − r(M,TR−)

r(M,TR+) − r(M,TR−)

)

− 1 if r(M,TR+) 6= r(M,TR−) (3.4)

= 0 if r(M,TR+) = r(M,TR−) (3.5)

where x ∈ X and M ∈ M, and IM (x) is the indicator of x in M . The expectation of
this random variable over subsets M ∈ M is +1 for points in TR+ and −1 for points in
TR−, and as we sample more subsets from the collection M by the central limit theorem
it can be shown that the variance of the expectation tends to zero. The proofs of these
properties can be found in [66]. If the subsets M are reasonably projectable this will also
apply approximately to unseen points, and we can classify a new point by calculating this
expectation over many subsets M and thresholding at zero. How many subsets must be taken
depends on the average enrichment of the subsets in M.

A key problem in the building of a classifier ensemble is the notion of diversity, and what
form diversity must take in order for combination to be successful. In regression it is shown,
via the ambiguity decomposition, that useful diversity for predictors is spread about the mean
of the ensemble prediction. SD casts useful diversity in the classification sense as spread of
models over points sharing the same class. In the following Sections we will discuss specific
methods within this framework.

3.2 Stochastic Discrimination Method

The stochastic Discrimination method [67] was developed alongside the above framework, as
an attempt to directly generate a subset collection with the properties we have defined in the
previous section. Subsets of the input space are randomly generated, and filtered as follows.

1. For the training points xi initialize the coverage of each point to zero. The coverage of a
point measures the number of weak models (see next step) in which the point appears.

2. Generate a weak model by randomly generating a hyperbox (or union of hyper-boxes)
in the input space. The model must be projectable which basically means it must not
be too small. This can be enforced by requiring a minimum number of points in a
hyper-box for it to be accepted.

3. Find out how many red points and blue points are within the weak model.

4. Accept if the model passes the filtering criteria below

5. Repeat from 2 until sufficient models have been accepted

The criteria the subsets must pass to be accepted are those of enrichment and uniformity.

Enrichment

Accept the model only if the ratio of red points to blue points in the model nr

nb
> 1, as in

the example above. In this way, enriched models are created. In the case of non-equal class
cardinalities, this criteria becomes nr

nb
> pr

pb
.

38

Uniformity

The model must go through another check: If the model contains nr red points and nb blue
points, the average coverage of the points in the model is compared to the expected coverage
of a random sampling of nr red and nb blue points. If it is lower then the model is accepted.
In this way a property called uniformity is enforced. A collection of weak models is a uniform
cover if each point in the training set is covered by an equal number of weak models of similar
enrichment.

Kernels from Subset Collections

As a prelude to our later discussion of SVM, we note that given N weak models, one may
define a transformation φ : X → R

N transforming x → φ(x) with components such that
φi = 1 if x ∈ Mi, and φi = 0 otherwise, i.e. φi = IMi

(x). Mi denotes the i’th model, i=1,..,N.
When these models are constructed to satisfy the enrichment and uniformity conditions
defined earlier, points in X are transformed such that the transformed points of the two classes
can be separated by a hyperplane w · φ + b = 0 with w and b functions of the expectations
over the training set of the number of models in the collection that points of the two classes
appear in. The RV defined in Eq. 3.5, if used to further transform the φi, transforms the
space such that the separating hyperplane has the simple form w = 1

|M|(1, 1, ..., 1) and b = 0.
To show this, we start with the random variable SD uses for classification:

χ(x,M) = 2

(

IM (x) − r(M,TR−)

r(M,TR+) − r(M,TR−)

)

− 1 (3.6)

and recall classification is done by thresholding its expectation over M ∈ M at 0. Let us define
a transformation x → χ(x) with components χi = χ(x,Mi) for each member of the subset
collection Mi. Thresholding the expectation at zero then means thresholding at χ · w = 0
with w = 1

|M|(1, 1, ..., 1).
This means SD can be viewed as explicitly constructing a transformation into a high-

dimensional space (of dimensionality equal to the number of weak models) in which the
training points can be split by a specific, pre-defined hyperplane. This hyperplane also has
some very interesting properties. First of all, it is the Optimal Margin Hyperplane (OMH).
We can see this geometrically; we note that all points of class +1 are transformed onto the
hyperplane χ · w − 1 = 0 and all points of class −1 are transformed onto the hyperplane
χ · w + 1 = 0. The points of the two classes lie in two parallel hyperplanes, meaning the
optimal margin hyperplane is also parallel with bopt = 1

2(b1+b2) = 0. The second property we
notice is that all points have equal margin. This is evocative of both the OMH constructed
in SVMs, and the ability of boosting to equalise margins. We will discuss this further later.

If we instead define the transformation x → φ(x) with φi = IMi
(x) the threshold is

2

|M|

∑

i

(

φi − r(Mi, TR−)

r(Mi, TR+) − r(Mi, TR−)

)

− 1 = 0

(3.7)

2

|M|

∑

i

(

φi

r(Mi, TR+) − r(Mi, TR−)

)

−

[

2

|M|

∑

i

(

r(Mi, TR−)

r(Mi, TR+) − r(Mi, TR−)

)

+ 1

]

= 0

(3.8)

which we can express as φ · w − b = 0 with

wi =
2

|M|

(

1

r(Mi, TR+) − r(Mi, TR−)

)

(3.9)

39

and

b =
2

|M|

∑

i

(

r(Mi, TR−)

r(Mi, TR+) − r(Mi, TR−)

)

+ 1 (3.10)

When expressed in this way, SD can (in a similar way to random forests in the next
section) be considered to be defining a kernel of sorts on the space X. Consider the dot
product of the transformed vectors φ(x1) · φ(x2). It simply counts the number of models in
the collection M that both x1 and x2 appear in, and is proportional to the probability over
M that a given x1 and x2 are both in a model M . If all the sets in M are convex, then
this probability considering x2 fixed, K(x1,x2) = PM∈M(x1,x2 ∈ M) is non-increacing along
radial vectors centered on x2, as we change x1. Assuming the models in M are finite, this
probability also tends to 0 as the distance between x1 and x2 tends to infinity. For small
numbers of models, this kernel will look very step-wise; but as we generate more models it
will become much smoother. The kernel induced by SD is a highly intuitive form for a kernel
designed with classification in mind to have, as it essentially quantifies for two given points,
the probability over subsets designed to group points of like class together, that those two
points will share membership of a subset.

3.3 Random Forests

Random forests is in fact a whole class of methods; there are many possible variations but
the concept behind them is quite simple. The formal definition of a random forest ensemble
[15] is a set of N classifiers each grown according to a random vector of parameters Θk. Each
element of the vector controls some aspect of the growth of a tree classifier, and this is where
the variations come in. There are many ways to allow this vector to control tree generation;
one of the more popular is generating random vectors whose n components are uniformly
distributed over the natural numbers {1, ..., n} with n the number of training examples, and
allowing θk to define the training points we build the kth tree on. This procedure is otherwise
known as bagging [12]. Another aspect of tree growth often controlled by the random vector
are the feature to be split upon for each split. The vector may naturally control both of these
aspects if desired, and perhaps others too - there are many options.

Regardless of the specific details of which aspects we choose to allow the random vector
to control, the link between RF and SD comes quite naturally. A tree can, via its leaf
node decomposition, be decomposed into a collection of smaller subsets. We do not have
to decompose in this way, but doing so makes the comparison with the SD method easier.
Similarly, an ensemble of to some extent randomly grown trees can be decomposed into a
large collection of overlapping subsets very much similar to the collection of models generated
in SD. We will look at the properties of this collection for a number of RFs below.

Enrichment

We will first consider the case where only the feature(s) to be split upon is controlled by the
random vector. A good example of this, which was actually inspired by the SD theory, is the
random subspace method [53] from Section 2.3. N trees are built, fully split. In this case, it
is simple to see that each model is fully enriched with respect to one class.

Let us look also at the properties of these models as generated by another of the more
popular RFs, bagging. We build N trees, each built on a bootstrap Bk. For each point x in
TR, let β(x) = {Bk|x ∈ Bk} be the set of all bootstraps in which x appears at least once.
For large N , |β(x)| ≈ 0.632N , as on average a bootstrap contains about 63.2 % of the unique
examples in the full training set. Consider models (i.e. leaf nodes) from tree k. For fully-split

40

trees we see that each model is maximally enriched with respect to one class on the Bk that
it was trained on. Bootstraps are generally sufficiently similar to the original set that we
can expect this to translate for most models to a (perhaps weaker) enrichment on the full
training set also. The average loss of enrichment is related to the error of the bootstrapped
tree on the full dataset; so long as this is not too large we expect a spread of enrichment, but
with the mean generally high.

Uniformity

Again, in the case of the RSM it comes naturally that uniformity is satisfied with each point
appearing in precisely N models.

In the case of bagging, all points in TR are equally likely to appear in each bootstrapped
sample, and all points in each sample appear in exactly one leaf node (model) in the tree
built on that sample. As such, the expected number of models enriched towards its class that
each point appears in is uniform over all points, if we consider when calculating coverage only
those models from trees whose bootstrap contained that point. Thus uniformity calculated
in this way is guaranteed as N → ∞. This uniformity over a subset of the collection M will
again translate approximately to uniformity over all subsets in M, so long as bootstrapped
trees generalize reasonably well to the full TR so that uniformity enforced over bootstraps
containing a point x generalizes to uniformity over bootstraps which do not. At the very
least we are guaranteed a minimum coverage of 63.2 % of the maximum coverage, and we
can expect much better for most points in TR.

We do not have perfect uniformity and enrichment as we did when only feature split
was controlled by θk. Instead it is replaced by an approximate uniformity and enrichement,
depending on the extent to which properties of models on bootstraps generalize to the full
training set.

Each model is relatively simple (just a hyperbox) meaning the models should be fairly
projectable providing they are not too small. However, if there are many small models
(perhaps containing only one point), or many models sharing (almost) common edges, we
may have significant losses of enrichment, uniformity or both in some areas of the space
leading to errors.

We can see that RF can be understood as a different algorithmic approach (compared to
filtering streams of weak models) to constructing a subset collection encouraging the proper-
ties defined in the SD framework. Enrichment is enforced for a model only on the bootstrap
sample on which it was built. Similarly, uniformity is enforced in terms of coverage of a point
by models built on bootstraps containing that point. How well enrichment and uniformity
are enforced for the full ensemble depends on how these properties carry over to models built
on bootstraps not containing that point.

We also note again Breimans paper [15] where he describes how we can consider a RF as
defining a kernel on points in the training set, much as an SD model does. Breiman further
calculates an analytic form for the kernel as N → ∞ in the special case of purely random
tree-growing, and comments qualitatively on the effect of non-random tree growing on the
kernel. We will revisit this idea of certain subset collections defining an analytic kernel again
in relation to SVM in the next section.

3.4 Support Vector Machines

In a Support Vector Machine, the training data is transformed into some (generally high)
dimensional space in which the optimal margin separating hyperplane [10] is constructed.

41

Consider the transformation φ : X → Z transforming points xi to points φi.
A hyperplane in this new space is given by:

w · φ + b = 0 (3.11)

for some vector w and scalar b. A useful property of the optimal margin separating hyperplane
(which we will call H from here) separating the points φi is that its normal vector can be
expressed as a sum over the vectors φi, that is wH =

∑

i αiφi with i running over the training
set. A number of the αi are usually zero; those φi with non-zero αi are called support vectors.
Thus H can be expressed as

∑

i

αiφi · φ + b = 0 (3.12)

with i now running over only support vectors. The optimisation that one must carry out to
determine the parameters for H is a quadratic programming problem (for details see [25]) in
which the transformed points φi appear only within dot products. This is extremely useful,
because it means that instead of performing the transformation of the xi to the new space
explicitly, we may do it via the ’Kernel Trick’. We may define a kernel function K(x1,x2)
such that the dot product of the transformed points φ1 · φ2 = K(x1,x2), and we are assured
by Mercers theorem that subject to some weak conditions, the kernel will indeed correspond
to a dot product in some (perhaps infinite dimensional) space. The optimisation may then
be carried out using the kernel for all calculations and we need never explicitly transform
anything.

We have shown previously how both SD and random forests can be considered for large
numbers of models to define a kernel on the input space, which corresponds to a dot product in
a high dimensional space in which the training set is separable by a hyperplane. This kernel
corresponds to a probability over subsets that the two points appear in the same subset.
Having done this, we are ready to link these methods quite naturally to SVMs. We need
only notice that the above is essentially how a support vector machine works, as described
earlier - we define a dot product via a kernel, which corresponds to a high dimensional space
in which we then build a separating hyperplane.

Let us investigate this in a little more detail. One can imagine that certain collections of
subsets, as their cardinality becomes large, may define a kernel which has a relatively simple
analytic form. To see this, consider the collection of all balls of radius r in R

m. Given points
x1 and x2, the probability Pspheres(x1,x2 ∈ sphere) is calculable and is proportional to the
volume of overlap of spheres of radius r centered at x1 and x2. In R

2 it is

P ∝ 2r2 arccos

(

d

2r

)

− d

(

r2 −
d2

4

)
1
2

(3.13)

and in R
3 is

P ∝
1

12
π(4r + d)(2r − d)2 (3.14)

where d = |x1 −x2|. This kernel is shown as a function of d for R
2 in Fig. 3.1(a), and for R

3

in Fig. 3.1(b). It is a little like a spiky gaussian, or a cone with a smooth tail. This kernel
has a few problems, but could still be used for classification in a SVM. One problem is that
its analytic form is not all that nice; another is that we may prefer a smoother function, with
a continuous gradient with respect to d. To achieve this while still retaining a similar shape
we could instead use a gaussian, a kernel which is often used in SVM in practice. This is also
illustrated in the Figs. 3.1(a), 3.1(b), where gaussian kernels with similar width are plotted.
These kernels we might also expect to be able to associate with a limit on some collection of
subsets, though perhaps the form would be complicated.

42

0 0.5 1 1.5 2 2.5
0

0.002

0.004

0.006

0.008

0.01

0.012
Kernel defined by ball collection in 2−D

collect
gauss

0 0.5 1 1.5 2 2.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Kernel defined by ball collection in 3−D

collect
gauss

Figure 3.1: Kernels corresponding to the collection of all balls in R2 and R3

−1 −0.5 0 0.5 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

collect pi/3
poly deg 2

−1 −0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

collect pi/4
poly deg 4

Figure 3.2: Kernels corresponding to cone collections of given solid angle

Another kernel in popular use in SVM is the polynomial kernel, with form K(x1,x2) =
(1 + x1 · x2)

γ . In Figs. 3.2(a) and 3.2(b) we can see this kernel plotted in 2-D for degree 2
and 4 polynomials. We can also see in each plot a kernel corresponding to the collection of
all 2-D cones with given solid angle θ; these kernels have the form

P ∝
1

π

(

θ −
1

2
arccos

(

x1 · x2

|x1||x2|

))

(3.15)

The kernels have very similar shape, the polynomial kernel simply has an analytic form which
is easier to deal with.

As a final example, Breiman derived an approximate kernel for certain random forests
in [15], showing that a forest grown via purely random splitting would create a kernel that
looks roughly like a pyramid with edges twisted at 45 degrees to the axes, and curved walls.
It is much more difficult to analyze the kernel without the assumption of random splitting,
but Breiman discusses the qualitative effect removing it might have on the kernels shape.

Enrichment and Uniformity

Whether a subset collection that would give a similar kernel is enriched depends on the
problem. This is why the kernel choice is so important in SVM. One reason the radial basis

43

function kernel is so widely useful is because its corresponding collection (a collection of
balls in the input space) is approximately uniform and enriched on a wide range of data
configurations. For example, the kernel corresponding to a subset collection of balls of radius
r is enriched and uniform so long as there exists some decision surface in X such that in
a band of width 2r following the contours of this surface there exists no training points.
This is true in fact for any kernel which is zero outside some sphere of radius r. It will be
approximately true so long as there are only few points in this band. When this is not true,
the soft margin can be used to find a small subset of points which we will effectively ignore,
or at least give lesser weight, so that the hyperplane can be built on the points for which the
kernel choice is uniform.

In this way an SVM can also be understood as an implementation of the same conceptual
processes occurring in SD and RF, in the case of SVM using collections of models that induce
some analytic kernel on the training data. This has both advantages and disadvantages
over the other methods. Foremost, it allows us to implement the framework of SD, with
effectively an infinite number of models, without having to generate the models explicitly at
all. However, the cost is we are limited to collections with a relatively simple analytic form,
with no guarantee of uniformity or enrichment for some problems, even on the training set.
We must choose the kernel appropriately to the problem. In the case of SD and random
forests we can approximate highly asymmetric kernels which may be better tuned to the
problem at hand, as the data itself has some effect on the kernel produced unlike the SVM
whose kernel is specified a priori.

Additionally, we note that within SD and RF the optimal hyperplane should be w.φ = 0
with w = 1

|M|(1, 1, ..., 1) by construction, whereas the SVM may choose any hyperplane. This

may allow the SVM to correct to a certain extent deficiencies in enrichment and/or uniformity
on the training set. This could naturally also be done in the case of RF and SD; whether
this is worthwhile is something that should be investigated.

3.5 Boosting

The final method we will look at is boosting. In this method, a base classifier is chosen and
iteratively applied to the training data subject to a weight vector to generate the ensemble. At
each iteration, the weight vector is updated according to the predictions of the new classifier
in a way which gives points the new ensemble member erred upon greater weight. The form
of the updates for one of the earlier and more popular versions of boosting, adaboost, are as
follows.

Let k denote the iteration, wk,i be the weight on example i at iteration k, and hk(x) be
the classifier built using these weights. Define Bik = yihk(xi) so that Bik is +1 if example
i is correctly classified by classifier k, and −1 otherwise, and further define rk =

∑

i wkiBik

where rk is related to the weighted probability of error of hk by ek = 1
2(1 − rk). Then, the

weight update from k to k + 1 is

dk+1,i =
wk,i

1 + Bikrk

(3.16)

the final decision is given by a weighted vote

f(x) =
∑

k

αkhk(x) with αk =
1

2
ln

(

1 + rk

1 − rk

)

(3.17)

There are a number of variations using different forms of the weight update, but all follow
the same general concept.

44

Enrichment and Uniformity

The feature of boosting that immediately stands out is the way the algorithm focusses pro-
gressively on points that are under-represented in the ensemble. This brings to mind the
uniformity-enforcing procedure used to filter models in SD, and in fact boosting can almost
be considered SD for subsets large enough to be considered classifiers in their own right. We
restrict ourselves to some class of subsets (or models) defined by our base classifier of choice,
which can naturally provide at least some degree of enrichment. We then attempt to enforce
approximate uniformity by giving under-covered points more weight in the algorithm so that
these points are more likely to appear in the next model. Instead of filtering a stream of
random models until we find one that improves uniformity, we use weights on the training set
coupled with some training mechanism to explicitly build a model that improves uniformity.

Intuitively we can motivate it as follows. We have a base learner h, and a set of weights
wi over the training sample initiated to some values. Sampling training set points according
to these weights gives a noisy approximation to the weights wi, and we build a model h(x) on
this using h (if using weights directly instead of sampling, we introduce some small random
noise δ). For each point xi we will have a probability over samplings that xi will appear
in the model built. After each iteration adjust the weights wi such that xi appears more
often in the sample for points with lower than average probability of appearing in h, and
less often for those with higher than average probability. The weights should adjust until
Psampling(xi ∈ model) is approximately the same for all points, unless some really noisy points
stop this from being achieved. From here on, as the algorithm proceeds, we are sampling
h ∈ H from the model class H defined by the base classifier in such a way that each training
point is equally likely to appear in h, with the weights wi being perturbed a little between
each iteration about some steady mean values wi. This results, as the ensemble grows, in a
steadily better approximation to uniformity. This intuition is supported by empirical results
(see below), and would explain why testing error often continues to decrease as the size of a
boosting ensemble increaces, even after the training error is minimised. It also explains why
the exact form of the weight updates seems to be relatively unimportant [13].

For some forms of boosting it is possible to go further than intuition, and show explicitly
that boosting enforces uniformity. We will use the L2-boost algorithm of Buhlmann et al [22]
to illustrate this, as it is one of the more analytically accessible forms of boosting. Boosting
has been shown by various authors [42] to be a stagewise fitting of functions to a target by
functional gradient descent, according to some cost function. The many boosting variants
on offer differ primarily in their choice of cost function; the more popular choices are given
below.

L(y, f) = exp(yf) with y ∈ {−1,+1} (3.18)

L(y, f) = log2(1 + exp(−2yf)) (3.19)

L(y, f) =
1

2
(y − f)2 (3.20)

as used in adaboost, logitboost and L2-boost, respectively.
The functional gradient descent procedure goes as follows.

Initialisation: Fit initial function h1 of the form h(x, θ) on TR = {xi, yi} according to the
cost function.

θ = argminθ

(

∑

i

L(yi, h(x, θ))

)

(3.21)

45

Then, for each iteration k > 0, calculate the negative gradient vector

Ui = −
∂L(yi, f)

∂F
|f=fk(xi) (3.22)

and fit hk+1(x, θ) to this gradient vector. Having generated hk+1, we may also perform a line
search for the best step size

wk+1 = argminw

(

∑

i

L(yi, fk(xi) + whk+1(xi, θ))

)

(3.23)

and update f
fk+1 = fk + wk+1hk+1 (3.24)

Repeat this process over the desired number of iterations
Now, let us assume we perform boosting according to the L2-boost prescription, so that

the cost function is as in Eq. 3.20 and we choose a constant weight for our line search.
We will take as our weak learner an algorithm that produces at iteration k the function
h(x,Mk) = 2IMk

(x)−1. That is, it has value +1 for points within Mk and −1 otherwise. We
build iteratively a function f(x) = Ekh(x,Mk) with the aim of minimising the cost function
L(y, f) = 1

2(y − f)2. Performing FGD with this cost function, we find the negative gradient
is simply Ui = yi−fk(xi), the residual of fk. Thus, at each iteration we try to find a function
h(x,Mk+1) that minimises

Zmin = ETR[Ui − h(xi,Mk+1)]
2 (3.25)

so that

Zmin = ETR

[

yi − 2EkIMk
(xi) − 2IMk+1

(xi) + 2
]

(3.26)

= ETRy2
i − 2ETRyi

[

2EkIMk
(xi) + 2IMk+1

(xi) − 2
]

(3.27)

+ ETR

[

2EkIMk
(xi) + 2IMk+1

(xi) − 2
]2

(3.28)

using the fact that sums and expectations may be exchanged by linearity, and using ETRyiIMk+1
(xi) =

ek+1, where we have defined

ek+1 =
|TR+|

|TR|
r(Mk, TR+) −

|TR−|

|TR|
r(Mk, TR−) (3.29)

we can simplify the second term of Eq. 3.28 to give

2nd term = −4ek+1 (3.30)

ignoring terms constant with respect to Mk+1 as these take no part in the minimisation. The
third term in Eq. 3.28 can be expanded as

3rd term = 4ETR

[

1 − 2EkIMk
(xi) − 2IMk+1

(xi) +
(

EkIMK
(xi) + IMk+1

(xi)
)2
]

(3.31)

= −8ETRIMk+1
(xi) + 4ETRI2

Mk+1
(xi) + 8ETREkIMk

(xi)IMk+1
(xi) (3.32)

again dropping terms which are constant with respect to Mk+1. Bringing the two terms
together we have

Zmin = −4ek+1 − 4
|Mk+1|

|TR|
+ 8PTR,M(xi ∈ Mk,xi ∈ Mk+1) (3.33)

46

This is a very revealing expression of the function that Mk+1 is chosen to minimise in this
boosting procedure. The first term encourages highly enriched subsets (with equal class
priors ek+1 is in fact half the enrichment as defined earlier), the second large subsets, and the
third enforces uniformity by encouraging Mk+1 to cover points under-covered in the current
ensemble. This third term directly minimises the probability that Mk+1 contains points
appearing often in the collection M generated so far. Thus boosting is shown to explicitly
build an ensemble with precisely the properties defined in SD; we build a uniform collection
of large (projectable), enriched subsets.

This is also another way of showing that boosting aggressively increases the minimum
margin [113] at the expense of points with large margin, which results naturally in a reduction
of the spread of margins on training points. Breiman notes in his reply to the paper [43]
that empirical tests show that training points appear in nearly equal weighted numbers of
classifiers in boosted ensembles, and this can also be seen in the results given in [113], though
discussion there focusses more on the high minimum margins attained rather than the low
spread of margins. These empirical results support the above analysis. Large mean margins
correspond to high enrichment, and a small spread of margins over training points corresponds
to high uniformity; both are important. The weakness of the base classifiers generally used
in boosting means they can also be expected to be highly projectable.

In [113] Freund and Schapire showed that boosting is strongly related to SVM (via an
argument similar to that in Section 3.1), with the optimal hyperplane calculated using a
different norm to that used in SVM. Additionally, Breiman conjectured in [16] that boosting
was in fact behaving as a random forest, especially in its latter stages. The links we have
forged between these methods and SD support and solidify these ideas, showing that the
methods take differing algorithmic approaches that encourage the properties defined in the
SD framework.

3.6 Discussion

In this section we will discuss a few questions which arose during the above considerations.
The first of these is one of semantics; when does an ensemble method end and a kernel method
begin? We have seen how an ensemble of models, or subsets, defines a ’kernel’ on the data,
which becomes smoother as ensemble size increases, and also that some subset collections
define an analytic kernel as number of models becomes infinite. It is interesting that some
methods we would consider as a ’single classifier’ could in fact equally well be thought of in
the other extreme, as an infinitely large ensemble. The SVM is as we have seen one of these.
Neural networks are another rather ambiguous method. A network with a single hidden layer
would generally be considered a ’single classifier’, but it could just as easily be considered as
a weighted mean of multiple linear perceptrons. As we will see in Chapter 4, it is possible to
build a network in which we can switch between training as an average of independent MLP
networks and training as a single larger network (or a co-trained ensemble) by adjusting a
single parameter in the error functions used in training.

Another point worth mentioning is variance reduction, or why methods which satisfy the
conditions defined by SD using many overlapping subsets (like the four considered here) tend
to be better than those which satisfy it using few disjoint ones. An example of the latter is
a single decision tree. The leaves of a fully split decision tree satisfy perfectly the conditions
of uniformity and enrichment, and to a certain extent also projectability. However, if we
consider the kernel defined on a point by a single decision tree, it is step-like, simply one
within its leaf and zero outside, with a sharp cutoff at the boundary. Sharp boundaries like
this generally have high variance, as tiny changes may have a disproportionately large effect.

47

For this reason a large collection obeying the properties set out in SD is preferred. The
kernels created by the ensemble methods/large collections are much smoother, and so much
more stable.

3.7 Conclusions

In this Chapter we have explored a duality between a collection of subsets of a space, and
a kernel function defined on that space. The kernel K(x1,x2) that a subset collection M

induces on the space via K(x1,x2) = PM∈M(x1,x2 ∈ M) is block-like when the number
of subsets is small, but becomes smooth as |M| becomes large. When the subset collection
has the properties of uniformity, enrichment and projectability, the kernel can be used to
construct an optimal margin hyperplane.

Following this, we have argued that a number of methods from the literature are successful
because they generate a subset collection with these properties. Subset collections built in
this way induce a kernel which is very natural for classification tasks, as it quantifies the
probability over subsets grouping points of the same class, that two points x1, x2 appear
together in the same subset. The kernel encapsulates our concept of distance, and this is a
highly intuitive concept of distance in a classification context.

The methods we have discussed use differing algorithmic devices to generate subset collec-
tions with the desired properties. In boosting, the error landscape is modified by weighting
the training data, to give an error function to be minimised which includes enrichment,
uniformity and projectability terms. The SD method generates a random stream of simple
subsets, which are explicitly filtered for uniformity and enrichment. In the case of the SVM,
the kernel is defined a priori, the appropriate choice of kernel function determines uniformity
and enrichment properties.

In a RF ensemble, decision trees split the space into subsets which are fully enriched (on
the whole dataset or some sampling of it). As each point appears in the same number of
subsets, one per ensemble member, the subset collection is uniform also.

The analysis presented suggests the possibility of using the kernel produced by a random
forest or SD method in a support vector machine. The only information needed in the SVM
to calculate the optimal hyperplane is the matrix of kernel values Kij = K(xi,xj) where
i, j run over the training data. While this would not help in a RSM method as the optimal
hyperplane is already used by construction, it may be worthwhile in implementations of
bagging (or other RFs which implement resampling) or SD.

48

Chapter 4

Negative Correlation Learning

In Section 2.1 we introduced the ambiguity decomposition of the mean square error, and
later in Section 2.3 a decision level combination method based on this decomposition called
Negative Correlation Learning (referred to as NCL henceforth). It is an attractive method
due to its solid theoretical grounding, and this Chapter will look at the method, and in
particular its theoretical grounding, more closely. We will be mostly concerned with the
setting of λ, a parameter of the method whose correct choice is critical for stability and good
performance. We will first describe the method in more detail than in the literature review,
before continuing to derive an expression for the optimal λ, whose value λ∗ depends only on
the number of classifiers in the ensemble. This result arises from the form of the ambiguity
decomposition of the ensemble error, and the close links between this and the error function
used in NCL. By analyzing the dynamics of the outputs we will find dramatically different
behavior for λ < λ∗, λ = λ∗ and λ > λ∗, providing a stability region in which we may choose
λ and theoretical explanations for some empirical observations in other papers on NCL [19].
We will also explore the effects of the parameters of the method on the complexity of model
the algorithm is able to fit. Results will be illustrated using well known synthetic and medical
datasets in the final sections.

4.1 Introduction to NCL

Combining classifiers has proved successful in reducing generalization error in both the classi-
fication and prediction domains. Intuitively, and supported by error decompositions such as
those in Section 2.1 and the SD theory in Chapter 3, it works best when diverse classifiers are
combined [121]. Therefore, the goal of many methods has been de-correlation of the individual
outputs. Other methods introduced in the literature review, such as boosting [41] concentrate
on actively reducing the training error, as opposed to de-correlation as such, although as seen
in Chapter 3 the resulting ensemble may still be highly de-correlated. Popular examples of
methods focussing on de-correlation explicitly are input decimation [122], bagging [12] and
other random forests [16], to name but a few. In these algorithms, a diversification method
is put in place and classifiers are trained entirely independently of one-another, so to a cer-
tain extent we rely on chance to provide complementary classifiers. Other methods generate
classifiers sequentially [41, 88], and the current classifier is actively designed to complement
the previous ones. Negative correlation learning is an error de-correlation method which
instead generates predictors in parallel; all members of the ensemble are actively designed
to be complementary to each other. This is quite an attractive property, though there are
extremely successful examples of both of the other approaches. Other examples of methods
in which members are trained in parallel are mixture of experts [58], and an evolutionary

49

method in [95] whose fitness function is very similar to the error function used in NCL.
For a given mean individual error rate, negative correlation of classifier outputs holds the

potential for even larger reductions in error through combination [106], though this is difficult
to achieve in practice for complex classifiers. Negative correlation learning as described in
[84] is a way of training an ensemble of neural networks in parallel, in such a way as to enforce
de-correlation or even negative correlation of the individual network outputs while retaining
accuracy. This is achieved through a modification of the error function for each network
in the form of an additive penalty term. Penalty terms are often used for regularization
when training neural networks, for example in weight decay [71] to penalize large weights.
In the case of NCL, this idea is used to penalize correlations between the ensemble members
in order to de-correlate the outputs, hopefully reducing ensemble error. The method has
a parameter, λ, which controls the relative importance of the penalty term. Setting this
correctly is important for good performance, however there were some aspects of how the
behavior of NCL depends on this choice which were puzzling. The optimal λ had been
observed in [19] to tend to 0.5 as the number of networks used in the ensemble increases, but
why this would happen and the shape the curve takes had not been understood. In addition,
the error has been observed to diverge if λ is too large, but the value at which this rapid rise
begins for different datasets seemed to be unpredictable. The theoretical work that follows
allows us understand these observations via an analysis of the dynamics of the individual
outputs. This leads us to the derivation of a stability range and a theoretically optimal
choice of λ which results in maximal co-operation between individuals. However, we will also
argue that this is not necessarily optimal for any given problem, as λ essentially allows a
convenient adjustment of the effective size of the network. Maximal co-operation results in a
maximal effective size, but this results in better performance only if a more complex network
is suitable for the given problem.

NCL at the moment is a method which can only be applied to base learners based on
gradient descent of a continuous error function. MLP networks are often used and will be
assumed in the remainder of the chapter. The evolutionary method mentioned earlier, while
also using neural networks, could be adapted to use any base classifier, resulting in a method
that to a certain extent mirrors NCL for a general base classifier. The only method which
translates the ‘penalty term’ idea to general base classifiers and zero-one loss is DECORATE
[88], which creates artificial data and labels it probabilistically in opposition to the current
ensemble prediction. New classifiers are trained on the original data and the artificial data,
thus introducing a penalty term into the misclassification rate which penalizes agreement
with the ensemble. A little more detail on this can be found in Section 2.4. The ratio of
the sizes of the artificial and original datasets can be thought of as playing a similar role
to λ in NCL. However, individuals are trained sequentially not in parallel, and the lack of
a true ambiguity-like decomposition for zero-one loss makes its theoretical foundations less
solid than NCL.

The structure of the remainder of the chapter is as follows. In the next section we will
describe the NCL algorithm in more detail, while Section 4.3 will consider the problem of the
optimal setting of λ. We will derive an expression for a value, λ∗, which is optimal from one
theoretical viewpoint and which explains the decay of the optimal λ to 0.5 as ensemble size
is increased. In Section 4.4 we will investigate how the dynamics of the individual predictor
outputs fi depend on the setting of λ, discovering regions of very different behaviour defined
by λ∗. This will provide further motivation for our choice of λ as well as insight into the limits
of λ required for stability and the error divergences observed when λ is too large. Empirical
results testing and illustrating the theoretical claims will be presented in Section 4.5, followed
by a section exploring the complexity of model the NCL algorithm fits. Some conclusions

50

will be drawn in Section 4.6.

4.2 The NCL Method

In the NCL method [84], an ensemble of N MLP neural networks are trained in parallel using
back-propagation. The error function for each network, in addition to the usual squared error
term, contains a penalty term pi proportional to the correlation of the network predictions
with those of all the other networks, making the error for a network:

Ei =
1

N

n
∑

j=1

Ei(xj)

=
1

N

n
∑

j=1

1

2
[fi(xj) − d(xj)]

2 +
1

N

n
∑

j=1

λpi(xj) (4.1)

where the sum is over the n training examples, fi is an individual output, and d is the target.
For simplicity of notation we will consider the error function at just a single point from now
on, removing the necessity for the index j above, and the sum over points. The penalty term
is:

pi = (fi − f)
∑

j 6=i

(fj − f) (4.2)

where f is the ensemble output. This measures and penalizes correlations between predictors.
In fact, if as in [19] we use the fact that the sum of a set of values around their mean is zero,
∑

i(fi − f) = 0, we can write:

pi = (fi − f)[−(fi − f)] = −(fi − f)2 (4.3)

which is the ambiguity [72] of the predictor from Section 2.1, making the error function

Ei =
1

2
(fi − d)2 − λ(fi − f)2. (4.4)

From the expression for the ambiguity decomposition of the ensemble error with equal weights,
we have:

1

2
(f − d)2 =

1

N

∑

i

[

1

2
(fi − d)2 −

1

2
(fi − f)2

]

(4.5)

so we can see that if we set λ = 1
2 in Eq. 4.4 then the error function we are using to train

each network is actually its contribution to the ensemble error as given in the ambiguity
decomposition. This is the theoretical grounding of the method; it works because it takes
the whole of the contribution of the network to the ensemble error into account, not just
the component due to the individual error but that due to the correlations also. It allows
us to adjust the relative importance of the two terms, though we will argue later that this
freedom should not be exercised as the form of the ambiguity decomposition decides the
optimal choice of lambda.

Example NCL classifications can be seen in Figs. 4.1 and 4.2. These synthetic datasets
are described in more detail in Section 4.8.

To motivate the use of the MSE based ambiguity decomposition in classification problems
[131] uses a relation of the extra classification error incurred to the displacement of the
predicted boundary from the true one. The expression from Tumer and Ghosh [119] relating
the error of a classifier to the displacement of the predicted boundary from the true one

51

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Feature 1

F
ea

tu
re

 2

Figure 4.1: Example NC classification on the Synthetic dataset

(under certain assumptions) has been re-expressed as follows. Tumer and Ghosh showed that
near the true boundary at z∗ the added error (over the Bayes classifier) of a classifier whose
boundary is shifted by b from the true boundary is

ǫadd =
P (z∗)γ

2
b2 (4.6)

Where γ is the difference between derivatives of posterior probabilities at the optimal
boundary, and P (z∗) is the value of the posteriors at the boundary. b is re-expressed as being
proportional to (fi − fj)− (pi − pj), meaning the error drops to zero when fi − fj = pi − pj.
They therefore argue that the Tumer-Ghosh model can be interpreted as a regression problem
with estimator fij = (fi − fj) and target dij = (pi − pj). An NCL ensemble is then trained
using these.

NCL has been quite successful in both regression and classification problems [84, 86], and
is an attractive method due to its explicit link with the ambiguity decomposition. The success
of NCL has led to the proposal of some variations of the method using different penalty terms
in Eq. 4.1. One method in particular, called root quartic negative correlation learning [86],
has been shown capable of outperforming NCL on some problems. The penalty term in this

method is pi =
√

1
N

∑N
j=1(fi − fj)4, however the choice of penalty term has little grounding

in theory at the moment, and its success is not well understood.
An elaboration of NCL in [56], called Constructive Neural Network Ensembles (CNNE)

extends the NCL framework to allow the number of hidden nodes in each network to be
determined by the algorithm. Differing numbers of training epochs may also be used for
different networks.

These derivative methods are valuable contributions, however some aspects of the be-
haviour of the original NCL algorithm have not been well understood, particularly the be-
haviour as λ is varied. This has made it difficult to know without exhaustively trying many
different settings what a suitable setting of λ is likely to be for a particular problem. When
building an NCL ensemble, this setting of λ is important for good performance and stabil-
ity. As we can see from Eq. 4.4 a larger (smaller) value of λ corresponds respectively to a
greater or lesser emphasis of the ambiguity term resulting in a larger (smaller) emphasis on
the spread of the predictions compared to individual accuracy. A greater understanding of

52

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11

Feature 1

F
ea

tu
re

 2

Figure 4.2: Example NC classification on the Cone-Torus dataset

the behavior of NCL is needed in order to guide the choice of λ, and has been the motivation
for this work. The dynamics of NCL will be explored further in the next few sections, where
the derivation and motivation for a particular choice of λ depending only on the number of
networks in the ensemble will be presented.

4.3 Setting the λ Parameter

An initial contemplation of the expression for the error in Eq. 4.4, may suggest that a natural
choice of λ would be 1

2 . With this choice, the sum of the error functions of the individuals is
the error of the ensemble as a whole, expressed in its ambiguity decomposition:

Eens =
1

2
(f − d)2

=
1

N

∑

i

[

1

2
(fi − d)2 −

1

2
(fi − f)2

]

=
1

N

∑

i

Ei (4.7)

and the individual error functions are simply the contribution of each member to the ensemble
error. However, if we seek to minimize these error functions by gradient descent, it is the
gradient of the error function and not its actual value that is important as it is this that
informs the algorithm. This was noted in Liu’s paper [84], where for λ = 1 it was shown
that ∂Ei

∂fi
∝ ∂Eens

∂fi
, i.e the gradient of an individuals’ error function w.r.t fi is proportional to

the gradient of the ensemble error w.r.t fi. The calculation leading to this however relies on
an incorrect assumption, as pointed out in [19]. The original calculation assumed that the
ensemble output f = 1

N

∑N
i=1 fi was constant w.r.t any single individual output fi, which

is not true and in the context used could not even be assumed for large N . Taking this
correction into account, the calculation proceeds as follows. Starting from the individual

53

error,

Ei =
1

2
(fi − d)2 − λ(fi − f)2 (4.8)

∂Ei

∂fi
= (fi − d) − 2λ

(

1 −
∂f

∂fi

)

(fi − f)

= (fi − d) − 2λ

(

1 −
1

N

)

(fi − f). (4.9)

To gain a better understanding of this, we will re-arrange the above to give

∂Ei

∂fi
= (f − d) +

[

1 − 2λ

(

1 −
1

N

)]

(fi − f). (4.10)

From here on, we will write the expression in square brackets as θ =
[

1 − 2λ
(

1 − 1
N

)]

. When
performing gradient descent, the first term causes an individual output to move to reduce the
ensemble error (regardless of the direction of the individual error), and the second term acts
to move the individual output away or towards the ensemble mean depending on the sign of
θ. We will look at the effects of this in more detail later.

We also have ∂Eens

∂fi
= 1

N
(f − d), so we see from Eq. 4.10 that in order to achieve

∂Ei

∂fi
∝ ∂Eens

∂fi
we have to choose λ such that θ = 0. This leads to a choice

λ∗ =
1

2

(

1 −
1

N

)−1

. (4.11)

It is with this setting, and not λ = 1, that we perform gradient descent on the ensemble error
by performing gradient descent on the individual error functions. At each iteration we are
updating the fi to decrease the ensemble error Eens even if individual accuracy may suffer.
It is the ensemble error that is the important quantity, so it is clear that this is a situation we
should aim for. For any other choice of λ we are not minimizing the ensemble error. Finally,
we note that as N → ∞, λ∗ → 1

2 , the value our initial intuition would suggest from the form
of the ambiguity decomposition. For smaller N , the extra multiplicative term reflects the
fact that when adjusting fi, f will also track the adjustment to some extent. This provides
an explanation of the empirical observation in [19] that the optimal setting of λ decays to 0.5
as we add more networks (note our λ is equivalent to γ as used in their paper).

In the empirical Section 4.5 we will try to see whether this theoretical advantage translates
into a reduction of the error on a well-known synthetic dataset, together with two more
realistic datasets from the medical domain.

Apart from this optimal setting, we can also set limits on the value a sensible choice of λ
would take. A negative value would defeat the point of NCL, and of an ensemble method in
general as it would encourage the individuals to be very similar, thus removing all advantage
from combining. For an upper limit, as in [19] we can demand that the second derivative of
the error function remains positive so that we retain a minimum of the error function:

∂2Ei

∂f2
i

= 1 − 2λ

(

1 −
1

N

)2

> 0 (4.12)

which gives an upper limit of λupper = 1
2

(

1 − 1
N

)−2
though this does not take into account

the collective nature of NCL. We will see in the next section that in practice we can give even
tighter limits, by looking at the dynamics of the fi as λ is varied and their implications for
the stability of the algorithm.

54

4.4 Dynamics of the fi as λ Varies

In training a network by gradient descent we aim, at each timestep (denoted by a bracketed
superscript), to update the output of the network so that

f
(t+1)
i = f

(t)
i − η

∂Ei

∂fi
(4.13)

with η > 0 the learning rate. In the case of MLP networks considered, we have to perform
back-propagation to find the weight adjustments which will result in this desired update, but
for the moment we will imagine that we can update the fi exactly according to this formula.

As mentioned earlier, the error function for a network and its derivative are

Ei =
1

2
(fi − d)2 − λ(fi − f)2 (4.14)

∂Ei

∂fi
= (f − d) + θ(fi − f) (4.15)

recalling that θ = [1 − 2λ(1 − 1
N

)]. Now, let us consider how the difference between an
individual output fj and the mean of the remaining outputs 1

N−1

∑

i6=j fi evolves as we adjust

the fi over timesteps. We will define this difference zj = fj −
1

N−1

∑

i6=j fi. To understand

its evolution we will express its value after an update, z
(t+1)
j , in terms of its value at the

previous timestep z
(t)
j . We have

z
(t+1)
j = f

(t+1)
j −

1

N − 1

∑

i6=j

f
(t+1)
i (4.16)

which, using Eq. 4.13 to express the f
(t+1)
i in terms of the f

(t)
i , becomes

z
(t+1)
j = f

(t)
j − η

[(

f (t) − d
)

+ θ
(

f
(t)
j − f (t)

)]

−
1

N − 1

∑

i6=j

[

f
(t)
i − η

(

f (t) − d
)

− ηθ
(

f
(t)
i − f (t)

)]

. (4.17)

The non-subscripted terms cancel out, leaving us with

z
(t+1)
j = f

(t)
j −

1

N − 1
f

(t)
i − ηθ

f
(t)
j −

1

N − 1

∑

i6=j

f
(t)
i

= (1 − ηθ)z
(t)
j (4.18)

so we have after t steps that z
(t)
j = (1 − ηθ)tz

(0)
j , or taking the limit of continuous time and

integrating in Eq. 4.18, we can express the result as

zj(t) = zj(0)e
−ηθt. (4.19)

What we are most interested in is the behavior of (fi −f), for two reasons. Firstly it appears
in the expression for ∂Ei

∂fi
in Eq. 4.15 and so has an important effect on the dynamics. We

are also interested in how the fi are spread about their mean for its own sake. We can relate
this to the above result by noting that fi − f = (1 − 1

N
)zi, so we can see from Eq. 4.19

that we have three different behaviors of fi − f depending on θ. For θ > 0, fi − f decreases

55

exponentially, and the individual fi converge to a single value over time. For θ < 0, fi − f
increases exponentially, and the fi will spread ever further away from their mean. If θ = 0, the
training algorithm has no effect on fi − f . We have successfully de-correlated the individual
outputs; they show no tendency to converge to similar values during training. Recalling that
θ = [1 − 2λ(1 − 1

N
)] and λ∗ = 1

2 (1 − 1
N

)−1 from Section 4.3, we find that the values of λ
corresponding to these three domains are λ < λ∗, λ > λ∗, and λ = λ∗ respectively. We will
come back to the consequences of these observations a little later.

We can also look at how the ensemble error evolves over time. A similar calculation to
that above results in

f (t+1) − d = (1 − η)(f (t) − d) (4.20)

with the corresponding expression in continuous time

Eens(t) = Eens(0)e
−ηt. (4.21)

Regardless of how we choose λ, we can see from this that the ensemble error decreases
exponentially with time. We re-iterate here however, that this is in an ideal situation where
we can update the fi exactly according to Eq. 4.13. We also note that to maintain a certain
Eens, the updates to the fi must be accurate to within approximately Eens. With λ > λ∗, the
update −η ∂Ei

∂fi
is the sum of a term exponentially increasing with time, and one exponentially

decreasing with time. This means that beyond a certain time (which can be shown to be
fairly small for typical initial conditions and λ more than a few % above λ∗) the absolute
size of the updates is monotonically (and approximately exponentially) increasing over time.
Maintaining an ensemble error less than some Eens therefore depends on making updates △fi

with ever decreasing relative error of order Eens

△fi
∼ eηθt.

We now return to the real world and consider the effect on this analysis, and especially
the last point above, of the fact that we cannot just update the fi at will. Each fi is the
output of a complex mathematical model (the network), and given a desired update we must
perform back-propagation to estimate the weight updates resulting in the desired change in
fi. The update to fi we actually achieve at a point will be a noisy approximation to the ideal
update, for various reasons such as potentially competing weight updates from other training
points, and limitations on the form of function possible with the chosen architecture. The
practical consequences of this are that, over time, for λ > λ∗ the increasing relative accuracy
of updates necessary to maintain a given Eens becomes impossible to achieve, and the error
will diverge. This provides further motivation for our choice λ = λ∗. If λ < λ∗ the individual
outputs will tend to converge to a very similar value, reducing the advantages of combining
(though the algorithm is at least stable), and for λ > λ∗ we have unstable behaviour, neither
being properties we would generally like the algorithm to have.

In experiments with architectures with linear output nodes, the error divergence above
has been observed consistently at values of λ only slightly larger than λ∗. This does not
contradict observations in previous papers of divergence occurring at varying, much less
predictable values of λ > λ∗, because in these papers sigmoid output nodes have been used.
This obviously limits how spread the outputs can be, but does not remove the problem.
Forcing the output nodes to operate near to their saturation values will certainly cause its
own problems, though this will be less clear-cut, resulting in error divergences at much more
unpredictable values of λ dependent on the problem at hand.

We can gain some intuition for what form this problem may take by considering a simple
case. Take N = 2 and imagine λ = 0, i.e we are just training each network independently.
In the expressions for the Ei’s in Eq. 4.4 only the first term remains and in the ideal case
to minimize these we would have f1 = d and f2 = d, giving an ensemble output f = d. If λ
was large, essentially only the second, spreading term would remain in Eq. 4.4 and we can

56

imagine that the stable state we would reach minimizing these would have f1 = 1 and f2 = 0
or vice-versa, giving an ensemble output f = 1

2 regardless of the target d, even in the ideal
case. This gives us a hint that perhaps the problem when choosing λ too large using sigmoid
output nodes will manifest itself in a displacement of the stable solutions of the system away
from the desired target d.

To develop this further, we can again consider the dynamics of the system. A similar
analysis to the above for the ensemble error in this case is much more difficult to interpret,
and in the general case does not seem to reduce to anything useful. However if we confine our
interest to λ near λ∗ and f near d we can make some progress. This is the most interesting area
anyway as we wish to look at the stability of the algorithm near f = d for values λ < λ∗, λ = λ∗

and λ > λ∗. The details of the calculation will be relegated to Appendix A; in brief, a similar
strategy is followed to that above, but the outputs are fi = φ(ai) = 1

1+e−ai
and we assume

during gradient descent we can update the ai as we wish according to a
(t+1)
i = a

(t)
i − η ∂Ei

∂ai
.

The proof relies on the fact that with λ near λ∗ and f near d, both θ and (f − d) are small,
allowing expansion of various expressions to first order.

The result we end up with is

z(t+1) = (1 − B)y(t) −
θη

N

∑

i

f2
i,(t)(1 − f

(t)
i)2(f

(t)
i − f (t)) (4.22)

where z = f − d and B = η
N

∑

i f2
i,(t)(1− f

(t)
i)2 > 0. We see that once again f = d (or z = 0)

is a stable solution of the system for θ = 0, i.e. for λ = λ∗. However, we notice an interesting
thing for θ 6= 0. The state f = d is no longer a steady state of the system in general! Now,
an additional constraint must be satisfied. For a solution with f = d, we must also have

∑

i

f2
i,(t)(1 − f

(t)
i)2(f

(t)
i − f (t)) = 0. (4.23)

The only obvious solutions to this are states where all fi ∈ {0, 1}, or all the individual outputs
are equal, fi = f ∀ fi. There would possibly be other solutions too, but these would have
to be unstable for f = d, as the second term in Eq. A.2 is the only surviving term if f = d
and forces spreading or convergence of the individual outputs (depending upon the sign of
θ) until one of the two conditions above are met, or we no longer have f = d. In the case
of θ > 0 (or λ < λ∗), where individual solutions will tend to become very similar, we have
no serious problems because no matter what the target d is, we can have the stable solution
with all fi = d. This is not ideal though because we lose any advantages that could be gained
by combining. For θ < 0 (or λ > λ∗) we do have a problem, because this solution is no longer
stable. Unless the target is of the form d = k

N
for some k ∈ {0, ..., N}, we cannot find a

stable solution with f = d. We will instead find a state where f is displaced away from d
towards one of a few discrete values of the form k

N
to some extent which will depend on the

magnitude of θ and the target d. As λ is increased, more and more of the input space will be
forced very near to one of these discrete values. This is the reason that the error divergences
observed for sigmoid output nodes are less dramatic and much less predictable. A certain
displacement of the stable state of the system away from the target will not immediately
cause huge errors, especially in a classification context.

Although we still do not have an exact picture of the dynamics for non-linear output nodes,
hopefully this has provided some intuition for the behavior in this case, and the problems
which may still arise for λ > λ∗. The impact of these problems is much less predictable as
details of the specific targets for the problem, and the initial fi, will tend to affect the size
and direction of the displacement of stable solutions from f = d in a complicated way.

57

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.3: The synthetic dataset, and an example NCL classification

4.5 Experimental Analysis

In this section we will present empirical results which illustrate and support the theoretical
claims made in the previous sections. We will take a look at examples of the dynamics on
the synthetic dataset, a two-class, 2-D dataset with each class consisting of two overlapping
multivariate gaussians. The classes overlap significantly, with the Bayes error at roughly 8%.
More information can be found in Appendix B. The training set consists of 250 patterns, with
a test set of 1000. Fig. 4.3 shows the training set, and an example classification produced by
NCL.

The experimental setup was as follows. An ensemble of three MLP neural networks was
used, each with 5 hidden nodes with the tansig transfer function. Linear output nodes were
used, and the networks were trained for 5000 epochs at learning rate η = 0.05. Weights
and biases are initialized via the Nguyen-Widrow algorithm [91]. The targets are in one-of-k
form. We will focus on the output of just one of the two output nodes for the training points,
so the targets are 0 for all points of class 1, and 1 for all points of class 2. We will plot the
average output over all training points of class 1, for each of the individual networks, to see
the overall trends as training progresses. The results for various values of λ are shown in Fig.
4.4.

What we notice straight away is the dramatic divergence of the individual outputs for
λ = 0.76. This is a little over 1% above the value λ∗, beyond which our theoretical results
predict an exponential divergence of the inputs, resulting rapidly in a divergence for the error
also. We can see the effects of this divergence on the error in Fig. 4.5. This divergence
becomes quickly more rapid as λ is increased still further. For λ = λ∗ = 0.75 we see no
pronounced convergence or divergence of the individual outputs - they are being adjusted
in a complementary way to reduce the ensemble error with preference being shown neither
for similarity nor unnecessary spread. It is interesting to see here that in this case, none of
the individuals are particularly close to the target 0; their mean, however, is. This is highly
indicative that we are indeed training co-operatively. For λ a little below λ∗, by just 0.05, we
already see a definite tendency of the outputs to converge to a similar value, and by λ = 0
corresponding to independent training of the networks, the individuals become very similar
indeed. This illustrates the three different characteristic behaviors discussed in Section 4.4.
What we would like to know now is whether this translates to an optimal setting of λ in

58

0 1000 2000 3000 4000 5000

−4000

−2000

0

2000

4000

6000

epochs

in
di

vi
du

al
 o

ut
pu

ts

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

3

epochs
in

di
vi

du
al

 o
ut

pu
ts

0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1

1.5

epochs

in
di

vi
du

al
 o

ut
pu

ts

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

epochs

in
di

vi
du

al
 o

ut
pu

ts

a) b)

c) d)

Figure 4.4: The dynamics of the individual outputs for various λ. The curves show, for each
individual, the average output of a single output node over all points of the corresponding
class. The ensemble size is 3. From top left we have a) λ = 0.76, b)λ = λ∗ = 0.75, c) λ = 0.7,
and d)λ = 0.

59

0 0.2 0.4 0.6 0.8
0.095

0.1

0.105

0.11

0.115

0.12

lambda

M
S

E
 o

n
tr

ai
n

0 0.2 0.4 0.6 0.8
0.075

0.08

0.085

0.09

0.095

0.1

lambda

M
S

E
 o

n
te

st

0 0.2 0.4 0.6 0.8
0.13

0.14

0.15

0.16

lambda

M
C

R
 o

n
tr

ai
n

0 0.2 0.4 0.6 0.8
0.09

0.1

0.11

0.12

lambda

M
C

R
 o

n
te

st

Figure 4.5: MSE and MCR on both training and testing sets as λ increases on the synthetic
dataset

terms of the ensemble error.
We will again use the synthetic dataset, and two more realistic datasets from the medical

domain. These datasets are described in more detail in Appendix B. The datasets themselves,
and further information about them can be found in the UCI machine learning database [8].
In brief, the liver dataset is a 2 class, 6 feature dataset with 345 examples taken from male
patients. Five of these features are numerical values corresponding to the results of various
blood tests thought to be sensitive to liver disorders, the sixth is the average number of half-
pint equivalent drinks per day. The cancer dataset is also a 2 class problem, with 30 features
and 569 examples. The features are computed from digitized images of the cell, and the
classes are defined by their diagnosis as malignant (212 examples) or benign (357 examples).
Further information on this dataset can also be found in [117]. Both datasets were split (as
nearly as possible) into equally sized training and test sets.

The NCL method has also been applied to industrial data (churn prediction) in Section
6.4, though we leave the detail to the Chapter in which the application domain is explained.

On the synthetic dataset, negative correlation ensembles were generated for N = 2, ..., 6,
and for each case nine values of λ were used, eight evenly spaced in the range 0 to λ∗, and the
final one the same step size above λ∗ serving to illustrate the error divergence when λ > λ∗

when using linear output nodes. The experimental setup is as above apart from the fact that
2500 training epochs were used. The results for N = 3 (for which λ∗ = 0.75) can be found in
Fig. 4.5.

Results for all the ensemble sizes tested showed very similar qualitative behavior. We
can see the results of the divergence of the individual outputs and the instability this causes
very clearly in the huge increase in error beyond λ∗, and a definite tendency of the error to
decrease as λ is increased to λ∗, showing that an NCL ensemble is significantly better than
a combination of independently trained networks for this dataset.

On the liver and cancer datasets, ensembles of 3 networks were generated. The parameter
settings were respectively 5 nodes, 5000 epochs with learning rate 0.0005, and 10 nodes, 7000

60

0 0.2 0.4 0.6 0.8

0.1

0.15

0.2

lambda

M
S

E
 o

n
tr

ai
n

0 0.2 0.4 0.6
0.05

0.1

0.15

0.2

lambda

M
S

E
 o

n
te

st

0 0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

lambda

M
C

R
 o

n
tr

ai
n

0 0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

lambda

M
C

R
 o

n
te

st

Figure 4.6: MSE and MCR on both training and testing sets as λ increases on the cancer
dataset

epochs with learning rate 0.00004. The parameter settings used have been chosen purely
for illustrative purposes to demonstrate the different behaviour one can expect from NCL,
without any particular attempt at optimizing performance. On the cancer dataset, we can
see from Fig. 4.6 that for MSE we have a similar trend to that seen in Fig. 4.5 for the
synthetic dataset, though it is hard to see in the case of MCR, illustrating the fact that MSE
often does not correspond particularly closely to MCR. However, the optimal λ again seems
to be λ = λ∗, with a rapid increase in error beyond this value. If we look at the results in Fig.
4.7 for the liver dataset, we see different behaviour. On the training set the story is similar
to the results for the other datasets, and we see decreasing error as λ is increased down to a
minimum at λ∗, followed by the characteristic divergence in error beyond λ∗. However on the
testing sets, we see a minimum in the error before λ∗ is reached, followed by a gentle increase
up to λ∗ and a rapid increase beyond λ∗. In this case λ∗ is not optimal. A decreasing trend
in the training error accompanied by the opposite trend in testing error is the classic sign of
over-fitting. Our choice λ∗ is optimal in the sense that for this value the individual networks
will co-operate, and their outputs be de-correlated, to the greatest extent compatible with
stability. This co-operative adjustment of the weights allows more complex functions to be
fit, leading to improved performance if greater complexity is needed but also the potential
for over-fitting if it is not. In some sense the value of λ acts to control the complexity of the
ensemble classifier, a concept we will explore further in the next section. Thus our choice λ∗

is not optimal in an absolute sense but must be chosen in conjunction with a suitable number
of hidden nodes and ensemble size. The results for λ = 0, corresponding to independent
training of the networks, and for λ = λ∗, for each dataset are summarised in Table 4.1.

4.6 Complexity of the NCL Method

We saw in the previous section that λ∗ is optimal in the sense that it results in the largest
degree of co-operation between the individuals consistent with stability, resulting in the ability
to fit more complex models. As seen on the liver dataset in Fig. 4.7, this does not necessarily

61

0 0.2 0.4 0.6 0.8

0.16

0.18

0.2

0.22

lambda
M

S
E

 o
n

tr
ai

n
0 0.2 0.4 0.6 0.8

0.2

0.205

0.21

0.215

0.22

lambda

M
S

E
 o

n
te

st

0 0.2 0.4 0.6 0.8
0.2

0.22

0.24

0.26

0.28

0.3

lambda

M
C

R
 o

n
tr

ai
n

0 0.2 0.4 0.6 0.8

0.3

0.32

0.34

lambda

M
C

R
 o

n
te

st
Figure 4.7: MSE and MCR on both training and testing sets as λ increases on the liver
dataset

λ = 0
MSE Var (×10−4) MCR Var (×10−3)

Synth 0.091 0.414 0.107 0.104
Cancer 0.136 29.0 0.126 9.90
Liver 0.207 0.155 0.312 0.236

λ = λ∗

MSE Var (×10−4) MCR Var (×10−3)

Synth 0.082 0.139 0.098 0.016
Cancer 0.082 11.0 0.098 9.30
Liver 0.211 0.273 0.309 0.226

Table 4.1: Summary of results for λ = 0 (independently trained networks) and λ = λ∗ (NCL
ensemble with de-correlated outputs)

62

mean it is optimal for general problems, as the algorithm provides no protection against over-
fitting. Thus if the added complexity introduced by this co-operation is not appropriate to
the complexity of the problem at hand, we may see situations with λ∗ optimal on the training
set, and a lesser value of λ optimal on the testing set. This means that it is important to
understand how the various parameters of the model (λ, number of models, nodes per model)
interact to determine the complexity of model fittable. As a prelude to this, we will introduce
the idea of complexity in classification systems a little more thoroughly.

When solving a classification problem, we have a set of labeled data which we assume has
been generated by some underlying model (function). This data is used to choose a model
from a certain class of models via some algorithm. One of the most important factors deciding
how well this algorithm will perform for a given problem is the complexity of the model class
the algorithm uses to fit to the data, and how well this matches the complexity of the model
underlying the data. Too complex a model class will tend to over-fit the data. A function
will be chosen that very well models the data, but which will probably generalize badly. On
the other hand if the model is very simple it will not be able to fit the function without bias,
and training error will be high, although it should generalize well. Complexity is difficult to
measure, and this is reflected in the fact that there is no single accepted way to characterize
the model complexity. It is often characterized by the number of free parameters (in the
case of a parametric model). Sometimes the Kolmogorov complexity [83], or algorithmic
complexity, is used. This is the length of the shortest description of the entity in question
(the model in our case) in some given language. Another complexity measure widely used in
the calculation of error bounds is the VC dimension [125], which is the size of the largest set
of points that can be arbitrarily split into two classes (or shattered) by the model class the
algorithm uses to fit the data.

When looking at combinations of classifiers the situation is even more murky. There are
examples where increasing the number of classifiers in an ensemble seems to improve the
generalization performance of the ensemble monotonically, despite the fact that in adding
classifiers, a naive assumption would be that the complexity should be increasing and therefore
generalization performance should eventually degrade. A number of examples of these were
seen in Chapter 3. One example of this is bagging [12], in which performance tends to decrease
as more classifiers are added, converging to a steady value for a large ensemble. In this case
however the individual classifiers are trained entirely independently of one-another, and are
each fitting different bootstrap samplings of the data. In terms of Kolmogorov complexity it
could be explained as follows. A bagging ensemble of any size can be generated via the base
algorithm and a simple piece of code that generates a bootstrap resampling. Therefore the
ensemble can be described (generated) by code with length only a constant amount larger
than the length of the base algorithm, regardless of the ensemble size. Another example
is boosting [41]. In this case the classifiers are not independent, yet the same monotonic
decrease in error is usually observed in the case of boosting also. This proved to be a great
surprise when it was first noticed, and has still to be completely explained. There are some
partial explanations however, see for example [113].

Thus one of the major challenges in building a classifier for a given problem is choosing
the appropriate complexity. There are a number of different factors which have an effect on
the overall complexity of the NCL algorithm. The number of parameters in this method is the
number of weights in the ensemble, and provides a fairly natural indication of the complexity.
This depends on the number of networks, and also the number of weights in an individual
network. Also highly relevant to the complexity of the model is the extent to which the
weights are determined co-operatively (i.e the value of λ), and the specific architecture of the
network (i.e how many individuals the weights are split between). Ideally we would be able

63

to automatically set the parameters of the method resulting in the appropriate complexity.
This is not currently possible, but a better understanding of how the various parameters of
NCL affect the complexity of model it can fit will help when choosing a suitable parameter
set for a given problem.

Despite the difficulties mentioned above in measuring/defining complexity, we can get
an indication of how the complexity of the algorithm is changing with changes of parameter
settings within the algorithm by looking at empirical data. We can look at how the error on
the training set is changing, and how this relates to the generalization error we observe on a
test dataset, and thus gain an indication of the complexity of the model the algorithm can
fit measured against the baseline of the complexity of the model underlying the data.

The next section will take a look at the complexity of the NCL method in this way. We
will look empirically at the effects of varying the above parameters in NCL, and compare
two different paradigms; the combination of few complex networks and the combination of
larger numbers of simpler networks. Both of these scenarios are easily achievable in NCL. We
will also show how the λ parameter provides a convenient way of controlling the complexity
of the network (with λ∗ maximising it) without architectural changes, and gain a better
understanding of how it interacts with the other relevant parameters of the method.

4.7 The meaning of λ = λ∗

To gain a better understanding of why λ should have such an effect on the complexity we will
return to the error function used in the method. To see what setting λ = λ∗ means for the
algorithm we can look at the effect of changing fj on the other error functions Ei for i 6= j
as follows. The error function for individual i is

Ei =
1

2
(fi − d)2 − λ(fi − f)2 (4.24)

so we have
∂Ei

∂fj
= (fi − d)δij − 2λ(fi − f)

(

δij −
1

N

)

(4.25)

where δij is the dirac delta function. For i = j we have

∂Ei

∂fi
= (fi − d) − 2λ(fi − f)

(

1 −
1

N

)

. (4.26)

Previously we simply noted that ∂E
∂fi

= (f − d) and chose λ = λ∗ to make ∂Ei

∂fi
= ∂E

∂fi
. We

then showed that λ∗ is the value giving maximum co-operation and diversification between
the individual networks consistent with stability. We can gain insight into what it is we are
actually doing in choosing λ = λ∗ by realising that each fj is present in each error function
Ei, so we should consider the effects of changing fi on all the error functions if we wish to
train them co-operatively. For i 6= j we have from Eq. 4.25

∂Ei

∂fj
=

2λ

N
(fi − f) (4.27)

and so for λ = 1
2 we have from Eq. 4.26 and Eq. 4.27

∑

i

∂Ei

∂fj
= (f − d) =

∂Ei

∂fi

∣

∣

∣

∣

λ=λ∗

(4.28)

64

as of course we must have because by the ambiguity decomposition, when λ = 1
2 we have

E =
∑

i Ei. Thus choosing λ = λ∗ in the individual error functions is equivalent to including
the information about the gradient w.r.t fi of the error functions Ej for i 6= j into the single
error function Ei. When this is done we are simply using the ensemble error E during training,
treating the ensemble as a single network (albeit one with a slightly unusual architecture)
as shown in Fig. 4.8, to be trained by back-propagation. The other extreme, of λ = 0,
corresponds to treating the ensemble as individual networks as separated by the dotted lines in
Fig. 4.8, each trained independently by back-propagation and then combined. This latter case
is equivalent to diversifying the individuals simply via different weight initializations. Thus
we can see that in practical terms λ provides a convenient way of adjusting the complexity
of the network between these two extremes without the need for changes in the architecture
of the network.

Figure 4.8: An illustration of the architecture of an NCL network. The weights shown as 1
N

are fixed. For λ = 0 the networks are trained as individuals as indicated by the dotted lines.
For λ = λ∗ the network is trained as a whole.

4.8 Experimental Illustrations of Complexity

In order to explore the above, and the interplay between the effects of λ and other parameters
of the method on the complexity, further experiments were conducted on the four datasets
(synthetic, cone-torus, liver, cancer) used in Section 4.5. These datasets are described in
more detail in Appendix B.

In the following, parameters are given in the format [ensemble size][number of nodes in
each individual], and lambda has been set to 8 equally spaced values between 0 and λ∗.
Each parameter setting is repeated 25 times. We attempted to choose parameter ranges for
ensemble size and number of nodes which were large enough to show changes of behaviour

65

over their range, for example over-fitting. In some cases though we have been limited by the
computationally expensive nature of these experiments. Experiments have been conducted
on each dataset firstly for a fixed, small ensemble size, varying the complexity (number of
nodes) of the individuals. Further experiments have then been conducted with variously sized
ensembles keeping the individual complexity at a small fixed number of nodes. This allows
us to compare two differing methodologies, that of combining many weak individuals, and
combining fewer, more complex individuals.

On the synthetic dataset, an experiment was run with parameter settings [3][5,10,20,40].
The second experiment was performed with settings [3,5,7,10,15][5]. For both these experi-
ments, the networks were trained for 3000 epochs and with learning rate η = 0.05. Results
are shown in Figs. 4.11 and 4.12.

Similar experiments were conducted on the other datasets. For the cone-torus dataset, an
experiment was conducted with settings [3][5,10,20,40,60,80,100]. A second experiment was
conducted with [3,5,7,10,15][5]. The number of epochs/learning rate were the same as above.
Results are shown in Figs. 4.15 and 4.16.

On the liver dataset, the settings used were [3][3,6,12,24]. A further experiment was
conducted with [3,5,7,10,15][5]. Here the networks are trained for 3000 epochs at learning
rate 0.0006. Results are shown in Figs. 4.9 and 4.10.

For the cancer dataset, we used [3][5,10,20,40,60,80,100]. The second experiment was
conducted with [3,5,7,10][20]. 5000 training epochs were conducted with a learning rate of
0.00005. Results are shown in Figs. 4.13 and 4.14.

We notice from the Figures that the number of nodes in the individual network seems
to have a slightly greater effect on the complexity of the NCL network then the number of
individuals in the ensemble. This can be particularly seen in the synthetic dataset comparing
Figs 4.11 and 4.12. On the test set over-fitting is seen in Fig. 4.11 that is not observed in
4.12, and on the training set it can be seen that increasing the number of nodes is causing a
larger decreace in error than that observed when increasing the number of nets. We can also
see that λ has a more pronounced effect with larger numbers of nets, as would be expected
as in this case the co-operation (controlled by λ) between the networks is more important

Looking at the liver dataset (Figs. 4.9 and 4.10), we notice that the error on the training
set decreases both with increacing ensemble size, number of nodes in the individual networks,
and also with increacing λ. This indicates that the complexity of the model the algorithm can
fit is increasing with these parameters as we would expect. We see over-fitting in the MSE
(mean squared error) in Fig. 4.9, but this does not appear in the MCR (misclassification
rate). It is the MSE and not the MCR that is being directly optimised, so this is not so
surprising and serves to illustrate one of the issues with an algorithm such as this. The
quantity we are optimising (MSE) and the one we are most interested in (MCR) do not
always correspond closely. Finding an error function which more closely follows MCR but
which can still be used in an algorithm such as this is an outstanding challenge.

On the synthetic dataset (Figs. 4.11 and 4.12), the results are similar. Again we see the
trend of decreasing training error as N , λ and number of nodes are increased, with over-fitting
beginning to occur as they are increased further. Here the MCR seems to track the MSE
a little more closely, with over-fitting observed in both error functions when increasing the
number of nodes. These results emphasize the fact that λ∗ is not optimal in a general sense.
for relatively weak individuals, for example with 5 nodes, we can see from Fig. 4.11 that
λ = λ∗ is indeed optimal. If we make the individuals sufficiently complex however, we can
see that λ = 0 is optimal. The added complexity that co-operation would introduce is no
longer suitable, and simply allows the net to over-fit the data.

The cancer dataset (Figs. 4.13 and 4.14) behaves a little differently in that increasing

66

0

0.5

1

5
10

15
20

0.18

0.2

0.22

0.24

0.26

0.28

nodeslambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
5

10
15

20

0.3

0.31

0.32

nodeslambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1
5

10
15

20

0.14

0.16

0.18

nodeslambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
5

10
15

20

0.205

0.21

0.215

nodeslambda

M
S

E
 o

n
te

st
 s

et

Figure 4.9: MCR and MSE for differing numbers of nodes on the liver dataset. The ensemble
size is 3.

0

0.5

1 5

10

15

0.2

0.22

0.24

nets
lambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
5

10

15

0.295

0.3

0.305

0.31

0.315

nets
lambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1 5

10

15

0.14

0.15

0.16

0.17

0.18

nets
lambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
5

10

15

0.2

0.205

0.21

nets
lambda

M
S

E
 o

n
te

st
 s

et

Figure 4.10: MCR and MSE for differing numbers of networks on the liver dataset. There
are 5 nodes per net.

67

0

0.5

1
10

20
30

40

0.1

0.11

0.12

0.13

0.14

nodeslambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
10

20
30

40

0.094
0.096
0.098

0.1
0.102
0.104

nodeslambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1
10

20
30

40

0.08

0.09

0.1

nodeslambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
10

20
30

40

0.075

0.08

0.085

nodeslambda
M

S
E

 o
n

te
st

 s
et

Figure 4.11: MCR and MSE for differing numbers of nodes on the synthetic dataset. The
ensemble size is 3.

0

0.5

1
5

10
15

0.134
0.136
0.138

0.14
0.142
0.144

netslambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1

5
10

15

0.096

0.098

0.1

netslambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1
5

10
15

0.095

0.1

0.105

netslambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
5

10
15

0.076

0.078

0.08

0.082

0.084

netslambda

M
S

E
 o

n
te

st
in

g
se

t

Figure 4.12: MCR and MSE for differing numbers of nets on the synthetic dataset. There
are 5 nodes per net.

68

0

0.5

1
20

40
60

80
100

0.1

0.15

0.2

0.25

nodeslambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
20

40
60

80
100

0.1

0.15

0.2

0.25

nodeslambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1
20

4060
80

100

0.1

0.12

0.14

0.16

0.18

nodeslambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1

50

100

0.1
0.12
0.14
0.16
0.18

nodes
lambda

M
S

E
 o

n
te

st
 s

et

Figure 4.13: MCR and MSE for differing numbers of nodes on the cancer dataset. The
ensemble size is 3.

0

0.5

1
5

10

0.1

0.15

0.2

netslambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
5

10

0.1

0.15

0.2

netslambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1
5

10

0.08

0.1

0.12

0.14

0.16

netslambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
5

10

0.08

0.1

0.12

0.14

0.16

netslambda

M
S

E
 o

n
te

st
 s

et

Figure 4.14: MCR and MSE for differing numbers of nets on the cancer dataset. There are
20 nodes per net.

69

λ / λ∗ Nets Nodes MCR on Test

Liver 1 3 24 0.294
Cancer 1 10 20 0.0692
Synthetic 2

7 3 20 0.0929
Cone-Torus 0 3 60 0.1182

Table 4.2: Table of the optimal (in terms of MCR on testing set) parameter settings out of
the experiments performed, for each dataset.

the number of nodes in the individuals seems to have little effect. The dominant parameter
seems to be λ, and the number of nets seems to have a significant effect, in contrast to the
case for the Liver and Synthetic datasets. It is not clear why this should be so.

We see some odd results on the cone-torus dataset also (Figs. 4.15 and 4.16). There is a
very significant drop in MSE between 40 and 60 nodes, with increased complexity beyond this
seeming to result in slight overfitting. This significant drop however is not really reflected at
all in the MCR. The choice of λ seems to have only a minor effect. When varying the number
of nets, MCR and MSE do not seem to track each-other very closely at all. The number of
nets seems to be the dominant factor in determining the MSE, with the error increasing quite
quickly up to 10 networks. The value of λ has only a very slight effect on the MSE. However
in the MCR, the dominant factor is λ, with a large decrease in error observed as λ increases
for larger numbers of networks. The number of nets has little effect. The strange behaviour
of NCL on this dataset is something we have no explanation for, though it is probably related
to the highly over-lapping nature of the dataset.

The optimal values for each dataset from all the parameter settings tried are summarised
in Table 4.2. We can see that the character of the optimal settings varies between datasets,
with highly co-operative individuals with λ = λ∗ being preferred in the liver and cancer
datasets whereas a combination of more complex, independently trained networks was optimal
for the Cone-Torus dataset.

4.9 Conclusions

In conclusion, we have addressed the question of how to choose the λ parameter in NCL, by
investigating how the training dynamics of the algorithm are affected by this choice. We found
that for λ > λ∗ we have unstable behaviour, manifesting itself in different ways depending on
the output nodes used. This provides explanations for some previously observed phenomena,
although we still cannot characterize the exact value of λ beyond which the error will diverge
for sigmoid output nodes in the same way that we can for linear output nodes. However so
long as we choose λ ≤ λ∗ (as of course we always can as λ∗ = 1

2 (1 − 1
N

)−1 is known) we can
be assured of a stable algorithm.

We have shown that λ can be used as a convenient way to adjust the complexity of the
network without having to change the architecture, although the architecture defines the two
extremes we can achieve via adjusting λ. For λ = 0 we have a complexity equivalent to one of
the individual networks. The algorithm simply trains them independently with diversity only
introduced through the initialisation of weights, and they are then combined. For λ = λ∗ we
have complexity equivalent to a larger network, with architecture as shown in Fig. 4.8. This
value is optimal in the sense of maximal co-operation between individuals in the ensemble,
and is a limit of guaranteed stability of the algorithm. However it is not necessarily optimal
for general problems as the increased complexity co-operation allows is not always appropriate

70

0

0.5

1
20

40
60

80
100

0.1

0.15

0.2

0.25

nodeslambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1
20

4060
80

100

0.15

0.2

0.25

nodeslambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1
20

40
60

80
100

0.05

0.1

0.15

nodeslambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1

20
40

60
80

100

0.06
0.08

0.1
0.12
0.14
0.16
0.18

nodeslambda
M

S
E

 o
n

te
st

 s
et

Figure 4.15: MCR and MSE for differing numbers of nodes on the cone-torus dataset. The
ensemble size is 3.

0

0.5

1

5

10

15

0.2
0.25

0.3

netslambda

M
C

R
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1

5

10

15

0.2
0.25

0.3
0.35

netslambda

M
C

R
 o

n
te

st
 s

et

0

0.5

1

5

10

15

0.2

0.25

netslambda

M
S

E
 o

n
tr

ai
ni

ng
 s

et

0

0.5

1

5

10

15

0.2

0.25

netslambda

M
S

E
 o

n
te

st
 s

et

Figure 4.16: MCR and MSE for differing numbers of networks on the cone-torus dataset.
There are 5 nodes per net.

71

to the problem given a particular choice of number of nodes/nets. Knowing when this added
complexity is needed is an ongoing problem in pattern classification. We have also noted that
the optimisation criterion for this algorithm, MSE, does not always correspond well to the
main criterion of interest, MCR. This points out an area perhaps in need of further research.

The NCL method, as is common with decision level combination methods, results in
quite a complex classifier whose decisions are difficult to understand. This problem brings us
on to the next Chapter in which we consider an alternative combination paradigm, that of
Model Level Combination (MLC). In this paradigm we aim to return less complex combined
classifiers that still provide most of the performance benefits of decision level combination.

72

Chapter 5

Model Level Combination

One of the key problems ensemble methods face is a lack of a simple structure [93]. To
illustrate why this might be important, we take as an example the churn prediction problem
we will look at in Chapter 6. We can train a model which with some success can predict the
circumstances in which customers are likely to churn, or leave the company. If we can then
extract from this model the particular sets of circumstances in which this tends to occur,
we can take steps to make sure those circumstances happen as infrequently as possible. The
simpler the model structure is, the easier this task will be.

In order to extract this information, given a single model one can look at its structure
and try to determine the most important factors in its classification process. With some
models this is harder to achieve than others, for example decision trees generally have a
simpler structure than neural networks. However when we begin combining models it usually
becomes very difficult indeed, regardless of individual complexity. With multiple models each
arriving at decisions in different ways, and a final decision reached via a possibly quite complex
function of these individual decisions, the classification system is in danger of becoming a
’black box’. In some applications, it is crucial that this does not happen - yet the performance
gains of combination are important too. This brings us to the question, is there a way of
gaining the benefit of combining classifiers while retaining a classifier witha relatively simple
structure? In this section we explore one possible answer to this, in the use of a model level
combination paradigm.

Most methods in the literature follow a decision level combination paradigm. Given N
classifiers giving support µi,j to class ωj for i = 1, ..., N , the ensemble support is fj(µ1,j, ..., µN,j).
This is entirely independent of the model used to produce the individual decisions, and simply
defines a combination function that maps the ensemble decisions/supports to a final decision.
Many examples of this were reviewed in Chapter 2, the simplest and most used of which is
probably the (weighted) majority vote.

An alternative paradigm is Model Level Combination (MLC). Each particular method
used for classification builds a model with a certain structural representation. For example,
a decision tree model is represented structurally by a hierarchy of splits of the input space,
whereas a neural network model is represented by a number of neurons and the connections
between them. In MLC schemes we seek to combine the detailed structure of multiple models
into a single model of the same (or similar) structure, using information from the whole
ensemble to build an optimal single model.

Both paradigms have strengths and weaknesses. Decision level combination schemes are
much more general and usually relatively simple, being model independent. This combined
with high empirically proven performance potential has led most research in classifier com-
bination to focus on this paradigm. In contrast, model level combination is by its nature

73

tied to a specific model structure, and so any combination method will be restricted to only
ensembles of a particular base classifier, or possibly base classifiers with conceptually similar
models. In addition, those model level combination methods found in the literature (see
Chapter 2) struggle to match the performance of the best decision level methods. The main
attraction of MLC methods, and the reason to consider them, are the comparatively low
memory requirements and simplicity of the single model they produce.

To be useful in a model level combination scheme, the following properties of the individual
models are desirable.

• Decomposability: We must be able to decompose the model into components which
we can relate to similar components in other individuals. This gives the potential for
the combining of components, and therefore information, from multiple models into a
single model in some way.

• Simple structure: This is important in two ways. Firstly, one of the motivations for
choosing a MLC method is to gain an simple combined model. If the model is complex,
even though it is a single model, then we have not really achieved that goal. Secondly,
as the combination method is model dependant, we need a good understanding of how
the decision is reached from the model in order to combine components, or structure,
of multiple models sensibly.

• Flexibility: The model class must be flexible enough that it is possible to achieve good
performance with some single model of that type. Even though we are combining
information from multiple models, we output only a single model as the combined
classifier and so are restricted to only those mappings possible within the chosen model
class.

The model class we will look at in the following MLC methods are decision trees, as these
fit well to the above requirements. With regards to the first requirement, decision trees have
a highly decomposable structure and can be decomposed in a number of ways. Firstly, a
decision tree can always be viewed in terms of its terminal nodes (or leaves). The decision
region defined by the tree can be represented by a union of these leaves - disjoint, labelled
hyperboxes covering the input space - giving a decomposition into a collection of labeled
hyper-boxes. These can equivalently be considered as rules. Secondly, a subtree rooted at a
node can be considered as a separate entity, and can be pruned or grafted onto a similar node
in another tree. This provides a way of decomposing a tree into components concerned with
classification only over certain subsets of the space. Finally, the decision surface of a decision
tree is a patching together of multiple planar surfaces, thus a tree could also be decomposed
into a number of hyper-planes defining the decision surface. This is illustrated in 2-D in
Fig. 5.1, where the leaves of the tree can be seen as distinct rectangles, or alternately the
lines along which splits have been made can be seen, some of which comprise the decision
boundary.

One of the great attractions of decision trees is their simple, understandable structure.
Decisions are easy to follow as the result of a sequence of simple questions in a tree-like
hierarchy, thus satisfying the second requirement. Computational requirements are generally
small, and flexibility poses no problem given that a decision tree is a universal approximator
- any decision surface can be approximated to arbitrary precision by a sufficiently large tree.
Many well-performing ensemble methods are based on, or work well with, the combination of
large numbers of decision trees [5]. This implies that an ensemble of trees can contain useful
diversity. The problem is that in combining multiple trees at the decision level, one of their
major attractive properties (simplicity of structure) is lost. In many cases the performance

74

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Feature 1
F

ea
tu

re
 2

Figure 5.1: An illustration of the individual leaves into which a tree can be decomposed

gain is worthwhile, but in some applications a lesser gain may be acceptable if we can retain a
simple structure. This makes decision tree ensembles an interesting target for MLC schemes.

A further motivation is the fact that any linear combination of decision trees produces
decision regions which are themselves defined by a disjoint collection of labelled hyperboxes.
This means that any tree ensemble can be represented exactly by a single, albeit more com-
plex, decision tree. This gives hope of combining individuals from a tree ensemble into a single
model with most of the performance of the ensemble. Indeed, if we could build this tree from
the ensemble directly we could, via standard pruning procedures, simplify the model until we
reach some desired performance/complexity tradeoff.

In the next sections we will explore some possibilities for the model level combination of
trees. The first, natural idea we will look at is the construction of the equivalent single tree
for bagging ensembles, and prunings of this tree. We will focus on the complexity of this
single tree representation and the extent to which it can be pruned while retaining most of the
performance gain of bagging. Following that, and motivated by some observations regarding
the first method, we will introduce a MLC method for decision trees in which a single tree is
built by carrying out combination and pruning of the individual trees simultaneously. This
is done through a generalisation of bottom-up pruning to allow, in addition to pruning a
node to a leaf or leaving the tree unchanged, the option to graft onto a node in one tree the
subtree defined on that node by a second tree in the ensemble. The final possibility we will
look at is the combination of hyperboxes defined by a tree ensemble using the GFMM [46]
classification framework.

5.1 The Bagging-equivalent Tree

Bagging [12] is one of the simpler implementations of the more general Random Forests (RF)
method, as described in Section 2.3. A number of trees are generated via bootstrap resampling
of the training data, and their decisions combined by majority vote. The ensemble decision
for bagging, or indeed any tree ensemble combined by (weighted) vote, could be represented
by an equivalent single tree. The challenge is in constructing this tree in such a way that
the structure of the single tree represents a sensible interpretation of the ensemble decision.
This is algorithmically more difficult for some tree ensembles than others, but for bagging is
relatively simple. We will illustrate the method by constructing the bagging-equivalent tree

75

and exploring its properties.

5.1.1 Building the Tree

The most direct way of building a single tree that is equivalent to a voted tree ensemble
is to start with one tree, choose a second tree from the ensemble, and graft onto each leaf
node of the first the subtree defined on that node by the second. One then has a tree whose
leaf nodes are all the hyperboxes defined by overlaps between leaf nodes of the two trees.
For each leaf of the tree thus created, we keep track of the label (weighted in the case of
weighted vote) that each tree would assign within that hyperbox. We then take this tree,
and repeat the grafting using a third tree. Iterating this process over all trees in the ensemble,
we gain a tree whose leaves define all overlaps of the individuals in the ensemble, together
with a vector of class supports for each. Associating with each leaf the label defined by the
majority class in its vector of supports, and pruning any now-unnecessary splits, results in a
single tree giving equivalent decisions to the bagged ensemble. This process is summarised
in pseudocode below.

Build N trees Tree_1, ..., Tree_N, diversified via bootstrap

resampling.

Tree=Tree_1

Votes=votes for each class in leaf nodes

for i=2:N

nleaves=number of leaves in Tree;

for j=1:nleaves

Find node in Tree_i such that leaf j is fully contained

Generate subtree defined on node j by tree i

Graft subtree onto leaf j in Tree

Update votes

end

end

Prune unnecessary splits to give final tree

This representation is useful, but it has serious problems. The main problem is that the
final tree, and thus the interpretation of the decision making process of the tree ensemble,
is dependent on the ordering of the trees in the above algorithm. All information from trees
later in the order appears lower in the final tree. An additional negative aspect of this is that
the tree ends up larger than it needs to be - the representation is not efficient. As the aim
in doing MLC is foremost to gain an efficient, simple representation of the bagged ensemble,
this is not good.

There is, however, a way of fixing this order-dependance. A decision tree defines a set of
disjoint rules through its leaves. An ensemble of trees thus defines a larger set of overlapping
rules, the leaves of the ensemble equivalent tree as described above. The decision level
information provided by the ensemble of trees can therefore be represented by a number
of disjoint hyperboxes representing all the possible overlaps of these rules, together with a

76

vector for each hyperbox describing the supports for each class given by the rules whose
overlap defines that hyperbox.

More formally, the ith tree defines a set of hyperboxes Hi which cover the space, for
i = 1 : N . We can construct a set O = {M1∩M2∩...∩MN |M1 ∈ H1,M2 ∈ H2, ...,MN ∈ HN}.
Then Ō = O/{} will be the set of all non-empty overlaps of hyperboxes taken one from each
of the Hi. Associated with each box in Ō is a vector v whose component vi =

∑N
j=1 Iyj=ωi

,
where Icond = 1 if cond is true, and zero otherwise, and the yj are the labels assigned to the
hyperboxes whose overlap gave that box.

Thus given this initial tree attempt Tin we can, through its leaf node decomposition,
generate a set of hyperboxes with associated, possibly weighted votes for each class to give a
labeling of that box. We will build a new tree using this hyperbox collection as the training
data. When evaluating potential splits, only values corresponding to edges of hyperboxes are
considered. The split criterion used may be any of the standard criteria (Gini, entropy, etc),
we simply used the criterion used to build the initial ensemble trees. When calculating the
criterion, each hyperbox is considered as a member of class i with weight given by the weight
of ensemble trees labelling that hyperbox as class i. Each hyperbox is also weighted by its
volume, thus for example calculation of the entropy criterion would be

∑

i

pi,L log pi,L +
∑

i

pi,R log pi,R (5.1)

with

pi,L =

∑

j∈L vjwi,j
∑

j∈L vj
(5.2)

and similarly for pi,R. vj denotes the volume of box j, and wi,j the votes for class i in box
j. The index j runs over all boxes to the left (right) of the split being considered. When all
hyperboxes within a node have the same majority class label, a leaf is formed. Pseudo-code
for this is below.

Treein=ensemble tree as generated above

boxes=leafdecomposition(treein)

treerec(boxes)

function treerec(boxin)

if (all boxes have same label)

create leaf

return

end nbox=number of boxes in node for d=1:ndim

splits=sort(edges of boxes along d,’ascending’)

nsplits=number of potential splits

for s=1:nsplits

score(d,s)=criterion(splits(s))

end

end choose split according to max(scores) create internal node

L=hyperboxes to left of split R=hyperboxes to right of split (note,

some boxes may be split in two to create a box in both L and R)

treerec(L) treerec(R)

77

Figure 5.2: A sample of hyperboxes defined by overlaps of leaves in a 20-tree ensemble

In this way, an ensemble-equivalent tree is generated without the problems inherent in
the first method. Information from all trees is used at all levels independent of the order
used in building the initial tree, and the tree built in this way is significantly more compact
while giving the same decision regions. This tree can then be pruned to give a simpler tree
as desired, as it is likely to be large.

In the case of few-dimensional datasets this approach works fine, however in higher dimen-
sional spaces the ensemble trees have freedom to overlap in many more ways. This results
in the size of the ensemble tree becoming exponentially large and quite rapidly becoming
computationally intractable. A solution to this is to sample from the leaves of the combined
tree. Instead of building the full ensemble tree in order to feed the hyperboxes corresponding
to every possible overlap into the second tree-building stage, we sample a manageable num-
ber of the overlaps and use these to build the tree. Each sampled hyperbox corresponds to
an overlap of N leaf nodes, one from each ensemble tree. As each leaf is associated with a
binary string defining the path taken to that leaf from the root node of its parent tree, we
can identify each overlap by a unique binary string of some length by concatenating these
smaller strings. A monte-carlo technique is used to generate strings sampled approximately
uniformly from this distribution. Such a sampling for the 2-D synthetic dataset can be seen
in Fig. 5.2.

A further option that presents itself when building a tree from hyperboxes defined by
a tree ensemble, is to pre-prune the tree by building it only on hyperboxes for which the
labelling defined by the ensemble is most certain (with certainty defined by a threshold on
the number (or weight) of ensemble trees agreeing on the majority label of the hyperbox).
This approach could be thought of as a form of data-editing. It is an idea we will also exploit
later in Section 5.3.

In the following pages we will look empirically at the complexity and performance of
(approximately) bagging-equivalent trees generated as described above, and how they behave
under various levels of pruning.

78

Dataset Examples Features Classes

Liver 345 6 2
Cancer 569 30 2
Synthetic 250 2 2
Cone-Torus 400 2 3
Diabetes 768 8 2

Table 5.1: UCI datasets used in empirical work

5.1.2 Results and Discussion

In the previous section we have described the construction of a tree equivalent to a voted tree
ensemble, and also an approximate method based on sampling leaves of the ensemble tree for
datasets for which it is too complex to calculate the full ensemble tree. We will apply this
to generate the bagging-equivalent tree; the two questions we will be most interested in the
empirical work to follow are:

• The extent to which the full bagged tree can be pruned while retaining most of the
combined performance;

• The performance of the approximate bagging tree, and its pruning. properties

We have taken 5 datasets from the UCI database for the empirical investigation of this
method. The datasets are described more fully in Appendix B, in brief the numbers of
examples, features and classes are shown in Table 5.1.

The general methodology used to estimate generalisation error has been 10x10-fold cross-
validation, any exceptions to this will be noted in the text. The aim of the MLC method
is to retain some of the performance gains of combination methods (in this case bagging),
while producing only a single tree as the combined model. Thus, it is natural in the empirical
work to follow to compare our method to single trees (both pruned and unpruned) on the
one hand, and decision level tree ensembles on the other. All values pertaining to bagging
are from a 100-tree ensemble. Pruned tree results are using error-based pruning.

In order to investigate behaviour of the full ensemble tree under pruning, we applied a
very simplistic pruning method in which we prune all nodes below a certain volume threshold.
This is to see how performance changes as we progressively remove fine structure from the
tree. We also applied pessimistic pruning to see behaviour with a practical pruning method.
In Figs. 5.3(a) and 5.4(a), performance against pruning (shown as approximate fraction of
leaf nodes retained) is plotted, for the 2-D datasets (synthetic and cone-torus). Performance
of pessimistic pruning is shown as a horizontal line. Very little performance is lost in the
pruning, but these datasets seem not to be conducive to bagging, so no great conclusions
can be drawn from this. Performance of bagging itself, and of the pruned bagging equivalent
tree, is not significantly different from a single pruned tree on these datasets, and if anything
is worse.

The complexity of the resulting trees is shown in Figs. 5.3(b) and 5.4(b), to the right
of the corresponding performance plots. As can be seen, performance similar to bagging is
retained right down to very small tree sizes, but as bagging shows no significant improvement
over a single pruned tree on this dataset, this is not particularly exciting. Pessimistic pruning
of the bagged tree seems to result in smaller trees than a single pruned tree built directly on
the data, a fact we found both interesting and surprising.

79

0.5 0.6 0.7 0.8 0.9 1
0.162

0.164

0.166

0.168

0.17

0.172

0.174

0.176

0.178

Approx. fraction of leaves pruned

C
V

 e
rr

or
 r

at
e

Full bagging tree on synthetic dataset

pruned baggtr
pess bagtr
single
bagg x40

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

Approx. fraction of leaves pruned

N
um

be
r

of
 n

od
es

Full bagging tree on synthetic dataset

pruned baggtr
pess bagtr
single unp
single pr

Figure 5.3: Performance and complexity of the pruned and unpruned bagging-equivalent tree
for synthetic dataset

0.5 0.6 0.7 0.8 0.9 1
0.15

0.152

0.154

0.156

0.158

0.16

0.162

0.164

0.166

0.168

Approx. fraction of leaves pruned

C
V

 e
rr

or
 r

at
e

Full bagging tree on cone−torus dataset

pruned baggtr
pess bagtr
single
bagg x40

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

500

Approx. fraction of leaves pruned

N
um

be
r

of
 n

od
es

Full bagging tree on cone−torus dataset

pruned baggtr
pess bagtr
single unp
single pr

Figure 5.4: Performance and complexity of the pruned and unpruned bagging-equivalent tree
for cone-torus dataset

80

0 0.2 0.4 0.6 0.8 1

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

Threshold

C
V

 e
rr

or
 r

at
e

Approximate bagging trees on synthetic dataset

unpr
pess
errb
bag
sing

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Threshold

N
um

be
r

of
 N

od
es

Approximate bagging trees on synthetic dataset

unpr
pess
errb
sing,unp
sing,pr

Figure 5.5: Pruned and unpruned trees built on hyperbox samples for synthetic dataset,
against threshold

It may be more useful to compare pruned bagging equivalent trees on the three real-world
datasets, for which bagging shows a greater advantage. However, for these datasets we must
use the sampling approach described earlier, to build an approximation to the bagged tree.

We have built trees on both unpruned samples of leaves from the bagging tree, and on pre-
pruned samples from which less robustly labeled hyperboxes have been removed. Removal
is decided by a threshold on the fraction of trees agreeing on the majority label, or in other
words the margin with which the hyperbox is labeled. The number of samples taken before
thresholding was 100000, and thresholds of 0, 0.6, 0.7, 0.8 and 0.9 were used. The actual
number of samples generated varies, as duplicates must be removed and then further samples
may be pruned depending on the threshold chosen. This is particularly true on the 2-D
datasets, where the number of samples is actually larger than the number of leaves of the full
bagging tree, so naturally many duplicates are generated and we sample almost the entire
tree.

For each dataset considered, performance of trees built on samples thresholded at [0,0.6,0.7,0.8,0.9]
are plotted. In addition, performance after post-pruning using pessimistic pruning and error-
based pruning is shown. Fainter horizontal lines corresponding to bagging and single (pruned)
tree performance are plotted for comparison purposes. These plots can be seen in the sequence
of figures Figs. 5.5(a), 5.6(a), 5.7(a), 5.8(a), 5.9(a) (the left-hand plots), with the correspond-
ing complexities plotted in the right-hand plots, Figs. 5.5(b), 5.6(b), 5.7(b), 5.8(b), 5.9(b).

When pre-pruning only is used, performance is generally between bagged and single tree
performance. Adding an additional post-pruning stage gives variable results, only for the
2-D datasets showing a consistent improvement. On the higher-dimensional datasets, post-
pruning increases error rate quite markedly, to slightly above single tree levels. The resulting
trees are however extremely compact, significantly more so than single pruned trees. Another
feature worth commenting on is the drop in performance on the cone-torus dataset at high
thresholds. This is due to the multi-class nature of the dataset - as the number of classes
increases, fewer hyperboxes will be labelled with extremely high majority and slightly lower
thresholds will be more appropriate, to ensure an adequate number of samples are retained.
In these problems a rank-based thresholding may be more appropriate.

Looking at the complexity of the trees, we see that trees built on even quite heavily
pre-pruned samples are still significantly larger than single pruned trees, although they do
perform better. Applying the additional post-pruning stage worsens performance to a level
a little worse than a single tree, but we do gain an advantage in complexity - these trees are

81

0 0.2 0.4 0.6 0.8 1
0.15

0.155

0.16

0.165

0.17

0.175

0.18

Threshold

C
V

 e
rr

or
 r

at
e

Approximate bagging trees on cone−torus dataset

unpr
pess
errb
bag
sing

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

Threshold

N
um

be
r

of
 N

od
es

Approximate bagging trees on cone−torus dataset

unpr
pess
errb
sing,unp
sing,pr

Figure 5.6: Pruned and unpruned trees built on hyperbox samples for cone-torus dataset,
against threshold

0 0.2 0.4 0.6 0.8 1
0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

Threshold

C
V

 e
rr

or
 r

at
e

Approximate bagging trees on diabetes dataset

unpr
pess
errb
bag
sing

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

500

Threshold

N
um

be
r

of
 N

od
es

Approximate bagging trees on diabetes dataset

unpr
pess
errb
sing,unp
sing,pr

Figure 5.7: Pruned and unpruned trees built on hyperbox samples for diabetes dataset,
against threshold

0 0.2 0.4 0.6 0.8 1

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Threshold

C
V

 e
rr

or
 r

at
e

Approximate bagging trees on liver dataset

unpr
pess
errb
bag
sing

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Threshold

N
um

be
r

of
 N

od
es

Approximate bagging trees on liver dataset

unpr
pess
errb
sing,unp
sing,pr

Figure 5.8: Pruned and unpruned trees built on hyperbox samples for liver dataset, against
threshold

82

0 0.2 0.4 0.6 0.8 1
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Threshold

C
V

 e
rr

or
 r

at
e

Approximate bagging trees on cancer dataset

unpr
pess
errb
bag
sing

0.65 0.7 0.75 0.8 0.85 0.9
0

20

40

60

80

100

120

140

160

180

200

Threshold

N
um

be
r

of
 N

od
es

Approximate bagging trees on cancer dataset

unpr
pess
errb
sing,unp
sing,pr

Figure 5.9: Pruned and unpruned trees built on hyperbox samples for cancer dataset, against
threshold

performance complexity
BT unpr BT pesspr bagg sing (pr) BT unpr BT pess sing (pr)

cancer 0.0550 0.0631 0.0425 0.0633 2513 61 31
liver 0.3077 0.3315 0.2851 0.338 1155 38.6 115
diabetes 0.2495 0.2452 0.2441 0.257 2225 35 135
cone-torus 0.1635 0.1680 0.1596 0.1628 142.6 29.8 73
synthetic 0.1760 0.1652 0.1792 0.1524 75.8 9 5

Table 5.2: Summary of performance and complexity of approximate bagging trees for a
threshold of 0.8

extremely compact, significantly more so than a single pruned tree. In fact, they seem to be
over-pruned, and application of a less harsh post-pruning may be more appropriate for these
trees.

We have summarised the performance and complexity characteristics of bagging trees for
an example threshold of 0.8 in Table 5.2. It is a little easier to gather from this the most
important properties of trees built in this way. What we can see is that while the unpruned
bagged tree is still very large, it seems to prune well, with very compact trees produced.
Performance of the pruned bagged tree is little different from a single pruned tree though -
only in the larger, unpruned bagging tree do we see gains. We do not seem to gain much of
the performance gains of bagging, but we do see improvement in complexity.

This is an interesting method for building a classifier which combines the performance
benefits of classifier ensembles with the simplicity of a single model. It is flexible and relatively
simple, although it is computationally expensive (even prohibitive) to build the full tree
given a large ensemble and/or high dimensionality of the data. However once the model is
generated, it is quick to execute. We can extend the applicability of the method to higher
dimensional datasets by approximating the bagging equivalent tree through sampling its
leaves. There seems to be potential to generate quite compact models via a combination
of pre-pruning and post-pruning, but at a cost in performance compared to larger trees.
Larger trees retain some of the performance benefits of bagging, but do not provide the
desired simplicity. Future work could extend this method to other tree ensembles - the basic
approach would be the same, but algorithmically some methods could be quite complex.

83

The cause of the computational problems faced by this brute force method is that we
build the bagged tree in all its initially exponential complexity, and prune only in subsequent
stages. For large ensembles coupled with high dimensionalities, it becomes too much. We
can get around this with some success by sampling from the overlaps defined by the bagging
ensemble, but this sampling becomes sparser, and therefore less reliable, as the dimensionality
of the space and ensemble size increase. This is possibly the reason for the relatively poor
pruning performance when we leave 2-D. Future work could allow cardinality of hyperboxes
to be considered in tree generation as well as volume, as in high dimensions large hyperboxes
with few points in are more common.

The next method we will look at performs pruning and combination simultaneously within
the same framework, in a generalisation of bottom up pruning. The aim is to combine the
structure of multiple trees in a way which avoids the explosion of complexity inherent in this
method.

5.2 A Generalisation of Bottom-up Pruning to Tree Ensem-

bles

When pruning a decision tree, one essentially has a measure of the ’quality’ of a subtree - that
is, some pruning criterion combining both the accuracy and some measure of the complexity
of a subtree. In pruning the tree, one makes comparisons at a sequence of nodes between
the subtree rooted at that node (we will call this the primary subtree) and the ’subtree’
which corresponds to a leaf at that node. If the pruning criterion is greater for the leaf,
that node is pruned to a leaf, otherwise the subtree rooted at that node is left intact. This
sequence can begin at leaf nodes and progress up the tree to the root node, or vice versa,
in so called ’bottom-up’ or ’top-down’ pruning schemes respectively. We will review some
popular examples of these later.

Now, consider the case where we have an ensemble of trees, diversified in some way. For
any node in a given tree, in addition to the primary subtree, each other tree also defines some
subtree on that node (we will call these secondary subtrees). When pruning a tree, instead of
using a pruning criterion to decide only between the primary subtree at that node and a leaf,
it would be quite natural to allow the secondary subtrees defined on that node by other trees
in the ensemble to be considered too. We can then either prune to a leaf, leave the existing
subtree intact, or replace it with the best of these secondary subtrees. In this section we will
introduce a generalisation of bottom-up pruning to ensembles of trees, which we will call tree
merging. In this, we extend pruning to allow the operation of grafting a subtree from one
tree onto another tree, in addition to the usual operations of pruning a subtree and leaving
a subtree as is. The grafting operation is illustrated diagramatically in Fig. 5.10

As we saw earlier, the decision boundary of a voted tree ensemble is itself a complex
grafting together of subtrees of the trees in the ensemble. This is part of the motivation for
the method, together with its intuitive concept of grafting the best parts of multiple trees
together to create a better-performing single tree. We would like to create a grafting of the
ensemble trees that, while much less complex than that equivalent to the full ensemble, is
still well-performing . The difficulty is in the criterion to be used to identify good subtrees,
and there are plentiful options - many pruning criteria in the literature for pruning single
trees could also be used within this combinatorial framework. It may also be possible to
create better criteria with the multiple-tree nature of this method specifically in mind. We
will briefly review the more popular tree pruning criteria below.

84

Figure 5.10: Illustration of the grafting operation

5.2.1 Pruning Criteria

Before embarking on the criteria themselves, we will first introduce some notation for use
in our review. We will use t to denote a node, with n(t) the number of samples reaching
that node, and e(t),r(t) will denote number of errors and error rate at a node, respectively.
Additionally, Tt will denote the subtree rooted at t, and |Tt| its leaf count.

Cost-complexity Pruning

This method was developed by Breiman et al [17], and is used in the CART tree-growing
program. Define a value at each node given by:

α =
r(t) − r(Tt)

|Tt| − 1
(5.3)

which expresses the increace in error per node in pruning the subtree Tt rooted at node t to
a leaf. r(Tt) denotes the error rate of the subtree. A sequence of trees is generated, each
associated with a value of α. This can either be done by iteratively removing the node(s)
whose α is minimum, or if only a certain maximum number of candidate trees are desired,
by choosing a sequence of values αi and, for each value, pruning all nodes for which α < αi.

Once this sequence is generated, the ’best’ tree is chosen via either pruning set accuracy
or cross-validation accuracy, as follows. Firstly, find all trees in the sequence with testset/CV
error within one standard error (S.E) of the minimum error, and then choose the smallest of
these.

A variant of this removes the 1 S.E requirement, and simply chooses the tree with the
lowest error rate. Experimental evidence [94] suggests that this generally performs better, as
the 1 S.E method tends to overprune.

Reduced Error Pruning

A relatively simple and intuitive method of pruning using a pruning set, introduced by Quin-
lan [98]. Reduced Error Pruning (REP) prunes from the bottom up. At a node, if pruning

85

that node to a leaf would not reduce the pruning set accuracy, that node is pruned - otherwise
it is retained. The method has been found to perform especially well in terms of tree size
[38]. An additional attraction is that it returns the smallest version of the optimal pruning
of the tree in terms of pruning set error, as was proven in [38].

Pessimistic Pruning

The pessimistic pruning criterion [98] penalises complexity of a subtree in terms of the number
of leaves in the subtree. The form of the penalty, a fixed 0.5 per leaf, is motivated as a binomial
distribution continuity correction, and a leaf is pruned unless the criterion for the subtree is
more than 1 S.E below that for the leaf as follows.

Let e∗(Tt) = e(Tt)+ 1
2 |Tt|, and calculate the final criterion value for the subtree Tt rooted

at t by adding 1 S.E:

c(Tt) = e∗(Tt) +

√

e∗(Tt)(n(t) − e∗(Tt))

n(t)
(5.4)

the pruning criterion for the leaf is:

c(t) =
1

2
+ et (5.5)

and pruning occurs if c(t) < c(Tt). The method has some theoretical grounding, but as
has been pointed out by various authors this grounding is very weak. However, empirical
performance is good, and the lack of requirement of a separate pruning set or user defined
parameter is a distinct advantage. Further theoretical motivation for the form of the criterion,
in the form of a link to the minimum error criterion, can be found immediately after the review
section.

Critical Value Pruning

When a tree is grown, a criterion γ is calculated for each potential split at a node t in order
to find the best split giving γmax(t) . The Gini index and the entropy are examples of split
criteria that may be used, and there are many others. In critical value pruning [89], once
the tree is grown a critical value γc of the split criterion is chosen (by the user), and the tree
is traversed in bottom up fashion, pruning nodes until a node is reached for which the split
criterion γmax(t) > γc , at which point pruning of that branch stops. The choice of critical
value controls the degree of pruning, with higher values giving more heavily pruned trees.

This method is very similar to early stopping criteria used while building a tree, the
difference being a subtree rooted at node t is retained provided one of its child nodes τ
satisfies γmax(τ) > γc, regardless of whether the split at t satisfies it or not. The method is
almost entirely ad hoc, and performance depends heavily on a wise choice of γc.

Minimum Error Pruning

This is another bottom-up method, developed by Niblett and Bratko [92]. For a k class
problem, define the expected probability of objects of class i reaching node t as

pi(t) =
ni(t) + paim

n(t) + m
(5.6)

where pai is the a priori probability of class i. This represents a weighted average of the
prior probability of class i and its observed frequency in node t. The value m determines the

86

relative importance of the prior in this average; for m = 0, pi is estimated directly from the
class frequency in node t. For simplicity, m is usually assumed equal for all classes.

These probabilities result in an expected error at a node of

E(t) = mini{1 − pi(t)} = mini

{

n(t) − ni(t) + (1 − pai)m

n(t) + m

}

(5.7)

When deciding whether to prune at a node t, the weighted mean of this error is also
computed over each leaf in the subtree |Tt|, to give an expected error for the subtree E(Tt) =
∑

τ∈Tt
E(τ). The node is pruned if E(t) < E(Tt). This method has a nice theoretical

motiavtion, even though it introduces a rather arbitrary (but quite intuitive) shifting of the
class probabilities towards the priors. An advantage is the lack of a pruning set requirement,
but performance depends on a correct setting of m. The method can also be shown (see end
of review section) to reduce to pessimistic pruning under certain conditions.

Error-based Pruning

A relative of pessimistic pruning, this is another criterion developed by Quinlan [98] and is
used in the C4.5 tree-building package. A confidence interval [LCF (t), UCF (t)] is calculated
for the posterior probability of error in node t. The upper confidence limit, which is defined

by P
(

e(t)
n(t) ≤ UCF

)

= CF , is then used as a pessimistic estimate of the error rate of a leaf,

so e(t) = n(t)UCF (t) and for the subtree Tt, e(Tt) =
∑

τ∈Tt
n(τ)UCF (τ). How pessimistic the

estimate is (and therefore how heavy the pruning is) is controlled by choice of the confidence
factor CF. Higher CF gives heavier pruning.

The upper confidence limit UCF is calculated assuming the training samples covered
by node t are a statistical sample, and that the errors are distributed binomially. While the
validity of these assumptions is dubious, it does allow the limit to be calculated approximately.
This can be done in a number of ways, the easiest (though not the most accurate) probably
being via the normal approximation to a binomial distribution. The method shows very
solid empirical performance [38]. Similarly to minimum error pruning, advantages are its
grounding in theory and independence of pruning set.

Other Criteria

There are many other possibilities, for example the criterion defined in [63]. When considering
a node with a depth of d and which is the root of a subtree of size N , this criterion is a function
of the VC dimension of a subtree with size N , and the VC dimension of the set of paths to
a node of depth d. An error bound is also given for this criterion. Another theoretically
grounded method due to Jensen can be found in [61], in which tree induction and pruning
are expressed within a multiple comparison framework [60]. Bonferroni adjustments are used
to take into account (approximately) the number of comparisons that have been made while
generating a subtree, in order to properly compare the error rate of the subtree (which is a
maximal value of multiple alternatives) to that of a leaf.

The minimum description length (MDL) is used in [100] to prune a tree such that the
data, using the representation or ’code’ defined by the tree, can be encoded using the minimal
amount of information. Another example of an MDL-based method can be found in [87].

This is by no means a complete survey, there is a vast literature on the subject of pruning
decision trees. The above are just some of the more popular, or those which seem to have
particular potential in the multiple tree context.

To be suitable within our tree-merging framework, a pruning criterion needs to be a local
property of a subtree on a node. This is because we must compare subtrees at a node outside

87

of the context of their parent trees. Of those reviewed, the minimum error, pessimistic, and
error-based pruning criteria could all be used, whereas the critical value and cost-complexity
methods could not. Reduced error pruning could be used, but would probably work poorly
as, given subtrees from an ensemble of trees to choose from, it is likely that overfitting of
the pruning set would occur. Criteria based on MDL, multiple comparison analysis and VC
dimension may also potentially be suitable.

The criterion we chose to implement in our initial investigation of this method is pes-
simistic pruning, as it is a simple, intuitive and ’self-sufficient’ criterion with solid perfor-
mance. It does not depend on the presence of a pruning set, nor does it rely on a suitable
choice of some parameter by the user. The motivational force behind MLC methods is sim-
plicity, to which these properties match well. Future work will investigate other criteria. The
multiple comparison treatment of Jensen mentioned above [61] may provide useful possibili-
ties, if the additional comparisons introduced by the multiple tree context can be accounted
for within the same framework.

Additionally, a small modification to pessimistic pruning is proposed. This modification
attempts to correct for and take advantage of the multiple-tree nature of our method, as
follows. Given N trees, with tree i defining a subtree Tt,i at node t, calculate the corresponding
scores s(t) and s(Tt,i) according to the pessimistic pruning criterion. However, instead of
simply choosing whichever of the subtrees/leaf scores highest, we calculate the mean subtree
score s = 1

N

∑

i s(Tt,i) and prune to a leaf if s ≤ s(t). Otherwise, the subtree with highest
s(Tt,i) is chosen. This adjusts for the bias introduced by comparing the maximum of multiple
subtree values to just a single value for the leaf. A similar modification could be applied to
other criteria reviewed above too, in particular the minimum error and error-based criteria.

As an aside, there is an interesting similarity between pessimistic pruning and minimum
error pruning under certain conditions. Recall the expected error of a leaf at node t for
minimum error pruning is

E(t) = mini {1 − pi(t)} = mini

{

n(t) − ni(t) + (1 − pai)m

n(t) + m

}

(5.8)

Let us assume the priors are not so unbalanced, and m so high, that the class giving minimum
expected error is actually different to the majority class at the node. Then we have

E(t) =
e(t) + (1 − pa(t))m

n(t) + m
(5.9)

where pa(t) is the prior probability of the majority class at node t. The expected error of the
subtree is given by the weighted sum

E(Tt) =
∑

τ∈Tt

(

e(τ) + (1 − pa(τ))m

n(τ) + m

)

n(τ)

n(t)
(5.10)

If we assume the n(τ) are approximately equal, i.e. all leaves of the subtree have roughly

the same number of examples in, then using n(τ) = n(t)
|Tt|

, choosing m = 1
2(1 − pa(t)) and

simplifying we have

E(Tt) =
e(Tt)

n(t) + m|Tt|
+

1
2 |Tt|

n(t) + m|Tt|
(5.11)

In the domain n(t) >> |Tt|, we thus have

E(t) ≈ α

(

e(t) +
1

2

)

(5.12)

88

and

E(Tt) ≈ α

(

e(Tt) +
1

2
|Tt|

)

(5.13)

where α = 1
n(t) .

Under these assumptions, with a specific choice of m we recover the pessimistic pruning
criterion, i.e assuming examples are spread relatively evenly over leaves of the subtree, and
that n(t) is large compared to the number of leaves of the subtree.

Within the pessimistic pruning procedure, a subtree is not retained at a node unless it
is one S.E better than a leaf according to this criterion. As this requirement becomes more
stringent as n(t) decreaces, it can be thought of as protecting against the regime in which
the assumption of n(t) >> |Tt| is especially poor, by causing pruning to be much more
conservative for small n(t). Thus pessimistic pruning can be considered to be a derivative
method of minimum error pruning in which the simplifying assumptions above are made.
Naturally these assumptions will have varying validity on a given problem, and sometimes
will not hold, but it is nonetheless an interesting link and alternative motivation of the form
of the criterion.

5.2.2 Generalised Pruning Method

Conceptually this extension of pruning to include grafting of subtrees seems intuitive, however
it is not immediately obvious how it is best done algorithmically. The order in which we choose
nodes from the ensemble will affect the subtrees defined on a given node by the other trees
in the ensemble, by affecting the extent to which they have been pruned. The approach we
have chosen is a bottom-up pruning, in which we order nodes according to the volume of
space covered (or alternatively training points contained, with volume used as a secondary
ordering if points contained is tied) regardless of which tree they are within. Pruning then
proceeds from the bottom up in terms of smallest to largest node. This produces the same
tree every time, and ensures each tree is pruned at roughly the same rate with all trees
treated equally. It is a true generalisation of bottom-up pruning to an ensemble of trees, in
that the steps thus carried out by the algorithm are, given a single input tree, precisely those
that would be carried out in a standard bottom-up pruning algorithm. The method can
be computationally expensive, but not unreasonably so unless a very large ensemble is used.
Compared to the previous method, computational requirements are vastly reduced due to the
pruning criterion regulating the complexity during combination, and no untoward problems
arise as dimensionality becomes large.

We can visualise this method as a simultaneous bottom-up pruning of all trees in the
ensemble, sometimes taking a pruned subtree from some other tree in the ensemble when it
fits better (according to the pruning criterion) to the present structure of the tree. The best
tree generated in this way is finally chosen when the pruning reaches the common root node
for all trees. We can illustrate this grafting process by looking at an example of an initial
ensemble and final tree for diversification using random bases. As each tree is built on a
different basis, it is easy to see the areas of the input space in which structure has been taken
from different trees. The initial ensemble is shown in Fig. 5.11, and the final tree can be
found in Fig. 5.12.

The first stage of the process involves initializing the N trees using any standard decision
tree induction method (we used the function from PRTools [33] with the information gain
criterion). The trees can be diversified by any of the usual methods; the methods we have
implemented are resampling (bootstrapping), feature resampling, and use of different bases.

The nodes of the trees are converted to hyperboxes, and are ordered by decreacing number
of points contained within the hyperbox (an alternative is to order by volume). For each node

89

Figure 5.11: Original ensemble trees

Figure 5.12: Output merged tree

90

t and each tree i, a node τi(t) is found such that it is the smallest node in tree i which contains
t. A node can be defined as containing another node if the first node contains all of the points
within the second node, or if the volume of the first node contains the entire volume of the
second node.

Pruning/combination proceeds from the bottom up, in the sense of smallest to largest
hyperboxes, regardless of which tree the node belongs to or what level in the tree it is at. At
each node, there are three possible actions for the algorithm:

• Prune the node to a leaf;

• Do nothing, and leave the subtree rooted at the node unchanged;

• Replace the subtree rooted at that node with the subtree rooted at one of the τi(t).

The decision will be based on a pruning criterion which will be calculated for each pos-
sibility. This process iterates until the root node is reached and the final tree is generated.
The process is also described in pseudo-code below.

for N trees

Diversify {via bootstrap resampling, feature resampling, or differing bases};

Train tree;

end

concatenate nodes of trees;

fix child node indices;

order nodes by size;

fix child node indices;

for each tree i

for each node t in tree i

for each other tree j

find smallest node in j containing {in terms of points or volume}

node t (itself if i=j);

end

end

end

for each node t (starting at smallest)

for each tree j

extract subtree defined on node t by tree j;

calculate pruning criterion for subtree {pessimistic pruning criterion

testset error,etc};

end

calculate criterion for pruning node to leaf;

if min(criteria) is for leaf

prune to leaf;

elseif min(criteria) is subtree already rooted at node

91

leave unpruned;

else

replace subtree with winning subtree;

end

end

return final tree;

The final output of the algorithm is a single tree, with all the advantages of a single
tree classifier, i.e. small memory requirements, fast calculation of predictions, and simple
structure. The method is quite general - most of the pruning criteria we reviewed from the
literature that can be used in a bottom-up pruning scheme can also be used within this
framework. The question is, how well do these perform, and do there exist better pruning
criteria designed specifically with this multiple-tree framework in mind? We will explore
empirically in the next section the complexity and performance of trees produced in this way
using various pruning criteria, and compare to bagged ensembles and single pruned trees.
The aim is to achieve some of the performance gains of bagging over a single pruned tree,
while still producing a tree with complexity of the order of a single pruned tree.

5.2.3 Results and Discussion

The general methodology and datasets used are the same as in the previous section, that is,
10x10-fold cross-validation on the datasets summarised in Table 5.1. We will again compare
our method to single trees (both pruned and unpruned) on the one hand, and simple tree
ensemble methods on the other.

The characteristics we will be most interested in here are:

• The performance of the method;

• The complexity (in terms of number of nodes) of the resulting trees;

• The effect of size on ensemble on these properties.

The results will concentrate on two diversification methods for individual trees, and both
pessimistic pruning and the modified version of pessimistic pruning described in the previ-
ous section. The diversification methods are bootstrap resampling, and generation of semi-
random orthogonal bases. These bases are produced by performing LDA on small random
samples of points from localities in which multiple classes are present, and orthogonalising
the resulting vectors.

In the sequence of figures Figs. 5.13(a), 5.14(a), 5.15(a), 5.16(a), 5.17(a) (the left-hand
plots of the pairs, the right-hand plots Figs. 5.13(b), 5.14(b), 5.15(b), 5.16(b), 5.17(b) are
the corresponding average tree complexities), error rate is plotted for merged trees built from
ensemble sizes of [3,5,7,10,15,21] individuals. Each plot shows results from a specific dataset,
with four lines corresponding to the four possible combinations of diversification and pruning
method. Fainter, horizontal lines are also included to indicate performance of bagging (using
100 trees) and single pessimistically pruned trees, for comparison purposes.

In terms of performance, there are significant gains compared to both pruned and un-
pruned trees across the three real world datasets for ensembles diversified via resampling.
When compared with bagging, we see performance generally worse than a 100-tree bagged
ensemble. For the 2-D synthetic datasets the situation is less clear, with single pruned trees

92

0 5 10 15 20 25
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging on cancer dataset

pessN
pess
ldapN
lda
bagg
sing

2 4 6 8 10 12 14 16
15

20

25

30

35

40

N

N
um

be
r

of
 n

od
es

ML ensemble merging on cancer dataset

pessN
pess
ldapN
lda
sing pr
sing unpr

Figure 5.13: Tree merging on cancer dataset

0 5 10 15 20 25
0.15

0.155

0.16

0.165

0.17

0.175

0.18

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging on cone−torus dataset

pessN
pess
ldapN
lda
bagg
sing

2 4 6 8 10 12 14 16
20

30

40

50

60

70

80

90

100

110

N

N
um

be
r

of
 n

od
es

ML ensemble merging on cone−torus dataset

pessN
pess
ldapN
lda
sing pr
sing unpr

Figure 5.14: Tree merging on cone-torus dataset

0 5 10 15 20 25

0.3

0.32

0.34

0.36

0.38

0.4

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging on liver dataset

pessN
pess
ldapN
lda
bagg
sing

2 4 6 8 10 12 14 16
40

60

80

100

120

140

160

180

N

N
um

be
r

of
 n

od
es

ML ensemble merging on liver dataset

pessN
pess
ldapN
lda
sing pr
sing unpr

Figure 5.15: Tree merging on liver dataset

93

0 5 10 15 20 25
0.13

0.14

0.15

0.16

0.17

0.18

0.19

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging on synth dataset

pessN
pess
ldapN
lda
bagg
sing

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

N

N
um

be
r

of
 n

od
es

ML ensemble merging on synth dataset

pessN
pess
ldapN
lda
sing pr
sing unpr

Figure 5.16: Tree merging on synthetic dataset

2 3 4 5 6 7 8 9 10 11
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging on diabetes dataset

pessN
pess
ldapN
lda
bagg
sing

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

N

N
um

be
r

of
 n

od
es

ML ensemble merging on diabetes dataset

pessN
pess
ldapN
lda
sing pr
sing unpr

Figure 5.17: Tree merging on diabetes dataset

94

actually outperforming bagging and performance of our combination method again some-
where between the two. The error bars on these two datasets are relatively high, meaning
little can be said conclusively. Comparing pessimistic pruning to our modified version, the
advantages of using information from multiple trees can be seen across all datasets in im-
proved performance and much more stable behaviour as N is increased. The error rate of
standard pessimistic pruning is often seen to increase as N increases, underlining the impor-
tance of taking the multiple-tree nature of the method into account in the pruning criterion.
The performance of the method using random bases to diversify also seems poor compared
to resampling. The reason for both of these latter observations will become clearer after we
have looked at the complexity of the resulting trees.

The complexity of the merged tree is where the benefits of the method can be clearly
seen, as shown in the sequence of figures Figs. 5.13(b), 5.14(b), 5.15(b), 5.16(b), 5.17(b) (the
right-most plots of the pairs). Here, complexity (as measured by the number of nodes) is
plotted against number of trees in the ensemble N , with the layout following the same pattern
as the previous plots. In these plots, complexity of single pruned and unpruned trees has
been marked for comparison as fainter horizontal lines. The first thing we notice is that in
the case of resampling ensembles pruned via the modified pessimistic pruning, the increased
performance (over a single pruned tree) is not coming at the cost of increaced complexity as
was the case with the trees built in Section 5.1. In fact, the complexity of the combined tree
is generally slightly less than that of a single pruned tree, even for large ensembles.

The second thing we notice is that, contrary to expectations, diversification via random
bases results in more complex trees after pruning. Naively we would expect that, given the
extra freedom of splits along hyperplanes oriented in many different directions, we could
achieve a much more compact tree. But as the pruning criteria are not designed to handle
such an abundance of possibilities, the ability of subtrees to overfit the data is underestimated
leading to retention of spurious splits. This problem is exacerbated in the case of standard
pessimistic pruning, where the score of the best of the N subtrees determines if pruning
to a leaf occurs, as opposed to the mean. The inability to account for the extra options
available in the MLC context is the reason for the relatively poor performance of the standard
pessimistic criterion, and of diversification of bases. The modified pessimistic pruning coupled
with bootstrapping performs well, as the extra options are accounted for reasonably well by
the use of the mean to determine pruning. There should be potential in the combination of
trees built on different bases, but to be truly successful a pruning criterion accounting for
the additional split directions will probably be needed. As can be seen from the plots, on 2D
data where there is relatively little extra freedom, error rate is good.

Two of the datasets studied have relatively large dimensionality (see Table 5.1). On these,
we have tested diversification by feature resampling. Each tree is built on a random subset
of the features, and the resulting trees combined. The performance on the diabetes dataset
is relatively poor compared to other resampling methods, probably because 8 dimensions
is still fairly low. The results on the cancer dataset are shown in Fig. 5.18(a) and Fig.
5.18(a). Perhaps unsurprisingly, the results show a much stronger dependance on ensemble
size compared to bootstrapping. A reasonably large ensemble is needed so that information
from all features can potentially be used in the combined model. Performance is comparable
to bootstrap resampling on this dataset, but it is not truly high dimensional, and it is possible
this diversification method would be a good choice in very high dimensional problems.

Given the generally encouraging results using the modified pessimistic criterion, we ran
further experiments using a similarly modified error-based criterion (see Section 5.1.1). We
used the formula in [23] to estimate the confidence interval. Experimental procedure was the
same as for the previous experiments, and plots are shown in the same layout. Performance

95

2 4 6 8 10 12 14 16 18 20 22
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging with feature resampling on cancer dataset

resamp
4 feats
6 feats
10 feats
bagg
sing

2 4 6 8 10 12 14 16
15

20

25

30

35

40

45

N

N
um

be
r

of
 n

od
es

Complexity with feature resampling on cancer dataset

resamp
4 feats
6 feats
10 feats
sing pr
sing unpr

Figure 5.18: Tree merging on cancer dataset with feature resampling

2 4 6 8 10 12 14 16
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging using errb on cancer dataset

errb
pessN
lda errb
bagg
sing

2 4 6 8 10 12 14 16
10

15

20

25

30

35

40

N

N
um

be
r

of
 n

od
es

Complexity when merging using errb on cancer dataset

errb
pessN
lda errb
sing unpr
sing pr

Figure 5.19: Tree merging on cancer dataset using error-based pruning

is shown in Figs. 5.19(a), 5.20(a),5.21(a),5.22(a),5.23(a) with corresponding complexity plots
once again to the right of each. Plots for both modified pessimistic and modified error-based
pruning are shown on bootstrap ensembles, with error-based also on ensembles diversified
using random bases. The single trees plotted for comparison here are pruned using error-
based pruning, which generally produces slightly better-performing but larger trees. While
there is little significant difference between these three methods in terms of error rate, tree
merging using the error-based criterion clearly produces much smaller trees, particularly in
the case of bootstrapped ensembles. Given that this criterion produces larger trees when
pruning a single tree, it is very curious that the merged trees using it should be so compact.
Error-based pruning seems to gain more from the availability of information from multiple
trees than pessimistic pruning does; why this should be is an interesting open problem.

Again, we will summarise with a table for typical parameter setting, here we choose
21 trees. Table 5.3 shows performance and size of tree for tree-merging using both the
modified pessimistic and error based pruning criteria, together with that of single pruned
trees. The performance of bagging (with 100 trees) is also shown for comparison. We see that
error-based merging performs especially well; for every dataset tested the tree is both better
performing, and more compact compared to a single tree pruned using the same criterion.

96

2 4 6 8 10 12 14 16
0.15

0.155

0.16

0.165

0.17

0.175

0.18

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging using errb on cone−torus dataset

errb
pessN
lda errb
bagg
sing

2 4 6 8 10 12 14 16
20

30

40

50

60

70

80

90

100

110

N

N
um

be
r

of
 n

od
es

Complexity when merging using errb on cone−torus dataset

errb
pessN
lda errb
sing unpr
sing pr

Figure 5.20: Tree merging on cone-torus dataset using error-based pruning

2 4 6 8 10 12 14 16

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging using errb on liver dataset

errb
pessN
lda errb
bagg
sing

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

N

N
um

be
r

of
 n

od
es

Complexity when merging using errb on liver dataset

errb
pessN
lda errb
sing unpr
sing pr

Figure 5.21: Tree merging on liver dataset using error-based pruning

2 4 6 8 10 12 14 16

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging using errb on synthetic dataset

errb
pessN
lda errb
bagg
sing

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

N

N
um

be
r

of
 n

od
es

Complexity when merging using errb on synthetic dataset

errb
pessN
lda errb
sing unpr
sing pr

Figure 5.22: Tree merging on synthetic dataset using error-based pruning

97

2 4 6 8 10 12 14 16
0.24

0.245

0.25

0.255

0.26

0.265

0.27

N

C
V

 e
rr

or
 r

at
e

ML ensemble merging using errb on diabetes dataset

errb
pessN
lda errb
bagg
sing

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

N

N
um

be
r

of
 n

od
es

Complexity when merging using errb on diabetes dataset

errb
pessN
lda errb
sing unpr
sing pr

Figure 5.23: Tree merging on diabetes dataset using error-based pruning

performance complexity
errb pessN bagg sing (pr) errb pessN sing (pr)

cancer 0.0539 0.0508 0.0425 0.0633 16.6 30.2 31
liver 0.3366 0.3173 0.2851 0.338 32.6 82.2 115
diabetes 0.2509 0.2462 0.2441 0.257 7.4 68.6 135
cone-torus 0.1584 0.1695 0.1596 0.1628 31.8 50.6 73
synthetic 0.1480 0.1700 0.1792 0.1524 5 25 5

Table 5.3: Summary of performance and complexity of a merged ensemble of 21 trees

While performance gains are quite small, the complexity reductions are not, ranging from a
factor of 2 or 3 up to near 20 for the diabetes dataset. These large reductions in complexity
while sacrificing none of the performance of the larger trees illustrates the power of the
method.

This method is an interesting example of how a number of models may be synthesized
into a single model, giving promising results especially with regards to the complexity of the
final model. Performance is better than single pruned trees while having similar - in the case
of error-based pruning lower - complexity, but it is worse than decision level combination
schemes using the same base classifiers, such as bagging or boosting. The generalisation of
bottom-up pruning to allow multiple trees to be used as the base from which to build the
final pruned tree allows a much more diverse range of trees to be built, exploiting information
from the training data in multiple ways. However, the quality of tree that is actually built
will depend heavily on the suitability of the pruning/combination criterion. The success of
our simple modification of the pessimistic and error-based pruning criteria to take advantage
of the ensemble nature of the method illustrates the importance of taking the additional
possibilities into account. It also opens the door for future work to explore extension of the
many other pruning criteria in the literature to the MLC context, as well as development of
criteria specifically designed for the MLC of trees.

The final method we introduce for combining decision trees at the model level is a depar-
ture from the two approaches above, in that the final classifier is not of the same type as the
ensemble classifiers. This method will be the subject of the next section.

98

0
20

40
60

80

0

20

40

60

80
0

5

10

15

20

Figure 5.24: Membership function of a hyperbox fuzzy set

5.3 Model Level Combination of Tree Hyperboxes via GFMM

In addition to building a single decision tree from an ensemble of tree classifiers, there are
also options for combining the components of the individual trees based on general methods
for combining collections of subsets. In this section we will take the components of the tree
ensemble in the form of hyperbox subsets of the input space, and construct from them a
classifier with a different, but still simple structure. The method we will use to combine
them will be the GFMM [46] classifier framework described in Section 2.2, in which a model
of the data represented by a number of hyperbox fuzzy sets is learned as shown in Fig. 5.25.
A hyperbox fuzzy set constitutes a hyperbox of full membership together with a parameter γ
defining how quickly partial membership falls off with distance, and has the form illustrated in
Fig. 5.24. An introduction to fuzzy logic can be found in [68]. The model is generated from
the initial hyperbox data by aggregating nearby hyperboxes where possible, and resolving
overlaps of hyperboxes where necessary. It can be trained directly from the data by initially
placing a small hyperbox at each training point, but can equally well take a general collection
of labelled hyperboxes representing the data and generate a model from those. Training
GFMMs from the data directly, and from hyperbox collections generated by multiple runs of
a GFMM on resampled data are studied in [47].

Alternatively, an ensemble of decision trees could be used to provide a set of labelled
hyperboxes suitable for combination via the agglomorative approach used in the GFMM [47]
classifer. By using all the information given by the tree ensemble when choosing and labelling
these hyperboxes, we can deliver a very robustly labelled set of hyperboxes to the GFMM for
combination. Here, we will take a hyperbox collection generated from overlaps of leaves of a
bagged ensemble (though other tree ensemble methods could potentially be used too), and
construct a GFMM model based on these. As an aside, we note that we could alternatively
construct a SD classifier (see Chapter 3), either directly or by filtering a stream of subsets
generated via decision trees, but as discussed earlier the SD method is very similar to random
forests and results in a quite complex model. Our aim in this section is simplicity foremost,
hence our choice of the GFMM method. Indeed, the GFMM method can be thought of as an
SD-like classifier in which we aim to use the fewest, most highly enriched hyperbox-subsets
possible to build a uniform cover, with fuzzy partial membership filling any ’chinks’ between
the subsets. In this way we can gain a very simple model of the data.

99

Figure 5.25: Example of a GFMM model on the synthetic dataset

5.3.1 GFMMs on Hyperbox Samples

We saw in Section 5.1 that an ensemble of trees defines a large set of disjoint, labeled hy-
perboxes. We will sample from these hyperboxes in a similar way to Section 5.1, again
constructing a smaller set of robustly labelled hyperboxes for which the labelling is confident
(with ’confident’ defined by a threshold percentage of trees agreeing on the majority label).
However, instead of building a decision tree on them, in this section we will use these hyper-
boxes as input to the GFMM algorithm, and combine them to produce a single, relatively
simple classifier. The hope is that by building the input hyperboxes using all the information
available from a tree ensemble we will retain some of the accuracy and robustness advantages
of the ensemble method, while building in the end only a single, relatively simple classifier.
Pseudo-code for the construction of a GFMM model given an initial tree ensemble is given
below.

Build N trees Tree_1, ..., Tree_N, diversified via bootstrap

resampling.

for i=1:nboxes

boxes(i)=sample a hyperbox defined by an overlap of hyperboxes from

each tree;

Votes(i)=votes for each class in hyperbox;

end

Remove all hyperboxes whose corresponding votes entry does not have

greater than Thresh percent agreement between labellings

100

Use votes to label remaining hyperboxes by class

Feed hyperboxes, labels and hyperbox cardinalities into GFMM

Single GFMM classifier is output

Due to the pruning of hyperboxes to remove those corresponding to areas of little agree-
ment between the ensemble classifers, and the subsequent expansion/agglomeration process
of combination using the GFMM, there are much fewer hyperboxes defining the final GFMM
classifier compared to the number of raw hyperboxes sampled from those defined by the tree
ensemble from which it was made. While models constructed in this way are not ideal in
that the final model can depend on the order in which hyperboxes are considered for aggre-
gation/overlap resolution, and the specific sampling of hyperboxes, it is a useful method to
construct a highly understandable, relatively simple model from a complex ensemble clas-
sifier. This simplicity is a major advantage of the method, and MLC methods in general.
Whether the potential trade-off with accuracy is favourable we will try to address in the ex-
periments presented in the next section. We will empirically investigate GFMM models built
from bagging ensembles, comparing both the complexity and performance of the resulting
GFMMs with that of the ensemble method, and GFMMs built directly on the training data.
We will also discuss the method in comparison to the MLC methods introduced earlier.

5.3.2 Experimental Work and Discussion

Again, we will use the same datasets and methodology as in the previous sections, so 10x10-
fold cross-validation on the datasets summarised in Table 5.1. We will compare the MLC
method on one hand to GFMM models built directly from the data, and on the other to a
simple RF method, bagging.

The characteristics we will be most interested in here are:

• The performance of the method

• The complexity (in terms of number of hyperboxes) of the resulting model

Two methods have been used to produce a GFMM model from the sampled hyperboxes.
In the first, these hyperboxes are used directly as a GFMM model with no further aggre-
gation/expansion applied - they are used as is, with only a surrounding volume of partial
fuzzy membership added. In the second, the GFMM is allowed to combine the hyperboxes by
aggregating/extending them using its standard agglomerative training procedure. Sampled
hyperboxes are generated from a 20-tree ensemble, with an additional run using a 10-tree
ensemble for the latter method. In the figures Figs. 5.26, 5.27, 5.28, 5.29, 5.30, performance
of GFMM models built on hyperbox samples is shown for these two methods, and also for
GFMM models build directly from the training data for comparison, together with bagging.
Performance is plotted against the threshold applied to the hyperbox sample, at values 0,
0.6, 0.7, 0.8, 0.9.

The results are generally good, with the exception of the liver dataset (Fig. 5.26) for
which the GFMM seems less well suited. On this dataset, the use of hyperbox samples
provides an improvement over a GFMM built directly from the data, but performance is
still relatively bad. On the diabetes dataset Fig. 5.27 we see excellent performance, with
the hyperbox sampling providing a large performance increase to a similar level to that of

101

0 0.2 0.4 0.6 0.8 1

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on liver dataset

gfmmc20
gfmmc10
dsamp
bag
data

Figure 5.26: Performance of GFMM models on liver dataset

0 0.2 0.4 0.6 0.8 1
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on diabetes dataset

gfmmc20
gfmmc10
dsamp
bag
data

Figure 5.27: Performance of GFMM models on diabetes dataset

102

0 0.2 0.4 0.6 0.8 1

0.145

0.15

0.155

0.16

0.165

0.17

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on cone−torus dataset

gfmmc20
gfmmc10
dsamp
bag
data

Figure 5.28: Performance of GFMM models on cone-torus dataset

0 0.2 0.4 0.6 0.8 1
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on cancer dataset

gfmmc20
gfmmc10
dsamp
bag
data

Figure 5.29: Performance of GFMM models on cancer dataset

103

0 0.2 0.4 0.6 0.8 1

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on synthetic dataset

gfmmc20
gfmmc10
dsamp
bag
data

Figure 5.30: Performance of GFMM models on synthetic dataset

bagging. Performance on the 2-D datasets is very good also, but no particular advantage is
given by building on sampled hyperboxes over a standard GFMM built from the data. Over
all datasets, we see that using only confidently labeled hyperboxes is preferable to simply
using them all, though as seen in Fig. 5.28 we must be careful in multi-class problems not to
set the threshold too high.

The complexity (in terms of number of hyperboxes) of models built using the sampled
hyperboxes as is is naturally just the number of samples we provided to the GFMM, which
we fixed at 1000 (the largest hyperboxes by volume from a much larger sample were chosen).
When the GFMM training procedure is used to combine the hyperboxes, for the higher di-
mensional data the number of hyperboxes remains around 1000. This indicates that while
some hyperboxes may be expanded, few are being aggregated. On the 2-D datasets, com-
plexity is shown in Fig. 5.31. When thresholding the sampled hyperboxes at a high level of
certainty, quite compact models can be produced.

To produce less complex models, we can try to be a little more extreme in limiting the
samples provided to the GFMM. In the figures Figs. 5.32, 5.33, 5.34, 5.35, 5.36 we have
performance for direct models in which we limit the sample to only hyperboxes containing
training points, with and without weighting of the hyperboxes by the certainty of the tree
ensemble labeling (dsdat and softdat in the Figures). Performance using 1000 samples (ds1000
in Figs) directly is shown again also, for comparison. The other two lines (bag, basicgf) in each
plot correspond to bagging, and the basic GFMM method using the training data as the initial
hyperboxes. Weighting can be seen to remove dependence on a choice of threshold, which
barely affects the performance. While weighting improves performance on some datasets, its
seems to be detrimental on others.

This method is a useful illustration of how components from one type of model may be
combined into a different, but conceptually similar structure. Building the model on hyperbox
samples instead of directly from the data seems to improve performance greatly on datasets

104

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

180

200

Threshold

N
um

be
r

of
 h

yp
er

bo
xe

s

GFMM complexities on 2−D datasets

dsamp,syn
dsamp,c−t
data,syn
data,c−t

Figure 5.31: Complexity of GFMM models on 2-D datasets

0 0.2 0.4 0.6 0.8 1
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on cancer dataset

dsdat
ds1000
softdat
bag
basicgf

Figure 5.32: Performance of small sample GFMM models on cancer dataset

105

0 0.2 0.4 0.6 0.8 1

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on liver dataset

dsdat
ds1000
softdat
bag
basicgf

Figure 5.33: Performance of small sample GFMM models on liver dataset

0 0.2 0.4 0.6 0.8 1
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on diabetes dataset

dsdat
ds1000
softdat
bag
basicgf

Figure 5.34: Performance of small sample GFMM models on diabetes dataset

106

0 0.2 0.4 0.6 0.8 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on synthetic dataset

dsdat
ds1000
softdat
bag
basicgf

Figure 5.35: Performance of small sample GFMM models on synthetic dataset

0 0.2 0.4 0.6 0.8 1

0.145

0.15

0.155

0.16

0.165

0.17

0.175

Threshold

C
V

 e
rr

or
 r

at
e

GFMM built on hyperbox samples on cone−torus dataset

dsdat
ds1000
softdat
bag
basicgf

Figure 5.36: Performance of small sample GFMM models on cone-torus dataset

107

the GFMM performs less well on, while retaining its strengths on datasets for which the basic
method does well. This is especially the case when only robustly labeled hyperbox samples
are used.

5.4 Conclusions

In this Chapter we have introduced a number of new methods which combine an ensemble of
decision trees at the model level. These methods, in contrast to the decision level combination
generally used with tree ensembles, result in a single, simple model. However, we find that
this improvement in simplicity of model generally comes with a loss of performance compared
to bagging, or random forests/tree ensembles in general. When compared to single pruned
trees they fare much better, generally out-performing these models in error rate and in
some cases compactness, at the cost of much more computationally expensive training. As
always there is a trade-off to consider, between performance, complexity and training time.
The generalisation of pruning to tree merging seems especially promising, with better than
single tree performance at significantly less than single tree complexity (see Table 5.3). The
challenge here is in developing pruning criteria well-suited to this generalised context; we
have seen some success with a simple modification of criteria from the single tree literature
and feel this is an area with great potential for future research. Building GFMM models
on hyperboxes sampled from a bagged ensemble provides an alternative way to represent the
information from a tree ensemble. On some datasets, significant increases in performance can
be gained by building the model using this information, instead of directly from the data.

These models fill a useful gap between efficient single models, and better performing
but more complex ensemble classifiers. They combine some of the strengths, but also some
of the weaknesses, of both and are a useful alternative option in the classification toolbox.
While we have mainly focussed on diversity via bootstrapping, or bagging, in this work there
is potential to extend these methods to many other tree ensemble methods, leaving some
interesting options open for future work.

To illustrate some of the ideas presented in the thesis so far and put them in a context
of real-world pattern recognition applications, the next Chapter will give an example of
an ensemble method developed for and applied to a real-world industrial problem. The
chosen problem domain is churn prediction, an important problem in the telecommunications
industry and the services industry in general.

108

Chapter 6

Application to Churn Prediction

In this Chapter we will develop a classification system for churn prediction (that is, pre-
dicting if a customer is likely to leave a service provider for a competitor), a problem that
is particularly important in the services industry. The development will illustrate many of
the issues mentioned in the thesis, and provides an interesting example of the applicability
of classification systems. One issue we will consider is the length of event sequence giving
best predictions, or the relevance horizon of the data. A concise representation of the data
relevant to a problem can make classification attempts much more successful. Motivated
by observations that predictions based on only the few most recent events seem to be the
most accurate, we will construct a non-sequential dataset from customer event histories by
averaging features of the last few events. It is also quite intuitive to think that most peo-
ple will react only to events in the fairly recent past; events related to telecommunications
occurring months or years ago are unlikely to have a large impact on a customer’s future
behaviour. This representation is much more compact, and as it still retains most of the
useful information from the more complicated representation it is much easier to deal with.
We find that, once the correct representation is found classification becomes much simpler,
and application of a basic K-nearest neighbor classifier will give good results. This provides
an excellent counterpoint to the previous algorithmic and theoretic discussions, illustrating
that algorithmic considerations must be accompanied by more practical ones such as the
collection of relevant data and its representation in as concise a manner as possible. While
the application of a combination method allows us to achieve performance gains using one
method, when the data is represented in a different way in which datapoints have a quite
simple, clustered form, a simple KNN proves more suitable. In the next section we will pro-
vide a little more background on the churn prediction problem, and then proceed onto the
development of the classification system.

6.1 Background

In the telecommunications industry, it has been estimated [130] that on average it can cost
between 5-8 times more to gain a new customer than it would to keep an existing customer.
New customers must usually be tempted to join a provider through quite generous introduc-
tory offers, whereas a small incentive is usually enough to keep an existing customer who may
be contemplating a switch. However this incentive is wasted if it is not offered to someone
who, in the near future, is likely to churn. The high churn rate prevalent in this area means
that fairly small improvements in the accuracy of churn prediction can mean significant cost
savings. Thus the problem of predicting customer churn is an important one.

It is a very difficult problem, for a number of reasons. Firstly, people do not always make

109

decisions logically or motivated by any easily definable reason. It may simply be an ’impulse’
decision to switch providers. Even those decisions motivated by an easily understandable
reason can be very difficult to predict, because people are individuals and react to events in
different ways. Secondly, in a given time-frame, many more people remain with the company
than churn, meaning we have a large imbalance in the training data which must be properly
taken into account. A final point is that, while we have large quantities of data available, it
is limited in that many possible reasons for churn will likely leave no imprint in this data, for
example competitor’s offers, or changes in personal circumstances.

We can expect, however, that in some cases the reason for the decision to churn will leave
an imprint in the data prior to the event. This could be in the form of certain patterns
of complaints, or repairs, or other warning signs in the pattern of customer behaviour. In
these cases we may be able to model and therefore detect situations which will likely result
in churn.

The importance of churn prediction has been increasing over recent years for a number
of reasons. It has become steadily easier to collect and store large amounts of customer-
related data, and computational power has increaced allowing complex predictive models
based on this data to become more and more feasible. Also, the telecommunications domain
has become gradually more saturated in recent years, meaning competition between service
providers can be intense. Thus there have been significant efforts recently bent towards churn
prediction, some of which we will review briefly here.

At the base of all churn prediction methods is the data used, and here already there are
many options. Demographical data (i.e data about the customer) can be used to predict
churn, however this may be unsuitable for a number of reasons [126]. Alternatives are call
pattern changes and contractual information [126] or customer repair/complaint/provision
data [50]. This latter type of data is that used in the current paper. The problem can be
cast as either a classification, or regression problem - we will cast it as classification.

Neural networks, regression trees and linear regression are compared with regards to their
churn predicting potential on repair/complaint/provision data in [50]. The regression tree
was found to be most accurate overall achieving 82% correct predictions. However linear
regression was the most successful in predicting non-churners whereas the neural network
was better in predicting churners. Similar data in a sequential representation encompassing
months of a customers historical data is used in a k nearest sequence method in [110] to
predict churn, with an improvement found over standard classification techniques which use
only the last month of data.

In [126], contractual and call pattern data are used together with a decision tree (C4.5,
see [99]) based combination method. The combination method is used to combat the skewed
nature of the data; as there are many more non-churn than churn examples, trees are trained
on subsets of the training data each of which contains all the churn examples but different
samples of the non-churn examples. This gives a number of more balanced training sets on
which the trees are trained. The individual predictions are combined via weighted voting.

The popular combination methods of bagging [12] and boosting [41] are tested on a
mixture of customer and contractual data in [82]. Churn events, while of great import to
telecommunication companies, are in fact a statistically rare event. Over the course of a
year, on average only 1.8% of a companies customer base will churn. As to be of any use,
churn/non-churn events are considered at the least on a monthly timescale, training data is
typically heavily imbalanced. This can cause problems with many classifiers and is usually
combatted via a balanced sampling scheme to over-sample the churn examples and give a
more balanced training set. This is the approach taken in [82] also. However, we must correct
for this when building classifiers. This is done by weighting the training data as follows.

110

If πc is the frequency of churners, and N bal
c is the number of churn examples in the

balanced sample, then weight the samples according to:

wc
i =

πc

N bal
c

and wnc
i =

1 − πc

N − N bal
c

(6.1)

for churn and non-churn examples respectively. This sort of re-balancing approach is common
in many churn prediction methods.

A paper by Coussement [26] uses Generalized Additive Models (GAMs) in the context
of newspaper churn. GAMs are related to the popular logistical regression approach [3], but
with the restriction of a linear dependancy on the data relaxed. It is compared to standard
logistical regression, and found to improve predictive performance. In [73], a number of
different base classifiers are combined via majority voting to predict customer credit card
churn. One base classifier is in fact an ensemble in its own right, a random forest [16],
making it also an example of heirarchical ensemble combination.

In this Chapter we focus on churn prediction from repair/complaint/provision data. As
customers interact with the service provider, certain details of these interactions are logged,
and from these we can build customer histories by constructing a sequence of time-ordered
events for each unique customer. For our purposes, each event is described by 5 features.
The precise details of the features cannot be given for reasons of confidentiality, but can
be described in general terms. The (anonymised) dataset is available on request. One of
these features is more naturally categorical; it denotes the event as one of four different types
one of which is churn. These categories were expressed numerically for use in a Mixture
of Gaussians Hidden Markov Model, or MGHMM (see Section 6.2), the other features are
naturally real-valued. One takes positive integer values from zero to a few hundered, two are
positive real valued from zero to a few tens, and the final one is real valued with range ± a
few tens about zero. The data is highly imbalanced, with typically a few hundred non-churn
examples for every example of churn. Further information can be found in Appendix B.5.

To construct the training and testing data for the churn prediction problem, we can take
a variety of approaches. One intuitive way of doing this is to extract every subsequence
(starting at t = 1) of these sequences of length greater than three events. So, for each
sequence of events S = {s1, ..., sl}, we will extract the l − 2 sequences Sj = {s1, ..., sj+2} for
j = 1, ..., l − 2. This form of training data could be appropriate, because over a customers
lifetime it would be exactly these sequences that would become available. It may be, however,
that only the most recent events are really relevant in predicting future events. This problem
is quite common when dealing with prediction from sequential data; what is the relevance
horizon of the data you have? In order to discover the timeframe over which it is best to take
events when constructing a customer history, we constructed training sets in which only the
most recent l events are considered, for l = 3 : 10. When necessary, a subscript will denote
the lengths of sequences allowed, so as an example TRany or TRl for l = 3 : 10.

We will see (in the next Section) that models trained on very short (2-3 event) histories
perform best. This motivates the approach taken in Section 6.3, as a short history can be
expressed in a non-sequential representation quite easily. This can be done by averaging over
the events in a sequence for each feature, to give the non-sequential feature values, or by
creating new features to represent the features for events with different timestamps. This
latter would give ml features for sequences of length l and events with m features. It is
the first method that we choose to use, though the second may be worth looking at in the
future. We will show empirically that when the relevance horizon for a sequential dataset is
quite small, it is possible to get good results using classical techniques on a non-sequential
history representation. This could have applications in any domain where a short relevance
horizon applies, especially in the services domain. The remainder of the Chapter will be

111

structured as follows. The next section will present the HMM method and results using
different length customer histories, as a motivation for the non-sequential representation
which will be presented in Section 6.3. This section will also contain results using KNN for
churn prediction. The final section will conclude.

6.2 A Sequential HMM Approach

One class of method that has seen wide use and success on sequential data are Hidden
Markov Models (HMMs) (see for example [32]). For a review of machine learning methods
for sequential data see [27]. This class of models will be described in a little more detail
shortly. The most basic form of HMM assumes each event in the sequence is described by
discrete features, and this type of model has been applied to the churn prediction problem
in [110]. However many of the features describing the events (for example time periods) are
more naturally expressed as real numbers. They can of course be discretised, but at the cost
of losing some information.

We will use a more sophisticated type of HMM model that allows for continuous features
via a mixture of gaussians approach. This has the advantage of allowing us to retain and use
all the information available to us.

6.2.1 Method

Hidden Markov Models (HMMs) are a form of finite state machine, i.e. the system is assumed
to be at any time in one of a finite number of distinct states, and the system may undergo
transitions between these states. A sequence of observations is produced over time, and the
distribution of these observations depends on the state the system was in at the time the
observation was made. They are highly suitable for problems in which the data is essentially
sequential in nature, and have been used widely in the areas of speech and handwriting
recognition, and in some areas of medical research [57, 118]. We will first describe this class
of models in an informal way, and give a more formal definition afterwards.

The simplest form of HMM assumes discrete outputs. For each event only certain dis-
crete outputs can be produced, with the probability of each output depending only on the
hidden state of the system. As the data we have consists of four continuous features and one
categorical feature, it is more naturally represented in a continuous space. In these situations
a more flexible model called Mixture of Gaussians HMM (or MGHMM) which allows for this
is more suitable, and is the one we will use here. The basic assumptions of the model are as
follows:

• At each time-step t of the sequence the system in question is in one of a limited number
Q of states qt ∈ {q1, ..., qQ}. It cannot be observed directly which state the system is
in.

• The state the system is in at time t depends only on the state at time t− 1. There are
extensions to the HMMs which allow dependence on the state at other times too [32],
but we will not consider these.

• Observed are a time-ordered sequence of feature vectors xt, one for each timestep.

• The distribution of the values of the observed output features depends only on the state
of the system at that time.

112

Each state is associated with a mixture of Ng gaussians, and the feature vector output at
a given time-step is distributed over the continuous feature space according to the relevant
mixture for the state at that time-step.

A little more formally, define Q states, and a matrix A of transition probabilities aij

giving the probability of a transition from state i at timestep t to state j at timestep t + 1,
with

∑

j aij = 1∀ i.
Each state has associated with it a mixture of Ng multivariate gaussians, of the same

dimensionality as the feature space. These gaussians have means and covariance matrices
µqn and Σqn.

A mixture matrix B gives the probability bqn that, given the system is in the q′th state,
the observed feature vector will be generated from the n′th gaussian for that state - that is,
the gaussian with parameters µqn and Σqn. We have

∑

n bqn = 1 for all q = 1, ..., Q).
HMM’s of this form will be generated from the customer data, trained iteratively via the

standard EM (expectation maximisation) algorithm (see [7]). Separate models are trained
on churn and non-churn sequences, denoted by Mc and Mnc respectively, and classification is
performed as follows. Given a trained model, the probability that it would generate a given
test sequence can be calculated. Doing this for both Mc and Mnc, the sequence can then be
classified according to which model has the highest probability of generating it, taking into
account the class priors.

These models are highly sensitive to the initialization of the model. One way of reducing
this dependency on a specific initialization is to train a number of models using different
initializations, and then combine their predictions. We have done this in a relatively simple,
rank based manner. For a given individual pair of models Mc,Mnc, after calculating for each
sequence the probability of churn, the sequences are ranked in order of descending probability.
For each sequence, then, we have the ranks r = r1, ..., rN where N is the number of models
to be combined. We define a function to map this vector of values onto the real numbers,
and rank them again according to this new value. We tried a variety of simple functions, and
settled on an inverse square function s =

∑

i
1
r2
i

though performance is not too sensitive to

the form of this function so long as it increaces sufficiently quickly for small ri.
We then take the top N∗ sequences as our churn predictions. Here we have a trade-off

to decide between. A larger N∗ means we detect more of the actual churn events, but at
a higher error rate. This trade-off is summed up in Fig. 6.1. For example, if we choose to
take the top 0.4% as churn predictions (a natural choice as it is the percentage of sequences
which are churn in the training set), we can expect a correct identification rate of just over
0.3, i.e. about a third of customers we predict to churn will actually churn in their next
event. However if we choose to take the top 0.8% as predictions, we can expect to predict
more churn events correctly (about 33% more) but at the lower recognition rate of 0.2. The
experimental work will be covered in more detail in the next section.

This ability to specify trade-off easily is one advantage of a rank-based approach. Instead
of choosing a fairly arbitrary threshold above which we will classify a customer as in danger of
churn, we can specify the level of trade-off we require and allow the data to set the threshold.
We could then use this threshold for later classification of single sequences in for example
an on-line scenario. We will want to make as many churn predictions as possible while
maintaining an economically beneficial recognition rate. As an example, if 5x more money
is saved by a correct churn prediction than is lost through an incorrect prediction, it makes
economic sense to take predictions from the model whilever the recognition rate is greater
than 0.2. The fact that this method naturally gives a level of certainty is also useful in a
churn prediction setting due to the fact that one often only has the resources to act on a
small number of most-at-risk customers. A level of certainty can often be estimated with

113

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

Percentage of sequences

P
er

fo
rm

an
ce

3

6

3, combined performance

Figure 6.1: The top line shows the combined performance using training sequences of length
3. Average performance of individual models plotted against percentage of sequences taken
as predictions, for training sequences of length 3,4,5, and 6 are the lower plots (from top to
bottom line).

other methods too, but may not arise naturally.

6.2.2 Results and Discussion

The data used in these experiments was constructed as described in Section 6.1. There are
8080 customer history sequences of varying length from which to build the training data, but
the final number of training/testing sequences will depend on the restrictions we place on
their length. Sequences were split 60-40 into training and testing sets.

In Fig. 6.1, the performance measure is the fraction of churn predictions which are
correct. The basic HMM architecture used was 12 hidden states, with 4 gaussians per state.
Transitions depend only on the previous state. The HMM toolbox of Murphy [90] is used
for the underlying HMM, and the default training parameters are used, with 12 training
iterations. These values were chosen on the basis of preliminary tests. Varying these by a
few either way has little effect, with the exception of reducing the number of gaussians below
4, which degrades performance quite markedly. A likely reason for this is that one feature
(the event type) takes 4 discrete values, meaning at least 4 gaussians are needed to model the
relative probabilities of these in general. Diagonal covariance matrices could have been used
in order to reduce the number of parameters to be estimated, however this was not done as
the data used is such that there is likely to be correlations between some features.

As can be seen in Fig. 6.1, the combination method improves performance quite signif-

114

icantly. This serves to illustrate that even quite simple combination methods can provide
a large benefit in real world applications. The length of sequence used in the histories can
also be seen to have a large impact on performance, with shorter sequences of only the most
recent historical events resulting in much better performance. This illustrates a point that
while combination methods can provide quite large performance boosts, it is still extremely
important to choose the data correctly and represent it in the most suitable way. In this case,
the removal of irrelevant data from the training sequences improves performance markedly.
It is in this spirit that we will represent the data in a non-sequential manner in the next
section.

In order to compare results from the HMM approach with those from the KNN method
that follows, we will introduce a new performance measure. Performance will be measured
using the following value suggested by Ruta [110]:

g =
pchurn

pprior
=

c1|1(c1|1 + c1|0 + c0|1 + c0|0)

(c1|1 + c1|0)(c0|1 + c1|1)
(6.2)

Where c∗|∗ denotes the confusion matrix element, the first subscript being the predicted
value (1 for churn, 0 for non-churn) and the second the actual. pchurn is the fraction of
churn predictions which are correct, and pprior is the prior probability of churn. This is
used because, unlike the HMM, there is no natural way of specifying a tradeoff between
number of predictions, and accuracy - the KNN method will simply give a set number of
churn predictions. The metric is appropriate to the problem, as it is the ratio of the fraction
of the methods churn predictions which are truly churn, to the fraction of examples that are
churn. Thus if g = 5 say, this indicates that using the prediction method we make 5x more
correct churn predictions than if we simply made predictions based on randomly predicting an
observation to be churn in proportion to the prior probability of churn. It is the proportion of
correct churn predictions, not the number of correct predictions absolute, which is important.

A further set of experiments was run for the shortest sequences (that is lengths of 3 and
even shorter ones of 2 which were not included in the original experiments). Q = 2 : 20
hidden states in the HMM were used for histories of length 2, for histories of length 3 this
was only taken up to Q = 10. The dataset was again split 60-40 into training/testing sets
and runs over 20 different splits were performed for each Q. The results are shown in Figure
6.2. The number of predictions taken to give the g value is the same proportion of the testing
set as are churn in the training set. It is also illustrative to look at the confusion matrices
corresponding to g-values at some specific points in the plots. From left to right and top to
bottom in the Fig. 6.2, the g-values at the points indicated by arrows are for the top left
plot:

g1 =

(

27 46
85 21026

)

g2 =

(

13 64
24 21128

)

(6.3)

in the top right

g3 =

(

29 43
43 21067

)

g4 =

(

22 54
54 21098

)

(6.4)

and the bottom two are

g5 =

(

19 55
78 17700

)

(6.5)

and

115

5 10 15 20

20

40

60

80

100

120

Q
g

History of 2, Individual

5 10 15 20

20

40

60

80

100

120

Q

g

History of 2, Combined

2 4 6 8 10

20

40

60

80

100

120

Q

g

History of 3, Individual

2 4 6 8 10

20

40

60

80

100

120

Q

g

History of 3, Combined

g
2

g
1

g
3

g
4

g
5

g
6

Figure 6.2: g value vs Q for individual and combined HMM predictions, using histories as
labelled

g6 =

(

24 49
49 17903

)

(6.6)

It can be seen that though the g-value is actually increacing for larger Q and sequences of
length 2, few churn predictions are actually being made at higher values (see g1 compared to
g2) making the model less useful. The drop in g-value for higher Q for the combined method is
probably related to this low number of churn predictions made by the individuals, and even
though g is lower the combination method keeps the number of correct churn predictions
made to a more useful level.

As can be seen once again, the combination method clearly outperforms the individual
models. The even shorter sequences of length 2 also outperform those of length 3, implying
decisions to churn are mostly made for short-term reasons, and not because of a slow build-up
of sentiment against the service provider. This gives further motivation to our attempt at a
non-sequential representation, the subject of the next section.

6.3 A Non-sequential KNN Approach

Instead of representing the customer history as a sequence, and making the implicit assump-
tion that customer behaviour is related to the event details and ordering as in a HMM based
approach, we may try to represent the data non-sequentially. In this case we make a slightly
different assumption, which is that while the decision to churn is based on previous events,
the ordering of the events is not particularly important. Which is truer is debatable, it is
easy to imagine scenarios where either could be the case. However there is little doubt that
non-sequential data is easier to deal with. All the classical techniques such as KNN, parzen,

116

decision tree, and support vector classifiers can be used, we chose KNN as an illustration as
it performed better in preliminary tests, due to its suitability for problems when the classes
are highly imbalanced. This suitability stems from the fact that by choosing k appropriately
the number of data points contributing to the classification can be limited so that points of
the more prevalent class do not always swamp the minority class. The fact that the churn
examples tend to be a little more clustered than the non-churn also contributes to making
KNN an appropriate choice.

A non-sequential dataset could be made from the above event histories by either taking
each feature of each event as a separate feature, or by averaging over events in a sequence for
each feature. The first has the advantage of losing no information, the second has the advan-
tage of resulting in fewer features. The new features corresponding to the latter approach can
be thought of as recording information answering questions like ’were things provided late
during the last few events?’, ’did the last few events take long?’, or ’were complaints made
recently by this customer?’. This is still highly useful information, what we lose is informa-
tion on which event, for example, most of the delay/time was due to, or if it was spread over
more than one. The first method of creating new features would retain this information, but
at the cost of creating many more features.

We will show empirically that when the relevance horizon for a sequential dataset is
quite small, it is possible to get good results using classical techniques on a non-sequential
representation. Guided by the results in the previous section which pointed to only the few
most recent events being relevant, we chose the latter method in the previous paragraph -
that is, to average the features as little information is lost averaging a feature over just a few
events.

Our features have some similarities with auto-regressive (AR) models. An AR model
models a time series entry as being a linear combination of previous entries in the time series,
possibly with a noise component:

Xt = c +

t−1
∑

i=1

αiXt−i + ǫt (6.7)

c is a constant and ǫ is a white noise component. We use a similar construction, but not in a
predictive sense - we rather use it to construct a single feature which is a linear combination
of feature entries in a time series:

X = c +

T−1
∑

i=0

αiXT−i (6.8)

where T is the length of the series. Thus far we have used a very simple set of coefficients -
the first τ αi are 1

τ
, the rest zero. An interesting extension would be to look at other sets of

coefficients, perhaps exponentially decaying in time-step.

6.3.1 Method

The non-sequential dataset is constructed as follows:

• Take the event type of the last event in each sequence, and use this to label the data
point as churn or non-churn.

• Average the features of the last τ events of the sequence, not including the last, label-
defining event.

117

1 2 3 4 5 6 7
0

50

100

150

Nearest Neighbors

g

History 1, Prediction of 1st future event

1 2 3 4 5 6 7
0

50

100

150

Nearest Neighbors

g

History 2, Prediction of 1st future event

1 2 3 4 5 6 7
0

50

100

150

Nearest neighbors

g

History 3, Prediction of 1st future event

1 2 3 4 5 6 7 8 9
0

50

100

150

Nearest neighbors

g

History 2, Prediction of 2nd future event

g
8

g
10

g
9

g
7

Figure 6.3: Performance vs Nearest Neighbor count, for histories and prediction time frame
as labeled

Only 3 features were included. These are event type (churn, complaint, repair and order
are given the values 1,2,3 and 4 respectively), event duration (can be zero if not known or
is not applicable), and promise (if something was promised, how early it was achieved; it is
negative if that something was late. It can be zero if not relevant). These were chosen from a
common sense view of what factors would be most likely to influence someone to churn, and
from the results of preliminary experiments.

This dataset is split 60-40 into training and testing sets, and a simple k nearest neighbor
algorithm is used to perform the classification. A nearest neighbor algorithm was chosen as
it deals well with datasets such as this where the prior probabilities of the classes are highly
imbalanced. The HMM is very computationally expensive to train, but it is cheap to calculate
predictions when trained. In comparison, the KNN costs nothing to train, however it can
be very expensive to calculate very large numbers of predictions. There are many methods
available in the literature to increase the efficiency of such nearest neighbor searches though,
for just one example see [24]. Results, and some discussion and interpretation, follow.

6.3.2 Results and Discussion

The first three subplots in Figure 6.3 show the results on datasets averaging the features of
1,2 and 3 events respectively, using 1-7 nearest neighbors for classification. The next event in
the sequence is predicted. Performance is measured using the g value introduced in Section
6.2.2.

The final subplot shows the performance when trying to predict two events into the future,

118

using a history of 2 and 1-9 nearest neighbors. This can be seen to be much less successful,
showing that knowledge of the most recent event is very important. Using histories of other
lengths to predict two events into the future also results in bad performance, and so is not
shown.

From the above figures, it can be seen that an event history of 2 gives optimal performance
using this method, and that taking simply the last event is totally inadequate for prediction.
This shows that it is necessary to consider some historical data for a customer, even if only
over a short time. An event history of 3 performs well, but worse than the shorter time
period. This shows that the most relevant events in a customers history are the last two or
three, as intuition would support. The conversion to a non-sequential representation loses
more information for longer sequences, which may also affect performance. Performance does
not seem to be overly dependant on k, with a nearest neighbor count between 5 and 10
performing well.

Again looking at the confusion matrices gives a little more insight. From top left to
bottom right, for the g values indicated they are:

g7 =

(

26 40
1278 13711

)

g8 =

(

28 36
16 14866

)

(6.9)

g9 =

(

9 57
7 14948

)

g10 =

(

3 51
34 12384

)

(6.10)

From g7 we can see that although prediction from the last event detects churn quite well,
there are very many false positives too resulting in a low g. From g8 we see that including
an extra event into the history has little effect on the number of correct churn predictions,
but vastly reduces the number of false churn predictions. In terms of the oft-used measures
of sensitivity and specificity,

specificity =
c0|0

c0|0 + c1|0
, sensitivity =

c1|1

c1|1 + c0|1
(6.11)

we see that both specificity and sensitivity are increased making the predictions much more
useful for practical churn prediction. Comparing to the confusion matrix g3 for the HMM,
we see that there is a decrease in false churn prediction relative to this too, while maintaining
a very similar level of correct churn prediction. A third event in the history can be seen in
g9 to reduce churn predictions markedly, both correct and false. This lowers the sensitivity
drastically, and in this case the number of churn predictions made is too low to be really
useful, compared to using just 2 event histories.

Trying to predict more than one event into the future can be seen to result in very few
churn predictions. We can attempt to interpret what these results could mean in real terms
by looking more closely at the nature of the data we have. Fig. 6.4 is a plot of all churn and
a small sample of non-churn points which have the last two history events being complaints.
Roughly half of all the churn events fall into this category, which is revealing in itself, although
it shouldn’t really be surprising. There are 55 churn examples in this plot; as can be seen
they are closely grouped into two distinct clusters.

Almost all the churn examples correspond to event sequences in which the last two events
have been of the same type, and many of them where the last two events are quite similar.
These observations could be interpreted as indicating that a customer does not like to have to
do the same thing twice when dealing with the service provider, particularly when that thing
is a complaint but also when requiring a repair or other service from the provider. Churn
examples are also quite closely clustered, indicating that complaints falling into two distinct,

119

−10−5051015202530

0

5

10

15

20

25
Example Data

Promise

D
ur

at
io

n

Figure 6.4: A plot of a sample of points where the last two events have been complaints. A
+ denotes churn, a * non-churn.

well defined subclasses may be especially likely to provoke a churn response. Identifying what
these correspond to may provide a helpful tool for customer relations management.

6.4 Churn Prediction Using NCL

In the interest of comparison, the NCL method from Chapter 4.2 has also been applied to the
churn prediction problem. As noted earlier, the dataset is highly imbalanced, and training
NCL on the raw data results in a classifier that predicts all examples as the majority class.
Thus for the purposes of the NCL method, when training we train on all churn examples
in the training set, but train on only 1000 non-churn examples. These 1000 examples are
sampled randomly from the training dataset. The test set is built in a similar way, using
10000 non-churn examples instead.

NCL was run with 3 networks, each with 10 hidden nodes. Training was for 2000 epochs,
for 9 values of lambda evenly spaced between 0 (independent training) and λ∗. 20 repetitions
were conducted for each value. In Figure 6.5 the result can be seen, showing average g over
the 20 repetitions against lambda.

A general trend can be seen of decreasing g as λ increases to λ∗. This would seem
contradictory to the results seen in previous sections, however it can be understood by looking
at the confusion matrices:

g1 =

(

16 60
76 9924

)

g2 =

(

23 53
166 9834

)

(6.12)

g1 is the average confusion matrix for λ = 0 and g2 for λ = λ∗. We can see that with
higher lambda we identify more of the minority churn events, indicating a more complex

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
16

18

20

22

24

26

28

30

Lambda

G

Figure 6.5: g against lambda for NCL on the churn dataset

model, but the false positives swamp this improvement and result in a decrease of g. In both
cases it is also worth noting that, in terms of raw classification error, the simplest predictor
of all that predicts the majority class for all examples would out-perform them both. This
would of course not be useful, however.

The added complexity that increasing λ allows does not translate into improved perfor-
mance due to the highly imbalanced nature of the dataset. Using more individuals in the
ensemble, or using more hidden nodes, similarly decreaces performance. Comparing the g
values achieved with NCL to the two methods used in the previous sections, significantly
lower g values are achieved by the NCL method due to a higher number of false positives.
We can conclude that NCL is not well suited for this particular application domain, again
underlining the importance and difficulty in choosing methods appropriate to a given prob-
lem. Performance could possibly be improved by implementation of some strategy to address
the class imbalance.

6.5 Conclusions

We have proposed, based on observations from a HMM method, that only the most recent
events in a customers history have an effect on the future behaviour of that customer, and
have shown that a short sequence of events corresponding to a recent history can be repre-
sented easily in a non-sequential way. This allows the use of all the tools available for simple,
non-sequential pattern recognition, and we found that a k-nearest neighbor algorithm per-
forms well on this data. This provides much better performance and potentially reduced
computational complexity over the HMM methods. We explain the success of this method
by noting that many churn events when represented in this way lie in a few small, dense
clusters, and observe that many churn events follow a history of two events of the same type,
often with similar feature values. This indicates that perhaps having to do the same thing
twice, especially with regards to a complaint, often leads to churn. Some lessons we can take

121

from this section are the importance of a good data representation, and choice of a classifier
or combination method which matches well to characteristics of the problem in question.
While the instability resulting from the dependance on initialisation of the HMM method
allowed us to achieve significant performance gains using combination methods, the simple
clustered nature of the recent history data when expressed in non-sequential form made a a
single KNN particularly effective.

122

Chapter 7

Summary and Conclusions

In this work we have given an introduction to the field of Multiple Classifier Systems and
motivated its importance as a way of improving classification (and prediction) systems. Fol-
lowing a review of the field covering most of the more popular methods and the fundamentals
of the subject, we looked in more detail at the Stochastic Discrimination (SD) framework.
This rigorously defined the properties a collection of models must have if we are to be able to
fashion them into a well-performing MCS, and a method based upon this framework was de-
scribed in more detail. These properties were specified in terms of conditions on the spread of
the subsets over the training points, the relative frequencies of examples from different classes
in subsets compared to their priors, and on the size of the subsets. Using this framework,
we proceeded to identify some very basic links between a number of popular methods in the
literature, namely Random Forests, Support Vector Machines, Boosting and the method of
SD. These links were based on a common expression of all four methods as the building of
a collection of many weak models in which the properties defined within the SD framework
are strongly encouraged. The methods differed in the algorithmic devices used to generate
the subset collection. This collection of subsets induces a kernel on the training data with a
form extremely well-suited to classification, meaning many ensemble methods can be cast as
a kernel building approach. We believe this linking of, and uncovering of common underlying
processes in multiple methods aids understanding of the high performance of the methods,
and provides guidance in the development of new ones.

Following the introduction of this framework a method called NCL was described in which
neural networks are trained in parallel in a way designed to encourage a de-correlation of the
outputs of the individuals. De-correlation is a desirable property both in the SD framework
and in the particular case of neural networks and squared loss, the ambiguity decomposition
of the error. The method has a parameter, lambda, whose setting controls the extent to which
correlations are penalised and is important for performance and stability. By analyzing the
dynamics of the training to see the effect of the choice of lambda, we derived a limiting value
λ∗ = (1 − 1

N
)−1 for the stability of the system. We also showed that this value has some

interesting optimality properties, in that it is the value for which individuals are adjusted
during training to minimise the ensemble error on the training data. In other words, it is the
value for which the training is ’most co-operative’, giving the highest complexity of the final
classifier. This analysis was supported by empirical results.

NCL is a decision level combination method, and as is the case for many decision level
MCS, it is rather like a ’black box’ in that its model is not easily interpretable and its decisions
not understandable. In some applications the requirement for decisions to be understandable
is almost as important as high performance; motivated by this we introduced a model level
combination paradigm. Within this paradigm, components or details of the structure of

123

multiple models are combined in order to build an optimal single model. We introduced
three new methods for the MLC of decision trees, which are one of the most interpretable
model classes available and are especially well-suited to a MLC approach. As random forest
type tree ensembles tend to satisfy the properties defined in the SD framework, they provided
a good choice for the base of the MLC methods.

Any weighted vote ensemble of decision trees produces decisions which could be repre-
sented by a single tree. This realisation led to the first of these methods; the construction,
either approximately or in full, of this single tree equivalent. While it is still not easily in-
terpretable as the tree is so large, we may prune the tree using standard methods to give
an extremely compact single tree. Construction in full was found to be feasible for only
low-dimensional problems; in higher dimensions a sampling scheme was used. Samples of
leaves from the full tree were generated, and a single tree approximating the ensemble tree
was built on this sampled collection of labelled hyperboxes. This allowed successful exten-
sion of the method to mid-dimensional problems, but as dimensionality becomes truly large
performance may suffer due to sampling sparsity problems. A suitable choice of initial seed
for the sampling can minimise this, however.

Motivated by the shaky foundations of the previous method in high-D spaces, we in-
troduced a second MLC method. This was a generalisation of bottom-up pruning to an
ensemble context, adding subtree-grafting to the potential operations the pruning algorithm
may perform. By doing this, we allowed simultaneous and parallel pruning/combination of
an ensemble of decision trees into a single merged tree. This method achieved consistent
high performance and compact trees using a small modification of the standard error-based
and pessimistic pruning criteria to compare the mean subtree score to the leaf score when
considering pruning. These criteria were taken directly from the single tree literature, with
only this slight modification used to adapt to the multiple tree context. We feel that there
is good potential for pruning criteria specifically developed for the multiple-tree context to
further improve results using our generalised pruning.

The final MLC we introduced was the use of labelled hyperboxes sampled from the
ensemble-equivalent tree to train a GFMM model. This approach is interesting in that it
is an example of a MLC method in which the ensemble models do not have the same struc-
ture as the combined model; the representation is however conceptually very similar. Results
using this method were good, with large performance gains over the basic method seen on
some datasets. As the method is based on the same sampling approach as the approxima-
tion of the ensemble-equivalent tree, it is possible that the problem of sampling sparsity seen
there may surface in high dimensional problems, but on the datasets used we observed no
problems. This combination method seems to cope better than the tree combination method
with sparse samples.

As an illustration of the real world relevance and applicability of MCS, and classifica-
tion/prediction systems in general, in the last Chapter we developed a classification system
for a specific application area. It also demonstrated some of the more practical considera-
tions that go into building a classification system for a specific problem, such as appropriate
data representation, domain knowledge, and classes with different misclassification costs.
Our chosen domain was telecommunications churn prediction, a problem for which we de-
veloped a combination of HMM models which improved performance due to the lessening of
model dependance on initialisation. Guided by results using this model on customer histories
of different lengths, a non-sequential representation of the sequential data allowed use of a
much wider class of methods with some success, a KNN classifier being found to perform
particularly well due to the nature of the data.

124

7.1 Future Work

Here we will collect a few thoughts on future work coming from this project. In Chapter
3 we linked a number of methods together, showing that each method enforces uniformity
over the training set. However, enforcing strict uniformity in the presence of very noisy
points may cause problems; this is occasionally seen in the case of boosting. Both SVMs
and some implementations of boosting (in particular brownboost) allow a parameter setting
which essentially causes the algorithm to ’give up’ and ignore a number of the most difficult,
or noisy, points. To a certain extent, random forests with a re-sampling component also have
this ability; uniformity is enforced for a point only over training sets in which it appears. If
the enforcement of uniformity on nearby points with respect to their training sets does not
also encourage uniformity for that point, we accept a loss of uniformity. We can think of this
as using an out-of-bag error estimate to choose points for which we do not enforce a strict
uniformity. There is no analogous parameter in the SD method, and it would be interesting
to look at possibilities for doing this. To some extent, the practice of enforcing a minimum
model size may achieve this, but there may be other options.

The NCL framework from Chapter 4 offers a wealth of possiblities in terms of investigating
alternative penalty functions, but the challenge is in replicating the theoretical grounding of
the form used in the basic method. An example of a penalty function providing good but
unexplained empirical performance was the root-quartic form.

Another interesting feature of NCL is that, while ’negative correlation’ stands in its name,
if we actually try to enforce negative correlation we flirt with instability. The best we can
do without risk is a de-correlation of individuals. In the case of linear output nodes, flirting
with this instability ends in disaster, as individuals can be de-correlated without bound by
spreading towards ±∞. With sigmoid outputs, we can get away with it to a certain extent.
Instead of unbounded spread, what we get in this case is a training pressure forcing the
individual outputs up against the limits of the sigmoid function, which are {0, 1}. This is
actually quite interesting, as we force our nets to act more like a classifier than a regressor.
The problem is, this pressure encourages a roughly equal number of network outputs to be
at 1 and 0, and if we set λ too high, this is exactly what we get. With care, it may be
possible to encourage a state where the minimum of the error landscape falls at m/N (N
number of classifiers) for most points with target 1, and n/N for those with target 0, with
m significantly larger than n. Thus we would encourage an equalisation of margins, or a
class-wise uniformity over training points, in a similar way to that described in Chapter 3
for the methods covered there. How exactly to do this is a difficult question though. Initial
investigations using a crude method of partial training at λ = λ∗ followed by a gentle increase
in λ have shown some promise, it would be interesting to refine this idea a little further.

In chapter 5, we showed promising results within our generalised pruning framework
with a very simple modification to criteria from the single-tree pruning literature. There is
great potential here for the development of criteria more suitable to the ensemble context. In
particular, the pruning approach developed in [60] based on a multiple-comparison framework
could prove useful, as the generalisation of pruning to an ensemble context simply adds one
more level of multiple comparisons to the pruning problem. If the additional comparisons
could be incorporated into the pruning criterion used there, a very well grounded criterion
for the ensemble context could result. This would probably be preferable to the quick fix
we have used to adapt single-tree pruning criteria for use in merging multiple trees, even
though the success of simple combiners such as averaging and majority vote cautions us not
to under-estimate the potential power of a simple adjustment.

Ensemble methods are a successful, diverse and growing area of artificial intelligence.

125

Many hurdles have been overcome; however many still remain. Theoretically, relating prop-
erties optimised on a training set to their expected values on an independent testing set is
very difficult, a task for which the main theoretical tool, VC theory, gives very loose bounds
in general. Algorithmically it is an ongoing challenge to adapt methods to cope with the
explosion of data in many aspects of human endeavour, and its oftentimes noisy, incomplete
or just plain wrong nature. Ensemble methods are being applied to steadily more difficult
and demanding tasks, from linguistics and computer vision to medical, financial and mili-
tary applications and almost anything inbetween, requiring continued development of new
approaches and refinement of old. The future of ensemble methods, and AI in general, is sure
to be interesting.

126

Bibliography

[1]

[2] M. A. Aizerman, E. A. Braverman, and L. Rozonoer. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control, (25):821–837,
1964.

[3] P. D. Allison. Logistic Regression Using the SAS System: Theory and Application. SAS Pub-
lishing, 1999.

[4] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9(7):1545–1588, 1997.

[5] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. A comparison of decision tree
ensemble creation techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29:173–180, 2007.

[6] F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning theory.
Journal of Complexity, 23(1):52 – 72, 2007.

[7] J. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation
for gaussian mixture and hidden markov models. Technical report, 1997.

[8] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. Available at:
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[9] G. Blanchard, G. Lugosi, and N. Vayatis. The rate of convergence of regularized boosting
classifiers. Machine Learning, 4:861–894, 2003.

[10] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers.
In COLT ’92: Proceedings of the fifth annual workshop on Computational learning theory, pages
144–152. ACM, 1992.

[11] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In
Advanced Lectures on Machine Learning, pages 169–207. Springer, 2004.

[12] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[13] L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.

[14] L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department,
UC Berkeley, 2000.

[15] L. Breiman. Some infinite theory for predictor ensembles. Technical Report 577, Statistics
Department, UC Berkeley, 2000.

[16] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[17] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984. New edition.

[18] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey and cate-
gorisation. Information Fusion, 6(1):5–20, 2005.

127

[19] G. Brown and J. L. Wyatt. The use of the ambiguity decomposition in neural network ensemble
learning methods. In Proceedings of the 20th International Conference on Machine Learning
(ICML’03), pages 67–74, 2003.

[20] M. W. Browne. Cross-validation methods. Journal of Mathematical Psychology, 44(1):108 –
132, 2000.

[21] P. Buhlmann and B. Yu. Analyzing bagging. Annals of Statistics, 30(4):927–961, 2002.

[22] P. Buhlmann and B. Yu. Boosting with the l2 loss: Regression and classification. Journal of
the American Statistical Association, 98:324–339, 2003.

[23] X. Chen, K. Zhou, and J. L. Aravena. Explicit formula for constructing binomial confidence
interval with guaranteed coverage probability. Communications in Statistics - Theory and Meth-
ods, 37(8):1173–1180, 2008.

[24] Y. Chen, Y. Hung, T. Yen, and C. Fuh. Fast and versatile algorithm for nearest neighbor search
based on a lower bound tree. Pattern Recognition, 40(2):360–375, 2007.

[25] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

[26] K. Coussement, D. F. Benoit, and D. Van den Poel. Improved marketing decision making
in a customer churn prediction context using generalized additive models. Expert Systems
Applications, 37(3):2132–2143, 2010.

[27] T. G. Dietterich. Machine learning for sequential data: A review. In Proceedings of the Joint
IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition,
pages 15–30. Springer-Verlag, 2002.

[28] T. G. Dietterich and G. Bakiri. Error-correcting output codes: a general method for improving
multiclass inductive learning programs. In T. L. Dean and K. McKeown, editors, Proceedings
of the Ninth AAAI National Conference on Artificial Intelligence, pages 572–577, Menlo Park,
CA, 1991. AAAI Press.

[29] P. Domingos. Knowledge discovery via multiple models. Intelligent Data Analysis, 2:187–202,
1998.

[30] P. Domingos. A unified bias-variance decomposition and its applications. In Proceedings of the
17th International Conference on Machine Learning, pages 231–238. Morgan Kaufmann, San
Francisco, CA, 2000.

[31] E. M. Dos Santos, R. Sabourin, and P. Maupin. A dynamic overproduce-and-choose strategy
for the selection of classifier ensembles. Pattern Recognition, 41(10):2993–3009, 2008.

[32] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley and Sons, 2001.

[33] R. P. W. Duin and D. de Ridder. PRtools, a matlab toolbox for pattern recognition. Available
from: http://www.prtools.org/index.html.

[34] Robert P. W. Duin and David M. J. Tax. Experiments with classifier combining rules. In MCS
’00: Proceedings of the First International Workshop on Multiple Classifier Systems, pages 16–
29, London, UK, 2000. Springer-Verlag.

[35] M. Eastwood and B. Gabrys. The dynamics of negative correlation learning. Journal of VLSI
Signal Processing, 49:251–263, 2007.

[36] M. Eastwood and B. Gabrys. Building combined classifiers. In Knowledge Processing and
Reasoning for Information Society, pages 139–163, 2008.

[37] Mark Eastwood and Bogdan Gabrys. A non-sequential representation of sequential data for
churn prediction. In KES (1), pages 209–218, 2009.

[38] F. Esposito, D. Malerba, and G. Semeraro. A comparative analysis of methods for pruning
decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476–
491, 1997.

128

[39] C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. From ensemble methods to com-
prehensible models. In DS ’02: Proceedings of the 5th International Conference on Discovery
Science, pages 165–177, London, UK, 2002. Springer-Verlag.

[40] I. Fodor. A survey of dimension reduction techniques. LLNL technical report, 2002.

[41] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the 13th International Conference on Machine Learning, pages 148–156. Morgan Kaufmann,
1996.

[42] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Annals of Statistics, 28:337–374, 1998.

[43] J. Friedman, T. Hastie, and R. Tibshirani. Special invited paper. Additive logistic regression:
A statistical view of boosting. The Annals of Statistics, 28:337–407, 2000.

[44] G. Fumera and F. Roli. Linear combiners for classifier fusion: Some theoretical and experimental
results. In Proceedings of International Workshop on Multiple Classifier Systems (LNCS 2709),
pages 74–83, Guildford, Surrey, June 2003. Springer.

[45] G. Fumera, F. Roli, and A. Serrau. A theoretical analysis of bagging as a linear combination of
classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(7):1293–1299,
2008.

[46] B. Gabrys. Agglomerative learning algorithms for general fuzzy min-max neural network. Jour-
nal of VLSI Signal Processing Systems, 32(1/2):67–82, 2002.

[47] B. Gabrys. Learning hybrid neuro-fuzzy classifier models from data: To combine or not to
combine? Fuzzy Sets and Systems, 147:39–56, 2004.

[48] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4(1):1–58, 1992.

[49] Y. Grandvalet, S. Canu, and S. Boucheron. Noise injection: Theoretical prospects. Neural
Computation, 9(5):1093–1108, 1997.

[50] J. Haddon, A. Tiwari, R. Roy, and D. Ruta. Churn prediction: Does technology matter?
International Journal of Intelligent Technology, 1:104–110, 2006.

[51] M. Hall. Combining particles and waves for fluid animation. Technical Report TR92-185, 25,
1998.

[52] T. K. Ho. Data complexity analysis for classifier combination. In Multiple Classifier Systems,
volume 2096 of Lecture Notes in Computer Science, pages 53–67. Springer Berlin / Heidelberg,
2001.

[53] T.K. Ho. The random subspace method for constructing decision forests. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(8):832–844, 98.

[54] P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475, 1985.

[55] A. Hyvrinen and E. Oja. Independent component analysis: algorithms and applications. Neural
Networks, 13(4-5):411–430, 2000.

[56] M. Islam, X. Yao, and K. Murase. A constructive algorithm for training cooperative neural
network ensembles. IEEE Transactions on Neural Networks, 14(4):820–834, July 2003.

[57] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote
protein homologies. Computational Biology, 7:95–114, 2000.

[58] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1):79–87, 1991.

[59] G. James. Variance and bias for general loss functions. Machine Learning, 51:115–135, 2003.

[60] D. Jensen and P. R. Cohen. Multiple comparisons in induction algorithms. Machine Learning,
38:309–338, 2000.

129

[61] D. Jensen and M. D. Schmill. Adjusting for multiple comparisons in decision tree pruning. In
Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining, pages
195–198, 1997.

[62] I.T. Jolliffe. Principal Component Analysis. Springer, 2002.

[63] M. Kearns and Y. Mansour. A fast, bottom-up decision tree pruning algorithm with near-optimal
generalization. In Proceedings of the 15th International Conference on Machine Learning, pages
269–277. Morgan Kaufmann, 1998.

[64] J. M. Keller, P. Gader, H. Tahani, J. Chiang, and M. Mohamed. Advances in fuzzy integration
for pattern recognition. Fuzzy Sets and Systems, 65(2-3):273–283, 1994.

[65] J. Kittler. Combining classifiers: A theoretical framework. Pattern Analysis and Applications,
1:18–27, 1998.

[66] E. M. Kleinberg. A mathematically rigorous foundation for supervised learning. In Proceedings of
the International Workshop on Multiple Classifier Systems (LNCS 1857), pages 67–76. Springer,
June 2000.

[67] E. M. Kleinberg. On the algorithmic implementation of stochastic discrimination. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(5):473–490, 2000.

[68] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall,
1st edition, 1995.

[69] R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss functions.
In Lorenza Saitta, editor, Proceedings of the Thirteenth International Conference on Machine
Learning, pages 275–283. Morgan Kaufmann, 1996.

[70] E. B. Kong and T. G. Dietterich. Error-correcting output coding corrects bias and variance. In
Proceedings of the 12th International Conference on Machine Learning, pages 313–321. Morgan
Kaufmann, 1995.

[71] A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In Advances in
Neural Information Processing Systems, volume 4, pages 950–957. Morgan Kaufmann, 1992.

[72] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In
Advances in Neural Information Processing Systems, pages 231–238, 1995.

[73] D. A. Kumar and V. Ravi. Predicting credit card customer churn in banks using data mining.
Data Analysis Techniques and Strategies, 1(1):4–28, 2008.

[74] L. Kuncheva, C. Whitaker, C. Shipp, and R. Duin. Limits on the majority vote accuracy in
classifier fusion. Pattern Analysis and Applications, 6(1):22–31, 2003.

[75] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,
2004.

[76] L. I. Kuncheva. Using diversity measures for generating error-correcting output codes in classifier
ensembles. Pattern Recognition Letters, 26:83–90, 2005.

[77] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for multiple classifier
fusion: an experimental comparison. Pattern Recognition, 34(2):299–314, 2001.

[78] L.I. Kuncheva. ”fuzzy” versus ”nonfuzzy” in combining classifiers designed by boosting. IEEE
Transactions on Fuzzy Systems, 11(6):729 – 741, 2003.

[79] L.I. Kuncheva. That elusive diversity in classifier ensembles. In First Iberian Conference on
Pattern Recognition and Image Analysis (IbPRIA), pages 1126–1138, 2003.

[80] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. EL Ghaoui, and M. I. Jordan. Learning the
kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27–72,
2004.

130

[81] S. W. Lee, S. Verzakov, and R. P. Duin. Kernel combination versus classifier combination.
In Proceedings of the 7th International Workshop on Multiple Classifier Systems, pages 22–31,
2007.

[82] A. Lemmens and C. Croux. Bagging and boosting classification trees to predict churn. Journal
of Marketing Research, 43:276–286, 2006.

[83] M. Li and P. M. B. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, Berlin, 1993.

[84] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12:1399–1404,
1999.

[85] X. Lu, Y. Wang, and A. K. Jain. Combining classifiers for face recognition. In Proceedings of
the 2003 International Conference on Multimedia and Exposition, pages 13–16. IEEE Computer
Society, 2003.

[86] R. McKay and H. Abbass. Analyzing anticorrelation in ensemble learning. In Proceedings of
2001 Conference on Artificial Neural Networks and Expert Systems, pages 22–27, 2001.

[87] M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision tree pruning. In Proceedings of
1st International Conference on Knowledge Discovery and Data Mining, pages 216–221. AAAI
Press, 1995.

[88] P. Melville and R. Mooney. Constructing diverse classifier ensembles using artificial training
examples. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence, pages 505–510, 2003.

[89] J. Mingers. Expert systems-rule induction with statistical data. The Journal of the Operational
Research Society, 38(1):39–47, 1987.

[90] K. Murphy. A HMM toolbox for matlab, available at http://www.cs.ubc.ca/ mur-
phyk/software/hmm/hmm.html.

[91] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks by choosing
initial values of the adaptive weights. In Proceedings of the International Joint Conference on
Neural Networks, pages 21–26, 1990.

[92] T. Niblett and I Bratko. Learning decision rules in noisy domains. In Proceedings of the 6th
Annual Technical Conference on Research and development in Expert Systems, pages 25–34.
Cambridge University Press, 1987.

[93] C. Nugent and P. Cunningham. A case-based explanation system for black-box systems. Arti-
ficial Intelligence Review, 24:163–178, 2005.

[94] T. Oates and D. Jensen. The effects of training set size on decision tree complexity. In Proceed-
ings of the Fourteenth International Conference on Machine Learning, pages 254–262. Morgan
Kaufmann Publishers Inc., 1997.

[95] D. Opitz and J. Shavlik. A genetic algorithm approach for creating neural network ensembles.
In Combining Articial Neural Nets, pages 79–99. Springer-Verlag, 1999.

[96] N. C. Oza and K. Tumer. Classifier ensembles: Select real-world applications. Information
Fusion, 9(1):4–20, 2008.

[97] C. Phua, D. Alahakoon, and V. Lee. Minority report in fraud detection: classification of skewed
data. Special Interest Group on Knowledge Discovery and Data Mining Exploratory Newsletter,
6(1):50–59, 2004.

[98] J. R. Quinlan. Simplifying decision trees. In B. Gaines and J. Boose, editors, Knowledge
Acquisition for Knowledge-Based Systems, pages 239–252. Academic Press, London, 1988.

[99] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.

[100] J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum description length
principle. Information and Computation, 80(3):227–248, 1989.

131

[101] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

[102] F. Roli and G. Fumera. Analysis of linear and order statistics combiners for fusion of imbalanced
classifiers. In Proceedings of the International Workshop on Multiple Classifier Systems, pages
252–261. Springer, 2002.

[103] F. Roli, G. Giacinto, and G. Vernazza. Methods for designing multiple classifier systems. In
Multiple Classifier Systems, volume 2096 of Lecture Notes in Computer Science, pages 78–87.
Springer Berlin / Heidelberg, 2001.

[104] D. Ruta and B. Gabrys. An overview of classifier fusion methods. Computing and Information
Systems, 7(1):1–10, 2000.

[105] D. Ruta and B. Gabrys. New measure of classifier dependency in multiple classifier systems. In
Proceedings of the International Workshop on Multiple Classifier Systems (LNCS 2364), pages
127–136. Springer, 2002.

[106] D. Ruta and B. Gabrys. A theoretical analysis of the limits of majority voting errors for multiple
classifier systems. Pattern Analysis and Applications, 5:333–350, 2002.

[107] D. Ruta and B. Gabrys. Set analysis of coincident errors and its applications for combining
classifiers. In D. Chen and X. Cheng, editors, Pattern recognition and string matching. Kluwer
Academic, 2003.

[108] D. Ruta and B. Gabrys. Classifier selection for majority voting. Information Fusion, 6:63–81,
2005.

[109] D. Ruta and B. Gabrys. Genetic algorithms in classifier fusion. Applied Soft Computing, 6:337–
347, 2006.

[110] D. Ruta, D. Nauck, and B. Azvine. K nearest sequence method and its application to churn
prediction. In Proceedings of 7th International Conference on Intelligent Data Engineering and
Automated Learning, pages 207–215, 2006.

[111] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. D. Spyropoulos, and P. Stam-
atopoulos. Stacking classifiers for anti-spam filtering of e-mail. In Proceedings of the 6th Con-
ference on Empirical Methods in Natural Language Processing, pages 44–50, 2001.

[112] A. Sboner, C. Eccher, E. Blanzieri, P. Bauer, M. Cristofolini, G. Zumiani, and S. Forti. A
multiple classifier system for early melanoma diagnosis. Artificial intelligence in medicine, 27:29–
44, 2003.

[113] R. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation
of the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686, 1998.

[114] A. Sharkey and N. Sharkey. Diversity, selection, and ensembles of artificial neural nets. In
Proceedings of NEURAP’97: Neural Networks and their Applications, pages 205–212, 1997.

[115] K. Sirlantzis, M. C. Fairhurst, and S. Hoque. Genetic algorithms for multi-classifier system con-
figuration: A case study in character recognition. In Proceedings of the International Workshop
on Multiple Classifier Systems, pages 99–108. Springer, 2001.

[116] M. Skurichina and R. P. W. Duin. Bagging, boosting and the random subspace method for
linear classifiers. Pattern Analysis and Applications, 5(2):121–135, 2002.

[117] W. N. Street, W. H. Wolberg, and O. L. Mangasarian. Nuclear feature extraction for breast
tumour diagnosis. In International Symposium on Electronic Imaging: Science and Technology,
pages 861–870, 1993.

[118] M. Tamura, T. Masuko, K. Tokuda, and T. Kobayashi. Adaptation of pitch and spectrum for
HMM-based speech synthesis using MLLR. In Proceedings of 2001 International Conference on
Acoustics, Speech, and Signal Processing, pages 805–808, 2001.

[119] K. Tumer and J. Ghosh. Boundary variance reduction for improved classification through hybrid
networks. In Proceedings of the SPIE Conference on Applications and Science of Artificial Neural
Networks, volume 2492, pages 573–585, 1995.

132

[120] K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers.
Pattern Recognition, 29(2):341–348, 1996.

[121] K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classifiers. Connection
Science, 8(20):385–404, 1996.

[122] K. Tumer and N. C. Oza. Input decimated ensembles. Pattern Analysis and Applications,
6(1):65–77, 2003.

[123] J. Utans. Weight averaging for neural networks and local resampling schemes. In Proceedings
of the AAAI-96 Workshop on Integrating Multiple Learned Models for Improving and Scaling
Machine Learning Algorithms, pages 133–138, 1996.

[124] G. Valentini and T. Dietterich. Bias-variance analysis and ensembles of SVM. In Proceedings
of the Third International Workshop on Multiple Classifier Systems, pages 222–231. Springer-
Verlag, 2002.

[125] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16:264–280, 1971.

[126] C. Wei and I. Chiu. Turning telecommunications call details to churn prediction: a data mining
approach. Expert Systems with Applications, 23:103–112, 2002.

[127] T. Windeatt. Diversity measures for multiple classifier system analysis and design. Information
Fusion, 6:21–36, 2005.

[128] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 1(1):67–82, August 2002.

[129] K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local ac-
curacy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):405–
410, 1997.

[130] L. Yan, D. J. Miller, M. C. Mozer, and R. Wolniewicz. Improving prediction of customer
behaviour in non-stationary environments. In Proceedings of International Joint Conference on
Neural Networks, pages 2258–2263, 2001.

[131] M. Zanda, G. Brown, G. Fumera, and F. Roli. Ensemble learning in linearly combined classifiers
via negative correlation. In Proceedings of the 2007 Conference on Multiple Classifier Systems,
pages 440–449, 2007.

[132] J. Zhang. Improved on-line process fault diagnosis through information fusion in multiple neural
networks. Computers and Chemical Engineering, 30(3):558 – 571, 2006.

133

Appendix A

Dynamics of NCL with Sigmoid

Outputs

In this appendix we consider the dynamics of the fi in NCL for the case of sigmoid output nodes.
We will proceed in a similar manner to that of Section 4.4, skipping a few of the details for brevity.

The outputs fi are given now by fi = φ(ai), with φ(a) = 1
1+e−a . We will allow ourselves to update

the ai according to

a
(t+1)
i = a

(t)
i − η

∂Ei

∂ai

(A.1)

though again in practice approximate updates would be made by adjusting weights via back-propagation.
From the chain rule, we have ∂Ei

∂ai
= ∂Ei

∂fi

∂fi

∂ai
= ∂Ei

∂fi
fi(1 − fi). In the following calculations we will

write

Ai = −η
∂Ei

∂fi

fi(1 − fi) = −η [(f − d) + θ(fi − f)] fi(1 − fi) (A.2)

so that a
(t+1)
i = a

(t)
i + A

(t)
i . We want to know how the ensemble error z = f − d evolves over time so

we will try to express z(t+1) in terms of z(t). We have

z(t+1) =
1

N

∑

i

f
(t+1)
i − d (A.3)

and using Eq. A.1

f
(t+1)
i = φ

(

a
(t+1)
i

)

= φ
(

a
(t)
i + A

(t)
i

)

. (A.4)

Note that because φ is monotonically increasing with its argument, the update to ai and the corre-
sponding update to fi will have the same sign, so the second term in Eq. A.2 still has a spreading or
converging (depending on sign of θ) effect on the fi as in the linear case. Substituting the expression

for f
(t+1)
i in Eq. A.4 into (A.3) we have

z(t+1) =
1

N

∑

i

φ
(

a
(t)
i + A

(t)
i

)

− d. (A.5)

Using the fact that φ(b + c) = φbφc

φbφc+(φb−1)(φc−1) for any b and c (writing φb for φ(b) etc), which can

be proved easily from the definition of φ, we have

z(t+1) =
1

N

∑

i

(

φ
(t)
i φ

(t)
Ai

φ
(t)
i φ

(t)
Ai

+ (φ
(t)
i − 1)(φ

(t)
Ai

− 1)

)

− d. (A.6)

Now, we consider λ near λ∗ and f (t) near d, so that Ai is small. In this case, we can expand
φAi

≈ 1
2 (1+ Ai

2) to first order, and substitute in above. After a few lines of rearrangement and further
expansions of the form (1 + δ)−1 ≈ (1 − δ) for small δ, we arrive at

z(t+1) ≈
1

N

∑

i

φ
(t)
i

(

1 + A
(t)
i (1 − φ

(t)
i)
)

− d. (A.7)

134

Recalling that by definition fi = φi and z = f − d, the above becomes

z(t+1) ≈ z(t) +
1

N

∑

i

Ai(1 − fi). (A.8)

Substituting in for Ai and rearranging gives the result:

z(t+1) ≈ (1 − B)z(t) −
θη

N

∑

i

f2
i,(t)(1 − f

(t)
i)2(f

(t)
i − f (t)) (A.9)

where B = η
N

∑

i f2
i,(t)(1 − f

(t)
i)2 > 0.

135

Appendix B

Listing of Datasets

Here we describe the datasets used in the thesis. They have been chosen to cover a range of problem
characteristics. All datasets are available online in the UCI machine learning repository [8], with the
exception of the churn dataset which is available from the author on request.

B.1 Wisconsin Breast Cancer

This is a 30-feature, 2-class dataset with 569 examples. Class split is 212/357 into malignant and
benign cells.

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass,
and describe characteristics of the cell nuclei present in the image.

Ten real-valued features are computed for each cell nucleus:

• Radius (mean of distances from center to points on the perimeter)

• Texture (standard deviation of gray-scale values)

• Perimeter

• Area

• Smoothness (local variation in radius lengths)

• Compactness (perimeter2 / area - 1.0)

• Concavity (severity of concave portions of the contour)

• Concave points (number of concave portions of the contour)

• Symmetry

• Fractal dimension (”coastline approximation” - 1)

B.2 Pima Diabetes

This is an 8-feature, 768 example dataset with 2 classes of cardinalities 500 and 268.
Several constraints were placed on the selection of these instances from a larger database. In

particular, all examples refer to patients who are females at least 21 years old of Pima Indian heritage.
Attribute Information:

• Number of times pregnant

• Plasma glucose concentration a 2 hours in an oral glucose tolerance test

• Diastolic blood pressure (mm Hg)

• Triceps skin fold thickness (mm)

136

• 2-Hour serum insulin (mu U/ml)

• Body mass index (weight in kg/(height in m)
2
)

• Diabetes pedigree function

• Age (years)

B.3 Liver

This dataset contains 345 examples of 2 classes (cardinalities 145, 200), with 6 features.
The first 5 variables are all blood tests which are thought to be sensitive to liver disorders that

might arise from excessive alcohol consumption. The final variable is the number of drinks per day
on average. Each example constitutes the record of a single male individual.

Attribute Information:

• MCV (mean corpuscular volume)

• Alkaline phosphotase

• Alamine aminotransferase

• Aspartate aminotransferase

• Gamma-glutamyl transpeptidase

• Drinks number of half-pint equivalents of alcoholic beverages drunk per day

B.4 Synthetic and Cone-torus Datasets

The synthetic dataset is a simple 2-D artificial dataset with 250 examples of 2 classes with equal class
priors. The data is generated from 2 gaussians for each class, with some significant overlap. The bayes
error is approximately 0.08.

Similarly, the cone-torus dataset is another 2-D dataset with 400 examples of 3 classes (cardinalities
92, 99, 209). It is highly overlapping, consisting of a highly spread gaussian, a more compact gaussian,
and a vaguely banana-shaped class arcing through the wider spread gaussian.

B.5 Telecommunications Customer Churn

This dataset contains 8080 sequences, each corresponding to the history of a single, unique customer.
There are 5 features, as detailed below:

• Time since last event

• Event type

• Duration of Event

• Promise

• Life so far

Event type is a categorical variable and may be ’complaint’, ’provision’,’repair’, or ’churn’. The
other 4 are real-valued.

137

