1,264 research outputs found

    Constraint handling strategies in Genetic Algorithms application to optimal batch plant design

    Get PDF
    Optimal batch plant design is a recurrent issue in Process Engineering, which can be formulated as a Mixed Integer Non-Linear Programming(MINLP) optimisation problem involving specific constraints, which can be, typically, the respect of a time horizon for the synthesis of various products. Genetic Algorithms constitute a common option for the solution of these problems, but their basic operating mode is not always wellsuited to any kind of constraint treatment: if those cannot be integrated in variable encoding or accounted for through adapted genetic operators, their handling turns to be a thorny issue. The point of this study is thus to test a few constraint handling techniques on a mid-size example in order to determine which one is the best fitted, in the framework of one particular problem formulation. The investigated methods are the elimination of infeasible individuals, the use of a penalty term added in the minimized criterion, the relaxation of the discrete variables upper bounds, dominancebased tournaments and, finally, a multiobjective strategy. The numerical computations, analysed in terms of result quality and of computational time, show the superiority of elimination technique for the former criterion only when the latter one does not become a bottleneck. Besides, when the problem complexity makes the random location of feasible space too difficult, a single tournament technique proves to be the most efficient one

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Constrained Optimization with Evolutionary Algorithms: A Comprehensive Review

    Get PDF
    Global optimization is an essential part of any kind of system. Various algorithms have been proposed that try to imitate the learning and problem solving abilities of the nature up to certain level. The main idea of all nature-inspired algorithms is to generate an interconnected network of individuals, a population. Although most of unconstrained optimization problems can be easily handled with Evolutionary Algorithms (EA), constrained optimization problems (COPs) are very complex. In this paper, a comprehensive literature review will be presented which summarizes the constraint handling techniques for COP

    On Challenging Techniques for Constrained Global Optimization

    Get PDF
    This chapter aims to address the challenging and demanding issue of solving a continuous nonlinear constrained global optimization problem. We propose four stochastic methods that rely on a population of points to diversify the search for a global solution: genetic algorithm, differential evolution, artificial fish swarm algorithm and electromagnetism-like mechanism. The performance of different variants of these algorithms is analyzed using a benchmark set of problems. Three different strategies to handle the equality and inequality constraints of the problem are addressed. An augmented Lagrangian-based technique, the tournament selection based on feasibility and dominance rules, and a strategy based on ranking objective and constraint violation are presented and tested. Numerical experiments are reported showing the effectiveness of our suggestions. Two well-known engineering design problems are successfully solved by the proposed methods. © Springer-Verlag Berlin Heidelberg 2013.Fundação para a Ciência e a Tecnologia (Foundation for Science and Technology), Portugal for the financial support under fellowship grant: C2007-UMINHO-ALGORITMI-04. The other authors acknowledge FEDER COMPETE, Programa Operacional Fatores de Competitividade (Operational Programme Thematic Factors of Competitiveness) and FCT for the financial support under project grant: FCOMP-01-0124-FEDER-022674info:eu-repo/semantics/publishedVersio

    Optimal Ship Maintenance Scheduling Under Restricted Conditions and Constrained Resources

    Get PDF
    The research presented in this dissertation addresses the application of evolution algorithms, i.e. Genetic Algorithm (GA) and Differential Evolution algorithm (DE) to scheduling problems in the presence of restricted conditions and resource limitations. This research is motivated by the scheduling of engineering design tasks in shop scheduling problems and ship maintenance scheduling problems to minimize total completion time. The thesis consists of two major parts; the first corresponds to the first appended paper and deals with the computational complexity of mixed shop scheduling problems. A modified Genetic algorithm is proposed to solve the problem. Computational experiments, conducted to evaluate its performance against known optimal solutions for different sized problems, show its superiority in computation time and the high applicability in practical mixed shop scheduling problems. The second part considers the major theme in the second appended paper and is related to the ship maintenance scheduling problem and the extended research on the multi-mode resource-constrained ship scheduling problem. A heuristic Differential Evolution is developed and applied to solve these problems. A mathematical optimization model is also formulated for the multi-mode resource-constrained ship scheduling problem. Through the computed results, DE proves its effectiveness and efficiency in addressing both single and multi-objective ship maintenance scheduling problem

    Explicit Building-Block Multiobjective Genetic Algorithms: Theory, Analysis, and Developing

    Get PDF
    This dissertation research emphasizes explicit Building Block (BB) based MO EAs performance and detailed symbolic representation. An explicit BB-based MOEA for solving constrained and real-world MOPs is developed the Multiobjective Messy Genetic Algorithm II (MOMGA-II) which is designed to validate symbolic BB concepts. The MOMGA-II demonstrates that explicit BB-based MOEAs provide insight into solving difficult MOPs that is generally not realized through the use of implicit BB-based MOEA approaches. This insight is necessary to increase the effectiveness of all MOEA approaches. In order to increase MOEA computational efficiency parallelization of MOEAs is addressed. Communications between processors in a parallel MOEA implementation is extremely important, hence innovative migration and replacement schemes for use in parallel MOEAs are detailed and tested. These parallel concepts support the development of the first explicit BB-based parallel MOEA the pMOMGA-II. MOEA theory is also advanced through the derivation of the first MOEA population sizing theory. The multiobjective population sizing theory presented derives the MOEA population size necessary in order to achieve good results within a specified level of confidence. Just as in the single objective approach the MOEA population sizing theory presents a very conservative sizing estimate. Validated results illustrate insight into building block phenomena good efficiency excellent effectiveness and motivation for future research in the area of explicit BB-based MOEAs. Thus the generic results of this research effort have applicability that aid in solving many different MOPs

    Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control

    Get PDF
    Constrained optimization of high-dimensional numerical problems plays an important role in many scientific and industrial applications. Function evaluations in many industrial applications are severely limited and no analytical information about objective function and constraint functions is available. For such expensive black-box optimization tasks, the constraint optimization algorithm COBRA was proposed, making use of RBF surrogate modeling for both the objective and the constraint functions. COBRA has shown remarkable success in solving reliably complex benchmark problems in less than 500 function evaluations. Unfortunately, COBRA requires careful adjustment of parameters in order to do so. In this work we present a new self-adjusting algorithm SACOBRA, which is based on COBRA and capable to achieve high-quality results with very few function evaluations and no parameter tuning. It is shown with the help of performance profiles on a set of benchmark problems (G-problems, MOPTA08) that SACOBRA consistently outperforms any COBRA algorithm with fixed parameter setting. We analyze the importance of the several new elements in SACOBRA and find that each element of SACOBRA plays a role to boost up the overall optimization performance. We discuss the reasons behind and get in this way a better understanding of high-quality RBF surrogate modeling

    Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm

    Get PDF
    Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort

    Practice-Oriented Optimization of Distribution Network Planning Using Metaheuristic Algorithms

    Get PDF
    Distribution network operators require more advanced planning tools to deal with the challenges of future network planning. An appropriate planning and optimization tool can identify which option for network extension should be selected from available alternatives. However, many optimization approaches described in the literature are quite theoretical and do not yield results that are practically relevant and feasible. In this paper, a distribution network planning approach is proposed which meets requirements originating from network planning practice to guarantee realistic outcomes. This approach uses a state-of-the-art evolutionary algorithm: Gene-pool Optimal Mixing Evolutionary Algorithm. The performance of this algorithm, as well as the proposed model, is demonstrated using a real-world case study
    • …
    corecore