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Abstract

This dissertation research emphasizes explicit Building Block (BB) based MOEAs

performance and detailed symbolic representation. An explicit BB-based MOEA for solv-

ing constrained and real-world MOPs is developed, the Multiobjective Messy Genetic

Algorithm II (MOMGA-II) which is designed to validate symbolic BB concepts. The

MOMGA-II demonstrates that explicit BB-based MOEAs provide insight into solving dif-

ficult MOPs that is generally not realized through the use of implicit BB-based MOEA

approaches. This insight is necessary to increase the effectiveness of all MOEA approaches.

In order to increase MOEA computational efficiency, parallelization of MOEAs is

addressed. Communications between processors in a parallel MOEA implementation is

extremely important, hence innovative migration and replacement schemes for use in par-

allel MOEAs are detailed and tested. These parallel concepts support the development of

the first explicit BB-based parallel MOEA, the pMOMGA-II.

MOEA theory is also advanced through the derivation of the first MOEA population

sizing theory. The multiobjective population sizing theory presented derives the MOEA

population size necessary in order to achieve good results within a specified level of con-

fidence. Just as in the single objective approach, the MOEA population sizing theory

presents a very conservative sizing estimate.

Validated results illustrate insight into building block phenomena, good efficiency,

excellent effectiveness, and motivation for future research in the area of explicit BB-based

MOEAs. Thus, the generic results of this research effort have applicability that aid in

solving many different MOPs.

xviii



EXPLICIT BUILDING-BLOCK MULTIOBJECTIVE

GENETIC ALGORITHMS:

THEORY, ANALYSIS, AND DEVELOPMENT

I. Introduction and Overview

Optimization problems are encountered daily in each of our lives. While most of us

may fail to recognize the structure of these problems, they exist at many levels of com-

plexity. Such optimization problems can vary from relatively simple, single input variable,

single objective (SO) problems (e.g. how do I get to the grocery store in the least amount of

time) to multivariate, multiobjective optimization problems (MOPs) of great complexity

(e.g. advanced logistics planning problems concerning resource allocation). While obtain-

ing the optimal solution to an MOP and hence solving it is the ultimate goal of any attempt

to optimize an MOP, the desire of most researchers is to find an acceptable solution to

MOPs. Since many real world problems are MOPs, this investigation concentrates on find-

ing acceptable solutions to MOPs using a relatively new, innovative, evolutionary search

approach.

Generating acceptable solutions to MOPs is an area of increased interest by re-

searchers in many disciplines, including Computer Engineering, Operations Research, and

Computer Science to name a few. As the computational power of personal computers and

supercomputers continues to increase, with processor speeds just about doubling every cou-

ple of years according to Moore’s Law, problems that were previously too computationally

complex to tackle become more manageable. 1 The increased computational capability

of today’s computers encourages researchers to attempt to solve problems that previously

were untractable and use increased levels of precision. These facts contribute to an increas-

ing interest in the solving of MOPs, as they typically provide a more realistic formulation

1Moore’s Law is the common name for Gordon E. Moore’s observation in 1965 that there shall continue
an exponential growth in the number of transistors able to be placed on an integrated circuit at least every
two years [147].
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of the problem. Increasingly, evolutionary algorithms based upon biological models are

used to accomplish this task, as seen in numerous conference proceedings and published

papers [26, 62, 63, 109, 120, 175, 202] 2.

Multiobjective Evolutionary Algorithms (MOEAs) are contemporary algorithms to

solve MOPs and are part of the ‘soft computing’ umbrella of search algorithms. This in-

cludes Genetic Algorithms, Evolution Strategies, Evolutionary Programming, and Genetic

Programming and their extension to MOEA implementations. As more researchers use

MOEAs, many analyze the variety of such algorithms in an attempt to understand how

and why they work. Even though SO Evolutionary Algorithms (EA) have existed for a few

decades, the theoretical analysis of EAs is not complete, and hence, neither is the theoret-

ical analysis of MOEAs. These statements illustrate the need for additional development,

and theoretical analyses of MOEAs.

1.1 MOEA Overview

MOEAs are relatively new algorithms, but over the past few years there has been an

explosion with respect to the interest in MOEAs and the number of publications generated

each year [26, 62, 63, 109, 120, 175, 202]. To further illustrate this fact, in the year 2001,

the first International Conference on Multi-Criterion Optimization using MOEAs was held

in Zurich, Switzerland. This was an entire conference dedicated to MOEAs; theory, design,

analysis, and applications. Also there have been many Multi-Criterion conferences in other

pedagogical communities, including Operations Research, that employ a variety of other

MOP solution techniques [96]. These points illustrate the intense interest in MOEAs for

solving academic and real-world MOPs.

Since the MOEA field is no longer in its infancy, the use of MOEAs is accepted

among researchers as being able to produce efficient and effective results for various real-

world problems. Someone might question Are there any contributions that remain to be

made? The answer to this question is YES! There are always improvements and theoretical

2Dr. Carlos Coello Coello maintains a database of MOEA publications at the web address
http://www.lania.mx/ ccoello/EMOO/EMOObib.html. Many researchers in the EA and MOEA fields
recognize this database as one of the most complete listings of publications in the MOEA field. Currently
this database is updated multiple times a year and contains well over 1000 MOEA citations.
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developments that can be made. Contributions can come in the form of new MOEA

operators, theoretical developments and more. Additionally, many researchers are delving

into different aspects of MOEAs in pursuit of increasing MOEA efficiency and effectiveness.

Efficiency is defined as a measure of resource use, such as memory requirements, CPU

utilization, network bandwidth, and file storage as well as the total wall clock time required

for an MOEA to execute. Effectiveness is defined as a measure of the quality of the solutions

that are generated by the MOEA.

MOEA researchers are categorized into two groups, the researchers interested in

understanding the inner workings, operators, development, and theory of MOEAs and the

researchers interested in solely applying MOEAs to generate MOP solutions. The major

emphasis of this research effort places it into the former category. An understanding of the

inner workings of MOEAs is presented and this understanding is capitalized on in order

to advance the state-of-the-art with respect to MOEAs.

Many researchers in the MOEA field have recognized the need for additional the-

oretical contributions [31, 44, 85, 167, 184]. Researchers have accepted MOEAs as valid

search algorithms but additional theoretical contributions can still be made. Theoretical

contributions in conjunction with analyses of different MOEAs leads to a deeper under-

standing of the reasons why certain MOEAs perform the same or better than others. This

research makes substantial theoretical and practical contributions to the field of MOEAs.

This theoretical contribution is made through addressing the development of a population

sizing equation for MOEAs.

Specifically, the analysis of explicit Building Block (BB) based MOEAs is conducted

to illustrate the advantages and disadvantages of this rarely used approach. Additionally,

there is a valid need for guidance as to setting MOEA parameter values and understanding

MOEA operators. Symbolic formulations of MOEA operators and an analysis of the effect

of explicit BBs on overall solution quality is presented. Additionally, a clear procedure

for the use of parallel concepts in MOEAs is presented to aid MOEA researchers in using

this relatively new resource to the MOEA field. As a whole, this research effort presents

practical methods that may increase the efficiency and effectiveness of MOEAs.

1-3



Various MOPs are presented to attempt and solve via the use of the MOEA ap-

proach presented. These problems include high dimensional, real-world applications that

EAs, and by extension, MOEAs are suited to solve. Many MOEA publications address

attempts to solve small pedagogical examples but larger problems that are considered more

realistic of real-world applications are typically missing [29, 46, 102, 107, 130, 191]. While

pedagogical examples are useful for evaluating the performance of MOEAs on MOPs with

known solutions, they are not truly indicative of the anticipated performance of MOEAs

as applied to real-world or high dimensionality application MOPs. Real-world problems

may be of various classes including those of high dimensionality in both the genotype or

input variables and the phenotype or number of fitness functions. Many times real-world

application MOPs are constrained and hence may be more difficult for an MOEA to solve.

The Pareto fronts (phenotype solution sets) have varying characteristics and those of high-

est interest include - disconnected, connected, continuous, discrete, concave, and convex

characteristics. Specifically, a real-world Air Force application, the Advanced Logistics

problem, is analyzed and used to test the performance of the MOEA of interest. Research

into solving real-world MOPs through the use of MOEAs is of direct benefit to the Air

Force and the MOEA community.

1.2 Research Goals and Specific Objectives

The primary goal of this research is to advance the state-of-the-art with respect to

explicit BB-based MOEAs. The research goal is accomplished through MOEA development

and analysis. BBs are considered by many to be an important aspect of any evolutionary

approach and are a focus of this effort. Limited research into BB-based evolutionary

approaches [184, 187, 191, 192] has shown promising results, and hence, the focus of this

effort is on extending MOEA BB concepts as reflected in the following research goal:

Research Goal: Advance the state-of-the-art with re-
spect to explicit Building Block Based MOEAs.

The research presented in this dissertation advances the theory, design, and imple-

mentation of MOEAs as well as the analysis of MOPs. Contributions are made in the
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MOEA research area of explicit manipulation of BBs, which has not been addressed in de-

tail in the current MOEA literature. This effort has five objectives and the contributions of

this effort arise out of meeting each of the five objectives. The objectives are presented in

the order in which they are addressed in this dissertation and not in terms of importance.

The first objective is to present a clear symbolic formulation of MOEA operators and

the algorithm. Such a formulation can aid in understanding MOEA operators and provide

researchers a clear definition to use when implementing these operators. A good under-

standing of MOEA operators aids researchers in correctly implementing MOEA operators

and in developing new MOEAs and operators with improved performance over existing

implementations.

Objective 1: Present a symbolic formulation of
MOEA operators and algorithm details.

A detailed summary of many contemporary MOEAs is presented to illustrate the

difference in MOEAs and summarize the contributions that have been made in the field.

This is useful for the design of new MOEAs or a validation of current MOEAs. This effort

categorizes MOEAs as either explicit BB-based or implicit BB-based MOEAs. Explicit

BB-based MOEAs analyze the population of individuals to explicitly identify the BBs or

partial strings that lead to the generation of good solutions. Explicit BB-based MOEAs

use evolutionary operators to capitalize on the identification of good BBs and subsequently

manipulate those good BBs in order to generate good solutions. The term implicit BB-

based MOEA defines an MOEA that does not explicitly identify the “good” BBs, (the

ones and zeros) or partial strings, in the population. Implicit BB-based MOEAs assume

that the good BBs are present in the population and through evolutionary operators these

BBs are implicitly manipulated in a necessary fashion to obtain good results.

Previous to the research completed in this effort, all of the existing MOEAs in the

community were implicit BB-based MOEAs with the exception of the MOMGA [184, 190].

The MOMGA explicitly finds the “best” BBs in the population and then exploits these

BBs through the use of evolutionary operators (EVOPs) to generate “better” solutions.

This research effort makes contributions to the MOEA community through presenting a
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thorough analysis of the effect of the explicit manipulation of BBs on solution quality in

MOEAs. Since most other researchers only implicitly address BBs, the potential exists for

these researchers to overlook certain aspects of MOEA development and MOP solutions

that are found through the use of explicit BB-based MOEAs.

In testing MOEAs, parallel MOEAs, and other associated BB concepts, different

MOPs and metrics should be used in order to compare their performance [42, 43, 52, 53,

54, 113, 114, 184, 188, 189, 192, 194, 195, 208, 209, 212, 214]. A number of constrained

MOPs are used to analyze the performance of the MOMGA-II. The constrained MOPs

selected to evaluate the performance of the MOMGA-II contain characteristics that differ

from MOPs contained in other test suites. MOP Test suites are only useful if the test suite

MOPs reflect the characteristics and class of MOP that an MOEA is designed to attempt

and solve. The MOMGA-II is used to attempt and solve constrained MOPs formulated

with integer based decision variables. Considering that existing MOP test suites typically

do not contain MOPs of these characteristics, a real-world and NP -Complete MOP are

selected and proposed for test suite inclusion. Many real-world MOPs are formulated with

constraints and integer based decision variables and hence optimizing an MOEA for this

class of problems.

The second objective is to develop an explicit BB-based MOEA for solving real-

world applications including real-world Air Force MOPs and constrained MOPs with inte-

ger based decision variables. The literature shows that an explicit BB-based MOEA can

achieve the performance that matches or exceeds that of implicit BB-based MOEAs in

terms of effectiveness, but the efficiency of the explicit BB-based MOEAs degrades rapidly

with increased problem sizes [184]. The degradation of the efficiency and execution time

of explicit BB-based MOEAs as problem sizes increase makes these MOEAs impractical to

apply to MOPs of high dimensionality and time consuming fitness evaluations, the charac-

teristics of many real-world MOPs. Hence an explicit BB-based MOEA, the MOMGA-II,

is another advancement in illustrating the usefulness of BBs in MOEAs. The MOMGA-II

is developed to use explicit BB concepts to attempt and solve real-world application MOPs

in much less time than previous explicit BB-based approaches. The performance of this
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new MOEA is analyzed through the use of various MOPs and metrics to present a limited

statistical comparison to other MOEA approaches.

Objective 2: Develop an explicit BB-based MOEA
for solving constrained and real-world MOPs.

The third objective is to demonstrate that explicit BB-based MOEAs may provide

insight into MOPs that otherwise is not found with implicit BB approaches. The effect of

attempting to solve MOPs with different BB sizes is analyzed. Related to this objective

is analyzing BBs applied to various MOPs to determine if a trend exists, i.e., Do “hard”

MOPs typically require larger BB sizes to find the optimal solution set? In the context

of this effort, a hard MOP is one in which an MOEA has difficulty in attempting to find

good potential solutions to the MOP. The use of an explicit BB-based MOEA allows one

to conduct an analysis of the relationship between BB sizes and the difficulty of MOPs.

Objective 3: Demonstrate that explicit BB-based
MOEAs may provide insight into solving difficult
MOPs.

Parallelization of MOEAs is a relatively new concept. Parallel evolutionary algo-

rithms (pEA) have existed over three decades. Due to the relatively recent development of

MOEAs, the parallel MOEA (pMOEA) field is a new field within the MOEA area. There

exists room for meaningful contributions to the MOEA community through the analysis

of parallel concepts as applied to MOEAs. The fourth objective is to describe parallel con-

cepts for MOEAs, present innovative migration and replacement schemes for use in parallel

MOEA paradigms, and develop the first explicit BB-based parallel MOEA. A description

of pMOEA concepts provides insight into pMOEAs and aids researchers in the develop-

ment of pMOEAs. Migration and replacement schemes are used during the communication

processes that occurs in a pMOEA and directly effect the overall pMOEA performance.

Since the goals of parallelization are typically to improve the efficiency and/or effectiveness

of a serial MOEA, it is important to develop effective migration and replacement schemes

for use in pMOEAs.
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The three major parallel MOEA paradigms, Master-Slave, Island, and Diffusion are

concentrated on in the discussion of parallel MOEA concepts. 3 Implementation details in

generating pMOEAs is important to identify and understand as the pMOEA field is new

and largely undefined. Details of the implementation of a pMOEA are extremely impor-

tant to MOEA researchers for use in determining how to design a new parallel MOEA,

identifying issues that must be addressed in the design process, recognizing considera-

tions that must be made when deciding whether to design a pMOEA from scratch or to

parallelize an existing MOEA, and realizing the differences between pEAs and pMOEAs.

pMOEA implementation details must be understood in order to develop efficient and ef-

fective pMOEAs. Additionally, the communication process that occurs within the parallel

implementation is critical to achieving the desired pMOEA performance. As a discussion

of migration and replacement schemes is missing from pMOEA publications, this research

effort clearly identifies these schemes and discusses the advantages and disadvantages of

each scheme. Considering that explicit BB-based MOEAs have been shown to achieve

good performance, an effort is made to improve the performance of an explicit BB-based

MOEA through the integration of parallel concepts.

Objective 4: Describe parallel concepts for
MOEAs, present innovative migration and replace-
ment schemes for use in parallel MOEA paradigms,
and develop the first explicit BB-based parallel
MOEA.

The fifth objective of this effort is to advance the theory of MOEAs, in particular,

the theory of MOEA population sizing. A generic population sizing equation for MOEAs

is developed. It is difficult to determine an initial population size to use in MOEAs that

provides a level of confidence that an MOEA will generate good solutions. The population

sizing theory presented in support of this objective determines with statistical confidence

the initial population size to use in MOEAs. This is an important step in advancing the

theory of MOEAs and their application to MOPs.

3It is noted that other parallel paradigms exist in support of other disciplines [119]. In the context of this
research effort, the three major parallel EA and MOEA paradigms, Master-Slave, Island, and Diffusion,
are discussed.
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Objective 5: Enhance MOEA theory by deriving
MOEA population sizing theory.

To summarize, the research focuses on finding “good” solutions to scientific and

engineering MOPs. This effort uses MOEAs, pMOEA concepts, and population sizing

theoretical developments in order to find “good” solutions to MOPs. The concepts pre-

sented are validated through the application of the MOMGA-II to various test suite MOPs

and a statistical analysis of the results.

1.3 Research Approach

Accomplishing the goal and objectives of this research effort involves the use of good

engineering principles. A haphazard approach is sure to fail considering the difficulty and

complexity associated with each objective. In order to advance the state-of-the-art of

MOEAs, one must become an expert in the areas of EAs and MOEAs.

An extensive analysis of the existing literature in the areas of EAs, MOEAs, and

parallel processing techniques was completed to achieve this expertise. The knowledge and

insight gained from this literature review was used to design and develop a new innovative

MOEA, the MOMGA-II, for use by researchers in solving real-world MOP applications. A

number of MOPs are identified and proposed for test suite inclusion and these real-world

MOPs are used in testing and analyzing the performance of the MOMGA-II.

In order to discuss with any certainty the quality of the results obtained, various

metrics are analyzed. A subset of the metrics presented are selected for analyzing MOEA

performance. Hypothesis testing is used to analyze the results of the MOMGA-II and state

with statistical certainty how the results compare to existing methods.

As large improvements over existing methods are always welcomed, it is recognized

that even small improvements can result in large cost savings to the warfighter effort. The

algorithmic results of this effort can be integrated with existing methods to attempt and

find the solution to complex MOPs. The Air Force has a direct interest in this research as it

is sponsored by the Information Technology Division of the Air Force Research Laboratory
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at Wright-Patterson AFB in Ohio. This research presents concepts and new ideas that

directly support the Air Force and the solving of real-world Air Force applications.

1.4 Document Organization

This document is organized as follows. The following chapter, Chapter II, presents

necessary background and historical information in the form of key EA and MOEA defi-

nitions and terminology. Different optimization approaches are discussed in order to illus-

trate the rationale for the selection of an evolutionary approach over other approaches. A

discussion of BBs follows as BBs are integral to this effort. Multiobjective optimization

terminology and the algorithm domain formulation is presented to aid the reader’s under-

standing of the basic concepts used. Finally a discussion of MOEA operators and theory

completes the chapter.

Contemporary MOEA development as well as the metrics necessary to evaluate the

performance of MOEAs follows in Chapter III. The results of an extensive literature review

of MOEAs is presented and provides specific details of the design and functionality of some

popular and highly referenced MOEAs. Most importantly, the MOEA metrics selected for

use are discussed and compared to the other metrics presented.

Chapter IV discusses MOP test suites and the MOPs selected for testing the per-

formance of the MOMGA-II. MOPs of various classes are presented in this chapter and

some of these MOPs are proposed for use by other researchers. The proposed MOPs con-

tain various characteristics that differ from MOPs contained in other MOP test suites,

thereby illustrating their usefulness for MOEA testing. The following chapter, Chapter V,

discusses symbolic formulations for MOEA operators and an MOEA. Chapter VI presents

the overall design approach, testing, results, and analysis of the MOMGA-II, the MOEA

chosen for use. The MOMGA-II is applied to unconstrained, constrained, NP-Complete,

and real-world MOPs and the associated results and analyses are presented. Chapter VII

discusses parallel concepts and their application to MOEAs, as well as the design and test-

ing considerations necessary when applying parallel concepts to MOEAs. Chapter VIII

presents the theoretical analysis conducted for developing an MOEA population sizing
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equation to obtain “good” results given some specified level of confidence. The conclusions

and recommendations for future work follow.
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II. Multiobjective Evolutionary Algorithm Introduction

This chapter presents background information to aid the reader in understanding the

necessary knowledge supporting this dissertation. A brief description of Evolutionary

Algorithms (EAs) is presented followed by a discussion of Multiobjective Evolutionary

Algorithms (MOEAs) and other approaches to solving Multiobjective Optimization Prob-

lems (MOPs). The Building Block Hypothesis (BBH), MOP and MOEA terminology and

definitions are presented. Various classes of MOPs (unconstrained and constrained) are

discussed in this chapter. Complex MOPs are a focus of this document and the termi-

nology associated with these problems and different solution methods are described in

some detail. An MOEA algorithm domain formulation is presented detailing a consistent

terminology that is used throughout this effort. Since a number of MOPs that are the

focus of this research effort are constrained MOPs, a discussion of constraint handling in

MOEAs is presented. This chapter concludes with a table of MOEA theoretical areas that

other researchers have addressed through various publications and identifies an area of

theoretical development that is currently lacking in the literature. The theoretical area

of MOEA population sizing is largely unaddressed in the current literature and is a focus

of this research effort. The following sections present discussions of topics to provide an

extensive foundation for the research.

2.1 Evolutionary Algorithm Overview

Various techniques exist to solve optimization problems (OP). These techniques

can be grouped into three categories: enumeration, deterministic, and stochastic tech-

niques [140, 159]. Each of these techniques has advantages and disadvantages. While it is

not within the scope of this effort to detail all the possible techniques for solving OPs, an

explanation of the categories and motivation for using these approaches is presented. Enu-

meration techniques involve conducting a total enumeration of the search space in order

to look at every possible solution to the OP and be guaranteed to generate the optimal so-

lution(s). While this technique results in the research objective, generation of the optimal

solution, enumeration techniques are generally infeasible when applied to large problems,

and are best applied to problems containing a few discrete decision variables [159, 205].
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A total enumeration of the search space is not the best approach if the enumeration of

the space is too complex to finish within a reasonable amount of time or if the problem

is constrained (enumeration techniques typically do not detect infeasible combinations of

decision variables prior to computing their fitness value). These are just two reasons that

enumeration techniques are not always a good technique to use. One would like to gener-

ate solutions to an OP within a reasonable amount of time and enumeration approaches

cannot meet this requirement for complex, large scale OPs.

Deterministic techniques for solving OPs include: Divide and Conquer, Dynamic

Programming, Hill Climbing, Branch and Bound, Depth-First (Greedy, Backtracking),

Breadth-First, and Best-First (A∗, Z∗) search and Tabu search to name a few. These

approaches typically incorporate problem domain knowledge to reduce the size of the search

space that is actually analyzed [140]. Throughout the deterministic search process, certain

paths may be deemed inferior to others, and only paths of potentially better solution

quality are fully explored. Many deterministic search techniques proceed to search the

space through through a tree or graph like process. While these techniques are typically

more efficient than conducting an enumeration of the space, they are still time consuming

when applied to large scale OPs.

Divide and conquer takes the approach of decomposing a difficult problem into mul-

tiple, manageable smaller problems. The manageable subproblems are solved recursively

to yield a solution to the original OP [140]. Dynamic programming uses a recursive pro-

cedure to solve a problem. The main idea is to decompose a large problem into small, one

stage, incremental subproblems. The subproblems are solved and the solutions to these

subproblems are used to solve larger and larger subproblems. Eventually the original prob-

lem is solved [205]. Hill Climbing uses a greedy approach that compares multiple solutions

and chooses the best of those compared. This approach assumes that the path to the

optimal solution is one that involves selecting the best solution at each step of the search

process [140].

Breadth-first, depth-first, and best-first search solve a problem through a tree like

structured search process. Breadth-first search generates all nodes at a specific level of

the tree structure prior to the generation of nodes at the next lower level of the tree [140].
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Depth-first search is similar to breadth-first search but generates all of the nodes, down

to the lowest depth or level, of a specific branch of the tree prior to solving the next

branch [159]. Backtracking is used to go back if a previously promising node turns out to

yield a poor solution. Backtracking allows one to get back to a previous promising node

and continue the search process down an alternate path [148]. Best-first search always

selects the next most promising node to evaluate and is a greedy based approach [57].

A∗ and Z∗ are special cases of best-first search algorithms. A∗ and Z∗ use the cost and

estimates of the cost to continue searching until the solution is found in order to select a

path to evaluate [140].

Branch and bound is a heuristic that works on the concept that continually parti-

tioning the search space and finding the lower bound on any solution can be used to find

the optimal solution. The bound of each of the nodes is used to determine which node

is the most promising and the algorithm branches to that node [140]. A heuristic search

method uses all of the available information in order to follow the most promising path

to a final solution [148]. Tabu search takes a different approach to solving optimization

problems. In tabu search a finite (tabu) list is maintained of previous movements within

the search space. The purpose of this list is to prevent or penalize the search process when

moves are selected that yield a solution already visited in the search space. The tabu list

aids the search process in visiting unexplored areas of the search space and the tabu list

itself is updated as the search progresses [73, 159]. Tabu search uses information gained

from its movement throughout the search space to explore new regions of the search space

and move back to previously explored regions that are of high quality.

The final category of search technique discussed is that of stochastic techniques, the

focus of this effort. Stochastic searching techniques make use of some type of randomness

or random process in the search process [140]. Stochastic techniques include: Random

Search, Simulated Annealing, Monte Carlo, and Evolutionary Algorithms to name a few.

These approaches use a random process and maintain some type of record of good solutions

found. This information is used in the search process to generate better solutions as the

search progresses.
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A purely random search randomly generates solutions until some stopping criteria is

met [140]. At the conclusion of the search, the best solution found is presented to the user.

As this process is entirely random, knowledge of good solutions or promising areas of the

search space are not recorded and hence one cannot always expect this method to yield

solutions of high quality. A Monte Carlo search randomly generates solutions to a problem

multiple times. When a large enough sample size is used, the distribution of values found

approximates the true output distribution [159].

Simulated annealing is an approach that mimics the process of annealing metals to

improve their overall strength. The simulated annealing search process moves throughout

the search space to areas of improved solution quality. Areas of the the search space

that do not improve the overall solution quality are also explored based on a randomly

generated probability that is typically small. The exploration of areas of the solution space

of lesser quality may prevent premature convergence to a local optima. As the algorithm

progresses, a temperature like coefficient is used to “cool” or change the probability with

which solutions of lower quality are accepted [148, 159].

Since these techniques typically do not search the entire space for very large OPs,

they are not guaranteed to find the optimal solution unless they are executed for an in-

finite amount of time. However, these approaches typically generate good solutions for

problems in which the search space is not totally chaotic. This research effort is concerned

with attempting to solve difficult OPs, that may have multimodal landscapes, are time

consuming to solve, are of high dimensionality, and require an acceptable solution within a

reasonable amount of time. This means that the landscape is not totally chaotic, but that

there may be multiple local optima and a single or multiple global optima. OPs having

these characteristics are difficult to solve but evolutionary approaches are suited to solve

this type of OP [74]. Hence an evolutionary approach is the focus of this effort.

Evolutionary Algorithms (EA) have been a focus of development for a number of

years [74]. EAs are a population based class of algorithm that have a direct link to biology

and the concept of optimal processes. These algorithms can be decomposed into four

main sub-classes, Evolutionary Strategies (ES), Evolutionary Programming (EP), Genetic

Programming (GP), and Genetic Algorithms (GAs). The difference in these approaches
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lies in the operators and representation used. Genetic algorithms typically use a binary

representation for the population members and crossover but little to no mutation whereas

evolutionary programming uses a real-valued or symbolic representation for the population

members and primarily uses a mutation operator to generate solutions. Evolutionary

strategies use a real-valued representation for the population along with a combination of

crossover and mutation. Genetic programming solves an optimization problem through a

tree like structure consisting of programs that are randomly altered. A number of problems

exist with the implementation of GP including the details of randomly altering a computer

program while maintaining a correct implementation [13]. The reader is directed to the

work of Thomas Bäck [13] for a more historical and theoretical discussion concerning the

background of ES, EP, and GAs. The discussion presented primarily concentrates on GAs.

The motivation for use of EAs originated from attempts to find more efficient and

effective methods of solving optimization problems. A further motivation is to solve prob-

lems that cannot currently be solved to optimality due to a lack of computing power

necessary to find the optimal solution in a reasonable amount of time. EAs can be useful

when applied to problems in which the search space is large, is not known to be smooth or

unimodal (the optimal solution lies in a single peak or valley), a solution of good quality

must be found very quickly, if the fitness functions exhibit noise, or if the problem is not

well understood and hence a better optimization method is not known to work well on this

problem [146]. EAs are not guaranteed to find the optimal solution unless given an infinite

amount of time, but they offer the ability to find a “good” solution, and sometimes the

optimal solution to optimization problems in an acceptable amount of time. It is impor-

tant to understand that there may be more than one optimal solution as often occurs in

real-world MOPs. These optimization problems involve the maximization or minimization

of an objective or fitness function, where the fitness function allows one to compare the

quality of a solution to other solutions. The overall goal of this optimization is to find the

global optimum over the entire search space.

Genetic Algorithms date back to John Holland’s original work in 1962 on the the-

ory of adaptive systems [90], and his work on adaptive and reproductive plans [91]. This

is considered by many to be the starting point of most implementations of Genetic Al-
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gorithms [13, 14, 74, 140, 201]. Theoretical analysis and symbolic formulations of single

objective GAs has been discussed in numerous publications, with some of the predominant

sources being Thomas Bäck [13] and David Goldberg [74].

The basic concept behind EAs is that of evolution through time. To expand on this,

evolution is defined as “a process of continuous change from a lower, simpler, or worse

to a higher, more complex, or better state [136].” EAs are stochastic, population based

algorithms designed to “evolve” a population over time (generations). “Evolution” occurs

through the use of selection and recombination operators [201]. Generic pseudocode for

an EA is presented in Figure 2.1.

Randomly Initialize the Population
Evaluate the Fitness Function Values
For i = 1 to Maximum Number of Generations

Perform Recombination
Perform Crossover Based on pc
Perform Mutation Based on pm

Evaluate the Fitness Function Values
Perform Selection to Generate the Next Population

End Loop

Figure 2.1 Evolutionary Algorithm Pseudocode [74]

A typical EA begins with a random generation of bit strings of a specified length.

Each bit string a is referred to as an individual and the collection of all µ individuals

represents the parent population P . Each bit position within a population member is

referred to as the gene position or locus. The value in any gene position is referred to as

the gene value or allelic value, a 1 or 0 for a binary EA.

The random generation of a population of individuals is meant to uniformly distribute

the initial population throughout the landscape. Most EAs are binary and this effort con-

centrates on the binary class of EAs. However, real-valued and other variants exist. Once

generated, the parent individuals {a1, . . . , aµ} are evaluated to determine their objective

function values f(a). It is noted that an EA has both an objective function and a fitness

function. The objective function is defined by the problem of interest whereas the fitness

function is a measure of the quality of the candidate solution [13, 132, 184]. Following the
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evaluation of the population members, a selection operator is applied. Various selection

operators exist. Some of the most popular ones are presented in Table 2.1 [13, 74, 201].

Table 2.1: Types of Selection

Selection Type Description

Tournament n individuals chosen at random, the one best of the n

is selected.

Roulette Wheel (Fit-

ness Proportionate)

Each population member is assigned a proportion of

the roulette wheel equal to the ratio of its fitness to the

sum of the entire population’s fitness

Elitist Choose the best population members (“Survival of the

Fittest”).

Once the selection process is complete, the population P enters the recombination or

“mating” phase of the algorithm. In the recombination process, individuals are typically

randomly selected from the population with a probability of crossover, pc. In the case

of a binary EA with one-point crossover, a crossover point is randomly chosen and two

population members are “crossed over” at that location. All of the bits following the

crossover point are exchanged between the two population members. Crossover continues

until an intermediate population P ′ of size µ is generated. Many types of crossover exist;

a partial listing is presented in Table 2.2 and the interested reader is referred elsewhere for

a more detailed description [13, 78, 201].

Table 2.2: Types of Crossover

Crossover Type Description

Single Point Random crossover point chosen, all bits following the

crossover point are exchanged

2-point (n-point) 2 (n) crossover points are randomly chosen. The seg-

ment of the string between the 2 (n) points is ex-

changed.

Uniform Choose each bit randomly from each of the parents,

with equal probability. Each bit is independent of other

bits and the crossover point.
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Original

Strings

Case 1 Case 2

Case 3 Case 4

Figure 2.2 Cut and Splice

Table 2.2: (continued)

Crossover Type Description

Cut and Splice Crossover operator for variable length string encodings.

Different crossover points are chosen in each parent

with bits following the crossover points exchanged.

Figure 2.2 illustrates an example of the Cut and Splice operation, or crossover for

variable string length encodings. Some EAs allow the individual string lengths to vary

throughout the evolutionary process but do maintain a maximum possible string length.

In conducting cut and splice, one uses two probabilities during the operation, a probability

that each string is cut at a random point and a probability that each string is spliced.

Four potential results from a cut and splice operation performed on two selected strings

are illustrated. Case 1 illustrates the result of performing two cut and two splice operations.

Case 2 illustrates the result of a single cut and splice operation, Case 3 illustrates this same

situation in the reverse order, and Case 4 illustrates the results of zero cut and two splice

operations.

Following the crossover process, mutation occurs on each population member with

a probability of mutation pm. The mutation process involves a random choice of a bit

position or loci to flip from a 1 to a 0 or vice-versa (for a binary representation). The

mutation process yields an intermediate population P ′′ of size µ.
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Following crossover and mutation, a selection mechanism is applied to generate the

next generation’s population. Some of the the most popular selection mechanisms are

presented in Table 2.1. The purpose of the selection mechanism is to keep the “best”

population members, which in essence contain the “best” Building Blocks (BBs), in the

population as the generations progress. An elitist tournament selection mechanism would

implement a “survival of the fittest” concept where x population members would be ran-

domly chosen from the population and their fitness values compared to each other, only

the “fittest” member of the x being compared would survive and be placed into the next

generation’s population P (t + 1). A random selection mechanism randomly selects mem-

bers from the population to be placed into the next population. A roulette wheel selection

operator assigns each population member a probability of being selected based on the

percentage of the total population fitness that each member represents. The selection

mechanism is executed µ times so that the population remains constant from generation

to generation.

Numerous single objective EAs have been designed, implemented, and tested using

various metrics and test suites optimization problems. Two examples are presented to aid

the reader’s understanding of a simple EA. One of the most referenced single objective EAs

is the Simple Genetic Algorithm (SGA) originally created by Goldberg [74] and sometimes

referred to as a canonical GA [201]. The main concept of this algorithm is fairly basic

and easy to implement. A starting population of individuals is randomly created using a

binary string of a specified length. Following the generation of the initial population, the

members are evaluated. Selection is then applied to the population in order to generate an

intermediate population of individuals. Tournament selection is one of the most popular

and is often used. Recombination operators are applied to this intermediate population

with their respective probabilities of crossover and mutation. Recombination operators

are used to “move” the population towards better solutions to the fitness function being

solved. The resultant population following the recombination operators becomes the next

generation’s population. The algorithm then executes until it reaches the stopping criteria,

typically a user specified number of generations.
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Another simplistic GA that can be used is the steady state GA [201]. The steady

state GA was designed to converge slowly to a final solution and hence the GA operators

are only applied to a single individual at a time. The population is randomly created as

in the simple GA and the fitness values are calculated according to rank. Recombination

occurs between two individuals; the resultant child is put back into the parent population,

and mutation follows. The child replaces the worst individual in the population, thereby

maintaining a constant population size. This process allows for a much slower rate of

convergence than the simple GA and others like it since only one population member is

modified at a time. This slow convergence allows for the potential to explore different

areas of the landscape.

2.2 Building Block Hypothesis

This section discusses the background of BBs. The cornerstone of many of the

GAs to date is the Building Block Hypothesis (BBH), also referred to as the Schema

Theorem [13, 74, 184, 201]. A schema or BB is a partial string in which certain allelic

values are present in specific loci positions. These schema are defined to be strings of length

l drawn from the alphabet {0,1,*}. An example of this is the schema 0*1, which represents

the set of all 3-bit binary strings containing a 0 in the first position and a 1 in the last

position; 0*1 = {001,011}. Further, a BB is a partial string that an epistatic relationship

exists between the BB alleles in their loci positions (genes). Epistatic relationships reflect

the fact that one gene value may mask the effect of another gene [154]. In other words, if

two specific genes are present within a string, then the two genes interact with each other,

effecting the overall fitness value.

A good BB is a BB that when combined with other genes, to generate a fully specified

individual, typically yields a fitness value of high quality. A fully specified individual is one

in which all of the gene values are present. It is important to understand that a BB can only

be evaluated when combined with other gene values to generate a fully specified individual.

As multiple combinations of genes can be combined with a BB, a BB that typically yields

a high fitness value when evaluated with various combinations of genes is designated a

good BB. The evaluation of a good BB typically yields fitness values that are of higher
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quality than the evaluation of the fitness value obtained for strings containing different

allelic values in the same gene positions. Depending on the actual optimization problem,

only one good BB may exist or many may exist that lead to the global optima. The overall

concept is that the identification of the good BBs by an EA or MOEA leads to a higher

probability for the EA or MOEA to generate the optimal solution to the problem versus

an algorithm that does not find the good BBs. Hence explicit BB-based EAs and MOEAs

may have an advantage over implicit BB-based EAs and MOEAs in finding solutions to

problems.

Two measures that are of importance in determining the probability that a particular

schema (H) survives within a GA population when subjected to crossover and mutation

are the defining length and the order of the schema. The defining length δ(H) of a schema

H is the distance between the first and last positions in the string that are specified. In the

example presented, the defining length is 3-1=2. The last term of importance is the order

of a schema. The order o(H) is defined to be the overall number of specified positions

within the schema. In the example, the order is 2 since positions 1 and 3 are specified.

An order o BB is defined by Merkle as:

Definition 1 ((Order-o) potential building block [132]): Let A be a non-empty
set (the genic alphabet), ` ∈ Z+ (the nominal string length), L , {1, . . . , `} (the loci),

and S , {(a1, l1), . . . , (ao, lo)} ∈ 2A×L a set of genes. If the loci of S are distinct, i.e., S
satisfies i = j ⇐⇒ li = lj, then it is called an order-o potential building block or simply a

potential building block. 2

A specific schema increases its presence in the population based on the ratio of the

average fitness f(H) of the schema to the average fitness of the population f̄ , i.e., a schema

with an average fitness above the average fitness of the population (f(H) > f̄) receives

an increasing number of copies within the population through reproduction. Essentially,

reproduction increases the number of above average schema and decreases the number of

below average schema, driving the population to converge to a good solution. Therefore
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the schema growth equation is:

m(H, t+ 1) = m(H, t) ∗ f(H)

f̄
(2.1)

Where m(H, t + 1) represents the schema H in the population at time t + 1, f(H) is the

average fitness of the strings representing H at time t, and f̄ is the average fitness of the

population. This yields the number of schema H expected to be present in the subsequent

generation.

Crossover and mutation may have the effect of disrupting schema in the population

or the positive effect of combining and manipulating good BBs to yield good solutions.

Crossover has a disruptive effect if the crossover point falls within the defining length of

the schema and mutation has this effect if a defined bit is mutated. If single-point crossover

is used, choosing a random crossover point pc, then the probability of a schema surviving

is ps. Single point crossover is used for illustration purposes, other crossover schemes may

be used and require the equations to be adjusted accordingly.

ps ≥ 1− pc ∗
δ(H)

l − 1
(2.2)

To add the effect of crossover to the effect of reproduction, assuming independence

of reproduction and crossover operators, the following estimate for the number of schema

H expected in the next generation is obtained [74]:

m(H, t+ 1) ≥ m(H, t) ∗ f(H)

f̄
∗
[

1− pc ∗
δ(H)

l − 1

]

(2.3)

The estimate of the combined effect of crossover and reproduction is obtained by mul-

tiplying the expected number of schema following reproduction by the survival probability

of crossover with reproduction. Mutation effects a single bit position with probability pm.

In order for mutation to disrupt a particular schema, it must effect one of the specified

bit positions. In order to determine this, the probability that a particular allele survives

is (1− pm) and since each mutation event is independent, a schema survives if each of the

specified bits o(H) remains unchanged, and hence the probability of survival is (1−pm)o(H),
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which can be approximated by 1 − o(H) ∗ pm if pm << 1 [74, 201]. A particular schema

receives an expected number of copies in the next generation when subject to reproduction,

crossover, and mutation as stated:

m(H, t+ 1) ≥ m(H, t) ∗ f(H)

f̄
∗
[

1− pc ∗
δ(H)

l − 1
− o(H) ∗ pm

]

(2.4)

2.3 Multiobjective Evolutionary Algorithm Overview

Since single objective problems were the initial focus of EA researchers, there exist a

large number of publications concerning the theory, implementation and results of single

objective EA research [13, 14, 74, 132]. With the increased processing power of modern

computers, researchers gained the ability to find better solutions to many of the single

objective problems that were previously too time consuming to optimize. This led the

EA community and many researchers in industry to begin applying EAs to real-world

optimization problems [25, 27, 28, 49, 51, 93, 117, 193], of which there are hundreds of

application based publications in the literature [26]. In using EAs to attack these problems

and combining them with parallel concepts, researchers found that they were now able to

find solutions for their problems quite rapidly when compared to previous use of EAs.

One of the issues encountered when attempting to solve real-world optimization prob-

lems is in choosing a method to optimize the problem which takes into account all of the

objectives. In the past, EA researchers combined the objective functions into one single

objective function and used a single objective EA to find an acceptable solution. As more

and more researchers from industry became interested in the power of EAs, many recog-

nized the need to explicitly employ individual objective functions. The use of individual

objective functions means that problems formulated in this manner do not encounter the

need to determine weights for each of the objectives as is done in the combined objective

function aggregation formulation. The decreased execution time of the EA, a desire to

develop good, feasible solutions to real-world optimization problems, and Multiobjective
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Optimization Theory led some EA researchers to begin experimenting with more than just

the basic single objective optimization problem [78, 170]. 1

Results achieved via use of Single-Objective EAs (SOEAs) as applied to MOPs lacked

efficiency and were not effective for many continuous MOPs. For example, SOEA ap-

proaches using aggregated MOP objective functions (e.g., weighted sum) generate only a

single solution per run and require multiple executions varying weight aggregations in order

to generate multiple solutions. Although it is possible to use SOEAs in solving an MOP,

these methods are typically not as effective or efficient as MOEAs, which are designed to

return a small number of MOP solutions per run. Additionally, some traditional SOEA

approaches are known to be unable to identify the complete Pareto front if certain problem

constraints exist [31]. However, many MOEAs have been successfully applied to real-world

design and constrained optimization problems, leading to their increased visibility and use,

but MOEA efficiency objectives still exist.

The development and analysis of single objective EAs has motivated the development

of MOEAs. MOEAs are of particular interest to engineers, scientists, and problem solvers

due to the fact that many of the real-world problems that exist today are multiobjective

and in many cases constrained. An example of this is the Advanced Logistics Problem [216]

which involves logistic research into resource allocation. The Advanced Logistics Problem

is a constrained real-world multiobjective optimization problem. A more detailed list of

real-world MOPs can be found in [26, 31, 44].

If a generic MOEA can be designed, implemented, and its performance validated,

this would be of great interest to researchers and those in industry attempting to solve

MOPs. The development of a generic evolutionary algorithm for MOPs has been a goal of

MOEA researchers that has produced a number of publications. The most widely known

and referenced algorithms are discussed in some detail in Section 3.1. However, the No

Free Lunch (NFL) Theorem [204] states that it is not possible to find one algorithm that

outperforms every other algorithm in the attempted solving of all classes of optimization

problems. Does this mean that the goal of finding a generic MOEA to solve MOPs is

1It is noted that the concept of Multiobjective Optimization Theory has existed since the early 1940s
in investment problems and was extended outside this problem domain area in the 1960s [31].
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pointless? No, this research advances the theory of MOEAs and the development of better

operators. These advances can lead to the development of better MOEAs suited to partic-

ular classes of MOPs. While the design of an MOEA that outperforms every other MOEA

on all classes of MOPs may not be possible, it is possible to design a generic MOEA that

performs better than other MOEAs on a particular class of MOP or on average performs

well across a variety of MOPs.

Many of the existing MOEAs incorporate a variety of genetic operators and are based

on a range of evolutionary methods and operators. Prior to discussing the validation of any

MOEA, the formulation of that algorithm and its comparison to a generic MOEA’s formu-

lation must be addressed. This helps to clarify the underlying concepts of the respective

algorithm and aid in understanding the theory associated with it.

2.4 Other Approaches to Solving MOPs

Multiobjective optimization problems can be solved through the use of many differ-

ent methods. Each of these methods has advantages and disadvantages that typically are

dependent on the specific problem being solved, the characteristics of the decision variable

or genotype space and the subsequent characteristics of the objective function or pheno-

type space. Some of the approaches found in the Operations Research (OR) community

include aggregation methods, knowledge based methods, mathematical programming and

constrained optimization methods to list a few [159].

Aggregation methods sum or aggregate the fitness functions together into a single

objective function, typically with different weighting factors applied to each of the objective

functions to show a preference towards a particular objective [148]. The difficulty in

utilizing this method is in determining the correct weighting factor(s) to use [67].

Knowledge based methods, sometimes referred to as Surrogate methods, incorporate

knowledge about the objective function values found up to a point in time to predict

whether or not a particular solution can improve on the best solutions found so far [148].

Another method of handling multiple objectives in a single objective algorithm is to treat

one objective as a single objective optimization problem and treat the other objectives as
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constraints [31]. This method can work very well but may involve additional overhead in

the handling of infeasible points in the space. Iterative methods are also popular, and in

this approach, the decision maker watches the search process progress and interactively

guides the search into different areas of the landscape that he or she may be most interested.

Lexicographic methods consider the objectives one at a time [159]. The order in

which the objectives are considered is the order of importance specified by the researcher.

The most important objective is optimized first, followed by the second most important

and so on until all of the objectives are optimized. Mathematical programming methods

refer to linear and nonlinear programming approaches, as well as others, to optimization

problems. Linear programming procedures solve problems consisting of objective functions

and constraints that are linear in the decision variables. Nonlinear programming is similar

except the decision variables are nonlinear in nature [57].

In the late 1800s, the mathematical foundations were laid for the infinite dimensional

ordered spaces necessary to understand MOPs [177]. Around 1944, John von Neumann

and Oskar Morgenstern mentioned an optimization problem that contained conflicting

objectives [197]. This was the start of the idea of MOPs. However, neither they, nor anyone

else, elaborated on this problem until the 1950s when Tjalling C. Koopmans discussed the

idea of “efficient” in his book [118]. When the concept of vector maximization problems was

presented by Kuhn and Tucker in 1951, multiobjective optimization became a discipline

of its own [31]. By the 1960s, MOPs became more common in the field of economics and

“trade-off” became a common term to use [32]. The interest in this area grew and the

application of multiobjective optimization to other areas began to increase.

Multi-Criteria Decision Making (MCDM) is a term used by operational researchers to

describe the process of choosing a solution from the set of Pareto optimal points. The two

main ideas of MCDM are based on outranking concepts and utility functions [92]. In the

outranking concept, comparisons are made based on the goal of determining if a preference,

indifference, or incomparability exists between the pair of objects. This approach may be

computationally expensive. The utility function approach, based on the Multi Attribute

Utility Analysis (MAUA), assumes that a utility function is available to identify the set

of solutions [92, 93]. MCDM is a very important aspect of solving MOPs. The solution
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of an MOP is a set of solution vectors that the Decision Maker (DM) must analyze to

see which one of the vectors should be chosen. Once a solution set is generated, the issue

becomes how to choose the final solution and when does the DM specify their preference.

This preference specification may be done prior to, during, or after execution of the search.

Additionally, the DM aspect of the search may take as much execution time as the search

procedure [92].

Multiobjective Combinatorial Optimization (MOCO) is another term used by the

OR community to reference multiobjective works. Some of the approaches used in OR in-

clude Multiobjective Simulated Annealing, Evolutionary Algorithms, Tabu Search, Linear

Programming, etc [59]. As some authors have stated, a more involved effort between the

OR and EA communities may benefit both communities as more MOEA researchers are

attempting to integrate decision analysis concepts into their MOEAs [34].

The last method to be discussed is that of using a Pareto based approach. A French-

Italian economist named Vilfredo Pareto (1848-1923) first developed the principle of Mul-

tiobjective optimization for use in economics. His theories became collectively known as

Pareto’s optimality concept [31]. These principles allow one to analyze the results of a

simultaneous optimization of multiple objectives and determine the set of points that are

optimal with respect to all of the other points generated. The work presented in this

research uses the concepts of Pareto since this method does not require the researcher

to determine an optimal weight for the objective functions. Nor does it require a selec-

tion of one objective function that is of greatest importance. This method allows for a

simultaneous optimization of multiple objective functions that lends itself to utilization in

MOEAs.

2.5 MOP Domain Formalization

Some of the methods that exist to solve OPs and MOPs are discussed in previous

sections of this chapter. This research effort uses an MOEA to attempt and find solutions

to MOPs as well as integrating parallel processing concepts and addressing MOEA the-

ory. Prior to discussing what an MOP consists of and presenting formal definitions, some

terminology must be discussed. MOPs require a method of evaluating the quality of a
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solution. In SO optimization, one can compare two potential solutions to each other and

through the single fitness value determine which of the solutions is of higher quality. The

comparison of two potential MO solutions presents the challenge of determining the same

objective, which solution is better, but with the addition of multiple fitness values. Pareto

Optimality is used to determine the quality of multiple MO solutions in this effort.

2.5.1 Pareto Terminology. The concept of Pareto Optimality is integral to the

theory and analysis of MOPs. Pareto Optimality Theory and the associated Pareto con-

cepts are used as a way to determine if one solution is “better” than another in a multiob-

jective comparison. Although single-objective optimization problems may have a unique

optimal solution, continuous MOPs usually have a possibly uncountable set of solutions,

which when evaluated produce vectors whose components represent trade-offs in decision

space. Some key Pareto concepts, for minimization of continuous MOPs, are defined math-

ematically as [17]:

Definition 2 (Pareto Dominance): A vector ~u = (u1, . . . , uk) is said to domi-

nate another vector ~v = (v1, . . . , vk) if and only if u is partially less than v, i.e., ∀i ∈
{1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. 2

Definition 3 (Pareto Optimality): A solution x ∈ Ω is said to be Pareto optimal

with respect to Ω if and only if there is no x′ ∈ Ω for which ~v = F (x′) = (f1(x
′), . . . , fk(x

′))

dominates ~u = F (x) = (f1(x), . . . , fk(x)). 2

The phrase “Pareto optimal” is taken to mean with respect to the entire decision

variable space unless otherwise specified. The variable x represents a vector of decision

variables and F represents a vector of objective function values.

Definition 4 (Pareto Optimal Set): For a given MOP F (x), the Pareto optimal set

(P∗) is defined as:

P∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω F (x′) ¹ F (x)}. (2.5)

2
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Definition 5 (Pareto Front): For a given MOP F (x) and Pareto optimal set P∗, the

Pareto front (PF∗) is defined as:

PF∗ := {~u = F (x) = (f1(x), . . . , fk(x)) | x ∈ P∗}. (2.6)

2

Pareto optimal solutions are those solutions within the search space whose corre-

sponding objective vector components cannot be simultaneously improved. These solutions

are also termed non-inferior, admissible, or efficient solutions, with the entire solution set

represented by P∗ [190, 219]. Their corresponding vectors are termed nondominated; se-

lecting a vector(s) from this nondominated vector set (the Pareto front set PF ∗) implicitly

indicates acceptable Pareto optimal solutions (genotypes). These solutions may have no

clearly apparent relationship besides their membership in the Pareto optimal set. It is

simply the set of all solutions whose associated vectors are nondominated; these solutions

are placed into the set of Pareto optimal solutions based on their phenotypical expression.

Their expression (the nondominated vectors), in phenotype space, is known as the Pareto

front [190, 219].

2.5.2 MOP Formulation. The process of finding the global minimum or max-

imum of any single objective function is referred to as Global Optimization. In general,

this is presented in Definition 6 as stated in Bäck and others [13, 114, 184]:

Definition 6 (Global Minimum): Given a function f : Ω ⊆ Rn → R, Ω 6= ∅, for
~x ∈ Ω the value f∗ , f(~x∗) > −∞ is called a global minimum if and only if

∀~x ∈ Ω : f(~x∗) ≤ f(~x) . (2.7)

Then, ~x∗ is the global minimum solution(s), f is the objective function, and the set Ω is

the feasible region. The problem of determining the global minimum solution(s) is called

the global optimization problem. 2
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In Definition 6, the n-dimensional decision variable space Ω and the objective function

space, denoted as R, are both shown to be subsets of real values in the definition. These two

spaces may not be restricted to the same subset of real values. For example, the decision

variable space may be restricted to integer values whereas the fitness function space may

be restricted to real values. This is dependent on the mapping of the objective function.

The point is that the decision variable and objective function spaces may or may not be of

the same type or have the same characteristics (continuous, disconnected, discrete, etc.).

This single objective formulation must be modified to reflect the nature of multi-

objective problems where there may be a set of solutions found through the analysis of

associated Pareto Optimality Theory. Many times multiobjective problems require the

decision maker to make a choice, which is essentially a tradeoff, of one solution over an-

other in objective space [31, 44, 74, 184, 207]. Prior to presentation of the associated

multiobjective definition, an MOP must be defined.

Multiobjective problems are those where the intent is to optimize k objective func-

tions simultaneously. This may involve the maximization of all k functions, the mini-

mization of all k functions or a combination of maximization and minimization of the

k functions. An MOP and an MOP global minimum (or maximum) is formally defined

as [31, 44, 114, 184, 207]:

Definition 7 (General MOP): In general, an MOP minimizes (or maximizes) F (~x) =

(f1(~x), . . . , fk(~x)) subject to gi(~x) ≤ 0, i = 1, . . . ,m, ~x ∈ Ω. An MOP solution minimizes

the components of a vector F (~x) where ~x is a n-dimensional decision variable vector (~x =

x1, . . . , xn) from some universe Ω. The vector function F (~x) maps the set Ω into the set

Λ which represents all of the possible values of the objective functions. 2

Definition 8 (MOP Global Minimum): Given a function F : Ω ⊆ Rn → Rk, Ω 6= ∅,
k ≥ 2, for ~x ∈ Ω the set PF∗ , F (~x∗i ) > (−∞, . . . ,−∞) is called the global minimum if

and only if

∀~x ∈ Ω : F (~x∗i ) ¹ F (~x) . (2.8)
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Then, ~x∗i , i = 1, . . . , n is the global minimum solution set (i.e., P∗), F is the multiple

objective function, and the set Ω is the feasible region. The problem of determining the

global minimum solution set is called the MOP global optimization problem. 2

An MOP consists of k objectives reflected in the k objective functions, m constraints

on the objective functions and n decision variables. The k objective functions may be linear

or nonlinear in nature [31, 44]. The evaluation (fitness) function, F : Ω −→ Λ, is a mapping

from the decision variables (~x = x1, . . . , xn) into output vectors (~y = a1, . . . , ak), where

F (~x) = ~y [114, 184, 207]. The same statement holds as it does for the single objective

optimization problem; the two spaces, Ω and Λ, are subsets of the real values, and the

characteristics of the spaces may be connected, disconnected, continuous, discrete, etc.

MOPs typically consist of competing objective functions [65, 114, 207]. The compet-

ing objective functions may be independent or dependent on each other. An example MOP

is a company’s quest to purchase a backbone for their computer network that provides the

greatest throughput at the least monetary cost. The objectives of maximizing throughput

and minimizing cost are highly dependent on each other as increased cost typically results

in increased throughput and vice-versa.

Van Veldhuizen validated the concept that BBs exist and are useful in the multiob-

jective domain [184]. Even though the Schema Theorem was originally developed in terms

of single objective functions, the applicability of the Schema Theorem is easily extended to

multiobjective functions. Van Veldhuizen states that BBs are not handled differently by

MOEAs as compared to EAs. Even though an MOEA simultaneously optimizes multiple

fitness functions, the genotypical (decision variable) representation of potential solutions

(population members) in an MOEA is no different than the genotypical representation

used in a single objective EA. Since the same genotype structure is used in both single

objective EAs and MOEAs, MOEA BBs are defined the same as single objective EA BBs.

A symbolic definition of a single objective BB is presented in Definition 1 and defines a

BB as a combination of gene values (alleles) that are located in distinct but not necessar-

ily adjacent locations (loci). The definition of a good single objective BB is presented in

Definition 9
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Definition 9 (Good Single Objective Building Block): A good single objective BB,

meets the requirements of Definition 1 and the mean fitness value of the BB evaluates to a

good fitness value over a number of different allelic combinations placed in the unspecified

loci. 2

Even though single and multiobjective BBs are identically defined, good BBs are

not identical in the single objective and multiobjective domains. The difference lies in the

comparison conducted in order to determine which of two selected population members

have the best fitness. In a single objective problem, a direct comparison of the two fitness

values is conducted and one clearly can determine which of the two fitness values is better

or the fitness values may be equal. In the context of multiobjective optimization and

MOEAs, Pareto dominance criteria is used to determine the nondominated population

member(s). Hence a good multiobjective BB is presented in Definition 10.

Definition 10 (Good Multiobjective Building Block): A good multiobjective BB,

meets the requirements of Definition 1 and the mean fitness value of the BB dominates

(evaluate to a good fitness value as compared to) the fitness values of other BBs or popu-

lation members in comparison testing based on Pareto dominance criteria. The evaluation

of a multiobjective BB is conducted over a number of different allelic combinations placed

in the unspecified loci. 2

Therefore the structure of a multiobjective BB is identical to a single objective BB

but the determination of the quality of a multiobjective BB is based upon Pareto domi-

nance criteria. In the remainder of this effort, the statement ‘a good BB’ refers to either

Definition 9 or Definition 10 dependent on the domain of interest, i.e., a discussion of good

BBs in MOEAs implicitly refers to Definition 10 as defining a good BB.

It is necessary to define additional terminology to remain consistent with the ter-

minology used in the EA field. The term objective is defined as the goal of the MOP to

be achieved and is represented by the functions fk. The objective space, Λ, refers to the

coordinate space within which vectors, fk(~x), resulting from the MOP evaluation of the k

objective functions, are plotted [184].
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The genotype and phenotype spaces are important to understand and characterize

when discussing any MOP. The characteristics of the genotype and phenotype spaces of

an MOP may directly effect the search process and the ability of an MOEA to generate

high quality results. This is especially important when analyzing why a particular MOEA

performs poorly in solving various MOPs. In classifying MOPs, two broad categories exist:

unconstrained and constrained MOPs. Besides these two broad categories, MOPs can be

analyzed in terms of the characteristics of their spaces and the solution sets generated.

In general, one initially selects an MOP mathematical model with (P∗, PF∗) and

then discretizes this model. This discretization leads to a computational model (discrete

algorithmic formulation with finite word length data structures) that an MOEA can process

in order to attempt to solve the problem. The set PFtrue is defined by the functions

composing an MOP; it is of fixed size, fixed resolution, does not change, and represents

the solution set that the MOEA is attempting to find. The set PFtrue can be considered a

subset of the theoretical true solution, PF ∗, of potential infinite resolution and cardinality.

The theoretical P∗ and PF∗ sets in many MOPs cannot be characterized since their spaces

may encompass the reals (R) or a subset of the reals as specified in the previous definitions.

Since one cannot represent solutions of infinite precision on a computer, P∗ and PF∗

cannot be truly realized. An example requiring infinite precision decision variables is seen

in the attempt to represent π on a computer; π cannot be represented at its true, infinite

resolution.

The discrete genotype solution set Ptrue of an MOP may be connected, disconnected,

symmetric or scalable. The discrete phenotype solution set, PFtrue , of an MOP may

have the characteristics of being connected, disconnected, concave, or convex. A discrete,

connected Pareto front consists of points that form a single curve or surface in which there

are no discontinuities between points. Since the Pareto front is discretized, gaps may exist

between individual points points cannot exist between these gaps due to the resolution of

the decision variables used. MOP attributes can be determined through a visualization

of the solution sets. An increase or decrease in the resolution of the MOP formulation,

as explicitly specified in the MOEA, may result in a change in the characteristics of the

solution sets [190].
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Additionally, a continuous MOP must be discretized when formulated on any current

computer system. This discretization is based on the hardware limitations of the computer

system used. Since the resolution of the decision variables can have an effect on the

solutions generated, this illustrates the importance of reporting both the genotype and

phenotype resolutions used when attempting to solve an MOP on any real-world computer

system. It must also be recognized that an MOEA may perform well at a given resolution

but that does not guarantee “good” performance at other resolutions when applied to a

given MOP.

Unconstrained MOPs are the class of MOPs most frequently referenced in the liter-

ature in terms of test suites and testing of MOEAs [31, 44, 114, 184, 207]. Unconstrained

MOPs are those MOPs in which the k objective functions are solved simultaneously with

no additional constraints. Unconstrained MOPs vary in levels of complexity but gener-

ally may be easier for an MOEA to search and solve than constrained MOPs since all of

the search space consists of feasible solutions [31, 44]. Constrained MOPs are typically

more difficult problems for MOEAs to attempt to find solutions to than unconstrained

MOPs [31, 44, 46, 138, 141, 160, 213, 215]. Constrained MOPs may have multiple con-

straints on each of the k objective functions and these constraints may be strict equality

and/or inequality constraints. The constraints, which can be linear or non-linear, restrict

the feasible area of the search space, in some cases so that the percentage of feasible solu-

tions is << 0.001% of the total search space. It is important to understand the definitions

of feasible and optimal solutions:

Definition 11 (Feasible Solution): A feasible solution is a solution containing the

choice of decision variable values that satisfies all of the constraints [159]. 2

Definition 12 (Optimal Solution): An optimal solution is a feasible solution that

obtains objective function values as good as those of any other feasible solutions [159]. 2

MOPs in which the feasible search space is greatly restricted due to constraints

imposed on the problem may pose a challenge for an MOEA to generate any feasible so-

lutions. This brings up an interesting dilemma. If a larger percentage of the search space

is infeasible than feasible, how does the algorithm handle this infeasibility? Additionally,
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how can the MOEA ever find a feasible solution besides by pure chance and the stochas-

tic nature of EAs? The answer to these two questions lie in the ingenuity of computer

engineers and computer scientists in constraint handling techniques. A limited number of

MOEA researchers have addressed constraint handling issues and have proposed a vari-

ety of methods for implementation [31, 44, 46, 138, 141, 160, 213, 215]. These constraint

handling techniques are described in detail in Section 2.8.

2.6 MOEA Algorithm Domain Formulation

An MOEA’s complex structure can lead to confusion in discussing the algorithmic

process that takes place. To prevent further inconsistencies in discussions of MOEAs, Van

Veldhuizen [184, 190] refined Pareto terminology to clarify MOEA discussions. He stated

at any given generation of an MOEA, a “current” set of Pareto optimal solutions (with

respect to the current MOEA generational population) exists and is termed Pcurrent (t),

where t represents the generation number. The set PFcurrent represents the Pareto optimal

solutions found within the current generation when analyzing the current population in

isolation of the other generations and the entire search space. These solutions may not be

optimal with respect to the entire search space, and hence may not be globally optimal

but are the best solutions currently existing in the population. Because of the manner in

which Pareto optimality is defined, Pcurrent (t) is always a non-empty solution set [184].

The sets Pcurrent (t), Pknown , and Ptrue are solution sets of MOEA genotypes where

each set’s respective phenotypes form a Pareto front. We term the associated Pareto

front, the solution set in phenotype domain, for each of these solution sets as PFcurrent (t),

PFknown , and PFtrue . In the remainder of this document, the Pareto front is presented

as the solution set since Pareto dominance criteria is used and the process of finding

the solution sets takes place in the phenotype domain. Knowledge of the respective

Pareto optimal set is implied as the search process manipulates genotypical information

in order to generate “better” solutions. When using an MOEA to solve MOPs, the im-

plicit assumption is that one of the following holds: Pknown = Ptrue, Pknown ⊂ Ptrue, or

PFknown ∈ [PFtrue, PFtrue + ε] (PFknown is within some ε distance of PFtrue ) over some

norm (Euclidean, RMS, etc.) [31, 184].
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Solutions on the Pareto front represent optimal solutions in the sense that improving

the value in one dimension of the objective function vector leads to a degradation in at least

one other dimension of the objective function vector. The decision maker makes a tradeoff

decision when presented with a number of optimal solutions for the MOP at hand, i.e., the

Pareto front. There exists a difference in terminology between an acceptable compromise

solution and a Pareto Optimal Solution [70]. The decision maker typically chooses only one

of the associated Pareto optimal solutions, ~u ∈ P∗, as being the acceptable compromise

solution, even though all of the solutions in P∗ are nondominated. In reality the decision

maker chooses a solution ~u ∈PFknown as the acceptable compromise solution. The set P∗

may only be realizable when utilizing decision variables at a comparable resolution to the

hardware chosen that result in fitness values that remain within the hardware precision

limitations. This is a result of our inability to represent real-valued solutions of infinite

resolution on current computing platforms.

In the execution of an MOEA, the decision maker chooses a solution from the solution

set provided by the MOEA, i.e., a solution from the set Pknown , since finding the set P∗

may not be achievable. The decision maker takes into account the human’s preference

in selecting a solution from the set of solutions Pknown . The human preference factor

encourages engineers and scientists to attempt to find a good distribution of points, as well

as all of the points, in the Pareto optimal set (Ptrue , which is realizable on the computing

platforms used) since the decision maker’s preferences may not be known a-priori or may

change over time. Even though the decision maker’s preferences may change over time

or all points may not be considered equally preferred in the decision maker’s mind, the

set Ptrue (and Pknown ) cannot change unless the objective functions and corresponding

constraints are modified (or the MOEA is modified and executed again). Therefore one

can conclude that if the MOEA finds a large number of, and a good distribution of, points

along Pknown (and ideally Pknown = Ptrue ), the decision maker can change their preferences

and still select a good tradeoff solution (which may be an optimal solution).
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2.7 MOEA Archiving

Most MOEAs use a secondary population, also referred to as an archive or an ex-

ternal archive, to store a cumulative set of nondominated solutions found throughout the

generations of an MOEA [184, 186]. 2 Many MOEAs store points into an archive for

post-processing while others actively use this set of points throughout the search process.

Maintaining the good solutions generated throughout MOEA execution illustrates the need

for an efficient method of storing points in the archive and a detailed description of the

process of adding and removing points from the archive.

In many MOEA implementations, an MOEA stores the current Pareto front points,

PFcurrent (t), found with respect to the population of generation t into the archive at

the conclusion of generation t. Different secondary population storage strategies exist;

the simplest is to maintain a running archive of members from PFcurrent , to which the

set PFcurrent (t) is appended following each generation. At the conclusion of the MOEA

execution, the archive contains the combination of all of the PFcurrent sets found at the

conclusion of each generation. The archive must be analyzed in order to determine which

of the PFcurrent members in the archive are members of the final set of solutions found by

the MOEA, PFknown .

It is important to understand that each PFcurrent (t) set generated and stored into

the archive is optimal only with respect to the population members it was compared to in

generation t. As additional PFcurrent sets are included in the archive, equivalent, better,

or even worse solutions may be present in these sets. Since the points in each PFcurrent set

most likely have not been compared to all of the other points in the archive prior to

inclusion, a comparison between all of the points in the archive must be conducted. This

comparison must be made in order to determine which of the points present in the archive

are nondominated and belong in the final solution set generated by the MOEA, PFknown .

Another method of handling the inclusion of new points into the archive is to conduct

the Pareto analysis prior to the addition of points to the archive. If the comparison is

completed each time a point is considered for placement into the archive, the archive is

2A secondary population is referred to as an archive throughout the remainder of this document.
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denoted as Pknown (t) and contains the known Pareto front points generated from generation

1 through generation t. This is not to be confused with PFknown , the known Pareto front

found through termination of the MOEA. As nondominated points are found and included

in the archive, the points present in the archive and the cardinality of the archive changes.

Following each generation, t, the population members in PFcurrent (t) and the archive are

analyzed. This Pareto analysis is conducted to determine which of the combined members

are elements of PFknown (t) and should remain in the archive. The archive is modified

to reflect only the set of nondominated members (PFknown (t)). At the conclusion of any

generation in the MOEA search process, a set, PFknown (t), exists explicitly defining the

“best” or nondominated solutions generated by the MOEA. This strategy of continually

analyzing the points considered for inclusion into the archive may be necessary if an MOEA

is required to select members from PFknown (t) throughout the search process.

At the conclusion of an MOEA search process, both archiving strategies result in the

exact same solution set, PFknown . The difference in the archiving strategies lies in the point

in time in which the processing to find the nondominated solution set takes place. Most

MOEAs keep an archive so that “good” solutions found throughout the search process

are not lost. An external archive allows the number of nondominated solutions stored

to be greater than the population size. If an archive is not used, then the MOEA can

only store a maximum number of nondominated solutions equal to the population size

specified in the MOEA. An archive can use dynamically allocated memory so as to prevent

a restriction on the cardinality of PFknown . At termination of the search process PFknown is

presented as the final solution set. Additionally, PFknown (0) is defined as the empty set

(∅) and PFknown alone as the final set of Pareto optimal solutions returned by the MOEA

at termination [184, 219].

2.8 Constraint Handling in MOEAs

Many of the problems discussed in the literature are unconstrained MOPs. Uncon-

strained problems may be easier for MOEAs to solve as the feasible search space is not

restricted and these MOPs may require less processing than constrained MOPs. This is

due to the additional overhead of calculating the constraints, which can be substantial if
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a highly complex, nonlinear constraint set is used. Soft constraints (inequality) or hard

constraints (strict equality) may be imposed on the MOPs. Additionally these problems

may be continuous or discrete, contain disjoint Pareto fronts or continuous Pareto fronts,

be integer based or real-valued, etc. All of these factors that be considered in deciding how

the MOEA should handle the constraints. With the increased use of MOEAs for solving

MOPs, constrained MOPs are an area of great interest. This is especially true since there

exists no one best MOEA method of handling constraints in all MOPs.

A number of constraint handling methods have been implemented in single objec-

tive optimization problems solved by EAs but much less development has been done with

MOEAs. Additionally, discrete optimization problems with hard constraints are difficult

problems to solve with MOEAs [213, 215, 216, 218]. This is especially true if the con-

straints drastically reduce the size of the feasible space. Three approaches to dealing with

constraints and infeasible solutions are presented and include the discarding of the infea-

sible population members, penalizing the fitness values of the infeasible members and the

repair of infeasible members.

One method, that is an extension from the single objective EA area, is discarding all

of the infeasible members in the population, sometimes referred to as the death penalty

method [140]. This appears to be an acceptable method but in fact does not always yield

good results, dependent on the size of the feasible space in relation to the total size of the

search space. If the size of the feasible space is extremely small with respect to the size of

the infeasible space, an MOEA may have to discard whole populations of individuals prior

to finding one feasible solution. In this situation, it is possible for the MOEA to execute

for an extremely long time before generating even a single feasible solution. This method

may be extremely ineffective and may generate solutions that exhibit a poor fitness. The

goal of utilizing an MOEA is to generate solutions in an efficient and effective manner. In

highly constrained MOPs, the discarding of infeasible solutions can be detrimental to the

efficiency and effectiveness of the algorithm [216].

Another easily implemented method is to execute the MOEA without regard to the

constraints and then post-process the solution sets to remove the infeasible solutions. This

method assumes that through the search process that an MOEA finds a large portion of
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feasible members even though the MOEA is attempting to solve a different optimization

problem, the unconstrained MOP. An assumption is also made that the feasible points

are nondominated with respect to infeasible points. If infeasible solutions dominate the

feasible solutions, PFknown would not contain any feasible solutions. In order to obtain the

feasible points found, the MOEA must store the entire population after each generation to

an archive or check for feasible solutions to store after each generation. This method may

be ineffective as the MOEA is attempting to solve the unconstrained MOP even though

the researcher would like to obtain the solution(s) to the constrained MOP. However, this

method does not require a large amount of overhead but assumes that the constrained and

unconstrained fronts are relatively close to one another or identical. If the constrained and

unconstrained fronts are not close to each other, one might expect the performance of the

MOEA using this method to be unpredictable and the search process may be wasted.

Penalty functions have been used in the single objective area [140] to penalize po-

tential solutions that are infeasible. Penalty functions degrade the fitness values of the

infeasible population members, but still allow their BBs to remain in the population and

potentially influence the final solution. Penalty functions are typically based on some type

of distance measure in which a member that is further from the feasible region is penal-

ized more than a member that is closer to the feasible region. Static and dynamic penalty

functions exist. Static methods penalize the constraint violations an identical amount each

time the constraint is violated. Dynamic penalties vary the amount of the penalty based

on the number of generations that have been completed [140].

Michalewicz used the annealing concept of simulated annealing to penalize infeasible

population members [138]. In this annealing penalty function, a temperature parameter

is used to decrease the amount of penalty inflicted on infeasible members over time. This

is similar to the annealing process used in simulated annealing in which the temperature

is lowered over time. The lowering of the temperature increases the selective pressure

and hence results in a lower probability of choosing infeasible solutions as the algorithm

executes. This is the traditional exploration versus exploitation tradeoff. One would

like the algorithm to explore as much as possible at the start and migrate to exploiting
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as much as possible towards the termination of the algorithm and hence generate good

solutions [140].

Adaptive or dynamic penalties are yet another alternative to the fixed decreasing

penalty term used in the simulated annealing penalty function. Adaptive penalties can

be implemented in different ways but one method is to adapt the penalty based on the

feasibility of the population [140]. In this adaptive scheme, if the best members of the

population remain feasible, then the penalty term is slowly decreased, whereas if the best

members of the population are infeasible, then the penalty term is increased. The difficulty

in using penalty functions for MOPs is in deciding which criteria to use in implementing a

penalty function. Optimal parameter settings for penalty functions are sometimes difficult,

if not impossible, to determine.

Another penalty technique involves the use of a modified binary tournament selection

operation to compare two solutions. This operation results in the feasible solution always

being selected [101]. In this technique, if both solutions are infeasible then the one “closest,”

in terms of a distance metric, to the constraint boundary is selected. If both solutions

are feasible, then Horn’s Niched Pareto MOEA is employed (discussed in Chapter III,

Section 3.1.1.3).

Ray, Kang, Chye’s penalty approach is yet another method to handle constraints in a

Pareto fashion [160]. Ray, Kang, Chye’s method is described as performing a nondominated

check of the constraint violations. Three different checks are made of the entire population.

In the first, a Pareto ranking is performed using the k objective function values and then

storing these in a vector Robj . A second Pareto ranking is performed using the J constraints

without the objective function values and stored in the vector Rcon. A feasible solution has

zero constraint violations and thus obtains a Rcon value of 1. The third Pareto ranking,

Rcom combines information from the other two rankings. The objective function and

constraint violations are used together but there is no need for a penalty parameter as the

criteria are compared individually in a domination check. Following the computation of

all of the ranks, the feasible solutions with the best rank in Rcom are placed into the new

population. If there remains available space, crossover and selection are applied to the

remaining solutions based on the rank Robj for selection and Rcon for crossover.
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Deb presents an alternate approach to the constraint handling issue in MOEAs,

presented in Definition 13 [46, 50]:

Definition 13 (Pareto Based Constraint Handling Selection):

In comparing two solutions, i and j:

1. If both solutions, i and j, are feasible, choose the solution with the “better” value.

2. If solution i is feasible and solution j is not, choose solution i.

3. If neither solution, i or j, is feasible, but solution i has a smaller overall constraint

violation, choose solution i.

2

Deb’s approach combines the concepts of Pareto dominance with that of constraint

handling. This approach is conceptually straight forward as the selection process is similar

to that of a Pareto based selection mechanism. The problem with this method appears

when analyzing the third case, if neither solution, i or j, is feasible, but solution i has a

smaller overall constraint violation, choose solution i. The issue that arises is in deter-

mining which of the members has the overall higher constraint violation. For example,

consider an MOEA selected to solve a two objective constrained MOP with constraints.

Assume that two population members are compared and they are both infeasible. If there

are three constraints and both members violate two of the constraints, it is difficult to

determine which member should be selected.

A problem also arises in a situation where the three constraints are of different orders

of magnitude and resolution. If population member 1 violates the constraints by 3.40 and

1299.45 for constraints 1 and 2, and population member 2 violates the constraints by

1313.65 and 127.32 for constraints 2 and 3, one might assume that population member 1 is

better since the sum of the violation is less. The problem is that population member 1 may

be very close to violating constraint 3 but population member 2 is very far from violating

constraint 1. It appears that population member 1 is preferred but overall population

member 2 is further from a constraint violation due to its value with respect to constraint

1. Additionally, in terms of actual distances from the constraint, a value of 127.32 may
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only be two “steps” away from the constraint boundary whereas a value of 3.40 may

be 100 “steps” away from the constraint boundary due to the resolution of the decision

variables and constraints. A step is defined as the number of feasible solutions that exist

in a straight line from the constraint boundary to the population member in question at

the given resolution. The situation described above can lead to an incorrect choice of the

“better” population member. However, note that this method may be one of the easiest to

implement with non-linear real-valued constraints where utilizing a mechanism to repair

(mutate a population member until it is feasible) a population member is not possible. It is

also possible to normalize the constraint values to obtain a better indication of differences

in constraint violations. In [46], Deb compares his method, in Definition 13, to Ray, Kang,

Chye’s penalty approach and shows that his Pareto Based Constraint Handling Selection

performs better on a limited test suite.

Laumanns, Thiele, Deb, and Zitzler propose an approach to solving MOPs through

the use of ε approximations and the formation of ε-approximate and ε-Pareto front sets [122].

The authors provide the pseudocode for implementation of these concepts into an algorithm

but never actually implement them. The idea is that if one can find an approximation of

an area in the phenotype space that may move towards the Pareto front set, this approx-

imated set would be more useful to provide the decision maker than just providing an

enormous set of points (PFknown ) to sift through. The approximation can then be used

by the decision maker to isolate regions of the Pareto front to further explore and reduce

the size of the Pareto front set. Additionally with an approximation, it is conceivable that

through subsequent generations of the MOEA, PFtrue can be found. ε-Dominance, the

ε-approximate Pareto front Set and the ε-Pareto front Set are defined as [122]:

Definition 14 (ε-Dominance): Let f, g ∈ R+m . Then f is said to ε-dominate g for
some ε > 0, denoted as f Âε g, iff ∀i ∈ {1, . . . ,m}:

(1 + ε) · fi ≥ gi (2.9)

2
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Definition 15 (ε-approximate Pareto front Set): Let F ∈ R+m be a set of vectors
and ε > 0. Then a set Fε ⊆ F is called an ε-approximate Pareto front Set, if any vector

g ∈ F is ε-dominated by at least one vector f ∈ Fε, i.e.,

∀g ∈ F : ∃f ∈ Fε such that f Âε g. (2.10)

The set of all ε-approximate Pareto front Sets of F is denoted as Pε(F ). 2

Definition 16 (ε-Pareto front Set): Let F ∈ R+m be a set of vectors and ε > 0.

Then a set Fε ⊆ F is called an ε-Pareto front Set of F if:

1. F ∗
ε is an ε-approximate Pareto front Set of F , i.e., F

∗
ε ∈ Pε(F ), and

2. F ∗
ε contains Pareto front Points of F only, i.e., F

∗
ε ⊆ F ∗.

The set of all ε-Pareto front sets of F is denoted as P ∗
ε (F ). 2

Laumanns, et al., state that the concept of ε-Pareto front sets is not new [122]. The

problem of reducing the number of points that the decision maker must analyze is one

that is of great importance and looked at more extensively in the OR and decision making

fields. ε-Pareto front sets may be useful in situations where the researcher is seeking to

reduce the number of points presented to the decision maker. In difficult MOPs, many

MOEAs do not find points that are close to PFtrue . In these cases the ε Pareto front

set concept may yield worse solutions than a standard Pareto Set implementation. The

goal of the ε-Pareto front set approach is to reduce the number of points found, but this

may not be a worthwhile goal for those MOPs where very few solutions are found or only

solutions of “low” quality are found. Hence the ε-Pareto front set approach is useful once

the search process is somewhat fine-tuned and a large number of solutions are generated.

In other cases, this approach may be ineffective. In the context of this dissertation, the

ε-approximate approach is not considered since a good distribution of, and a large number

of, points on the front are the objective.

Repairing infeasible population members may be a useful alternative to the other

constraint handling approaches if a large portion of the initial population is infeasible [140].

Repair is the process of mutating a population member so as to meet the constraints
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imposed on the objective functions. As previously mentioned, the death penalty method

could cause the removal of the entire population in a problem with a large infeasible space.

In a problems with small feasible regions, a repair of the infeasible population members

may be less time consuming then re-initializing the population in the hope of generating

a feasible member.

The GENOCOP III system [22, 23, 138, 140, 141] repairs infeasible solutions through

the use of a reference set. In this implementation, a set of feasible population members

is stored. Once an infeasible solution is encountered, a feasible solution is selected from

the feasible reference set. The system randomly generates points on a line between the

infeasible and feasible solution until a new feasible solution is generated. The new feasible

solution replaces the infeasible individual in the population. The disadvantage of this

method is that it requires a feasible reference set to begin with. In problems where a feasible

point is not known a-priori and the feasible space is much smaller than the infeasible space,

this method could be inefficient. Other possibilities for repairing population members may

be more problem and encoding specific. One example of this is the repair of population

members when using integer based decision variables and strict equality constraints [216].

One can randomly choose decision variables to repair and adjust their value until the

constraints are satisfied. It is also noted that the incorporation of additional problem

domain information is useful in aiding the search process [74] and hence should be useful

in aiding the repair process versus the use of a generic repair mechanism.

Each of the aforementioned methods for handling constraints have advantages and

disadvantages. The use of any one method may be based on the characteristics of the MOP

or the computational requirements to implement a particular method. To obtain effective

results when utilizing constraint handling techniques, one must have a good understanding

of the characteristics of the MOP and then make an intelligent choice as to the constraint

handling method to use. In any MOP, a constraint handling method that takes into account

problem domain information typically may yield “better” solutions than a method that

is not tailored to the specific MOP or class of MOP. Additionally, the overhead of the

constraint handling method is an important factor to consider. Many real-world highly

constrained MOPs take a considerable amount of CPU time to calculate their objective
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function values and the additional overhead of some of the mentioned constraint handling

approaches may not be desired. The constraint handling approach that is used in this

research effort involves analyzing the MOP and the potential constraint handling methods

to make an intelligent decision as to the method that appears to offer the best potential to

obtain good results. In situations where problem specific methods have been designed and

tested, these problem specific methods are selected over the generic methods previously

mentioned.

2.9 MOEA Ranking

Many MOEAs operate using a standard Pareto dominance analysis of the population

but there are others that use a ranking scheme. Rank based fitness assignments were first

proposed by Goldberg [74] and later used in a number of MOEAs [61, 64, 66, 68, 92, 176,

183, 213]. The specific rank assigned to each population member is dependent on the

scheme used. The rank assignment may be based on the ranked front that each population

member is assigned to [74], or the number of population members that dominate a specific

point [64].

The Pareto ranking scheme proposed by Goldberg involves calculating the Pareto

front, assigning members of the front rank 1, calculating the Pareto front of the remaining

dominated members, assigning the new front the next incremented rank and repeating the

process. At the conclusion of the ranking process, each population member has an assigned

rank from 1 to the number of fronts found. Fonseca’s method involves assigning population

members a rank equal to the number of points that dominate it [64]. This scheme assigns

nondominated points a rank of 0 and the dominated members a rank equivalent to the

number of points that dominate them. Zitzler and Thiele use a more complex ranking

scheme [213, 215]. Their method uses a secondary population and calculates the rank of

a population member based off of the proportion of evaluated members that it dominates.

However, this scheme does not assign all of the Pareto front points the same rank as is done

in other ranking schemes. Once ranking is complete, all of the MOEA operators execute

as they would in an MOEA that does not implement ranking. Analyzing the efficiency
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shows that Goldberg’s [74] and Zitzler’s [183] method are the least efficient but an in-depth

effectiveness study has not been completed.

2.10 MOEA Niching, Fitness Sharing, and Mating Restrictions

Niching and fitness sharing are MOEA operators for which a fair amount of research

has been conducted. The main idea is that EAs tend to converge to a single solution over

time. In the case of MOEAs, convergence to a single solution is undesirable as one would

like to find as many points on the Pareto front, PFknown , as possible. Further, one would

like these points to be evenly distributed across the front if one cannot generate the entire

Pareto front. The concepts of niching and fitness sharing attempt to prevent an MOEA

from converging to a single solution or a small, localized area of the Pareto front. Niching

operators can operate in the genotype or phenotype spaces and attempt to restrict the

generation of points within a certain distance of existing points [64]. Niching operators are

also referred to as crowding operators and many MOEAs use these operators [47, 64, 69,

93, 94, 176, 184].

In an MOP with a large number of points contained in PFtrue , where the Pareto front

forms a continuous curve or surface, one would like to obtain a final solution set, Pknown ,

consisting of points evenly spaced along the curve or surface. This is true of MOPs of

varying characteristics. Even if an MOEA does not find all of the points in PFtrue , or any

for that matter, one would like the MOEA to generate a good distribution of points across

the Pareto surface(s) found versus a tight cluster of points existing in only one area of the

surface.

Niching can be accomplished through the use of a parameter, σshare, which specifies

how close solutions in Rn (genotype) or Rk (phenotype) can be [93, 94]. If an MOEA gen-

erates two points that are within this σshare distance, one of these points is replaced in the

population with another point that does not violate this distance constraint. A difficulty

with implementing niching is in determining the value to use for σshare. If knowledge exists

as to the number of niches (areas of local optimum), ni, that exist in the solution set for

the MOP, this parameter can be set fairly easily, otherwise this setting is not so obvious.
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In most real-world problems, the number of local optima is not known, and setting niching

parameters is difficult.

Niching can also be used in conjunction with a selection operator to aid in obtaining a

good distribution of points along the Pareto surface. In this method, the next generation’s

population is restricted to only solutions that meet the niching requirements. A distance

metric D is used in order to determine how far apart population members reside in relation

to other population members. The distance metric can be the Hamming Distance (first

norm), the Euclidean distance (second norm) or the Max-based distance (∞-norm) [64] to

name a few possibilities. A distance metric can be used in isolation or can be used with a

niche count, ni to allow up to a certain number of solutions to reside in a specific area of

the space [94].

Fitness sharing is similar to niching in that its goal is to keep a good distribution of

points along the front but completes this through a modification of the fitness values. The

population members’ are assigned fitness values based on the distance between members

and the average fitness values of the entire population [93]. Integration of niching into the

fitness function maintains the genetic material of the population members that would have

been removed by other niching schemes but instead induces a type of penalty in the fitness

value assignment.

Goldberg [74], and later Fonseca and Fleming [64], presented the use of mating

restrictions to avoid competition between population members that are a large distance

from each other. The mating restriction assumes that population members close to each

other, defined by some Euclidean distance metric, are similar in the genotype domain.

A parameter σmating is presented for mating restrictions. σshare and σmating are useful

in reducing the size of the Pareto front set while maintaining a uniform distribution of

population members across the front.

Typical mating restriction operators disallow mating between individuals that are

further apart than a predefined σmate value in terms of their phenotype distance from each

other. While this is one idea of what a mating restriction should be, there are others.

Some researchers feel that instead of generating distinct species by isolating the mating
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between those of similar attributes, they should be preventing incest by allowing mating

only between individuals that are different enough [31].

A few MOEA researchers have developed niching and fitness sharing variants for use

in MOEAs with the goal of finding equidistantly spaced points on PFknown . Fonseca and

Flemming [69] proposed the use of fitness sharing in conjunction with ranking. In this

method, the fitness sharing occurs in the phenotype space and only between solutions with

the same rank. They compare the distance between two points to an a-priori specified

σshare parameter. If the distance is less than the σshare value, then the niche count is

adjusted. Srinivas and Deb [176] implement a similar scheme but calculate the distance in

genotype space instead.

Horn [93, 94] implements niching in an entirely different manner, referred to as

equivalence class sharing. In his implementation, the selection operator is a modified

Pareto based binary tournament selection. This operator selects a solution if it dominates

other population members randomly selected and it dominates a randomly selected set of

population members of size tdom. He further states that fitness sharing only occurs if neither

of the two solutions dominate each other. In this situation, the niche count is computed

by counting the number of population members that are within a σshare distance of the

member in question. The solution containing the smaller niche count (has fewer members

in its immediate area) is selected.

A few other variants can be found in the literature. One uses the ranking scheme

in Goldberg [74] combined with a phenotype sharing, another uses both phenotype and

genotype distances to calculate the niche count, and in yet another variant, ranking is im-

plemented but the sharing is not restricted to solutions containing the same rank. Deb [47]

presents a niching scheme, referred to as crowding that does not use a σshare parameter.

Other authors have proposed various methods that use different hypervolumes in deter-

mining if two points are close to each other

The selection of the σshare parameter directly effects the performance of the niching

method, as does the population size. There is no clear evidence to support the use of one

niching scheme over another, although niching as a whole typically improves the results of
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MOEAs [47, 64, 69, 93, 94, 176, 184]. Like many of the other operators discussed, there is

no one best niching method identified in the literature.

2.11 MOEA Theory

In order to attempt and solve MOPs efficiently and effectively, an in-depth under-

standing of EAs, MOEAs, and their associated theory is necessary. With an understanding

of the underlying theory, one has the ability to evaluate and compare the various ap-

proaches, or one’s own approach for efficiency and effectiveness when applied to a variety

of problems. Additionally, one may need an effective approach for only one class of problem

or a generalized approach to solve a variety of problems with varying characteristics. This

is a problem for researchers as the amount of developed theory for EAs is rather large but

that for MOEAs is not quite as large.

One important concept, not given vary much attention in the MOEA community, is

that of BBs and their applicability to the MOEA domain [26]. Van Veldhuizen’s work is

the only published research discussing the usefulness and advantages of explicitly finding

and manipulating BBs in this domain [184, 190]. Using his work as an initial starting

point into explicit BB-based MOEAs, this research effort concentrates on the concept of

explicit manipulation of BBs. A large number of MOEA publications use implicit BB-based

MOEAs as compared to explicit BB-based MOEAs as Van Veldhuizen and this research

addresses [26]. The explicit use of BBs in an MOEA involves the MOEA identifying good

BBs and combining those good BBs to yield good solutions to the MOP. The identifica-

tion of BBs and their effect on the end results of the MOEA, Pknown and PFknown , is an

important analysis to make when attempting to advance the theory of MOEAs and MOP

problem solving.

The theoretical foundation of MOEAs is based on single objective EA theory with the

integration of Pareto concepts. While both of these areas have existed for some time now,

the combination of the two fields leave a gap in some of the developed theory. Until re-

cently, there has been little published theory related to MOEAs, convergence of MOEAs,

convergence rates of MOEAs, population sizing of MOEAs, and parallel MOEAs. The

major published theoretical analysis conducted for MOEAs is limited to publications by
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Van Veldhuizen [184, 189], Deb [44], Hanne [85], Coello Coello, Van Veldhuizen and La-

mont [31], Laumanns [122], and Rudolph [162, 163, 164, 165, 166, 167]. While several

researchers have made contributions to MOEA theory [31, 44, 85, 163, 164, 167, 184], the

field is not fully defined and additional theoretical contributions are needed and welcomed.

The works mentioned contain MOEA theory in the form of definitions, corollaries, the-

orems, and proofs. Some researchers continue to develop their own MOEAs without a

discussion of the underlying theory and without answering the basic questions, Why is my

MOEA better than another? And is my MOEA theoretically different than others?

These questions are not easy to answer, and in some cases, the MOEA theory may

not yet be developed enough to support such conclusions. This reinforces the need for

theoretical research and advancement in the area of MOEAs. Additionally, the number

of application based publications is much greater than that of theoretical publications

as solving MOPs is the goal of many MOEA researchers [26, 184]. This is an area of

concern as more and more researchers are utilizing MOEAs to solve real-world MOPs. The

concern is warranted as many of the application based publications do not describe how the

parameter values used in the MOEAs are selected or why certain operators are chosen over

other operators. This is disconcerting as MOEA researchers are attempting to increase the

efficiency and effectiveness of their MOEAs, yet some do not explain, theoretically, why

certain modifications to their algorithms increase or decrease performance.

Much of the theoretical work related to MOEAs has to deal with that of MOEA

convergence to the solution sets, Ptrue and PFtrue . Rudolph [163, 166, 167] presents a

convergence theorem for MOEAs using a stochastic transition matrix to define a chain of

population movements and based on the generalization of finding optimal elements within a

partially ordered set. He later presented a hypothesis and corollary for MOEA convergence

when the population size is held constant and shows for a particular ES that the MOEA

converges with probability 1 to Ptrue . Hanne presents another convergence theorem, that

concentrates on continuous objective functions, through the use of cones, efficient sets, and

other mathematics [84, 86].

The major areas of theoretical contributions have dealt with convergence to the

Pareto front [85, 163], relations and partially ordered sets [162, 164, 166], and Markov
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chain relations to MOEA convergence [167, 184]. There is limited work dealing with the

area of fitness functions, and test problem generators which is discussed in Chapter IV.

The major theoretical contributions published in the MOEA community, according to [31],

are summarized in Table 2.3.

Table 2.3: MOEA Theory [31]

Researcher(s) Paper Focus

Fonseca and Fleming [68] MOEA mathematical formulations

Rudolph [163], Rudolph & Agapie [167] MOEA convergence

Van Veldhuizen and Lamont [185] MOEA convergence and Pareto ter-

minology

Van Veldhuizen and Lamont [189] MOEA benchmark test problems

Hanne (1999) [85] MOEA convergence and Pareto ter-

minology

Deb & Meyarivan [48], Deb et al. [52] Constrained test problems

Rudolph [162, 164] MOEA search under partially or-

dered sets

Ehrgott [58] Analysis of the computational com-

plexity of multiobjective combinato-

rial optimization problems

Rudolph [166] Limit theory for EAs under partially

ordered fitness sets

Laumanns et al. [121] Mutation control

Hanne [86] Convergence to the Pareto optimal

set

Contributions to to the MOEA field in terms of Pareto ranking schemes, niching

and crowding (σshare ), and restrictions on mating are more common [184]. Many of the

currently available publications discuss various implementations of the concepts aforemen-

tioned and present mostly validation studies with few proofs. One reason for the limited

number of proofs is the complexity associated with proving these conjectures and the over-

all difficulty in generalizing the concepts to all MOEAs. It is also noted that MOEA

population sizing theory is undeveloped and is a focus of this research effort.
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2.12 Summary

This chapter presents the EA background, MOEA background, and definitions nec-

essary to understand the results of this research effort. An overview of Evolutionary Al-

gorithms is presented to help the reader develop a good understanding of the evolutionary

process. A discussion of other optimization approaches is presented to illustrate the utility

of using an evolutionary approach to attempt and solve the types of problems that are

concentrated on, real-world MOPs of varying levels of complexity. The BBH is presented

to provide the reader with an understanding of what BBs are and how useful they can be

in the attempted solving of MOPs.

A discussion of MOPs is followed by a detailed overview of Multiobjective Evolu-

tionary Algorithms and their associated operators. The problem and algorithm domains

are discussed to clarify the notation that is used in the discussion presented. Approaches

for handling constrained MOPs are discussed to help the reader understand the rationale

for using specific methods in the testing and results presented from this research effort.

MOEA operators are discussed in detail in this chapter as these operators are an integral

part of generating good solutions. This leads into the next chapter and a more detailed

discussion of MOEAs and the metrics to evaluate their performance.

Theoretical analyses into the workings of MOEAs has been conducted and is sum-

marized in this chapter. This aids a researcher in identifying areas in the MOEA field

that have not been fully explored in terms of theoretical development. Deb states that

“the construction of all these test problems has been done without much knowledge of how

multiobjective GAs work” [43:25]. This statement illustrates the need for further theoret-

ical research to be done in the area of understanding how and why MOEAs work. This is

an area of active interest to the community for the reason that Deb states as well as the

goal of fully understanding MOEAs. A fuller understanding of MOEAs can lead to new

and potentially better MOEAs. Understanding the theory and the reasons why MOEAs

work and have certain properties leads to even more advances in the field. It is noted that

population sizing theory has not been developed for MOEAs as of yet. This research effort

makes, what is seen as, the first contribution towards MOEA population sizing theory and

is discussed in detail in Chapter VIII.
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III. Contemporary MOEA Development

A focus of this research effort is on the advancement of explicit BB-based MOEA ap-

proaches. The advancement of such approaches and their associated operators aids in the

development of an explicit BB-based MOEA that achieves increased efficiency or effec-

tiveness over other approaches to solving certain classes of MOPs. The current chapter

focuses on understanding MOEA approaches and metrics for evaluating MOEA results.

An understanding of MOEAs and MOEA metrics leads to improvements to explicit BB-

based MOEA approaches, operators, and theory which in turn leads to improvements to

the efficiency and effectiveness of such MOEAs. Prior to discussing the MOEA used to

conduct experimental data runs and validate associated concepts, a thorough discussion

of contemporary and recently implemented MOEAs is necessary. While some may view

contemporary MOEAs as just that, contemporary, and no longer used, that is not true in

the MOEA community. Contemporary MOEA approaches and associated operators are

still in use and appear in many recently implemented MOEAs.

This chapter presents a summary of some of the popular and highly referenced con-

temporary and recent MOEAs from the literature and a discussion of MOEA metrics [26].

Knowledge of contemporary and recent MOEA developments is important for MOEA re-

searchers to recognize and understand. Such knowledge aids a researcher in obtaining a

good understanding of the differences and similarities between various MOEA implementa-

tions and their associated operators. From this understanding one may develop new ideas

and insight into increasing the performance of his/her own MOEA. This background discus-

sion is provided as a resource to the reader to aid his/her understanding of the differences

between various MOEA approaches and ideas for incorporation into new MOEAs. This

understanding then leads to new developments or new breakthroughs in the advancement

of the state-of-the-art for the MOEA community.

The discussion presented in this chapter decomposes the MOEA field into implicit

and explicit BB-based MOEA implementations. Since the majority of MOEAs implicitly

manipulate BBs, explicit BB concepts are not typically discussed in the literature. This

chapter presents a clear and concise discussion of explicit BB-based concepts, and insight

into the advantages of explicit BB manipulation. Further, the discussion present in this
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chapter illustrates the limited amount of research conducted, previous to this effort, into

explicit BB-based MOEAs.

The second half of this chapter presents a summary and discussion of MOEA metrics.

The choice of a single or multiple metrics to use in the evaluation or comparison of the

performance of various MOEA approaches is an important issue to the MOEA community.

As a multitude of MOEA metrics exist to choose from, a researcher must be able to justify

the selection of specific metrics for use. Additionally, a researcher must also be aware of the

advantages and disadvantages of using certain metrics. A thorough summary of MOEA

metrics is presented followed by an evaluation of each metric and a selected set of metrics

recommended for use in the evaluation and comparison of MOEA approaches.

3.1 Multiobjective Evolutionary Algorithms

The first recognized MOEA is the Vector Evaluated Genetic Algorithm (VEGA)

implemented by Schaffer and published in 1984 [169]. Following Schaffer’s work, little re-

search into MOEAs was published until the mid 1990s when a number of new, “improved”

MOEAs began to appear in the literature [64, 93, 176]. The large gap in the time between

Schaffer’s work and the next published MOEA research may be attributed to the low com-

putational power, by today’s standards, of the computers available in the mid 1980s and

the fact that the MOEA field was in its infancy. The lack of computational power and

memory available in computers of the mid 1980s may have discouraged researchers from

conducting additional research into MOEAs as the MOEA field was largely unproven and

few publications existed. As computers became more powerful, more researchers began

to experiment with the concept of MOEAs but processing power and memory constraints

remained. Even in the early 1990s, EAs and MOEAs were typically implemented in a

fashion so as to conserve as much memory as possible but many times remained time

consuming algorithms to use. Many EA implementations performed bit manipulations

and stored population members in unsigned integer representations to conserve valuable

memory. The mGA and fmGA are two EAs that were engineered in a fashion to conserve

as much memory as possible [77, 78]. Considering that EA researchers were conserving as

much memory as possible to make it feasible to use such algorithms, it is understandable
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that little MOEA research was conducted. MOEAs typically require additional compu-

tational power and memory as multiple functions are evaluated and their values stored.

As computers with increased processing power and available memory became available in

the 1990s, MOEA research became more feasible and additional MOEA implementations

began to surface.

Initially, the first MOEAs were simple extensions to single objective EAs. Such

implementations typically were extensions of the SGA [93, 170, 176]. Extending the SGA

is the first logical step into implementing an MOEAs and there are a number of advantages

of this approach, including the reuse of existing code as well as using code that has been

thoroughly debugged through years of use. The interest in extending the SGA drew from

what appears to be a goal of implementing an MOEA that is conceptually “easy” to

understand, does not require substantial code modifications to an existing algorithm, and

is efficient in memory utilization. More recently, new and innovative ideas in engineering

MOEAs as well as improvements to existing MOEAs have been accomplished and resultant

research has drifted from the SGA [29, 30, 115, 213].

Some authors have looked to classifying MOEAs and MOPs. Van Veldhuizen presents

one of the most complete analyses of MOEA literature up to and including work completed

in 1999 [184]. Recently Deb has published a book on MOEAs and real-world applica-

tions [44] and more recently, Coello Coello et al. [31] have published a book containing

one of the most complete discussions on MOEAs. These publications address the theoret-

ical aspects of MOEAs as well as discuss a number of highly referenced MOEAs, issues

surrounding the use of MOEA metrics and test suites, and discuss the use of MOEAs in

real-world applications.

The classification of MOEAs and MOPs is an important benefit to the commu-

nity. A classification provides insight for researchers to determine which combination of

MOEA operators and parameter settings perform efficiently and effectively when applied

to MOPs of certain characteristics. While it is impossible to classify every MOEA and

MOP, general information about the algorithms, their operators and the characteristics of

the MOPs is useful information. A current listing of popular and highly referenced con-

temporary and recent MOEAs is presented in this chapter, classified by the method used in
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the MOEA to manipulate BBs. Figure 3.1 presents a generic MOEA pseudocode reflective

of the more common MOEAs found in the literature (e.g., Multi-Objective Genetic Algo-

rithm (MOGA), Niched Pareto GA (NPGA), Nondominated Sorting GA I & II (NSGA-I

& II), Strength Pareto EA (SPEA), Pareto Archive Evolutionary Strategy (PAES) and

Multi-Objective messy GA I & II (MOMGA-I & II)). This generic MOEA structure aids

researchers in understanding the structure and basic operators that comprise an MOEA.

Additionally, a generic MOEA provides insight into the inner workings of an MOEA and

identifies areas of improvement or areas where new operators or combinations of operators

may increase MOEA performance.

Perform Population Initialization (Size P )
Compute Each Population Member’s Fitness

(w.r.t. k functions)
Loop

Perform Clustering/Niching/Crowding
Execute EVOPs)
Compute Each Population Member’s Fitness

(w.r.t. k functions)
Conduct Selection
Generate PFcurrent (t); Update PFknown (t)

End Loop
Conduct Local Search (If Specified)
Generate PFknown ; Present As Final Solutions

Figure 3.1 Generic MOEA Pseudocode [31]

“Good” BBs are defined in this document as a combination of gene values (not

necessarily in adjacent locations (loci) and typically a substring of the population member)

that upon evaluation, tend to produce “good” solutions, independent of the other gene

values in the string. An in-depth discussion of BBs is presented in Chapter II, Section 2.2.

BBs and the Schema Theorem have been identified by a number of authors as being the key

to identifying “good” solutions to optimization problems for a number of years [78, 79, 80,

201]. Hence this research effort recognizes and classifies MOEAs into two categories, those

that implicitly manipulate BBs and those that explicitly manipulate BBs. A discussion of

the MOEAs contained in each category follows.
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3.1.1 Implicit Building Block Manipulating MOEAs. MOEAs that implicitly

manipulate BBs are the most common form and most commonly referenced MOEA [26,

62, 120]. Implicit BB-based MOEAs do not attempt to explicitly identify the “good” BBs

present in the population. The identification and manipulation of “good” BBs is based

entirely on the idea that recombination and selection operators perform well enough such

that MOEAs indirectly find these BBs and in turn generate “good” solutions. In many

cases, implicit BB-based MOEAs find the good BBs present in the population but this is

generally unknown to both the user and the MOEA. The following listing of implicit BB-

based MOEAs encompasses a broad spectrum of MOEAs and includes MOEAs that are

highly referenced in the literature. The information presented in this chapter about each

MOEA can lead to new, innovative ideas and the design of new MOEAs with increased

performance over existing MOEAs.

3.1.1.1 Vector Evaluated Genetic Algorithm. Schaffer created the Vector

Evaluated Genetic Algorithm (VEGA) as a modification of the single objective SGA [64,

170]. The VEGA consists of the original SGA with a modification of the selection mech-

anism to reflect the multiple objective functions. A proportional selection mechanism is

used during MOEA execution to create a subpopulation of individuals for each objective

function. This means that the application of the VEGA to a k objective function MOP

leads to the generation of k subpopulations of size N/k created by the algorithm, where

N is the overall population size.

The approach used in the VEGA has the inherent disadvantage that the subpopula-

tions typically produce individuals that are extremely fit in one of the k objective functions

but typically not as fit in the other objective functions [170]. This result means that the

population is split and may have the same effect as executing a single objective EA using

a linear combination of the k objective functions, i.e., results in finding the extreme (end)

points of the Pareto front [93]. While the approach used in the VEGA may not yield a large

number or good distribution of points along the front, an advantage of the VEGA is that

it yields the endpoints or extreme points of the curve or surface representing the Pareto

front. The endpoints are identified by many MOEA researchers as being difficult points to
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generate [100, 123, 215]. A single objective EA may generate the best solution in any one

objective of an MOP and hence the VEGA may generate the extreme points of each ob-

jective. Some heuristics are used in the VEGA to attempt and prevent the Pareto optimal

members of the population from converging only to the extreme points on the front [170].

These heuristics are integrated into the selection operator. The heuristic methods used in

the VEGA are random preference selection, a method based on weighting nondominated

points above dominated points for selection, and a method of promoting mating between

subpopulations. Through testing each of the heuristic approaches, the authors note that

the best results were obtained from the random preference selection [170].

3.1.1.2 Multiple Objective Genetic Algorithm. Carlos Fonseca and Peter

Flemming created the Multiple Objective Genetic Algorithm (MOGA) to effectively han-

dle MOPs using a generalized GA approach [64]. The MOGA uses a rank-based fitness

assignment mechanism. A rank is associated with each of the population members accord-

ing to the number of individuals that dominate it. All individuals on the Pareto front are

assigned a rank of 1 whereas the remaining members are assigned a rank based upon the

number of individuals that dominate them. The fitness assignment method used in the

MOGA takes into account the rank of the population member and the average fitness value

of the population. The process for assigning the fitness values is as follows: the population

is sorted by rank; fitness values are assigned to individuals based on an interpolation of

the best rank to the worst rank according to some specified function. Finally, individuals

assigned the same rank receive an averaged fitness value. This ensures that all the popula-

tion members of the same rank are sampled with an identical frequency. This information

is used to maintain a constant global population fitness with an appropriate amount of

selective pressure [64].

Additionally, the MOGA implements the concept of fitness sharing, also referred to

as crowding, or niching, and uses a σshare parameter. The σshare parameter is referred to

as the niche count and must be set carefully. Fonseca and Flemming use niching in the

context of the phenotype domain to attempt to obtain a uniform distribution of points

along the Pareto front.
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A restriction on mating is also encoded into the MOGA. Goldberg originally stated

that the purpose of restricted mating is to avoid excessive competition of population mem-

bers that are not within a specified neighborhood [74]. Additionally, goals of the decision

maker are integrated into the fitness function. Since the decision maker ultimately chooses

a subset of solutions from the Pareto front, it is useful to a priori determine a region of

the Pareto front that is of the most interest. This allows external preferences, in the form

of problem domain information, to be inserted into the MOGA almost as a local search

operator. The authors proceed to insert this modified fitness function, referred to as a

“Goal Attainment Method” into the algorithm and further modify the ranking scheme to

include “goal preferences.” Goal preference is essentially a weighting approach. A further

generalization is made to allow the decision maker preferences, or goals to be implemented

through a utility function. The utility function serves the purpose of attempting to illus-

trate the method that the decision maker would use to select one Pareto front point over

another.

The MOGA makes use of Gray Coded population members, two point reduced sur-

rogate crossover and binary mutation. All of the nondominated points found are stored

into an archive. This archive is used to determine the σshare value to use in subsequent

generations and the MOGA execution continues. Nondominated points are continually

written to the archive until the algorithm reaches its stopping criteria.

3.1.1.3 Niched Pareto Genetic Algorithm. Around the same time as the

development of the MOGA, Horn, Nafpliotis and Goldberg designed and implemented the

Niched Pareto Genetic Algorithm (NPGA) [93]. The main differences between the the

SGA and the NPGA lie in the selection mechanism and fitness assignment. The NPGA

implements tournament selection with Pareto domination. During non-dominant tourna-

ments, fitness sharing is implemented. To introduce a controlled, increased domination

pressure over the standard tournament selection operator, the concept of a comparison set

is used. The comparison set is a randomly chosen set in which each member is compared

against two randomly selected members from the population. The dominance of the ran-

domly selected population members with respect to all of the members in the comparison
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set determines if that member is chosen for reproduction. A parameter, tdom, is introduced

to specify the size of the comparison set. In the cases where neither or both members are

dominated by the comparison set, a crowding mechanism is implemented.

The crowding mechanism used is a fitness sharing method mentioned earlier for

members on the Pareto front. This mechanism takes into account continuously updating

fitness sharing along with a niche count parameter to try and obtain an even distribution

of population members along the front. The niche count looks only at members in the

partially filled next generation versus the current generation of members. In the case

where neither or both population members are dominated by the comparison set, the

niching mechanism is used to select the better candidate. This is done by selecting the

member with the smallest niche count and is referred to as equivalence class sharing. The

authors note success with this algorithm and the importance of the tdom parameter on

convergence.

3.1.1.4 Nondominated Sorting Genetic Algorithm. In 1994 Srinivas and

Deb created the Nondominated Sorting Genetic Algorithm (NSGA) [176]. This algorithm

is identical to the SGA with the exception of the selection operator. A similar concept

is applied as was used in the NPGA and MOGA, use of a ranking scheme for selection.

Prior to selection, the population is ranked based on each individual’s classification of

nondominated or dominated point. Subsequent to ranking, the nondominated points found

are given a large dummy fitness value and are referred to as the first nondominated front.

Since each of these members are Pareto optimal, they are assigned the same fitness value

so as to give each member an equal chance at reproduction.

Sharing is used to maintain diversity in the population. Each nondominated member

is shared with the dummy fitness value assigned to it. The sharing mechanism performs

selection on what the authors refer to as a degraded fitness value. This degraded value

is obtained by dividing the individual’s original fitness by a number proportional to the

number of individuals surrounding the member. After the sharing mechanism is executed,

the remaining population members are processed in the same manner to identify the next

front of nondominated points. The next set of points are assigned a lower dummy fitness
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value than the minimum shared dummy fitness of the previous set. This effectively means

that each front contains a “better” shared fitness value than the preceding front.

Once the whole population is partitioned into the various fronts, reproduction occurs

using the dummy fitness values. Specifically, stochastic remainder proportionate selection

is used. Individuals within the first front have the largest fitness value and have more

copies placed into the population. This allows for a quicker convergence of the population

while sharing helps to distribute the population over the front. Sharing is implemented by

calculating a sharing function value between individuals within the same ranked front and

the niche count is calculated by summing the sharing values of all the population members

on a specific front. The shared fitness value is calculated by dividing the individual’s

dummy fitness value by its respective niche count.

3.1.1.5 Mendelian Multiobjective Simple Genetic Algorithm. The Mendelian

Multiobjective Simple Genetic Algorithm (MMOSGA) created by Kadrovach, Michaud,

Zydallis and Lamont takes a different approach than most MOEAs to attempt to solve

complex MOPs [106, 107]. The MMOSGA uses the concept of dominant and recessive

genes as part of the recombination procedure. The MMOSGA is based on the SGA with

the data structure of the SGA augmented to reflect a diploid chromosome structure. This

diploid structure is used in conjunction with a dominance table to determine which allele

values pass on to the child population member. The recombination procedure selects two

parents at random and uses a dominance table when there exist competing allele values to

determine which of the parent’s genes propagate to the child. As this process executes, the

values within the dominance table are updated based on the allele values that generate the

best/worst individuals, i.e., a reward/penalize method is implemented in the dominance

table for each locus position and allele value. The dominance table aids in the convergence

of the population towards the Pareto front.

A (µ + λ) approach is used in the selection process, where µ is the parent population

size and λ is the child population size. An individual is chosen for mating by randomly

choosing two individuals from the population and selecting the individual with the best

fitness based on Pareto dominance. The individuals are then evaluated, the dominance
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table updated, and the process repeats itself until the user specified number of child popu-

lation members are created. There is no mutation operator present in the MMOSGA and

the algorithm keeps an external archive of Pareto Optimal solutions.

The MMOSGA differs from almost all other MOEAs in its diploid chromosome struc-

ture and the dominance table that is used to add selective pressure to the population. The

authors propose a number of modifications to the current algorithm to increase the ef-

ficiency and effectiveness of the algorithm. A thorough theoretical analysis of why the

meiotic process with a diploid chromosome works was not conducted.

3.1.1.6 Micro Genetic Algorithm. Coello Coello and Pulido present a micro

genetic algorithm in [29, 30]. The authors propose using a GA with a small population size

and a re-initialization (also referred to as re-hope) process to prevent premature conver-

gence. While the concept of micro-GAs is not new, this is the first application to MOPs.

The MOEA executes by randomly creating a small population. The concept of memory

is used in two variants, a replaceable and a non-replaceable memory. The non-replaceable

portion of the memory does not change throughout the execution of the MOEA and is

used to maintain diversity in the algorithm. The replaceable portion is modified after each

“cycle” of the MOEA.

Any given cycle of the micro-GA takes a portion of the population from both sec-

tions of memory. The following operators are then used: tournament selection, two-point

crossover, and uniform mutation. Following each cycle, two nondominated members are

chosen from the population and compared to the external memory. If they remain non-

dominated, they are then included in the active population. This external memory acts as

an archive for Pareto front points. The same two members are compared to two members

of the replaceable memory and added if they continue to be nondominated. An adaptive

grid approach, similar to that contained in [116], is used to keep diversity in PFknown .

The authors state that they obtain better convergence rates than the NSGA-II and PAES,

better values for a specific metric, and better timing but they need to improve the overall

results of the micro-GA for constrained MOPs.
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3.1.1.7 Niched Pareto Genetic Algorithm 2. To improve the performance

of the original NPGA, Erickson, Mayer and Horn modified the NPGA to create the Niched

Pareto Genetic Algorithm 2 (NPGA2) [61]. The main goal of this effort was to lessen the

noise present in the Pareto domination tournament selection process. A degree of dom-

ination term is used as the ranking of an individual to make the Pareto ranking process

deterministic. The degree of domination is a count of the total number of population mem-

bers that dominate the member being checked. If the member is nondominated then the

degree of domination (rank) is set to 0. Tournament selection is maintained throughout the

algorithm with the ranking mechanism used for determining the winner of the tournament.

Ties are resolved using fitness sharing and niche counts as in the original NPGA.

Following the ranking of population members, the deterministic tournament selection

routine is used to select members for reproduction. A parameter, k, is used to specify the

size of the tournament. k population members are randomly chosen. The member that

has the lowest rank is the “winner” of the tournament. If there is no one “winner” of the

tournament, a tie breaking scheme is applied. In the tie breaking process, as in the original

NPGA, the niche count is used to determine the winner of the tournament and this count

is based on the partially filled next generation of population members.

3.1.1.8 Nondominated Sorting Genetic Algorithm II. In 2000, Deb, Agrawal,

Pratab, and Meyarivan suggested an improvement to the original NSGA, creating the

Nondominated Sorting Genetic Algorithm II (NSGA-II) [46]. The first modification to

the original NSGA implements a “better” book-keeping strategy in terms of creating the

various nondominated fronts to decrease the execution time of the algorithm. The authors

implement a density estimation and a crowding comparison operator as part of this mod-

ified algorithm. The density estimation operator estimates the overall population density

surrounding a particular population member by calculating the average distance of two

points on either side of the member, along each of the objectives. This calculation results

in what the authors term a crowding distance which represents the largest cuboid that can

be placed around a specific point without including any other points.
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The crowding comparison operator seeks to produce a uniformly distributed Pareto

front. This has a similar effect to the sharing implemented in the original NSGA except

that a niching parameter is no longer necessary. The crowding comparison requires the

calculation of each population member’s non-domination rank and crowding distance. Once

these values are obtained, a partial ordering is completed. This ordering states that if two

solutions of differing non-domination ranks are compared, the lower ranked solution is

chosen. Otherwise, a comparison of two solutions of the same front results in a choice of

the solution with a larger cuboid, i.e., a solution whose neighbors are further away. The

remainder of the algorithm is the same as the original NSGA.

3.1.1.9 (1 + 1) - Pareto Archived Evolution Strategy. The (1 + 1) - Pareto

Archived Evolution Strategy ((1 + 1)-PAES) is another popular MOEA cited in the lit-

erature [115]. (1 + 1)-PAES uses a single parent and single child to search the space.

Knowles and Corne introduce what they refer to as a simpler approach to Multiobjective

Optimization (MOO). PAES is a (1 + 1) local search based evolutionary strategy using a

population of size one and a “history” of previously found solutions. PAES does not use

crossover but obtains “good” solutions through the exclusive use of a mutation operator.

The authors note that PAES may be a good baseline approach to compare to other pop-

ulation based MOEAs. The motivation for engineering PAES was based on the fact that

in many cases a local search algorithm, for example simulated annealing or tabu search,

performs much quicker than the population based GA approaches for single objective

problems [115]. PAES attempts to bring a local search mechanism to the multiobjective

optimization world.

The main objectives of PAES are to conduct local search operations and to handle all

Pareto optimal solutions in the same manner. PAES begins by creating a single individual

and evaluating it with respect to all of the objective functions. This evaluation function

is a dominance based evaluation. The population member is then copied and mutation

is applied. The new, mutated population member is compared to the parent and the

nondominated member of the two is selected. If neither solution dominates, then the new

member is compared with the previously archived solutions. Since this approach restricts
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the population to only contain a single parent and child, if one solution still is not favored

over the other, the solution in the least crowded area is selected.

The archive keeps a current population of Pareto points found and is used to help

guide the selection mechanism by providing the current Pareto front found. The archive

allows (1 + 1)-PAES to have some pressure towards finding a better front as time goes on.

The archive also has an a priori specified maximum size that allows the user to specify how

many solutions are desired. In order to obtain a good distribution of points along the front,

a k-dimensional grid crowding mechanism is implemented in the phenotype space, where k

is the number of objectives. This grid is used in a different fashion than in other crowding

or niching methods. In PAES, once a nondominated solution is found and is ready to be

placed into the full archive, it replaces a member in the archive with the highest grid count

as long as its own grid count is lower.

3.1.1.10 (µ + λ) - Pareto Archived Evolution Strategy. Modifications to

the original (1 + 1)-PAES algorithm produced two variants: the (1 + λ)-PAES and the

(µ+λ)-PAES, which are both referred to as (µ+λ)-PAES [116], where µ is the size of the

parent population and λ is the child population size. These varieties of the original PAES

MOEA, are population based schemes that continue to use only the mutation operator (no

crossover).

The selection mechanism is modified as there are λ potential solutions to choose for

the next current solution(s). This is accomplished through a fitness assignment that is

based on the grid location of the member and a comparison to the archive. Each of the

population members are compared to the archive and assigned a dominance value based on

whether the member dominates a solution in the archive or is dominated by that solution.

The members are then assigned a fitness based on the dominance value assigned. Members

of the same dominance value receive a fitness based on the number of population members

in that particular grid location.

The archive is updated in the same format as the original PAES MOEA. The λ

potential solutions are generated through a mutation of members chosen via a binary tour-

nament selection of current solutions. The (1+λ)-PAES and the (µ+λ)-PAES approaches
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are compared to (1+1)-PAES, the NPGA, and the NSGA. The authors state that (1+1)-

PAES appears to be the quickest and most reliable approach [116]. (1+λ)-PAES does not

do as well as the original PAES and (µ+λ)-PAES is a little better than this variant. Over-

all the results indicate that (1 + 1)-PAES performs well when compared to other MOEAs

on the limited test suite and metrics used.

3.1.1.11 Memetic PAES. Memetic PAES (M-PAES) is a population based

variant of the original PAES algorithm [115] developed by Knowles and Corne to include

the use of recombination operators [112]. M-PAES is based on the local search PAES

but includes the use of a population along with a crossover operator to recombine local

optima. Mutation is used as in the original algorithm. A difference from the original PAES

algorithm is the use of a second archive for Pareto front solutions. One of the archives is

used as a global archive, referred to as G and the other as a local archive for comparisons

referred to as H. At the start of each local search, archive H is emptied and filled with

solutions from archive G that do not dominate the current solution c. At this point H

is continually used as a comparator while G is updated to reflect the current global front

found.

The local search mechanism is identical to the procedure used in PAES, with the

exception that the termination criteria is modified. Termination now occurs once the spec-

ified maximum number of local search operations occur, l opt, or if the specified maximum

number of local search failures, l fails, are achieved. The #fails parameter is initialized to

0 and is incremented each time a mutated member is dominated by the current solution

and is returned to 0 once a mutated member dominates the current solution, i.e., #fails ef-

fectively counts the number of mutation moves that are detrimental in between improving

moves. Once #fails ≥ l fails, the stopping criteria has been met.

Recombination occurs through the random selection of two parent population mem-

bers from the population, prior to the local search mechanism being employed, and the

global archive. A child is accepted if it is not dominated by any members of the global

archive or in a less crowded region than one or more of its parents. The size of the crowd-

ing region is user specified. This occurs until a child is accepted or a specified number of
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attempts are exceeded. In the second case, binary tournament selection is used to put a

member of the global archive into the population.

3.1.1.12 The Strength Pareto Evolutionary Algorithm. The Strength Pareto

Evolutionary Algorithm (SPEA) was developed by Zitzler and Thiele [213]. This algorithm

incorporates many of the concepts of previous MOEAs into one MOEA, the SPEA. SPEA

keeps an external archive of Pareto optimal solutions, uses Pareto dominance concepts

in the fitness assignment scheme and uses a clustering concept to reduce the number of

non-dominated solutions that must be stored while maintaining the structure of Pareto

front. The fitness assignment scheme is unique in that it is designed to use the archive to

determine the fitness of any given solution, whether it is Pareto optimal or not. The selec-

tion mechanism uses all of the solutions in the Pareto archive and niching is implemented

without distance measurements. A standard binary tournament selection operator is used

with a standard mutation operator.

Individuals are evaluated based on the number of Pareto points that dominate them

or are equal to them (the authors refer to this as covering the points). A different approach

to niching is presented in Zitzler et al. [213]. This approach makes use of Pareto dominance

to keep niches. The goal of this approach is to maintain a uniform distribution of Pareto

front members that cover the same number of individuals as any other Pareto front member.

The Pareto archive contains all of the Pareto Optimal points found up to the current point

in time. This ensures no loss of Pareto points found and further imposes no restrictions

on the size of the archive.

The algorithm begins by assigning each member of the population a strength value,

s. This is a real value proportional to the number of population members that it covers and

is also the fitness of the individual. In the next step, the individuals are ranked according

to the calculated strengths, i.e., the fitness of a population member is calculated by taking

the sum of the fitnesses of all the archived Pareto front solutions that cover it and adding

one to this value. In the event that all of the Pareto solutions have the same strength value,

the fitness is calculated by taking the sum of the number of Pareto points that cover it. If
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the population is unbalanced, the Pareto front points that cover the “least” fit individuals

are assigned the greatest strength.

The size of the Pareto archive is unrestricted, therefore a clustering method is applied

to reduce the size of this set while maintaining the original attributes of the Pareto archive.

The general idea of clustering is to partition the archive of size p into q groupings, where

q < p and all of the points within any of the q groups have the same characteristics.

The SPEA implements a hierarchical clustering method referred to as the average linkage

method.

The clustering approach begins by making each element of the initial Pareto archive a

cluster. Following this, two clusters are chosen via a distance measurement to combine into

one cluster. The distance is calculated as average distance between pairs of individuals

across the clusters. At the completion of the cluster approach, the new Pareto archive

consists of the centroid members of each cluster. The authors show favorable results

compared to other MOEAs.

3.1.1.13 The Strength Pareto Evolutionary Algorithm 2. Zitzler, Lau-

manns, and Thiele modified the SPEA and released the “improved” SPEA2 in 2001 [211].

In modifying the original SPEA, a fine-grained fitness assignment method, a density estima-

tion technique, and a new archiving method are introduced. The “new” fitness assignment

method is similar to that of the NSGA-II, PAES, PESA, and others. The fitness assign-

ment for a population member is based off of the number of individuals the population

member dominates and the number that dominated it. Additionally a k-th nearest neigh-

bor mechanism is present to differentiate between individuals which have the same fitness

values. Modifications were made to the archival update process to keep the size of the

archive constant and because of this prevent the removal of “end points” from the archive.

The authors state that the incorporation of these changes provides better results

than the original SPEA over a limited test suite and metric set. When compared to the

NSGA-II and PESA, the SPEA2 and NSGA-II yield the best overall performance.
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3.1.1.14 Pareto Envelope-Based Selection Algorithm. The Pareto Envelope-

Based Selection Algorithm (PESA) was developed by Corne, Knowles and Oates as an

MOEA that controls the selection and diversity of solutions via a hyper-grid scheme [34].

PESA introduces some of the ideas presented in the SPEA and PAES from Sections 3.1.1.10

and 3.1.1.12. The PESA MOEA uses a small population size and maintains an external

archive of PFknown solutions. Niching is accomplished through an implicit hyper-grid divi-

sion of the phenotype space, and the selection mechanism is based on crowding. Crossover

and mutation are both implemented in the PESA algorithm. Additionally two other pa-

rameters must be set, the size of the population and the maximum size of the archive.

Population members enter the archive through Pareto dominance checks so that only

nondominated points remain in the archive. Crowding is implemented through a hyper-

grid structure that divides the phenotype space in hyper-boxes. The number of points

within each hyper-box is referred to as the “squeeze” factor and is used for selective fitness

calculations and archive updating. Tournament selection is used with the squeeze factor

to select members from the archive for directing the search in subsequent generations. The

authors obtain favorable results in comparing their algorithm against SPEA and PAES.

3.1.1.15 Pareto Envelope-Based Selection Algorithm II. Corne et al. im-

proved the PESA algorithm and developed the PESA-II [33]. PESA-II differs from PESA

in a few areas. First the selective fitness assignment has been modified to assign a value

to the hyperbox in the phenotype space instead of directly to each individual. As hyper-

boxes are chosen, individuals are randomly selected from them. The authors state that

this method of selection (referred to as region based selection) is better at distributing the

members in the archive more evenly across the Pareto front. All of the other operators

remain the same from PESA to PESA-II. The authors compare PESA-II to PAES, SPEA

and PESA to illustrate “good” results are obtained with this new selection method over a

limited test suite and set of metrics.

3.1.1.16 The Multiple-Objective Genetic Local Search Algorithm. A local

search based MOEA referred to as the Multiple-Objective Genetic Local Search Algorithm

(MOGLS) was implemented by Jaszkiewicz [100]. This algorithm is exclusively applied
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to the Modified Multiobjective Knapsack Problem (See Chapter IV, Section 4.4.1) and

compared to other MOEAs applied to this problem. The Genetic Local Search (GLS)

algorithm, also referred to as a memetic or hybrid GA, hybridizes recombination operators

with other local heuristics. These types of algorithms have been shown to find the best

known solutions to a number of problem domains to include the traveling salesman problem,

graph coloring problem, and quadratic assignment problem, hence the motivation of the

authors to use it for the multiobjective knapsack problem [100].

The author states that the goal of multiobjective metaheuristics is to generate good

approximations to the nondominated set. In order to understand the process used in

MOGLS, some terminology must be presented. The approximation to the nondominated

set is defined as:

Definition 17 (Approximation to the Nondominated Set): A set A of points (and

corresponding solutions) such that ¬∃z1, z2 ∈ A such that z1 Â z2 i.e., set A is composed

of mutually nondominated points. 2

Point z1 dominates z2 is represented by z1 Â z2 and the point z∗, composed of the

best attainable objective function values is called the ideal point.

Definition 18 (Ideal Point): z∗j = max {fi(x)x ∈ D}, j = 1, . . . , J . 2

Definition 19 (Approximation of the Ideal Point): z∗∗(A) is an approximation of

the ideal point based on set A, i.e., z∗∗j = max {zj |z ∈ A}, j = 1, . . . , J . 2

The author further defines:

Definition 20 (Range Equalization Factors): πj = 1
Rj
, j = 1, . . . , J where Rj is

the approximate range of objective j. The range is calculated by taking the minimum and

maximum values from the set D, A, or the nondominated set and can also be estimated

through using objective function values in a relaxed problem. 2

Normalized objective function values are defined as objective function values multi-

plied by range equalization factors.
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Definition 21 (Weighted Linear Scalarizing Functions): sl(z,Λ) =
∑J

j=1 λjzj =
∑J

j=1 λjfj(x) . Each weighted linear scalarizing function has at least one global optimum

(maximum) belonging to the set of efficient solutions. 2

Definition 22 (Weighted Tchebycheff Scalarizing Functions): s∞(z, z0,Λ) =

maxj{(λj(z0j − zj)} = maxj{λj(z0j − fj(x))} where z0 is a reference point and Λ =

[λ1, . . . , λJ ] is a weight vector such that λj ≥ 0 ∀j. 2

Minimization of the weighted Tchebycheff scalarizing function corresponds to a min-

max problem. The author states that for each efficient solution x, there exists a weighted

Tchebycheff scalarizing function s such that x is a global optimum (minimum) of s [100].

Definition 23 (Normalized Weight Vectors): Weight vectors that meet the condi-

tions ∀jλj ≥ 0,
∑J

j=1 λj . 2

Jaszkiewicz also notes that all weighted Tchebycheff and all weighted linear scalar-

izing functions have optima in the nondominated set. Further, he states that finding

the whole nondominated set is equivalent to finding optima of all Tchebycheff and all

weighted linear scalarizing functions. Hence the goal of multiobjective metaheuristics is

reformulated as simultaneous optimization of all weighted Tchebycheff or all weighted lin-

ear scalarizing functions (it is enough to consider scalarizing functions with normalized

weight vectors) [100].

In the application to the MMOKP MOP, MOGLS simultaneously optimizes all

weighted Tchebycheff or all weighted linear scalarizing functions with normalized weight

vectors by random choice of a scalarizing function optimized in each iteration [100]. Each

iteration of MOGLS is defined as a single recombination of a pair of solutions and applica-

tion of a local heuristic, taking into account the value of the current scalarizing function.

MOGLS attempts to improve the value of a randomly selected scalarizing function.

MOGLS proceeds to initially generate a set of feasible solutions. Solutions are then

selected based on being best on a scalarizing function and then recombination and mutation

operators generate new solutions. A local heuristic is applied to the generated solution

and the process repeats. The outcome is an approximation to the nondominated set
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that contains all potentially nondominated points. In this method a repair procedure is

used that differs from the common procedure of removing items in increasing order of the

profit/weight ratio. In the modified procedure, items are removed that locally decrease

the weights in the knapsacks at the lowest cost of the current scalarizing functions.

The results of MOGLS are compared to a number other MOEAs by allowing MOGLS

to simultaneously optimize weighted Tchebycheff functions representative of the MMOKP

objectives. However, the MMOKP MOP formulation is modified to allow the decision

variables to take on continuous values between 0 and 1. This new formulation of the

MMOKP problem is referred to as the Relaxed multiple-objective 0/1 knapsack problem.

As stated in Chapter IV, Section 4.4.1, this formulation is not the correct formulation of the

multiobjective knapsack problem. While the author attempts to make a fair comparison

of MOGLS to other MOEAs, one must question this comparison as MOGLS is applied to

a different formulation of the MMOKP MOP.

3.1.2 Explicit Building Block Manipulating MOEAs. MOEAs that explicitly ma-

nipulate BBs are the least common form of EA and MOEA as illustrated by the limited

number of publications of this class of MOEA [26, 62, 120]. Explicit BB-based MOEAs ex-

plicitly look for “good” BBs throughout execution of the MOEA and manipulate those BBs

to generate “good” solutions. Researchers who have designed explicit BB-based MOEAs

typically are knowledgeable in the theory of what is happening “behind the scenes” of the

MOEA.

Explicit BB-based MOEAs are designed around the Schema Theorem and the concept

that “good” BBs are vital to solving optimization problems [201]. A detailed discussion of

BBs and the BBH is presented in Chapter II, Section 2.2. This class of MOEAs attempt

to find the “good” BBs for the particular MOP at hand and exploit those BBs in order

to generate “good” solutions to the problem. These MOEAs typically have a higher com-

plexity in terms of understanding how they operate and hence many researchers do not

use them [26]. A discussion of the explicit BB-based MOEAs can lead to new, innovative

ideas and the design of new MOEAs with increased performance over existing MOEAs as

well as an increased interest in this class of MOEAs.
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3.1.2.1 Multiobjective Messy Genetic Algorithm. The Multiobjective Messy

Genetic Algorithm (MOMGA) is an explicit BB-based MOEA, created by Van Veldhuizen

and Lamont, based off of the concepts of the single objective messy Genetic Algorithm

(mGA) [78, 184]. The authors of the MOMGA took the building block ideas of the mGA

and extended them into the multiobjective domain. The MOMGA is considerably different

from all of the other MOEAs discussed in the literature in that it is the only algorithm

to explicitly manipulate BBs. The MOMGA consists of three phases, the initialization,

primordial, and juxtapositional phases.

In the initialization phase, the MOMGA completes a total enumeration of all user

specified BB sizes in initializing its population. The population is generated through

a process of analyzing the specified BB size, generating all of the BBs necessary, and

evaluating the objective function values for the strings. Therefore the starting population

size is based upon the BB size, string length and cardinality of the alphabet used. BBs

are underspecified, meaning that they are partial strings, having some bit values, alleles

and loci, missing. The MOMGA is a variable string length MOEA that makes use of

competitive templates to evaluate population members missing bits or allele values. The

templates are fully specified individuals that do not get modified throughout one iteration

of the algorithm. The “steady-state” templates allow for a good comparison basis when

evaluating population members. The initial population members are “overlayed” on top of

the competitive templates to determine their fitness values. In this overlay process, only

bits that are missing from the population member are copied from the selected template

for evaluation. The copied bits do not remain with the population member subsequent to

its evaluation.

The MOMGA does not implement mutation. Following the initialization phase,

the primordial phase executes. The number of generations of this phase is dynamically

determined based on the proportion of good BBs in the population. During this phase,

binary tournament thresholding selection is used along with a population reduction method

to enrich the population with a good BBs.

The last phase, the juxtapositional phase, is used to perform recombination. This

phase consists of the use of a cut-and-splice operator along with tournament thresholding

3-21



selection. The cut-and-splice operator is a crossover operator for variable length strings

and its continued use builds up strings from their underspecified BB size to the fully

specified string length. Cut and splice randomly chooses a point to cut a string, then

subsequently splices the string with another cut string. Repeating this process allows

the population members to grow in length when used in conjunction with a large enough

splice probability. During the intermediate evaluations, competitive templates are used to

evaluate the underspecified strings. The templates are fully specified population members

that are not modified until the completion of the juxtapositional phase. Following the

juxtapositional phase, the competitive templates are updated with the best individuals

found with respect to each objective function and the process repeats itself utilizing the

next user-specified BB size. In the case of an overspecified individual, or one that specifies

an allelic value for a particular gene multiple times, a first encountered method is used

meaning that the first allele value encountered for a specific locus (gene), when scanning

the bit string, is the one used.

During all of the selection routines, Pareto dominance based selection is used. In

order to expand the mGA to multiple objective functions, there are k competitive templates

used for a k objective function MOP. The template is randomly chosen when evaluating

a population member so as to avoid convergence to one of the objective function solution

sets. Additionally niching is implemented based off of the method used by Horn in the

NPGA. The MOMGA achieves favorable performance when compared to a limited set of

other MOEAs.

3.1.2.2 Multiobjective Messy Genetic Algorithm II. The Multiobjective

Messy Genetic Algorithm II (MOMGA-II) is designed and implemented through this re-

search effort. The MOMGA-II is the second known explicit BB-based MOEA. The details

of this algorithm are discussed in Chapter VI.

Table 3.1 presents a summary of the aforementioned MOEAs, along with the coding

method used by each, their Evolutionary Operators (EVOPs), fitness assignment scheme,

niching, and population size.
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Table 3.1: MOEA Characteristics

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

MMOSGA [107] Binary Crossover, implicit mutation through the dominance

table, Tournament Selection, External Archive

Standard fitness

assignment

None Randomly

initialized;

N = 100

micro-

GA [29, 30]

Binary 2 Point Crossover, uniform mutation, Tournament Se-

lection, Memory (similar to the concept of an archive)

Standard fitness

assignment

Phenotypic

(adaptive grid)

Randomly

initialized;

N = 4,

External

memory

N = 100,

Population

memory

N = 50

MOGA [64] Gray 2 Point Surrogate Crossover and Mutation (pc = 1,

pm = 1
0.042

), Tournament Selection, Mating Restric-

tion Utilized

Linear interpola-

tion using Fon-

seca’s [64] Pareto

ranking

Phenotypic

(σshare - Fitness)

Randomly

initialized;

N = 80

MOMGA [184] Binary “Cut and splice” (pcut = 0.02, psplice = 1), no muta-

tion, Tournament Selection, External Archive

Tournament

(tdom = 3)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

Determinis-

tic Size
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Table 3.1: (continued)

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

MOMGA-

II [217, 219]

Binary “Cut and splice” (pcut = 0.02, psplice = 1), no muta-

tion, Tournament Selection, External Archive

Tournament

(tdom = 3)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

Determinis-

tic Size

MOGLS [100] Binary Crossover, Mutation, use of a Temporary Elite Popu-

lation

Tchebycheff and

weighted lin-

ear scalarizing

functions

None Random,

N =

150− 350

M-

PAES [115]

Binary Crossover, Mutation, Tournament Selection, External

Archives (Local and Global)

Standard fitness

assignment

Phenotypic

(Crowding)

N > 1

NPGA [93] Binary Crossover, Mutation (pc = 1, pm = 1
0.042

), Tourna-

ment Selection with comparison set (Pareto ranking)

Tournament

(tdom = 5)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

N = 100

NPGA2 [61] Binary Crossover, Mutation (pc = 1, pm = 1
0.042

), Tour-

nament Selection with comparison set (Deterministic

Pareto ranking)

Tournament

(tdom = 5)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

N = 50, 100

NSGA [176] Binary Crossover, Mutation (pc = 1, pm = 1
0.042

) “Dummy” fitness

using Gold-

berg’s [78] Pareto

ranking

Genotypic

(σshare - Fitness)

Randomly

initialized;

N = 100
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Table 3.1: (continued)

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

NSGA-II [46] Real Val-

ued

Simulated Binary Crossover (SBX), Real Parameter

Mutation, Tournament Selection based on niching

Dominance Based

Fitness Assign-

ment, Pareto

ranking

Phenotypic

(Crowding)

Randomly

initialized;

N = 100

PAES(1+1) [115]Binary No Crossover, Mutation, Niching Based Selection, Ex-

ternal Archive (Fixed Size)

Dominance Based

fitness assignment

Phenotypic

(Crowding based

on a grid)

N = 1

PAES(µ +

λ) [116]

Binary No Crossover, Mutation, Niching Based Selection, Ex-

ternal Archive (Fixed Size)

Dominance Based

fitness assignment

Phenotypic

(Crowding based

on a grid)

N = µ

PESA [34] Binary Crossover, Mutation, Tournament Selection from

archive, External Archive (Fixed Size and selection

based on degree of dominance used in the archive)

Selective fitness

assignment

Phenotypic

(Crowding based

on a hyper-grid)

N = 10

PESA-II [33] Binary Crossover, Mutation, Region Based Tournament Se-

lection from archive(implicit phenotype crowding),

External Archive (Fixed Size)

Selective fitness

assignment

Implicit Pheno-

typic (Through

region based

selection and

grid)

N = 10
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Table 3.1: (continued)

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

SPEA [213] Binary Crossover, Mutation, Tournament Selection, External

Archive, Pareto Ranking

Dominance based

fitness assignment

(based on exter-

nal archive only)

Phenotypic (den-

sity based nich-

ing)

N = 100

SPEA2 [211] Binary Crossover, Mutation, Tournament Selection, External

Archive (Fixed Size), Pareto Ranking

Dominance based

fitness assign-

ment (based on

external archive

and current

population)

Phenotypic (den-

sity based nich-

ing)

N = 250-2

objective,

N = 300-

3 obj,

N = 400-

4 obj

VEGA [170,

64]

Binary Crossover, Mutation, Subpopulation based Standard fitness

assignment

None Randomly

initialized;

N = 30
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3.1.3 MOEA Summary. This discussion of popular and highly referenced con-

temporary and recent MOEAs provides a historical perspective for the reader in terms

of MOEA development from the first MOEA, the VEGA to recent MOEA developments

like the NSGA-II, NPGA 2, SPEA 2, MOMGA-II, and others. The interested reader is

referred to [26], a continuously updated website of MOEA references for new additions.

The question of Which is the best MOEA to use in solving MOPs? has no one

answer. According to the NFL Theorem [204] there is no correct answer to this question.

Hence, a single MOEA cannot be the best MOEA for solving all classes of MOPs. In the

case where a researcher tunes an MOEA for one class of problem, or more specifically for

one instantiation of that problem class, an MOEA has the potential to perform better than

all other MOEAs on that one problem instantiation. However, this does not mean that

continued efforts to develop a generic MOEA should not be continued.

The development of any MOEA should employ the use of sound software engineering

practices. These practices include the use of a standard structure to code, the code should

be well documented and user-friendly as well as robust enough to operate on a number

of popular hardware and software environments. Good software engineering practices can

reduce the number of coding errors and decrease the difficulty of debugging the code. The

MOEA developed in this research effort is the MOMGA-II and these principles were used

to guide the development of the code. While it is difficult to follow these practices, the

time expended up front leads to drastic savings in debugging time expended later.

A good guideline to use when selecting another researcher’s MOEA, or an optimiza-

tion approach in general, is to make sure that the problem is clearly stated and understood

and that the MOEA is fully understood. The discussion of BBs presented in Chapter II as

well as this chapter illustrate the usefulness of explicit BB approaches for solving MOPs.

The area of explicit BB-based MOEAs is still relatively new and unexplored. An efficient

and effective explicit BB-based approach is explored.
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3.2 MOEA Metrics

Evaluating the efficiency and effectiveness of any MOEA is a difficult task to ac-

complish. Efficiency is a measure of resource use, such as memory requirements, CPU

utilization, network bandwidth, file storage and more, as well as the total wall clock time

required for an algorithm to execute. Effectiveness is a measure of the quality of the solu-

tions that are generated by the MOEA. Metrics are used in an attempt to determine if a

difference exists and how much of a difference exists between two measured sets and hence

allow researchers the ability to report on the performance of MOEA approaches. Some

researchers attempt to compare the results of their MOEA to other MOEAs in terms of

analyzing the performance of a specific MOEA across a broad range of MOPs or just one

specific problem area. In either case, a set of defined metrics is necessary to compare the

performance of the MOEAs. Besides comparing the performance of MOEAs, the use of

metrics allows researchers the ability to report the performance of his/her MOEA when

applied to a specific application for which no existing data on the performance of other

MOEAs exists. This again is a difficult problem and creates the need for a set of metrics

to measure the efficiency and effectiveness of an MOEA.

Comparisons of various MOEA approaches and measures of efficiency and effec-

tiveness are desired goals by those who conduct research and development of MOEAs.

Standardized metrics for MOEAs were somewhat lacking in the field until recently when

Srinivas and Deb [176], Schott [172], Czyżak and Jaszkiewicz [35], Zitzler and Thiele [213],

and Van Veldhuizen and Lamont [184, 190] proposed a number of metrics. More re-

cently Knowles and Corne summarized and evaluated many of the metrics in one of

the most complete evaluations to date [113, 114]. The metrics proposed by the au-

thors [35, 113, 114, 172, 176, 184, 190, 213] are genotypic and phenotypic based and

provide a foundation for comparing the performance of various MOEAs. Prior to the

introduction of these metrics, there was no standardized way of comparing MOEAs be-

sides the qualitative comparison of the true Pareto front PFtrue versus the known Pareto

front PFknown that the MOEA finds. This standardization of metrics allows for statistical

comparisons between various MOEA approaches and associated parameter values.

3-28



Some authors have recognized a problem associated with existing metrics [31, 113,

114, 184]. Typically metrics take a multidimensional set of data, PFknown , and map it into

a reduced dimensional form, many times a scalar value. Thus a single scalar value cannot

convey the same amount of information found in the multidimensional Pareto front. In

analyzing the metrics discussed in this chapter, one must determine whether or not the

associated metric is viable to be applied to the MOP being solved.

Test problems exist in the MOEA community in which PFtrue is known and hence

metrics have been developed to measure the performance of MOEAs applied to these

MOPs. However, in many real-world MOPs PFtrue is often unknown and these same

metrics cannot be used. Similar issues arise when applying certain metrics to MOPs of

varying characteristics, in terms of the shape of the front and the connectedness. These

issues make the analysis of MOEA results sometimes more challenging then the design of

an MOEA.

A number of researchers [31, 44, 114, 210] have recognized three main goals to be

achieved when analyzing MOEA performance. In particular, the goals of an MOEA should

include:

• The distance from PFknown to PFtrue should be minimized.

• A uniform distribution of points across the Pareto front should be found. The points

found should be evenly spaced across the front even though all of the points on the

front may not be found.

• A large number of solutions should be found across the entire front, in which no area

of the front should be lacking unless that is the characteristic of PFtrue .

Some authors feel that a generic goal would include only the first item as finding the true

Pareto front has been identified as a goal of MOEAs [114].

Knowles and Corne presented a thorough analysis of many of the metrics from the

current literature, evaluated them in terms of their Pareto Compatibility, pros, and cons.

For each of the metrics presented in this chapter that Knowles and Corne analyzed [113,

114], their assessment of the quality of each nondominated set comparison metric (NDSCM)

follows. Prior to discussing the metrics, one must understand the details used by Knowles
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and Corne to conduct their analysis. Knowles and Corne in part used the outperformance

relations from Hansen et al. [87]. These relations express the relationship between two

sets of nondominated objective function vectors, A and B, where ND(S) identifies the

nondominated points in S.

Definition 24 (Weak Outperformance): A OW B ⇐⇒ ND(A∪B) = A and A 6= B

i.e., A weakly outperforms B if all points in B are ‘covered’ by those in A (where ‘covered’

means is equal to or dominates) and there is at least one point in A that is not contained

in B. 2

Definition 25 (Strong Outperformance): A OS B ⇐⇒ ND(A ∪ B) = A and

B \ND(A∪B) 6= 0 i.e., A strongly outperforms B if all points in B are ‘covered’ by those

in A and there is some point in B dominated by a point in A. 2

Definition 26 (Complete Outperformance): A OC B ⇐⇒ ND(A ∪ B) = A and

B ∩ND(A ∪B) 6= 0 i.e., A completely outperforms B if each point in B is dominated by

a point in A. 2

Of these relations, it is important to notice that complete outperformance is the

strongest of the relations and weak outperformance is the weakest, i.e., A OC B =⇒
A OS B =⇒ A OW B. Knowles states that these definitions can be used to describe the

relationships between approximations to PFtrue since they are only dependent on standard

Pareto dominance relations [114]. He further explains that these are not metrics and there-

fore provide no information if each set contains points that are not covered or dominated

by the other set. Any metric that is not compatible with these relations is not guaranteed

to provide meaningful results in isolation. Further, Hansen et al. [87], present the following

definitions of compatibility and outperformance relations:

Definition 27 (Weak Compatibility): A comparison metric R is weakly compatible

with an outperformance relation O if for each pair of nondominated sets A, B with A O B,

R evaluates A as being no worse than B. 2
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Definition 28 (Compatibility): A comparison metric R is compatible with an out-

performance relation O if for each pair of nondominated sets A, B such that A O B, R

evaluates A as being better than B. 2

Knowles uses the outperformance relations to compare various metrics. He catego-

rizes metrics into direct comparative metrics; those metrics that compare two sets using

a scalar measure, reference metrics; those metrics that must use a reference set to yield a

value, and independent metrics; those metrics that measure a property of a set without

requiring a comparison to another set or a reference set. Additionally, Knowles states if a

metric induces a complete ordering, which allows one to state set A is better than set B,

set B is better than set C, and hence set A is better than set C [114].

Knowles uses Pareto compatibility to state whether a metric is misleading. Pareto

compatibility is defined to be the compatibility of a metric with the outperformance rela-

tions. He states that the hardest relation to be compatible with is OW and the easiest is

OC . Knowles further defines two desirable features of a metric; monotony and relativity

as [114]:

Definition 29 ((Weak) Monotony): Given a nondominated set A, adding a nondom-

inated point improves the value of the metric. 2

Definition 30 ((Weak) Relativity): The evaluation of Z∗ is (non)-uniquely optimal,

i.e., all other nondominated sets have a strictly inferior evaluation. 2

Compatibility with OW is necessary and sufficient for ensuring monotony and not

necessary but sufficient for ensuring relativity.

3.2.1 Chi-Square-Deviation Metric. Srinivas and Deb [176] present a metric to

evaluate the performance of MOEAs. They use a chi-square-like deviation form distribution

measure shown in Equation (3.1)

ι =

√

√

√

√

q+1
∑

i=1

(

ni − n̄i
σi

)2

(3.1)
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where q is the number of desired optimal points and (q+1)-th sub-region is the dominated

region, ni is the actual number of individuals serving the i-th sub-region of the nondom-

inated region, and σ2i is the variance of the individuals serving the i-th sub-region of the

nondominated region. The authors state that an algorithm with a good distribution capa-

bility is characterized by a low deviation measure [176]. This metric was not evaluated by

Knowles but one can see a disadvantage is in the requirement of one to select a number of

desired solution points (q). In problems in which one does not know the cardinality of the

solution set, this metric is not easily applied. Since in most real-world application MOPs,

one does not know the cardinality of the solution set, this metric is not typically useful.

3.2.2 Conservative Distance Convergence Metric. In [46], Deb presents two

metrics for adoption. The first is based on the consecutive distances among the solutions

of the best nondominated front in the final population. Deb proposes finding a set of 500

uniformly spaced solutions from PFtrue . Then one takes the points found, PFknown , and

computes the minimum Euclidean distance of them from the 500 solutions. The average of

these distances is referred to as the convergence metric, Υ. Deb suggests using the average,

Ῡ, and variance, σΥ of the convergence metric to evaluate an MOEA’s convergence to

PFtrue . He states that even if PFknown converges to PFtrue , the metric only realizes a

zero value when all of the points lie on all of the PFtrue points.

Deb suggests using a second metric, ∆ to measure the spread of points along the front.

This metric consists of a calculation of the Euclidean distance, di of each consecutive point

on PFknown and then calculating the average of the distances, d̄. Using these values, one

can compute the spread of solutions along the front, as shown in Equation (3.2)

∆ =
df + dl +

∑N−1
i=1 |di − d̄|

df + dl + (N − 1)d̄
(3.2)

where df and dl are the Euclidean distances between the extreme solutions and the bound-

ary solutions respectively, and N is the number of solutions. Deb states that for the most

widely spaced solutions, the numerator would be zero, yielding a zero value for the metric.
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These two metrics have not been analyzed by Knowles. The first metric, the consec-

utive distance metric requires the use of a comparison set containing points on PFtrue and

hence cannot typically be used. In some cases PFtrue is known but in many others it is

not and hence limits the useability of this metric. Deb’s ∆ metric is similar to other

spacing metrics that exist in the literature and attempts to measure the distribution and

uniformness of the spread of solutions in PFtrue .

3.2.3 Error Ratio Metric. Van Veldhuizen [184] defines Error Ratio (ER) as the

error in PFknown when compared to PFtrue .

ER ,

∑n
i=1 ei
n

, (3.3)

where n is the number of vectors in PFknown and

ei =











0 if vector i, i = (1, . . . , n) ∈ PFtrue ,

1 otherwise.

(3.4)

For example, E = 0 indicates every vector reported by the MOEA in PFknown is actually

in PFtrue ; E = 1 indicates that none are. Also note that a similar metric [213, 214, 215]

measures the “percentage of solutions” in some set (e.g., Pknown or PFknown ) dominated

by another solution set’s members (e.g., Ptrue or PFtrue ) as presented next.

Knowles states that this metric is only weakly compatible with OC , incompatible

with the outperformance relations, induces a total ordering, and violates monotony as well

as relativity [114]. Another disadvantage of this metric is in its requirement of a reference

set and that the addition of other members into the set being measured may lead to a

worse metric value even if they are closer to PFtrue (but not elements of PFtrue ) than the

current members in the set.

3.2.4 Relative Coverage Metric. Zitzler et al. [210] present an MOEA metric

which is referred to as a relative coverage comparison of two sets. Consider X ′, X ′′ ⊆ X ′

as two sets of phenotype decision vectors. CS is defined as the mapping of the order pair
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(X ′, X ′′) to the interval [0, 1] per Equation (3.5).

CS(X ′, X ′′) ,
|{a′′εX ′′; ∃a′εX ′ : a′ º a′′}|

|X ′′| (3.5)

If all points in X ′ dominate or are equal to all points in X ′′, then by definition CS = 1.

CS = 0 implies the opposite. In general, CS(X ′, X ′′) and CS(X ′′, X ′) both have to be

considered due to set intersections not being empty. Additionally, this metric can be used

for X = Pknown or PFknown .

Knowles states that this metric is complicated to analyze in reference to the compat-

ibility relations he uses [114]. In general he states that the relative coverage metric is not

compatible with OW but is compatible with OS and OC . A disadvantage of this metric lies

in the complex analysis sometimes necessary to determine what is indicated by the metric

result. In cases where the sets being compared are of differing cardinalities and contain

unevenly distributed points along the front, the metric result is somewhat different from

the result that one would expect, further indicating the care that must be given when in-

terpreting the result of the relative coverage metric. An advantage of this metric is that it

does not rely on a reference set. The complexities associated with interpreting the results

of this metric discourage its use.

3.2.5 Maximum Pareto Front Error Metric. Comparing two sets to determine

which one contains “better” solutions is a typical occurrence in the MOEA community.

One may attempt to determine how far apart and how similar two sets, PFknown and

PFtrue are. The maximal Pareto front error metric determines a maximum error band,

that when considered with respect to PFknown , encompasses every vector in PFtrue [184].

Put another way, this is the largest minimum distance between each vector in PFknown and

the corresponding closest vector in PFtrue . This metric is defined as:

ME , max
j

(min
i
| f i1(~x)− f j1 (~x) |2 + | f i2(~x)− f j2 (~x) |2)1/2 , (3.6)
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where i = 1, . . . , n1 and j = 1, . . . , n2 index vectors, respectively, in PFknown

and PFtrue . A result of 0 indicates PFknown ⊆ PFtrue ; any other value indicates at least

one vector in PFknown is not in PFtrue .

This metric requires the use of a reference set. Knowles states that this metric induces

a complete ordering but is not compatible with any of the outperformance relations [114].

It meets the criteria for weak relativity and violates weak monotony. An advantage of this

metric is the ease of computation. This metric’s disadvantage is that it does not always

result in a value that one would expect given the PFknown set obtained. For example, a

set containing mostly members in PFtrue but a single or few members relatively far away

from PFtrue may be considered of lesser quality than a set consisting of members very close

to PFtrue but not containing any members in PFtrue . This possibility makes this metric

relatively difficult to interpret and hence it must be used with multiple other metrics in

order to lend insight into the results. The potential difficulty of interpreting the results of

the maximum Pareto front error metric discourages its use.

3.2.6 Average Pareto Front Error Metric. The average Pareto front error at-

tempts to measure the convergence of an MOEA by using the distance of PFknown to

PFtrue . From each solution in PFknown , its perpendicular distance to PFtrue is deter-

mined by approximating PFtrue as a combination of piece-wise linear segments with the

average of these distances defining the metric value [31].

This metric was not analyzed by Knowles but exhibits similar properties to the

maximum Pareto front error metric. A disadvantage of this metric is its approximation of

PFtrue versus use of the real PFtrue . The quality of this metric is dependent on the quality

of the approximation. Additionally multiple researchers could apply this metric to the same

MOEA and MOP and generate different results if they did not use the same approximation.

Hence this metric is somewhat easy to understand but requires the reporting of multiple

parameters in order to ensure that the results are comparable to other researcher’s results.

Without the exact approximation, one cannot compare the results of multiple MOEAs over

the same MOPs with any confidence in the metric values. Due to the disadvantages and
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possibility for incorrect comparisons of this metric value among researchers, this metric is

not recommended for use.

3.2.7 Hyperarea Metric. Zitzler and Thiele, propose an MOEA comparative

metric which can be termed hyperarea [214]. Hyperarea defines the area of objective

value space covered by PFknown (i.e., the “area under the curve”). For example, a vec-

tor in PFknown for a two-objective MOP defines a rectangle bounded by an origin and

(f1(~x), f2(~x)). The union of all such rectangles’ area defined by each vector in PFknown is

then the comparative measure and is defined as [184]:

H , {
⋃

i

ai | vi ∈ PFknown }, (3.7)

where vi is a nondominated vector in PFknown and ai is the hyperarea determined by the

components of vi and the origin.

Zitzler et al., note that this metric may be misleading if PFknown is non-convex.

They also assume the MOP’s objective space origin coordinates are (0, . . . , 0), which is not

always the case. In addition, they propose a hyperarea ratio metric defined as:

HR ,
H1
H2

, (3.8)

where H1 is the hyperarea of PFknown and H2 that of PFtrue . In a minimization problem,

this ratio is 1 if PFknown = PFtrue and greater than one if PFknown ’s hyperarea is larger

than PFtrue ’s.

The hyperarea metric may yield confusing and misleading results when applied to

maximization MOPs and non-convex MOPs. This metric was meant for analyzing convex

minimization MOPs. Since the properties of many real-world MOPs are unknown, this

metric is more useful when applied to MOPs in which the Pareto front is known to be

convex. The hyperarea ratio requires the use of a reference set and the conclusions drawn

for the hyperarea metric apply to hyperarea ratio.
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Knowles states that the hyperarea metric is compatible with OW provided that the

upper boundary of the dominated region is set so that all of the feasible nondominated

points are always positive [114]. He states that the advantages of this metric are that it

is compatible with the outperformance relations, it is an independent metric, and it can

distinguish between different levels of outperformance. The disadvantage of this metric is

that it requires the upper boundary of the feasible region to be defined. This boundary

directly effects the ordering of the nondominated sets and he states it is difficult to justify

any specific setting for this boundary. This metric also has a large computational overhead,

hence making an analysis of a PFknown set of large cardinality a time consuming process.

For PFknown sets of high dimensionality or large cardinality, this metric is unusable. Due

to the overhead and disadvantages of this metric, it is not recommended for use.

3.2.8 Generational Distance Metric. Van Veldhuizen defines the Generational

Distance as a value representing in the average how “far” PFknown is from PFtrue [184]:

GD ,
(
∑n

i=1 d
p
i )
1/p

n
, (3.9)

where n is the number of vectors in PFknown , p = 2, and di is the Euclidean distance

(in objective space) between each vector and the nearest member of PFtrue . A re-

sult of 0 indicates PFtrue = PFknown ; any other value indicates PFknown deviates from

PFtrue . In the case of a disconnected Pareto front, for any p value, regions of the Pareto

front can use the same equation and then a weighted sum can be obtained across the

entire Pareto front. Figure 3.2 presents example PFtrue and PFknown sets. The gener-

ational distance for PFknown in Figure 3.2 has: d1 =
√

(1.2− 1)2 + (7− 7)2 = 0.200,

d2 =
√

(1.5− 1.5)2 + (4− 4)2 = 0.000, and d3 =
√

(3− 2)2 + (2− 2)2 = 1.000.

G =

√
0.2002 + 0.0002 + 1.0002

3
=

1.020

3
= 0.340

Knowles states that this metric induces a total ordering [114]. This metric also

requires the use of a reference set in order to determine the distance from the reference

set. Generational distance is relatively easy to compute, which makes it desirable to use.
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A disadvantage of this metric is its incompatibility with OW and it cannot be used reliably

with sets that are changing in cardinality, hence this metric is not a good measure of the

progress of an MOEA from generation to generation. This metric also cannot differentiate

between different levels of complete outperformance but when used in conjunction with

other metrics can provide useful information. This metric yields useful information as it

states how close an MOEA comes to the actual solution of an MOP and hence this metric

is recommended for use in conjunction with other metrics and in MOPs where PFtrue is

known.
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Figure 3.2 Example Minimization MOP PFtrue and PFknown

3.2.9 7-Point Average Distance Metric. Schott defines a “7-Point” average dis-

tance measure that is similar to generational distance [172]. In his experiments, neither

Ptrue or PFtrue are known, so he generates seven points in objective space for comparison.

Assuming a two objective minimization MOP and an (f1, f2) coordinate system with origin

at (0,0), first determine the maximum value in each objective dimension. Two equidis-

tantly spaced points are then computed between the origin and each objective’s maximum

value (on the objective axis). The metric value is then created by averaging the Euclidean

distances from each of the seven axis points to the member of PFknown closest to each

point. In a general 2 objective function minimization MOP F (~x) = (f1(~x), f2(~x)), the
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seven points are:

{(0, (max f2(~x))/3), (0, 2 ∗ (max f2(~x))/3), (0, (max f2(~x))), (0, 0),

((max f1(~x))/3, 0), (2 ∗ (max f1(~x))/3, 0), ((max f1(~x)), 0)}. (3.10)

This metric was not analyzed by Knowles. The 7-Point average distance metric pro-

vides a method to attempt and find how close a solution set is to PFtrue when one does not

have knowledge of PFtrue . The disadvantage of this method lies in the determination of

the maximum value within each objective dimension. In non-linear optimization problems,

this may not be readily available and hence one may expend a large amount of compu-

tational resources in attempting to generate those points. Additionally, calculating the

points that are equidistant from the origin to the maximum values may also be intensive.

In such cases, one may be better off solving for PFtrue and then using the generational

distance metric. This metric also does not have knowledge of PFtrue and hence distances

are only calculated from the seven axis points to a single member of PFknown . Hence this

metric does not present a good measure of how far PFknown is from PFtrue but instead an

average measure of the distance from a single point in PFknown to seven generated points

in objective space, not guaranteed to be in PFtrue . This metric is not recommended for

use.

3.2.10 Spacing (Range) Metric. In some operational settings, one desires to

measure the spread of points across PFknown . Most experimental MOEAs perform fit-

ness sharing (niching or crowding) in an attempt to spread each generational population

(PFcurrent (t)) evenly along the known front. Since one has knowledge of PFknown and its

endpoints at the conclusion of the MOEA, a spacing metric can define how well PFknown (or

PFtrue ) is distributed. Schott proposes such a metric measuring the range (distance) vari-

ance of neighboring vectors in PFknown [172]. Called spacing, he defines this metric as:

S ,

√

√

√

√

1

n− 1

n
∑

i=1

(d− di)2 , (3.11)
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where di = minj(| f i1(~x) − f j1 (~x) | + | f i2(~x) − f j2 (~x) |), i, j = 1, . . . , n, d is the mean of all

di, and n is the number of vectors in PFknown . A value of zero for this metric indicates

all members of PFknown are equidistantly spaced. Spacing for PFknown in Figure 3.2 has:

d1 = |1.2−1.5|+ |7−4| = 3.300, d2 = |1.5−1.2|+ |4−7| = 3.300, d3 = |3−1.5|+ |2−4| =
3.500, and d = 3.300+3.300+3.500

3 = 3.367.

n
∑

i=1

(d− di)
2 = (3.367− 3.300)2 + (3.367− 3.300)2 + (3.367− 3.500)2 = 0.027

S =

√

1

3− 1
0.027 = 0.115

Some MOPs (e.g., MOP3, MOP4, and MOP6 discussed in Chapter IV) have PFtrue ’s

that are composed of two or more Pareto curves. Including the distance between the

endpoints of two successive curves may skew Schott’s range metric. Thus, for MOPs

with this characteristic, the distance corresponding to the “breaks” in the front should be

removed from the spacing computation.

Knowles states that this metric is incompatible with OW , is incompatible with the

outperformance relations, and does not meet the criteria for monotony or relativity [114].

However, this metric is useful when used in conjunction with other metrics. If one is aware

of the structure of the front, as the structure of PFknown is known once the MOEA com-

pletes, then one can interpret the result of this metric correctly. Blindly using this metric,

as is the case with many of the other metrics, can lead to an incorrect interpretation of the

results. This metric requires low computational resources and can easily be generalized to

multiple dimensions making this a favorable metric to use.

3.2.11 Overall Nondominated Vector Generation and Ratio Metric. This met-

ric (ONVG) measures the total number of nondominated vectors found during MOEA

execution and is defined as [184]:

ONV G ,| PFknown | . (3.12)
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Schott uses this metric (although defined over the Pareto optimal set, i.e., | Pknown |) [172].
Genotypically or phenotypically defining this metric is just a matter of preference, but

note that multiple solutions may map to an identical vector | Pknown |≥| PFknown |, hence
it is important to identify whether this metric is measuring the genotype or phenotype.

Although counting the number of nondominated solutions gives some feeling for how ef-

fective the MOEA is in generating desired solutions, it does not reflect on how “far” from

PFtrue the vectors in PFknown are. Only a comparison between PFtrue and PFknown as well

as a spacing value can illustrate whether or not a particular ONVG value is “good.” With-

out other information, one cannot determine if an ONVG value of 10 or 1000 is “good.”

This metric used in conjunction with a spacing and distance metric as well as a visualization

of the Pareto front can yield a clear analysis of the MOEA results.

Van Veldhuizen defines the ratio (ONVGR) between the cardinalities of PFknown and

PFtrue as [184]:

ONV GR ,
| PFknown |
| PFtrue |

. (3.13)

A value of 1 indicates that the MOEA has found the same number of nondominated

vectors as exists in PFtrue . It is important to recognize that the ratio also requires the

use of other metrics in order to make a correct analysis of the results. It is possible

for the cardinality of PFtrue and PFknown to be identical yet PFknown be nowhere close to

PFtrue . Hence this metric must be used in conjunction with other metrics. The use of

ONVG along with spacing, generational distance, and a visualization of the front is a good

combination of metrics. ONVG and ONVGR for PFknown in Figure 3.2 is ONV G = 3 and

ONV GR = 3
4 = 0.750.

Knowles states that ONVG induces a complete ordering on the set, but it is not

weakly compatible with any of the outperformance relations, nor does it have the property

of weak monotony or weak relativity [114]. An advantage of this metric is its ease of

computation and the fact that it does not require the use of a reference set. As stated

earlier, this metric is useful when used in conjunction with other metrics. Knowles’ analysis

of the ONVG metric is representative of his discussion of ONVGR.
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3.2.12 Progress Measure Metric. Progress measure is a metric originally used in

the single objective area to assess the convergence of an EA. This metric was defined by

Bäck [13] and it attempts to measure relative, instead of absolute convergence improvement

P , ln

√

fmax(0)

fmax(t)
, (3.14)

where fmax(i) is the best objective function value in the parent population at generation

i.

Van Veldhuizen modified this metric so as to present a method for using progress

measure to evaluate the performance of MOEAs [184]. This metric is defined as:

RP , ln

√

G1
Gt

, (3.15)

where G1 is the generational distance at generation 1, and Gt the distance at generation t.

This metric has not been evaluated by Knowles, but one can see that this metric can

yield useful information about the convergence of an MOEA. However a disadvantage of

this metric is that it only measures the progress between two specific generations of MOEA

execution. In most MOEAs, the overall solution found throughout the entire MOEA

execution is presented to the user. This metric only compares the progress between two

generations and not the contribution of each generation to the overall solution set presented

at MOEA termination. This metric is therefore not recommended for use.

3.2.13 Generational Nondominated Vector Generation Metric. (GNVG) This

metric tracks how many nondominated vectors are produced at each MOEA generation

and is defined as:

GNV G ,| PFcurrent (t) | . (3.16)

This metric is useful when used in conjunction with the progress measure for eval-

uating the MOEA performance from generation to generation. Knowles states that this

metric exhibits the same advantages and disadvantages as the ONVG metric it is based

off of [114].
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3.2.14 Nondominated Vector Addition Metric. This metric evaluates the change

in the cardinality of PFknown (t) as the generations progress. As the MOEA is executed,

one would like the cardinality of PFknown (t) to increase and hence generate a PFknown set

of high cardinality. This metric is then defined as:

NV A ,| PFknown(t) | − | PFknown(t− 1) | . (3.17)

This metric may be useful when used in conjunction with GNVG and progress mea-

sure to evaluate the MOEA performance from initialization to termination. This metric

can be misleading if one does not use it along with other metrics and conduct a thorough

analysis of PFknown (t). This is important as the addition of a potential solution to the

PFknown (t) set may result in the removal of many members of that set. This may occur

if the new member dominates existing members. While one does not know how often this

may occur, in most cases, an MOEA yields better solutions, that dominate previous so-

lutions, as it progresses. Hence the cardinality of PFknown (0) may be larger than that of

PFknown , yet all of the solutions in PFknown may dominate those in PFknown (0). Hence

this metric only presents a change in the cardinality of the set and not in the quality of

solutions and therefore is not recommended for use. Therefore this metric must be used

with care and in conjunction with other metrics. Knowles states that this metric exhibits

the same advantages and disadvantages as the ONVGR metric as it is based off of it.

3.2.15 D1R. This metric measures the mean distance, over the points in a

reference set, of the nearest point in an approximation set [35]. The definition of this

metric is:

D1R(A,Λ) ,
1

|R|
∑

r∈R

minz∈A{d(r, z)} (3.18)

where A is the approximation set, R is the reference set, d(r, z) = maxk{λk(rk − zk)} and
Λ = [λ1, λ2, . . . , λK ], λk = 1/Rk, k = 1 . . .K with Rk representing the range of objective

k in set R.

Knowles states that this metric induces a complete ordering, is weakly compatible

with OW , and incompatible with OC [114]. The disadvantage of this metric is that it
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calculates a weighted average dependent on the reference set. This calculation is similar

to Schott’s 7-Point average distance metric. An advantage of this metric is that it is easy

to compute and it can differentiate between different levels of complete outperformance.

This metric is not recommended for use as it requires one to select a good approximation

set which is not known a priori for real-world MOPs.

3.2.16 R1 and R1R. The R1 metric calculates the probability that a set A is

better than a set B over a set of utility functions and R1R is identical to R1 when it is

used with a reference set [88].

R1(A,B,U, p) =
{

∫

u∈U C(A,B, u)p(u)du , where (3.19)

C(A,B, u) =



















1 if u∗(A) > u∗(B)

1/2 if u∗(A) = u∗(B)

0 if u∗(A) < u∗(B)

(3.20)

where A and B are two approximation sets, U is a set of utility functions, u : <K → <
which maps each point in objective space into a measure of utility, p(u) expresses the

probability density of the utility u ∈ U , and u∗(A) = maxz∈A{u(z)} and also for u∗(B).

Knowles states that these metrics require a set of utility functions which must be

defined [114]. They also use low computational resources and can differentiate between

different levels of complete outperformance if given a reference set. These are good metrics

to use but are somewhat complex to understand and require the use and determination

of utility functions, reducing the attractiveness of the metric. Since the selection of util-

ity functions may not be possible and may be difficult to complete, this metric is not

recommended for use.

3.2.17 R2 and R2R. The R2 metric is an improvement over R1 by taking into

account the expected values of the utility functions. It calculates the expected difference

in the utility of an approximation A with another approximation B [88]. The symbology
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is the same as for R1 and R2 is defined as:

R2(A,B,U, p) = E(u∗(A))− E(u∗(B)) =

∫

u∈U
(u∗(A)− u∗(B))p(u)du (3.21)

Knowles states that these metrics require that it makes sense to add the values of

different utility functions from the set U meaning that each utility function must be ap-

propriately scaled [114]. He further discusses that these metrics can differentiate between

different levels of complete outperformance. These are good metrics to use but are some-

what complex to understand and require the use and determination of utility functions,

reducing the attractiveness of using them. Since the selection of utility functions may not

be possible and may be difficult to complete, this metric is not recommended for use.

3.2.18 R3 and R3R. The R3 metrics are similar to the R2 metrics but instead

of calculating the difference of the utility values, the ratio of the best utility values is

used [88]. The analysis of this metric is similar to the previous two metrics generated by

Hansen and Jaszkiewicz. Again, these are good metrics to use but are somewhat complex

to understand and require the use and determination of utility functions, reducing the

attractiveness of using them. Since the selection of utility functions may not be possible

and may be difficult to complete, this metric is not recommended for use.

3.2.19 Visualization. The visualization of MOEA statistical results is an impor-

tant issue to address and deserves attention. One of the most basic and simplest ways

to analyze the results of an MOEA is to visualize the Pknown and PFknown sets. A sim-

ple plot of these sets is useful in determining what a number of the characteristics of the

PFknown set are. For example, a visualization can illustrate the cardinality of the set, the

number of disjoint fronts that appear, the structure of the front and more information.

The advantage of conducting a visual analysis and comparison of MOEA results is that

all of the data is present to the naked eye for analysis. A researcher can readily see the

structure of the results of a visualization of PFknown . This is an advantage over some of

the metrics discussed as single metric results can be misleading and the use of multiple

metrics is important.
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Visualization of MOEA results provides an easy mechanism to see the general MOEA

performance and is recommended for use. A more detailed analysis using other metrics is

necessary to compare the performance of multiple MOEAs. A visual comparison can easily

illustrate complete outperformance but cannot as easily distinguish between MOEA results

indicating mixed performance (MOEA 1 has some points better than MOEA 2 and vice-

versa). Visualization of MOEA results also becomes more difficult if not impossible when

analyzing the results of an MOP containing a large number of dimensions. Since three

dimensions is typically the maximum that one can easily visualize, MOPs with greater

than three dimensions require the plotting of only three of the dimensions at a time or the

use of other metrics.

3.3 MOMGA-II Performance Metrics

Many of the metrics discussed in this chapter are described in the genotype or phe-

notype domains only, but these metrics can be equally applicable in either domain (applied

to Pknown or PFknown ). Each of the metrics discussed attempts to map multiple points ex-

isting on the Pareto front to a single metric value. As is known in other academic fields and

mathematics, such a mapping is lossy and hence a single metric typically cannot indicate

overall performance. The metrics are referred to as lossy since the mapping of multiple

points (the Pareto front) to a single metric value results in a loss of information. Which

combination of metrics can provide the best analysis of a solution set? The answer to that

question is still highly debated.

The metrics discussed in this chapter have been accepted and adopted by the MOEA

community in limited or wide spread use. The summary presented in support of this

research effort is meant to provide an overview of currently known MOEA metrics. This

metric overview is used to select metrics for evaluating the research conducted in support

of the objectives presented in Chapter I.

In order to quantitatively compare the results of the MOMGA-II with other MOEAs,

statistical analysis of the experimental results and associated observations are presented

in Chapter VI. Since no single metric can represent total MOEA performance, a series of

appropriate metrics is used to measure the performance in the phenotype domain. MOEA
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metrics should consist of comparisons of 1) the PFknown values to the PFtrue values to

calculate generational distances, 2) spacing along the PFknown Pareto front, and 3) the

range of values for each objective function [191, 210]. In cases where PFtrue is unknown, it

is important that metrics are selected that result in the measurement of the distribution

of points along PFknown , and the cardinality of PFknown . These attributes are important

to consider when evaluating the performance of an MOEA. Metrics that address the dis-

tribution of points and the cardinality of the known Pareto front are important to provide

insight into the performance of an MOEA.

Knowles recommends the use of the hyperarea, R1, R2, and R3 metrics [114]. While

Knowles states that these metrics are “good” metrics to use, this statement is highly

dependent on the characteristics of the PFknown sets that one is measuring. In this dis-

sertation, an analysis is made of MOEA performance as applied to MOPs some of which

PFtrue is known and others where PFtrue is unknown. Additionally, the characteristics of

the PFknown sets generated through this effort vary greatly. Some of the characteristics

of the PFknown sets generated by the MOMGA-II include connected fronts, disconnected

fronts, are of large and small cardinality, and are of varying dimensionality in Ptrue and

PFtrue . This makes the selection of metrics challenging. While Knowles makes the state-

ment that the hyperarea, R1, R2, and R3 metrics are recommended for use, this statement

should take into consideration the characteristics of the PFknown sets generated by the

MOEA. For example, Knowles states that the hyperarea metric is unusable for PFknown sets

of large cardinality. Since some of the PFknown sets generated in this research effort ex-

hibit this characteristic, his recommended metric is not applicable. The R1, R2, and R3

metrics have many advantages but they all require the ability to define a set of utility

functions. This is a time consuming process and is not always possible. The definition of

utility functions is not completed in this research effort and hence these metrics are not

applicable.

The metrics selected for use in this effort (Chapter VI), to evaluate and compare the

performance of the MOMGA-II are generational distance, spacing, overall nondominated

vector generation, and a visual comparison of Pareto front results. Of these, the only metric

that requires one to have knowledge of PFtrue is generational distance. Although other
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metrics such as error ratio, max error, hyperarea ratio, progress measure, and others are

discussed in this chapter and have been employed for MOEA testing, the four metrics (G, S,

ONVG, visualization) used together are quantitatively quite adequate for statistical MOEA

comparison. G, S, and ONVG allow a researcher the ability to make statistical statements

about the performance of MOEAs and require low computational resources. These metrics

along with a visual analysis of the PFknown sets provides the necessary insight into MOEA

performance as applied to given MOPs with respect to the goals addressed in the beginning

of this section.

A software package for calculating all of the discussed metrics is not readily available

and hence researchers must either search for existing code or generate their own code. As

the use of existing code is preferable, there are numerous statistical packages that may be

used to analyze an MOEA’s results.

Note that the discretization of the continuous decision variable domain can be critical

in generating the MOP’s Pareto front. That is, if only a very few decision variable values

relate to a particular objective function optima, the statistical chance of generating these

values is small assuming a uniform distribution of values. The resulting PFknown could

thus be a considerable distance from PFtrue resulting in an unacceptable solution. Some

say that this is a deception problem, but in reality, it is a numerical analysis problem.

One also should observe that some authors use straight-line approximations to the

continuous Pareto front if PFtrue is functionally unknown in generating metric values [210].

A better method, which is employed (for MOP-C1 in Chapter VI), is to use high-order

polynomial approximations minimizing the error over the discrete PFtrue segments which

gives more realistic results.

3.4 Summary

Throughout the past decade the number of MOEA publications has greatly increased.

While many of these publications discuss new approaches and operators, many more discuss

the application of an existing MOEA to a real-world or new MOP. This chapter presents

a discussion of the most popular and highly referenced contemporary and recent MOEAs.
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This serves as a good summary of the what could be considered the best MOEAs in the

field. Through an understanding of the literature, one can improve an existing MOEA or

develop a new, efficient and effective MOEA. An objective of this research is the latter of

the two. The literature review presented illustrates the lack of interest, or understanding

of explicit BB-based MOEAs by the MOEA community as a whole. This is an area that

can yield great results and is the focus of this research.

The complexity and computational cost of an MOEA somewhat drive its utility in

the real-world. While the cost of the fitness function calculation is typically dependent on

the hardware of the machine, the cost of the MOEA in terms of execution time, memory

utilization and complexity is left to the programmer. The most efficient MOEAs are sure

to be used more often than those of lower efficiency, where efficiency includes the memory

and processing requirements as well as the required time to execute. The same is true of

complexity; typically researchers want to use the least complex approach, that yields the

most accurate results. This process has a higher probability of researchers understanding

the approach and improving upon it. That is not to say that complex MOEAs are not

useful. One example of this is the MOMGA [184] and the MOEA developed through this

research, the MOMGA-II. The MOMGA is a complex MOEA that takes an approach no

other MOEA researches have used, yet it parallels the performance of other MOEAs and

performs better on selected MOPs. The good performance realized by the MOMGA is

one of the motivations of conducting research in the area of explicit BB-based MOEAs.

The complexity and computational cost are important attributes of an MOEA but are

also difficult to compare as many MOEAs make use of different operators, are coded by

different researchers and therefore may be difficult to compare. However, the efficiency

and effectiveness of these approaches can be analyzed and compared.

Once a researcher has implemented and tested what they feel is a well-engineered,

efficient and effective MOEA, the researcher must have a method to evaluate the results

obtained from the MOEA. A well-engineered MOEA is one in which a researcher has taken

the time to address the issue of complexity, followed good software engineering practices

and analyzed available literature to incorporate promising ideas. The latter part of this

chapter presents a summary of many metrics used in the MOEA community to evaluate
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the MOEA performance or compare and contrast the performance of multiple MOEAs.

Evaluations of each of the metrics illustrate that there is no one best metric to use, but

through a visual analysis of the characteristics of the MOEA results, one can make an

intelligent decision as to which metrics can accurately evaluate the performance of the

MOEA tested. Generational distance, ONVG, spacing, and visualization of the Pareto

front are selected as the metrics to evaluate the performance of the MOEAs compared.
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IV. MOEA MOP Test Suites

Throughout the previous two chapters, a detailed discussion of BBs and the MOEAs that

incorporate BB concepts is presented. In the latter part of the last chapter, MOEA metrics

are presented to analyze MOEA performance. Having presented the metrics, this chapter

addresses the MOPs selected for use in evaluating MOEA performance. Additionally, a

discussion of MOPs and associated MOP test suites is presented. This includes a discussion

of a few unconstrained MOPs as well as constrained, NP -Complete, and real-world MOPs

of varying characteristics. These MOPs are presented to aid researchers in evaluating the

performance of MOEAs.

The selection of MOPs for inclusion into MOEA MOP test suites has been dis-

cussed in the MOEA literature and problems from standardized MOP test suites are se-

lected [31, 43, 52, 189, 188]. Each MOP selected for use is described in this chapter. The

MOP test problems used in this effort are selected from standardized standardized MOP

test suites suggested and used by MOEA researchers. The use of standard test problem

sets is recommended by Jackson, Boggs, Nash, and Powell to allow for comparisons of

results presented by different researchers [97]. Different motivations exist for the selection

of test MOPs. One of the motivations is to analyze general MOEA performance over a

variety of classes of MOPs. While the selected MOEA may not have the best performance

out of any given method over all of the MOPs, there may be a particular class of MOP that

it performs the best on compared to the classes tested. Testing an MOEA over a number of

classes of MOPs can illustrate the class of MOP that a given MOEA obtains the best per-

formance over. Another motivation of testing an MOEA is to tune it to perform well over

a single class of MOP. This is more indicative of the type of testing conducted by MOEA

researchers attempting to solve a specific real-world problem. Researchers may choose to

incorporate problem domain knowledge and tune their MOEA to a class or instantiation

of this problem. These are two motivations for the selection of test MOPs. The motivation

of this chapter is on the selection of test MOPs for analyzing the performance of MOEAs

over multiple problem classes.

While a few unconstrained test functions from another test suite are discussed, the

contribution of this effort is the addition of a real-world and constrained MOPs with integer
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based decision variables into a test suite. Additional details of other researchers’ test suite

MOPs is presented in Appendix B. The specific MOPs selected for use represent MOPs of

varying characteristics. The selection of MOPs and MOP test suites is just as important

as the selection of an MOEA to apply to a problem. Researchers must ensure that they

understand the MOP and the formulation used. This understanding is advantageous in

tuning and selecting an MOEA that can perform well on the particular class of MOP

selected. A researcher may also attempt to solve an MOP that no prior knowledge of the

structure or characteristics of the Pareto front exists. In this case, a researcher can look at

all of the available MOEAs for one that performs the best over that class of MOP. While

knowledge of the characteristics of the Pareto front may be unknown for an MOP, the

mathematical representation of the MOP is known. Using the mathematical formulation

of the MOP, a researcher can determine which other MOEAs have performed well when

applied to similar problems.

Test suites are integral to the presentation of an unbiased comparison of different

MOEA approaches. This chapter is organized as follows: unconstrained test function

MOPs are presented in Section 4.1, followed by a discussion of constrained test function

MOPs, discrete MOPs and real-world MOPs in Sections 4.2 through 4.5. The constrained

test suite MOP section contains theNP -Complete and real-world MOPs that are presented

for use by other researchers in evaluating the performance of an MOEA against constrained

MOPs formulated with integer based decision variables. Real-world MOPs of interest to

industry and the government are also discussed. Test suite generators and other proposals

are discussed in Section 4.2 to aid a researcher in creating a good design of experiments

when testing the efficiency and effectiveness of their MOEA. These discussions are useful for

generating a good test of an MOEA as well as identifying problem domain characteristics

that, if addressed, can improve MOEA performance when applied to problems of this class.

4.1 Unconstrained Test Suite MOPs

The purpose of a test suite is to objectively determine the efficiency and effectiveness

of an MOEA [43, 52, 189, 188]. The selection of MOPs for testing is a necessity to analyze

or compare the performance of a single or multiple MOEA approaches. A researcher’s mo-
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tivation for applying an MOEA to an MOP from a test suite is to illustrate the performance

of that MOEA as applied to the class of MOP selected or to compare the performance of

multiple MOEAs as applied to the same MOP. It is also prudent to remember that an

MOEA may perform better than other approaches over one or more classes of MOPs, but

this does not prove that the MOEA performs better over all classes of MOPs it encounters.

The No Free Lunch (NFL) Theorem states that one algorithm cannot outperform every

other algorithm over every possible class of test problem [204].

EAs are generally accepted as “good” search methods when applied to problems in

which the search space is extremely large, the search space is known to be neither flat

nor chaotic, the fitness function is noisy, another tuned method for solving the MOP is

nonexistent, or the MOP is not well understood [148]. Problems in which there are a large

number of dimensions in the genotype or phenotype spaces may also be good problems for

application by an evolutionary approach. It is important to apply an MOEA to problems

of that meet these criteria. The application of an MOEA to MOPs that do not meet the

aforementioned criteria and hence are not challenging enough for an MOEA, likely result

in poor performance.

Van Veldhuizen and others have selected MOPs for inclusion in test suites based in

part on the guidelines that Whitley suggested [203]. These guidelines were stated in the

context of single objective problems but apply to the MOPs also. The guidelines state

that test suites should contain problems (MOPs) that [203]:

1. are difficult for simple search strategies to solve

2. are nonlinear, nonseparable, and nonsymmetric, requiring increased computational

resources

3. are scalable

4. contain a large number of dimensions

Many of the researchers who have suggested MOP test suites have also suggested

that the MOPs within these test suites include functions of varying characteristics: con-

tinuous, discontinuous, connected, disconnected, convex, concave, unimodal, multimodal,

quadratic, and nonquadratic [74, 138]. Van Veldhuizen included historical MOPs that were
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referenced in the literature in his test suite [184]. He created a standardized test suite to

use based on MOPs with a variety of desired characteristics. It is important to include

multiple classes of MOPs, with varying characteristics in order to test an MOEA’s ability

to solve problems of these classes.

Five unconstrained MOPs from Van Veldhuizen’s standard test suite, which represent

both minimization and maximization functions with varying complexity levels and Pareto

front (phenotype) characteristics, are selected for use in this research effort. Two objective

problems are used for ease of presentation and to provide critical insight to MOEA perfor-

mance. The five MOPs selected are presented in Table 4.1 and are Schaffer’s #1 labeled

as MOP1, Fonseca’s # 2 labeled as MOP2, Poloni’s labeled as MOP3, Kursawe’s labeled

as MOP4, and Deb’s labeled as MOP6 [184]. These MOPs are selected for testing based

on the fact that they meet the criteria described above in terms of being good test MOPs

for comparing MOEA approaches and are presented in Table 4.1. Additionally, other re-

searchers have used a subset of these five MOPs to test their MOEAs [46, 47]. Other

researcher’s use of these MOPs allows for a comparison between the algorithm of interest

in this research, the MOMGA-II, and other MOEAs that have already been applied to

these test MOPs.

An analysis of the MOPs present in existing test suites reveals a generalized problem

exists in terms of the dimensionality [43, 44, 50, 52, 53, 54, 184, 188, 189, 192]. Van

Veldhuizen, Deb, and others chose MOPs for inclusion based on varying characteristics.

However, many of these problems contain only two objective functions and only two or

three decision variables, which is not typical of real-world application problems. These

MOPs are of low dimensionality and may not be fully testing the capabilities of an MOEA.

Additional MOPs are selected for use in this effort. These additional MOP formulations

contain constraints, integer based decision variables, and characteristics non-existent in

the other selected MOPs.
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Table 4.1: MOEA Test Suite Functions [184]

MOP Definition Constraints

MOP1
Ptrue con-
nected,
PFtrue convex

F = (f1(x), f2(x)), where

f1(x) = x2,

f2(x) = (x− 2)2

−105 ≤ x ≤ 105

MOP2
Ptrue con-
nected,
PFtrue concave,
number of
decision vari-
ables scalable

F = (f1(~x), f2(~x)), where

f1(~x) = 1− exp(−
n

∑

i=1

(xi −
1√
n
)2),

f2(~x) = 1− exp(−
n

∑

i+1

(xi +
1√
n
)2)

−4 ≤ xi ≤ 4; i = 1, 2, 3

MOP3
Ptrue dis-
connected,
PFtrue dis-
connected (2
Pareto curves)

Maximize F = (f1(x, y), f2(x, y)), where

f1(x, y) = −[1 + (A1 −B1)
2 + (A2 −B2)

2],

f2(x, y) = −[(x+ 3)2 + (y + 1)2]

−3.1416 ≤ x, y ≤ 3.1416,

A1 = 0.5 sin 1− 2 cos 1 +

sin 2− 1.5 cos 2,

A2 = 1.5 sin 1− cos 1 +

2 sin 2− 0.5 cos 2,

B1 = 0.5 sinx− 2 cosx+

sin y − 1.5 cos y,

B2 = 1.5 sinx− cosx+

2 sin y − 0.5 cos y

MOP4
Ptrue dis-
connected,
PFtrue discon-
nected (3
Pareto
curves), num-
ber of decision
variables
scalable

F = (f1(~x), f2(~x)), where

f1(~x) =

n−1
∑

i=1

(−10e(−0.2)∗
√

x2
i
+x2

i+1),

f2(~x) =
n

∑

i=1

(|xi|0.8 + 5sin(xi)
3)

−5 ≤ xi ≤ 5; i = 1, 2, 3

MOP6
Ptrue dis-
connected,
PFtrue discon-
nected (4
Pareto
curves),
number of
Pareto curves
scalable

F = (f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = (1 + 10y) ∗
[1− (

x

1 + 10y
)α − x

1 + 10y
sin(2πqx)]

0 ≤ x, y ≤ 1,

q = 4,

α = 2
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4.2 Constrained Test Suite MOPs

Constrained numeric MOPs should also be included in any comprehensive MOEA

test function suite. Suitable linear and nonlinear constrained MOPs are presented as

drawn from the published literature [43, 44, 50, 52, 53, 54, 184, 188, 189, 192]. Many

of the constrained problems presented in the literature use linear constraints and have

similar characteristics to other constrained MOPs. In order to select constrained problems

of varying characteristics, Binh’s constrained MOP from Van Veldhuizen [184] is selected

as well as a modification of Tanaka’s constrained MOP [182]. Table 4.2 presents the

formulation for these two MOPs. Binh’s MOP contains a single convex Pareto curve, uses

linear constraints, and is labelled MOP-C1.

Table 4.2: Constrained MOEA Test Suite Functions

MOP Definition Constraints

MOP-C1

Binh(2)

F = (f1(x, y), f2(x, y)), where

f1(x, y) = 4x2 + 4y2,

f2(x, y) = (x− 5)2 + (y − 5)2

0 ≤ x ≤ 5, 0 ≤ y ≤ 3,

0 ≥ (x− 5)2 + y2 − 25,

0 ≥ −(x− 8)2 −

(y + 3)2 + 7.7

MOP-CT

Tanaka Test

Function

Generator

F = (f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = y

0 < x, y ≤ π,

0 ≥ −(x2)− (y2) + 1 +

(a cos(b arctan(x/y)))

a = 0.1

b = 16

A modification of Tanaka’s two objective function is proposed by this research effort

as MOP-CT with a and b tuning parameters [182]. The original Tanaka MOP formula-

tion does not contain the a and b terms in the constraint but instead uses the constants

a = 0.1 and b = 16. Thes original formulation has already been proposed as a test func-
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tion [182, 184]. The original formulation of the Tanaka MOP is modified to include the

a and b parameters in the constraints. These are tuning parameters that allow one to

modify the characteristics of the Pareto optimal set and the Pareto front. The nonlin-

ear constraints can be modified to change the characteristics of the Pareto front from a

continuous front of five disconnected sections to multiple continuous disconnected fronts

to multiple disconnected fronts where each disconnected section consists of a single point.

Each of these possible MOP formulations have a different number of infeasible points be-

tween the feasible points and hence varying levels of difficulty. MOP-CT allows a researcher

to easily change the characteristics and level of difficulty of a single MOP without having

to code an entirely different MOP for testing various MOP characteristics.

MOPs with a continuous Pareto front are typically easier for an MOEA to generate

solutions compared to MOPs with multiple disconnected Pareto fronts [31]. This is due to

the dispersion in phenotype space of the disconnected fronts. Once an MOEA generates

a solution on the Pareto front of an MOP with a continuous front, it may be easy for the

MOEA to find other solutions that are within a small perturbation of the decision variable

values to this solution in phenotype space. To generate other solutions on the Pareto front

may just require a single mutation event if the Pareto front solutions are close together in

terms of a distance metric in phenotype space and reflect the same distance characteristic

in genotype space. In MOPs with disconnected fronts, it is more difficult for an MOEA to

generate a solution on each of the separate Pareto fronts and continue to generate these

solutions as the MOEA must find the good BBs required to generate solutions on each

of the fronts. In the previous example, if solutions that are close in phenotype space

reflect solutions that are a small perturbation away in genotype space, then one can see

that disconnected fronts reflect a larger distance between solutions. This larger distance

translates to multiple perturbations being required to generate a Pareto front solution on

a different portion of the Pareto front starting with a solution from another portion of the

Pareto front. This characteristic of a similar distance relationship between the genotype

and phenotype spaces is problem dependent but illustrates how the characteristic of a

connected or disconnected Pareto front may pose difficulty for MOEAs.
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Constrained MOPs present additional difficulties over unconstrained MOPs for MOEAs

as potential solutions that are close in phenotype space may be feasible or infeasible and

directly effect the search process. Considering the previous example of a similar relation-

ship between the distances of solutions in the genotype and phenotype spaces, one can see

that infeasible points between feasible solutions can pose difficulty for the MOEA search

process. Small perturbations to feasible solutions may yield infeasible points, whereas a

larger perturbation yields a feasible solution. This makes the search somewhat difficult

and this is especially true if some of the good BBs necessary to generate solutions on the

front also generate infeasible points in the space.

Figures 4.1 through 4.6 reflect six different resultant characteristics of MOP-CT.

These variations are generated through varying the MOP constraints and were generated

through a total enumeration of the space and a Pareto analysis of the resultant feasible

solutions at a specific resolution. In each of these figures, the feasible region is reflected

by the shaded area and the *s represent the Pareto front. As the a and b parameters are

modified, one can see the effect on the characteristics of the Pareto front and the feasible

region. The characteristics of the six variants of the Tanaka function are as follows:

• Standard Tanaka phenotype with a = .1 and b = 16. The Pareto front represents 5

disconnected curves and is symmetric about the line x = y. (Figure 4.1)

• Smaller continuous phenotype regions with a = .1 and b = 32 with larger infeasible

regions between Pareto front points as compared to the standard settings. The

Pareto front represents 8 disconnected curves and is symmetric about the line x = y.

(Figure 4.2)

• Decreased distance between Pareto front regions with, a = .1 and b = 16 as compared

to the standard settings. The Pareto front represents 8 disconnected curves and is

symmetric about the line x = y. (Figure 4.3)

• Increased distance between Pareto front regions with, a = .15 and b = 32 with larger

infeasible regions between Pareto front points as compared to the standard settings.

The Pareto front represents 16 disconnected curves (some are individual points) and

is symmetric about the line x = y. (Figure 4.4)
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• Increased distance between Pareto front regions with, a = .1(x2 + y2 + 5xy) and

b = 32 with deeper infeasible regions between Pareto front points as compared to

the standard settings. The Pareto front represents 16 disconnected curves (some are

individual points) and is symmetric about the line x = y. (Figure 4.5)

• Increased distance between Pareto front regions with, a = .1(x2 + y2 + 5xy) and

b = 8(x2+y2) with deeper non-periodic infeasible regions between Pareto front points

as compared to the standard settings. The Pareto front represents 6 disconnected

curves (some are individual points) and is not symmetric about the line x = y.

(Figure 4.6)

Figure 4.1 MOP-CT (Tanaka),
a = .1, b = 16, Original
PFtrue (Ptrue ) regions

Figure 4.2 MOP-CT (Tanaka),
a = .1, b = 32, PFtrue (Ptrue ) re-
gions

Figure 4.3 MOP-CT (Tanaka),
a = .1, b = 16, PFtrue (Ptrue ) re-
gions

Figure 4.4 MOP-CT (Tanaka),
a = .15, b = 32, PFtrue (Ptrue ) re-
gions
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Figure 4.5 MOP-CT (Tanaka),
a = .1(x2 + y2 + 5xy), b = 32,
PFtrue (Ptrue ) periodic regions

Figure 4.6 MOP-CT (Tanaka),
a = .1(x2+y2+5xy), b = 8(x2+y2),
PFtrue (Ptrue )

The center sections of the Pareto front shown in Figure 4.1 are difficult to find

numerically because of the near horizontal or vertical slope encountered in this portion of

the front. Besides modifying the tuning parameters, increasing or decreasing the resolution

of the decision variables may cause the characteristics of the Pareto front presented in

Figures 4.1 through 4.6 to change.

In general the “tuning” parameters a and b control the length of the continuous

portion of the Pareto front and the number of infeasible points. Increasing the b parameter

has the effect of increasing the number of infeasible solutions between the feasible solutions

on the front. Increasing the a parameter has the effect of decreasing the continuous portion

of the front and in some areas yielding discrete points versus a continuous section. This

MOP is a contribution to the area of MOP test suites as a researcher can code one function

into their MOEA and vary the characteristics of this function. A researcher thereby gains

detailed insight into the operation of their MOEA while expending less effort on finding

MOPs of varying characteristics.

Numerous constrained MOPs exist in the literature and each of these can be modified

in a way similar to what is done for the Tanaka MOP (MOP-CT) to vary the character-

istics of the solution sets Ptrue and PFtrue . Since many of these problems have similar

characteristics or can be tuned to exhibit similar characteristics, each of these problems is

not presented. One may select an MOP that reflects the class of MOP that they are most

interested in solving and modify the MOP in the same manner as MOP-CT proposed.
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This allows one to evaluate MOEA performance over a single class of MOP without the

researcher having to identify multiple MOPs of this class but instead to identify one MOP

of interest and modify it. It is important that researchers test their MOEAs against prob-

lems of the class in which they are interested in solving. Additional real-world constrained

problems are presented in Sections 4.4 and 4.5 of this chapter.

The best test suite to use in evaluating MOEA performance is one that contains

MOPs of similar characteristics to the MOPs that an MOEA is designed for and is being

applied to. MOPs 1, 2, 3, 4, and 6 are used for their varying genotype and phenotype

characteristics and MOP-CT, the Tanaka test function generator, can be tuned to yield

constrained test problems with varying characteristics. The selection of test problems is

difficult and there is no best test suite to use. A researcher must understand the problems

used to test an MOEA and ensure that these MOPs are testing the MOEA over the

types of problems it is designed for. For example, if a researcher has designed an MOEA

for solving a single MOP, then the MOEA should be tested against other MOPs with

similar characteristics. While the MOPs described up till this point contain relatively low

dimensionality, they are useful for comparing the performance of an MOEA against the

true solution. Other, larger MOPs are describes and used for testing the performance of

the MOMGA-II.

4.3 Deceptive MOPs

An MOEA must identify and manipulate good BB(s) in order to generate PFtrue .

In order to understand the definition of a deceptive MOP used, one must understand the

single objective definitions of deception. In single objective EAs, deceptive functions are

discussed in terms of BBs [74, 75, 77, 78]. A single objective deceptive function is defined

as one in which the global optima is fairly isolated and the local optima is surrounded

by good solutions a hamming distance away [76]. Additionally, the deceptive BB is a

maximum distance away from the BB necessary to find the global optima.

A deceptive MOP is defined as:
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Definition 31 (Deceptive MOP): A deceptive MOP is one in which at least one of

the k objective functions is deceptive. 2

where a single objective function is identified as deceptive if the global optima is fairly

isolated and the local optima is surrounded by good solutions a hamming distance away.

An example of a deceptive maximization MOP is presented. Figure 4.7, generated for

this dissertation, illustrates a deceptive function, Function 2, and a non-deceptive function,

Function 1. The decision variable x is restricted to be an integer and the equations for

this MOP are presented.

f1 =



















0.75− 3
48x x ≤ 12

1− 1
3(xmod12) 12 < x < 15

1 x = 15

(4.1)

f2 =
{

1− 1
15x 0 ≤ x ≤ 15 (4.2)

Graphically, the two objective functions are shown in Figure 4.7 with each plotted

as a single objective problem for ease of illustrating the deceptive function. In function

1, an x-value of 0 contains the deceptive BB that leads to a locally optimal value of 0.75;

however, an x-value of 15 contains the BB that leads to the global optima of 1.0. The

deceptive BB is of order 1 and is represented by the schema *0**. The schema *0** leads

to solutions on the left side of Figure 4.7, solutions that lead to the locally optimal solution

of 0.75, whereas the BB necessary to find the global optima is of order 2, and is the schema

11**. The schema 11** generates solutions on the right side of Figure 4.7, solutions that

lead to the globally optimal solution of 1.0. Since function two is non-deceptive, a BB of

order 1, containing the schema *0** leads to the globally optimal solution of 1.0.

Deb also presents an alternate definition of a deceptive MOP [43]. Prior to discussing

his definition of a deceptive MOP, it is necessary to present Deb’s definition of a local

Pareto optimal set. Deb defines both a local and global Pareto optimal set, where the

global Pareto optimal set is equivalent to Ptrue . The local Pareto optimal set is defined

as [43]:
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Figure 4.7 Pedagogical Deceptive MOP

Definition 32 (Local Pareto Optimal Set:): Given some Pareto optimal set P, if
∀x ∈ P, ¬∃y satisfying ‖ y − x ‖∞ ≤ ε, where ε is a small positive number (in principle,

y is obtained by perturbing x in a small neighborhood), and for which F (y) ¹ F (x), then

the solutions in P constitute a local Pareto optimal set. 2

This implies that if a set of Pknown (t) is perturbed slightly, no new nondominated

points are found [43]. The definition describes the case where the local front is a physical

distance from the true front. The local front is dependent upon the ε selected within which

solutions are perturbed. Too small an ε may result in multiple local fronts being found

and too large an ε prevents the identification of a local Pareto front.

Deb defines the terms multimodality and deception (known single-objective EA is-

sues) in the multiobjective domain [42]. Deb defines a multimodal MOP as one with

multiple local Pareto fronts [42]. This definition is confusing since the term multimodal

is defined with respect to single objective optimization when referring to an optimization

function containing both local and global minima [184].

Deb defines a deceptive MOP as one in which there are at least two optima (PFlocal

and PFtrue ) and where the majority of the search space favors finding points on PFlocal.
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This concept depends on finding PFlocal. If PFlocal does not exist or cannot be found,

based on the ε chosen, Deb would state that the MOP is not deceptive. However, the

existence of PFlocal is inconsequential to the determination if the MOP is deceptive or

not. This determination is based on Definition 31 and the analysis to determine if at least

one of the objective functions is deceptive. As long as this criteria is met, the MOP is

declared deceptive. This is important as finding the deceptive BBs is necessary to finding

the solution to a deceptive MOP. The definition of deception used is consistent with the

single objective definition of deception.

Deb states that an MOEA has a hard time finding points on PFtrue since it gets stuck

in the local optima of PFlocal. Coello Coello et al., state that this may be more an effect

of the discretized genotype space than that of the phenotype [31]. This is possible in many

MOPs when the discretization process causes the global optima to have fewer local optima

near it than another decision variable resolution choice. The issue of discretizing an MOP

illustrates the point made in Section 2.5.1 that the discretization process may change the

shape of the front or increase the difficulty in finding the front. Additionally, a uniform

sampling or discretization of the genotype space does not imply uniform mappings into

phenotype space and hence the resultant phenotype space may have all of the solutions

concentrated in a single area of the space.

4.4 Discrete MOPs

Discrete MOPs have their own characteristics and may require the use of special-

ized operators to solve. MOPs containing discrete points on the Pareto front and those

containing integer based decision variables can present additional challenges for MOEAs

especially when these MOPs are also constrained, as they typically are. The phenotype

space of these MOPs is discrete and offers only isolated points, even though when plotted

the appearance is given of a continuous front. As only a finite number of solutions exist,

only a finite number of corresponding vectors can result.

Nondeterministically polynomial (NP ) problems are those problems that a conjec-

tured answer to the problem can be verified in polynomial time but the problem cannot be

solved in polynomial time [174]. NP -Hard problems are those problems that are at least
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Table 4.3 Possible Multiobjective NP -Complete Functions [31]

NP -Complete Problem Example

Traveling Salesperson Min energy, time, and/or distance; Max ex-
pansion

Coloring Min number of colors, number of each color

Set/Vertex Covering Min total cost, over-covering

Maximum Independent Set (Clique) Max set size; Min geometry

Vehicle Routing Min time, energy, and/or geometry

Scheduling Min time, missed deadlines, waiting time, re-
source use

Layout Min space, overlap, costs

NP -Complete Problem
Combinations Vehicle scheduling and routing

0/1 Knapsack - Bin Packing Max profit; Min weight

as hard as any other problem in NP . NP -Complete problems are those problems that

are NP -Hard and also in NP . Skienna also notes that most NP -Hard problems are also

NP -Complete [174].

An MOP test suite of combinatorial problems to include NP -Complete MOPs is a

useful concept since some real world MOPs are constrained MOPs utilizing integer based

decision variables. Research into solving these NP -Complete MOPs can aid in solving

real-world MOPs containing the same characteristics and a NP -Complete test suite is

useful to the MOEA community. Table 4.3 outlines a subset of the possible NP -Complete

MOPs. Just like other MOPs, NP -Complete MOPs have varying characteristics in their

genotype and phenotype domains that make them interesting and useful test problems.

4.4.1 Modified Multiobjective Knapsack Problem. MOPs with integer based deci-

sion variables are lacking in current test suites and this makes the Modified Multiobjective

Knapsack Problem (MMOKP) a good problem for test suite inclusion. The MMOKP is

modeled off of the single objective knapsack problem [174]. In the single objective knap-

sack problem, a soldier must decide what items to take with him in his knapsack (defined

as a rucksack). The soldier has a rucksack to place the items in, where each item has a

particular weight and value associated with it and the rucksack has a specific capacity. A

value is assigned to each item based on how important it is for the soldier to have that

item with him/her in combat. The objective of the soldier is to maximize the value of the
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items in the rucksack while meeting the constraint that he or she can only carry a certain

amount of weight within the rucksack and that only whole items may be placed within the

rucksack. Dependent on the mission, carrying additional water may be of more value than

carrying additional ammunition. The multiobjective formulation of this problem uses an

arbitrary number of rucksacks where the objective is to maximize the value of each of the

rucksacks simultaneously while meeting the constraints.

The modified multiobjective form of this problem, MMOKP, consists of a similar

formulation with the exception that there are an arbitrary number of rucksacks [215] as

well as associated weights and profits of items with respect to each rucksack. Zitzler refers

to this as the extended 0/1 knapsack problem [215] and states that this formulation has

been previously used by Sakawa [168]. In reality, this is not an extended version of the

knapsack problem as, in the model Zitzler used, each item must be placed into all of the

knapsacks or none of the knapsacks. This is not representative of a true formulation of the

multiobjective knapsack problem as defined in OR texts [159].

The extended multiobjective knapsack problem is renamed the MMOKP MOP, in

this effort, as it does not accurately reflect the traditional multiobjective knapsack problem

formulation. In the traditional multiobjective knapsack problem formulation, an item can

be placed into only one of the knapsacks and cannot be placed into all of the knapsacks.

However the MMOKP formulation constrains each of the items to either be placed into all

of the knapsacks or none of the knapsacks, hence each decision variable is referred to as an

item type. The MMOKP does, however, reflect some real-world optimization problems.

For example, consider the movement of cargo by the military for contingency operations in

different parts of the world. In this scenario, there are multiple tanks, artillery, weapons,

people and other support items that must be moved. Consider the use of the Air Force to

move all of this necessary equipment and personnel for a contingency operation. A number

of aircraft (C-17, C-5, C-130 and C-141) are available and used to move the various item

types (sets of tanks, equipment, groups of people and additional support equipment).

Each of the aircraft have different cargo and fuel storage capabilities as well as different

operating costs associated with the number of pilots, co-pilots, load-masters, and other

associated support personnel required for operation of the aircraft at the destination and
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arrival points. A specific aircraft, the C-17 cargo plane, is selected for movement of the

cargo. Additionally it is important to recognize that all of the C-17s used are not located

at the same departure point and all of the equipment is not located at the same place as

the C-17 used to move the equipment. Therefore, some of the C-17 aircraft are located

closer to the starting location of the cargo than others while other C-17 aircraft may be

located closer to the destination point of the required cargo. Since the cost of operating

each of the aircraft varies greatly as each C-17 is a different distance from the cargo and the

contingency location, each of the associated item types to be moved is assigned a weight

and value associated with placement into a specific aircraft.

The weight of an item type takes into account the weight of the item type, the

amount of fuel required to move the cargo plane from its current location to pick up the

cargo, as well as the weight of the fuel required to move the item type in the respective

aircraft to its associated destination (how much fuel must be expended to move the aircraft

to the cargo location and how much fuel must be expended to move the aircraft to the

contingency location). As the item types and aircraft are all located at different locations,

the movement of an item type requires a different amount of fuel dependent on the aircraft

it is placed in. The method described of defining weights results in a different weight value

for each item type dependent on the aircraft it is placed on. The overall weight of all the

items placed into an aircraft must not exceed the capacity of that aircraft.

The value of an item type represents how integral that item type or group of people

is to the contingency operation along with a measure of the on-time delivery of the item

type. For example, assume that it is extremely important for type 1 tanks to arrive at

the destination by 2300 hours on Tuesday. A type 1 tank placed into aircraft A, which

is destined to complete the cargo movement by 0800 on Tuesday would receive a higher

profit than a type 1 tank placed into aircraft B, which does not arrive at the destination

until 1 week from Tuesday. Since this example problem requires the movement of as much

of each item type as possible, a type 1 tank placed into aircraft A is also placed into all of

the aircraft even if the tanks are delivered late. This constraint is dictated by the fact that

multiple sets of cargo are required at the destination and they must be sent even if they

are received late. Hence one can see that identical items are placed into all of the C-17s

4-17



which are represented as knapsacks in the MMOKP. The objective is to simultaneously

maximize the value of each aircraft while meeting the weight constraints of the aircraft

and the constraint that as much of each item type as possible must be moved. Therefore

it is important to place an item into all or none of the knapsacks.

The objective of the MMOKP is to maximize the value of the item types placed into

each knapsack while simultaneously satisfying the weight constraint of each knapsack. A

commander requests the movement of more item types (items) than can physically fit into

the number of planes (knapsacks) available. Therefore one is attempting to determine the

set of item types that maximize the profit of each of the airplanes. This is just one example

of a potential real-world problem that the MMOKP represents.

In Zitzler’s formulation, a weight and profit exists for each item with respect to the

specific knapsack it is placed into, i.e., item 21 may be better placed in knapsack 1 versus

knapsack 2. The overall goal is to maximize the profit obtained from all of the knapsacks

while meeting the weight constraints imposed on each knapsack, where:

pi,j = profit of item j according to knapsack i,

wi,j = weight of item j according to knapsack i,

ci = capacity of knapsack i

For the MMOKP problem with n knapsacks and m items, the objectives are to maximize

f(x) = (f1(x), ...fn(x)) (4.3)

where

fi(x) =
m
∑

j=1

pi,jxj (4.4)

and where xj = 1 if item j is selected, 0 otherwise [215]. The constraints are:

m
∑

j=1

wi,jxj ≤ ci∀ i (4.5)
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4.5 Real World MOPs

The classification and analysis of real-world, highly-dimensional genotype and pheno-

type MOPs allows for the addition of a real-world MOP to the test suite presented in this

chapter for MOEAs. The usefulness of this test suite is in determining the characteristics

of real-world problems on which an MOEA performs well.

Researchers have conducted a performance analysis of MOEAs utilizing the test

suites currently referenced in the literature and mentioned in the this chapter. The prob-

lem with this approach is that many of these test MOPs are not realistic when compared

to the MOPs encountered in different application areas or in the real-world. A limited test

suite that reflects some of the characteristics of MOPs in varying problem areas would be

beneficial to the community. The selection of the problem areas and highly dimensional

problems would take a thorough analysis of the problem domain aspects and is specific to

the objective of a researcher. If a researcher is interested in solving nonlinear real-world

problems of a specific application, then the researcher should use MOPs that are indicative

of the characteristics of this problem. The classification of every real-world MOP based on

the MOPs’ varying characteristics and complexity of their fitness functions and constraints

is impossible. Too many MOPs exist in the real-world to solve. Some of the application ar-

eas include Unmanned Aerial Vehicle (UAV), Unmanned Combat Aerial Vehicle (UCAV),

Micro Aerial Vehicle (MAV) Routing and Control, Groundwater Problem, Image Com-

pression, Antenna Design, Target Tracking, Advanced Logistics Problem (ALP), MEMs

Applications, and Intrusion Detection.

The work presented is of interest to the Air Force and other organizations. As

stated previously, optimization problems exist in any operational setting. Many of the

applications and methods that are used to complete tasks are not currently solved to an

optimal solution. Generating good solutions to many real-world optimization problems

would benefit a wide variety of organizations including the Air Force. A limited number

of application areas are presented in this section with the mathematical model included to

illustrate the complexity associated with these problems.
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Currently, good solutions have been found to many real-world problems but better

solutions may exist. The difference between the current known good solution and a better

one may be only 1% or may be 50% or more. This can translate to a huge dollar savings

depending on the application or a huge savings in the amount of time it takes to complete

a task.

Defining accurate models of the real-world application of interest is extremely im-

portant. First the level of accuracy or resolution of the solution required must be known

(i.e., how many bits to use to represent a decision variable) or else there is no way to

compare the results that the MOEA finds to other methods. Additionally the model must

be correct and validated in order to ensure the solutions found are feasible and the MOEA

is given an opportunity to find the real solutions at the desired resolution. The complexity

of the model directly effects the execution time (efficiency) of the MOEA, therefore the

least complex model that produces valid results is what must be chosen.

A real-world application, the Advanced Logistics Problem MOP, is selected for in-

clusion in an MOP test suite. A description of the problem domain is provided to aid

the reader in obtaining an understanding of the characteristics of the ALP problem. This

problem is selected as it is a real-world problem with a large number of decision variables,

it is constrained, and it is a discrete MOP. Discrete MOPs are lacking in other proposed

test suites. Since many real-world problems involve the use of discrete decision variables,

this is a good MOP to use in a test suite.

4.5.1 Advanced Logistics Problem (ALP). The Advanced Logistics Problem

(ALP) involves logistics research in resource allocation. ALP is an effort by the Defense

Advanced Research Projects Agency (DARPA) to develop a distributed computing archi-

tecture linking current and future logistics information systems to the crisis action planning

processes [21]. This is the development of a real-time end-to-end system linking operations

and logistics. The goal is to develop a system which gives planners the ability to review

multiple plans in relation to real-time up to date data and effectively choose the best plan

for the situation. Essentially a choice must be made by a commander, given the operational

situation, of which mix of resources is preferred to support the operation.
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A mission ready resource (MRR) is a combination of an asset type and its associated

resources. This includes aircraft, tanks, support personnel and equipment. These resources

are assigned a suitability value for use in a specific plan [199]. An example of an MRR

is a C-130 aircraft. This MRR is available in a number of different configurations, where

each configuration is a MRR type, and the number of times that an MRR can be used in

a given day is also important. This information is used to assign the MRR a suitability

value. A combination ofMRR types is defined to be aMRR set or resource mix. Different

MRR combinations provide different capabilities and suitability values to the commander

as well as require different amounts of lift resources to operate. Two of the objectives of

this problem are to maximize asset suitability and minimize lift consumption [199, 216].

The ALP problem formulation is based on Swartz’s work on the ALP Pilot prob-

lem [180]. The mathematical MOP Formulation is given m tasks and n MRR types, and

the solution set is an m x n matrix. A matrix element is an integer based decision variable,

xi,j , that represents the number of MRRs of type j allocated to task i. Assuming that

each task is satisfied by exactly one MRR, and that no interactions exist between differing

MRR types, then the suitability, S, for all MRRs is defined by [31, 199, 216]:

S =
n
∑

j=1

m
∑

i=1

ai,j xi,j (4.6)

where ai,j is the suitability ofMRR j for Task i and xi,j is the number ofMRRs j allocated

to task type i.

Since the desired capability for a task is set by the decision maker and defined to be

static, Equation (4.7) is an equality constraint. The requirement that all tasks i = 1, . . . , n

must be satisfied at a particular resource level (RL) k is:

n
∑

j=1

xi,j = RLtaskk,i (4.7)

In this application, the decision variables are allowed to take on any non-negative integer

value so long as they do not exceed the specified resource level. Therefore Equation (4.8)

is an inequality constraint. The requirement that all of the MRR types, j = 1, 2, . . . , n,
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do not exceed their available number at a particular resource level k is:

m
∑

i=1

xi,j ≥ RLmrrk,j (4.8)

The maximum number of efforts per day for a particular asset is A and A has P configu-

rations corresponding to P MRR types.

It is difficult to determine what the actual logistical footprint is for a given asset

set [199]. At the very least, it is clear that for each additional asset deployed, there is a

corresponding increase in cost for additional resources such as fuel and supplies. Assum-

ing that consumption is linear and without interaction, the weight consumption, W , and

volume consumption, V , for all MRRs are

W =
n
∑

j=1

m
∑

i=1

βj xi,j (4.9)

and

V =
n
∑

j=1

m
∑

i=1

λj xi,j (4.10)

where βj and λj are the weight and volume consumed by a single MRR j.

The form of the suitability maximizing / lift minimizing MOP with A asset types,

m tasks, n MRR types, at a resource level k, and decision variables (x1,1, xi,j , . . . , xm,n) is

to maximize:

S =
n
∑

j=1

m
∑

i=1

ai,j xi,j (4.11)

minimize:

W =
n
∑

j=1

m
∑

i=1

βj xi,j (4.12)

and minimize:

V =
n
∑

j=1

m
∑

i=1

λj xi,j (4.13)
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subject to:

n
∑

j=1

xi,j = RLtaskk,i for i = 1 . . .m (4.14)

m
∑

i=1

xi,j ≤ RLmrrk,j (4.15)

for A = 1 . . . a and Pa = number MRR types for a

The number of constraints resulting from Equation (4.14) is equal to the number of

tasks. These constraints ensure that the total number of efforts for Task i is exactly the

desired capability at that resource level. The maximum value for any decision variable

is found by using Equation (4.14) and allocating all task capability to one MRR type.

The number of constraints resulting from Equation (4.15) is equal to the number of MRR

types. These constraints ensure that no MRR type can be allocated a number of efforts

that exceeds the given resource level. These constraints are also used when there are

restrictions on the available number of any MRR type, e.g. attrition or changes in asset

turn rate. It is important to note that each constraint refers to a single MRR type.

The specific number of tasks in Table 4.4 and MRR types in Table 4.8, along with

their task suitabilities, are defined. The suitabilities reflect notional but reasonable values

that clearly differentiate theMRR types. The same can be said for the consumption values

in Table 4.8. To keep the number of task capability decisions by the decision maker at

a reasonable level, five resource levels in Table 4.5 are specified, equating to 15 separate

task preference decisions as specified in Wakefield [199]. These preferences are reflected in

Table 4.6. When the ratios are applied to their respective resource level values, the result

is the capability matrix in Table 4.6. The values are rounded to a whole number so that

the sum across tasks is equal to the resource level. The values of the resource levels were

chosen to create solution spaces of increasing size. Given three tasks and five MRR types

and a resource level of 300 efforts per day, the worst case number of possible resource mixes

is approximately 9.72 x 1019. Wakefield’s formulation is such that for the target MOP,

it is assumed that there is no restriction on the available number of any MRR type; no

attrition; and that each asset has one associated MRR type, i.e., one effort per day [199].
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These simplifying assumptions are made to provide an opportunity to explore the solution

and complexity.

Table 4.4 Tasks

Index Nomenclature

1 Air-to-Air (AA)

2 Air-to-Ground (AG)

3 Precision Locating (PL)

Table 4.5 Resource Levels

Index RL (efforts per day)

1 16

2 32

3 75

4 150

5 300

Table 4.6 Desired Task Capability Ratios

Percent to Task

Index AA AG PL

1 60 30 10

2 30 60 10

3 25 60 15

4 20 50 30

5 20 30 50

The complete MOP formulation is as follows: Decision variables - Number of MRR j

assigned to Task i = (x1,1, . . . , xi,j)

Maximize:

S = 0.8x1,1 + 0.3x1,2 + 0.6x1,3 + 0.001x1,4 + 0.001x1,5 (4.16)

+ 0.4x2,1 + 0.8x2,2 + 0.6x2,3 + 0.001x2,4 + 0.001x2,5

+ 0.001x3,1 + 0.001x3,2 + 0.1x3,3 + 0.8x3,4 + 0.4x3,5
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Table 4.7 Desired Capability Matrix

TASK (efforts per day)

Index AA AG PB Decision Space Cardinality

1 10 5 1 630,630

2 10 20 2 159,549,390

3 19 45 11 ≈ 2.56x1012

4 30 75 45 ≈ 1.48x1016

5 60 90 150 ≈ 4.37x1019

Table 4.8 Task Suitability / Lift Consumption Matrix
footnotesize

Task Suitability Lift Consumption

Index MRR Type AA AG PL Weight (Short Tons) Volume (Cubic feet)

1 FA 0.800 0.400 0.001 20.2 1650.0

2 FB 0.300 0.800 0 001 28.5 2475.0

3 FC 0.600 0.600 0.100 35.7 2887.5

4 B1 0.001 0.001 0.800 19.9 1705.0

5 B2 0.001 0.001 0.400 22.5 2200.0

Minimize:

W = 20.2(x1,1 + x2,1 + x3,1) + 28.5(x1,2 + x2,2 + x3,2) (4.17)

+ 35.7(x1,3 + x2,3 + x3,3) + 19.9(x1,4 + x2,4 + x3,4)

+ 22.5(x1,5 + x2,5 + x3,5)

and minimize:

V = 1650(x1,1 + x2,1 + x3,1) + 2475(x1,2 + x2,2 + x3,2) (4.18)

+ 2887.5(x1,3 + x2,3 + x3,3) + 1705(x1,4 + x2,4 + x3,4)

+ 2200(x1,5 + x2,5 + x3,5)
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subject to:

(x1,1, . . . x3,5) ≥ 0 (4.19)

(x1,1, . . . x3,5) ∈ I(integers) (4.20)

x1,1 + x1,2 + x1,3 + x1,4 + x1,5 = RLtaskm,1 (4.21)

x2,1 + x2,2 + x2,3 + x2,4 + x2,5 = RLtaskm,2 (4.22)

x3,1 + x3,2 + x3,3 + x3,4 + x3,5 = RLtaskm,3 (4.23)

x1,1 + x2,1 + x3,1 ≤ RLmrrm,1 (4.24)

x1,2 + x2,2 + x3,2 ≤ RLmrrm,2 (4.25)

x1,3 + x2,3 + x3,3 ≤ RLmrrm,3 (4.26)

x1,4 + x2,4 + x3,4 ≤ RLmrrm,4 (4.27)

x1,5 + x2,5 + x3,5 ≤ RLmrrm,5 (4.28)

where m is the Resource Level index for the current problem.

4.6 Summary

MOPs, their characteristics, and real-world applications are all important to under-

stand. An understanding of these MOPs allows a researcher the ability to evaluate an

MOEA’s performance over a class of problems indicative of those the MOEA is applied

to. This chapter presents constrained, discrete, NP -Complete and real-world MOPs for

inclusion in an MOP test suite. These constrained MOPs are largely missing from existing

test suites. Constrained problems have only recently been considered for testing MOEAs.

A constrained test function generator is included in the MOP test suite. This MOP, MOP-

CT, is formulated in a manner that makes it relatively easy to modify the characteristics

and the difficulty that MOEAs have in attempting to solve this MOP.

Discrete problems are another class of MOP missing from existing MOP test suites.

The MMOKP and ALP problems are both included in the MOP test suite. These problems

are constrained and have a large number of integer based decision variables. Both of these

MOPs are indicative of real-world MOPs. Additionally, a discussion of existing MOP test
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suites and MOP test suite generators is included. The MOPs included in the test suite

presented in this chapter are important. The application of MOEAs to this test suite

can provide good information about the MOP characteristics that yield good results from

various MOEAs.

The use of MOP test suites and metrics aids in understanding the effect that BBs

have on solving MOPs and in defining a level of MOP difficulty based on the types and

sizes of BBs that must be found in order to generate a “good” solution to an MOP. Using

the concept of BBs, one can develop equations to determine the population sizes that

are necessary to obtain “good” solutions for an MOP utilizing a BB-based approach. The

development of an MOEA population sizing equation advances the theoretical contribution

of this work to the MOEA community. This equation must be defined to support and

retain the use of good BBs in the population. MOEA population sizing is discussed in

Chapter VIII. The next chapter discusses the existing MOEA theory and identifies areas in

which the current theoretical development is lacking. Additionally, symbolic formulations

are presented for various MOEA operators.
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V. MOEA Symbolic Formulations

The design of an MOEA and advancement of MOEA theory requires an in-depth under-

standing of the existing theory and background. Previous chapters discuss MOEA termi-

nology and current MOEA theory. In this chapter, symbolic formulations are presented

for MOEA operators. To advance the state of the art and contribute to increasing the effi-

ciency and effectiveness of MOEAs, a researcher must analyze the foundation of MOEAs,

determine what leads to good or bad performance, and develop a clear understanding of

MOEA operators. Currently, there is only a limited amount of published theoretical anal-

ysis of MOEAs, which mostly concentrates on the area of MOEA convergence properties

[85, 163, 167, 184]. The advancement of MOEA theory can yield a better understanding

of how and why MOEAs work and improve their overall performance. A first step to

advance the theory involves the understanding of MOEA operators. To aid researchers in

understanding these operators, symbolic formulations of MOEA operators is presented.

This chapter presents generalized symbolic representations for MOEAs and associ-

ated MOEA operators. The general concepts presented in Chapters II and III are used to

classify MOEAs and present symbolic formulations of their operators. Development of a

symbolic representation for MOEAs is necessary to understand and develop efficient and

effective MOEAs. This chapter presents new symbolic formulations for MOEAs to serve

as a basis for the research conducted and increase the understanding of MOEAs.

5.1 Multiobjective Evolutionary Algorithm Operators

Symbolic formulations of MOEAs and their associated operators are rarely, if at all,

discussed. In order to develop a deeper understanding of MOEAs, the symbolic formula-

tions of MOEAs and a subset of their operators are developed and presented, utilizing the

notation of Bäck [13], Merkle [132], and Van Veldhuizen [184] for consistency and ease of

understanding. The usefulness of symbolic formulations of MOEA operators and algorithm

definitions lies in providing a deeper understanding of the MOEAs. Researchers who un-

derstand the symbology hopefully use it in the design of their MOEAs. The mapping from
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the symbolic notation to the actual MOEA implementation can yield more efficient and

effective MOEAs. The single objective symbolic definitions are presented in Appendix A.

An MOEA’s foremost difference from a single objective EA is the k objectives that

are to be optimized simultaneously. MOEAs typically differ from EAs in their use of a

modified selection mechanism to reflect a Pareto based selection and the use of niching

and crowding mechanisms to obtain a good distribution of points on the Pareto front [44].

All of these issues can result in additional processing requirements.

Recombination, selection, and mutation are the main operators currently used in

MOEAs. Other operators, in addition to the recombination, selection, and mutation op-

erators, may have a substantial effect on the results of the algorithm [46, 48]. Some of the

operators that must be analyzed include secondary population storage schemes, subpop-

ulations, niching mechanisms and mating restrictions. This section presents the symbolic

formulations for each of these operators. A more in-depth description of MOEA operators

is presented in Chapter II, Sections 2.6 through 2.10.

Archiving or storing a secondary population is typical in MOEAs to prevent the loss

of “good” solutions generated throughout the search process. Archiving strategies involve

the process of identifying nondominated points in the current population of each genera-

tion t of an MOEA. A Pareto selection operator is presented in Definition 33. Following

recombination and mutation, the Pareto selection operator is responsible for identifying

the nondominated points that exist in the current population and are members of the set

PFcurrent (t). Pareto selection analyzes the current population of size µ in generation i and

selects the nondominated population members for inclusion in the set PFcurrent (t). The

Tp operator determines which population members are nondominated.

Definition 33 (Pareto Selection):

s(i) : X(i)s × T (I,Rk) −→ T
(

Ω(i)s , Tp
((

Iµ
′(i)+χµ(i)

)

, PFcurrent(t)
))

,

Tp
((

Iµ
′(i)+χµ(i)

)

, PFcurrent(t)
)

=

{~um
∣

∣~um ¹ ~ungiven~um, ~un ∈
(

Iµ
′(i)+χµ(i)

)

} .
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2

One method of storing population members in an archive is to append the nondomi-

nated points from the current generation t, PFcurrent (t), into the archive set. The archive

contains the nondominated points found from the beginning of MOEA execution through

the previous generation t − 1. After appending the population members, one must de-

termine the points in this combined archive that are nondominated. The nondominated

points in the archive are identified as PFknown (t − 1). This process is repeated at the

conclusion of each generation (i.e., PFcurrent (t) ∪ PFknown (t− 1) and Pareto Selection is

applied to this combined intermediate set). Definition 33 illustrates the process of identify-

ing the points that belong in the set PFcurrent (t) for generation t. Subsequently, all of the

points in PFcurrent (t) are combined with the points in PFknown (t− 1) and the combined

set is analyzed to identify the nondominated points. Definition 34 presents the symbolic

formulation for the Pareto front set combination operator (PFSCO).

Definition 34 (Pareto Front Set Combination Operator):

PFO := T
((

PFknown(i− 1)
⋃

PFcurrent(t)
)

, PFknown(t)
)

PFknown(t) :=

{~um
∣

∣~um, ~un ∈
(

PFknown(t− 1)
⋃

PFcurrent(t)
)

, ~um ¹ ~un}

2

The PFSCO combines the known Pareto front through generation t−1, PFknown (t−
1) with the current Pareto front for generation t, PFcurrent (t). The new archive set,

after application of the PFSCO operator, contains only the nondominated members found

through generation t, PFknown (t), and this set becomes the new archive set. The PFSCO

operator can be used for combining any two sets and identifying the points in the combined

set that are nondominated.

At any given point in time, one can analyze the archive to determine the nondomi-

nated points that the MOEA has found through generation t, PFknown (t). Another archiv-

5-3



ing option is to append all of the population members from each generation, P (t) or the

current nondominated points from each generation, PFcurrent (t), into an archive for post-

processing. At the termination of the MOEA, the archive must be analyzed to determine

which of the members are nondominated and belong in the set PFknown . Remember that

the set PFknown contains the best points that the MOEA generated throughout its search

process. This archiving method (post-processing) results in a PFknown set identical to the

previous method of constantly analyzing new population members for inclusion in the

archive.

The difference between the two archiving methods lies in the overall memory re-

quirements of archiving. The post processing method typically requires more memory as

duplicated points as well as dominated points remain in the archive until the termina-

tion of the MOEA. At termination, the duplicate points as well as the dominated points

are removed and the nondominated points are presented in the set, PFknown . Since the

duplicate and dominated points remain in the archive until MOEA termination, this can

take up a substantial amount of memory dependent on the archive size. The archiving

method that continuously removes duplicate and dominated population members from the

archive typically requires less memory as only the nondominated points are present in the

archive at any given time. The two archiving methods described require the same amount

of memory in the situation where every point generated is a nondominated point and du-

plicate points are not found. In this example, both archiving strategies would store the

same number of points in the archive each generation and and use the same amount of

memory resources. Overall, the selection of an archiving method to use is dependent on

the resources available and if a requirement exists for knowledge of PFknown (t) following

each generation as both methods result in an identical solution set, PFknown .

5.2 Subpopulation Based Approaches

In comparison to a single objective EA, the greatest difference between an EA and

an MOEA is the use of multiple fitness functions and a multiobjective selection mechanism

in the MOEA. Multiple options exist for handling the k fitness functions existing in an

MOP formulation. In the simplest case, as in the VEGA of Section 3.1.1.1, an MOEA uses
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multiple subpopulations of individuals. This is a natural evolution from the aggregated

fitness function approach and may be considered a similar type of approach. Each of the k

subpopulations maintain a population of individuals that have high quality fitness values

with respect to one fitness function. In the VEGA, the same number of individuals, j,

of high fitness value for each of the fitness functions, are selected from the results of the

previous generation. These subpopulations are then shuffled, followed by crossover and

mutation and the process repeats. The selection mechanism for this class of algorithms is

modeled off of the VEGA [170]:

Definition 35 (Subpopulation Based Pareto Selection):

s(i) : X(i)s × T (I,Rk) −→ T



Ω(i)s , T





k
⋃

j=1

(

Iµ
′
j
(i)+χµ

(i)
j

)

, Iµ
(i+1)







 ,

where Iµ
′
j
(i)

and Iµ
(i)
j are equal to Iµ

′(i)

k and Iµ
(i)

k , i.e., each of the k subpopulations are of

the same cardinality. 2

One can see that this is almost identical to the single objective selection mechanism. A

single objective elitist (individuals with the highest quality fitness values are chosen first)

selection mechanism is applied k times, where the number of individuals selected for each

fitness function is equal to the offspring population size divided by the number of fitness

functions. All of the selected individuals are subsequently combined and form the next

population, upon which the evolutionary operators are applied.

Disadvantages exist in this approach. A separation of the fitness functions does not

allow for a simultaneous optimization of all of the fitness functions as a Pareto based

approach achieves. Additionally, the survival pressure is only exerted on one dimension

of the k objective functions within each subpopulation. This may lead to the creation of

species within each subpopulation and can yield similar results to optimizing each fitness

function individually and then combining the results [170]. Hence a Pareto based approach

with the use of archiving is recommended for attempting to solve MOPs.
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5.3 Ranking

Rank based fitness assignments were first proposed by Goldberg [74] and have since

been used in a number of MOEAs [61, 64, 66, 68, 92, 176, 213, 183]. In general, this form of

fitness assignment assigns a rank to each individual based on the number of individuals that

dominate it. There are a number of MOEAs that use this method or a slightly modified

method for calculating the ranks. Definition 36 presents a general symbolic formulation for

ranking, in which a rank is assigned to each individual based on the number of individuals

that dominate it, as proposed by Fonseca [64]. This definition can be easily modified to

reflect the slight differences in calculating the rank seen in other MOEAs.

Definition 36 (Rank Assignment): Let am ∈ P (i) where P (i) := {a1(i), a2(i), . . . , aµ(i)} ∈
Iµ

(i)
and m < µ (am is an individual of the current population with fitness vector ~um),

The rank of population member am, present in generation i, is:

Ri(am) =

µi−1
∑

n=1

∣

∣ (~um ¹ ~un)
∣

∣

The rank of am is equal to the cardinality of population members in population Pi that

dominate member am. 2

5.4 Niching Based Approaches

Niching operators have been used in a number of MOEAs [47, 64, 69, 93, 94, 176, 184].

Niching operators are used in an attempt to generate a uniform distribution of points

across the Pareto surface they form. Niching can be integrated with the fitness function in

fitness sharing to penalize solutions that are within a certain distance of each other. The

symbolic formulation for fitness sharing with niching, as used in Horn [93], is presented in

Definition 37.

Definition 37 (Fitness Sharing and Niching): If a and b ∈ P (i) and D(a, b) ≤
σsharei, where D is the genotype or phenotype distance between points a and b, then the
fitness is modified such that Φi(a) = Φi(a) − X and Φi(b) = Φi(b) − X, where X is

determined by the distance D between the two population members. 2
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Typically niching is used in conjunction with the selection operator to aid in obtaining

a good distribution of points along the Pareto surface. A distance metric D is used in order

to determine how far apart population members reside in relation to other population

members. A distance metric can be used in isolation as presented in the fitness sharing

definition, Definition 37, or can be used with a niche count, ni to allow up to a specified

number of solutions to reside in a specific area of the space as used by Horn [94].

Definition 38 (Niche Count): ni is a count of the number of population members

within a portion (niche number i) of a Rn (genotype) or Rk (phenotype) dimensional

space. i.e., A count of the number of population members within a specified portion of the

Pcurrent (t), Pknown , PFcurrent (t), or PFknown space. 2

Use of the niching operator in conjunction with the selection operator restricts which

solutions are allowed to pass to the next generation [94]. Niching based selection is defined

as:

Definition 39 (Niching Based Selection): Two nondominated population members

a and b are considered for niching based selection. The population member assigned the

lowest niche count (min (ni(a), ni(b))) is selected. ni(a) is the niche count of the niche in

which population member a resides. The population member with the lowest niche count is

selected. 2

Definition 39 applies to the genotype or phenotype domains. Niching can also be used

to reduce the size of the final PFknown set that the MOEA generates, in which members

are only added to PFknown if they would enter an uncrowded niche or they have a lower

niche count than at least one member of PFknown . If the cardinality of PFknown is equal to

its maximum size, an element with a larger niche count must be removed from PFknown .

This is useful in conjunction with a fixed size archive and is defined as:

Definition 40 (Niche Based Archiving): Let population member am ∈ Iµ
(i)
having

fitness vector ~um be considered for placement into PFknown . If PFknown is restricted in

size to PFknown max and
∣

∣PFknown

∣

∣ < PFknown max, PFknown = (PFknown
⋃

am); else
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PFknown = (PFknown
⋃

am) iff:

{~um
∣

∣n = {1, . . . , µi}, ~un ∈ PFknown, ~um ¹ ~un}

and:

1. am ∈ of an empty niche OR

2. am is placed into a non-empty niche, N , given ni(a) < max(ni)

and population member b is removed, where ni(b) = max(ni). 2

5.5 Mating Restrictions and Comparison Sets

Restricted mating of MOEA population members is yet another area of interest. The

concept is to restrict the mating between individuals within a population unless they are

“close” enough or “far” enough away from each other with respect to their genotype or

phenotype values [64]. Restricting the mating process creates different “species” within

the population. Horn presented the idea of using a portion of the population, tdom, as

a comparison set [93]. This comparison set is used in cases where the selection operator

must decide between two nondominated individuals. Definition 41 presents this concept.

Definition 41 (Pareto Comparison Set Based Selection): am, aj , {pctdom ⊆
P (i)} ∈ Iµ

(i)
are randomly chosen, where pc is the randomly selected comparison set and

tdom =
∣

∣{pc}
∣

∣ ≤
∣

∣P (i)
∣

∣. If n = {1, . . . , tdom},~an ∈ Iµ
(i)
,

~um ¹ ~un and ~uj ± ~un then select am

Else if

~um ¹ ~un and ~uj ¹ ~un or ~um ± ~un and ~uj ± ~un

Then use Definition 39 to select am or aj 2

Similar mating restriction methods are presented in the literature and discussed in

Coello Coello et al. [31]. Some accomplish this through the use of a grid based structure,
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only allowing mating to occur within some area, while others label the population members

by sex and only allow sexual reproduction to occur.

5.6 Multiobjective Evolutionary Algorithm Formulation

One can present a generalized symbolic formulation for an MOEA once a symbolic

formulation for the operators used in an MOEA is defined. Such a formulation aids re-

searchers in implementing an MOEA correctly by following the predefined description.

Additionally the formulation clarifies any misunderstandings of the MOEA operators.

A generic MOEA formulation is presented, using consistent notation with the EA

formulation presented in Section A.2:

Definition 42 (Multiobjective Evolutionary Algorithm): Let

• I be a non-empty set (the individual space),

• {µ(i)}i∈N a sequence in Z+ (the parent population sizes),

• {µ′(i)}i∈N a sequence in Z+ (the offspring population sizes),

• Φ : I −→ Rk (k fitness functions),

• ι :
⋃∞
i=1(I

µ)(i) −→ {true, false} (the termination criterion),

• χ ∈ {true, false},

• r a sequence {r(i)} of recombination operators
r(i) : X(i)r −→ T

(

Ω
(i)
r , T

(

Iµ
(i)
, Iµ

′(i)
))

,

• m a sequence {m(i)} of mutation operators
m(i) : X(i)m −→ T

(

Ω
(i)
m , T

(

Iµ
′(i)

, Iµ
′(i)
))

,

• s a sequence {s(i)} of selection operators
s(i) : X(i)s × T (I,Rk) −→ T

(

Ω
(i)
s , Tp

((

Iµ
′(i)+χµ(i)

)

, Iµ
(i+1)

))

,

• Θ
(i)
r ∈ X(i)r (the recombination parameters),

• Θ
(i)
m ∈ X(i)m (the mutation parameters), and

• Θ
(i)
s ∈ X(i)s (the selection parameters).
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Then the algorithm shown in Figure 5.1 is called a Multiobjective Evolutionary Algorithm.

2

t := 0;

initialize P (0) := {a1(0), . . . ,aµ(0)} ∈ Iµ(0)
;

while (ι({P (0), . . . , P (t)}) 6= true) do

recombine: P ′(t) := r
(t)

Θ
(t)
r

(P (t));

mutate: P ′′(t) := m
(t)

Θ
(t)
m

(P ′(t));

select:
if χ

then P (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t));

else P (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t) ∪ P (t));
fi

t := t+ 1;
od

Figure 5.1 Multiobjective Evolutionary Algorithm Outline

Definition 42 differs from the single objective definition, Definition 54, in the basic

sense that there are k objectives to be solved and therefore there are k fitness functions.

Additionally, the MOEA selection operator uses the concept of Pareto dominance and

niching to aid in obtaining an even distribution of points across the Pareto front. A

generic formulation of an MOEA aids researchers in understanding the basic structure

of an MOEA. The formulations of each MOEA operator provides for a more in-depth

understanding of MOEAs and their operators.

5.7 Summary

This chapter presents symbolic formulations in the form of definitions of MOEA

operators. These definitions are important and aid researchers in correctly implementing

MOEA operators. A generic MOEA formulation is presented using the definitions de-

veloped earlier in this chapter. The associated definitions aid in developing an in-depth

understanding of MOEA operators and a fuller understanding of the operation of MOEAs.

Once a researcher reaches this level of understanding, he or she has the ”tools” necessary to

develop MOEAs as well as their operators and potentially contribute to advancing MOEA
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theory. The next chapter builds upon the understanding developed through the previous

chapters to develop a new explicit BB-based MOEA. An understanding of the background

information presented is crucial in designing, implementing, and testing MOEAs.
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VI. MOMGA-II Development

The goal of this research effort is to advance the state of the art with respect to explicit BB-

based MOEAs. This goal requires an in-depth understanding of existing explicit BB-based

approaches in order to recognize the advantages and disadvantages of such approaches and

subsequently improve upon them. Two of the objectives of this effort are addressed; The

development of an explicit BB-based MOEA for solving real-world constrained MOPs, and

the demonstration that explicit BB-based MOEAs provide insight into difficult MOPs that

other approaches may not provide.

The first objective can be satisfied either through the use of existing MOEAs or

through the development of an entirely new MOEA. Since many MOEAs exist, choosing

an existing MOEA would be of some utility as most of the coding would already be

completed. Creating a new MOEA from scratch involves possibly re-creating existing code

or implementing new code but has the advantage that inefficiencies in existing approaches

can be addressed and improved upon. The second objective is more difficult to realize and

involves the testing of various MOPs in order to demonstrate that additional insight is be

gained into difficult MOPs through the use of explicit BB-based MOEAs.

6.1 Introduction

Many EAs and one MOEA follow the concepts in the Building Block Hypothe-

sis (BBH) presented in Chapter II. To summarize, the BBH states that BBs exist in

a population of individuals. If an EA (MOEA) can identify the “good” BBs and ma-

nipulate them through the use of Evolutionary Operators (EVOPS), the EA (MOEA)

has an increased probability of generating “good” solutions to the problem. Consider-

able research has been conducted into the explicit identification of BBs in single objective

EAs [36, 77, 78, 111, 132, 142] and recently limited research into their use in MOEAs [184].

These EA and MOEA approaches have shown impressive results and hence conducting ad-

ditional research into explicit BB-based MOEAs is justified.

In order to meet the objectives of this work, an explicit BB-based MOEA must be

used. The only existing explicit BB-based MOEA, the MOMGA, could be used or an
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entirely new MOEA could be created. While the MOMGA has been shown to be effective

across a wide variety of classes of MOPs [184], the execution time and resource requirements

(efficiency) of this MOEA require improvement. Since the efficiency of the MOMGA is not

sufficient to solve large scale real-world MOP applications [184], a new explicit BB-based

MOEA is created, the Multiobjective Messy Genetic Algorithm II (MOMGA-II).

Considering the objectives of this research, the choice was made to develop the

MOMGA-II based upon the concepts and findings from research into the MOMGA. The

MOMGA illustrated effective performance when applied to a variety of classes of pedagog-

ical MOPs but is somewhat lacking in its overall efficiency. In order to achieve the level

of effectiveness of the MOMGA and improved efficiency in the MOMGA-II for application

to real-world MOPs, a thorough literature search revealed a number of possibilities for

obtaining efficiency gains in the MOMGA-II. The SO fmGA [77] is chosen as a template to

use for realizing those efficiency gains. The best concepts of the fmGA and the MOMGA

are incorporated and extended to yield the MOMGA-II. The motivation is to attempt to

solve MOPs of classes similar to real-world, Air Force MOP applications efficiently and

effectively. Using an efficient and effective explicit BB-based MOEA is crucial to meeting

the objectives of this research effort to include solving real-world, Air Force MOP appli-

cations, extending the analysis of explicit BB-based MOEAs as applied to MOPs, and

gaining insight into difficult MOPs.

This chapter is organized as follows: a discussion of the MOMGA is presented in

Section 6.2 to aid the reader’s understanding of the differences between the MOMGA and

the MOMGA-II. A detailed discussion of the MOMGA-II and the design of experiments

follows. The results and analysis of the application of the MOMGA-II to unconstrained

and constrained MOPs as well as real-world MOPs appears in Section 6.5. The MOEA

BB testing is the final topic addressed in this chapter and is presented in Section 6.6.

6.2 Background of the MOMGA

In order to understand the MOMGA-II, its operators, and its implementation, one

must understand the predecessor of this algorithm, the MOMGA. The MOMGA is de-

scribed in Chapter III, Section 3.1.2.1. The MOMGA is an extension of the single objec-
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tive mGA, that explicitly manipulates BBs of a user specified size in constructing “good”

solutions. The MOMGA explicitly creates a population of BBs, containing every possible

BB of the user specified size. Increasing the BB sizes and string lengths in the MOMGA

results in an increase in the initial population size. The main disadvantage of the MOMGA

is the exponentially increasing population sizes required for use as the BB size increases.

This detriment previously prevented the MOMGA from being applied to large, real-world

MOPs. In order to attempt to solve these MOPs, as well as other real-world MOPs, im-

provements over the original MOMGA are a necessity. The fmGA was designed to combat

the large population sizes encountered in the mGA while producing “good” results when

compared with the mGA and other single objective EAs and hence these concepts are of

use in the MOMGA-II [77].

Designing and implementing an efficient and effective explicit BB-based MOEA in-

volves the integration of various concepts from various algorithms as well as new ideas. To

improve on the efficiency of the MOMGA and the fmGA, the code representing the con-

cepts and ideas taken from these approaches was rewritten. In cases where efficient code

existed, the existing code was used. A detailed description of the MOMGA is presented

to explain the background operators used to create the MOMGA-II.

The MOMGA implements a deterministic process to generate an enumeration of

all possible BBs, of a user specified size, for the initial population. This process is re-

ferred to as Partially Enumerative Initialization (PEI). Thus, the MOMGA explicitly

uses these building blocks in combination to attempt to solve for the optimal solutions

in multiobjective problems. While finding the optimal solution is never guaranteed by

an MOEA, the MOMGA statistically finds the optimal solutions or solutions close to the

optimal solutions in phenotype space to the functions presented in our standard MOP test

suite [184, 189, 191, 192]. The pseudocode for the MOMGA is presented in Figure 6.1.

The original messy GA consists of three distinct phases: Initialization Phase, Pri-

mordial Phase, Juxtapositional Phase. The MOMGA uses these concepts and extends

them where necessary to handle k > 1 objective functions. In the initialization phase,

the MOMGA produces all building blocks of a user specified size. The population size

grows exponentially with an increase in the BB size (also referred to as the order of the
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For n = 1 to o
Perform Partially Enumerative Initialization
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)

// Primordial Phase
For i = 1 to Maximum Number of Primordial Generations

Perform Tournament Thresholding Selection
If (Appropriate Number of Generations Accomplished)

Then Reduce Population Size
Endif

End Loop
//Juxtapositional Phase

For i = 1 to Maximum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)
Perform Tournament Thresholding Selection and Fitness Sharing
Pknown(t) = Pcurrent (t) ∪ Pknown(t− 1)

End Loop
Update k Competitive Templates (Using Best Value Known in Each Objective)
End Loop

Figure 6.1 MOMGA Pseudocode

BB), o, as shown in Equation (6.1). This yields a population size determined by Equa-

tion (6.1) [78, 184].

N = Ck

(

l

k

)

(6.1)

In Equation (6.1) N represents the population size, C is the cardinality of the alpha-

bet that is used in the GA (binary C = 2), l is the length in bits of the chromosome and o

is the BB size. The MOMGA uses Equation (6.1) to determine the necessary population

size in order to create every possible BB of size o. At the end of the initialization phase,

the population consists of all of the possible strings of length o, i.e., all of the BBs. Since

the population members are underspecified, a mechanism must exist for determining the

fitness of the partial strings or BBs. To evaluate the fitness of a BB, a competitive template

is used to fill in the unspecified or missing bits, prior to evaluation. This ensures that each

evaluation is of a fully specified string, through the BB alone or in conjunction with the

competitive template if necessary. In extending the mGA, the MOMGA incorporates k

competitive templates, each initially generated randomly, and each later optimized for one

of the respective k objectives.
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The primordial phase performs tournament selection on the population and reduces

the population size if necessary. The population size is adjusted based on the percentage

of “high” fitness BBs that exist. In some cases, the “lower” fitness BBs may be removed

from the population to increase this percentage. In the juxtapositional phase, BBs are

combined through the use of a cut and splice recombination operator. Cut and splice is a

recombination (crossover) operator used with variable string length chromosomes. The cut

and splice operator is used with tournament thresholding selection to generate the next

population. As the MOEA progresses through the generations, the number of specified

bits within the chromosomes increases. With this increase in the number of specified bits

comes a decrease in the dependence on the competitive template. The process continues

for a user specified number of generations to yield strings with high fitness values for each

fitness function. The combination of the three phases produces one era [77, 78]. The

MOMGA continues for the user specified number of eras or BBs. Observe that an epoch

refers to the execution of the algorithm through all of the eras.

The competitive templates are initially created randomly. Following each era, the

best found individual in the population, for each objective function, becomes the new

competitive template for that objective function. The era is incremented and the next BB

size is executed using the same process as described above. A more detailed discussion of

the MOMGA architecture is presented in [184, 190].

One objective of the MOMGA was to illustrate the fact that explicit BB concepts

apply to the multiobjective problem domain. The MOMGA was designed to illustrate

the usefulness of BBs in MOEAs and not necessarily to be a robust algorithm. The

MOMGA lacks generalizations necessary to easily transition between attempting to solve

MOPs of different sizes and decision variable resolutions. In most of the MOMGA code,

the number of fitness functions and decision variables are hard coded into the algorithm.

Hard coding numerous parameters makes it difficult to apply the MOMGA to MOPs of a

different number of decision variables or fitness functions than those coded into the MOEA.

Additionally, the MOMGA has only been applied to unconstrained MOPs and hence does

not contain constraint handling code or feasibility measures. While the data structure of

the MOMGA mirrored that of the mGA, these algorithms were not designed and coded
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with parallelization in mind. Although not an objective of the research into the MOMGA,

parallelization is an objective of this research effort. These factors along with coding errors

present in the mGA/MOMGA motivated a new effort at coding the appropriate operators

present in the MOMGA for use in the MOMGA-II. Existing MOMGA code was utilized

when possible.

6.3 MOMGA-II - Development

The MOMGA has been shown to yield effective performance when applied to a

variety of MOPs and compared to other well-engineered MOEAs [184, 190]. A similar

level of effectiveness is desired in the MOMGA-II with increased efficiency. The results

of the MOMGA-II are compared to the results of the MOMGA in order to validate the

research objectives of this effort. Efficiency improvements over the MOMGA are necessary

to decrease the execution time and system resources required. A thorough description of

the MOMGA-II and its differences from the explicit BB-based MOMGA is presented in

this section.

The main bottleneck in the mGA and the MOMGA is the initialization phase. This

phase requires the enumeration of every possible BB, of user specified size, as denoted in

Equation (6.1). In the original testing of the MOMGA, only two objective function MOPs

were used with bit strings of length 24 and BB sizes one through three. In this config-

uration, the population sizes required to attempt and solve these MOPs were somewhat

manageable but larger than used in most MOEAs, requiring a maximum population size

of 16,192 individuals. Using longer string lengths or larger BB sizes leads to enormous,

unmanageable population sizes that make other EAs and MOEAs more attractive. As

many real-world MOPs require the use of strings longer than 24 bits, the MOMGA is not

a feasible MOEA to use when attempting to solve such MOPs. The fmGA was designed to

remedy the population size issue encountered with the mGA [77]. Integrating some of the

concepts of the fmGA and MOMGA into the MOMGA-II creates an effective and efficient

explicit BB-based MOEA.

A probabilistic approach is used in initializing the population of the fmGA. The ap-

proach is referred to as Probabilistically Complete Initialization (PCI) [77]. PCI initializes
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the population by creating a controlled number of BBs based on the user specified BB

size and string length. The fmGA’s initial population size is smaller than the mGA (and

MOMGA by extension) and grows at a smaller rate as a total enumeration of all BBs of

size o is not necessary. These BBs are then “filtered,” through a Building Block Filtering

(BBF) phase, to probabilistically ensure that all of the desired good BBs from the initial

population are retained in the population. The BBF approach effectively reduces the com-

putational bottlenecks encountered with PEI through reducing the initial population size

required to obtain “good” statistical results. The fmGA concludes by executing a number

of juxtapositional phase generations in which the BBs are recombined to create strings of

potentially better fitness. The pseudocode for the MOMGA-II is presented in Figure 6.2.

For n = 1 to o
Perform Probabilistically Complete Initialization
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)

// Building Block Filtering Phase
For i = 1 to Maximum Number of Building Block Filtering Generations

If (Building Block Filtering Required Based Off of Input Schedule)
Then Perform Building Block Filtering

Else
Perform Tournament Thresholding Selection

Endif
End Loop

//Juxtapositional Phase
For i = 1 to Maximum Number of Juxtapositional Generations

Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)
Perform Tournament Thresholding Selection and Fitness Sharing
Pknown(t) = Pcurrent (t) ∪ Pknown(t− 1)

End Loop
Update k Competitive Templates (Using Best Value Known in Each Objective)
End Loop

Figure 6.2 MOMGA-II Pseudocode

The MOMGA-II mirrors the fmGA and consists of the following phases: Initial-

ization, Building Block Filtering, and Juxtapositional. The MOMGA-II differs from the

MOMGA in the Initialization and Primordial phase, which is referred to as the Building

Block Filtering phase. The initialization phase of the MOMGA-II uses PCI instead of the

PEI implementation used in the MOMGA and randomly creates the initial population.
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The size of the population suggested to obtain “good” results for the fmGA is shown in

Equation (6.2) [77].

n =

(

l
l′

)

(

l−k
l′−k

) ∗ 2c(α) ∗ β2 ∗ (m− 1) ∗ 2k , (6.2)

where l is the total number of genes, l′ is the string length, o is the BB size, c(α) is

used to determine the acceptable amount of error, β2 is the signal to noise ratio, and

m is the number of subfunctions. A detailed description of this equation is presented

in [77]. Equation (6.2) provides a means of determining the initial population size to use

in the fmGA in order to statistically generate the good BBs for the problem being solved.

However the population sizing equation (Equation (6.2)) makes the assumption that the

BBs are independent, and does not apply to MOPs unless the objective functions are

all independent. In this chapter, a much smaller maximum population size is used in the

MOMGA-II as compared to the MOMGA (250 population members for the MOMGA-II as

compared to 16,192 for identical MOPs) to illustrate that the MOMGA-II obtains a similar

level of effectiveness but with greater efficiency than the MOMGA. A smaller population

size requires less system resources and hence is more efficient. Additionally, the evaluation

of fewer population members leads to a reduction in execution time. These statements are

validated through the MOMGA-II results presented in Section 6.5 of this chapter.

In the PCI initialization of the population in the MOMGA-II, all possible BBs of

the user specified size are not created but instead the population is created randomly,

with strings of length l. Fully specified population members are generated in which the

allelic values are randomly selected as well as the positions (loci) to place these values.

The size of the population is specified by the user. Following the generation of the initial

population, the population members are all evaluated with respect to each of the objective

functions in the same manner as the MOMGA. A random choice of one of the k competitive

templates is conducted and overlayed by the bits stored in the population member. This is

completed in order to generate a fully specified individual and conduct fitness evaluations

on that individual. The competitive templates are handled in the same manner as used in

the MOMGA, i.e., they are initially randomly created. After each BB size is executed, the
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MOMGA-II updates each of the templates with the best population member found with

respect to each individual fitness function.

The BBF phase reduces the lengths of the strings generated in the initialization phase

through a systematic process. A user generated filtering schedule specifies the generations

to conduct a random deletion of bits and the number of bits to delete from each chro-

mosome. The schedule also specifies the number of juxtapositional generations to execute

and can be automated by the MOMGA-II. The MOMGA-II uses the filtering schedule rec-

ommended in [77], in which the strings are halved in length with each filtering operation

until they are reduced to the specified BB size. This is but one method to use for the

schedule and has been shown to perform well [77]. Other scheduling methods exist but

an optimal method has not been identified in the literature [108, 132]. The MOMGA-II

does not use a mutation operator directly but the BBF operator can be classified as a

mutation operator. The BBF operator does not randomly choose a string to mutate based

on the probability of mutation, as does a traditional mutation operator. Instead, each

string is filtered (mutated) and hence the probability of mutation can be viewed as 100%.

Since the BBF operation is sufficiently different from the standard concept of mutation,

the probability of mutation of the MOMGA-II is stated as 0%.

The filtering process consists of a random deletion of f bits from each of the pop-

ulation members. Therefore, after the first filtering operation, the strings are reduced in

length from l bits to l− fi bits where fi specifies the number of bits to remove in filtering

step i. Each subsequent filtering operation randomly deletes additional bits. This filtering

typically does not delete the same number of bits with each operation.

The filtering operation is alternated with tournament selection. The purpose of

using a selection mechanism is to yield a competition between the building blocks. This

competition is used to yield a new population containing the best population members

found and hence by extension the best BBs. At the conclusion of the BBF phase, the entire

population consists of individuals of the specified BB length. The population essentially

consists of the best BBs found. The goal of the entire BBF process is to yield a similar

result to the primordial phase of the MOMGA, a population consisting of a sufficient

number of “good” BBs to be recombined in the juxtaposition phase of the algorithm.
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The juxtapositional phase proceeds in the same manner as it did in the MOMGA.

During this phase, the building blocks found through the Initialization phase and BBF

phase are recombined through the use of a cut and splice operator alternated with tourna-

ment selection with thresholding. This process results in a gradual increase in the length of

the population members towards becoming fully specified or having an allelic value stored

in each locus position. The recombination operator is alternated with tournament selection

in order to maintain a population of the best individuals found. Competitive templates

are used to evaluate the fitness values of underspecified population members. In the event

of overspecification, where a loci location has multiple allele values, a scan conducted of

the population member upon which the first value encountered to specify the gene location

becomes the allele value for that gene. As the juxtapositional phase continues, the pop-

ulation members gradually increase in length and are less dependent on the competitive

templates to fill in unspecified alleles.

Following the juxtapositional phase, the BB size is incremented and the population

member with the best fitness value, for each individual fitness function, replaces the respec-

tive competitive template. The MOMGA-II executes all three phases for each BB size and

presents PFknown as the solution set generated. The MOMGA-II can be applied to MOPs

with theoretically any number of decision variables and fitness functions, constrained only

by the system resources of the platform used. The application of the MOMGA-II to

real-world and constrained MOPs is discussed in more detail later in this chapter. The

integration of problem domain information is necessary to effectively generate solutions

to these MOPs. Additionally, constraint handling approaches are integral to finding good

solutions to the constrained MOPs tested.

To evolve the MOMGA-II, the original MOMGA code was used as a guideline.

Whenever possible, existing, logically correct, code from the MOMGA was used in the

MOMGA-II coding; otherwise, new code was written. Considering that the original fmGA

code was unavailable, large portions of the MOMGA-II had to be written from scratch.

The MOMGA-II is written in ANSI C and therefore can be executed on many computing

platforms. Testing of the MOMGA-II was conducted on systems using the Linux operating

system.
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The combination of existing code and new code made non-trivial modifications to the

operation of the MOMGA in the initialization and primordial phases. A sound software

engineering approach was used. This approach involved taking the time to develop a design

process for coding and implementing the MOMGA-II. Additionally, debugging code was

integrated into the MOMGA-II to aid in locating and correcting coding bugs. Since Objec-

tive 5 (see Chapter I) of this research is to analyze parallel concepts as applied to MOEAs,

parallelism was kept in mind during the coding process. Much of the existing MOMGA

code could not be parallelized without considerable modifications to the data structures.

In the coding of the MOMGA-II, data structures were used that support parallelization.

This involved the removal of a linked list data structure and replacement with dynamically

allocated, multidimensional array data structures. Additionally, the MOMGA was coded

explicitly for application to MOPs of low dimensionality in the genotype and phenotype

spaces, use of a maximum of three competitive templates, and application to unconstrained

MOPs only. The MOMGA-II coding process addressed these issues and generalized most

parameters and variables to allow for increased functionality. This included the ability to

easily apply the MOMGA-II to MOPs of any number of decision variables or fitness func-

tions without having to rewrite a substantial portion of the code, the ability to specify any

number of competitive templates, the addition of multiple constraint handling approaches

and many other generalizations that allow for multiple parameter settings constrained only

by the hardware limitations of the computing platform chosen.

Initially code optimization was not addressed but logical correctness and a good

design to provide increased functionality over the MOMGA and fmGA were paramount.

Following the implementation and testing of a working code and the desire for paral-

lelization, code optimization issues were addressed. This is an important fact since a fair

comparison of the MOMGA and MOMGA-II is desired to discuss the differences in effi-

ciency and effectiveness of the two MOEAs. The code optimization issues were addressed

following the comparison of the MOMGA to the MOMGA-II.
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6.4 Design of Experiments

To conduct a thorough evaluation of the performance of any MOEA, a good design

of experiments must be conducted prior to testing the algorithm. Two of the objectives

of this chapter are to develop an efficient explicit BB-based MOEA for solving real-world

applications and real-world Air Force MOPs and to demonstrate that explicit BB-based

MOEAs provide insight into difficult MOPs that otherwise could not be found. These

objectives must be taken into account when conducting the design of experiments.

To make a fair comparison of the results of the MOMGA-II to the MOMGA and

other MOEAs, over a class of MOPs, these algorithms must all be tested over the same

MOPs. In comparing the MOMGA-II to the MOMGA, the objective is to illustrate an

improved efficiency at a similar or better statistical level of effectiveness. Efficiency is used

in the context of system resources and execution time. In comparing the MOMGA-II to

other MOEAs, the objective is to illustrate statistically similar, or better, effectiveness of

the MOMGA-II.

The guidelines suggested by Jackson et al. [97] and Barr, Golden, Kelly, Resende,

and Stewart [16] are used to conduct a good design of experiments. Specifically, the 5

experimentation steps presented by Barr et al. [16] are followed throughout this research

effort to ensure that the experiments and results are meaningful. These steps consists of:

1) Define the goals of the experiment (Chapter I); 2) Choose measures of performance

and factors to explore (Chapter III); 3) Design and execute the experiment (Chapter VI);

4) Analyze the data and draw conclusions (Chapter VI) and 5) Report the experiment’s

results (Chapter VI) [16]. The results are analyzed and statistical tests are used to provide

useful insight into MOMGA-II performance.

The selection of test MOPs for comparing the MOMGA-II to the MOMGA and other

MOEAs, including the MOGA, NSGA, NPGA, SPEA, PAES, and NSGA-II, is a difficult

task. A more in-depth discussion of the possible MOPs to test these algorithms against

is presented in Chapter IV. In the comparison of the MOMGA-II to the MOMGA, the

same MOPs are chosen as were used for testing the MOMGA in Van Veldhuizen’s original

work [184]. These five MOPs were meticulously selected from numerous MOPs existing in
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the literature and represent different classes of MOPs with varying characteristics. While

it is impossible to evaluate the performance of any algorithm over every class of problem,

the selected MOPs have characteristics that are representative of many real-world applica-

tion problems. The genotype and phenotype characteristics vary as well as the structure of

Ptrue and PFtrue , which includes connected and disconnected, concave, convex, and a scal-

able number of decision variables and Pareto curves. These selected MOPs represent both

minimization and maximization functions. Additionally, other researchers have recently

used a subset of these MOPs to evaluate and compare the performance of their MOEAs to

others [29, 43, 46, 116]. Two fitness function MOPs are used for ease of presentation and

to provide critical insight to MOEA performance. The five unconstrained MOPs selected

from Chapter IV are MOP 1, MOP 2, MOP 3, MOP 4, and MOP 6.

In comparison testing of the MOMGA and MOMGA-II, all of the parameter settings

were kept constant across the two algorithms in order to illustrate the improvement in

execution time of the MOMGA-II. These parameter values allow for a fair comparison of the

MOMGA-II to other MOEAs, which were executed with comparable parameter settings.

The parameter settings are discussed in Section 6.5 of this chapter. In order to make

statistically accurate statements about the results of the MOEAs tested, various metrics

must be used. The metrics used are drawn from the discussion presented in Chapter III,

Section 3.2. While numerous metrics exist, a subset of these are selected in order to

evaluate the results of the MOEAs tested. In general, one would like to use metrics that

are computationally feasible to compute, allow for a clear interpretation of the metric

results (are not misleading) and metrics that complement each other in providing the

researcher with a good overall idea of the performance of the MOEA on the tested MOP.

Error ratio, spacing, generational distance, maximum error, hyperarea ratio, ONVGR and

ONVG as well as a visual comparison are selected for use in comparing the MOMGA-II

to the MOMGA results.

The five MOPs used in the comparison testing of the MOMGA-II and MOMGA

represent unconstrained MOPs with varying characteristics. Additional MOPs are selected

to conduct a more thorough analysis of the performance of the MOMGA-II. These MOPs

include constrained, discrete, and real-world MOPs. A constrained MOP, MOP-C1 is used,
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as well as MOP-CT, a constrained test function generator that allows a researcher to modify

parameters and change the characteristics (and difficulty) of the MOP. Four variants of

MOP-CT are tested in order to illustrate the performance of the MOMGA-II across a

variety of constrained problem characteristics. A real-world MOP, the Advanced Logistics

Problem, and the Modified Multiobjective Knapsack Problem are also used to illustrate

the performance of the MOMGA-II as applied to discrete MOPs formulated with a large

number of decision variables. The three metrics used to compare and contrast results for

these MOPs are generational distance, spacing and ONVG as discussed in Chapter III.

These three metrics are selected as they complement each other and provide data that can

clearly indicate MOEA performance. The use of the three selected metrics in conjunction

with a visual analysis of PFknown (compared to PFtrue if possible) provides a clear view of

the performance of the MOMGA-II.

The application of the MOMGA-II to the unconstrained test problems is straight

forward; however, constrained problem solving poses more of a challenge. In the solving

of constrained MOPs, one has multiple options to consider for constraint handling. The

simplest option is to ignore the constraints until MOEA completion and then remove all

of the infeasible population members. This option has the advantage that the constraints

do not need to be continually checked as the MOEA executes. However, the disadvantage

of this approach is that there is no guarantee that the MOEA is going to find any feasible

solutions. In some constrained MOPs, the majority of the search space is infeasible (as

occurs in the ALP MOP) and there is a low probability that feasible solutions are gener-

ated using this approach. Additionally, ignoring the constraints until MOEA completion

requires the researcher to store every population member generated throughout MOEA ex-

ecution. Storing the entire population is required since one does not check the constraints

until MOEA termination and hence all population members must be stored in order to

have a greater probability of generating a feasible solution. This approach can perform

well if the MOEA finds BBs that lead to feasible solutions throughout the search process.

Another option for constraint handling is to penalize the fitness values of infeasible

population members. Penalty approaches are sometimes difficult to implement as a re-

searcher must determine the amount of penalty to apply to infeasible solutions. Repair
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mechanisms are yet another option for attempting to solve constrained MOPs. A repair

mechanism mutates infeasible individuals to generate feasible solutions. This approach

ensures that the population always contains feasible individuals. A repair approach is used

for both of the discrete constrained integer MOPs, the ALP and MMOKP MOPs.

Other researchers have applied their MOEAs to the identical MOPs selected in this

effort for testing. In many cases, these MOEAs have been executed with comparable

parameter settings and in some cases their statistical results have been published. In

cases where statistical results are available, a statistical comparison is made between these

MOEAs and the MOMGA-II. In cases where the same MOPs are used but the statistical

results are not available, a visual comparison is made between the MOMGA-II results and

these MOEAs.

6.5 MOMGA-II Results and Statistical Analysis

Relative comparison performance data for a set of MOEAs and MOPs can be pre-

sented in a number of formats. They include but are not limited to individual line and

bar graphs of metric values illustrating average, median, standard deviation, maximum

and minimum values. Additionally, tables listing explicit values of the metrics or their

averages, compact scatter diagrams, or Pareto fronts and Pareto solutions are effective for

illustrating MOEA performance. In any case, the use of explicit hypothesis testing should

be conducted when possible to enforce the statistical analysis made.

In the analysis of MOEA results, parametric comparisons can be made in situations

where normal distributions of the data exist and other criteria is met. Since the results

obtained in this research effort are not normally distributed and do not meet the criteria

of parametric testing, nonparametric statistical techniques are discussed and used where

applicable. As a wide variety of MOPs are tested in this research effort, situations exist

where statistical comparisons of the MOMGA-II to other MOEAs are warranted. In other

situations, statistical data for the comparison MOEAs is not available but a visualization

of the Pareto front is. In such situations, visual comparisons are made as appropriate. In

cases where real-world, Air Force specific MOPs are tested, that other MOEAs have not
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been applied to, comparison data is not available and hence only the results of the metrics

are presented.

6.5.1 Standard MOP Test Suite Experimental Results. In applying the MOMGA-

II to the unconstrained MOPs, each experiment was executed ten times. Ten data runs

are conducted for the MOMGA-II as the comparison MOEAs were also executed ten times

and this allows for a statistical comparison to be made between the MOEAs. Additionally,

a visual comparisons is made between the MOMGA and MOMGA-II for these MOEAs.

The following sections present the results obtained in applying the MOMGA-II to the five

unconstrained MOPs.

The primary objective of testing the unconstrained MOPs is to illustrate that the

MOMGA-II obtains statistically similar results (or better) than the MOMGA in terms

of effectiveness over the selected metrics. Additionally, it is shown that the MOMGA-

II obtains similar or better effectiveness results as compared to the comparison MOEAs,

and greatly improved timing results over the MOMGA. As Van Veldhuizen previously

compared the results of the MOGA, MOMGA, NPGA, and NSGA to each other, the

analysis presented in this section is concerned with comparing the MOMGA-II to each of

these MOEAs and hence does not cover the other comparisons that can be made between

the remaining MOEAs. The reader is referred to [184] for a more detailed discussion of

these comparisons.

In each of the five MOPs tested, the PFtrue was determined through a total fine-

resolution grid enumeration of the search space. A program was constructed and run on

powerful, high-performance computer systems to find Ptrue and PFtrue for each of the five

MOPs tested [184]. This program conducted a total enumeration of the MOPs’ search space

in order to find the true solution to the MOPs at a 24 bit decision variable computational

resolution.

The results presented reflect the output of each MOEA using the default parameter

values. The statistical comparisons completed are based on the maximum, minimum, me-

dian, average, and standard deviation calculations for each metric. Additionally, advanced

nonparametric statistics, including the Kruskal-Wallis Hypothesis Test and the pairwise
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Wilcoxon Rank Sum Test (MannWhitney Test) are used to illustrate a statistical difference

or indifference between the various MOEA’s sampled results.

The MOMGA-II and MOMGA runs consist of executing each MOEA for 3 eras of 20

generations each. A string length of 24 bits, BB sizes of 1-3, a cut probability of 2% and

a splice probability of 100% are used in the MOMGA and MOMGA-II. The MOMGA-II

differs from the MOMGA by the BBF schedule that dictates the number of generations

that BBF must take place. The MOMGA uses the mGA calculation to determine the

number of primordial generations to execute, while the MOMGA-II always executes 9 gen-

erations of the BBF and tournament selection operations. Hence the MOMGA-II only

executed 11 generations of the juxtapositional phase. The MOMGA on the other hand

executes between 17 and 19 generations of the juxtapositional phase. The number of jux-

tapositional generations executed per MOEA is important to note since the generation

of the solution strings takes place through the cut and splice operation of the juxtaposi-

tional phase. The larger number of juxtapositional generations executed by the MOMGA

favors the MOMGA over the MOMGA-II since it yields a more thorough mixing of the

BBs. However, the MOMGA-II obtains statistically similar results to the MOMGA with

much fewer juxtapositional generations. The results illustrate that the MOMGA-II finds

the same “good” building blocks that the MOMGA finds and does this in less overall

execution time.

The seven metrics used for comparison of the MOGA, MOMGA, MOMGA-II, NPGA,

and NSGA as applied to MOPs 1-6 are error ratio, spacing, generational distance, maxi-

mum error ratio, hyperarea ratio, ONVGR and ONVG. Additional metrics are used beyond

the generational distance, spacing and ONVG metrics suggested for use in Chapter III as

results are available to compare the MOMGA-II and MOMGA with these metrics. It is

desired that the error ratio, generational distance, and maximum error be as close to 0 as

possible to illustrate that the MOEA finds all of the points contained in PFtrue . Finding all

of the points in PFtrue would yield a value of 1 for the hyperarea ratio and ONVGR, hence

the closer these metrics are to a value of 1 versus 0, the larger the number of PFknown points

that also exist in PFtrue . The spacing and ONVG metric are problem dependent and their

measures vary with respect to the spacing between points and cardinality of PFtrue . In
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general, a small distance between points on the front is desired as well as the generation

of a large number of points on the front. The metrics and the rationale for selecting each

of them is discussed in detail in Chapter III.

The results for each of the MOEAs as applied to MOPs 1, 2, 3, 4, and 6 are presented

in Figures 6.3 through 6.9, which illustrate a visual comparison of PFknown and PFtrue .

Figures 6.13 through 6.17 present the metric values calculated for each MOEA applied to

each MOP. The first set of figures, Figures 6.3 through 6.9, represent the combination of

the ten PFknown results found for the MOMGA-II and MOMGA. Figures 6.13 through 6.17

appear at the end of this section and present the metric results of the five MOEAs (on

the x-axis) as applied to the respective MOP selected from the test suites. A dot (.)

denotes the metric value (the y-axis) for each of the ten runs executed per MOEA. Error

bars are overlayed on each MOEA’s data points to illustrate the variance present in the

results. These error bars represent one standard deviation about the mean (µ ± σ). The

abbreviations M-I and M-II denote the MOMGA and MOMGA-II results, respectively.

Details of the MOGA, MOMGA, NPGA, and NSGA are necessary in order to conduct

a fair comparison of the MOMGA-II to these MOEAs. The results for the four comparison

MOEAs are taken from Van Veldhuizen [184]. He states that the error ratio metric may be

misleading as the MOGA and NPGA use a different binary to real-value mapping than the

NSGA and MOMGA (also the MOMGA-II) and are executed on different hardware archi-

tectures. Additionally, the calculation of Ptrue and PFtrue was conducted on a comparable

architecture to that used to execute the NSGA and MOMGA (as well as the MOMGA-II).

This causes subtle differences in the results of the MOGA and NPGA as compared to

the other MOEAs which may in turn manifest itself in an incorrect error ratio for these

MOEAs. This may occur since the MOGA and NPGA are susceptible to different round-

off or truncation errors as they are implemented using different programming languages on

different machine architectures. Van Veldhuizen does not state it, but by extension, the

same truncation problem may effect the generational distance and maximum error ratio

metrics as they require the explicit computation of distances from vectors in PFknown to

PFtrue .
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Statistically, the results of the MOMGA-II are compared to other MOEAs through

the use of maximum, minimum, average, and median results in conjunction with the as-

sociated standard deviation and variances. The statistical results are discussed following

the visual comparisons. Mann-Whitney and Kruskal-Wallis hypothesis testing are used

together to make statistically significant statements about the results of the MOMGA-II.

The combined use of these statistical comparison techniques is integral to the presentation

of meaningful results and analyses of these results.

6.5.1.1 MOP 1 Results. Figure 6.3 illustrates the PFknown set generated by

the MOMGA-II and MOMGA over ten data runs and compared to PFtrue . The MOMGA-

II generates a good distribution of points which covers the entire front. Visually it appears

that the MOMGA-II and MOMGA find all of the solutions in PFtrue and obtain identical

results when compared to each other. The statistical results comparing the effectiveness

of these algorithms is presented in Figure 6.13 and shows slight differences between the

generated values and PFtrue . Statistical data for comparing the NSGA-II and PAES is

unavailable; therefore, a visual comparison between the MOMGA-II and these MOEAs is

made.

Figure 6.4 illustrates the visual results of the NSGA-II and PAES as applied to MOP1

for one data run [46]. The NSGA-II and PAES are executed with similar parameter settings

to the MOMGA-II which allows for a comparison to be conducted. Both the NSGA-II

and PAES are executed with an equivalent population size of 100 for 250 generations.

This favors these MOEAs as the MOMGA-II uses a population size of 250 and only 60

generations. The parameter settings indicate that the NSGA-II and SPEA evaluate more

population members than the MOMGA-II over the course of execution and hence search

more of the space. Since the statistical results are not available, an exact comparison of

the MOEAs cannot be made. However, one can see that the MOMGA-II visually performs

better than both of these MOEAs. Since the MOMGA-II finds a better spread of solutions

across the front and more overall solutions, equivalent or better statistical performance is

expected from the MOMGA-II as compared to the NSGA-II and PAES.
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Figure 6.3 MOP1 PFknown Comparison

The metric values for each MOEA are presented in Figure 6.13. The results of

the MOMGA-II as compared to the MOMGA are favorable. For each metric, with the

exception of the error ratio, the two algorithms obtain results in which the mean and

standard deviations overlap hence illustrating similar statistical performance in terms of

effectiveness. The results of the MOMGA-II generally illustrate better effectiveness over

the remaining MOEAs. The NPGA and NSGA typically only generate one or two solutions

in PFknown each data run, and due to this, the spacing results for these MOEAs must be

discounted. Overall, the MOMGA-II and MOMGA are more effective than the other

MOEAs based on the selected metrics.

While this MOP formulation only uses one decision variable, some MOEAs have

difficulty generating solutions close to PFtrue . The bounds on the decision variable make

MOP 1 difficult for some approaches as the cardinality of PFtrue is small compared to

the overall size of the search space. The MOMGA-II and MOMGA find the good BBs

necessary to generate good solutions to this MOP and the MOMGA-II obtains results

that compare to the effectiveness of the MOMGA.
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Figure 6.4 MOP1 NSGA-II and PAES Results [46]

6.5.1.2 MOP 2 Results. The visual comparison of the Pareto fronts gen-

erated by the MOMGA-II and MOMGA in Figure 6.5 illustrate minor differences in the

lower right section of the front. The results for these two MOEAs are almost identical but

the MOMGA finds a few more points than the MOMGA-II in the lower right section of

the front. Both MOEAs find a good distribution of points across PFknown and these points

appear to be very close if not identical to those in PFtrue and cover the entire front.

Statistically the results comparing the effectiveness of these algorithms is presented in

Figure 6.14. The statistical data illustrates overlapping error bars between metric values

for the MOMGA-II and the MOMGA with the exception of the error ratio, in which

the MOMGA-II obtains better results. These overlapping error bars illustrate similar

performance in terms of the effectiveness of the MOMGA-II and the MOMGA.

The NPGA is the only other MOEA to find solutions contained in PFtrue besides

the MOMGA-II. The spacing results show similar performance between all of the MOEAs

with the exception of the NSGA which does not obtain the same quality of solutions. This

observation also holds for the generational distance metric. The MOGA and NPGA reflect

a smaller variance in the maximum error and hyperarea ratio metrics while the remaining
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Figure 6.5 MOP2 PFknown Comparison

MOEAs all exhibit a somewhat large variance for these metrics. The ONVGR and ONVG

performance of most of the MOEAs is similar with the exception of the NSGA which

consistently generates fewer solutions. The results again illustrate that the MOMGA-II is

as effective as the MOMGA and compares favorably to other MOEAs for MOP 2.

6.5.1.3 MOP 3 Results. MOP 3 is a maximization problem and its as-

sociated Pareto front is disconnected. Visually, Figure 6.6 shows the performance of the

MOMGA-II and MOMGA as appearing identical. However, slight differences are found in

the statistical analysis of the results of each MOEA. The MOMGA-II is effective at finding

a good distribution of points across the front and in generating points that cover the front.

The statistical results are presented in Figure 6.15. The MOGA and NPGA are the

only two MOEAs to find any solutions that are contained in PFtrue . The spacing results

of the MOMGA-II is typically not as good as that realized by the MOGA, MOMGA, and

NPGA. The same observation holds for the generational distance and ONVG metrics in
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Figure 6.6 MOP3 PFknown Comparison

which the MOMGA-II and NSGA do not perform as well as the remaining MOEAs. The

effectiveness of all of the MOEAs when analyzing their maximum error, hyperarea ratio,

and ONVGR is similar. These results indicate that some differences exist among MOEA

results but the MOMGA-II performs favorably as compared to the other MOEAs applied

to MOP 3.

6.5.1.4 MOP 4 Results. The visual comparison of the MOMGA-II to the

MOMGA for MOP 4, shown in Figure 6.7, illustrates little difference between the two

MOEAs. The MOMGA-II appears to find a few additional points on the center section

of the Pareto front over the MOMGA for MOP 4. Overall the MOMGA-II finds a good

distribution of points across the front and covers the entirety of the front.

The NSGA-II and SPEA have both been applied to MOP 4 [46]. The statistical

results of the NSGA-II and SPEA are not available for the metrics used in this research

effort hence only a visual comparison is made of their results. Figure 6.8 illustrates the

results of the NSGA-II and SPEA as applied to MOP 4. This figure shows that the
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Figure 6.7 MOP4 PFknown Comparison

MOMGA-II outperforms the SPEA and appears to obtain a slightly better coverage of the

front than the NSGA-II.

In conducting an analysis of the metric values, Figure 6.16 illustrates that the

MOMGA-II is as effective as the MOMGA and the other comparison MOEAs. The

MOMGA-II and NPGA are the only MOEAs to find solutions contained within PFtrue and

the MOMGA-II obtains more overall points contained in PFtrue . The spacing metric illus-

trates similar performance between the comparison MOEAs with the exception that the

NSGA performs worse. In terms of the generational distance, maximum error, hyperarea

ratio, ONVGR, and ONVG, the NSGA again does not perform as well as the remaining

MOEAs. However, the MOMGA-II and MOMGA exhibit a larger variance in their results

as compared to the MOGA and NPGA. Overall the MOMGA-II and MOMGA results

indicate overlapping error bars and the general trend of similar effectiveness as applied

to MOP 4. Additionally the MOMGA-II performs favorably when compared to the other

MOEAs.
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Figure 6.8 MOP4 NSGA-II and SPEA Results [46]

6.5.1.5 MOP 6 Results. Figure 6.9 illustrates identical performance of the

MOMGA-II when compared visually to the results of the MOMGA. The MOMGA-II is

effective at finding points within PFknown and points that are well distributed and cover

the entire Pareto front.

The statistical results presented in Figure 6.17 support the visual results shown. The

MOMGA-II and MOMGA find a large number of solutions that are elements of PFtrue with

the MOMGA-II finding an overall larger number of solutions in PFtrue . The only other

MOEA to find any solutions contained in PFtrue is the NPGA which only finds a small

number relative to the results of the MOMGA-II. The spacing metric indicates similar

performance among the MOMGA-II, MOGA, and MOMGA, with the remaining MOEAs

not performing as well. The same trend holds for the generational distance, maximum error

and hyperarea ratio. The ONVGR and ONVG results of the MOMGA-II and MOMGA

overlap and are much better than those generated by the other MOEAs. These results

indicate similar effectiveness of the MOMGA-II and MOMGA and a tendency for better

effectiveness of the MOMGA-II as compared to the other MOEAs tested.

The limited statistical results published for the NSGA-II, PAES, and SPEA illustrate

that the MOMGA-II also performs “statistically better” than the NSGA-II, PAES, and

SPEA on MOPs 2, 3, and 4 in terms of the generational distance metric [47]. The NSGA-II

obtains larger mean values than the MOMGA-II does as presented in [47]. Note that the

NSGA-II results are based on a variant of the spacing metric using absolute distance; i.e.,
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p = 1 not 2 thus weighting larger error values (less than one) higher.

G ,
F
∑

i=1

|(di − d)|
|F | (6.3)

6.5.1.6 Standard MOP Test Suite Statistical Analysis. The visual and

statistical results presented indicate that the MOMGA-II is effective at obtaining good

results as applied to the selected MOPs. Additionally, the MOMGA-II yields a similar

effectiveness on the tested MOPs as compared to the MOMGA and the other comparison

MOEAs tested. Since the MOMGA-II was executed with a non-optimized BBF schedule,

the results are impressive. The MOMGA-II has found the known Pareto front in less time

and with fewer initial building blocks to choose from than the MOMGA while maintaining

the same level of effectiveness. The results illustrate that the concepts of PCI and the BBF

process can be extended to the MOP Domain.

The variances of the data results presented in Figures 6.13 through 6.17 for each of

the MOEAs varies, indicating that a normal distribution of results is not present. There-
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fore a nonparametric statistical analysis of the results is necessary. Of the seven metrics

presented, three are of particular interest as discussed in Chapter III. The three metrics

are Generational Distance, Overall Nondominated Vector Generation, and Spacing. These

three metrics are selected for additional analysis through the calculation of nonparametric

statistical values.

The other four metrics, for which data is presented, all have disadvantages that pre-

clude them from further analysis. The error ratio metric requires knowledge of PFtrue and

yields a value other than 0 only if exact solutions that are on PFtrue are found. Error ratio

cannot distinguish between cases where solutions contained in PFknown are very close to

PFtrue versus cases where solutions in PFknown are very far from PFtrue . Therefore the er-

ror ratio metric is not explored in more detail. The maximum Pareto front error measures

the largest distance between vectors in PFknown and their closest corresponding vectors in

PFtrue . This metric can easily mislead a researcher. Case in point, if a single point in

PFknown is quite far from PFtrue , then the overall value for this metric may be poor. This

single point of poor quality drastically effects the value of this metric and can mislead a

researcher. Therefore this metric is not explored further.

The hyperarea metric presents misleading values when used to analyze a Pareto front

that is not convex. Hyperarea measures the area contained under the curve. The Hyperarea

ratio metric was proposed to attempt to correct the problem of applying hyperarea to non-

convex Pareto fronts. This metric is a ratio of the area under PFknown over the area

under PFtrue but still poses problems with non-convex and disconnected Pareto fronts and

hence is not explored further. The overall nondominated vector generation ratio metric

is the ratio of the cardinality of PFknown over the cardinality of PFtrue . This metric is

sensitive to the size of PFtrue and hence is not further analyzed. The remaining metrics,

generational distance, overall nondominated vector generation and spacing are suitable for

further analysis.

The generational distance, overall nondominated vector generation, and spacing met-

rics are selected for further analysis. Since the data is not be normally distributed, para-

metric mean comparisons are not possible; therefore, non-parametric statistical techniques

must be employed. Kruskal-Wallis hypothesis testing is used with α = 0.1 to determine
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if a statistical difference exists between the results of the tested MOEAs. Kruskal-Wallis

testing is useful in comparing the results of multiple MOEAs as no assumption must be

made about the distribution of the data. However, the data samples must be independent,

there must be at least five values from each data set to be compared and the probability

distributions of the data must be continuous in order to use this test [198]. Since these

criteria are satisfied, the Kruskal-Wallis test is used. The null hypothesis, H0, states that

the probability distributions of each of the MOEA results are identical when applied to a

test MOP. The alternate hypothesis, Ha, states that at least two of the MOEA’s probabil-

ity distributions when applied to a test MOP are different. If the p-value obtained from

the Kruskal-Wallis analysis of the data is less than or equal to α (p ≤ α), then the null

hypothesis is rejected. This means that at an α level of 0.1, one is confident that at least

two of the MOEA results are distributed differently.

In order to make a statistical statement as to which of the MOEA results are iden-

tically distributed, one can apply the Mann-Whitney test, sometimes referred to as the

pairwise Wilcoxon rank-sum test. This test allows for pairwise comparisons to be conducted

when the data is not normally distributed. The requirements of the Mann-Whitney test

are that the samples are randomly selected (and are independent) and that the probabil-

ity distributions from which the data is selected are continuous [198]. Since all of these

requirements are met, the Mann-Whitney test can also be used here. In terms of the

Mann-Whitney test, the null hypothesis, H0, states that the distributions of the data from

the two tested MOEAs as applied to the MOP are identical. The alternate hypothesis,

Ha, states that the two data distributions are not identical.

In conducting the Mann-Whitney test, one must also select an α level. Using the

same approach as Van Veldhuizen [184], the Bonferroni technique states that if xWilcoxon

Rank-Sum tests (Mann-Whitney) are performed with an overall α level of significance, then

each individual test can be conducted at a α∗ level of significance [131, 149]. Each individual

test is defined as having a level of significance equal to α∗ = α/x. The null hypothesis

is rejected whenever the p-value obtained is less than or equal to α∗ (p − value ≤ α∗).

Using an overall significance level of α = 0.2 and conducting four Mann-Whitney tests, this

yields α∗ = 0.2/4 = 0.05. Even though there are ten possible pairings, one objective of this
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research is to compare the effectiveness of the MOMGA-II to these other MOEAs, yielding

four pairings. These pairings are: MOMGA-II and MOGA, MOMGA-II and MOMGA,

MOMGA-II and NPGA, and MOMGA-II and NSGA.

The three metrics selected for further statistical investigation, generational distance,

overall nondominated vector generation, and spacing, are presented in a different format,

a bar graph, to highlight the differences among MOEA results. In Figures 6.10, 6.11,

and 6.12, the bars represent the mean metric performance, µ, over 10 data runs with the

standard deviation (1 σ) error bars shown.
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Figure 6.10 Overall Generational Distance Performance

Figure 6.10 presents the generational distance performance of the five MOEAs. The

results of the MOGA, MOMGA, and the MOMGA-II as applied to MOP 6 are present

but are all minute in comparison to the other MOP results. The results of MOP 6 for the

MOGA, MOMGA, and the MOMGA-II are better illustrated in Figure 6.17. The values

for MOP 1 for the NPGA (66) and NSGA (11) are not shown (are off of the graph) so

as to improve the visualization of the difference between the MOMGA-II and the other

MOEAs where smaller values are obtained. Primarily this illustrates that the MOMGA-II
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and MOMGA mean and standard deviations overlap for all of the MOPs tested except

MOP 3. This illustrates that the same level of effectiveness is achieved by the MOMGA-II

and the MOMGA with respect to generational distance.

The results of each MOEA when analyzed with respect to the ONVG metric are

presented in Figure 6.11. A similar trend is illustrated. The MOMGA-II and MOMGA

mean and standard deviations overlap for all of the MOPs tested with the exception of MOP

3. This means that the MOMGA-II and MOMGA obtain the same level of effectiveness

according to the ONVG metric.
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Figure 6.11 Overall ONVG Performance

Figure 6.12 presents the overall MOEA performance with regards to the spacing

metric. The MOMGA-II and MOMGA mean and standard deviations also overlap for all

of the MOPs tested with the exception of MOP 3. This illustrates that the MOMGA-II

and MOMGA obtain the same level of effectiveness for these problems with respect to the

spacing metric.

The results from conducting the Kruskal-Wallis Hypothesis testing for each of the

three selected metrics as applied to the MOEA results for each of the MOPs are presented
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Figure 6.12 Overall Spacing Performance

in Table 6.1. An α level of 0.1 is selected and if p ≤ 0.1, then the null hypothesis is rejected.

The null hypothesis states that with the specified level of confidence, the MOEAs obtain

statistically the same distributions of data results for the given metric and MOP.

Table 6.1 Nonparametric Kruskal-Wallis Results for Standard MOP Test Suite

MOP Kruskal-Wallis p-value for
Gen Dist ONVG Spacing

MOP1 0.0002 0.0008 < 0.0001

MOP2 < 0.0001 < 0.0001 < 0.0001

MOP3 0.0001 < 0.0001 < 0.0001

MOP4 < 0.0001 < 0.0001 < 0.0001

MOP6 < 0.0001 < 0.0001 < 0.0001

Comparing the p-values in Table 6.1 to an α level of 0.1, illustrates that all of the

results presented in the table support rejecting the null hypothesis. This means that in

every MOP tested, at least two of the MOEAs obtain statistically different results. In order

to determine which of the MOEAs obtain statistically the same or different results, the

Mann-Whitney test is applied to every combination of the MOMGA-II and a comparison

MOEA. The results of the Mann-Whitney test are presented in Table 6.2.
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Table 6.2 Nonparametric Mann-Whitney Results for Standard MOP Test Suite

MOP MOEA Pairs Mann Whitney p-value for
Gen Dist ONVG Spacing

MOP1 MOMGA-II - MOGA 0.0355 0.4813 0.0002
MOMGA-II - MOMGA 0.6305 0.6305 0.9118
MOMGA-II - NPGA 0.0015 0.0524 0.0232
MOMGA-II - NSGA 0.0147 0.1051 0.0232

MOP2 MOMGA-II - MOGA < 0.0001 0.0892 0.0068
MOMGA-II - MOMGA 0.7394 0.0288 0.0630
MOMGA-II - NPGA 0.0007 0.3150 0.0630
MOMGA-II - NSGA < 0.0001 < 0.0001 < 0.0001

MOP3 MOMGA-II - MOGA 0.0039 < 0.0001 < 0.0001
MOMGA-II - MOMGA 0.0147 0.0015 0.0010
MOMGA-II - NPGA 0.0005 < 0.0001 < 0.0001
MOMGA-II - NSGA 0.0115 0.2176 0.0089

MOP4 MOMGA-II - MOGA 0.0232 0.0007 0.0010
MOMGA-II - MOMGA 0.9118 0.7394 0.9705
MOMGA-II - NPGA 0.4359 0.0524 0.1051
MOMGA-II - NSGA < 0.0001 < 0.0001 < 0.0001

MOP6 MOMGA-II - MOGA 0.0001 0.0185 0.7394
MOMGA-II - MOMGA 0.2475 0.2475 0.0355
MOMGA-II - NPGA < 0.0001 < 0.0001 < 0.0001
MOMGA-II - NSGA < 0.0001 < 0.0001 < 0.0001

In conducting an analysis of the results presented in Table 6.2, whenever p−value ≤
0.05, then the null hypothesis is rejected. Rejection of the null hypothesis means that

with the specified level of confidence, one rejects the statement that the pair of MOEAs

obtains statistically the same distributions of data applied to the respective MOP. Analysis

of MOP 1 illustrates that the MOMGA-II and the MOMGA obtain statistically the same

results across the three metrics. This statistically reinforces the statement that the two

MOEAs obtain the same level of effectiveness. The MOMGA-II, in most cases obtains

statistically different (better) results than the other MOEAs for MOP 1.

The Mann-Whitney results for MOP 2 reflect the same trend. The MOMGA-II

obtains statistically the same results as the MOMGA for the tested metrics and statistically

different (better) results as compared to the other MOEAs. The results of MOP 3 reflect

a difference in almost every case between the results of the MOMGA-II and all of the

MOEAs. It is noted that the MOMGA-II typically does not perform as well as the other

MOEAs on this MOP. This reflects a difficulty of the MOMGA-II in attempting to solve

MOP 3. The MOMGA-II’s smaller population size as compared to the MOMGA prevents it
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from finding all the good BBs in each data run. A larger population size should correct this

result but was not tested for MOP 3. MOPs 4 and 6 reflect similar results of the Mann-

Whitney testing as do MOPs 1 and 2. The MOMGA-II obtains statistically the same

results as the MOMGA and statistically different (better) results than the other MOEAs

tested. Overall these results show that statistically, over the tested MOPs and metrics

used, the MOMGA-II typically yields the same level of effectiveness as the MOMGA but

with a greatly reduced population size. Additionally, the MOMGA-II typically performs

as well or better than the other comparison MOEAs.

6.5.1.7 Standard MOP Test Suite Timing Results. The previous section

discuss the effectiveness of the MOMGA-II as compared to other MOEAs. Through a

statistical and visual analysis of the results of the tested algorithms, one can see that the

MOMGA-II performs statistically similar to the MOMGA and similar or better than the

selected MOEAs on the selected test MOPs. The results further validate BB concepts in

the multiobjective problem domain. Additionally these results illustrate that the concepts

of the fmGA are applicable to the multiobjective arena and that a similar level of effec-

tiveness can be obtained through their use. Since the MOMGA-II obtains the same level

of effectiveness as the MOMGA for MOPs 1, 2, 4, and 6, the next logical aspect to analyze

is the efficiency and timing of the MOMGA-II.

The MOMGA-II is implemented with a similar data structure to the MOMGA imple-

mentation to allow for a fair comparison between the MOMGA-II and MOMGA without

code optimization. One objective of the MOMGA-II is to develop an efficient and effective

explicit BB-based MOEA. The results show that for the same parameter settings as the

MOMGA, the MOMGA-II is able to obtain similar results to the MOMGA at an improve-

ment of 60.11 to 97.62% of the median or 83.99 to 99.07% of the average execution time

of the MOMGA.

The MOMGA-II and the MOMGA are both executed on the same hardware platform

with the same parameter settings in order to conduct a fair comparison of the timing of the

two MOEAs. The hardware system used is a SUN Ultra 1 Workstation with a 166.67 MHz

CPU and 128 MB of RAM. Table 6.3 presents the maximum, minimum, median, average,
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and standard deviation of the execution times of the MOMGA and MOMGA-II across the

various MOPs tested. Table 6.4 presents the percentage improvement of the maximum,

minimum, median, and average execution times of the MOMGA-II over the MOMGA.

Table 6.3 Timing Comparison (in seconds)

MOMGA

Multiobjective Maximum Minimum Median Average Standard
Problem Time Time Time Time Deviation

MOP1 44.60 1.75 2.80 7.09 13.23
MOP2 168.66 2.43 60.09 64.84 58.14

MOP3 193.79 41.49 55.51 80.39 59.85
MOP4 198.29 3.03 180.26 125.03 83.86

MOP6 241.84 1.69 112.27 120.38 113.32

MOMGA-II

Multiobjective Maximum Minimum Median Average Standard
Problem Time Time Time Time Deviation

MOP1 1.25 1.06 1.12 1.14 0.07
MOP2 1.52 1.38 1.43 1.44 0.04

MOP3 1.49 1.31 1.42 1.41 0.05
MOP4 1.43 1.28 1.36 1.35 0.05

MOP6 1.17 1.02 1.13 1.11 0.05

As can be seen in Tables 6.3 and 6.4, the MOMGA-II executes in much less time than

the MOMGA on the tested MOPs, with a 97.62% or higher median timing improvement

on all but MOP 1 over the MOMGA. The average timing improvement of the MOMGA-II

ranges from 83.99% to 99.07%. The reason for this great improvement in execution time

is that as the size of the BBs increase, the MOMGA must spend more time than the

MOMGA-II in the creation and evaluation of the BBs. The MOMGA-II does not create

every BB but probabilistically creates “good” BBs through the random deletion of bits

from the population members until the correct BB size (string length) is obtained. The

results from Figures 6.10 through 6.12 and Tables 6.1 and 6.2 show that the MOMGA-II

is able to find “good” BBs since the MOMGA-II statistically obtains similar results to the

MOMGA over the tested MOPs.

To further analyze the execution time results obtained, the Mann-Whitney test is

used to statistically state that the MOMGA-II and MOMGA timing results are distributed

identically or not. The null hypothesis, H0, states that the distributions of the data from

the two tested MOEAs as applied to the MOP are identical. The alternate hypothesis, Ha,

states that the two data distributions are not identical. In comparing the timing results
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Table 6.4 MOMGA-II Execution Time Improvement Over MOMGA

Multiobjective Maximum Minimum Median Average
Problem Time % Time % Time % Time %

MOP1 97.20 39.43 60.11 83.99
MOP2 99.10 43.21 97.62 97.78

MOP3 99.23 96.84 97.45 98.25
MOP4 99.28 57.76 99.25 98.92

MOP6 99.52 39.64 99.00 99.07

of the two MOEAs, α is selected to be 0.10 and one rejects the null hypothesis whenever

p − value ≤ α. The p-values presented in Table 6.5 are calculated for the average timing

comparison of the MOMGA-II and the MOMGA.

Table 6.5 Nonparametric Mann-Whitney Results for Standard MOP Test Suite Timing

MOP MOEA Pairs p-value for Average Timing

MOP1 MOMGA-II - MOMGA < 0.0001
MOP2 MOMGA-II - MOMGA < 0.0001
MOP3 MOMGA-II - MOMGA < 0.0001
MOP4 MOMGA-II - MOMGA < 0.0001
MOP6 MOMGA-II - MOMGA < 0.0001

Since each of the p-values is less than an α value of 0.10, one can state with confidence

that the null hypothesis is rejected and the MOMGA-II and MOMGA have statistically

different distributions of timing data. The same is true of the comparison of the max, min,

and median timing values. It is shown here, with statistical confidence that the MOMGA-

II obtains a similar level of effectiveness as the MOMGA and obtains statistically better

execution times than the MOMGA over the same MOPs.

6.5.1.8 Standard MOP Test Suite Summary. Through the testing pre-

sented, the MOMGA-II has been shown to be more efficient in terms of execution time

and just as effective as the MOMGA. The MOMGA-II results illustrate a huge improve-

ment in the execution time of the MOMGA-II over the MOMGA ranging from an average

improvement of 84% to 99% when applied to a limited MOP test suite. This execution

time improvement results from the MOMGA-II’s use of the PCI initialization of the pop-

ulation which does not have the computation bottlenecks imposed by PEI used in the

MOMGA and the advantages that the BBF phase introduces. Additional focus on input
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parameters may yield better performance results as the testing completed used a generic

test parameter value set that favors the MOMGA.

Mann-Whitney paired tests of the MOMGA-II and the MOMGA illustrate no statis-

tical difference in the results of the two MOEAs. The results indicate that the MOMGA-II

is an effective explicit BB-based MOEA. These results indicate that the objective of de-

signing and implementing an efficient explicit BB-based MOEA for solving MOPs is met.

The MOMGA-II is the only known efficient and effective explicit BB-based MOEA to exist.

The subsequent sections test the MOMGA-II in more detail to reinforce this statement.
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Figure 6.13 MOMGA MOP1 Metrics
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Figure 6.14 MOMGA MOP2 Metrics
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Figure 6.15 MOMGA MOP3 Metrics
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Figure 6.16 MOMGA MOP4 Metrics
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Figure 6.17 MOMGA MOP6 Metrics
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6.5.2 Constrained MOP Test Suite Experimental Results. Applying MOEAs to

attempt to solve constrained MOPs is an important research area to address. Many real-

world MOPs are constrained and improving the performance of an MOEA as applied to

constrained MOPs is of high interest to MOEA researchers. Two constrained MOPs are

selected from Chapter IV in order to evaluate the performance of the MOMGA-II when

applied to a limited constrained MOP test suite. Specifically, MOP-C1 and MOP-CT

are selected for testing. Each of these constrained MOPs has varying characteristics that

make it a good test MOP. MOP-C1 is a two fitness function constrained MOP, containing

a single convex Pareto front. MOP-CT is a tunable constrained MOP based off of the

Tanaka MOP [182]. MOP-CT is a modified formulation of the Tanaka MOP, in which

the MOP formulation contains variables that are used to change the characteristics of the

problem. A researcher can actively modify the constraint parameters of MOP-CT which

results in a change to the characteristics of the Pareto front. Modifying the constraint

parameters effects the cardinality and shape of the Pareto front, as well as the size and

shape of the feasible region. In essence this results in many possible test MOPs that can

be generated from MOP-CT.

6.5.2.1 MOP-C1 Results. The results of the MOMGA and MOMGA-II

as applied to the constrained test function MOP-C1 are presented in Table 6.6. Values

indicate that the MOMGA and MOMGA-II obtain statistically equivalent results for the

generational distance metric. Additionally, the Mann-Whitney test implies similar dis-

tributions using this metric. The generational distance metric is important since it is a

measure of how close PFknown is to PFtrue for each MOEA. The other two metrics, spac-

ing and ONVG illustrate that the MOMGA generates more potential solutions and hence

obtains a more uniform distribution of the points along the Pareto front as compared to

the MOMGA-II. Statistically the MOMGA results are different and slightly better than

the MOMGA-II. As stated in Section 6.5 of this chapter, the better performance of the

MOMGA is attributed to the increased number of juxtapositional generations that the

MOMGA executes. The execution of additional juxtapositional generations results in an

increased mixing of the BBs found. Additionally, the MOMGA uses a much larger popu-

lation size than the MOMGA-II. The results indicate that the MOMGA-II does not find
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all of the required good BBs or mix the BBs enough to generate the same number of

solutions as the MOMGA. Increasing the population size (but maintaining a population

smaller than the MOMGA) and increasing the number of juxtapositional generations of

the MOMGA-II should yield an increased performance comparable to the MOMGA as

applied to MOP-C1.

Table 6.6 Constrained MOP

Cardinality

MOEA Maximum Minimum Median Average Stand Dev

MOMGA 1823.00 805.00 1529.00 1418.90 346.60
MOMGA-II 443.00 347.00 396.50 398.00 32.73

Spacing

MOEA Maximum Minimum Median Average Stand Dev

MOMGA 0.2825 0.1150 0.1509 0.1717 0.0600
MOMGA-II 0.8666 0.5392 0.7182 0.7007 0.1048

Generational Distance

MOEA Maximum Minimum Median Average Stand Dev

MOMGA 0.0232 0.0096 0.0140 0.0149 0.0042
MOMGA-II 0.0250 0.0138 0.0190 0.0193 0.0035

Increasing the number of juxtapositional generations allows the MOMGA-II to more

effectively search the space for feasible solutions to this MOP. The results generated by

the MOMGA-II are based off of the same generic parameter set used in testing MOPs 1,

2, 3, 4, and 6. The results presented illustrate that the MOMGA-II obtains good results

that are close to the true solution set for a constrained MOP.

6.5.2.2 MOP-CT Results. MOP-CT is selected for testing due to the MOP

formulation that allows a researcher the ability to easily change the characteristics of the

MOP solution set. Four different variants of MOP-CT, described in Chapter IV, are

tested. Since other MOEAs have not been applied to the variants of MOP-CT presented,

the results of the MOMGA-II are only compared to the true solution, PFtrue .

The four variants of MOP-CT selected for testing are (summarized from Chapter IV):

1. Standard Tanaka phenotype with a = .1 and b = 16. The Pareto front represents 5

disconnected curves and is symmetric about the line x = y. (Figure 4.1)

2. Smaller continuous phenotype regions with a = .1 and b = 32 with larger infeasible

regions between Pareto front points as compared to the standard settings. The
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Pareto front represents 8 disconnected curves and is symmetric about the line x = y.

(Figure 4.2)

3. Increased distance between Pareto front regions with, a = .1(x2 + y2 + 5xy) and

b = 32 with deeper infeasible regions between Pareto front points as compared to

the standard settings. The Pareto front represents 16 disconnected curves (some are

individual points) and is symmetric about the line x = y. (Figure 4.5)

4. Increased distance between Pareto front regions with, a = .1(x2 + y2 + 5xy) and

b = 8(x2+y2) with deeper non-periodic infeasible regions between Pareto front points

as compared to the standard settings. The Pareto front represents 6 disconnected

curves (some are individual points) and is not symmetric about the line x = y.

(Figure 4.6)
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Figure 6.18 MOP-CT, a = .1, b =
16, PFtrue vs PFknown
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Figure 6.19 MOP-CT, a = .1, b =
32, PFtrue vs PFknown
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Figure 6.20 MOP-CT, a =
.1(x2 + y2 + 5xy), b = 32,PFtrue vs
PFknown
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Figure 6.21 MOP-CT,
a = .1(x2+y2+5xy), b = 8(x2+y2),
PFtrue vs PFknown
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The results of the MOMGA-II, PFknown , are visually compared to PFtrue in Fig-

ures 6.18 through 6.21. The same parameter settings is used in the application of the

MOMGA-II to MOP-CT variants as described in Section 6.5.1 of this chapter. The param-

eter set is not optimized and illustrates that the MOMGA-II can generate good solutions

to a somewhat difficult constrained MOP without optimizing the parameters. Generating

solutions that are within a local area of the true solutions is useful in order to determine

the general structure of the Pareto front and optimize MOEA parameter settings based on

the structure and characteristics of the Pareto front. Generating solutions within a local

area of the true solutions allows a researcher the ability to isolate the areas of interest for

further exploration.

The results from the first formulation of MOP-CT are presented in Figure 6.18. The

MOMGA-II generates many of the solutions in PFtrue and obtains a good distribution of

points across the front. However, the center section of the PFtrue is not covered as well as

the rest of the true Pareto front. The center section is identified in Chapter IV, Section 4.2

as being a more difficult area of the front for an MOEA to generate solutions. The difficulty

in generating solutions on the center of PFtrue is partly due to the slope of the true Pareto

front approaching 0 in this area.

The results from the second formulation of MOP-CT are presented in Figure 6.19.

The second formulation of the MOP-CT MOP is a more difficult problem for an MOEA as

PFtrue is partitioned into multiple disconnected regions and a large infeasible region exists.

The MOMGA-II obtains better results applied to this formulation of MOP-CT than the

previous MOP formulation. The MOMGA-II also generates points on each disconnected

portion of the front except the two center sections thereby obtaining a good estimate of

the true Pareto front.

The MOMGA-II is also applied to a more difficult formulation of MOP-CT, pre-

sented in Figure 6.20. The third instantiation of MOP-CT has an increased distance

between points on the true Pareto front and a larger infeasible region as compared to the

first two formulations of this problem. The MOMGA-II generates solutions that are close

to PFtrue but has an increased difficulty in generating solutions on PFtrue . This is at-

tributed to the larger infeasible regions existing between points in PFtrue and the difficulty
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associated with generating discrete Pareto fronts versus those forming a curve or surface.

However, the MOMGA-II again generates a good estimate of PFtrue . Again the center

portion of the front poses difficult for the MOMGA-II. Possibly the use of larger BB sizes

would improve the effectiveness.

The last tested formulation of MOP-CT is presented in Figure 6.21. The last problem

formulation is the most difficult of the four tested. The difficulty is due to the disconnected

Pareto front regions, the large non-uniform infeasible regions between Pareto front solu-

tions, and the non-symmetric characteristic of the front. The MOMGA-II performs well

when applied to this problem, generating solutions on each disconnected region of the front

with the exception of the discrete points on the true Pareto front. Again the MOMGA-II

obtains a good estimate of the true Pareto front.

6.5.2.3 Constrained MOP Test Suite Summary. The results of the ap-

plication of the MOMGA-II to both MOP-C1 and MOP-CT illustrate the robustness of

the MOMGA-II in generating solutions that are a good estimate of PFtrue . The results

are obtained from using a generic set of parameter values in testing the MOMGA-II. The

constrained MOPs tested have varying characteristics in their genotype and phenotype

spaces that make them good test MOPs and may be representative of other MOPs that

researchers are interested in attempting to solve. The MOMGA-II generates good results

and most of the points generated are on or very close to points in PFtrue . The visual

presentation of PFknown illustrates that the MOMGA-II also obtains a good distribution

of points across PFtrue and accurately reflects the overall structure of the true Pareto front.

Overall the MOMGA-II performs well when applied to a limited set of constrained MOPs.

6.5.3 Real-World MOP Test Suite Experimental Results. The objective of many

MOEA researchers is to develop an efficient and effective MOEA for application to real-

world MOPs. The previous sections of this chapter present experiments and analyses

illustrating the efficiency and effectiveness of the MOMGA-II when applied to a limited

test suite. In this section, the MOMGA-II is applied to a real-world and an NP -Complete

constrained MOP formulated with a much larger number of decision variables.

6-46



In order to further test the effectiveness of the MOMGA-II, two MOPs indicative

of some real-world MOPs are selected from Chapter IV for testing. The Advanced Logis-

tics Problem (ALP) and the Modified Multiobjective Knapsack Problem (MMOKP) are

selected and tested. Each of these MOPs are constrained and are difficult problems for

an MOEA to solve. The ALP and MMOKP problems are formulated with integer based

decision variables. The ALP problem has strict equality constraints and the MMOKP

problem has inequality constraints. The results of the MOMGA-II are compared to the

true Pareto front in the smallest instantiation of the ALP MOP. A limited number of

MOEA researchers have applied MOEAs to the MMOKP MOP.

6.5.3.1 Advanced Logistics Problem Results. The ALP MOP, discussed in

detail in Chapter IV, is a real-world Air Force MOP selected for testing. The ALP problem

is a constrained, integer based, discrete MOP in which the feasible space is greatly reduced

through strict equality constraints present in the MOP formulation. Two instantiations of

the ALP MOP are tested; the 60 bit and 120 bit formulations. The difference in the two

ALP formulations lies in the range of decision variable values and the constraints used (as

detailed in Chapter IV). The number of feasible solutions present in the 60 bit version is

630, 630 out of a total 260 possible points found through an enumeration of the space. The

true Pareto front is generated through a total enumeration of the search space. Generating

PFtrue is useful for evaluating the performance of the MOMGA-II. One can see that the

number of feasible points in the 60 bit formulation is 5.47 ∗ 10−11% of the total solution

space. Problems formulated in a manner in which the feasible space is an extremely small

percentage of the overall space are typically difficult MOPs for MOEAs to solve without

the use of some type of constraint handling approach.

The application of an MOEA to a class of MOP containing few feasible points creates

difficulties that an MOEA must surpass in order to generate any feasible points throughout

the search process. A random initialization of an MOEA’s population may not generate

any feasible points in a constrained MOP. Without any feasible solutions in the popula-

tion, one must question whether or not the MOEA can even conduct a worthwhile search.

In problems where the feasible region is greatly restricted, it may be impossible to create
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a complete initial population of feasible solutions randomly. Without feasible population

members, any MOEA is destined to fail. Feasible population members contain the BBs

necessary to generate good solutions. It is possible for an infeasible population member to

contain a BB that is also present in a feasible solution. As it is also possible for mutation

to generate a feasible population member from a infeasible population member. However,

typically feasible population members contain BBs that are not present in infeasible pop-

ulation members. EVOPs applied to feasible members tend to yield better results than

EVOPs applied to infeasible population members. Therefore, it is critical to initialize and

maintain a population of feasible individuals. For example, in the initial application of the

MOMGA-II to the ALP MOP, the initial population yielded 0 feasible members across 30

data runs and in turn 0 feasible members were generated throughout the entire MOMGA-

II execution. In each of the 30 data runs, the parameter settings included a population

size of 900, BB sizes 1-4, 40 generations per BB size, cut probability of 2%, splice prob-

ability of 100%, and the remaining standard settings for the MOMGA-II. This illustrates

the motivation for maintaining a population of feasible individuals.

In general MOEA researchers have not experimented with or studied constrained

MOPs in much detail even though many real-world MOPs are constrained. One of the

issues that must be addressed in applying an MOEA to a constrained MOP is in the

selection of a constraint handling mechanism. The details of many constraint handling

mechanisms are discussed in Chapter II, Section 2.8. It is important to note that the

best constraint handling approach is problem dependent. Two methods that are used in

applying the MOMGA-II to highly dimensional MOPs include: the removal of infeasible

population members and the repair of infeasible population members.

The removal of infeasible members is a poor choice of a constraint handling approach

in MOP formulations consisting of a greatly restricted feasible region. In such MOP

formulations, the majority of the space is infeasible and hence a random generation of the

population typically yields few to no feasible members. Remember that the MOMGA-

II explicitly manipulates BBs and must identify good BBs in the population in order to

effectively generate good potential solutions to an MOP. Therefore, a large percentage,

if not all, of the randomly generated initial population of the MOMGA-II must contain
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feasible population members to yields good population members. The random generation

of a single feasible solution could take a considerable amount of time and hence removal

of infeasible members is not a practical constraint handling approach in MOPs with small

feasible regions.

In some MOPs the MOP formulation and the constraints allow for the use of a

repair mechanism. Repairing population members involves mutating the decision variables

in order to generate a feasible population members. Repairing population members may be

the best constraint handling method for MOPs with small feasible regions and containing

integer based decision variables. The ALP and MMOKP are constrained MOPs formulated

with integer based decision variables and hence are candidates for the use of a repair

operator.

The multiobjective advanced logistics problem (MOP-ALP) is concerned with allo-

cating appropriate resources for use in various tasks [199]. The ALP MOP is summarized

in this section but is discussed in detail in Chapter IV, Section 4.5. In the ALP MOP,

resources are categorized into different package types and are assigned to various tasks.

Resources are distinguished by their suitability towards tasks (0 ≤ α ≤ 1), weight consump-

tion (β), and volume consumption (λ). The objectives are to maximize overall suitability

while minimizing weight and volume consumption. The ALP MOP formulation, consist-

ing of: A asset types, m tasks, n MRR types, at a resource level k, and decision variables

(x1,1, xi,j , . . . , xm,n), where x is restricted to an integer value, requires a researcher to

maximize:

S =

n
∑

j=1

m
∑

i=1

ai,j xi,j , (6.4)

minimize:

W =
n
∑

j=1

m
∑

i=1

βj xi,j , (6.5)

and minimize:

V =
n
∑

j=1

m
∑

i=1

λj xi,j . (6.6)
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Subject to:

n
∑

j=1

xi,j = RLtaskk,i for i = 1 . . .m , (6.7)

m
∑

i=1

xi,j ≤ RLmrrk,j , (6.8)

for A = 1 . . . a and Pa = number MRR types for a,

where ai,j is the suitability of MRR j for Task i and xi,j is the number of MRRs j allocated

to task type i.

The equality constraints directly influence the length of the bit string as the con-

straints represent the largest integer value that any decision variable can take. In the

smallest formulation of the ALP MOP tested, the constraints (RLtaskk,i) are set to 10,

5, and 1. The constraints are discussed in more detail in Chapter II, Section 2.8 and

each constraint represents the linear summation of five different decision variables. The

constraint values result in decision variables of 4 bits in length since 4 bits are required to

represent the largest possible decision variable value of 10. Hence an overall string length of

60 bits is required. The largest instantiation of the MOP ALP tested defines the constraint

(RLtaskk,i) values as 60, 90, and 150. The constraint values result in decision variables of

8 bits in length since 8 bits are required to represent the largest possible decision variable

value of 150. Hence an overall string length of 120 bits is required. The 60 bit instantiation

of the ALP MOP is completely enumerated for testing purposes in order to compare the

results of the MOMGA-II to the true solution to the MOP.

Initially, the application of the MOMGA-II to the ALP MOP did not integrate a

constraint handling mechanism. The advantage of this approach is that computational

power is not expended to check the constraints after each population member evaluation.

The disadvantage of not using a constraint handling approach is apparent once an MOP

with a small feasible region is encountered. As discussed, the random generation of the

initial population typically yields few feasible population members in MOPs with small

feasible regions. Without the use of a constraint handling approach the MOMGA-II,

which uses an elitist selection mechanism, promotes population members that have the
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best fitness values regardless of their feasibility. Hence, the MOMGA-II attempts to solve

the MOP with the best feasible or infeasible BBs generated. In reality, the MOMGA-II

attempts to solve the unconstrained MOP formulation and applies the constraints during

post-processing. If the true Pareto front for both the unconstrained and constrained MOP

formulations are relatively close together, then such a post-processing constraint handling

approach can generate good solutions. In other cases, as exists in the ALP MOP, post-

processing the constraints does not yield any feasible solutions. This is attributed to the

small feasible region and the inability of the MOMGA-II to generate good feasible BBs

from the infeasible population members.

In unconstrained optimization, good BBs are defined by Definition 10 (see Chapter II,

Section 2.5.2). However, in constrained optimization the definition of a feasible BB is

different from that of a good BB. In the context of constrained optimization, a feasible BB

is defined as:

Definition 43 (Feasible Building Block): A feasible multiobjective BB contains a

combination of gene values (alleles) that are located in distinct but not necessarily adjacent

locations (loci) and hence meets the requirements of Definition 1. There exists a set of

alleles for the loci not specified in the BB that yields a feasible population member with

respect to the constraints of the MOP formulation. 2

A feasible BB in the MOMGA-II is a BB that when combined with one of the

competitive templates yields a feasible population member for evaluation. It is important

to note that a feasible BB may become infeasible if a different competitive template or set

of allelic values is used to evaluate the BB. This manifests itself in the execution of the

MOMGA-II. A BB that is feasible in one iteration of the MOMGA-II may be infeasible in

another iteration if a different competitive template is used. A strict feasible BB is defined

as:

Definition 44 (Strict Feasible Building Block): A strict feasible multiobjective

BB contains a combination of gene values (alleles) that are located in distinct but not

necessarily adjacent locations (loci) and hence meets the requirements of Definition 1. To

be classified as a strict feasible BB, the combination of the strict feasible BB with every
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possible set of alleles for the loci not specified must yield a feasible population member with

respect to the constraints of the MOP formulation. 2

A strict feasible BB may not exist for every MOP formulation.

Without the use of a constraint handling approach, the MOMGA-II’s initial popula-

tion contains no feasible population members in application to the ALP MOP. An infeasible

population is a poor starting point for the MOMGA-II as it uses good BBs to generate

good results. The MOMGA-II and many other MOEAs were designed using the concept of

the BBH. Hence, these MOEAs assume that good BBs are present in the initial population

and in later generations. A population of infeasible solutions contains no feasible BBs and

may not lead to the generation of any feasible population members over MOEA execution.

A constraint handling method is necessary to generate feasible population members and

good results for the ALP MOP.

The integration of a constraint handling approach into the MOMGA-II requires some

thought. Considering that the two constrained MOPs of interest, the ALP and MMOKP

MOPs, are discrete MOPs formulated with integer based decision variables and linear

constraints, a repair mechanism is implemented. Since the constraints are linear and the

decision variables are integer based, it is relatively easy to repair population members in

an MOP of this type. A repair mechanism is used in the form of a mutation operator that

mutates a population member until it is feasible.

There are many locations within the MOMGA-II that a repair operator can be in-

tegrated. Specifically a repair operator may be used in any or all of the three phases

(initialization, BBF and juxtapositional) of the MOMGA-II. Each of the phases are dis-

cussed in detail along with the rationale for using a repair operator within each phase.

The initialization and BBF phases of the MOMGA-II require feasible BBs to be present in

order to increase the probability of generating good feasible solutions. If feasible BBs are

not present within the first two phases then the BBF process is wasted. The BBF phase

does not identify feasible BBs for the MOMGA-II to generate feasible solutions of high

quality. Therefore, the initialization and BBF phases should maintain a feasible popula-
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tion in order for the MOMGA-II to effectively identify the good BBs and generate good

feasible results.

Another factor that must not be overlooked in the MOMGA-II is the feasibility of the

competitive templates. Even if the assumption is made that a feasible template is used, the

combination of the competitive template and feasible or infeasible BBs is not guaranteed

to yield a feasible population member. Therefore a BB that is feasible with respect to

template A in generation t may not be feasible with respect to template B in generation

t+ 1. It is important to recognize that the competitive template has a large effect on the

population when a large number of loci in the population members are unspecified. As

the strings increase in length, in the juxtapositional phase, the competitive template has a

lesser effect as more bits become specified in each of the population members. Maintaining

a feasible competitive template does not guarantee a feasible population is generated and

hence a repair operator is used to ensure feasible potential solutions are generated. During

the juxtapositional phase, the BBs identified in the BBF phase are combined. Again the

potential exists for the feasible BBs to be combined in a manner that yields an infeasible

population member. A repair mechanism is also implemented in the juxtapositional phase.

To avoid the potential of generating few feasible solutions, the simple post-constraint

handling method was deemed inappropriate as well as the method suggested by Deb [46,

50]. The approach used in the MOMGA-II’s application to the ALP MOP does not rely

on constraint handling being coupled with the selection mechanism but instead relies on a

repair mechanism. The use of a repair mechanism allows the algorithm to proceed without

modification to the existing selection routines.

To improve upon the effectiveness of the MOMGA-II as applied to the ALP MOP

and generate feasible solutions, a constraint handling mechanism is used. The initialization

of the population and the competitive template is a key issue in the effectiveness of the

MOMGA-II. In the initialization phase, the population of the MOMGA-II and the com-

petitive templates are randomly created. The random initialization is used in an attempt

to uniformly distribute the population members across the search space. A uniform distri-

bution of the population across the search space increases the diversity of the population in

an attempt to identify multiple good BBs that are also feasible. Immediately following the
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random initialization, the population and competitive templates are repaired. The repair

ensures that the MOMGA-II starts with a feasible population and templates for use in the

BBF phase.

The repair mechanism implemented in the MOMGA-II assumes an application to an

MOP formulated with integer based decision variables and linear constraints as is the ALP

problem. The following procedure is used to repair the population members as applied to

the ALP MOP:

1. Combine the population member with a competitive template if necessary.

2. Randomly choose a locus position to start the repair.

3. Randomly choose a direction to move within the string (left or right).

4. Analyze each decision variable. A single bit or combination of bits represents each

decision variable.

5. Proceed to scan the bit string in the specified direction and increment or decrement

each decision variable by one unit until each constraint is met and the population

member is feasible. If the end of the string is reached prior to achieving feasibility,

loop back around to opposite end of the string and continue the repair process until

the feasibility criteria is achieved. Maintain the decision variable constraints and

ensure that each decision variable value is non-negative.

The random repair method described has processing overhead associated with it.

The repeated feasibility analysis requires additional processing power but is necessary in

order to maintain a feasible population. The advantage of random repair method is in the

resulting uniform movement across the search space as the decision variables are modified

one at a time. The population member is repeatedly scanned and repairs to prevent a

single decision variable from being incremented or decremented by a huge amount in the

repair process. A large change to one decision variable causes a large movement in one

direction of the search space, while a uniform modification of the decision variables yields

more of a local search to find the nearest feasible solution.
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Once the repair mechanism terminates, all of the population members are feasible

prior to entering the next generation. The population members are repaired prior to enter-

ing the BBF phase and during each juxtapositional generation. An analysis of the initial

results of the MOMGA-II illustrate that without the repair method, the infeasible results

are somewhat close to the feasible solutions in phenotype space. Hence the repair mecha-

nism is only used in the initialization and juxtapositional phases. The repair mechanism is

not used after each BBF operation in order to determine if the MOMGA-II could generate

effective results without the additional overhead added by the repair process in the BBF

phase.

As each generation of the juxtapositional phase executes, the population members

are repaired. The population members are not repaired after each specific cut-and-splice

operation in order to avoid convergence to a suboptimal solution and reduce the overhead

associated with the numerous recombinations that take place within a single generation.

However, at the end of each generation of the juxtapositional phase, all of the population

members are repaired. The population is stored to an external archive to ensure that

the feasible population members generated by the MOMGA-II are not lost. The next

juxtapositional generation begins with feasible population members and the process repeats

itself. Once termination criteria for the MOMGA-II is met, the results are presented to

the researcher. At the conclusion of execution of the three phases of the MOMGA-II, all

of the population members are feasible and the competitive templates are updated for the

next BB execution. The repair process ensures that subsequent BB size executions begins

with feasible competitive templates.

Prior to the implementation of the repair mechanism, the MOMGA-II generated 0

feasible solutions throughout its normal execution. Utilizing a method of throwing away all

of the infeasible solutions and continuously generating solutions until a feasible one is found

yielded 0 feasible solutions over the course of numerous randomly generated population

members. Therefore a repair mechanism was implemented to fix infeasible solutions and

give the MOMGA-II the good BBs necessary to find good solutions.

The ALP MOP (see Chapter IV, Section 4.5 for a detailed description of this MOP)

has three objectives and yields a discrete PFtrue set. The ALP MOP is a maximization
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and minimization function consisting of 15 decision variables, 3 fitness functions and strict

equality constraints. The feasible genotype space and phenotype solution spaces are dis-

crete and are illustrated by the shaded area in Figure 6.22, where the (*)s represent PFtrue .

Figure 6.22 MOP-ALP Discrete 3D Integer Search Space

The results of the MOMGA-II with the repair mechanism as applied to the ALPMOP

are presented in Figure 6.23. The true Pareto front, PFtrue , is represented by (*)s and

the known Pareto front, PFknown , generated by the MOMGA-II is represented with (4)s.

One can see that the MOMGA-II with the repair mechanism generates all of the points

in PFtrue ! This illustrates how useful a repair mechanism is when applied to constrained

MOPs formulated with integer based decision variables leading to small feasible regions in

the space. Since the MOMGA-II always generates PFtrue , no statistical data is presented.

It is apparent that all of the metrics yield their optimal value when applied to the results

of the MOMGA-II application to the ALP MOP. In essence the generational distance is 0,

the ONVG is 26 and the spacing metric value is identical for PFknown and PFtrue , which

constitutes the best results one can achieve for the ALP MOP. No other known MOEAs

have been applied to the ALP MOP and hence the MOMGA-II results are only compared

to the true solution.

6-56



−14
−12

−10
−8

−6
−4

−2
0

310
320

330
340

350
360

370
2.6

2.7

2.8

2.9

3

3.1

x 104

Function 1

MOP−ALP Pareto Front

Function 2

Fu
nc

tio
n 

3

Figure 6.23 True Pareto Front Versus MOMGA-II Pareto Front

Figure 6.23 presents PFtrue and PFknown results for the smallest (60 bit) instantiation

of the problem. The results of applying the MOMGA-II to the largest instantiation (120

bit) of the ALP MOP is presented in Figure 6.24. Since the larger formulation of the

ALP MOP is too large to determine what PFtrue is within a reasonable amount of time,

only PFknown for the MOMGA-II is presented. Again we see that the MOMGA-II clearly

finds a Pareto front of the same structure as that in Figure 6.23. This PFknown solution

set is anticipated to contain most of the points in PFtrue as it has a similar structure and

characteristics of the true solution to the 60 bit problem. Additionally, the MOMGA-II

finds a “good” distribution of points across PFknown . This reinforces the usefulness of the

repair mechanism applied to a discrete MOP.

All the decision variables can only take on a finite number of integer values in this

MOP, hence, the resulting fitness landscape also can only take on a finite number of values

(although very large). Of course a particular MOEA such as the MOMGA-II may generate

infeasible values, but they can be appropriately repaired; i.e., becoming a feasible potential

solution. Assuming that in finite time all finite values in the fitness landscape are generated

by the MOMGA-II operators with repair, along with nondominated selection continually

moving points toward the Pareto front, proper convergence to the complete Pareto front
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Figure 6.24 MOMGA-II Pareto Front - Expanded Problem

occurs. Note that the Pareto front consists of only a finite number of points for this class

of integer problem. Observe that the MOMGA-II applied to the ALP MOP reflects this

phenomena.

6.5.3.2 Modified Multiobjective Knapsack Problem (MMOKP). The MOMGA-

II is applied to another constrained integer based decision variable MOP, the MMOKP

MOP. The MMOKP MOP formulation contains a large number of decision variables.

MOEAs are suited to attempt and solve problems of high dimensionality and hence the

MOMGA-II is suited for application to the MMOKP [148]. The MMOKP is formu-

lated in 100, 250, 500, and 750 item formulations with integer based decision variables

and real-valued fitness functions. A more detailed description of the MMOKP MOP

is presented in Chapter IV, Section 4.4.1. While the MMOKP MOP formulation used

does not reflect the true multiobjective formulation of the knapsack problem [148] due

to the constraint that any item placed into one of the knapsacks must also be placed

into all of the knapsacks, the MMOKP MOP remains a good test problem due to the

large number of decision variables and the difficulty associated with generating solutions

on the Pareto front. Many MOEA researchers have selected this MOP to test their

MOEAs [99, 100, 112, 123, 168, 207, 211, 213, 215]. The MMOKP MOP has been se-
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Table 6.7 MOMGA-II Parameter Values for MMOKP

Parameter Value

Eras 10

BB Sizes 1-10

Pcut 2%

Psplice 100%

string length 100, 250, 500, 750

Total Generations 100

lected for testing due to the difficulty of MOEA approaches in finding good solutions to

this problem and to evaluate the performance of an explicit BB-based MOEA approach as

applied to this MOP. Since the MMOKP MOP has similar characteristics to other MOPs

and real-world MOPs, it is a good test problem to use.

The results of the MOMGA-II as applied to the MMOKP MOP using the default

parameter settings for the MOMGA-II are presented. The MMOKP problem specific

settings used are presented in Table 6.7. The MOMGA-II results are taken over 30 data

runs in order to compare the results of the MOMGA-II to other MOEAs also executed

over 30 data runs. The MOMGA-II was run on a SUN Ultra 10 with a single 440 MHz

processor, 1024 MB of RAM, and using the Solaris 8 operating system.

The MMOKP is a modification of the of the Multiobjective Knapsack problem

(MOKP) and is a difficult problem for an MOEA to solve [100, 215]. The MMOKP has

similar characteristics to certain real-world logistics problems and is discussed in detail in

Chapter IV, Section 4.4.1. The overall goal is to maximize the profit obtained from each

of the knapsacks simultaneously while meeting the weight constraints imposed. The MOP

formulation follows for m items and n knapsacks , where

pi,j = profit of item j according to knapsack i,

wi,j = weight of item j according to knapsack i,

ci = capacity of knapsack i

For the MMOKP problem with n knapsacks and m items, the objectives are to maximize

f(x) = (f1(x), ...fn(x)) (6.9)
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where

fi(x) =
m
∑

j=1

pi,jxj (6.10)

and where xj = 1 if item j is selected, 0 otherwise [215]. The constraints are:

m
∑

j=1

wi,jxj ≤ ci∀ i (6.11)

where xj = 1 if item j is selected, 0 otherwise. The MMOKP has similar characteristics

to those of the ALP problem described in the last section. Both the MMOKP and ALP

MOPs are formulated with a large number of decision variables, the decision variables are

integer based, and the constraints are linear. Since the MMOKP and ALP MOPs have

similar characteristics, one may expect similar issues to arise as compared to the ALP

testing. In fact, the application of the MOMGA-II to the MMOKP problem illustrates

that initially the similar performance was obtained as compared to the results of the ALP

MOP. In the initial application of the MOMGA-II to the MMOKP MOP, a constraint

handling approach was not used and the MOMGA-II generated few feasible solutions,

entirely of inferior quality when compared to the results of other MOEAs. The initial

results necessitating the use of a repair mechanism in order to provide the MOMGA-II an

increased probability of identifying good BBs in the population.

The constraints on the MMOKP MOP are formulated such that an item placed into

or removed from a knapsack must be placed into or removed from all of the knapsacks and

the other constraint is that the weight of each knapsack must not exceed the capacity of

the knapsack (see Chapter IV, Section 4.4.1). For example, in a 2 knapsack instantiation

of the MMOKP MOP, if the capacity constraint of knapsack 1 is exceeded but the capacity

constraint of knapsack 2 is met, at least one item must be removed from both knapsacks

until the capacity constraint is met for knapsack 1.

An analysis of the initial results of the MOMGA-II illustrate that without the re-

pair method, the infeasible results generated are far away from the feasible solutions in

phenotype space. This is a different result than was realized from the application of the

MOMGA-II to the ALP MOP. Hence the repair mechanism is also used in all three phases
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of execution. The population members are repaired following the random initialization of

the population, during the BBF phase and during the juxtapositional phase. Addition-

ally, the competitive templates are repaired prior to use. The population members are

not repaired after each specific cut-and-splice operation of the juxtapositional phase in

order to avoid convergence to a suboptimal solution and reduce the overhead associated

with the numerous recombinations that take place within a single generation. However,

at the end of each generation of the juxtapositional phase, all of the population members

are repaired. The population is stored to an external archive to ensure that the feasible

population members generated by the MOMGA-II are not lost. The next juxtapositional

generation begins with feasible population members and the process repeats itself. Once

termination criteria for the MOMGA-II is met, the results are presented to the researcher.

At the conclusion of execution of the three phases of the MOMGA-II, all of the population

members are feasible and the competitive templates are updated for the next BB execu-

tion. The repair process ensures that subsequent BB size executions begins with feasible

competitive templates.

The initial repair mechanism selected for use is identical to the repair mechanism

used in the application of the MOMGA-II to the ALP MOP. To summarize, the repair

mechanism randomly chooses a bit position and a direction to scan the bit string. After

the choices of position and direction are made, if a constraint is violated, items are removed

from the knapsacks until the weight constraint for each knapsack is met. The items are

removed one by one as the string is scanned bit by bit until the constraints are met. While

the random repair method performed well for the ALP problem, in the application of

the MOMGA-II to the MMOKP MOP the performance of the ransom repair is not very

good. The results of the random repair are of lesser quality than those obtained from other

MOEAs. Other repair mechanisms that incorporate problem domain knowledge must be

considered in order to obtain effective results.

Since other researchers have attempted to solve the MMOKP, one must consider

whether or not other repair approaches may have merit. Zitzler and Thiele [215] proposed

a greedy approach that is an extension of a single objective repair mechanism used by

Michalewicz and Arabas [139]. In this multiobjective greedy repair approach, items are
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removed from the knapsacks based on their profit to weight (ptw) ratio. Remember that

each item has an associated profit and weight with respect to the knapsack the item is

placed into. If the knapsack capacity is exceeded, then items of lowest profit to weight

ratio with respect to the knapsack constraint that is violated are removed first. The profit

to weight ratio is defined in Equation (6.12).

ptwi,j =
pi,j
wi,j

(6.12)

Zitzler et al., state that this repair method performs well when used in their MOEA,

the SPEA. Initial testing of this method applied to the MOMGA-II was not as successful

and hence a different way of repairing the population members became necessary. Since

the MOMGA-II’s operators are substantially different from the SPEA operators and the

process it follows, it is accepted that a method that performs well when implemented in one

MOEA may not perform well when implemented in other MOEAs per the NFL Theorem.

Considering that an item placed into one knapsack must be placed into every knap-

sack in the MMOKP formulation tested, and that each item yields a different profit to

weight ratio based on the knapsack it is placed into, there may be a more effective method

of implementing the repair. Zitzler’s repair mechanism is a simple approach to extending

a single objective repair mechanism to a multiobjective repair mechanism. The problem

is that Zitzler’s repair assumes that all of the constraints are violated, which may not be

the case [215].

A potentially better repair mechanism for use in the MOMGA-II removes items from

the knapsacks based only on the knapsack constraint that is violated. If only the knapsack

1 constraint is violated, then the ptw ratio of each item based on knapsack 1 is compared.

For example, assume that two knapsacks are used and knapsack 1 violates the constraint.

It is possible that item 1 has a ptw1,1 (item 1 placed into knapsack 1) of 12 but a ptw2,1

(item 1 placed into knapsack 2) of 4 and item 2 has a ptw1,2 of 6 and a ptw2,2 of 9.

Using Zitzler’s ptw in Equation (6.12), item 1 would be the first to be removed as it has a

lower overall ptw ratio but only knapsack 1 violates the constraint. Hence item 2 should

be removed first using the proposed repair mechanism as item 2 has the lowest ptw for
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knapsack 1. In cases where the number of constraint violations is greater than 1 but less

than n, the repair mechanism randomly selects a knapsack that has a constraint violation

and repairs the population member with respect to that knapsack. If all knapsacks violate

the constraint, then Equation (6.12) is used to repair the knapsacks. The proposed repair

method better reflects the multiobjective nature of the MMOKP MOP. However in testing

this method in the MOMGA-II, the new proposed repair method tends to obtain slightly

better results in some cases than Zitzler’s method but overall the performance is similar

to that obtained with Zitzler’s repair mechanism.

Another researcher recently has proposed a new approach to repairing population

members when using the MMOKP formulation presented in this chapter [100]. In Jaszkiewicz’s

approach, used in the IMMOGLS MOEA, the ptw ratio of an item takes into account the

multiple objectives in a better manner than the other mentioned approaches. Only one

ptw ratio is calculated per item, but the ptw ratio takes into account all j knapsacks un-

like the previously mentioned methods that calculate a ptw ratio per item, per knapsack.

Jaszkiewicz’s method sums up the profits over all of the knapsacks and sums up the weight

over all of the knapsacks for a single item. The ptw ratio is calculated by determining the

ration of the sums and is presented in Equation (6.13).

ptwj =

∑

i pi,j
∑

iwi,j
(6.13)

Jaszkiewicz’s repair method yields the best performance when used in the MOMGA-

II. All of the results presented for the MOMGA-II in this chapter use Jaszkiewicz’s repair

method. The improved performance of Jaszkiewicz’s repair method over other repair meth-

ods (applied to the MMOKP using the MOMGA-II) is attributed to a better calculation

of the lowest ptw ratio that more accurately takes into account all of the knapsacks simul-

taneously. The MOMGA-II is applied to the 100 item, 2 knapsack; 250 item, 2 knapsack;

500 item, 2 knapsack; and 750 item, 2 knapsack MMOKP presented in Zitzler [215].

Any proposed change to an MOEA should be tested in order to determine if it

performs logically correct and to determine if the effect of the change is worthwhile or

as anticipated. The effect of the repair method selected (Jaszkiewicz’s repair method),
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as applied to the initial population of a single run of the MOMGA-II, is illustrated in

Figure 6.25. The black (.)s represent the results of applying the repair mechanism to the

infeasible population members. Any feasible population members are not repaired and

hence the black (.)s only represent the members that are repaired. One can see that the

repaired population members have fitness values that are lower than the initial population

members since the repair mechanism removes item types from the knapsack if a constraint

is violated. Hence the repaired members move towards the lower left portion of the figure

as item types are removed from their knapsacks and hence the fitness values of these

repaired members are decremented. Such a result is what one would expect occurs after

repairing the population and this validates that the repair mechanism performs correctly.

The repaired members are all feasible, there are feasible BBs in the population, and the

MOMGA-II can proceed to the BBF phase with feasible BBs present in the population.

This type of comparison should always be done by researchers attempting to improve the

performance of their MOEAs. It is crucial to validate the performance of a repair operator.
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Figure 6.25 Initial Population for 100 Item 2 Knapsack MMOKP

Prior to execution of the MMOKP tests, a modification to the MOMGA-II is com-

pleted to increase the selection pressure. The MOMGA-II uses an elitist selection mech-

anism in which the current Pareto front is passed from one generation to the next each
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time that selection occurs. This mechanism is used in the testing presented in this chap-

ter and performs well. The elitist method used maintains PFcurrent in the population

from generation to generation but does not guarantee that a member from PFknown is not

destroyed or removed from the population during a particular generation. Instead, the

nondominated members are stored to an external archive each generation and if nondomi-

nated at the conclusion of MOEA execution, appear in the final PFknown set. Maintaining

PFcurrent through the selection mechanism is anticipated to increase the effectiveness of the

MOMGA-II as the good BBs present in PFcurrent remain in the population. In order to

increase the selection pressure of the MOMGA-II and increase the convergence to a good

solution set, this elitist scheme is implemented for the MMOKP. The elitist selection mech-

anism selects all of the population members that are elements of PFcurrent to be placed in

the next generation. If the population is not full, additional members are selected through

the use of an elitist based tournament selection mechanism that selects two individuals at

random to compete against each other. The tournament selection process repeats until

the required population size is achieved.

This new elitist routine is expected to increase the effectiveness of the MOMGA-II.

The results of this elitist scheme are presented in Figure 6.26 as (*)s, and the results of

the normal tournament selection without elitism scheme is represented by (.)s. In the 100

item, 2 knapsack MMOKP, a slight improvement is noted in the results of this new elitist

selection scheme. Since an improvement is realized in the limited testing and anticipated

to improve performance, all of the MMOKP tests use this new elitist selection mechanism.

In comparison testing of the MOMGA-II to another MOEA applied to the MMOKP,

the SPEA is selected for comparison. The data results of the SPEA are available and

hence allow a comparison between the two MOEAs to be conducted. Figure 6.27 presents

a graphical representation of the results of the SPEA and the MOMGA-II as applied to

the smallest instantiation of the MMOKP. The (4)s represent the results (PFknown set)

of the MOMGA-II and the (.)s represent the results (PFknown set) of the SPEA. A small

difference exists between the results of the MOMGA-II as compared to the SPEA. The

MOMGA-II obtains a limited number of points that dominate those the SPEA generates
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Figure 6.26 Elitist 100 Item 2 Knapsack MMOKP

and vice versa, but overall both algorithms generate numerous identical points. The SPEA

appears to obtain a few points that dominate the MOMGA-II results in the upper left end

of the Pareto front. Overall the results from both MOEAs are similar with the exception

of slightly better performance by the SPEA at the end of the front.

The smallest instantiation of the MMOKP represents a difficult problem for an

MOEA, but one in which both MOEAs find good solutions and a good distribution of

points across the front. The next instantiation tested is the 250 item, 2 knapsack MMOKP.

The MOMGA-II results in better performance than the SPEA across the entire center sec-

tion of the front, as well as the lower right end of the front, shown in Figure 6.28. However

the SPEA obtains points in the upper left end of the front unpopulated by MOMGA-II

results. Better performance is realized by the MOMGA-II for most of the Pareto front but

the SPEA continues to obtain better solutions in the upper left end.

Increasing the dimensionality of the MMOKP leads to the next instantiation of the

MMOKP MOP tested, the 500 item, 2 knapsack formulation. Figure 6.29 shows the results

generated by both the MOMGA-II and the SPEA as applied to the 500 item formulation

of the MMOKP. The MOMGA-II obtains many more points than the SPEA and the

MOMGA-II results dominate those of the SPEA. The results illustrate a considerable
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Figure 6.27 100 Item 2 Knapsack MMOKP

distance between the Pareto front generated by the SPEA and the better front generated

by the MOMGA-II. All of the points generated by the SPEA with the exception of two are

dominated by the MOMGA-II. The MOMGA-II also obtains a good spread of solutions

across the front. While the MOMGA-II does not find solutions on one small area of the

front, the solutions found by the MOMGA-II dominate those solutions found by the SPEA.

This illustrates much better performance by the MOMGA-II on this more difficult MOEA

MOP.

The largest instantiation of the 2 knapsack problem is also tested, the 750 item

MMOKP. The MOMGA-II results exhibit much better performance across the entire front

as compared to the SPEA. Figure 6.30 shows that the results of the MOMGA-II as com-

pared to the SPEA. It is easily seen that the entire Pareto front generated by the MOMGA-

II dominates the entire front generated by the SPEA in this 750 item MMOKP MOP. The

MOMGA-II does not obtain the same spread of solutions as the SPEA but all of the

MOMGA-II solutions are of higher quality (dominate) than those of the SPEA.

Results of calculating metric values for the 100, 250, 500, and 750 item, 2 fitness

function MMOKP MOP instantiations are presented in Table 6.8. The ONVG and spacing

metrics are used along with the visualizations of the Pareto fronts presented. The selection
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Table 6.8 2 Knapsack MMOKP Results

Number of MOEA ONVG Spacing
Items Mean SD Mean SD

100 SPEA 49.267 6.291 17.797 3.841
100 MOMGA-II 44.333 8.976 18.331 7.361

250 SPEA 55.567 6.377 26.163 3.956
250 MOMGA-II 41.167 10.986 22.855 9.343

500 SPEA 34.533 5.594 46.798 10.778
500 MOMGA-II 35.733 10.866 24.703 16.146

750 SPEA 34.200 6.408 71.340 20.733
750 MOMGA-II 30.200 12.090 34.096 24.750

of these metrics is discussed in detail in Chapter III, Section 3.2. For each MOEA, the

mean and standard deviation results are presented for each metric. The MOMGA-II and

SPEA obtain similar performance for the ONVG and spacing metrics as applied to the 100

item knapsack MMOKP. The 100 item knapsack MMOKP is the smallest instantiation of

the MMOKP MOP tested and as shown in Figure 6.27, the two MOEAs obtain a similar

front.

The results presented in Figure 6.28 illustrate that the MOMGA-II obtains a number

of points that dominate those found by the SPEA but the SPEA obtains a better spread

of points across the known front. Table 6.8 shows that the SPEA, on average, finds a
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Figure 6.29 500 Item 2 Knapsack MMOKP

larger number of points in PFknown and obtains a slightly better spacing value for the

250 item MMOKP MOP. However, the MOMGA-II obtains a much better distribution

of points and points of higher quality over most of the front, with the exception of the

upper left section shown in Figure 6.28. Overall, the MOMGA-II generates mostly points

of equivalent or better quality but the SPEA obtains a better spread of points. Since the

quality of the results is typically a driving factor for use of an MOEA, one would deem

both the MOMGA-II and the SPEA as performing well on this MOP instantiation.

The 500 item MMOKP MOP is a more challenging instantiation of the MMOKP

MOP and the formulation specifies a large number of decision variables. Figure 6.29

illustrates that the solutions found by the MOMGA-II dominate all but two of the solutions

found by the SPEA. Additionally, Table 6.8 illustrates that the average number of solutions

and the spacing values generated by the results of both MOEAs are comparable and

but the SPEA metric results tend to be slightly better than the MOMGA-II. However,

the MOMGA-II obtains a good distribution of points across most of the front and the

MOMGA-II points dominate those of the SPEA. Overall the MOMGA-II obtains better

results on the 500 item MMOKP.
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The results presented in Table 6.8 show that the MOMGA-II obtains a similar number

of vectors on average as the SPEA but obtains a much better spacing value than the SPEA

for the 750 item MMOKP MOP. The results are shown graphically in Figure 6.30 which

also illustrates that the results of the MOMGA-II dominate all of the points found by

the SPEA. Overall the MOMGA-II obtains better performance than the SPEA on this

instantiation of the MMOKP MOP. The results presented illustrate a trend that as the

number of decision variables increase, the improvement in performance of the MOMGA-II

as compared to the SPEA increases, and the MOMGA-II typically generates solutions of

higher quality.

Jaszkiewicz proposes a different metric for comparing the results of different MOEAs.

His method involves calculating the average range of fitness values of each Pareto front

curve or surface and then he compares the average values among the MOEAs [100]. To

determine these averages one must find the minimum value generated for each fitness

function in PFknown for each data run. The minimum values for each fitness function

are then averaged across the number of data runs conducted. The same process is used

to calculate the average maximum values for each fitness function. For example, in a 2

fitness function MOP, in which 10 data runs were conducted, one must average the 10

minimum values for function 1 and function 2 separately. The same procedure is repeated
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for the maximum values. The minimum and maximum values are placed into a table for

comparison with other MOEAs.

The results of the IMMOGLS, SPEA, M-PAES, and MOGLS [100] are presented in

Table 6.9 and compared to the MOMGA-II. Jaszkiewicz uses this average range metric

to state how well the MOEA solutions are spread out over PFknown . However, the data

presentation format he used does not accurately reflect the spread or concentration of

points. In most attempts to solve an MOP by an MOEA, researchers conduct numerous

data runs and then combine the PFknown sets generated for each run. This combination

of the data and subsequent analysis yields the overall PFknown solution set generated by

an MOEA over a course of data runs. While one run may generate solutions in the

lower right portion of the front (consider the characteristic of the MMOKP fronts as an

example, Figure 6.30), another may generate solutions exclusively in the upper left portion

of the front and the remaining runs may only generate solutions in the center of the front.

A researcher solving real-world MOPs is interested in the final overall result and not

necessarily in the averages. The averages can be deceiving. In the previous example, most

of the data runs generated solutions in the center of the front. Calculating the maximum

and minimum average values using the data runs containing results on the endpoints of

the Pareto front and combining the results with the two runs that generated solutions in a

different area of the front may yield a value closer to the center than the end of the Pareto

front. An analysis would then lead one to believe that the MOEA did not generate a good

spread of solutions but instead a cluster around the center of the front. In comparison

testing of an MOEA that consistently generated solutions only at the two ends of the

front, the MOEA would be shown as generating a poor distribution of points across the

front. However, the a different MOEA may not have generated any solutions in the center

portion of the front and therefore does not obtain as good a spread of solutions but the

average range table would show otherwise.

While the average range data presentation format may be useful, it must be used

in conjunction with other metrics or with a graphical presentation of the Pareto front

in order to avoid misinterpreting the results. As stated earlier, in some cases, a visual

representation may be better than the results of a specific metric as metrics are lossy
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evaluations and loose information in mapping a Pareto front of multiple data points to a

single value. However, Table 6.9 can be useful if used in conjunction with the graphical

representation of PFknown presented in Figures 6.27 through 6.30.

It is important to realize that the MOGLS MOEA is executed on the relaxed formu-

lation of the MMOKP MOP (see Chapter III, Section 3.1.1.16) and not on the formulation

of the MMOKP that the MOMGA-II and the SPEA use. Due to this fact, one must

question if Jaszkiewicz’s comparison of the MOGLS to IMMOGLS, SPEA, and M-PAES

is valid. In Table 6.9 the results of MOGLS are included, but a direct comparison between

the MOMGA-II and the SPEA is the main focus. A comparison is made to the SPEA as it

achieves the best published performance when applied to the identical formulation of the

MMOKP MOP that the MOMGA-II is applied to.

The results presented in Table 6.9 indicate that, for the most part, the MOMGA-II

does not generate as effective results as the the other MOEAs when comparing the spread

of solutions. This interpretation of the results is not necessarily correct. For example,

consider the 2 knapsack, 750 item instantiation of the MMOKP. Table 6.9 indicates that

the SPEA has a wider range of values and leads to better solutions but in actuality,

Figure 6.30 illustrates that the front generated by the MOMGA-II dominates the entire

front generate by the SPEA. Therefore this presentation format is not recommended for

use when one Pareto front completely dominates another. The average range metric can

mislead a researcher’s analysis of the data if one is not careful to see the whole picture.

6.5.3.3 Real-World MOP Test Suite Summary. Testing every class of real-

world MOP is not possible. This section presents the results of applying the MOMGA-II to

a real-world application MOP, the ALP and a NP-Complete MOP containing an extremely

large number of decision variables, the MMOKP MOP. The results of the MOMGA-II are

very good when applied to these real-world application MOPs. The MOMGA-II finds

PFtrue for the 60 bit formulation of the ALP and appears to find good solutions for the

larger formulation. The MOMGA-II also performs favorably when applied to the MMOKP

and compared to other MOEAs. In particular, as the problem size increases, so does

the effectiveness of the MOMGA-II in terms of dominating the solutions found by other
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MOEAs. Additionally, detailed descriptions of possible repair mechanisms and the best

found MOMGA-II repair mechanism to use with MOPs formulated with integer based

decision variables is presented. The effect of a limited test of repair mechanisms on the

effectiveness of the MOMGA-II as applied to two MOPs is also presented. The MOMGA-II

performs well when using repair mechanisms to attempt to solve these discrete constrained

MOPs.
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Table 6.9: Knapsack Problem Results

Instance IMMOGLS SPEA M-PAES MOMGA-II MOGLS

2-250 [8520.15, 9537.85] [8407.63, 9460.87] [8742.50, 9473.05] [8876.47, 9405.57] [7332.55, 9883.90]

[8614.15, 9629.90] [8809.47, 9747.23] [8866.95, 9593.00] [8956.97, 9546.53] [7747.65, 10093.2]

2-500 [17684.70, 19047.50] [17697.50, 18900.40] [18198.50, 19174.70] [18387.17, 18906.07] [16148.60, 20029.20]

[18114.70, 19459.30] [18455.20, 19460.70] [18541.80, 19514.00] [18830.70, 19311.60] [16766.30, 20444.20]

2-750 [25902.60, 27868.50] [26374.90, 27924.00] [27100.30, 28661.80] [27001.57, 27506.87] [23728.90, 29938.80]

[25738.10, 27904.30] [26152.20, 27720.10] [26460.30, 28255.90] [27110.57, 27580.47] [23458.20, 29883.10]
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6.6 MOEA BB Testing Based on Empirical Data

The background information discussed in Chapter II, Section 2.2 presents a mathe-

matical definition of a BB. Identification and manipulation of good BBs is important to

generating good solutions to MOPs by any MOEA. The good results presented in this

chapter validate this statement as an explicit BB-based MOEA, the MOMGA-II generates

good results as applied to a variety of MOPs.

Since one seeks to find the best solution in any optimization problem, identification

of the good BB(s) is critical to generating good and hopefully the best solution. In the

search for the optimal solution, it is possible that the identification of only one good BB is

necessary to generate all of the good solutions on the Pareto front or, the more likely case,

that there exists multiple BBs that must be identified in order to generate the multiple

solutions on the Pareto front. If the identification of more than one good BB is necessary

to find the entire front, then the MOEA must find the multiple good BBs.

Van Veldhuizen [184] illustrated the point that BBs relatively close together in terms

of their genotype space may not be as close together in phenotype space. The use of the

MOMGA-II as a BB validator is a high priority. This enables a more thorough analysis of

various MOEAs to determine why certain MOEAs perform better than others in reference

to BBs found. This analysis requires the execution of the MOMGA-II and other MOEAs

on an identical set of test suite MOPs. An analysis of each generation of execution of each

MOEA is necessary to determine which BBs are found by the various MOEAs and for how

long do the good BBs remain in the population. A BB analysis provides additional insight

into the inner workings of any MOEA.

The size of the BBs that are necessary to find points on the Pareto front has yet

to be addressed in the literature. Assuming a worst case situation that multiple BBs

are contained within each point in PFtrue , the possibility also exists for the good BBs

necessary to generate the points in PFtrue to be of varying sizes. In MOPs, a BB of size 5

may generate the single (optimal) solution to the problem plus a few near-optimal points

that are relatively close to the solution in phenotype space. However, a BB of size 3 may

generate a single or a few near-optimal points that are close (in phenotype space) but are
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not the solution to the optimization problem. Generalizing this discussion, the analysis

of BBs and BB relationships illustrates that a BB of size x may generate a single or a

few solutions in PFtrue , and another BB of size y may generate a single or a few different

solutions in PFtrue , but a BB of size z may only generate a single or a few solutions that

are sub-optimal to those contained in PFtrue . Ranking is used to clarify this discussion.

In analyzing the effects of BBs of varying sizes on the final solution set, the concept

of ranked Pareto fronts must be understood. Ranking is discussed in detail in Chapter II,

Section 2.9 and is summarized in this section. Ranking is the process that identifies the

population members that are on the Pareto front, assigns the members a rank value, and

removes the members that are on the Pareto front from the population. The ranking

process continues to identify the next Pareto front from the population members that

remain in the population, assigns the members on the next front a different rank value and

repeats the procedure until all members are ranked. In the assignment of ranks, there are

multiple methods that can be used. In this section, the members that exist on the best

found front are assigned a rank of 0, the members that are part of the second best front

are assigned a rank of 1, and so on until all of the population members are ranked. An

example of ranked fronts is illustrated in Figure 6.31.
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Figure 6.31 Ranked Pareto Fronts
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Figure 6.32 BB Sizes and Their Contribution to the Pareto Fronts

If the case exists where multiple BB sizes are required to generate all the solutions

on PFtrue , some of the same BBs may also generate solutions on the next best front.

Figure 6.32 illustrates an example where BBs of multiple sizes are required to generate the

front of rank 0. The example presented in Figure 6.32 is a specific case, but similar BB

characteristics can be found in other MOPs.

In general, the identification of multiple BBs is necessary to generate PFtrue for

many MOPs as multiple solutions exist in PFtrue . Since multiple solutions existing in

PFtrue , and multiple BBs are typically necessary to generate these solutions, there is a

high probability that multiple BB sizes are also required to generate all of the solutions in

PFtrue . The identification of multiple BB sizes by an MOEA results in the generation of

multiple fronts of different ranks through the search process.

As good BBs are identified and recombined by the MOMGA-II, solutions on inferior

fronts (fronts of rank 1, 2, etc.) are generated as the population progresses towards PFtrue .

Once all of the necessary good BBs are generated, assuming a large enough population

size to combat the noise present in the evolutionary process, an MOEA generates all of

the points in PFtrue plus portions of the inferior fronts. Some researchers have identified

in explicit statements or through the results they have presented a difficulty for MOEAs

in the generating points at the extremes of the front [100, 123, 215]. The extremes are
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referred to as the endpoints of the curve or k-dimension surface as dictated by the k

objective functions. The difficulty of generating the extreme points of the Pareto front

is attributed to the necessary identification of multiple BBs of different sizes. Implicit

BB-based MOEAs may only generate BBs of a single size or may not be executed with

a population size large enough to statistically generate the multiple good BBs of various

sizes necessary to generate PFtrue . Figure 6.32 illustrates the effect that different BB

sizes may have in finding various points in the ranked fronts and in PFtrue . Notice that in

Figure 6.32, only two of the ranked fronts are shown for ease of understanding but multiple

fronts may exist, each of possibly varying cardinalities.

Since many MOEA researchers conduct their research efforts with implicit BB-based

MOEAs (as described in Chapter III), BB concepts and the effects of the identification of

good BBs are not readily noticeable. Through research conducted using the MOMGA-II

and the theoretical development of population sizing equations (discussed in Chapter VIII)

based on the BBH, the need for different sized BBs to generate PFtrue becomes apparent.

Many of the existing MOEAs are not effective at finding all of the points on the

Pareto front and more explicitly, points at the endpoints or end sections of the Pareto

front when applied to test suite and real-world MOPs [100, 123, 215]. While generating

any point(s) on the Pareto front may be useful for real-world applications in which potential

solutions have not been found, it would be even more useful if a researcher could generate a

good distribution of points across the entire front. This has been identified by researchers

utilizing MOEAs as an important issue [31, 44, 100, 123].

A question that the MOEA community should answer is: Why do various MOEAs

fail to find the endpoints of the Pareto front or if they do find some of the points, why does

this typically occur with larger population sizes? A pedagogical example is constructed

and the results of the MMOKP MOP are analyzed to show insight into the generation

of the endpoints of the Pareto front by an MOEA. The pedagogical MOP is formulated

utilizing a deceptive objective function along with another function that is not deceptive.

Deceptive problems are discussed in Chapter IV, Section 4.3. The equations for this

deceptive maximization MOP are presented as Equations (6.14) and (6.15), where x is
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restricted to be an integer value.

f1 =



















0.75− 3
48x 0 ≤ x ≤ 12

1− 1
3(x mod 12) 12 < x < 15

1 x = 15

(6.14)

where x is an integer.

f2 =
{

1− 1
15x 0 ≤ x ≤ 15 (6.15)

where x is an integer.

Graphically, the two objective functions are shown in Figure 6.33 with each function

plotted as a single objective problem for ease of illustrating the deceptive function. Func-

tion 1 is the deceptive function, and function 2 is the non-deceptive function. In function

1, an x-value of 0 contains the deceptive BB that leads to a locally optimal value of 0.75;

however, an x-value of 15 contains the BB that leads to the global optima of 1.0. The de-

ceptive BB is of order 1 and is represented by the schema *0**. The schema *0** leads to

solutions on the left side of Figure 6.33, solutions that lead to the locally optimal solution

of 0.75, whereas the BB necessary to find the global optima is of order 2 and is the schema

11**. The schema 11** generates solutions on the right side of Figure 6.33 that lead to

the globally optimal solution of 1.0. Since function two is non-deceptive, a BB of order 1,

containing the schema *0** leads to the generation of the globally optimal solution of 1.0.

Van Veldhuizen [184] presented a theorem and proof of deceptive BBs in MOPs. The

interested reader is referred to [184] for the proof of this theorem.

Theorem 1 The orders of deception for the functions composing an MOP are not neces-

sarily equal [184].

When using an explicit BB-based MOEA, the implications of this theorem are that

one must use a BB of the same order as the largest order BB required to solve each of

the functions in the MOP. For example, in the deceptive MOP presented, a BB of order 1

is required to generate the global solution for function 1 but a BB of order 2 is required
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to generate the global solution for function 2. Therefore a BB of order 2 is required to

generate solutions on the Pareto front for this deceptive MOP.
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Figure 6.33 Single Objective Values for Deceptive MOP

The genotype space is shown in Figure 6.34 and presents the x values versus their

evaluated fitness values. Figure 6.34 illustrates the fact that the true Pareto optimal

solutions are the same ones that lead to the global and local optima in this MOP. The

Pareto front is shown in Figure 6.35. Notice that there are only two points on the Pareto

front of this deceptive MOP. The Pareto front consists of the points at (1.0, 0) and (0.75,

1.0) reflecting the deceptive nature of this MOP. Observe that is is easier to move via an

MOEA to the point (0.75, 1.0) than (1.0, 0.0) because of the relatively larger number of

points existing between solutions leading to (0.75, 1.0). Also note that there is a larger

overall distance between solutions that lead to the point (1.0, 0.0) versus (0.75, 1.0) in the

phenotype space. This makes it somewhat harder for an MOEA to find the solution (1.0,

0.0) without identifying the BB 11**.

Since the BB size necessary to solve function 1 is 1 and the BB size to solve function

2 is 2, an overall BB size of 2 is necessary to find all of the points on PFtrue based on
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Figure 6.34 Pareto Optimal Solution Paths for Deceptive MOP

Theorem 1. A conjecture is presented as to the relationship of the size of the BB and the

location of the points generated when using a BB of this size.

Conjecture 1: A small BB size tends to generate a limited estimate of the structure

of the Pareto front for any MOP. A smaller BB size tends to result in a concentration

of points neat the center of the Pareto front. To generate additional points on the front,

especially near the end sections (endpoints) of the Pareto front, larger BB sizes should be

used. The larger BB sizes tend to allow the MOEA to generate points near these sections

of the front. The MOEA population sizing Equation (8.26) can thus be employed based

upon BB size. 2

In analyzing Figure 6.35, there is a larger distance between the points leading to the

Pareto front point (1.0, 0.0). This analysis is presented in the following conjecture:
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Conjecture 2: The use of larger BB sizes tends to generate points on the Pareto front

that exhibit a larger distance from other points in the phenotype space. 2

To further explain Conjecture 2, a larger BB size tends to generate points on the

Pareto front in areas where there exists a larger distance between points in the phenotype

space. Therefore the larger the BB size is in an area of the search space, the further the

distance between generational steps from a nondominated point to another; i.e., the more

difficult it is to reach points on the Pareto front in that part of the search space.

An MOEA thus tends to move the toward the Pareto front on the “easier” (smaller

steps or small BBs) path as generated by the MOEA operators. Of course, there is a lesser

probability but not zero that the path to the point (0.0,1.0) is traversed. Therefore this

supports Conjectures 1 and 2 in that the use of a larger BB size tends to generate points

near the endpoints of the Pareto front. The pedagogical deceptive example presents insight

into MOEA search movement to the Pareto front and can be formalized and analyzed based

upon BB size requirements per search space region. This provides insight into the largest

BB size required to find the solution to a deceptive problem.

6-82



−20 −19 −18 −17 −16 −15 −14
−12

−10

−8

−6

−4

−2

0

2

f
1

f 2

MOP 4

PF
true

MOMGA−II

Figure 6.36 MOP4 Pareto Front Generation

Numerous MOPs have been experimented with, using the MOMGA-II and various

BB sizes, to determine the applicability of BBs and the conjectures discussed. In Fig-

ure 6.36, the results of applying the MOMGA-II with various BB sizes applied to MOP4

is presented. Figure 6.36 illustrates that the majority of points generated from the use of

BB sizes 1-3 in the MOMGA-II are on the center sections of the three disconnected fronts.

Using a BB size greater than 3 generates more endpoints on the Pareto front, especially

those on the lower right portion, the most difficult area to generate points. Again, this is

due to larger distances between nondominated points in the search spaces requiring larger

BB sizes. A population size larger than the 200 members obtains additional points on the

front.

The MOMGA-II is also applied to the MMOKP and generates similar results. In

Figure 6.37, the results of the application of the MOMGA-II to the MMOKP MOP using

BB sizes 3, 4, and 12 is plotted. All of the BB sizes generate points in the center of the

Pareto fronts but as the size of the BBs are increased, the quality of the points found also

increases. Additional points, of higher quality, are generated, and the number of solutions

generated near the endpoints of the Pareto front increases as the BB size increases. These

results again illustrate the fact that the use of larger BB sizes tends to generate points near

the endpoints of the front in this MOP. Executing the MOMGA-II with a BB size of 12
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generates the best results over the various BB sizes tested (BB sizes 1 through 12). Again,

the BB phenomena is due to larger distances between nondominated points in the search

space in which the use of a larger BB size tends to overcome this characteristic and the

MOMGA-II generates good results. For standard MOEAs, the use of larger population

sizes beyond the current 200 may generate additional points near the endpoints of the

Pareto front [31, 44]. A similar result is illustrated by Jaszkiewicz [100] in a relaxed

version of the MMOKP.

In testing the MOMGA-II against various generic MOPs, it is noticed that as the

BB size is increased in the MOMGA-II, additional points are generated near the end-

points of the Pareto front. This parallels the effect seen in implicit BB-based MOEAs

where an increase in the overall population size increases the number of endpoints found.

Jaszkiewicz [100] found similar results in the application of MOGLS to the multiobjective

knapsack problem. In a comparison of SPEA, M-PAES, IMMOGLS and MOGLS (the

MOEA developed in Jaszkiewicz’s work), the SPEA and IMMOGLS did not generate any

points that are as close to the Pareto front as MOGLS, and the points generated are con-

centrated in the center of the Pareto front. M-PAES found a few points in the center

of the front and MOGLS found a number of points distributed across much of the front.

However, all of the algorithms had difficulty in generating points near the endpoints of the

front and typically converged to points in the center of the front.

6.7 Summary

Throughout this chapter, the MOMGA-II has been shown to yield efficient and

effective results when applied to MOPs of varying complexity. The term efficiency of

the MOMGA-II is used to describe the resource requirements and execution time of the

MOMGA-II as compared to the execution time of the MOMGA. In terms of the memory

requirements, the MOMGA-II requires less memory and resources than the MOMGA. The

decrease in execution time of the MOMGA-II as compared to the MOMGA is an order

of magnitude or more, hence resulting in a more efficient, explicit BB-based MOEA. The

MOMGA-II performs statistically similar or statistically better when compared to other
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popular MOEA approaches and hence validates the use of this explicit BB-based MOEA.

These results are presented in Sections 6.5.1.1 through 6.5.1.7.

Through testing classes of MOPs with similar characteristics to real-world MOPs, the

ALP and the MMOKPMOPs (Sections 6.5.3.1 through 6.5.3.2, the results of the MOMGA-

II illustrate that problem domain knowledge is integral, in some cases, to generating good

solutions. The MOMGA-II is also the first explicit BB-based MOEA designed to attempt

and solve real-world and constrained MOPs. In these problems, knowledge is incorporated

in terms of a repair function that maps infeasible solutions to feasible solutions and hence

generates the good BBs necessary to generate good solutions. In expansion of the testing,

the MOMGA-II has the ability to effectively solve constrained real-world, Air Force MOPs

of high complexity. Moreover, the various MOP examples indicate that MOEA movement

towards the Pareto front is based upon BB size and hence explicit BB-based MOEAs can

yield better results than implicit approaches. The MOMGA-II provides additional insight

into difficult MOPs through the explicit manipulation of BBs. The MOMGA-II provides

insight that other implicit BB-based MOEAs do not, that the use of larger BB sizes and

multiple BB sizes tends to generate more solutions near the endpoints of the Pareto front.

The identification of BB sizes as a factor in the generation of good potential solutions
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to MOPs is a new contribution to the MOEA field, and one not previously realized from

implicit BB-based MOEA research.
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VII. Parallel MOEA Development

7.1 Introduction

The previous chapters of this effort present MOEA background material, the motiva-

tion for using MOEAs and the development of an explicit BB-based MOEA. The use of an

MOEA may require the evaluation of hundreds of thousands of population members, if not

more, in a single run. Once convinced of an MOEA’s effectiveness, researchers typically

attempt to increase MOEA execution efficiency (how “quickly” or “cheaply” an MOEA

generates good potential solutions to an MOP and with what level of resource requirement)

of the MOEA. The desire to reduce execution time, resource expenditure, or increase the

quality of solutions generated leads to the consideration of parallel and distributed pro-

cessing. The objective of this chapter is describe parallel concepts for MOEAs, present

innovative migration and replacement schemes for use in parallel MOEA paradigms, and

develop the first explicit BB-based parallel MOEA.

A major computational bottleneck in many contemporary applications of MOEAs to

real-world MOPs is the calculation of complex nonlinear MOP function evaluations. Just

as in single objective optimization problems, time consuming fitness function calculations

are often executed in less wall-clock time by decomposing the computational workload

across several processors. The fitness function bottleneck implies that parallelizing an

MOEA, to create a parallel MOEA (pMOEA), may improve computational efficiency in

terms of execution time. A pMOEA may be able to evaluate additional solutions, as com-

pared to a serial MOEA applied to the same MOP, within the same or reduced execution

time. This may be of particular interest to MOEA researchers as identifying a (possi-

bly large) set of ”good” objective vectors (genotype) is often the primary goal driving

the MOEA search. A pMOEA might then be the preferred implementation for solving

complex real-world applications where (multiple) objective function evaluations generate

a computational bottleneck.

It is somewhat surprising that additional research into pMOEAs has not yet been

completed. This is surprising as MOEAs are inherently parallel in their independent ma-

nipulation of a population of individuals. Additionally, parallel and distributed machines
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with multiple processors are more readily available to the general public as well as to

researchers, than in the past. While advances are made in parallel processing and com-

puters in general, only a small percentage of current MOEA publications either explicitly

address parallelism issues or attempt pMOEA execution [31]. Of the known publications

solving engineering design and numerical optimization problems with pMOEAs, few dis-

cuss algorithmic development issues and for the most part ignore the parallel aspects of

their MOEAs [31:p. 314]. In general, these publications do not discuss the rationale for

pMOEA employment, algorithmic settings and structure, test problem selection, metrics,

or issues of importance to a pMOEA that makes it different from a parallel Evolutionary

Algorithm (pEA). However, analyzing these publications yield several key insights into cur-

rent pMOEA state-of-the-art and highlights areas in which useful research may be focused.

The most meaningful findings from analyzing current pMOEA publications are that the

following are given little to no attention:

• General pMOEA structure and paradigm suitability for a given MOP domain,

• pMOEA computational hardware architecture considerations,

• MOP test problem selection and pMOEA performance metrics, and

• pMOEA development and implementation issues.

The objective of this chapter is to describe important pMOEA development issues,

propose options for satisfactorily resolving them, present a detailed background discussion

of the three main parallel MOEA paradigms, present migration and replacement options

for use with parallel paradigms in MOEAs, discuss various practical considerations, and

present results from the application of a pMOEA, the parallel MOMGA-II to MOPs.

Known research approaches and various insights gained from analyzing these approaches

are discussed. Through this discussion a template is evolved for generating a new pMOEA

or extending an existing MOEA to become a pMOEA. This results in a generic design plan

with a list of parameter considerations researchers should consider in attempting to develop

efficient and effective pMOEAs, regardless of the problem domain. The term efficiency is

used in the context of the use of system resources to include processor utilization, memory

requirements, network bandwidth and other resources as well as the wall-clock execution
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time of the pMOEA. Effectiveness is used in the context of the quality of the solution set

generated by the pMOEA (discussed in Chapter I).

The remainder of this chapter is organized as follows. First, fundamental back-

ground information and basic underlying pMOEA philosophy are briefly presented, to

include basic pMOEA objectives, paradigms and design issues. Key analyses and is-

sues derived/extended from known pMOEA implementations are discussed next. Gen-

eral pMOEA development issues, along with identification of specific design considerations

when implementing the pMOEA paradigms follows. This pMOEA testing includes the

use of a pedagogical and NP -Complete, discrete, constrained MOP for demonstrating,

testing and analyzing selected pMOEA concepts. As much material is available describ-

ing generic parallel processing techniques & implementations, incorporation into EAs and

hardware/software configuration issues [2, 3, 4, 5, 6, 7, 13, 20, 31, 119, 179], this chapter

focuses only on exploring and analyzing possible benefits of pMOEA development and in-

stantiation. The development of a “generic” pMOEA formulation is detailed along with

the advantages of such an algorithm. Experimental results are presented over a limited

MOP test suite.

7.2 Fundamental Background

This section addresses pMOEA concepts and background material essential to pro-

vide a better understanding and appreciation of the associated concepts. A new pMOEA

notation is presented to aid the reader in developing an understanding and relationship

between the MOEA and pMOEA concepts presented in this research effort. An overview

of the main parallel MOEA paradigms is followed by design considerations.

7.2.1 pMOEA Notation. A clear and consistent notation must be used when

discussing MOEAs and pMOEAs. As no clear notation exists for discussing the solution

sets that an pMOEA may generate, such a notation is required to ensure that researchers

can understand and compare various MOEA and pMOEA approaches. This notation aids

in understanding the process that takes place in generating possible solutions to an MOP.

Chapter II, Section 2.6, discusses such a notation that has been developed for use with
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MOEAs. Considering that pMOEAs may have increased complexity in the algorithmic

process or the handling of the solution sets, a precise notation is used to explicitly identify

the various Pareto solution sets and the time at which the Pareto solution sets exist. Time

is defined to be any stage within the algorithmic process, a generation in the execution

of the pMOEA, or more specifically, a particular stage of execution within a specified

generation.

A brief summary of serial MOEA notation (from Chapter II, Section 2.6) is provided

as necessary background for the pMOEA notation developed in this section. At any given

generation, t, the current Pareto front set, PFcurrent (t) contains a subset of the popula-

tion. The PFcurrent (t) set may vary in cardinality from generation to generation as newly

generated, nondominated population members are placed into PFcurrent (t) and dominated

members are removed from PFcurrent (t). Since PFcurrent (t) is not a cumulative set across

the entire MOEA execution, but just the nondominated solutions from the current gener-

ation, the cardinality of PFcurrent (t) is less than or equal to the size of the population in

generation t of the pMOEA execution. The cumulative Pareto front set, PFknown (t), rep-

resents the nondominated members generated from the first generation through generation

t of MOEA execution. Note that PFcurrent (t) typically differs from PFknown (t). As vectors

from PFcurrent (t) are collected each generation, some of them dominate existing vectors

in PFknown (t) and hence the perception of the Pareto front changes during MOEA execu-

tion. PFknown represents the nondominated members generated across the entire MOEA

execution. Typically an archive is used to aid in the process of identifying and storing the

nondominated members found each generation. The goal of the search process is for the

MOEA to find the entire true solution set (PFtrue ). Typically this set is unknown for the

specific MOP being considered. PFtrue is implicitly defined by the functions composing

the MOP model and the decision variable resolution; it is fixed and does not change.

Certain parallel paradigms, such as the island and diffusion paradigm, execute com-

munication events at different points throughout pMOEA execution. These paradigms use

multiple processors in an attempt to generate more effective solutions to an MOP as com-

pared to the serial MOEA. In such paradigms, each processor may find unique solutions

to the MOP and hence the notation used must allow for representation of the Pareto sets
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resident on each processor. Thus, the current Pareto front set found by a given processor

is represented by PFcurrent

(

p
t

)

and a current Pareto optimal set exists and is defined as

Pcurrent

(

p
t

)

where p represents the processor ID and t the generation number. Correspond-

ing Pareto optimal solution sets exist for each of the Pareto front sets defined but are not

explicitly stated. The set containing the nondominated points found through generation t

is represented by PFknown

(

p
t

)

and the final nondominated set generated by each processor

is represented in a similar fashion as PFknown

(

p
)

.

In some pMOEAs, migration events occur in which select population members are

sent to, received from, or exchanged with other processors. In such cases the Pareto front

sets are defined prior to and following each migration event as the addition or replacement

of population members may cause the Pareto sets to change. The current Pareto sets on

any given processor are represented by PFcurrent

(

p
t bm x

)

prior to the migration event and

PFcurrent

(

p
t am x

)

after migration occurs. The notation
(

p
t bm x

)

denotes processor p prior

to the xth migration event during generation t. Once migration occurs it is possible that

some of the received members dominate some of the current members in PFcurrent

(

p
t bm x

)

.

The current population, including the received population members is analyzed to deter-

mine which of the population members are nondominated. The notation
(

p
t am x

)

denotes

processor p following the xth migration event during generation t. Subsequent to the final

migration event in generation t, the current nondominated set for processor p is represented

by PFcurrent

(

p
t

)

, consistent with the notation used for serial MOEA Pareto sets. This dis-

tinction is necessary as each processor may conduct multiple migration/replacement events

at a given generation, dependent upon its neighborhood size and number of memberships

in different neighborhoods. A neighborhood represents the local processors (either in a

logical or physical sense), that a processor is restricted to communicate. The notation just

described applies to the known Pareto front sets also. At pMOEA termination, PFknown

(

p
)

represents the known Pareto front set found on each processor, PFknown

(

t

)

represents the

cumulative known Pareto front found by all pMOEA processors combined for generation t,

and PFknown represents the overall Pareto front set found across all processors at MOEA

termination.
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The pMOEA notation described can be employed in the development of a specific

computational pMOEA (algorithm and data structures) to help ensure the design is im-

plemented with a large degree of confidence the code is correctly written. The notation

can also be used to aid in mathematically proving various pMOEA properties including

convergence to the Pareto front. The pMOEA notation described can aid a researcher

in the design, development, and implementation of a pMOEA. This notation is useful in

aiding one’s understanding of the migration process and the effects it has on the Pareto

solution sets. Using a clear and defined notation helps to prevent confusion in this process

and contributes to the pMOEA field.

7.2.2 pMOEA Motivation and Paradigms. As discussed in Chapter II, Section 2.1

single objective EAs and other deterministic and stochastic search techniques may not be

as effective as MOEAs in the attempted solving of MOPs. The motivation for parallelizing

MOEAs is to increase the efficiency, effectiveness, or both characteristics of an MOEA.

Prior to using a pMOEA, one must ensure that an MOEA is as good as or is a better choice

than other search techniques for the MOP of interest. Once this is established, a researcher

must determine if a pMOEA presents advantages over the serial approach. In general,

pMOEAs are most useful when a researcher is attempting to solve an MOP consisting of

computationally expensive fitness functions or requires a higher quality solution than a

serial approach generates. It is important to note that parallel MOEAs do not guarantee

more effective results compared to serial MOEAs but the probability exists of generating

better solution sets as more of the search space can be typically covered in a parallel

implementation.

Increasing the efficiency of an MOEA through a pMOEA approach involves using

parallel decomposition techniques. The calculation of the fitness functions is typically

the most costly operation in a pMOEA [6]. The decomposition of the fitness function

calculations across many processors may decrease the wall clock time required to execute

the pMOEA. Increasing the effectiveness of a MOEA through a parallel approach typically

involves the execution of an MOEA on multiple processors. This allows a researcher
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to search more of the space than a serial MOEA and hence increase the possibility of

generating better potential solutions to the MOP.

The motivation for applying parallel concepts to MOEAs is typically to increase the

efficiency or effectiveness of the search process and hence improve the performance of the

MOEA. The reader is referred to Chapter II for a general discussion of the motivation for

applying MOEAs to MOPs. Decreasing the time required to find solutions to an MOP

and decreasing the computer system resources required for the search process are part of

increasing the efficiency of the MOEA. Increasing the effectiveness involves finding solution

sets of “better” quality, solution sets of higher cardinality, and solution sets containing a

“better” distribution of points along the front.

Design characteristics of pMOEAs include the concurrent search for multiple solu-

tions, ease of mapping serial MOEAs to parallel MOEAs, reducing wall clock execution

time, hybrid interfacing to other search techniques for complex MOPs, and achieving over-

all better performance in terms of efficiency and effectiveness [6]. In considering MOEA

parallelization, a researcher must understand the various parallel paradigms, the MOEA,

and the MOP in order to select a paradigm that appears to have the greatest potential

for increasing the performance of the MOEA as applied to the specific MOP of inter-

est. For example, in MOPs containing complex, time consuming fitness functions, the

decomposition of the population across a number of processors for evaluation may provide

the best increase in performance of the MOEA if the researcher is interested in decreas-

ing execution time. This is just one example but illustrates the need to understand the

pMOEA and characteristics of the MOP. Architectural characteristics may or may not be

of interest to the implementation of a pMOEA. These may include numerical processing,

communications, network topology, processor speed, memory access, I/O, etc.

In order to fully understand MOEA parallelization, one must first identify the basic

EA components lending themselves to parallelization [6, 20]. Parallelizing the objective

functions is a simple and potentially useful idea but one that inherently only decreases

execution time and does not effect effectiveness. Some pMOEAs are potentially more

effective than their serial counterpart, but effectiveness gains typically are not realized

without cost, which may be an increased execution time. Researchers must consider these
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tradeoffs in making a decision as to which parallel paradigm to employ. Understanding

parallel concepts and their potential usefulness in MOEAs requires a discussion of MOEA

algorithms, MOEA operators, and resulting generic MOEA code. Figure 7.1 presents

generic MOEA pseudocode reflective of the more common MOEAs found in the literature

and discussed in Chapter III.

Perform Population Initialization (Size P )
Compute Each Population Member’s Fitness

(w.r.t. k functions)
Loop

Perform Clustering/Niching/Crowding
Execute EVOPs)
Compute Each Population Member’s Fitness

(w.r.t. k functions)
Conduct Selection
Generate PFcurrent (t); Update PFknown (t)

End Loop
Conduct Local Search (If Specified)
Generate PFknown ; Present As Final Solutions

Figure 7.1 Generic MOEA Pseudocode [31]

The relatively inexpensive cost of Commercial Off The Shelf (COTS) parallel com-

puting platforms, has increased the availability of these systems to researchers. With the

increased availability of parallel processing platforms comes an increased use of these re-

sources by those with varying levels of knowledge and understanding of the associated

parallel processing concepts. This chapter can aid the inexperienced as well as experienced

researcher in the implementation of pMOEAs. The reduced cost of these resources and

availability of numerous, yet different, hardware and software platforms leads to many

possible configurations and implementations. This includes the use of homogeneous super-

computers, where each processor has identical resources available to heterogeneous COTS

clusters of PCs, where the processor speeds and resources available may vary based on

each node [18, 119]. The characteristics of these systems are listed in Table 7.1.

This chapter addresses generic pMOEA concepts and their application to homoge-

neous parallel systems. Homogeneous systems are assumed to have identical resources

available. These resources include processors, backplane, memory, storage capability, net-
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Table 7.1 Parallel Processing System Characteristics

System Attributes

Cluster of PCs – Homogeneous COTS PCs
– Homogeneous COTS communications backbone

Supercomputer – Specialized hardware/software
– Homogeneous CPUs, RAMs, caches, memory access times,
storage capabilities and communications backbones

H
o
m
o
g
en
eo
u
s

Cluster of PCs – Heterogeneous COTS PCs
– Heterogeneous CPUs, RAMs, caches, memory access times,
storage capabilities and communications backbones

H
et
er
o
g
en
eo
u
s

work backbone, operating system, software and more. The parallel concepts discussed can

be extended to other configurations (heterogeneous) with varying hardware and software

resources available through load balancing techniques and other concepts [18, 119]. There

are many possibilities for heterogeneous implementations, hence an in-depth knowledge of

the system is required and they are not discussed in detail.

Parallel paradigms can be used to decompose a problem (task and/or data) and in

turn decrease execution time. These paradigms can also be used to attempt to search

more of the solution space, potentially finding “better” solutions in the same amount of

time as a serial implementation. With the general performance objectives of increasing the

efficiency and effectiveness of an MOEA, generic pMOEA architectures are now addressed.

The three major pMOEA computational paradigms are considered. They are the

“Master-Slave,” “Island” and “Diffusion” paradigms [6, 20, 31]. A combination of any

or all of these three paradigms may also be considered and is referred to as a hybrid

approach. Each paradigm may be implemented in either a synchronous or asynchronous

fashion and each has its own particular considerations. Synchronous implementations

are defined as utilizing “same-generation” populations where some sort of inter-processor

communication synchronizes all processes at the end of each generation. Asynchronous

implementations can reduce processor idle times and may be most useful in situations where

varying processor speeds, memory, or hardware exist. In an asynchronous implementation,

communications occur at varying times and there is no guarantee that the destination
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processor actually receives all of the information sent unless additional communications

are present to guarantee delivery of the messages.

In recent publications, Cantú-Paz [19, 20] and Alba [6] present a good summary of ex-

isting single objective parallel EA approaches and useful background information. Cantú-

Paz provides an in-depth discussion of the effects of various migration and replacement

policies in single objective parallel EAs. While Cantú-Paz addresses two different migra-

tion and replacement strategies, many others exist. His effort concentrates on four different

combinations of migration and replacement strategies (in the format migration strategy-

replacement strategy); random-random, random-best, best-random, best-best. Many other

possibilities exist and hence his work is not complete in this area. The research effort pre-

sented in this chapter addresses migration and replacement strategies also, but considers

these strategies in a multiobjective optimization and attempts to present a more complete

list of innovative possibilities. Alba also provides another perspective to single objective

parallel EAs but concentrates more on a historical perspective and discusses additional

hybrid approaches without presenting new concepts or results.

Coello Coello et al., present what the authors state is a summary of the existing

pMOEA approaches currently available at the time of publication of their book in 2002 [31].

While the discussion of pMOEAs is the most comprehensive to date, their work is only

a brief overview of parallel concepts and their application to MOEAs. Their discussion

does not address parallel paradigms in detail nor are the possibilities for migration and

replacement strategies in pMOEAs discussed. The migration and replacement strategies

are integral to the use of the island and diffusion paradigms and hence must be addressed.

However, Coello Coello et al. do present a thorough summary of the existing pMOEA

papers and categorize these publications based on the paradigm the authors implemented.

The deficiencies present in Coello Coello et al. motivate the presentation of research

material contained in this chapter. Background information is provided to aid the reader

in understanding the concepts discussed. The three main paradigms for use in pMOEA

development are presented.
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7.2.2.1 Master-Slave pMOEA Paradigm. The Master-Slave paradigm is

one of the easiest to understand conceptually. In this paradigm, a master processor exists

to control the execution of the algorithm and the evolutionary operators (EVOPs) while a

number of slave processors are present to conduct the fitness evaluations in parallel. The

master processor executes the EVOPs and other miscellaneous pMOEA overhead functions

including computing the Pareto front and partitioning the population across the slave

processors. The search space exploration of this paradigm is conceptually identical to that

of a serial MOEA. In other words, the number of processors being used is independent of the

quality of the solution sets found, but does effect the overall execution time. The master-

slave paradigm is illustrated in Figure 7.2. The master processor distributes population

members, controls when/where fitness function evaluations are performed and stores the

returned fitness values from the slave nodes [20, 31, 81, 82]. The master processor may also

compute fitness function calculations, but this is only typically done when the population

cannot be evenly distributed across the slave nodes.
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Figure 7.2 Master-Slave pMOEA Paradigm [31]

Since the usefulness of this paradigm lies in the increased efficiency of the pMOEA, it

is important to realize that the fitness function calculations need to be fairly complex and

time consuming in order to realize any computational speedup. The efficiency is increased

through a decrease in the execution time of the pMOEA as compared to the serial MOEA.

Speedup is defined as the ratio of the best serial MOEA run time over the pMOEA run

time [119]. In some cases, a pMOEA could require additional execution time over a serial

MOEA if the time required to communicate the population members to and from the

slave processors is longer than the time required to compute the fitness values on the

slave processor. This is usually encountered with simplistic objective functions where the

communication time overwhelms the computation time or in cases where a larger number of
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slave processors is used than there exists work to be partitioned and hence a poor speedup

is realized.

Distributing the k fitness function evaluations over a number of slave processers can

be implemented in three main ways:

1. An even distribution of the population across the slave processors. Each slave calcu-

lates each of the fitness functions for all of the population members received.

2. An even distribution of the fitness functions across the slave processors. Each of the

slave processor calculates one fitness function value for the entire population.

3. A decomposition of the fitness functions so that each fitness function is distributed

across multiple processors.

The first method of distributing the fitness functions involves evenly distributing the

population members across the slaves processors. Each slave processor calculates each of

the fitness values for all of the population members received. If the population cannot be

evenly distributed the master processor may evaluate the fitness functions for a limited

number of individuals. Since each of the slaves computes the identical fitness functions,

for an identical number of population members, each slave usually completes the fitness

function evaluations within the same amount of wall-clock time. This method is the sim-

plest of the three and does not involve an in-depth analysis of the fitness function, except

to determine that their complexity and execution time requirements lend themselves to

parallelization. Examples of this method exist in Cantú-Paz [20] and other researcher’s

work [6, 81, 82, 145]

Master-slave pMOEA execution time is easily modeled based on an SOEA master-

slave base case [20]. First, EVOP execution (selection, crossover, and mutation) time

is ignored as the execution time required for these operations is typically less than that

of fitness function computations in this paradigm. Let Tc p represent the time required

to communicate between processors prior to calculating the fitness function (the entire

population must be transmitted) and Tc a is the time required to communicate between

processors after the fitness function evaluations. These values are typically different as

the entire population member must be communicated to the slave processors but only the
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fitness function values must be returned to the master processor following evaluation. The

time required to execute the first method of distributing the fitness function evaluations is

estimated in Equation (7.1)

TMS = G×
(

P (Tc p + Tc a) +
n
∑k

i=1 Tfi
P

)

. (7.1)

where P is the number of processors used, n is the total population size,
∑k

i=1 Tfi is the

time required to evaluate one individual for all k fitness functions, and G is the number

of generations. This equation may be used to predict performance bounds on various

architectures.

The second method of distributing the fitness function evaluations involves assigning

the k fitness functions across k processors. Since each processor is required to calculate

only one fitness function value for the entire population, each population member must

be communicated to each processor. This method may yield varying computational loads

among the slaves as each fitness function may require a different amount of wall clock time

and be of varying levels of complexity. Let Tc represent the time required to broadcast the

entire population to each of the processors and Tc a is the time required to communicate

the fitness function values. The time required to execute the second method of distributing

the fitness function evaluations is estimated in Equation (7.2).

T ′
MS = G× (Tc + PTc a + n ∗ (max(Tfi))) . (7.2)

where P processors are used, n is the total population size, max(Tfi), where i = 1, . . . , k

is the time required to evaluate the most complex fitness function and G is the number

of generations. This equation may be used to predict performance bounds on various

architectures.

The third and final method of distributing the fitness function evaluations discussed

involves decomposing each of the fitness functions across multiple processors. This de-

composition is only useful in situations where the high level of complexity and associated

execution time of each fitness function warrants this type of decomposition. The fitness
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functions are partitioned in such a manner that each fitness function is distributed across

multiple processors. This method may decrease execution time as long as each slave pro-

cessor takes longer to evaluate each of the population members than to communicate with

the master processor. Since fitness functions are decomposed across multiple processors

no guarantee exists that each slave processor is assigned equal computational loads; hence,

some slaves may be idle for longer periods of time than others.

Real-world problem domains such as Computational ElectroMagnetics or Fluid Dy-

namics (CEM or CFD) often partition the fitness function evaluations among slave pro-

cessors. Example parallel codes incorporating load balancing already exist for CEM and

CFD applications. These parallel codes could be of great use in efficiently solving CEM

and/or CFD optimization problems with a pMOEA, assuming that CEM and CFD prob-

lems lend themselves to a multiobjective MOP formulation [126, 127, 128, 155]. pMOEAs

solving these MOP types are often interfaced to a specialized problem domain dynamic

simulation model written by scientists or engineers from the specific discipline. In general,

such interfacing is not very difficult [23].

The time required to execute the third method of distributing the fitness function

evaluations is estimated in Equation (7.3).

T ′′
MS = G× (Tc + Tcom + PTc a + n ∗ (max(Tfij))) . (7.3)

where Tc is the time required to broadcast the entire population to each of the processors,

Tcom is the time required to combine the decomposed fitness function values, Tc a is the

time required to communicate between processors after the fitness function evaluations,

P processors are used, n is the total population size, max(Tfij) is the time required to

evaluate the most complex fitness function where i = 1, . . . , k and j is the number of

partitions each fitness function i is decomposed into, and G is the number of generations.

This equation may be used to predict performance bounds on various architectures.

Efficiency is the master-slave paradigm’s main objective, and hence, the actual

method of fitness function decomposition used is important to achieve the highest effi-

ciency levels. A particular method may be preferred based on available computational
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resources and the level of complexity of each of the fitness functions that are present in

the MOP being solved.

7.2.2.2 Island pMOEA Paradigm. “Island” paradigm pMOEAs are based

on the phenomenon of natural island populations evolving in relative isolation from other

islands, such as might occur within some oceanic island chain. These pMOEAs are some-

times called “distributed” as they are often implemented on distributed memory computers;

they are also called multiple-population or multiple-deme [6]. This paradigm is illustrated

in Figure 7.3. In Figure 7.3 the communication channels for migration of selected individ-

uals is illustrated in a ring fashion but specific paths are assigned as part of the pMOEA’s

design strategy and are then mapped to some physical communication backbone of a par-

allel platform. Communication may occur in logical or physical geometric structures such

as rings, meshes, toruses, triangles, and hypercubes.

MOEA Parallelization 279

computationally expensive component of MOEAs communication and EVOP
cost should then be fairly inconsequential in comparison. This is not meant to
imply that scalability is never a problem, but master-slave implementations gen-
erally become more efficient as objective evaluations become more expensive.
However, note that computational loads must be evenly split among slave pro-
cessors else significant lag times may exist between generations as the master
processor waits for slave evaluations to complete.

3.2 Island Model
“Island” model MOEAs are based on the phenomenon of natural populations

relatively isolated from each other, such as that occurring within some island
chain. Parallel MOEAs based on this paradigm are sometimes called “dis-
tributed” MOEAs as they are often implemented on distributed memory com-
puters; they are also termed multiple-population or multiple-deme MOEAs. No
matter their name, the key defining characteristic is that individuals within some
particular (sub)population (or island) occasionally migrate to another one. This
paradigm is illustrated in Figure 7.4. Note that the communication channels
shown are notional; specific channel assignments are assigned as part of the
MOEA’s migration strategy and are mapped to some physical backbone.
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Figure 7.4. Island Paradigm

Conceptually, the overall MOEA population is divided into a number of
independent, separate (sub)populations (or demes); an alternate view is one
of several small, separate MOEAs executing simultaneously. Regardless, al-
though evolving in isolation for the majority of the MOEA run, individuals
occasionally migrate between one particular island and its neighbors (note that
each island is often located on it’s own processor). The EVOPs (selection,
mutation, and recombination) operate within each island strongly implying the
separate populations are searching very different regions of the overall search
space. Each island could also have different parameter values as well as a dif-
ferent MOEA structure. This model does require identification of a suitable
migration policy to include how often migration occurs (i.e., how many gen-

Figure 7.3 Island pMOEA Migration Paradigm [31]

Each processor (or island ) in this paradigm, executes an MOEA simultaneously with

other processors. Each of the processors has an independent or separate (sub)population

(or deme) resident on it. The MOEA, and its associated parameter settings, executing

on each island may be identical to the MOEA executing on other islands or may be

entirely different. This characteristic of an island paradigm pMOEA mimics the differences

noted between inhabitants of oceanic island chains. Each island evolves in isolation of

the other islands for a portion of the pMOEA run but individuals occasionally migrate

between one particular island and its neighbors based on some criteria and neighborhood

structure [20]. Identical or different EVOPs may operate on each island, strongly implying

each population is searching very different regions of the overall solution space. One goal

of this process is to search a larger portion of the landscape, in the same amount of time,
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as a serial MOEA. This additional search capability increases the possibility of generating

more effective results.

Using different random number generators, random number seeds, and MOEA pa-

rameter values further strengthens covering more of the landscape. The island paradigm

requires identifying suitable migration policies to include how often migration occurs (i.e.,

how many generations between migration events), how many population members migrate,

how the population members are selected for migration and how the population members

are selected for replacement on the receiving processor [20]. The EVOPs executing on each

island control the mixing of BBs present in the population. The migration events work to

distribute the “best” population members which typically contain the “best” BBs across

the islands. Each MOEA processes the good BBs and may generate better solutions than

a serial MOEA. While the generation of better results by a pMOEA is not guaranteed,

the additional search capability of multiple processors and mixing of the BBs through

the different EVOPs increases the probability of generating different population members

compared to a serial MOEA.

Variants of the island paradigm are possible. These variants may use different com-

munication strategies, different population representations, different decision variable res-

olutions on each island or even different search methods on each island. An island imple-

mentation is sometimes termed course-grained parallelism because each island (processor)

contains a large number of individuals. Considering that many variants of the island

paradigm are possible, it is not feasible to address each possibility. However, one can

group variants of the island paradigm into four major groupings. The four major variants

of the island paradigm are:

1. Homogeneous MOEAs and/or parameters.

2. Heterogeneous MOEAs and/or parameters.

3. A combination of different optimization approaches, not necessarily multiobjective.

4. Partitioning of the genotype or phenotype region so as each island can search a

different, specified area of the landscape.
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The first and second island paradigm approaches are relatively easy to understand.

The first involves the use of the same MOEA with the same parameter settings execut-

ing on various processors with intermittent communications occurring. This approach is

conceptually the simplest and possibly the easiest of the four variations to implement and

appears in a number of publications [56, 124]. The second variant of the island paradigm

involves the use of different parameter values on each of the islands. Each of the islands

may execute an identical MOEA (with different parameter values as in Schnecke and Vorn-

berger [171]) or entirely different MOEAs on each island.

The third variant of the island paradigm is the combination of different optimization

approaches. These optimization approaches do not necessarily have to be of multiobjec-

tive nature. One of the methods used to solve an MOP is the use of a single objective

approach executed multiple times. An example pMOEA using this approach combines sin-

gle and multiobjective EAs to attempt and solve an MOP. In this approach, DCMOGA:

Distributed Cooperation model of Multi-Objective Genetic Algorithm, Okuda, Hiroyasu,

Miki, and Watanabe execute different single objective EAs and an MOEA on multiple

islands [150]. Periodic migrations occur between the islands and at the termination of the

pMOEA, PFknown is presented to the researcher.

The fourth variant of the island paradigm involves partitioning the genotype or phe-

notype space amongst the islands. Periodic migrations allow each island to maintain a

population within the bounds it is assigned in decision variable or fitness function space.

Deb, Zope, and Jain [45, 55] implement this approach in a pMOEA. The authors approach

is based on the idea of isolating each processor to search a specific phenotype region but

allows each processor to devote some effort to searching the entire space. The authors

further implement a biasing mechanism to bias the search and in turn force each island to

search only a particular region of the space [55].

Given that within each generation Tce is the time for all islands to complete execution,

Tmig is the time to complete neighborhood migration, Tcoll the time to collect/compute

the overall Pareto front/Pareto optimal set, and G is the number of generations, the island

7-17



paradigm’s meta level running time, TI , may be estimated as presented in Equation (7.4).

TI = G× (Tce + Tmig + Tcoll) (7.4)

7.2.2.3 Diffusion pMOEA Paradigm. Like the master-slave paradigm, the

“diffusion” paradigm deals with one conceptual population, where each processor holds

only one to a few individuals. This is sometimes referred to as fine-grained parallelism [6].

A neighborhood structure is imposed on the processors and EVOPs occur only within those

neighborhoods. These neighborhoods may be overlapping static neighborhoods or dynam-

ically may change over a number of generations. The neighborhoods may be a square,

rectangle, cube, or other shape depending upon the number of dimensions associated with

the diffusion algorithm topological design. As “good” solutions arise in different areas of

the processor pool, they then spread or diffuse slowly throughout the entire population

due to the overlapping or dynamically changing neighborhoods [20, 31].

The communication costs may be very high within a neighborhood as the pool of

individuals to select from are distributed across a number of processors. This paradigm is

illustrated in Figure 7.4. Observe the example shown is implemented on a logical mesh with

a square neighborhood of four processes. The overall logical grid communication structure

is mapped to some physical communication backbone. Other examples of possible logical

neighborhood structures include a ring, a square, a torus or a triangle, each reflecting some

associated number and arrangement of neighbors within a multi-dimensional grid.
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Figure 7.4 Diffusion pMOEA Migration Paradigm [31]

This paradigm typically involves more communication than the other paradigms and

hence may be best suited to specific situations where the communication overhead does

not degrade the overall performance of the pMOEA. For example this paradigm is suited
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to shared memory architectures where communication is unnecessary as each processor

has access to the memory location where the entire population exists at high communica-

tions speeds. This paradigm also may require additional parameter settings over the other

paradigms and may offer many more alternatives to the communications process. One can

control the communication within a neighborhood as well as the communication between

neighborhoods differently, possibly offering more capability to the researcher, but at addi-

tional parameter tuning. An alternative to the three main paradigms discussed is a hybrid

paradigm or a combination of any or all of the three main paradigms. This paradigm

is what Cantú-Paz terms the class of hierarchical hybrids; at a high level of abstraction

these are multiple-deme algorithms with each deme executing a particular MOEA instan-

tiation [20:pp. 126-128]. He proposes three island paradigm hybrids (abstracted to the

pMOEA domain) where:

1. Each island contains a diffusion pMOEA,

2. Each deme is a master-slave pMOEA and

3. Each island is composed of an island pMOEA.

Another innovative computational pMOEA design incorporates a co-evolutionary

hierarchical pMOEA. A tree or graph search structure is employed in an attempt to find

better pMOEA algorithmic structures for a given problem domain. In this paradigm, the

leaves of the tree structure are various MOEA instantiations with associated parameter

values. As their concurrent execution completes, the next level of the tree evaluates the

performance of the lower leaf nodes and selects new parameter values based on those

results; they may also deterministically or stochastically add other algorithmic constructs

to improve their local MOEA instantiation. This development process continues through

the tree’s levels to the root node [95, 200]. Assuming a binary tree structure with nMOEAs

executing at the lowest level and l levels, this paradigm is illustrated in Figure 7.5. Note

that each leaf could have any number of children, and although the complexity would be

much higher any particular node could itself be a pMOEA.

7.2.2.4 Related pMOEA Design Issues. Regardless of the pMOEA paradigm

implemented, several issues must be addressed in order to ensure that equivalent or po-
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Figure 7.5 Example Hierarchical Paradigm

tentially improved performance is achieved through the parallelization of an MOEA. In

designing and implementing a new pMOEA from scratch, guidelines and issues discussed

can help to ensure major problems are dealt with prior to implementation of the code.

In considering the parallelization of an existing MOEA, an evaluation of the code must

be conducted in order to determine if the algorithm lends itself to parallelization or if a

rewrite of the code may be more beneficial.

In the master-slave paradigm, the pMOEA developer must account for the possible

effects (both good and bad) of data and fitness function decomposition. An MOEA’s un-

derlying data structures may effect effective and efficient parallelization. In other words,

how and where necessary data is stored, its quantity, to where (and when) it must be com-

municated, the parallel communication libraries selected, the underlying hardware used,

and the implementation of the parallel communication operations directly effects the over-

all performance of the pMOEA. For example, consider a generic master-slave pMOEA

implementation evaluating k fitness functions where each slave processor evaluates only

one fitness function. Given these conditions perhaps only a subset of the components of

the underlying data set (e.g., population, decision variables, input data) are needed by

each processor, but if each processor computes a completely different fitness function, and

a shared memory system is not used, the entire data set may need to be sent to each proces-

sor for evaluation. In this example it may be more efficient to have each processor evaluate

all of the fitness function values for a portion of the population. Another issue encountered

with the use of the Message Passing Interface (MPI) as the underlying communications

library is that data to be sent in a single message must be present in contiguous memory

locations otherwise multiple messages are required [156]. When sending a large popula-

tion of individuals, it is more efficient to send a single large message versus sending many
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small messages. This illustrates how critical it is to understand the underlying hardware

constraints of the system selected and the method in which parallelization is implemented.

In real-world design problems this associated data set may be quite large. In many cases,

the communications between processors is a considerable portion of the execution time

of a pMOEA. Therefore, reducing the amount of communications required may speed up

overall algorithm execution.

Inhibiting the ability to effectively and efficiently parallelize an MOEA is its inher-

ently sequential nature due to its EVOPs’ attributes. Each EVOP typically requires access

to the entire population in order to “effectively” conduct the operation in a Master-Slave

design. However, fitness function computations typically do not have that limitation. It is

instructive to consider how parallelizing multiple fitness function computations might be

accomplished and what implications may subsequently arise. Careful consideration reveals

this task allows parallelism in one of three ways. Various options include, each function’s

evaluation might be assigned to different physical processors, (sub)populations might be

assigned for evaluation of all k functions on different processors, or each individual’s evalu-

ation for one of the k objective functions might be assigned across several processors. The

following issues are identified for consideration given these Master-Slave variations.

1) Assign each function evaluation to a processor

When implementing the first option one must consider the possibility that each

fitness function’s execution time may be substantially different. This is easily illustrated

in a heterogeneous environment where processor speeds vary greatly between different

machines. In this example, randomly assigning each of the k function evaluations to

processors may not be the most efficient strategy if one function’s evaluation takes several

times longer than any of the others (i.e., Tc(f1) >> Tc(fi) >> . . . >> Tc(fk)). Static or

dynamic load balancing may help improve the efficiency in this example but additional

overhead is required [119]. Consideration of the communications backbone is essential to

implementing an efficient pMOEA. If a high-speed communications backbone is present in

a shared memory system, the requirement that each processor use the entire population can

be efficiently executed. However, this same requirement on a non-shared memory system

with a low-speed communications backbone most likely cannot be efficiently executed.
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2) Assign subpopulations to processors

When implementing the second option, equal fractions of the population are assigned

to different processors where all k objective functions are evaluated. Here, identical num-

bers of individuals are evaluated via identical objective functions. If communications are

not a large fraction of each processors’ computational workload, then this is likely an

efficient parallelization method. However, note that in some design problems objective

function evaluation cost may widely vary.

3) Parallelize each function evaluation.

The last option may be useful when evaluating extremely expensive objective func-

tions. In this case, each individual’s evaluation of each function is split among processors.

As stated before, some form of load balancing may be required to obtain efficient use of pro-

cessing resources as each fitness function and/or each individual’s evaluation may consume

differing amounts of computational resources. Problem domains such as Computational

ElectroMagnetics or Fluid Dynamics (CEM or CFD) may find this option useful. Example

parallel codes with load balancing already exist and they can be of use in efficiently solving

CEM/CFD optimization problems using a pMOEA [126, 127, 128, 155].

Island paradigm pMOEAs encounter similar issues related to the efficiency of the

pMOEA. The overall goal in a non-shared memory system is to reduce the amount of

communications that are required as each communication event takes time to complete.

In the island paradigm, communications are required but possibly not as often as in the

master-slave paradigm. The island paradigm occasionally migrates individuals in order to

maintain diversity in the population and propagate the “good” BBs to other processors. A

tradeoff must be made between the amount of communications deemed necessary to find

“good” potential solutions and the overall pMOEA execution time that a researcher can

tolerate.

Communication in the island paradigm involves how often one communicates but

a more basic issue is which population members to communicate. Single objective island

paradigms typically send the single best population member or the top few (usually a small

number) population members. In pMOEAs using the island paradigm, there typically is
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no single best or top few. Instead, a multiobjective approach using Pareto dominance

generates a Pareto front which contains the best found population members. Considering

that PFcurrent

(

p
t bm x

)

typically varies in size, this increases the difficulty of implementing

an island pMOEA. Another related issue is the selection of members to replace on the

receiving processor. In single objective EAs, the migration of the best member may lead

to the replacement of the worst member on the destination processor. In pMOEAs, the

migration of a set can lead to a number of possibilities in terms of replacement. There

typically is no single worst member but a set of worst members if one considers ranking the

Pareto fronts. Hence, the replacement policy is not straight forward either. Currently the

literature offers little guidance in the area of migration and replacement in pMOEAs [26].

Related to this communication issue is the selection of a population size to use on

each island processor. If the goal is to reduce the execution time as compared to the

serial implementation, one may choose to use a population size of p/n where p is the serial

population size and n is the number of nodes. Alternatively, one may allow the pMOEA

to execute within a similar time to the serial MOEA and hence allow a population of p on

each processor. This increases the probability of finding “better” solutions as more of the

landscape is searched in the same execution time as the serial MOEA. Finally, the overall

solution quality may be of primary concern and a population size of much greater than p

may be used on each processor. Each of these possibilities may also be dependent on the

selection of appropriate migration and replacement policies, intervals, neighborhood sizes,

and definition of neighbors. The policy dictates which population members are migrated

and which are replaced on each processor while the interval dictates how often these events

occur. The neighborhood size and definition of neighbors dictates how many migration and

replacement events occur each generation and among whom. The larger the neighborhood,

the greater the number of communication events, and typically the longer the algorithm

takes to execute.

At first glance a researcher might interpret the execution time of the diffusion paradigm

as less than the execution time of a serial MOEA since an overall population size of p is

typically used with only a few population members per processor. However, this is highly

dependent on the underlying communications and memory architecture. Since the EVOPs

7-23



are conducted only within each neighborhood, a large amount of communication is nec-

essary to execute this paradigm. Additionally, the definition of the neighborhood may be

critical to the performance of this paradigm as well as the number of population members

present on each processor. The complexity and number of parameters associated with the

diffusion paradigm may be the reason for the low popularity of this paradigm [26].

Another issue discussed in the pEA literature and applicable to pMOEAs concerns re-

ports of superlinear speedups. This issue is present in the pMOEA community as well [206].

Claims of superlinear speedup may cause controversy. Superlinear speedup occurs when

the parallel algorithm execution time is reduced by a factor greater than the number of

processors used. Cantú-Paz addresses this issue in some detail [20:pp. 114-117]. It ap-

pears many researchers report superlinear speedups when parallelizing their EAs and one

might expect pMOEA researchers to do the same. The issue lies within the comparison

of the serial EA’s effort expended versus the parallel EA’s. For example one can attribute

superlinear speedup to the fact that a pMOEA finds better solutions by not examining

the same number of points as a serial MOEA, or through the use of a smaller or different

phenotypical region for parallel search.

The typical argument against superlinear speedups is summarized by Cantú-Paz who

argues the main reason to distrust superlinear claims is that if one was to execute all tasks

of a parallel program using threads on a single processor, the total execution time cannot

be less than that of a serial program performing the same computations [19]. He states the

assumption is that the serial and parallel programs execute the exact same tasks which is

typically not true in parallel EAs or pMOEAs. One must then cast superlinear speedups

with the statement that identical areas of the search space may not have been searched by

both algorithms.

For example, the master-slave paradigm’s search process is the same as an associated

serial MOEA. The number of fitness evaluations is equal and chromosomes created are

identical. Depending upon the fitness function’s complexity and number of processors used,

one may then obtain a close to linear speedup performance. However, an island or diffusion

paradigm’s implementation requires statistically uncorrelated random number generators

and the resulting landscapes are completely different than that of a serial version. As
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such, the pMOEA may find a “better” or equivalent solution quicker or even slower than

the serial version. One must be careful in stating claims of superlinear speedup without

describing the actual portion of the search space covered by each algorithm.

These are some of the major design issues encountered in the development of a

pMOEA. The underlying hardware, software, and data structures are all integral compo-

nents in designing an efficient and effective pMOEA. Numerous minor issues must be dealt

with in the development of a pMOEA. A discussion of such issues is beyond the objectives

of this effort. This summary is presented to aid a researcher in addressing many of the

important issues in pMOEA development.

7.3 pMOEA Analyses and Issues

This section presents a largely qualitative analysis of the currently known pMOEA

research. High level topics are addressed, first highlighting several issues that are given

little attention or even ignored in the literature. The section concludes with a broad

discussion of the major factors to consider when developing, implementing and analyzing

pMOEAs, as well as supporting claims of important issues currently unexplored in the

pMOEA field.

7.3.1 pMOEA Observations. An active research community interest in pMOEAs

is not currently indicated. In fact, very few pMOEA publications exist in over 1000 con-

temporary MOEA publications [26, 31, 62, 110, 120, 151, 181]. This indicates that MOEA

researchers currently are not pursuing pMOEA techniques. This may be due to the com-

plexity of parallel and distributed computation, a limited understanding of parallel pro-

cessing techniques as well as the difficulty with debugging parallel code.

As is the case with their serial MOEA analogues, pMOEAs have been applied in

solving various real-world engineering problems. For example, Coello Coello et al., in-

clude pMOEA solutions to a variety of MOPs [31]. Many of these approaches use the

master-slave computational parallel paradigm because of the complex objective functions.

However, Cantú-Paz cites that island paradigm implementations are the most popular par-

allel SOEAs [20:p. 49]. The same fact exists for pMOEAs. Almost half as many island
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implementations are identified as the master-slave and diffusion combined. This may be

due to the island paradigm’s ease of implementation as serial MOEA code is easily inte-

grated to create a pMOEA. This is especially true in the case of the island paradigm where

little to no inter-processor communication may be selected.

Some of the real-world application areas of pMOEAs include the following master-

slave pMOEA implementations: microprocessor cache memory design [178], airfoil de-

sign [104, 126, 127, 128, 155], computational fluid dynamics [129], mobile phone network

design [137], and X-Ray plasma. Some of the real-world application areas using the island

paradigm pMOEA include: vehicle scheduling [15], airfoil designs [157, 158], rotor blade

design [124], aerodynamic structural designs [56], and facility layout problems [171]. The

diffusion paradigm has also been applied to real-world MOPs, some of these application

areas include: route planning problems [98] and sensitivity analysis problems [161].

The known pMOEA papers generally do not address many details of the development

and implementation of the actual pMOEA. Typically there is little discussion of why

the pMOEA or parallel paradigm is selected for attempting to solve a specific MOP. In

general, little topology, migration, or selection details are presented. Without an adequate

discussion of the pMOEA used and the MOP being solved, one cannot evaluate the quality

or performance of the pMOEA presented.

A few publications exist in which pMOEA researchers have presented some of these

concepts in a clear manner. Okuda [150] presents an island paradigm pMOEA, utilizing

k+1 islands, where k is the number of fitness functions in the MOP. In this implementation,

k of the islands have a single objective EA executing to solve one of the k fitness functions

as a single objective problem. The remaining island uses an MOEA to solve the fitness

functions simultaneously. The communications between the islands involves the passing of

the best population member with respect to the fitness function solved on that island to

the MOEA or back to the single objective EA. The results of this method are promising

but additional testing is necessary to evaluate the performance of this pMOEA.

In an application to the Vehicle Routing Problem, Jozefowiez [105] proposes a par-

allel technique for MOEAs which they refer to as Elitist Diversification. This innovative
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technique involves maintaining multiple archives. A standard elitist archive is maintained,

as typical in an MOEA, of PFcurrent . Other archives are maintained in an elitist fashion

with respect to one of the objective functions. For example, in the case of a two objective

maximization MOP, an archive is maintained containing the Pareto front when calculated

as a maximization of both fitness functions, another as calculated as a maximization of f1

and a minimization of f2 and a last archive as a minimization of f1 and a maximization

of f2. Solutions from all of the archives are included in the population with the hope that

the archives push the population into unexplored areas of the landscape. This is imple-

mented in an island paradigm in which periodic communications of the standard elitist

archive takes place. The authors present other modifications of this scheme. The results

show that this elitist diversification method improves the diversity along the Pareto front

in some cases but also increases the execution time of the MOEA.

Another pMOEA island paradigm idea involves isolating each processor to solve a

different physical region of the Pareto front. As one does not know where the Pareto

front is prior to execution, this approach can only be implemented once the structure of

the Pareto front has been identified. This has been referred to as a guided domination

concept [45, 55]. The concept deserves attention and appears to be simplistic but in

actuality may not be feasible. Partitioning the Pareto front into sections and distributing

those sections to a number of processors attempts to allow each processor to search in

a certain area of the landscape. The problem encountered is in how to ensure that the

processors only search and generate points in their restricted area of the landscape. One

can force the processors to generate points until enough are found in the restricted space

to enter the next generation, but for certain MOPs, this process may take infinite time

if it is even possible. There is no guarantee that selecting two points on a certain region

of PFcurrent (t) and performing recombination yields another point within that region.

Another approach, possibly more efficient, may be to restrict each processor to a region

of the genotype space based on Pcurrent (t). In this implementation, it may be possible to

restrict each processor to utilizing genotype variables within a specific solution region.

A variant of the island paradigm, that at first glance appears to be an easy way of

implementing a pMOEA is to isolate each processor to search a specific, non-overlapping
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region of the phenotype space [45, 55]. The entire phenotype space must be covered and

each portion of the space must be assigned to each of the processors a priori. A difficulty

with this approach is that each island most likely generates phenotype values outside its

constrained phenotype region. One way to handle this is to continually force each proces-

sor to generate points until the required number are found within its assigned region. For

certain MOPs, this process may take a long time, and it is a waste of processing power

and resources. Individuals could migrate to the appropriate processor or just be deleted

from the population, but this may require phenotype sorting and additional communica-

tion overhead. The “standard” island paradigm, utilizing each processor to identify the

complete Pareto front, appears to be a more efficient method even though neither method

is guaranteed to generate PFtrue .

A specific example of this variant assumes a convex Pareto front. It is based on

the idea of isolating each processor to search a specific phenotype region but allows each

processor to devote some effort to searching the entire space. Deb et al., proposes what

the authors refer to as, a guided domination concept. The guided domination concept is

defined using a weighted function of the objectives as presented in Equation (7.5) [55].

Ωi(f(x)) = fi(x) +
M
∑

j=1,j 6=x

aijfj(x), i = 1, 2, . . . ,M (7.5)

where aij is the amount of gain in the j-th objective function for a loss of one unit in

the i-th objective function [55]. Deb further defines a different domination concept for

minimization problems as:

Definition 45 (Guided Domination Concept): A solution x(1) dominates another

solution x(2) if Ωi(f(x
(1))) ≤ Ωi(f(x

(2))) ∀ i = 1, 2, . . . ,M and the strict inequality is

satisfied for one objective [55]. 2

Using appropriate weights determined from known points on the Pareto front, Def-

inition 45 enlarges the dominated region of the phenotype space as shown in Figure 7.6.

The lines appearing in Figure 7.6 represent the weighted functions as they pass through
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the objective space and cross at the Pareto front point A. The hashed region represents

the region in objective space dominated by point A.

*+*+*+*+**+*+*+*+**+*+*+*+**+*+*+*+**+*+*+*+**+*+*+*+*
,+,+,+,,+,+,+,,+,+,+,,+,+,+,,+,+,+,,+,+,+,

-+-+-+-+--+-+-+-+--+-+-+-+--+-+-+-+--+-+-+-+--+-+-+-+--+-+-+-+--+-+-+-+--+-+-+-+-

.+.+.+.+..+.+.+.+..+.+.+.+..+.+.+.+..+.+.+.+..+.+.+.+..+.+.+.+..+.+.+.+..+.+.+.+.

1

2f2

f

a
A

region
Dominated f

region

A

Dominated

f1

1/a12
21

(b)(a)

Figure 7.6 (a) Dominated Region (Standard Definition) and (b) Dominated Region (New
Definition) [55]

Deb et al., state that the purpose of this is to bias the search through the weighted

functions and in turn search only a particular region of the space. This bias is towards the

center of where the weighted functions cross in objective space.

The new definition permits processor state-space domain overlap. Thus, the returned

Pareto front may not be totally nondominated. Therefore, each processor using this new

definition only finds the “real” convex Pareto front in a region based upon the old non-

dominated definition. The other points found above and below this convex Pareto front in

the entire search space are dominated in the real sense, but not in this new sense. In order

to successfully accomplish this, one must have knowledge of a limited number of vectors

on the known Pareto front. The number of vectors selected that allocate the overlapping

regions of processor search is the number of processors required.

1

2

1

2

P=4P=1 P=2 P=3

1 2

1

3 4
3

f
1 1

Ω
TransformedOriginal

f
2

f
3 3

Ω

2
Ω

Figure 7.7 Generic Objective Function Processor Allocation ([55])

Using the Ω transformation, all regions of the convex Pareto front are accounted for

with what one hopes is an “equal slice” of the front. With known convex examples, the

concept deserves attention, but it appears to be somewhat simplistic. In actual real-world
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problems, it may not even be feasible due to Pareto front structure. Even for convex

fronts, problems occur in determining how to find initial members of the front to ensure

the processors generate vectors in their restricted search region. This is the intent of the

revised domination definition. Figure 7.7 presents a generalized allocation for two objective

functions, given 1 to 4 processors. Observe there is no guarantee that selecting two or more

members of the front on a given processor and in a certain region, yields another vector

within that region through the use of EVOPs. This is only one variant of the island

paradigm but illustrates the difficulty of attempting to assign regions of the phenotype

space to specific processors for multiobjective optimization.

Many of the mentioned details are missing from pMOEA publications. This may be

due to the fact that there is no outline suggested by researchers of which pMOEA attributes

and settings are important to discuss. Additionally, none of the existing publications in

the literature state what is required to design a “good” pMOEA [26, 31, 62, 110, 120,

151, 181]. However, this does not justify the limited details and discussions that appear in

most pMOEA publications. No theoretical or practical studies are yet known comparing

the efficiency and effectiveness of the three major pMOEA paradigms or discussing the

possible parameter settings for the most popular paradigm, the island paradigm. Due to

its popularity, one might expect to find a detailed comparison of the possible migration and

replacement strategies but this type of study currently does not exist. This contribution

is essential to support a decision as to which parallel paradigm a researcher can chose for

implementation. These concepts are addressed in the following sections.

It is important to recognize that improvements are constantly being made to the

speed and capabilities of computer systems. With these improvements in capabilities

comes the potential to improve the performance of the various pMOEAs. Additionally,

pMOEA researchers must use high performance computing and parallel EA experts to

increase their understanding and ability to integrate parallel concepts with MOEAs. This

integration of knowledge along with experts from the problem domain may lead to the

generation of better solutions than currently exist for real-world application MOPs.
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7.3.2 pMOEA Suitability Issues. As indicated in the previous section, the limited

number of existing pMOEAs currently yield good results when applied to various problem

domains. However, in general, the authors of these pMOEAs present little or no discussion

regarding the suitability of the application of their pMOEA to particular MOPs [26, 31,

62, 110, 120, 151, 181]. More discussion of the characteristics of the MOP that make it

suitable to use an pMOEA is necessary. This includes, but is not limited to, a discussion

of the search space, the complexity of the fitness functions, the underlying data structures,

and reasons why a pMOEA is anticipated to perform as good as or better than a serial

MOEA. This information is critical to increasing the level of understanding of pMOEAs

and MOP characteristics that make these MOPs suitable for parallel processing.

As stated in the EA and MOEA literature, a researcher should have a thorough

understanding of the problem being solved and the algorithm selected in order to attempt

to efficiently and effectively solve the problem [13, 31, 44, 78, 184, 190]. One must make

a determination if any gains are anticipated to be realized from the use of a parallel

approach as compared to the serial approaches that exist as additional overhead may be

encountered with the added complexity of parallel processing. For example, it is fairly easy

to realize that a master-slave pMOEA applied to an MOP incorporating complex fitness

functions that require hours to calculate on a specific machine can realize performance

improvements over a serial MOEA. This determination requires an understanding of the

algorithm, problem and underlying hardware and software platforms chosen for execution.

Dependent on a researcher’s limitations in terms of time, resources, and goals sometimes

makes this a complex determination.

Considering that researchers agree that an understanding of the problem and algo-

rithm domains is critical to implementing an efficient and effective algorithm [13, 31, 44,

78, 184, 190], the following sections attempt to develop a better understanding of pMOEAs

through a discussion of the various parallel paradigms. This discussion concentrates on

the island paradigm due to its popularity and relative ease of implementation. The contri-

bution made is viewed as an aid to help advance researchers’ understanding of parallelism

in MOEAs and their ability to make intelligent decisions regarding the effect of various

parallel concepts in solving MOPs.
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7.3.3 pMOEA Hardware and Software Architecture Issues. As numerous parallel

computing platforms exist, it is not possible to discuss all of the available or possible hard-

ware and software combinations. Researchers should consult the experts relating to the

specific capabilities of any hardware or software system. The research presented discusses

generalized techniques that are applicable to various systems. While each of these systems

may or may not have specialized techniques that provide the ability to increase perfor-

mance in any one aspect of the pMOEA execution, the generalized discussion presented is

necessary to provide a high level understanding of issues that may be encountered.

The choice of implementation languages from a programming standpoint, such as

FORTRAN, High-Performance FORTRAN (HPF), C++, ANSI C, C#, XML, to name a

few, is based on the researcher’s knowledge, availability of existing codes, or requirements

of the systems available for use [6, 18, 119, 125]. Parallel communications are implemented

through communication libraries such as the Message Passing Interface (MPI) [153, 156]

or other specialized software such as the Parallel Virtual Machine (PVM) [72] or Open-

MP [24]. Either includes communication routines that are readily incorporated into ex-

isting MOEA implementations. Both are portable across a wide variety of computer ar-

chitectures with multiple processors (either homogeneous or heterogeneous), or symmetric

multiprocessors (SMP) – multiple processors per node using the same local memory. Note

that MPI, Open-MP, and PVM are a few of the many possible methods of controlling

pMOEA communication. Others include JAVA and C++ sockets, JAVA, JAVA RMI (Re-

mote Method Invocation), DCOM (Distributed COM), and CORBA (Common Object

Request Broker), all of which use multi-threading middleware communication techniques

in a distributed computational environment [125].

Standard models of parallel computer architectures include single instruction, sin-

gle data stream (SISD); single instruction, multiple data stream (SIMD); and multiple

instruction, multiple data stream (MIMD) [119]. SISD architectures are standard single

processor computers. The SIMD architecture requires each processor to execute only a

given broadcast instruction on different local data. This architecture for example is useful

for a diffusion paradigm implementation. MIMD architectures are useful for execution of

different EAs and MOEAs with different data. Most MIMD homogeneous architectures
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and associated compilers reflect a distributed memory structure, this being the “more”

generic MOEA environment for parallel implementation of the master-slave, island, or hy-

brid paradigms. Also, computational platform selection should address the issue of shared

memory in SMP architectures versus distributed memory. Moreover, Internet implemen-

tations may also be considered for pMOEA implementations [12].

Several disparate MIMD architectures are used in current pMOEA implementations.

For example, heterogeneous Sun workstations (80-120 processors), IBM SP-2s (8, 16, 32

and 64 processors), SGI Origin 2000s (8 processors), homogeneous LINUX boxes (24 pro-

cessors), and Beowulf clusters, Cray T3Ds (32, 64 and 128 processors), a 16-node Motorola

MPC 601, a 16-node SGI Power challenge, a heterogeneous DEC Alpha system (8 and 18

nodes), Sun Ultra workstations (2, 4 and 6 processors and 2, 3, 4, 6, 9 and 12 processors), a

32-node Multi-cluster T-800, and dual Pentiums to name a few [31]. Each of these systems

may be efficiently used by multiple paradigms or only a single paradigm. This determina-

tion is made based on the details of the underlying hardware, software and requirements

of the parallel paradigm. The computational capabilities of any system may have a large

effect on pMOEA performance. Those capabilities include but are not limited to proces-

sor speed, cache and local memory capacities, local and global memory access speeds and

communication backbones. Commonly used high speed backbones include Ethernet, Fast-

Ethernet, Gigabit-Ethernet, Myrinet, Wulfkit, and the Fiber Distributed Data Interface

(FIDDI) [18, 119]. It is also noted that the physical or logical architecture of the connection

of the processing nodes may include rings, meshes, and hypercubes to name a few, each

with advantages and disadvantages. The associated communication software may be tuned

or optimized for the given hardware configuration and hence any given parallel library may

yield drastically different performance given its implementation and underlying hardware

and hence this must be taken into consideration.

7.3.4 pMOEA Test Function Issues. The selection of test functions for pMOEAs

encounters the same issues discussed in Chapter IV. A wide variety of MOP test functions

with varying characteristics should be used when evaluating the general performance of

an pMOEA. Additionally, if the pMOEA is only going to be applied to a specific problem
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domain, then its performance when applied to MOPs with similar characteristics must

be evaluated. The main objective of testing an pMOEA implementation is to evaluate,

compare, classify, and improve algorithm performance. In evaluating the performance of

various algorithms, this testing should focus on the pMOEA’s general effectiveness and

efficiency. Specific MOP efficiency and effectiveness performance can also be summarized

to determine the classes of MOPs for which various pMOEAs or pMOEA operators and

settings achieve good performance.

Valid tests may include pedagogical or MOP test functions, a pMOEA test suite,

combinatoric multi-objective problems and/or real-world problems. Before construction,

the literature should be consulted as many researchers have spent considerable time on

constructing, evaluating, and analyzing various MOP test suites [43, 46, 47, 52, 184, 209].

These MOPs as well as others can also be evaluated to determine if they possess charac-

teristics that make them easier to solve with a parallel versus a serial approach.

General test suite guidelines are discussed in Chapter IV. While pMOEA test suites

have not been explicitly defined in the literature, it is reasonable to state that various

MOEA test function MOPs are valid to use for testing pMOEAs. MOEA approaches are

useful when the landscape of the MOP is multimodal and a good search technique for the

MOP is unknown. The same statement can be made of pMOEAs. Typically, pMOEAs

can be considered useful for solving problems that have large search spaces and take a

considerable amount of time to find good solutions; otherwise, an pMOEA may not be

the best approach to solving this class of problem. Good problems to apply pMOEAs

to include those with a large number of decision variables and fitness functions. This

means that applying pMOEAs to small, simplistic problems may not illustrate the true

performance of the algorithm. For example, in his study of parallel SOEAs, Cantú-Paz was

forced to construct artificial test functions since solving his initially selected functions in

parallel did not provide enough computational loading to provide meaningful results [20].

The use of existing MOP test suites may be too simplistic to show efficient and effective

results when utilizing a pMOEA. The key is that one must apply a pMOEA to a problem

domain for which it is well suited.
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Researchers should select functions that are both “easy” and “hard” for pMOEAs

to solve. This helps to identify the strengths and weaknesses of pMOEAs and possibly

the particular parallel paradigm used. Selecting appropriate test functions for testing

and comparing pMOEAs is a difficult task. Numerous factors must be considered. The

MOEA community has largely agreed on utilizing a variety of problems from two proposed

test suites [31, 44, 52, 184, 209]. These researchers are pushing each other to extend

the state-of-the-art in this area and their efforts are continuing. Many of these same

researchers agree these test suites, composed of MOPs exhibiting various genotypical and

phenotypical characteristics, are useful in making generalized statements about MOEA

performance in solving MOPs. It is also useful to note that if the test’s goal is to illustrate

pMOEA performance on a specific type or class of problem, then the test suite should

only be composed of MOPs from that class. These test guidelines and objectives are also

applicable in pMOEA comparisons.

Based on the preceding discussion several MOEA functions appear appropriate for

initial pMOEA experimentation. Initially selected are an unconstrained MOP, MOP 4

(see Chapter IV, Section 4.1), and a constrained MOP, the MMOKP (see Chapter IV,

Section 4.4.1), in order to evaluate the performance of the pMOEA when applied to prob-

lems that are difficult for MOEAs to solve.

7.3.5 pMOEA Metric/Parameter Issues. The need to compare various pMOEA

approaches exists as well as the need to evaluate the performance of a pMOEA applied to

a particular class of MOP. There is no one best metric to use but a combination of met-

rics is useful in evaluating the performance of an pMOEA. A major focus of some MOEA

researchers’ efforts is the identification of suitable metrics to evaluate the efficiency and

effectiveness of MOEAs. A number of authors [31, 44, 113, 114, 184, 190, 207, 210] have

proposed the use of specific metrics to analyze and compare general MOEA performance.

These metrics are also applicable to evaluating the performance of pMOEAs. While in

isolation, these metrics do not depict the overall performance of an pMOEA, but in com-

bination, they can. The problem with utilizing a single metric to evaluate the performance

of an pMOEA is that this metric typically maps the large number of points found on the
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Pareto front (PFknown ) to a single point, the metric value. This mapping is lossy in that

a single value cannot accurately evaluate the entire performance of an pMOEA.

A large number of metrics exist for evaluating MOEAs and these metrics naturally

extend to pMOEAs. These include relative and exact metrics dependent upon knowledge

of PFtrue . These metrics analyze the cardinality of PFknown and its associated distri-

bution. Certain metrics may be identified as better than others in specific applications.

Chapter III, Section 3.2 presents a more detailed discussion of various MOEA metrics from

the literature.

Various metrics can be employed to determine a given pMOEA’s relative perfor-

mance. As the known pMOEA publications give no recommendations on what specific

metrics to use in analyzing pMOEA performance or in comparing various pMOEA instan-

tiations, MOEA metrics are obviously useful and relevant. Additional metrics may provide

a more complete evaluation of the parallel performance of the pMOEA. Several general

metrics already exist and are in common use by parallel computation researchers to aid in

measuring and judging some parallel implementation’s performance.

For example, the speedup metric (S) captures the relative benefit of solving a problem

in parallel. Ts then denotes the execution time of the fastest known serial (one-processor)

implementation; note Kumar’s assumption that one may not know what the fastest im-

plementation truly is [119]. Parallel run time is denoted by Tp and is then the execution

time for a given parallel implementation assuming identical processors and identical in-

put sizes (search space size or number of evaluations). The speedup metric is defined as

S = Ts/Tp [119:p. 118].

Scaled speedup, efficiency, cost, scalability and isoefficiency are also important met-

rics in evaluating parallel performance. Scaled speedup is defined as the speedup obtained

when the size of the given problem is increased linearly with respect to the number of

processors [119:p. 144]. Efficiency is a measurement of the fraction of time a processor

is conducting work; it is calculated as the ratio of speedup over the number of processors

(p) [119:p. 120]. A pMOEA’s cost for solving some MOP is defined as the product of paral-

lel execution time and the number of processors used [119:p. 120]. A cost-optimal pMOEA
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then occurs when the parallel cost of solving an MOP is proportional to the execution time

of the fastest-known sequential algorithm on a single processor [119:p. 120]. Scalability

is used to analyze the pMOEA’s ability to increase its speedup as the number of proces-

sors available is increased [119:p. 128]. Finally, the isoefficiency metric is a determination

of how well a pMOEA can maintain a constant efficiency and increasing speedup as the

number of employed processors increase [119:p. 131]. All of these metrics are important

when analyzing overall pMOEA performance. The pMOEA community should incorpo-

rate these metrics in their analyses to support any conclusions that a pMOEA achieves

increased statistical performance over a serial MOEA. Other relevant performance metrics

and evaluation techniques might be found in the parallel and distributed programming

literature.

Looking to the existing pMOEA publications for metric recommendations yields

little information. Few of the papers report performing formal parallel experiments and

analyses and only two papers present a speedup graph charting their results [83, 206].

Better understanding of the various paradigms’ effectiveness and efficiency can only come

through “good” experimentation and analysis of results.

In analyzing pMOEA results, metrics specific to the parallel paradigm implemented

may be required. For instance, the speedup metric applies to any of the paradigms, but if an

island paradigm is used, one may wish to measure each deme’s performance, the migration

scheme’s effectiveness, or some other measure specific to the paradigm. The process of

pMOEA migration and replacement strategy selection is largely unaddressed and hence

is not analyzed. Although Cantú-Paz presents a thorough analysis of several migration

and replacement schemes for parallel SOEAs, he does not address their extension to the

multiobjective arena [20]; effective SOEA/pMOEA schemes may be radically different.

As the pMOEA field matures, so must the reporting measures used by researchers. In

analyzing the current pMOEA publications, few detail the parameter values used (crossover

and mutation rate, selection methodology, etc.). Only a limited number of papers present

this information [89, 105]. Table 7.2 proposes some key computational reporting param-

eters for those researchers interested in exploring pMOEAs. Although all are perhaps

not always relevant, some subset of these parameters is certainly necessary for a fuller
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Table 7.2 Key Parallel MOEA Characteristics

Key Characteristic Description

Computer Machine name (e.g., IBM SP3)

CPU CPU Type(s) (e.g., Pentium IV 2.4 GHz)

# Nodes Number of CPUs (e.g., 8, 16, 32, . . . , 256, . . . )

Memory Memory per Machine (e.g., 256 GB)

Operating System Name/Version (e.g., Red Hat Linux v7.3)

Communication Network Network (e.g., Ethernet, Fast Ethernet, Gigabit Ethernet)

Communication Library Library (e.g., MPICH v1.12)

understanding of the particular pMOEA paradigm selected (i.e., master-slave, island, or

diffusion), for repeatability of previous results, and for comparison purposes.

The reporting of an MOEA’s speedup may lead to some controversy as superlinear

speedups may be presented. Section 7.2.2.4 of this chapter discusses this issue in more

detail. A researcher must address superlinear speedups if the situation is encountered and

be able to explain how such a speedup is achieved. In many cases, a superlinear speedup

may be attributed to the fact that identical areas of the search space may not have been

searched by both the MOEA and the pMOEA.

7.4 pMOEA Development

Based upon previous discussions, the process of pMOEA development is now ad-

dressed in some detail, whether one is designing a pMOEA from scratch or using an ex-

isting MOEA as a template. Initially a researcher must determine if a pMOEA is suitable

to apply to the particular MOP and determine if conditions exist in which a pMOEA may

perform “better” than other alternatives.

Given that a pMOEA then appears useful, the engineering-based algorithmic devel-

opment process illustrated in Figure 7.8 is suggested [31, 194]. The figure presents a logical

flow for an overall design strategy. The process involves a detailed study of the problem

domain, the algorithm domain, and an integration of the two domains.

Studying the problem domain involves examining how problem data is input and

output, the various constraints on solution states and the set of candidate solutions. If
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compare the performance of these algorithms.
Future work is proposed to analyze the pMOMGA-II us-

ing the criteria stated in this paper. A thorough comparison
of each of the three parallel models is proposed as well as
an analysis of the scalability of the pMOMGA-II and asso-
ciated issues. A study of this nature aids the community in
further understanding the issues associated with paralleliza-
tion of MOEAs, the impact that the different models have
on the efficiency and effectiveness of pMOEAs, and a thor-
ough analysis, using various metrics to present statistical
results. ¶µ ³́
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Figure 7.6 Problem-Algorithm Domain Interaction [29, 163]
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Studying the problem domain involves examining how problem data is input and

output, the various constraints on solution states and the set of candidate solutions. If

applicable, one must also consider whether candidate solutions meet constraint criteria (fea-

sibility), extracting one or more promising feasible candidate solutions (selection), defining

acceptable solutions (the solution set), and whether members of that set reflect the selected

optimization criteria (the objective functions) [29].

Analysis of the algorithm domain is concerned with input set(s) of candidates, output

set(s) of solutions, and partial-solution set(s). One should determine if the MOP is most

suitably attempted to be solved by a pMOEA or another approach. Any existing algorithm

(with single or multiple objective functions) already being used to solve the MOP should

also be considered. Additionally, one must analyze the various pMOEA operators to

determine those that appear to offer the best performance on the particular class of MOP.

Integration of the two domains must then follow and the end result is a direct mapping

of low-level designs to some chosen compiler language. As the possibility for error exists

in any implemented code, it should be thoroughly debugged. Refinements of the code may

be required in order to reach an efficient and effective implementation, which is the overall

goal.

7-31

Figure 7.8 Problem-Algorithm Domain Interaction [31, 194]

applicable, one must also consider whether or not candidate solutions meet constraint cri-

teria (feasibility), extracting one or more promising feasible candidate solutions (selection),

defining acceptable solutions (the solution set), and whether or not members of that set

reflect the selected optimization criteria (the objective functions) [31].

Analysis of the algorithm domain is concerned with input set(s) of candidates, output

set(s) of solutions, and partial-solution set(s). One should determine if the MOP is most

suitably attempted to be solved by a pMOEA or another approach. Any existing algorithm

(with single or multiple objective functions) already being used to solve the MOP should

also be considered. Additionally, one must analyze the various pMOEA operators to

determine those that appear to offer the best performance on the particular class of MOP.

Integration of the two domains must then follow and the end result is a direct mapping

of low-level designs to some chosen compiler language. As the possibility for error exists

in any implemented code, it should be thoroughly debugged. Refinements of the code may

be required in order to reach an efficient and effective implementation, which is the overall

goal.

In implementing an pMOEA, one must consider the data structure to be used. Typi-

cally it is also important to consider the parallel paradigm to be employed and when/where

that data is needed during execution. This is integral to implementing an efficient and ef-

fective pMOEA. The parallel system’s architecture and communications backbone are also

of concern as they can greatly impact the data transfer rates and may be more efficiently

used by one pMOEA paradigm over another. Some pMOEAs may benefit from using

one of the available static or dynamic processor scheduling and load balancing techniques,
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e.g. [60, 119]. As pMOEAs are increasingly applied to real-world scientific and engineer-

ing problems where fitness function calculation time is large, these scheduling heuristics

become more and more important [18].

A researcher is also well advised to consider the platform they plan to use prior to

implementing the pMOEA. This is important as it may drive the use of one programming

or parallel library over another. Additionally, one may find that their system of choice

may not be the best system to use. An example of this is illustrated when examining the

current utilization trends of a targeted parallel system for pMOEA execution. Many high

performance computing centers limit the number of processors or amount of wall-clock time

a particular process may consume, dependent on the number of users utilizing the system

and the priority of the currently running projects. Hence a researcher may have more

resources or processing time available on a local cluster as compared to a supercomputer.

Even though a supercomputing facility may have a larger quantity of resources and more

processing power, there may be an order of magnitude more users that are currently using

the resources as compared to a slower local cluster. Therefore one may realize a quicker

turn around time from submission of jobs to the local cluster than the supercomputer

even though the supercomputer uses less wall clock time. Additionally, researchers must

determine whether or not their code must be portable and hence they may be required to

use a “generic” parallel library versus a specific library.

In general researchers have four major development options for implementing a

pMOEA:

1. Parallelize an Existing MOEA. If researchers have access to working MOEA

code, an understanding of algorithmic details and parallel processing techniques,

parallelizing the existing MOEA may be the best option. The process of efficiently

parallelizing an MOEA involves knowledge of parallel routines/libraries and the ma-

jor pMOEA paradigms.

2. Use Existing pMOEA Code. Researchers may be interested in utilizing existing

pMOEA code in order to reduce algorithm development time or a specific pMOEA

may already be identified as performing well on a particular class of MOP. One must
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understand the problem and algorithm to make the determination that this is a good

choice.

3. Develop a New pMOEA. Developing a “new” pMOEA presents the possibility

of implementing an pMOEA with increased efficiency and effectiveness over other

pMOEAs. Developing a new pMOEA also allows for incorporating new search con-

cepts and new operators; or combining existing ones in new ways.

4. Extend an Existing Parallel EA. Extending an existing, proven parallel EA to

a pMOEA may appear relatively easy, but in actuality, this process may be difficult.

Modifying a parallel EA to use additional objective functions may not be difficult;

however, modifying migration and replacement schemes as well as other EVOPs are

not trivial tasks.

7.4.1 pMOEA Implementation Issues.

7.4.1.1 Master-Slave Implementation. The master-slave paradigm may be

the simplest to understand. Generally used for partitioning fitness function evaluations

among several processors (see Figure 7.2), this paradigm appears especially useful for com-

putationally expensive evaluations (such as those often found in CFD or CEM MOEA

problems and where parallel codes already exist [126, 127, 128, 155]). Parts of the evalu-

ations may also be performed by separate slave processors (i.e., sub-problems) with final

values being coordinated/computed by the master processor.

A researcher must first determine that the fitness function calculations are suit-

ably complex, which can be done through comparing the wall-clock time (estimated or

actual) required to compute fitness function values for the entire population against the

communication time between processors. The main issue is ensuring that each proces-

sor receives enough “work” so that communication costs do not overwhelm computational

costs and that an improvement is realized over the execution of the serial MOEA. Using

Equation (7.1), this is denoted as ensuring in a given generation that

PTc <<
n
∑k

i=1 Tfi
P

. (7.6)
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In other words, additional processors are useful only to the point that each requires

more computational time versus communications time. Figure 7.9 illustrates this situa-

tion in a two-node island implementation with a number of farming (slave) nodes used

to evaluate the fitness functions. The results of a parallel implementation of the fmGA

(pfmGA), as applied to the Protein Structure Prediction Problem, are used to generate

Figure 7.9 [41]. Figure 7.9 illustrates a great improvement in processing time when in-

creasing the number of farming nodes from zero to one. This is due to the large amount

of computational effort necessary to complete the fitness function calculations. As the

number of farming nodes is increased to two and four, minor improvements are made as

the communication time begins to approach the computational time. However, increasing

the farming nodes from four to eight is detrimental and results in a worse execution time

than just utilizing a single farming node. With the addition of more slave nodes, each

slave evaluates fewer population members, the computation time per slave drops and the

communication or overhead time becomes a larger percentage of the total execution time.

At this point the communication time has overwhelmed the computational time and hence

worse timing results are realized. The last case results in an underutilization of the farming

or slave nodes.
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Figure 7.9 Master-Slave Processor Comparison [41]

Generational synchronization should not be a large issue in this paradigm as the

typical approach evenly distributes population members across the slaves. Each receives
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the necessary chromosomes along with any other necessary parameters for evaluation.

The fitness functions are returned to the master node once the slave completes all of the

evaluations. This results in relatively small data sets to pass between the master and slaves.

Synchronization may be an issue in heterogenous implementations or if some chromosomes

require varying evaluation times.

7.4.1.2 Island Implementation. The island paradigm can be implemented

in a number of ways but is generally used to execute several MOEAs simultaneously (see

Section 7.2.2.2). This is useful for concurrently examining different areas of the search

space or a larger amount of the search space in the same wall-clock time as the serial

implementation. This also allows for investigating the effects of varied algorithmic param-

eters (e.g., population size, EVOPs), and to determine how the selected migration policy

effects the MOP solution process.

One extreme in terms of communications is represented by separate MOEAs simulta-

neously executing on some number of processors with no communication occurring between

the nodes until each MOEA terminates the search process and its respective PFknown

(

p
)

set is transmitted to process “0”; these PFknown

(

p
)

sets are then combined to arrive at

the final known front generated, PFknown . The other extreme occurs when each proces-

sor performs a one-to-all broadcast of each population member’s chromosome and fitness

values as each generation completes.

A more typical implementation involves periodic migration of individuals among

selected processors throughout the algorithm execution [20]. This can conceptually be

viewed as one overall pMOEA population divided among numerous processors. The same

size population as some serial MOEA can reside on each processor to keep pMOEA run

time approximately the same. This is not a requirement, however, and population size can

be set to whatever number is desired by the researcher. The main concept around which

the island paradigm revolves is the periodic migration of population members between

selected islands to mix the best BBs found and provide some diversity. Migration and

replacement schemes have been discussed in numerous parallel EA papers; the interested

reader is referred to Cantú-Paz’ thorough study for more information [20].
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Implementing pMOEA migration and replacement strategies is far more complex

than for parallel EA instantiations, which may explain why they are not currently discussed

in any detail in the known literature. While these topics may seem conceptually easy, in

actuality a number of issues arise making them quite different for pMOEAs. A discussion

of all possible SOEA schemes is not presented due to the large number of possibilities and

since there are MOEA-specific issues making some irrelevant.

Numerous pMOEA migration strategies and subsequent replacement strategies are

available. A variety of these are structurally different from one another and are classified as

separate schemes. Table 7.3 presents a concise listing of new, innovative migration schemes

holding the greatest potential and some of their attributes; analogous replacement schemes

are presented later in Table 7.4.

Table 7.3 pMOEA Migration Schemes

Scheme Attributes Selection
Pressure

Elitist (random) Migrate a random sample of x % of individuals from
PFcurrent

(

p

t bm x

)

points or of each ranked front
Relatively
High

Elitist (niching) Migrate a x % “uniform” distribution of individuals that
are members of PFcurrent

(

p

t bm x

)

High

N
o
n
-

Elitist (front) Migrate the entire PFcurrent

(

p

t bm x

)

set High

U
n
if
o
rm

Elitist (front+) Migrate the entire PFcurrent

(

p

t bm x

)

set plus x randomly
chosen population members or x population members from
the ranked fronts

High

Random Migrate x randomly selected population members Low
Elitist (random) Migrate x individuals from PFcurrent

(

p

t bm x

)

, choosing some
randomly or from the ranked Pareto fronts if necessary

Relatively
High

U
n
if
o
rm

Elitist (niching) Migrate x “uniformly” distributed individuals from
PFcurrent

(

p

t bm x

)

, choosing individuals from the ranked
Pareto fronts if necessary

High

Note that both migration and replacement focus on each islands’ current Pareto front

(PFcurrent

(

p
t

)

), as identifying an approximation of PF ∗. As each element of PFcurrent

(

p
t

)

contains the local optima and the good BBs, these elements are the focus of exchange

amongst processors. Note these strategies apply to each processor used.

A number of parameters may be specified in an island paradigm (see Section 7.2.1).

Two parameters of high interest are the number of population members to migrate (x) and

the destination processor(s) (pdest) to which the x members are migrated. The number of
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members to migrate is of interest as migrating too many individuals negatively impacts

the overall communication cost. Additionally, migrating too many individuals may force

receiving processors to converge to identical solution sets. A tradeoff must be made between

exploration and exploitation, and it is typical to migrate a low percentage of the total

number of members in the population.

The selection of the destination processor(s) for immigration is also of high interest.

A total broadcast involves every processor migrating individuals to every other processor

but can potentially overwhelm the communication backbone as well as force all processors

to search the same area of phenotype space. Conversely, not employing migration may

defeat the purpose of implementing a pMOEA. Not surprisingly, just as is the case with

several EA parameters, there currently exists no “best” method for choice of pdest.

Assume that a given processor is assigned a neighborhood of size N . At the specified

migration interval, each processor migrates selected individuals to its N “closest” neigh-

bors. For simplicity, each processor communicates with its “closest” neighbors assuming

a grid type architecture. In reality, the neighborhood can contain any of the processors in

the system, and the neighborhood can be static as well as a dynamically changing list of

neighbors of any structure. As processors might be arranged in various logical topologies

(e.g., ring, mesh, hypercube, etc.) or arranged according to a specific physical hardware

configuration, the definition of the “closest” members is left open.

The migration schemes are decomposed into two categories, non-uniform and uni-

form. The uniform migration schemes are labelled as such since a constant number, x, of

the population members are migrated with each migration event whereas the non-uniform

migration schemes may involve a migration of a varying number of members with each mi-

gration event. The uniform schemes are advantageous in that the amount of communication

incurred by the algorithm is consistent and predictable but the non-uniform, unpredictable

communications has advantages in relation to anticipated efficiency and effectiveness of the

pMOEA.

The simplest migration scheme is a purely random one. This involves randomly

selecting x population members from a given processor for migration to the N neigh-
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bors. This scheme provides low selection pressure as no guarantee exists that members of

(PFcurrent

(

p
t bm x

)

) are migrated.

Having dealt with the obvious choice, more thought is required to define and imple-

ment effective migration strategies. SOEA optimization offers the choice of choosing the

top x population members or a top x percentage of the population for migration; these

methods are called elitist [20]. Migrating the best individuals has an associated high selec-

tion pressure as this method could cause other processors to converge to identical solution

sets, especially if the destination processor lacks any “better” members. Selection pressure

is defined as the ratio of the probability that the best member of the population is selected

over the probability that an average member of the population is selected [74].

The concept of “best” takes on a different meaning in MOEAs. There generally is no

one best individual unless only one member exists on the Pareto front. Selecting the top

x or x% of the population for migration is somewhat meaningless within an MOEA as all

the members of PFcurrent (t) are equally optimal in terms of Pareto dominance criteria. A

simple way of handling migration is to randomly choose x members from PFcurrent

(

p
t bm x

)

)

and migrating them where desired. This is an elitist random migration method as a portion

of the best members are selected for migration. However, this method has the potential to

migrate members in a concentrated area of PFcurrent

(

p
t bm x

)

and hence not provide a good

representation of the current optimum or all of the good BBs. Additionally, a problem

arises if the cardinality of the number of solutions to migrate is larger than the number of

solutions within the current Pareto front set (|x| > |PFcurrent

(

p
t bm x

)

|).

In this case one can send fewer solutions than are requested, by sending all of

the members of PFcurrent

(

p
t bm x

)

, migrate PFcurrent

(

p
t bm x

)

plus a random selection of

other population members from the entire population, or migrate all of the members of

PFcurrent

(

p
t bm x

)

plus a random choice of members existing on the next ranked Pareto

front until x members are found. The ranked Pareto fronts can be determined using

one of the methods discussed in Chapter II, Section 2.9. Migrating members from multiple

fronts is anticipated to have the quickest convergence due to the method’s “strong” elitism.

However, a possible disadvantage lies in the computational overhead required to rank the

Pareto fronts until x members are identified. Ranking adds to the complexity of migration
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as determining each rank using Pareto optimality is generally of order O(k ∗ n2) [31]. For
the proposed elitist random method, if all x members cannot be found in PFcurrent

(

p
t bm x

)

,

the rest are selected either randomly or from the remaining ranked Pareto fronts.

Another possible elitist migration method, elitist niching, uses niching in conjunction

with individual selection. As opposed to randomly selecting x individuals, niching allows

for the possibility of migrating a more uniform distribution of Pareto front members and

BBs, not just a localized one from PFcurrent

(

p
t bm x

)

. This is accomplished by selecting

a “uniform” distribution of x individuals from the local Pareto front PFcurrent

(

p
t bm x

)

.

If |x| > |PFcurrent

(

p
t bm x

)

|, the remaining members are selected from the ranked Pareto

fronts in the same manner.

Another straight forward and conceptually “easy” elitist migration method is migrat-

ing the entire local Pareto front (PFcurrent

(

p
t bm x

)

), elitist front, from each process. This is

a non-uniform migration method as there is no way to determine PFcurrent (t)’s size a pri-

ori as it varies both by process and by generation. This method has the greatest selection

pressure. A modified version of this scheme (elitist front +) involves migrating the entire

local Pareto front, and additionally migrating x members randomly chosen or selected from

the ranked fronts. This method has the advantage of migrating an elitist set of individuals

and some additional individuals to maintain diversity. The disadvantage of this method is

the possibility of high communications costs as PFcurrent

(

p
t bm x

)

can vary in cardinality.

In an attempt to prevent premature convergence, one potential solution is to use the elitist

method with niching (elitist niching) which selects a “uniform” distribution of individuals

across PFcurrent

(

p
t bm x

)

. A random choice of Pareto front members (elitist random) may

possibly choose points from a local area of the front but has the least processing overhead

as niching calculations do not need to be conducted. Additionally, niching complexity is

high due to the fact some density distribution measure must be calculated for all front

members in order to select an “even” distribution. This complexity may prevent the use

of this scheme. However, its potential benefits may outweigh the additional computational

overhead.

Regarding the random and niching methods (either uniform or non-uniform), note

that randomly selecting individuals has the least processing overhead as niching calcula-
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Table 7.4 pMOEA Replacement Schemes

Scheme Attributes Selection
Pressure

Random Randomly replace x population members Low

None No replacement, yields an increasing population size Medium

Elitist (random) Maintain PFcurrent

(

p

t bm x

)

and randomly replace members that
are 6∈ PFcurrent

(

p

t bm x

)

Relatively
High

Elitist (ranking) Rank all of the Pareto Fronts and replace members from the
“worst” ranked fronts with those received

High

Elitist (100%
ranking)

Combine the migrated members with the current population,
rank all of the Pareto Fronts and remove members from the
“worst” ranked fronts

High

tions are not necessary. Niching complexity is high since some density distribution measure

must be calculated for all local Pareto front members in order to select a “uniform” dis-

tribution. Although this complexity may preclude a niching scheme’s implementation, its

potential benefits may outweigh the additional computational overhead.

As multiple migration schemes exist, so also do replacement schemes. Replacement

schemes also differ from those employed in parallel SOEAs. In general, an MOEA replace-

ment strategy assumes population size must remain constant each generation. Without

this requirement, the population size on each processor can grow fairly quickly. Even a

partial replacement scheme, where some number y (y < x) of population members are

replaced with those migrated and the rest of the migrated members are added to the

population, the overall population size still increases as would computational cost. The

working assumption is that each processor’s population size remains constant and there-

fore x population members are “thrown away” each migration interval. Table 7.4 presents

a concise listing of replacement schemes holding the greatest potential and some of their

attributes.

Again, assume each processor has a neighborhood of size N . At the specified replace-

ment interval each processor replaces selected individuals with those received from its N

neighbors. Just as it is for migration, the simplest replacement scheme is a random one

in which immigrants randomly replace members in the target population. This scheme

has the lowest selection pressure as no guarantee is made regarding the quality of solu-

tions being replaced, similar to that presented in [20]. For example, a solution might not
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be a member of the resulting Pareto front, PFcurrent

(

p
t am x

)

, on the receiving processor,

yet could potentially replace a solution on that front. To actually determine that fact

requires combining the receiving population and the immigrants, and then ranking this

newly formed population. This situation needs to be addressed in an efficient manner but

in order to find out the situations existence some overhead processing must be completed.

However, if this situation is not dealt with, this may lead to replacing better individuals

with worse individuals and over time this can lead to the population’s divergence instead

of convergence to good potential solution(s).

Replacement strategies differing from random schemes may lead to increased execu-

tion times. The issue of pMOEA replacement strategies really comes down to the issue

of how to rank population members in an efficient manner in order to implement an “eli-

tist” replacement strategy. Generally speaking, since all processors perform migration,

PFcurrent

(

p
t bm x

)

is already calculated. However, replacement then most likely changes

PFcurrent

(

p
t bm x

)

for each target processor to Pcurrent

(

p
t am x

)

. In other words, no guaran-

tee exists that PFcurrent

(

p
t bm x

)

= Pcurrent

(

p
t am x

)

, where the subscript t bm is prior to

and t am is after replacement. Thus, the question exists of whether to determine a com-

bined front consisting of PFcurrent

(

p
t bm x

)

with the received members or to keep members

belonging to PFcurrent

(

p
t bm x

)

and replace others. The following replacement schemes are

all elitist as they rely on some type of ranking or replacement to ensure the “best” members

of the population(s) are kept for future generations.

One possible strategy is to keep all the members of Pcurrent

(

p
t bm x

)

, determining

which of the remaining population is not Pareto optimal with respect to the immigrants,

and randomly replacing them with the immigrants (elitist random). A disadvantage is the

computation of solutions’ objective vectors that are dominated by the immigrants’. Addi-

tionally, what if this set, termed DOM , is smaller than the immigrant set, i.e., |DOM | <
—Pcurrent

(

p
t am x

)

|? This method does not guarantee the “worst” members are removed

but does ensure all members in Pcurrent

(

p
t bm x

)

are retained.

A method with increased pressure replaces members constituting the “worst” non-

dominated front (elitist ranking) (as determined in the manner of the NSGA/NSGA-

II) [46, 176]. This method has increased computational complexity when used as the
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migration strategy, and as before, members must be randomly chosen from some front(s)

if the number of members to be replaced does not evenly match the number of individuals

represented by the replaced front(s). For example, assume a processor contains four sep-

arate fronts with |F0| = 12, |F1| = 8, |F2| = 6 and |F3| = 4. Unless x = 4, 10, 18, or 30,

some random replacement(s) is then required. This method provides the greatest selection

pressure as the “worst” members are continually removed from the population; however,

this method likely incurs the greatest amount of resource consumption as computing the

nondominated fronts may be time consuming. A slight modification of this method is

the elitist 100 % ranking in which the received members are combined with the current

population members and then ranked. The best population members are kept and the

remaining members, from the worst fronts, are thrown away. This offers a slightly higher

selection pressure.

pMOEAs may also employ various dynamic migration and replacement schemes.

Dynamic methods have a possible advantage if one has some knowledge of the fitness

landscape or about how the search should progress. The presented migration/replacement

schemes may also be combined in multiple ways. The decision on which schemes to pair

may most often be driven by their computational cost, but one must trade this cost off

against the resulting effectiveness. Other EVOPs, such as mutation and crossover, can be

defined a priori for each island [20] or can dynamically change [1]; different islands may

also use static or dynamic settings.

As with many search algorithms a local search operation, like hill-climbing, may also

be used. This may increase the quality of derived solutions (i.e., PFknown ). The periodic

use of local search operators throughout algorithm execution may be beneficial; it remains

to the researcher to tune their implementation for the particular application.

7.4.1.3 Diffusion Implementation. The diffusion paradigm appears the

least discussed paradigm in the pEA/pMOEA literature [20, 31]. This is possibly due

to its associated complexity and potentially increased communication costs (as compared

to the other paradigms; see Figure 7.4). This paradigm uses one conceptual population

distributed across a number of processors, each typically holding only a few individuals.
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A topological and neighborhood structure is imposed on the processors where EVOPs

operate only within some specified neighborhood. Due to most EVOPs’ serial nature

much communication is necessary to execute them as they require knowledge of an entire

neighborhood’s population.

Although no proof is offered, it is suggested the diffusion paradigm allows formation

of local niches. Each represents different ways of trading off the k objectives. However,

note that few fine-grained pMOEAs are found in the literature [31], [20:p.140]. Much work

remains to be accomplished before a “good” understanding of these algorithms’ strengths

and limitations are known. This paradigm appears to be a good choice when paired with

shared memory systems and symmetric multiprocessors (SMP) systems (systems contain-

ing multiple homogeneous processors within one system unit).

A basic diffusion paradigm includes the pMOEA executing on a number of processors

in parallel, where the communications are restricted to occur only between processors in

a specified neighborhood. The communications can be based on a static neighborhood

structure or a dynamically changing structure. Whatever the case, the neighborhoods

overlap to some degree to allow for a slow diffusion of the “good” population members

throughout the entire processor pool. The only constraint is that the possibility must exist

for a population member to reach all of the possible destination processors in the pool

over a reasonable number of generations. The destination processors must be reachable

within a small number of generations in reference to the total number of generations during

pMOEA execution. Like the other paradigms, this process continues to execute until some

specified stopping criteria.

Shared memory systems are ideal for diffusion pMOEA implementations as each pro-

cessor has access to the entire population through a very high speed backplane and is likely

orders of magnitude faster than any current network communications structure. The dis-

advantage is that shared memory systems typically require using propriety communication

calls (OpenMP) not portable to other environments in order to achieve the desired level of

performance. This may discourage researchers wanting efficient, portable pMOEA codes.
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Implementing a diffusion pMOEA on a shared memory system is fairly straightfor-

ward. Using an SMP-based cluster is a bit more complicated and should likely use a

neighborhood size equal to the number of resident processors in each SMP unit. This

allows one to realize the superior communications backbone within an SMP unit. When

utilizing a cluster of SMP nodes, where multiple SMP nodes are networked together and

used in the execution of the pMOEA, the communications becomes more complicated.

This case is similar to that of utilizing a heterogeneous system where the communication

times differ from unit to unit as the communications times between processors within an

SMP unit are much quicker then those between different SMP units. One possible im-

plementation involves a hierarchial paradigm as a neighborhood structure is imposed on

the overall cluster of workstations, an island paradigm type of communication mechanism

is used between SMP units and a diffusion paradigm is used within any given SMP unit.

Other variants of this general system design are certainly possible. This example is pro-

vided only for an understanding of how one might implement an efficient diffusion pMOEA

on a non-shared memory based system, however, the concentration of this research is on

homogeneous systems.

One possible diffusion implementation operates by dividing the population into small

groups of individuals and assigning those groups to different processors. Another imple-

mentation involves a diffusion paradigm operating as part of a hierarchial pMOEA. With a

neighborhood structure imposed on the overall SMP cluster, an island paradigm treats each

SMP unit as a deme, and a diffusion paradigm operates within any given SMP unit. Other

variants of this general system design are certainly possible. These examples are provided

only for an understanding of how one might implement an efficient diffusion pMOEA on a

non-shared memory based system.

7.4.1.4 Parallel Niching. As discussed by numerous researchers, the use of

niching is highly suggested in any (p)MOEA; how best to implement parallelized niching

is a currently open question with no single answer (see Chapter II, Section 2.10). Parallel

niching is addressed as it is another area of discussion lacking in the current literature,
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even though the concept is acknowledged as being of high importance in obtaining high-

performance (p)MOEAs.

Niching, crowding, clustering and σshare are terms widely used in the MOEA commu-

nity when discussing the concept of finding a “good” distribution of points along the Pareto

front or among the Pareto optimal solution set. Many methods exist for accomplishing

MOEA niching and are discussed in detail in Chapter II, Section 2.10. The concept of

parallel niching, however, is fairly new and is not adequately explored or discussed in the

current literature. The underlying question is then how to parallelize niching and what, if

anything, is gained by doing so.

The typical MOEA niching implementation occurs in the phenotype domain. Nich-

ing in either the phenotype or genotype domain involves analyzing some Pareto front or

Pareto optimal solution set and attempting to achieve uniform knowledge of the set, i.e.,

avoiding a clustering of points in any one particular area. The phenotype domain is pre-

dominately used since most MOEA researchers desire a uniform distribution of points along

the (known) Pareto front. Niching involves removing points from a given population that

lie within some user-defined distance of others. New points are then generated in the hopes

of filling in an unfilled region, i.e., gaining knowledge of a previously or unsatisfactorily

unexplored area. Note that points cannot be generated directly by a process of analyzing

an area of the front, selecting a region of the front that is unfilled, specifying objective

function values in that region and then performing a reverse mapping to find the corre-

sponding decision variable values. One typically does not know the reverse mapping for

objective functions of any difficulty. Niching in the genotype domain involves analyzing

some Pareto optimal solution set and then generating new points based on movements

away from identified points, i.e., clustering.

Since niching is basically a serial process, it is difficult to efficiently parallelize. Note

that a master-slave pMOEA can perform niching in the usual manner but the other

paradigms are different. An island pMOEA offers several niching options. For exam-

ple, a separate niching operator can execute on each island. There may be additional

utility in executing a variety of niching operators across the different processors. These

methods do not require any extra communication; however, one may well wish to transmit
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local front info between (some set of) processors in an attempt to niche based on global

knowledge. Again, note that pMOEA niching might be effective in either (or both) the

genotype/phenotype domains.

Another parallel niching possibility divides the known front into a number of static

regions equal to the number of available processors. After some number of generations,

generate the currently known global front (by combining the current known fronts from

each processor) and then redistribute the global population according to the restricted

search regions for each processor. The goal is for each processor to concentrate their search

in a specific region of the landscape. This method appears to be fairly straight forward but

in fact that is only true for those members on PFcurrent (t). The dominated members do not

map as easily to the regional structure imposed and require a ranking method to be used in

order to determine the mapping of each processor. A ranking of the entire population allows

for a determination of which region each dominated member belongs. Additionally, this

method requires processing and communication overhead as the entire population of each

processor is redistributed amongst the processors. Another potential issue encountered in

this scheme is the possibility for all of the combined population members to be allocated

to a single processor with the remaining processors receiving zero population members

if a static regional scheme is specified a priori. A simple solution to this is to allocate

the population members based on where they are currently in the landscape, i.e., use a

dynamically changing regional structure. This method may be more useful when employing

genotypic-based niching. An interesting way of handling this is to partition the genotype

space into regions and allow the processors assigned to regions to explore +/- ε amount

outside of the region. This allows for the processors to find solutions outside of the currently

known areas of goodness.

In order to minimize the communications required to implement parallel niching,

neighborhood constraints can be imposed on the generation of new population members.

This means that a given processor is restricted to generate solutions within a particular

region. Each processor then must continue generating solutions until enough are gener-

ated in the specified region, throwing the others away. This means that the generation of

specific areas of the front to analyze is restricted to the processors within a given neigh-
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borhood, similar to the concept of the diffusion paradigm. This implementation effectively

reduces the overall communications that are necessary and allows for more of a “parallel”

searching of various areas of the front but may increase the overall execution time as each

processor must continue generating solutions until it generates the specified number in

the region. Another viable method reducing communications overhead is to communicate

only every epoch (one epoch corresponds to a specified number of generations) thereby

reducing overall communications load yet still achieving global niching. Dynamic niching

is another promising scheme involving creating variable-sized niches (possibly) changing

over time. Additional constraints can be imposed so as to focus more on exploring or

exploiting during certain pMOEA phases.

When utilizing parallel niching in a pMOEA, one must balance requirements for a

satisfactory representation of the Pareto front, the Pareto optimal solution set, and the time

required to execute the algorithm. Parallel niching may improve pMOEA performance but

may also overwhelm the communications backbone if not implemented well. The concepts

presented can be applied in either the island or diffusion paradigms with some forethought.

As parallel niching can require a large amount of communications, the underlying hardware

and communications backbone must be considered when determining how to implement

parallel niching. The best choice for implementation may be the use of a local niching

operator or niching operators using different parameter values across the processors. On

the other hand, especially when implemented on some type of shared memory system, the

diffusion paradigm appears well-suited to handle a parallel niching operation where each

processor has fast access to the entire population and can thus perform global niching

fairly efficiently.

7.4.1.5 Parallel Archiving. Another area of great interest is that of archiv-

ing strategies. This is an area that has the potential to increase the efficiency of a pMOEA

if intelligently addressed. The concept of archiving is to maintain a subpopulation or an

external archive of the “best” found members from the pMOEA. In a pMOEA the issue

arises of how to maintain the archive, how many to maintain, and how often to commu-

nicate the members between the archives. One method of archiving in a pMOEA is to
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have each processor maintain its own archive and at the conclusion of the search process

have one of the processors combine the archives and present the final solution to the user.

More complicated strategies exist and may increase the effectiveness of the pMOEA, de-

pendent on its particular use of the archive. For those MOEAs that maintain an archive

and actively use that archive throughout the search process, a communication between the

archives may be beneficial. A potential issue lies in combining the archives each genera-

tion which may lead to pre-mature convergence of each processor. In terms of the actual

implementation, synchronization is required to ensure that multiple processors do not try

and update the archive at the same time. This may increase the execution time of the

algorithm, but in certain MOEAs, it has the potential to increase the effectiveness.

7.4.2 Parallel MOEA Theory. In the serial EA world, many researchers have

published theories of EAs regarding a variety of characteristics. Such theories encompass

EA characteristics such as representations, operators, algorithm convergence, equivalence,

etc. For parallel EAs, some extensions have been made regarding population sizing [20].

Specific theories associated with diffusion and island paradigms relating to selection pres-

sure and neighborhood size exist for EAs . For pMOEAs, little has been done except for

the population sizing work presented in Chapter VIII. The development of formal mod-

eling insight as to the impact of pMOEA operators and parameter values as well as the

impact of computational architectures across classes of MOPs is useful.

7.5 A “Generic” pMOEA

The previous sections discuss major issues in pMOEA development and testing. A

case study applying these concepts to a working serial MOEA and a thorough analysis of

the results is presented. In particular, the creation of a generic pMOEA (in that it can

be executed in a master-slave, island, or diffusion mode) is described as evolved from the

working serial MOEA. Note this generic pMOEA’s evolution is an excellent example of the

design strategy suggested in Section 7.4.

Pseudocode for a generic pMOEA implementation of each of the parallel paradigms is

presented. This pseudocode is meant to provide insight into creating an pMOEA using any
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Randomly Generate The Population
Randomly Generate Population Of Size P On Processor 0

Evaluate Each Population Member’s Fitness
Send P

n
Population Members To Each Processor From Process 0

Each Processor Conducts k Fitness Evaluations For Each Of The P
n
Population Members

Each Processor Sends k ∗ P
n
Fitness Values To Process 0

Process 0 Determines PFcurrent (t), Updates PFknown And Assigns Rank If Necessary
Perform Clustering / Niching / Crowding on Processor 0
Execute Evolutionary Operators (Crossover, Mutation) on Processor 0
Evaluate the New Populations’ Fitness

Send P
n
Population Members To Each Processor From Process 0

Each Processor Conducts k Fitness Evaluations For Each Of The P
n
Population Members

Each Processor Sends k ∗ P
n
Fitness Values To Process 0

Process 0 Determines PFcurrent (t), Updates PFknown And Assigns Rank If Necessary
Conduct Selection on Processor 0
Repeat Until Termination Criteria is Met
Conduct Local Search on Processor 0 if Specified
Processor 0 Generates and Presents PFknown as the Solution

Figure 7.10 Generic Master-Slave pMOEA Pseudocode

of the three aforementioned paradigms. This pseudocode is at a fairly high level as exact

implementation details can vary based on one’s selection of specific EVOPs, migration and

replacement schemes, hardware, parallel libraries, etc.

Randomly Generate The Population
Randomly Generate Population Of Size P ′ On Each Processor

Evaluate Each Population Member’s Fitness
Evaluate Each Population Member’s Fitness on each processor
Each Processor Determines PFcurrent (t), Updates PFknown And Assigns Rank If Necessary

Perform Clustering / Niching / Crowding on each Processor
Execute Evolutionary Operators (Crossover, Mutation) on each Processor
Evaluate Each Population Member’s Fitness

Evaluate Each Population Member’s Fitness on each process
Each Processor Determines PFcurrent (t), Updates PFknown And Assigns Rank If Necessary

Conduct Selection on each Processor
Migrate Population Members Among Processes According To Migration Scheme
Repeat Until Termination Criteria is Met
Conduct Local Search on each Processor if Specified
Processor 0 Combines and Presents PFknown as the Solution

Figure 7.11 Generic Island pMOEA Pseudocode

In the general pMOEA formulation, the following variables are of importance: p

= process ID, n = number of processes, N = neighborhood size, P = population size

in the master-slave paradigm, and P ′ is the population size in the island or diffusion

paradigm, which may be P or P
n . We use the term process instead of processor since

multiple processes can execute on a single processor; for example in a SMP platform. The
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underlying assumption, made for simplicity and generality is that each process is running

on its own dedicated processor and that the communications backbone is homogeneous

in terms of the available bandwidth to each process. One may choose to implement an

pMOEA on a heterogeneous cluster or on a system where the communications backbone

does not provide equal amounts of bandwidth among the processors. In this case or

modifications of it, an intelligent load balancing technique is necessary to achieve the same

performance as a homogeneous technique yields.

Randomly Generate The Population
Randomly Generate Population Of Size P ′ On Each Processor

Evaluate Each Population Member’s Fitness
Evaluate Each Population Member’s Fitness on each processor
Each Processor Determines PFcurrent (t), Updates PFknown And Assigns Rank If Necessary

Perform Clustering / Niching / Crowding on each Processor or Within the Neighborhood (N)
Execute Evolutionary Operators (Crossover, Mutation) Within Neighborhood (N) Processors
Evaluate Each Population Member’s Fitness

Evaluate Each Population Member’s Fitness on each process
Each Processor Determines PFcurrent (t), Updates PFknown And Assigns Rank If Necessary

Conduct Selection Within Neighborhood (N) Processors
Diffuse Population Members Among Processes According To Diffusion Scheme
Repeat Until Termination Criteria is Met
Conduct Local Search on each Processor if Specified
Processor 0 Combines and Presents PFknown as the Solution

Figure 7.12 Generic Diffusion pMOEA Pseudocode

7.5.1 Engineering the pMOMGA-II. Goldberg et al., indicated that too much

attention was being paid to “neat” GA genotype encodings [78]. They proposed a scheme

where genotypes can exhibit redundancy, over- and under- specification, and changing

structure and length, believing this GA modification forms tighter and more useful build-

ing blocks than those formed by standard GAs. Their resultant mGA proved successful

in optimizing deceptive functions; these functions mislead GA search toward some local

optimum when the global optimum actually lies elsewhere [78]. The mGA initializes a

population of building blocks via a deterministic process producing all possible building

blocks of a specified size and thus deserves its reputation as a (potentially) computation-

ally expensive algorithm. Additionally, note the mGA stored much of its information as

unsigned integers and performed operations upon population members by bit shifting.
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The fast messy GA (fmGA) was proposed to reduce mGA complexity via probabilistic

building block initialization schemes creating a controlled number of building block clones

of specified size. These clones are then filtered ensuring that (in a probabilistic sense)

all desired building blocks exist in the initial population. Goldberg et al. claim this

variant is as effective as the mGA but without the associated initialization bottleneck [77].

Later, the fmGA was expanded to create a parallel fmGA (pfmGA), where a number

of issues associated with EA parallelization were considered, addressed and tested on a

real-world problem, the Protein Structure Prediction Problem [36, 71, 134, 142]. Initial

testing of the pfmGA was done on a Intel Paragon supercomputer. The processors were

i860’s and the operating system was the Paragon OSF/1 Release 1.0.4 which provided

message passing capabilities. All of the tests used the same EVOP parameters, string

length of 240 bits, cut probability = 2%, splice probability = 100%, 107 total generations

and a population size of 32 members per processor [71]. This pfmGA used the MPI

library to allow for interoperability on different parallel platforms; both an island and

master-slave versions were implemented. This research was recently expanded to use newer

IBM SP2 and SP3 supercomputers as well as a heterogeneous network of SUN Cluster of

Workstations (COWS) and a heterogeneous Pile of PCs (PoPCs) in solving the protein

structure prediction problem [36, 142]. These experiments obtained satisfactory speedup

results; a large efficiency improvement was also noted as compared to the serial fmGA

implementation. Note also that the pfmGA used character-based information storage thus

using more memory.

Van Veldhuizen’s original research investigated the use of building blocks in solv-

ing MOPs; he created the Multi-Objective mGA (MOMGA) for that purpose by heavily

modifying the original mGA code [189]. Good performance resulted from applying the

MOMGA against a validated MOP test function suite. The MOMGA also compared fa-

vorably to or outperformed three other well-engineered MOEA variants in wide use at the

time. The MOMGA was not parallelized at this time because of data structure issues.

The MPI communication library requires contiguous blocks of memory to operate in an

efficient manner and the MOMGA used the mGA’s original linked-list structure. The next

algorithmic evolutionary step is presented in Chapter VI in which the MOMGA-II is cre-
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ated by importing the probabilistic building block initialization scheme from the fmGA

into the MOMGA. The MOMGA-II differs from the fmGA in that multiple objective func-

tions are solved simultaneously and its selection mechanisms are based on the concepts of

Pareto dominance and niching. The MOMGA-II is shown to have good effectiveness when

compared to other MOEAs and also performs well when applied to real-world applications.

These results motivated the parallelization of the MOMGA-II (or pMOMGA-II).
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Figure 7.13 pMOEA Evolution

Note that during this algorithmic development process, several problems with the

original mGA, fmGA and pfmGA codes were identified and corrected, and the resulting

programs (MOMGA-II and pMOMGA-II) optimized. Both programs use unsigned inte-

gers to store population information, but population members are stored contiguously in

memory so that MPI can be used to pass required information. These two codes are highly

optimized as compared to their predecessors in that many extraneous function calls were

removed, memory is allocated at program start (instead of reallocated during program

execution), contiguous memory blocks are created for the entire population, and several

memory leaks were plugged. Additionally, the numbers of decision variables/objective

functions and operations with them, were generalized; the original codes used separate

functions to handle the various cases. The (p)MOMGA-II development process is detailed

to illustrate the iterative algorithmic development process depicted in Figure 7.13.

7.5.2 “Genericizing” a pMOEA. Increasing the MOMGA-II’s efficiency and

potential effectiveness are major goals in creating the pMOMGA-II. However, it is also
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desired to thoroughly test the three parallel paradigms as applied to a single MOEA

variant. In other words, use a basic MOEA to create three different parallel versions.

Thus, the resulting algorithm is generic in the sense it may be used to implement any

of three major pMOEA paradigms as well as a serial one, with an eye towards future

expansion. This pMOEA is also generic in that it can execute on any parallel architecture

hosting an ANSI ‘C’ standard compiler.

A generic pMOEA has an additional advantage in the experimental design and exe-

cution process, as algorithmic differences are minimized. Of course, any serious pMOEA

testing must address not only MOEA-specific issues but must provide meaningful parallel

statistics as well. This rigorous testing has not yet occurred with pMOEAs. A thorough

analysis of the competing parallel paradigms, while also considering parallel performance

issues, should give valuable insights into pMOEA effectiveness and efficiency.

7.6 pMOMGA-II Testing

Testing a pMOEA requires a thorough analysis of the algorithm and possible MOPs

to use. One typically wants to test an MOEA on a particular class of problems and

may base the choice of MOP test suite on MOPs containing similar characteristics to the

real-world problem being solved. “Good” performance on test suite problems does not

guarantee that the same level of performance can be obtained on the real-world problem,

but it provides some level of confidence. This section presents testing of a pMOEA, the

MOMGA-II, as applied to two MOPs, one a standard test suite problem, and the other a

large scale constrained MOP.

7.6.1 Experimental Design. Based in part on the discussion presented in Sec-

tion 7.3.4, two MOPs are selected for use in these experiments. A goal in these experiments

is to determine the efficiency and effectiveness of differing parallel paradigms on different

problems. Predictions of performance are later offered and results can then be compared.

Thus, MOPs must be selected that appear suitable for each paradigm. In this chapter,

generalized test suite MOPs are selected to make statements as to the performance of the

various parallel paradigms when applied to MOPs in general.
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The results of a master-slave implementation are dependent on the MOP being solved

and the complexity of the fitness functions. Many references exist and results are presented

illustrating the efficiency gains possible through a parallelization of the fitness functions [20,

142]. Results obtained in the single objective EA area apply here to MOEAs and hence

this testing concentrates on migration and replacement schemes in pMOEAs. Figure 7.9

presents an example of the speedup achievable as applied to a specific problem.

For testing, two MOPs are chosen and executed using the pMOMGA-II. This is

completed to illustrate the effect that migration and replacement strategies have on the

overall effectiveness of a pMOEA. These two MOPs contain a different number of decision

variables and different characteristics in terms of their associated genotype and phenotype

spaces. The first MOP selected is Kursawe’s MOP, labeled as MOP4 [184], a highly used

MOP in comparing the performance of MOEAs presented in Chapter IV, Section 4.1. This

MOP is chosen for its characteristic of having a disconnected Ptrue , and PFtrue set, be-

ing scalable and nonuniform. The second MOP selected for testing is the combinatoric

MMOKP MOP, as discussed in Chapter IV, Section 4.4.1. The MMOKP MOP is formu-

lated to contain a large number of discrete, integer based decision variables. The 100 and

250 item instantiations are tested.

Since the objective of this testing focuses on island paradigm performance and the

migration and replacement schemes, it is somewhat irrelevant as to which specific MOEA

is chosen for testing. Since the MOMGA-II is intelligently engineered (see Chapter VI),

it is parallelized and used for testing the associated concepts. In the testing presented,

the following parameters are kept constant: cut probability 0.2%, splice probability 100%,

and mutation 0.0%, neighborhood size = 2 processors. The pMOMGA-II is an explicit

building block-based algorithm and building block sizes were chosen a priori to execute.

The population size, building block sizes, and number of generations executed varied with

each MOP tested. The reader is referred to Chapter VI for more details on the MOMGA-II.

In order to validate the proposed island paradigm implementation and pMOEA mi-

gration and replacement strategies, a cluster of 32 Pentium-III dual node symmetric mul-

tiprocessors (SMP) yielding a total of 64 processors connected via a 100 Mbps Ethernet

backplane through a 100 Mbps switch is used. The underlying hardware includes 1 GHz
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processors connected to 1 GB of RAM through a 133 MHz Front Side Bus (FSB). The

Red Hat Distribution, version 7.1 (kernel version 2.4.17), of the Linux operating system is

used along with version 1.2.2.1 of MPICH for the parallel communications. MPICH was

compiled with the gnu gcc compiler, version 2.96-85.

7.6.2 Experimental Results and Analysis. The island paradigm is typically used

to attempt and increase the effectiveness of the pMOEA over the serial MOEA with a

similar execution time. The first test presented uses 1, 2, 4, 8, and 16 processors in an

attempt to solve MOP 4. The population size is identical on each processor, 25 members, to

ensure that each processor receives enough work to complete and thus maintains a similar

execution time to the serial MOEA execution. The resulting PFknown sets are presented in

Figure 7.14.
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Figure 7.14 Parallel MOP4 Processor PFknown Comparison
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Figure 7.14 shows that increasing the effectiveness of the pMOEA is possible over the

serial MOEA through the addition of processors in order to search more of the space. As

additional processors are used, the pMOEA finds a larger number of solutions in PFknown ,

obtains a better distribution of points across the Pareto front, and finds a larger number

of solutions in PFtrue . The metric values for using different numbers of processors are

presented in Figure 7.18 at the end of this chapter.

As the number of processors increases, the variance of the metric values typically

decreases as shown in Figure 7.18. This is due to the additional search process conducted

through the use of more than one processor. As additional processors are used, some of

these processors generate identical solutions as others, but many of the processors generate

solutions that other processors did not generate. Since an identical population size is

maintained on each processor, these results illustrate that the additional processors are able

to search different areas of the space and generate solutions not found by other processors.

A subset of the various migration and replacement schemes proposed in Section 7.4.1.2

of this chapter are implemented and applied to MOP 4 in order to compare the results.

Since it is possible to implement variants of the migration and replacement schemes pro-

posed, only three schemes are selected for testing. To illustrate the advantage of a parallel

implementation, the overall population size in Figure 7.15a is kept constant. The serial

MOEA with a population of 50 members is compared to the parallel MOEA using 2 pro-

cessors and a combined population of 50 members, each of these tests used strings of

length 24 bits and executed 90 generations per run. The migration interval is set to every

3 generations and 5 members are chosen for migration and replacement with each event.

The combined population size of the parallel implementation was kept equal to the serial

tests to address the question of which implementation performs “better.” One can see in

Figure 7.15a the parallel implementation obtains a good distribution of points along the

front and more overall points and a better distribution of points in the lower right portion

of the front. This is important as the lower right portion of the front is a more difficult

area to generate solutions.

In Figure 7.15b, two of the migration schemes are compared. The method of migrat-

ing Pcurrent

(

p
t pm x

)

is compared to that of migrating Pcurrent

(

p
t pm x

)

plus a few random
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members. It is shown that the migration of the random members along with the current

Pareto front provides a better distribution of points across the front.
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Figure 7.15 Parallel MOP4 PFknown Comparison

The metric values are presented in Table 7.5 (at the end of this chapter) for each of

the selected migration and replacement schemes shown in Figure 7.15. Table 7.5 shows that

the results of the serial and pMOMGA-II execution are similar for generational distance,

ONVG and spacing. This is attributed to the fact that a serial MOEA can effectively find

solutions to this MOP and hence a more difficult MOP for an MOEA is necessary to test

a pMOEA’s performance.

In the testing of the MMOKP MOP, a comparison is presented between the various

migration schemes, in particular two elitist schemes are compared to the random scheme.

The population size is kept at 100 members per processor, 2 processors are used and the

2 objective, 100 item MMOKP MOP is executed with 100 bits per population member

and 100 generations per building block size. The migration interval is set to every 3

generations and 5 members are chosen for migration and replacement with each event.

Figure 7.16a shows that the migration of Pcurrent

(

p
t pm x

)

finds more points and a better

distribution of points along the front with the exception of the lower right portion of the

front. Figure 7.16b shows that the migrating of Pcurrent

(

p
t pm x

)

plus some random members

performs better than that of migrating just Pcurrent

(

p
t pm x

)

in terms of the cardinality of
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the solution set and the distribution of points across the front. Figure 7.16c shows that

the migration of Pcurrent

(

p
t pm x

)

plus some random members performs better than that of

just migrating random members, even in the lower right.
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Figure 7.16 MMOKP PFknown Comparison

In analyzing the results of Figures 7.15 and 7.16, one can see that the difference in

performance between the various migration and replacement schemes tested is relatively

small. This is due to the problem complexity associated with these formulations. A larger

MOP formulation is required to take full advantage of the possible effectiveness of a parallel

island implementation.

The metric values are presented in Table 7.6 (at the end of this chapter) for each of

the selected migration and replacement schemes shown in Figure 7.16. Table 7.6 shows that

the results of the serial and pMOMGA-II execution are similar for ONVG and spacing.

However, the migration of Pcurrent

(

p
t pm x

)

plus some random members does generate a

better distribution of points across the front and at the endpoints. This MOP instantiation

contains a larger number of decision variables than MOP 4 but is not difficult enough to

illustrate the usefulness of a pMOEA island paradigm implementation.
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Figure 7.17 illustrates the results of the 250 item MMOKP MOP, with 2 fitness func-

tions. In the attempted solving of this MOP formulation, the population size is kept at 100

members per processor, 2 processors are used and the 2 objective, 250 item MMOKP MOP

is executed with 250 bits per population member and 100 generations per building block

size. One can see that Figure 7.17 illustrates a much greater difference in the performance

of the two migration and replacement schemes. The migrating of Pcurrent

(

p
t pm x

)

plus some

random members performs much better than that of just migrating random members. The

migrating of Pcurrent

(

p
t pm x

)

obtains a larger number of points in PFknown , a better dis-

tribution of points and entirely dominates the PFknown set generated by migrating only

random members. This further strengthens the statement that one must use a parallel im-

plementation only if the problem is suited for it and the complexity requires it. Otherwise

one risks finding equivalent or worse solutions than a standard serial implementation may

yield.
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Figure 7.17 MMOKP PFknown Comparison

Overall, for both MOPs, the method of migrating Pcurrent

(

p
t pm x

)

alone or with a

few random members obtains more points on the Pareto front than does that of the serial

method or the random migration method. In all of the migration methods applied to

MOP4, the average results support the use of the Elitist (front +) migration scheme but

the ANOVA testing indicates similar performance. The reason for this is that MOP4 is

a difficult MOP but one that can be solved with many serial MOEAs. This, along with
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the small population sizes used, does not lend itself to be the best MOP to test parallel

concepts.

When utilizing a small population size, once the population converges to a solution

set, eventually all of the processors tend to converge to a similar set over the course

of the algorithm. It is recommended for future testing to execute the tests for fewer

generations so that each of the processors may converge to a solution but not force an

overall convergence to the same points on the Pareto front. In hindsight, fewer generations

should have been used to allow for a better analysis of which processor generated each

solution and hence better illustrate the effect migration has on a pMOEA. This analysis

provides for a comparison of the combined front across all of the processors, generation by

generation, so as to determine at what point has the algorithm generated the best overall

combined solution, and at what point are the processors just exchanging good population

members but not generating any of better quality. Scalability is important; although a

small number of processors are employed here, the scalability of the inherently parallel

island paradigm across many processors is anticipated to result in similar characteristics

in terms of the exploration.

As a comparison to the results obtained for MOP4, the 250 item MMOKP MOP

illustrates a definite difference in performance between the migration and replacement

schemes. This further illustrates that applying parallel MOEA concepts to a difficult

problem for an MOEA to solve yields better performance than the serial MOEA. Hence,

selection of the MOP to solve, and the specific parallel concepts is crucial to obtaining

good results from the pMOEA.

The results illustrate that through a simple island implementation one can obtain

better results in terms of the cardinality of PFknown , the distribution of points along

PFknown and the overall results when compared to the serial MOEA utilizing the same

parameters. The reason for this is that the pMOEA allows for the exploration of different

regions of the landscape, the generation of different building blocks, and hence the genera-

tion of better overall results. Hence utilization of an pMOEA as applied to MOPs that are

challenging to serial MOEAs has the potential to dramatically increase the efficiency and

effectiveness of the results. Additionally, migrating the current Pareto front alone or with
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some random members tends to outperform that of the random migration scheme in the

cardinality of PFknown , the distribution of points along PFknown and in the overall results.

Additional testing is necessary to further analyze the concepts presented when applied to

other MOPs.

These results gain insight into the fact that pMOEAs may only be more effective

than MOEAs when applied to large, complex MOPs where serial MOEAs do not generate

the quality of results required or when the pMOEA is executed with fewer generations.

In the MMOKP MOP, there is a larger difference between the results obtained for the

serial implementation and that of the parallel implementations but again this is a fairly

small problem to test. The concentration in this test was to determine if a difference exists

between the various migration schemes. The results are somewhat similar between each of

the tested migration methods on small MOPs (MOP) but a noticeable difference is seen

when applied to larger MOPs (MMOKP MOP with 250 items). Further analysis with more

difficult MOPs and fewer overall generations is suggested in order to develop further insight

into the relationship between effectiveness and efficiency of pMOEAs implementations.

7.7 Summary

This chapter discusses a high level overview of pMOEA state-of-the-art and presents

several meaningful contributions and innovations. A thorough discussion of the major

pMOEA paradigms (master-slave, island, diffusion) is included and observations made

regarding analysis of the current literature. The discussion presented is important as it

aids researchers in understanding pMOEA. An in-depth understanding of these concepts

can lead to the development of efficient and effective pMOEAs. Specifically, a major

contribution to the MOEA field is the innovative concepts for pMOEA migration and

replacement presented. Another major contribution lies in the first presentation of pMOEA

niching and archiving concepts as well as a generic pMOEA formulation.

A previous MOEA notation is extended into the pMOEA domain to enable precise

description and identification of various sets of interest. Taken together, this analysis

and original pMOEA development serve as a pedagogical framework and example of the

necessary process to develop an efficient and effective pMOEA. Various recommendations
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for creating pMOEA abstractions, designs and implementations and extending the field’s

knowledge through further research are made. This aids the community in achieving the

goal of a fuller understanding of pMOEAs and appropriate contexts for comparing their

performance.

Testing some of the concepts presented in this chapter led to a number of conclusions.

The application of a master-slave paradigm to an MOP is most useful when the fitness

function calculations are time consuming and exceed the communication time required to

transmit population members and fitness values. There is a point where the addition of

slave processors is counterproductive and decreases the execution time performance of the

pMOEA.

Island paradigm pMOEAs present a number of implementation issues that center

around the selection of population members for migration and replacement. This chapter

presents the first discussion of the migration and replacement schemes as well as testing

to validate the performance of a limited set of these schemes as well as the development

of the first explicit BB-based pMOEA, the pMOMGA-II. One conclusion made from this

portion of the research is that an MOP must be complex and difficult for a serial MOEA

in order to realize any real advantage with an island paradigm pMOEA. For example, the

testing of the pMOMGA-II as applied to MOP 4 and the 100 item MMOKP reflected little

difference between the results of the serial and parallel implementations. This is attributed

to the ability of a serial MOEA to effectively find solutions to the MOP. However, the

application of the MOMGA-II to the 250 item MMOKP MOP illustrates that a noticeable

difference exists. The differences between the various migration schemes tested illustrates

that the method of migrating Pcurrent

(

p
t pm x

)

alone or with a few random members obtains

more points and typically a better distribution of points across the Pareto front than does

that of the serial method or the random migration method. These results illustrate that

the application of a pMOEA to an MOP of sufficient difficulty (an MOP that MOEAs

cannot easily generate solutions for) can lead to the generation of a PFknown set of higher

cardinality and a better distribution of points across PFknown . The objective of this

chapter is met through the presentation of pMOEA concepts, the development of innovative
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migration and replacement schemes for pMOEAs, and the development of the first explicit

BB-based pMOEA, the pMOMGA-II.

The pMOEA computational paradigms span a wide spectrum and thus each must be

evaluated to determine their effectiveness and efficiency across a wide spectrum of appli-

cations and implementations on various software and hardware architectures. Moreover,

if possible, a theoretical foundation should continue to evolve for MOEAs and pMOEAs

in order to provide a foundation for the selection of a computational architecture with

associated pMOEA operators and parameter values. This work attempts to motivate the

direction of such efforts.

It is obvious that other pMOEA developers, with varying levels of experience, may

implement different approaches. These new (or equally similar) approaches are equally

important to further the pMOEA field. Well-designed studies of this nature can only aid

in further understanding critical pMOEA issues, seeing the impact of differing paradigms

on pMOEA efficiency and effectiveness, and gaining a better grasp of algorithmic (class)

performance through careful experimentation and analysis.
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Figure 7.18 pMOMGA-II MOP4 Metrics
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Table 7.5: Parallel MOP 4 Results

Number of Pop Size Per Mig/Rep Generational Distance ONVG Spacing

Processors Processor Scheme Mean SD Mean SD Mean SD

1 50 N/A 0.183 0.131 23.233 7.908 0.370 0.154

2 25 PF+ 0.254 0.225 20.533 6.801 0.441 0.200

2 25 PF 0.171 0.100 22.967 8.143 0.374 0.117

Table 7.6: Parallel 100 Item, 2 Knapsack MMOKP Results

Number of Pop Size Per Mig/Rep ONVG Spacing

Processors Processor Scheme Mean SD Mean SD

2 100 Rand 34.800 5.561 22.557 5.230

2 100 PF+ 32.233 5.083 22.155 4.676

2 100 PF 30.900 5.095 23.502 4.971
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VIII. MOEA Population Sizing

Many researchers in the Multiobjective evolutionary algorithm (MOEA) field have rec-

ognized the need for additional theoretical contributions to the field’s underlying foun-

dations [31, 44, 184]. In Chapter III, the breadth of theoretical MOEA contributions is

presented and summarized. Additional knowledge is therefore needed for further insight

into MOEA execution and results. One very important MOEA theoretical area that re-

quires additional development is that of MOEA population sizing. For example, many

MOEA researchers currently experiment with a few population sizes and only select the

size that tends to perform the best [26, 62, 63, 109, 120, 175, 202].

Thus, in order to increase the probability of generating the true computational Pareto

front for an MOP, theoretical analyses of MOEA population sizing is addressed in this

research effort. A new generic MOEA population sizing formulation, based upon Building

Block (BB) size, with the associated statistical theory is developed along with explicit

underlying MOEA BB phenomena. Examples drawn from Chapter VI then illustrate

the utility of this innovative model. We have used the single objective population sizing

approach as the foundation of our model development. Therefore a brief discussion of

Goldberg, Deb, and Clark’s original single objective population sizing work is presented

first [75].

8.1 Single Objective Population Sizing

The Building Block Hypothesis (BBH) [13, 74, 201] is considered by many to be

the basis for understanding GAs and by extension, many MOEAs. The BBH, described in

Chapter II, is also the basis for much of the population sizing work that has been completed

to date for single objective EAs [75, 77]. Currently, no population sizing efforts have been

openly published in the literature for MOEAs. An understanding of the BBH is integral

to developing associated MOEA population sizing theory. The development of such theory

is important to advance the understanding of MOEAs and determine a method for finding

a population size that provides “good” results with a certain level of confidence.
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Considering that single objective EAs have existed for many years prior to the im-

plementation of the first MOEA, it is a worthwhile investment of time to understand the

theory that has been developed for population sizing in these EAs. One of the most

prominent research efforts that has contributed a great amount to the theoretical analysis

of single objective GAs is that of David Goldberg and his students. In 1991, Goldberg et

al. [75] published a paper on the theory of GA population sizing applied to both implicit

and explicit BB-based GAs. This research was completed to understand what population

size is necessary to use in order to generate a “good” solution(s) to optimization prob-

lems and in turn increase the probability of the GA finding, and converging, to the best

solution(s) to the problem.

The single objective (SO) research recognized the fact that GAs with relatively small

population sizes typically found good solutions more by chance than through an actual

manipulation and discrimination of the best BBs. These results are problem dependent

and due to the structure of the fitness landscape. Additionally, Goldberg et al. [75] note

that at larger population sizes, a GA can reliably discriminate between various BBs of

different quality. Effective use of these concepts along with an understanding of and

intelligent employment of the various selection mechanisms can yield a very powerful GA.

The population sizing equations developed in [75] can lead to relatively large popula-

tion sizes in certain cases, but this is necessary to achieve a high probability of generating

a “good” solution to the problem [133]. The population sizing equation generated is based

on the comparison of identically sized BBs and the idea that BBs are integral to finding

the best solution to an optimization problem and centered on the BBH. If one can find the

best BBs that exist for the problem, manipulate them through the standard evolutionary

operators and perform selection, a high probability exists of finding the global optimum

solution to the problem [75]. A much higher probability exists of generating good solutions

through the use of a population sizing equation versus blindly choosing an initial popula-

tion size to start with. Selection is important as an MOEA must be able to distinguish

between various population members and select the better of those compared.

We acknowledge that there are many sources of noise to be found in the execution

of any EA or MOEA and that the noise varies from one algorithm to another. Noise can
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Figure 8.1 Distributions of the mean fitness values of two BBs, H1 and H2.

manifest itself in many areas, to include the GA operators, from selection to recombination,

noise inherent in the problems themselves, and so on. Noise manifests itself in the genotype

space and prohibits the evolutionary search from finding the good BBs and generating the

good solutions due to limited genotype resolution. Goldberg based his population sizing

research on the requirement that the probability of error in BB decisions be below some

threshold α in each generation. The error threshold accounts for the noise inherently

present in an EA.

Finding the good BBs present in the initial population is crucial to generating good

solutions to the problem and potentially the global solution. The fitness value of any

single BB is dependent on the selection of the remaining bits necessary to generate a fully

specified potential solution. Since the evaluation of each BB is dependent on additional

alleles, one cannot compute a single evaluation of a BB and expect with any confidence

that the value calculated is indicative of the mean fitness value for the respective BB. In

order to compare BBs and evaluate the quality of a BB, one must determine the mean

fitness value of a BB across a number of different combinations of bits that lead to fully

specified individuals. The mean fitness values are important as the selection mechanism
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used (tournament selection) compares the fitness values of two individuals at a time in

order to determine which of the two is better.

In the single objective case, one begins by looking at the mean fitness values of

two competing BBs, H1 and H2. According to the Central Limit Theorem (CLT) [198],

even if one does not know if the fitness values of the BBs are normally distributed, one

can state that the distribution of the means of the sample fitness values of the BBs is

approximately normal if the sample size is large enough. The objective is to determine the

sample (population) size necessary in order to allow one to determine which of two BBs

is better with a level of confidence. In Figure 8.1, the distribution of the means over a

number of samples of the fitness values of two building blocks are plotted, where any mean

fitness value to the right of another is better, considering this is a maximization problem.

In Figure 8.1, BB H1, whose distribution (and mean) is shown to the right of BB H2

is better in terms of its associated mean fitness value. The two distributions overlap which

makes it difficult to discern which BB is better in the overlapping areas of the distributions.

If we chose a particular fitness value, f ′, both of the BB distributions contain values above

this threshold fitness value [75] for a portion of their distribution. 1 In this case, an error

is made by choosing H2 over the overall better BB H1 in the shaded region of Figure 8.1.

Building Block H1 is referred to as the overall better BB since the mean of BB H1’s

distribution is higher (better) than that of BB H2 and assuming that the problem is not

deceptive. A deceptive problem is one in which the deceptive BB is a maximum distance

away from the BB necessary to find the global optima.

From Figure 8.1, one can calculate the probability that the worse schema, H2, is

better than a particular fitness value, f ′, by finding the shaded area under the curves.

One can further calculate the overall probability that the sample fitness of H2 is better

than the sample fitness of H1 by summing the probabilities for all f ′ which is in fact the

convolution of the two distributions. Since the distribution of the means shown are normal

and we know that the difference (convolution) of two normals is in fact normal [198];

therefore the mean of the difference is the difference between the means of the two normal

1f ′ is a particular fitness value and not the derivative of f .
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distributions and the variance of the difference is the sum of the individual variances.

Any linear combination of normal distributions is distributed normally [198]. This means

that the underlying distribution of the fitness values of the BBs is inconsequential to this

analysis.

The signal difference, the difference of the mean fitness values, of two competing

BBs is defined as the random variable d , fH1 − fH2 . The mean variance of two BBs is

σ2d , (σ2H1
+ σ2H2

) which is the variance of the mean fitness values. 2 Even though it is

not stated directly in [75], this equation makes the implicit assumption that the two BBs

H1 and H2 are independent. The assumption of independence of BBs is valid if there is

no epistatic relationship between the BBs. In cases where the bit length of the BBs is

much less than the fully specified string length, the probability of an epistatic relationship

may be reduced. However, it is noted that this is problem dependent. The probability of

making an error in any single comparison of the two BBs is computed through determining

the probability α such that z2(α) , d2/(2σ2M ) where z(α) is based on a one sided normal

distribution. To clarify this, z(α) is the tail deviate value at an error probability that one

deems acceptable in the empirical population sizing calculation.

In looking at Figure 8.1, the amount of overlap between the two distributions is

considerable and increases the probability of making an error in comparing the two BBs.

In order to reduce this probability of making an error, one should decrease the amount of

overlap between the distributions. Looking to statistics, we know that as we increase the

number of samples taken, the variance of the mean fitness value distributions decreases.

The mean of the two distributions does not change, but the variance about the mean

decreases as the number of samples is increased.

Through this process of increasing the number of samples taken, one can reduce the

probability of making an error in choosing the “better” BB as shown in Figure 8.2. In order

to reduce the probability of error, one must reduce the overlap between the distributions

as much as possible. The number of required samples to reduce the overlap between the

2Note that σ2
d is used instead of σ2

M as in Goldberg [75]. However, σ2
d , 2σ2

M .
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distributions is problem dependent, but can be determined through an analysis of sample

data.

f(H2) f(H1)

Figure 8.2 Distributions of the mean fitness values of BBs, H1 and H2 with an increased
number of samples.

To derive the population sizing for single objective GAs, the variance of the popula-

tion mean is computed as the variance of a single sample divided by the total number of

samples. In this discussion, a single sample is the results obtained from a single run of the

algorithm. Since the likely number of samples in a randomly generated population of size

n is the population size divided by the number of competing schema, κ, that the two BBs

compete with, to have an error rate of α one obtains the following equation:

z2(α) =
d2

2σ2M/n
′
, (8.1)

where n′ = n/κ. From this one can obtain a fairly generalized estimate of the population

size required to obtain accurate results and converge within a reasonable amount of time.

Manipulating Equation (8.1) yields Equation (8.2):

n = 2 ∗ z2 ∗ σ
2
M

d2
. (8.2)
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Equation (8.2) assumes that the noise encountered in the GA comes entirely from

the variance in the fitness values within the population. To improve the population sizing

equation to account for other sources of noise, the equation is modified to include additional

multiplicative terms. To account for i multiple sources of noise, a noise coefficient ni, is

presented in Equation (8.3):

ε2ni ,
σ2ni
σ2M

, (8.3)

where the summation of the noise coefficients is presented as:

ε2T ,
∑

i

ε2ni , (8.4)

and assumes independence between the sources of noise. To account for the effects of

varying the string length, l, the number of BBs that fit into a string of length l is m, where

m = l/o. The number of BBs of order o is χo where χ is the cardinality of the alphabet

being used (often times this is binary where χ = 2), and o is the order of the BB or the

specified BB size. Including the total number of BBs of a specified order into the equation,

the new population sizing equation, to include i sources of noise and the number of BBs

is thus Equation (8.5):

n = 2 ∗ z2 ∗ σ
2
M

d2
∗m ∗ (1 + ε2T ) ∗ χo . (8.5)

The terms are multiplicative because of the possible large detrimental effects that the noise

introduces into the algorithm and the incorrect choices that may be made in comparing

two BBs. Generation of values for the various terms is based upon assumptions and

experimental testing and usually results in a large (conservative) value of n [133].

8.2 Multiobjective Population Sizing

Proper population sizing for MOEAs is a problem area that many have identified as

of interest to further the theoretical development of MOEAs [31, 44]. This is an area that

has not been addressed in the current literature as discussed in Chapter III. While the

single objective population sizing development discussed in the previous section can lead to
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extremely large population sizes, the theoretical basis for using a population that large is

to ensure probabilistically that the necessary “good” BBs are in the initial population. The

population sizing equation also attempts to ensure that enough of these BBs are generated

so that the good BBs are not all destroyed through the noise inherent in the evolutionary

process and operators. These BBs must be present in the initial population in order to be

selected, recombined, and generate better solutions, hopefully finding the global optima.

In this section, a novel population sizing equation is developed for use by the MOEA

community. This equation is valid for implicit and explicit BB-based MOEAs. The popu-

lation sizing equation presented at the end of this section is an estimate of the population

size necessary to obtain good solutions to the MOP, and it is also the first known theoret-

ical work into the sizing of MOEA populations necessary to obtain “good” solutions. All

of the BB comparisons are conducted over BBs of an identical size.

The development of a multiobjective population sizing equation is not straight for-

ward. The problem encountered is that a one dimensional fitness comparison of competing

BBs cannot be made, but instead, a multidimensional comparison of BBs, where the

dimensionality is equal to the number of fitness functions must be completed. In any mul-

tiobjective formulation, a fitness value vector exists for the evaluation of each of the two

BBs, Hb, containing k components, one for each of the k fitness functions. The fitness

values observed are represented by fitness vectors f containing elements fk(Hb), where k

represents the fitness function and b represents the specific BB (Hb represents the specific

BB; 1 or 2). Each of the two BBs is evaluated with respect to each of the fitness functions

thus yielding a fitness value vector. The BBs are evaluated over multiple samples to gen-

erate a mean fitness value vector. By the CLT the mean fitness value vectors of each BB

are distributed as multivariate normal distributions.

Pareto dominance is used as the criterion for stating that one BB’s mean fitness

vector is “better” than another. In using Pareto dominance criteria to determine whether

or not one BB’s mean fitness vector is “better” than another, three possibilities exist. The

first possibility is that BB H1’s mean fitness vector dominates that of H2. The second

possibility is that BB H2’s mean fitness vector dominates that of H1. The last possibility

is that neither BB H1’s or H2’s mean fitness vectors dominate, and hence they are both
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nondominated BBs. An error is made if the incorrect, or dominated, BB is chosen over the

correct, or nondominated, BB in the first two possibilities. In the last possibility, a choice

of either BB is not specified as an error in this research as both BBs are nondominated.

This is reflected in the tournament selection routine used by many MOEAs. Given a

choice of two nondominated BBs, one is typically randomly selected to become part of

the next population. Another variant of this would be to allow both BBs to be selected

for inclusion in the subsequent population. The definition of error must reflect how the

selection mechanism is implemented in the MOEA.

For example, if the mean fitness vector of H1 is “better” than the mean fitness vector

of H2 then one would like to select population members representing H1 more often than

those representing H2. In general, the issue at hand is determining how to increase the

probability that strings are selected that represent the nondominated BB H1 more often than

those that represent the dominated BB H2? To address this, the probability of making an

“error” or the number of times that one selects population members containing H2 over

those containing H1 on a single trial, must be minimized.

Another objective of this chapter is to present a process for researchers to follow that

allows one to determine the MOEA population size. This process requires one to either

take random samples of each BB to estimate the true mean fitness values (the disadvantage

is that one does not know which BBs are the good BBs are in any real-world MOP), have

theoretical insight into the MOP through problem domain knowledge that allows for a

good estimate of the true mean fitness values (this is the method used by Goldberg but

one does not know if their estimate is a good estimate of the true mean fitness values [77]),

or apply this population sizing approach to a pedagogical MOP in which the true mean

fitness values are known. It is assumed that the sample size and number of samples is large

enough so that the distribution of the means of the sample fitness values of the population

is approximately multivariate normal.

The multivariate normal density function, for a k-dimensional normal density, for

the random vector X = [X1, X2, . . . .Xk]
′ has the form [103]:

f(x) =
1

(2π)k/2|Σ|1/2 e
−(x−µ)′Σ−1(x−µ)/2 (8.6)
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Figure 8.3 Distributions of the mean fitness values of BBs, BB H1 and H2 for a two
dimensional MOP

where −∞ < xi < ∞, i = 1, 2, . . . , k. This k-dimensional normal density function is de-

noted as Nk(µ,Σ). Two objective function (k = 2) MOPs are used for ease of visualization

and understanding. The bivariate case has the form [103]:

f(x1, x2) =
1

2π
√

σ1σ2(1− ρ212)

∗ exp

{

− 1

2(1− ρ212)

[

(

x1 − µ21√
σ1

)2

+

(

x2 − µ22√
σ2

)2

− 2ρ12

(

x1 − µ21√
σ1

)(

x2 − µ22√
σ2

)]}

(8.7)

The distributions of the mean fitness values of two BBs selected for comparison,

H1 and H2, when using two objective functions (k = 2) is presented in Figure 8.3. In

Figure 8.3, each of the distributions of the mean fitness values for the BBs has a bivariate

normal distribution. The area of overlap between the distributions contains the fitness

values where an error may occur, an incorrect determination of which BB is better.

The sample mean of the fitness values are represented by the k element vectors X̄b.

The components of the sample mean, X̄kb, can be used as estimates for the components

of the actual mean, µkb, since the random variables are taken from the sample data. A k
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element sample fitness variance vector, S2b , for each BB, b, containing each of the sample

fitness variance values, S2kb, is calculated from the sample mean values. The sample variance

values are estimates of the population variance values, which are represented by σ2kb. It is

necessary to define additional symbology for deriving the population size without the use

of sample data, Fkb is the random variable that has a probability distribution based on

fitness function k and BB b. µkb represents the population mean of the random variable

Fkb. fkb is the observed value identified through testing and f̄kb is the sample mean of

this variable. Fb is the vector representing the random variables Fkb and f(b) is the vector

representing the observed variables fkb for each BB.

To calculate the overall probability that the sample fitness vector of the second BB

is mistakenly determined to be “better” than the first BB, requires a complex calculation.

The term better is used in the sense of Pareto dominance. This calculation involves finding

the probability at any given fitness vector value f ′ that the sample fitness f(H2) dominates

f(H1). This is a calculation of the probability of the worse BB dominating the “better”

BB for a particular fitness vector, f ′. The integral of all the probabilities, for all values

of f ′, yields the overall probability that the worse BB is actually better. A difference

calculation, D, is used to distinguish between the two BBs. This difference, D, is the

difference between the mean fitness values of the two BBs over a number of samples. As

the number of samples is increased, the standard deviation of the difference between the

sample means of the distributions becomes smaller, there is less overlap in the tails of

the multivariate normal distributions (for the two BBs being compared), and the level of

confidence in the choice of which BB is “better” increases. This is shown in Figures 8.1

and 8.2 for the single objective case for simplicity in understanding where the overlap

occurs. A smaller amount of overlap in the distributions means a smaller probability of

making an error in choosing which is the “better” BB.

The mean variance of the two BBs, σ2d is needed to calculate the overall population

size for an MOEA. The signal difference, D, is a random variable and is defined as the

difference in the means of the fitness values of the two BBs compared. If the assumption

of independence of the BBs and the fitness functions is made, D is distributed normally
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with the estimated means and variances specified:

D = (F11 + F21)− (F12 + F22) (8.8)

In the generalized case of k fitness functions, D, can be represented as:

D =

(

∑

k

Fk1

)

−
(

∑

k

Fk2

)

(8.9)

Johnson and Wichern [103:p. 165] present a theorem of the normal distribution,

where X is a random vector having a multivariate normal distribution.

Theorem 2 If X is distributed as Np(µ,Σ), then any linear combination of variables

a′X = a1X1+a2X2+ . . .+apXp is distributed as N(a′µ,a′Σa). Also, if a′X is distributed

as N(a′µ,a′Σa) for every a, then X must be Np(µ,Σ) [103].

In the bivariate case,

F =

















F11

F12

F21

F22

















∼ Np(µF ,ΣF ) . (8.10)

The marginal distributions can be written as:

F11 ∼ N(µF11 , σF11) (8.11)

F12 ∼ N(µF12 , σF12) (8.12)

F21 ∼ N(µF21 , σF21) (8.13)

F22 ∼ N(µF22 , σF22) (8.14)

Using Theorem 2, D can alternatively be written as:

D = a′F (8.15)
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where a′ is the coefficient vector of the linear combination of D. The coefficient vector

is presented in Equation (8.8). Therefore, for the bivariate formulation shown in Equa-

tion (8.8), the coefficient vector is:

a =

















1

1

−1
−1

















(8.16)

Equation (8.8) presents a linear combination of variables in the form presented in

Theorem 2. Therefore, using Theorem 2, Equation (8.8) can be alternatively written as:

D ∼ N(a′µ,a′Σa) (8.17)

The covariance matrix is represented by Σ. Considering that dependencies can exist

between fitness functions and BBs, multiple covariance matrices are possible. For simplicity

of understanding, the four categories of covariance matrices Σk1−k2,b1−b2
are presented

for a two objective case. The process of generating the covariance matrices described is

applicable to k objectives. In these matrices, k1 − k2 represents a dependency between

the fitness functions specified by k1 and k2 and b1 − b2 represents a dependency between

the BBs specified by b1 and b2. The covariance matrices are 2k x 2k matrices, where k is

the number of fitness functions and the comparison is always made between two selected

BBs. In the simplest case, of only two fitness functions, assuming independence of BBs and

independence of the fitness functions, all of the covariance terms are 0, and the covariance

matrix is:

Σ(0,0) =

















σ2F11
0 0 0

0 σ2F12
0 0

0 0 σ2F21
0

0 0 0 σ2F22

















(8.18)
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If the BBs are independent but both of the fitness functions illustrate a dependency,

then the covariance matrix is:

Σ(1−2,0) =

















σ2F11
0 Cov(F11, F21) Cov(F11, F22)

0 σ2F12
Cov(F12, F21) Cov(F12, F22)

Cov(F21, F11) Cov(F21, F12) σ2F21
0

Cov(F22, F11) Cov(F22, F12) 0 σ2F22

















(8.19)

If both BBs exhibit a dependency but the fitness functions are independent, then the

covariance matrix is:

Σ(0,1−2) =

















σ2F11
Cov(F11, F12) 0 Cov(F11, F22)

Cov(F12, F11) σ2F12
Cov(F12, F21) 0

0 Cov(F21, F11) σ2F21
Cov(F21), F22)

Cov(F22, F11) 0 Cov(F22, F21) σ2F22

















(8.20)

If both the BBs and the fitness functions exhibit a dependency, then the covariance

matrix is:

Σ(1−2,1−2) =

















σ2F11
Cov(F11, F12) Cov(F11, F21) Cov(F11, F22)

Cov(F12, F11) σ2F12
Cov(F12, F21) Cov(F12, F22))

Cov(F21, F11) Cov(F21, F12) σ2F21
Cov(F21, F22)

Cov(F22, F11) Cov(F22, F12) Cov(F22, F21) σ2F22

















(8.21)

This covariance matrix formulation can easily be extended to any number of fitness

functions and any dependency existing between any combination of the respective fitness

functions. A positive covariance indicates that a higher than average value of one variable

(BB) is compared to a higher than average value of another variable (BB). A negative

covariance indicates that a higher than average value of one variable (BB) is compared

to a lower than average value of another variable (BB) [198]. In either situation, this

illustrates a dependence between the two BBs and fitness functions that may require a

larger or smaller overall population size, respectively.
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Using the appropriate covariance matrix, coefficient values, and Theorem 2 as pre-

sented previously, the equation for σ2d is (where σ2d = 2σ2M ):

σ2d = a′ΣFk,Hb
a (8.22)

where a′ is a vector representing the coefficients of the D terms shown in Equation (8.16).

To provide a level of confidence in the calculations and to calculate the probability of

making an error, the confidence interval (CI) for the mean variance of the BBs, σ2d, is cal-

culated based on the sample data. The CI provides an estimated range of population sizes

necessary to handle the variance in the fitness values with respect to the BBs and provide

some level of confidence that H1 is correctly chosen over H2 in the previous example.

What α level should be used for the CIs? The answer to this question depends on

the level of confidence that one wants to achieve in their results. α is the probability of

one falsely rejecting the null hypothesis. In this case, the Null Hypothesis H0 is: BB 1,

H1, is not dominated by BB 2, H2. The alternative hypothesis, Ha is: that H2 dominates

H1. The overall error being calculated is that of rejecting the null hypothesis when in fact

it is true, i.e., concluding that H2 dominates H1 when in fact it does not.

Once the CI for σ2d is calculated, the upper confidence limit is selected. This upper

confidence limit, Θ̂U [198] is used in the subsequent population sizing equation as the value

for σ2d. With a probability of 1 − α, one can be confident that the appropriate σ2d value

is used. Since the likely number of samples in a randomly generated population of size n

is the population size divided by the number of competing schema, κ, that the two BBs

compete with, to have an error rate of α one obtains the following equation:

z2(α) ,
d2

σ2d/n
′
, (8.23)

where n′ = n/κ. From this, one can obtain a fairly generalized estimate of the population

size required to obtain accurate results and converge within a reasonable amount of time.

The probability of making an error in a single comparison of two BBs is computed

in determining the probability α where α is an acceptable error probability for use in

8-15



the population sizing of MOEAs. Since D is distributed normally, the z(α) value can

be calculated, and hence, the probability of making an error on any single comparison of

each BB can be stated. To enhance the multiobjective population sizing equation, the

CI for σ2d is calculated (the CI can also be used in the SO population sizing equation).

The confidence interval provides one with a level of confidence that the population sizing

equation yields a correct population size to use.

The CI provides a more conservative population size because the observed value, S2,

is typically inflated with the CI. In actuality, the variance may be smaller and therefore

more population members are calculated than may be necessary. The required sample size

is an increasing function of the variance of the BBs. Once the CI is found for σ2d, this

value is used in the population sizing equation for MOEAs.

Observe that the assumptions for the single objective population sizing equation dis-

cussed in Section 8.1 are used to similarly derive the MOEA population sizing equation. To

improve the population sizing equation to account for other sources of noise, the equation

includes an additional term(s). Noise can manifest itself in many areas, to include the GA

operators, from selection to recombination, noise inherent in the problems themselves, and

so on. To account for i multiple sources of noise, a noise coefficient ni, is presented in

Equation (8.24):

ε2ni ,
σ2ni
σ2M

(8.24)

where the summation of the noise coefficients is presented as:

ε2T ,
∑

i

ρ2ni (8.25)

Additional terms need to be defined in the population sizing equation to account for

the effect of varying the string length. Strings of length l, with alphabets of cardinality χ,

where χ often times is 2 (binary), are used. Assume that smaller BBs sizes are required

to find the global optima (o << l) and that these BBs are better than other competing

BBs in the population (i.e., the problem is not deceptive). The number of BBs that fit

into one string of length l is m, where m = l/o. The number of competitors between BBs,
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considering the highest order BBs, is χo. The focus is on the highest order BBs to remain

conservative (larger) in the population sizing equation. Using these multiplicative terms

in the same manner as the SO population sizing equation, the population sizing equation

for MOEAs is derived in Equation (8.26):

n , z2 ∗ σ
2
d

d2
∗m ∗ (1 + ε2T ) ∗ χo (8.26)

The parameter d is based on the difference in the distributions and can be calculated

in the same manner as was done in Section 8.1. If the BBs are close together in fitness

space, one may want a smaller width value so that more of the BBs are found in the

population, but this increases the population size. If the good BBs are dispersed more so

in fitness, then a larger value for d may be appropriate since one can accept fewer BBs due

to how they are distributed in fitness space. This can be viewed in terms of a standard

deviation and related to the variance of the fitness functions.

To determine the population size necessary to obtain a good solution set, a Pareto

front, estimates for the means, the variances σ2kHb
, the confidence interval of the mean

variance of the BBs σ2d, the selection of an appropriate α level and distance parameter are

necessary to determine a good starting population size for an MOEA. If good estimates

of these parameters are unknown, one can use observed values for each of the associated

parameters to generate the population size required to yield good solutions.

The covariance terms have a direct effect on the population sizing equation as the

MOEA must be able to distinguish between the BBs in determining which is “better.” For

example, if a higher than average value of H2 is compared with a lower than average value

of H1, from Figure 8.1, then this is a region where the distributions may overlap and hence

there is a large probability of making an error. A negative covariance increases the overall

population size. This intuitively makes sense as the harder it is to distinguish between

BBs, the larger the required population size necessary to achieve an acceptable error level.

Convergence properties of an MOEA using this population sizing equation to determine

the initial population size are expected to be empirically advantageous.
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8.3 MOEA Population Sizing Reality

In order to determine the effect of this population sizing equation, a pedagogical

example is presented. In this example, using the parameter values from the testing docu-

mented in Chapter VI, the population sizeN is calculated using Equation (8.26). Tables 8.1

and 8.2 present the population sizes required for the string lengths and BB sizes used in

testing MOPs 1, 2, 3, 4, and 6 and MMOKP. In the testing of the standard MOPs, strings

of length l = 24 and BBs of size o = 1 − 3 were used. The remaining parameters values,

necessary to calculate the population size are taken from Merkle, Gates, and Lamont [133].

In Merkle, et al. [133], an approximate error level of α = 0.01 was selected yielding

z2(α) = 6, and σ2d/d
2 = 0.25. These values were calculated for a single objective Protein

Structure Prediction problem, but they can be considered somewhat low approximations

of the values one may expect to encounter in applying MOEAs to this problem. In many

MOPs, the maximum required BB size may be larger than that used in single objective

problems. This larger BB size additionally leads to the calculation of a larger overall

population size based on the population sizing equation. Therefore, the utilization of

larger BB sizes and σ2d/d
2 calculated from limited experimentation with an MOP generally

yields a larger overall population size.

The population sizes required for some of the MOPs used in Chapter VI provides

insight into the values of the initial population sizes required. The error level is specified

by the user and hence a value of 6 for z2(α) is realistic. Additionally, as the dependence

between fitness functions and BBs increases, so may the value for σ2d/d
2, thereby increasing

the overall population size. The resultant population sizes calculated using Equation (8.26)

and the specified parameters from [133], for each of the associated BB sizes, is presented

in Tables 8.1 and 8.2.

The initial population size used in Chapter VI for MOPs 1-6 is 250. To determine the

population size to use in experimentation, one selects the largest population size presented

in Table 8.1 (552 members) as this is the required population size for BBs of size 3. In

comparing the results of the population sizing equation (552 members) to the population

size used (250 members), the population sizing equation requires a larger number of mem-
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bers to be used in order to generate good solutions. The difference between the required

size of 552 members and the size used of 250 members illustrates that in this example, a

smaller initial population size than that calculated is sufficient to generate good solutions.

This is due to the upper limit of the confidence interval used in the sizing equation. This

upper limit may yield a larger population size than necessary in some cases. Additionally,

it is shown in Chapter VI that the MOMGA-II using a population size of 250 performed

statistically similar to or better than most other MOEAs. An increase of that population

size is expected to have a limited impact on the results of the MOMGA-II. The results

using 552 members is expected to be statistically similar to the MOMGA-II results using

250 members in most cases for MOPs 1, 2, 3, 4, and 6.

Table 8.1 Estimate of MOEA Population Size for MOPs 1-6 (l = 24)

o N

1 138

2 276

3 552

The population sizes necessary to obtain good empirical results for the MMOKP

grow rapidly as the BB size is increased. The population sizes presented in Table 8.2

are calculated using the same parameter values as Table 8.1, with the exception that the

string length is increased to 100 for the 100 item MMOKP. In testing the MOMGA-II’s

performance over the 100 item MMOKP, a population size of 400 members was used and

a maximum BB size of 12. In comparing the 400 members used in experimentation with

the MOMGA-II to the recommended population size presented in Table 8.2 of 1,216,512

one can see that the population size used was inadequate. The recommended population

size is orders of magnitude greater.

If the population size was modified to reflect the size present in Table 8.2, the

MOMGA-II is expected to perform statistically better than it did for this MOP. The

disadvantage is that the execution time of the algorithm would be increased substantially,

potentially resulting in an infeasible test due to time and resource constraints. The result-

ing population size from Equation (8.26) may not always be feasible to implement but it
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Table 8.2 Estimate of MOEA Population Size for MMOKP (l = 100)

o N

1 138

2 1188

3 2376

4 4752

5 9504

6 19008

7 38016

8 76032

9 152064

10 30412

11 608256

12 1216512

is a guideline to illustrate the sizes necessary to obtain good results. Additionally, if the

recommended size exceeds a number that the researcher can feasibly use, due to time or

resource constraints, the researcher can choose a more favorable population size in terms

of their constraints. Once a size is selected, the researcher can calculate an estimate of the

probability that this population size may yield good results through Equation (8.26).

Tables 8.1 and 8.2 illustrate the large population sizes that may result from utilization

of the multiobjective population sizing equation (Equation (8.26)). The population sizes

calculated and presented in Tables 8.1 and 8.2 may be lower estimates than one may

expect given the parameter values were calculated from a single objective test. Note

that the population sizes actually used are much smaller than those derived from the

population sizing equation. This is expected as the population sizing equation presents a

conservative (large) estimate of the population size required to obtain good solutions and

since multiobjective problems may require the use of larger BB sizes.

The resulting population sizing equation derived as Equation (8.26) is the first known

population sizing equation for MOEAs. This equation is a useful model for MOEA re-

searchers in determining the population size necessary to obtain good solutions. This

model is also useful to determine with what probability a different population size may

generate good results. This population sizing equation and knowledge required to derive

it provides a more complete understanding of MOEAs.

8-20



8.4 Summary

The population sizing model of MOEA populations is discussed in this chapter. A

novel MOEA population sizing equation is developed based on a sound statistical founda-

tion including previous SO population sizing efforts. This equation can lead to conservative

population sizing values because of the statistical assumptions. This model is applicable to

both explicit and implicit BB-based MOEAs. Even though the BB size symbolic notation

is identical, in MOEAs, the extensive variation of BB sizes and associated cardinality is

large. As observed in Chapter VI examples, BBs of a large size may be required to make

the associated large steps in phenotype space in order to move towards the Pareto front.

These BBs of large sizes and the large number of required BBs results in large empirical

population sizes. The results of this chapter indicate that such population sizes are quite

large in order to statistically converge to the Pareto front.

The symbolic form of the MOEA population sizing equation is quite similar to the

SO population sizing equation. The main differences lie in the determination of the σ2d

term from the multivariate normal distribution, which accounts for the multiple fitness

functions as well as the possible dependence between both the BBs and fitness functions.

The example BB size discussion presented in Chapter VI, and the empirical population

sizes employed, indicate that a bounding population sizing value would be useful. Such a

population sizing equation (Equation (8.26)) is presented in this chapter with calculated

population sizes for various MOPs. Analysis indicates that when the empirical population

size is orders of magnitude less than that of the theoretical population size, convergence to

the Pareto front, PFtrue , is limited. The population sizing research presented also allows

for the consideration of dependencies between BBs and objectives in the determination of

a good population size to use. Additionally, a researcher can use the population sizing

equation to determine the level of confidence an MOEA will generate good solutions to an

MOP using a population size that differs from the result of the population sizing equation.
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IX. Conclusions and Documentation

9.1 Introduction

This chapter summarizes the major contributions resulting from this research effort.

The discussion presented in this dissertation should be of great interest and use to the

MOEA community as well as other researchers outside of the MOEA community. A number

of contributions have been made throughout this effort and each of these contributions is

important to advancing the MOEA state-of-the-art.

Research into MOEAs is extremely important. MOEA researchers can leverage their

knowledge of MOEAs, to develop new, efficient, and effective MOEAs that perform “bet-

ter” than current methods. The importance of MOEAs lies in the ability of researchers to

effectively use MOEAs to generate good solutions and potentially solve problems of vari-

ous classes. In particular, the Air Force can use the results of this effort to find possibly

better solutions to current MOPs of interest. An example of this is the Advanced Logistics

Problem, for which the MOMGA-II generated very good results, as shown in Chapter VI.

Additionally, the results of the MOMGA-II as applied to the NP -Complete Modified Mul-

tiobjective Knapsack Problem illustrates that the MOMGA-II found good solutions to a

discrete MOP containing a large number of integer based decision variables. The ALP

and MMOKP MOP results are useful in that they illustrate the good performance of the

MOMGA-II over problems of this class. The MOMGA-II can be used by Air Force special-

ists in attempting to solve real-world Air Force MOPs. The thoughts and ideas presented

in this document are original or referenced from the appropriate authors. This dissertation

serves as an original work, meant to extend the state-of-the-art of MOEAs and pMOEAs.

The five objectives and the research goal of this effort are met. Each of the objectives,

with references to the chapters that detail the respective objective, are summarized. This

research is a contribution to the MOEA community and advances the state-of-the-art in

terms of MOP analysis through the use of BBs, BB-based MOEAs, parallel processing

integration in MOEAs, and the theoretical development of MOEA population sizing.
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9.2 Contributions

One question typically asked of a research effort is Did the research effort meet the

intended objectives? The answer to this question is yes. The goal and objectives of this

research are met as supported by this dissertation. This research yields contributions to

the MOEA community concentrated in the area of explicit BB manipulation in MOEAs.

There are five main contributions resulting from this effort. Some of these con-

tributions are major and others are minor but nevertheless, all of the contributions of

this dissertation aid in advancing the state-of-the-art in MOEAs. Symbolic formulations

of MOEA operators are presented to aid researchers in understanding MOEA operators.

A new explicit BB-based MOEA, the MOMGA-II is designed, implemented, and tested.

The development of the MOMGA-II is a contribution to the MOEA field and provides

researchers insight into MOPs that implicit BB-based MOEAs do not provide. Through

applying the MOMGA-II to test suite MOPs, a limited number of constrained MOPs

formulated with integer based decision variables are identified for future use by other re-

searchers. Another contribution to the MOEA field is the presentation of migration and

replacement schemes to use in pMOEAs as well as the testing of these schemes. As more

researchers are gaining interest in the use of pMOEAs and concentrating much of their ef-

fort on island paradigm pMOEAs, the presentation of migration and replacement schemes

aids in the development process. The advancement of the theory of MOEA population

sizing, with the development of an MOEA population sizing equation is another major

contribution resulting from this research effort. The objectives of this research effort are

now discussed.

9.2.1 Research Goal. The goal of this research effort, to advance the state-of-the-

art with respect to explicit Building Block Based MOEAs, is met. Through the research

results presented, and meeting all five of the stated objectives (from Chapter I), this

dissertation effort advances the state-of-the-art with respect to explicit BB-based MOEAs.

All of the results, analyses and discussions presented contribute to the MOEA community

and advance the state-of-the-art with respect to explicit BB-based MOEAs. The goal

is to advance the field of MOEAs in the specific areas of BB theory, implementation
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details, defining and utilizing multiobjective building blocks, addressing the under used

concept of pMOEAs, and to present a clear and concise method for MOEA researchers to

intelligently use parallel processing concepts in their algorithms. This research has shown

the importance of BBs in MOEAs and the insight that can be found through the utilization

of BB-based MOEAs. This is an insight that other MOEAs could not have provided due

to their implicit handling of BBs.

9.2.2 Symbolic Formulations. Symbolic formulations of an MOEA and its opera-

tors is presented in Chapter V. These formulations serve to aid researchers in developing a

clear understanding of an MOEA and its associated operators. The formulations presented

follow a standardized notation for ease of understanding. Additionally, these formulations

aid in developing a high level understanding of MOEAs and an in-depth understanding of

MOEA operators. This level of understanding aids researchers in validating MOEA imple-

mentations and in developing new, innovative MOEAs and associated MOEA operators.

The use of a standard notation for the detailed definitions of the MOEA operators and

MOEA algorithm is something not present in other approaches. The first objective, to

present a symbolic formulation of MOEA operators and algorithm details, is satisfied.

The symbolic formulations presented also aid researchers interested in implement-

ing a generic MOEA and its operators. The use of this standardized symbolic MOEA

formulation encourages researchers to complete the analysis of other MOEAs using the

notation presented. The presentation of standardized MOEA definitions, using the for-

mulations presented, aids in comparing the structure of MOEAs and understanding the

process MOEAs follow to generate good solutions.

9.2.3 Explicit BB-Based MOEA Development. The second objective, to develop

an explicit BB-based MOEA for solving constrained and real-world MOPs, resulted in the

development of an explicit BB-based MOEA, the MOMGA-II, in Chapter VI. To illustrate

the importance and utility of explicit BB manipulation in the analysis and attempted solv-

ing of MOPs, the MOMGA-II is developed. The development of the MOMGA-II is of great

interest to the MOEA community as it further establishes the utility of explicit BB-based

MOEAs. The MOMGA-II generates potential solutions to real-world and constrained
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MOPs is orders of magnitude less execution time than previous explicit BB-based MOEAs

and achieves a similar statistical level of effectiveness while requiring less resources over the

selected test MOPs. The results presented in Chapter VI, Section 6.5 illustrate that the

MOMGA-II requires less resources and achieves similar or better statistical performance

in comparison to the MOMGA over a limited test suite.

The selection of MOPs, to test any MOEA, is an extremely important choice. Many

MOP test suites exist in the literature, composed of unconstrained problems of varying

characteristics as discussed in Chapter IV, but most do not contain constrained, discrete,

NP -Complete, or real-world test problems with integer based decision variables. MOPs

are presented for testing and comparing the performance of various MOEAs, including the

MOMGA-II, over different classes of problems.

Many real-world MOPs are constrained and are formulated with discrete decision

variables. Both the Advanced Logistic Problem and MMOKP are constrained, discrete

optimization problems with integer based decision variables. The MMOKP is an example of

an MOP containing hundreds of decision variables and the ALP MOP is an approximation

to a real-world problem of similar characteristics. Additionally, a constrained test function

generator is presented that allows a researcher to vary the characteristics of the MOP

by modifying two variables in the MOP formulation. The results of the MOMGA-II as

applied to various MOPS is presented and a thorough statistical testing procedure is used to

evaluate the performance of the MOMGA-II. A number of constraint handling mechanisms

are implemented in the MOMGA-II with a concentration on exploring repair mechanisms

for discrete integer MOP formulations. The MOMGA-II is the first explicit BB-based

MOEA designed to attempt and solve real-world and constrained MOPs. Various metrics

are presented and used to compare the performance of the MOMGA-II to other MOEAs

and to the true solution (when known).

The MOMGA-II achieves a competitive level of effectiveness when compared to se-

lected implicit BB-based MOEAs. The MOMGA-II typically obtains results that indicate

statistically similar effectiveness when compared to other contemporary and recent implicit

BB-based MOEAs over a limited test suite. Different visualization techniques are used to

clearly present the results to the reader. While the visualization of data may appear to
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be inconsequential, this is an important issue in a field where multidimensional data is

commonplace. While the MOMGA-II is not statistically better than all other MOEAs for

all problems, this is expected as the NFL Theorem dictates. However the MOMGA-II per-

forms very well when applied to the ALP problem and the MMOKP MOP, both reflective

of other real-world, constrained application MOPs.

The MOMGA-II performs well when applied to all of the MOPs discussed and when

compared to other MOEAs. The testing of the MOMGA-II presented in this research ef-

fort illustrates that good performance can be achieved with the generic parameter settings

specified for the MOMGA-II. Additionally, problem domain knowledge can be easily in-

tegrated into the MOMGA-II, as was done through the integration of repair mechanisms,

to improve the performance as applied to MOEA difficult MOPs. The MOMGA-II was

developed for application to real-world and constrained MOPs. Hence, the code was gener-

alized for somewhat easy application to various MOP formulations. The good performance

of the MOMGA-II makes it an attractive tool to use in conjunction with other tools for

attempting to solve real-world MOPs. Attempts to solve real-world MOPs should make

use of a variety of optimization approaches and the MOMGA-II is a good tool to be used

to attempt to solve MOPs by itself or in conjunction with other optimization approaches.

This illustrates that the MOMGA-II meets objective 2.

9.2.4 BB Insight. BBs are defined in Chapter II. This research effort recognizes

and identifies that there is an effect of explicitly manipulating BBs in attempting to solve

MOPs, a major contribution to the MOEA field. This effort presents the first explicit

analysis of the effect of BB sizes on MOP results. The results illustrate that BBs and

explicit BB-based MOEAs provide insight into difficult MOPs that implicit BB-based

MOEAs do not.

It is also shown that in general BB sizes are directly related to the ability of an MOEA

to generate points on the Pareto front (see Chapter VI). The BB sizes also directly relate

to the location of the points generated by the MOEA. This is an important observation

as many researchers have been unable to explain the reason that MOEAs generally do not

find the endpoints of the Pareto front, be it a curve or a surface. While it is easy to state
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that the reason is due to the complexity of the MOP, in Chapter VI (Section 6.6) it is

shown that this effect is generally due to the inability of other MOEAs to generate the

mix of BB sizes that tend to generate the endpoints of the Pareto front. The use of larger

BB sizes and multiple BB sizes tends to generate more solutions near the endpoints of the

Pareto front as illustrated by the results of the MOMGA-II. This further illustrates the

usefulness of a BB-based MOEA where BB sizes can be explicitly specified and used in the

MOEA.

The visualization of BBs is presented to emphasize what constitutes a BB and to show

the effect BBs have on finding the potential solutions to an MOP. Chapter VI illustrates

the usefulness of BBs in MOEAs and supports meeting objective 3, to demonstrate that

explicit BB-based MOEAs may provide insight into solving difficult MOPs. The results of

Chapter VI are of interest to the MOEA community as such an analysis of the use of BBs

in attempting to solve MOPs has not been addressed in the literature.

9.2.5 Parallel MOEAs. The fourth objective, to describe parallel concepts for

MOEAs, present innovative migration and replacement schemes for use in parallel MOEA

paradigms, and develop the first explicit BB-based parallel MOEA, is met. This objective

is met through the detailed discussion of pMOEA concepts, the development of innovative

migration and replacement strategies for pMOEA paradigms, and the development of the

parallel MOMGA-II in Chapter VII. A detailed discussion of the three main parallel MOEA

paradigms is presented and aids researchers unfamiliar with parallel processing concepts to

understand the most popular and possibly most useful ways of using parallelism in MOEAs.

Variations of the three main parallel MOEA paradigms are discussed. A pMOEA is defined

and associated concepts and ideas from pEAs are extended for utilization in pMOEAs. As

an in-depth knowledge of both MOEAs and parallel processing is required to intelligently

develop an efficient and effective pMOEA, a detailed discussion of the process necessary

for parallelizing an existing serial MOEA is presented as a guideline for researchers to use.

The detailed discussions of pMOEA concepts are integral to understanding pMOEAs and

developing new, innovative, efficient and effective pMOEAs.
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The first detailed discussion of innovative pMOEA migration and replacement strate-

gies is presented. This is a major contribution as none of the existing pMOEA publications

reviewed discuss the details of how to implement migration and replacement strategies even

though the effective use of these strategies is integral to achieving good performance in

pMOEAs. The explicit use of BBs in a pMOEA is detailed and the effects of parallelization

are discussed. The MOMGA-II is selected for parallelization and tested on a limited suite

of MOPs. The results of the parallel MOMGA-II testing illustrate performance gains that

can be realized through effective use of parallel concepts in MOEAs. A comparison of the

strategies is conducted and results are presented in Chapter VII (Section 7.4.1). These

details are important to identify and discuss in order to design more efficient and effective

pMOEA implementations.

9.2.6 MOEA Population Sizing. The theoretical development of MOEA popu-

lation sizing is an area upon which MOEA research has not been published. The sizing

of MOEA populations is integral to the generation of “good” solutions. While researches

typically agree with this statement, the literature review conducted in Chapter III found

no theoretical developments related to MOEA population sizing. In Chapter VIII (Sec-

tion 8.2) the first generic MOEA population sizing equation, Equation (8.26), based on a

solid statistical foundation is presented and is a major contribution to the MOEA field.

This research is beneficial to the MOEA community and advances the state-of-the-art as

other researchers have not addressed this important issue. The development of a population

sizing equation serves to aid researchers in understanding the population sizes necessary

to ensure the generation of good results with a particular level of confidence. While in

many cases use of the calculated population sizes may be prohibited by system resources

and execution time requirements, such a development may be useful in pMOEAs or lead

to further developments in the sizing of MOEA populations. The discussion of the process

used to develop the population sizing equation is important as it may aid researchers in

obtaining better results to the attempted solving of real-world MOPs. Additionally, the

concepts of BB and fitness function dependence are important to recognize as well as the

effect they have on the application of MOEAs to solving real-world MOPs. The sizing
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equation presented is applicable to implicit and explicit BB-based MOEAs and satisfies

the fifth objective, to enhance MOEA theory by deriving MOEA population sizing theory.

9.3 Future MOEAs and their Operators

What does the future hold for MOEAs and MOEA research? This is a question to

which many of us would like to know the answer, but the answer is unknown. The future

of MOEAs can be decomposed into a few areas, that of new operators mimicking Biol-

ogy [107], new MOEAs (those that take entirely different approaches), and improvement

of existing MOEAs. The generation of new EA/MOEA operators is not a likely occurrence

unless a movement is made to more closely mimic biology. A more likely scenario is the

slight variation of existing operators. There is much room for improvement and theoretical

analysis of current operators. As various representations for EAs have been around for

some time now, most of the community has concentrated their attention towards binary

based EAs. In upcoming years, there should be additional work in the area of understand-

ing why MOEAs work and thereby the ability to generate new operators that can take

advantage of the theory associated with the workings of these MOEAs.

Another important question is Are we as a community generating better, innovative

MOEAs that can guide us towards solving larger, harder, more complex problems or are we

generating new MOEAs just so each of us have one to call our own? Some of the recent

papers that have been published on new MOEAs are leaning towards the latter, with few

theoretical contributions, comparisons with existing MOEAs, and conclusions based on

limited testing of why this MOEA is better than that one. The community as a whole

must move towards focusing on theoretical aspects of new MOEAs not just the creation

of these algorithms with no theoretical basis. The future holds large opportunities for the

presentation of theoretical understanding of MOEAs and their associated operators. The

introduction of problem domain information into MOEA operators has not been a main

focus of researchers in the past. While some researchers have incorporated problem domain

knowledge into their operators, this is an area that could be expanded. The integration of

problem domain knowledge into MOEA operators has the potential to provide effectiveness

improvements in MOEAs.
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An expansion of the application of the MOMGA-II to the MOPs presented in this ef-

fort is considered for future work. Additional testing of the MOMGA-II and other MOEAs

as applied to MOPs of differing characteristics is planned in the future. In particular, since

the MMOKP MOP used in this effort does not accurately reflect the classical multiobjec-

tive knapsack problem, the entire MOEA community should consider using the classical

multiobjective knapsack problem as an additional test suite MOP for testing MOEAs. A

study of the classical multiobjective knapsack problem and the use of different constraint

handling mechanisms may be useful to the MOEA community especially since there ex-

ists a large amount of literature related to attempts to solve the classical multiobjective

knapsack problem. Continuing down the same path, MOEA researchers should look to

the Operations Research community and their experiences with attempting to solve con-

strained MOPs. The knowledge gained from this type of study and the different approaches

and experiences of those in the Operations Research field could benefit the entire MOEA

community. Additionally, the testing of Operations Research test suite problems expands

the nature of the MOP test suites used by MOEA researchers. This expanded testing may

illustrate the applicability of MOEAs to solving MOPs from other domains not currently

addressed in the MOEA MOP test suites. The evaluation of MOEA performance as ap-

plied to Operations Research problems may lead to the development of new innovative

MOEA approaches and the development of more robust MOEAs with increased efficiency

and effectiveness.

A generic MOEA that incorporates all of the different MOEA operators is a con-

tribution to the community and furthers researchers’ understanding of MOEAs. Such a

development may lend more insight into the operation of various operators as well as pro-

viding a test bed to easily compare and contrast different MOEA operators. Additionally,

a generic MOEA would allow a researcher to choose from multiple operators when at-

tempting to solve an MOEA. A generic MOEA, developed through contributions from the

MOEA community, would be a useful tool. With the scrutiny of the many researchers

who contribute and analyze the MOEA, the potential exists for the development of a well-

engineered code. Additionally, with numerous researchers providing additional analysis of

the MOEA, errors in the code may be more readily identified and corrected. This is an
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advantage over the development of an MOEA by a single researcher who may not recognize

coding errors he or she has made. Overall this effort may lead to the development of a

powerful optimization tool.

Future work is planned to further analyze the parallel MOMGA-II using the crite-

ria stated. A comparison of the migration and replacement schemes as applied to larger

MOPs continues as well as an analysis of the pMOMGA-II’s scalability and other associ-

ated parallel issues. It is also important to evaluate the performance of various parallel

niching and archiving concepts proposed in this effort. Additionally, other existing MOEAs

(SPEA2 [211] and the NSGA-II [46]) are being considered for extension to pMOEAs; the

goal is creation of other generic pMOEAs. The SPEA2 and NSGA-II are two recent MOEA

implementations that use different operators than the MOMGA-II, do not explicitly em-

ploy building block concepts, and do employ different ranking, fitness assignment and

sharing methodologies. Rather than concentrating on comparing many algorithms more

useful results may arise from the comparison and understanding of a select few. Studies of

this nature aid the community in further understanding pMOEA issues, the impact of the

different parallel paradigms on pMOEA efficiency and effectiveness, and a better grasp of

algorithmic (class) performance by using various metrics to present and explain results.

Attempts to improve existing MOEAs or generate new MOEAs continues. A closer

look at the MOEAs presented in Table 3.1 illustrates the fact that most of the MOEAs are

similar to each other. With the exception of the MOMGA/MOMGA-II, the remainder of

the MOEAs are all variations of each other, based off of similar operators and implement

similar methods of ranking, niching, etc. Be that the case, future research should address

new and innovative concepts that are considerably different from those that currently exist.

Understanding the research that other researchers are conducting is important. The

collaboration of researchers to implement new ideas and analyze existing research contri-

butions is useful to advance the field of MOEAs. One of the best methods of obtaining this

information is through the reading publications from the many conferences that take place

each year and analyzing MOEA code. Coello Coello [26] maintains a web page listing the

majority of MOEA publications made available and offers many of them for download as

well as the code for MOEAs designed by researchers in the community. Coello Coello’s
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compendium of publications and software is useful to the MOEA community. Addition-

ally, more researchers should consider placing their software at this location for others

to download and understand. This helps the MOEA community become aware of other

researcher’s approaches and advance the development and understanding of MOEAs.

This dissertation presents a first look at the theory of population sizing in MOEAs.

The conservative nature of the population sizing theory illustrates a need for additional

testing. One may be able to forecast the population sizes required for specific classes of

MOEAs based on the characteristics of the MOPs and the use of BBs. Additional MOEA

theoretical development is welcomed for explicit BB-based MOEAs and BBs in MOPs.

Promising results are presented in Chapter VIII, but there is much to accomplish.

Pareto dominance is used as the criterion for stating that one BB’s mean fitness vec-

tor is “better” than another. In this effort an error is made if the incorrect, or dominated,

BB is chosen over the correct, or nondominated, BB. If both BBs are nondominated then

a choice of either BB is not defined as an error in this effort as both BBs are nondom-

inated. Future research should explore the effect of randomly choosing a nondominated

BBs on the overall population size required. This type of effort may possibly yield a better

tiebreaking approach. Convergence and rate of convergence to the Pareto front by explicit

BB-based MOEAs is an area left unexplored. Completing proofs of the conjectures in

Chapter VIII is a start as well as adding to the theory of sizing MOEA populations and

pMOEA populations.

The design of new, explicit BB-based MOEAs may not be necessary but improve-

ments to the MOMGA-II and use of the MOMGA-II with other approaches for attempting

to solve MOPs may be beneficial to the community. The MOMGA-II has the ability to yield

results that illustrate the usefulness of BBs and explicitly show what the BBs are, some-

thing that other MOEAs cannot. Continuing research into explicit BB-based MOEAs may

produce findings or conjectures that move the MOEA community closer to understanding

the how and why MOEAs work.

Additional variations on many of the MOEAs presented in this document undoubt-

edly is in the future. The fruitfulness of these efforts is not known. The concept of creating
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a general MOEA that can solve any MOP may not be possible but is worth the attempts

made by researchers. The research conducted in this quest may lead to the generation

of more efficient and effective MOEAs, their operators and additional theoretical develop-

ment into MOEAs and pMOEAs. The advancement of MOEA theory may yield the best

results as researchers understand more of the how and why MOEAs “work.”

9.4 Publications

The research completed in support of this document has led to 21 publications [8,

9, 10, 11, 37, 38, 39, 40, 41, 106, 107, 143, 144, 145, 195, 196, 216, 217, 218, 219, 220]

in three different problem domain areas, the general MOEA area and the applications of

intrusion detection and Bioinformatics (Protein Structure Prediction). Of these publica-

tions, 2 are peer reviewed Journal articles [9, 195], and the remainder consist of 15 peer

reviewed and 4 non-reviewed publications. One additional peer reviewed conference sub-

mittal is in-review. These publications are of interest to the Air Force as they illustrate

an efficient and effective means of tackling MOPs that when used in conjunction with

other approaches yields a powerful tool for attempting to solve MOPs. Other real-world

applications of high dimensionality that MOEAs may yield good results when combined

with other optimization approaches include Unmanned Aerial Vehicle routing and mission

planning problems, Microelectronic chip layout problem, Intrusion Detection Problem, and

Satellite scheduling problems.
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Appendix A. EA Mathematical Formulation Background

The formulation of mathematical equations and definitions of EA operators aids in a

researcher’s understanding of the operators themselves. This understanding is necessary

to ensure that EA operators are implemented correctly and aid in the development of

associated operator theory. The mathematical formulations presented are summarized

from Merkle [132, 135] and Bäck [13]. These formulations are used as necessary background

for the multiobjective operator formulations developed in this research effort. Additionally,

a discussion of a generic MOEA is included at the end of this appendix.

A.1 Evolutionary Operators

In order to utilize a consistent notation, the work of Merkle [132, 135] and Bäck [13]

is summarized. Merkle [132] states that many authors describe evolutionary operators as

directly mapping populations into populations, with the mapping being “controlled” by

the parameters of the operator. In the following definitions the set of mappings from a set

S1 to a set S2 is denoted T (S1,S2).

The first definition is of a population transformation. This transformation, shown in

Figure A.1, does not restrict the input and output populations to be of the same size.

Definition 46 (Population transformation): Let I be a non-empty set (the individual

space), and µ, µ′ ∈ Z+ (the parent and offspring population sizes, respectively). A mapping

T : Iµ −→ Iµ
′
is called a population transformation. If T (P ) = P ′ then P is called a parent

population and P ′ is called an offspring population. If µ = µ′, then they are called simply

the population size. 2

The population transformation resulting from the application of an evolutionary op-

erator, to include the offspring population size, often depends on the outcome of a random

experiment. This dependence motivates the concept of a random population transformation

shown in Figure A.2.

Definition 47 (Random population transformation): Let I be a non-empty set

(the individual space), µ ∈ Z+ (the parent population size), and Ω a set (the sample space).
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Iµ

s
P

-
T

Iµ
′

s
P ′

Figure A.1 The population transformation T deterministically maps the parent popula-
tion P (of size µ) to the offspring population P ′ (of size µ′) [132].

Ω

s
ω

-
R

T



Iµ,
⋃

µ′∈Z+

Iµ
′





s
T

Figure A.2 The random population transformation R maps the random event ω (with
sample space Ω) to the population transformation T , which maps parent populations of
size µ (which is independent of ω) to offspring populations of some fixed size µ′ ∈ Z+
(which may depend on ω) [132].
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A random function

R : Ω −→ T



Iµ,
⋃

µ′∈Z+

Iµ
′





is called a random population transformation [132]. 2

Merkle [132] further states that the distribution of population transformations re-

sulting from the application of an evolutionary operator may depend on one or more

parameters of the operator. Each evolutionary operator maps its parameters to a random

population transformation shown in Figure A.3.

X

s
Θ

-
X

T



Ω,T



Iµ,
⋃

µ′∈Z+

Iµ
′









s
R

Figure A.3 The evolutionary operator X maps the exogenous parameter(s) Θ to the
random population transformation R. The underlying sample space of R is Ω. Each of the
possible population transformations acts on populations of size µ. The offspring population
size µ′ ∈ Z+ may depend on Θ as well as the random event ω ∈ Ω [132].

Definition 48 (Evolutionary operator): Let I be a non-empty set (the individual

space), µ ∈ Z+ (the parent population size), X a set (the parameter space), and Ω a set

(the sample space). A mapping

X : X −→ T



Ω, T



Iµ,
⋃

µ′∈Z+

Iµ
′







 (A.1)
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is called an evolutionary operator. The set of evolutionary operators in the form of Equa-

tion (A.1) is denoted EVOP(I, µ,X,Ω) [132]. 2

The notation XΘ is used to represent the random population transformation X(Θ).

The population transformation XΘ(ω) is also denoted XΘ to maintain consistency with the

notation of Bäck and Schwefel [13, 173]. In particular, the offspring population [XΘ(ω)](P )

is denoted XΘ(P ). Finally, if X has no parameters, i.e. X ∈ EVOP(I, µ, {},Ω) then the

offspring population is denoted X(P ) [132].

Evolutionary algorithms and their operators are based off of biological concepts. Most

EAs use variants of the recombination, mutation, and selection evolutionary operators.

Recombination operators are the most general of the three. In general, recombination

takes multiple individuals from the population to act as “parents” to yield new individuals

(children). Merkle [132] presents the following definition for recombination:

Definition 49 (Recombination operator): Let r ∈ EVOP(I, µ,X,Ω). If there exist
P ∈ Iµ, Θ ∈ X, and ω ∈ Ω such that at least one individual in the offspring population

rΘ(P ) depends on more than one individual of P then r is called a recombination operator.

2

Mutation operators are used to maintain diversity in the population for a GA1. A low

mutation rate is typically used so as to preserve “good” material (building blocks) that

are present in the population. Mutation is dependent on only one population member

and typically results in the modification of one to just a few bits within that population

member. Merkle [132] defined mutation in a general way that does not assume the parent

and child population sizes are identical:

Definition 50 (Mutation operator): Let m ∈ EVOP(I, µ,X,Ω). If for every P ∈ Iµ,
every Θ ∈ X, and every ω ∈ Ω, each individual in the offspring population mΘ(P ) depends

on at most one individual of P then m is called a mutation operator. 2

Selection operators are used to choose members of one population for mating and inclu-

sion into the subsequent population. Many different selection mechanisms exist including

1In other EAs the mutation operator(s) may act as the primary exploration operator(s)
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tournament selection, roulette wheel, and elitism to name a few. The selection of a pop-

ulation member for placement into another population is typically based on the fitness

of the population members compared. The following definition illustrates the selection

operator [132]:

Definition 51 (Selection operator): Let s ∈ EVOP(I, µ,X×T (I,R),Ω). If for every
P ∈ Iµ, every Θ ∈ X, and every fitness function Φ : I −→ R, s satisfies

a ∈ s(Θ,Φ)(P ) =⇒ a ∈ P ,

then s is called a selection operator [132]. 2

A.2 Evolutionary Algorithm Notation and Formulations

Each evolutionary algorithm has an associated non-empty set I, the individual space

of the algorithm. Each individual a ∈ I represents a candidate solution to the optimization

problem. Merkle states that the representation scheme is formally defined by the decoding

function [132].

Definition 52 (Decoding function): Let I be a non-empty set (the individual space),

and f : Rn−→R (the objective function). If D : I −→ Rn is total, i.e. the domain of D is

all of I, then D is called a decoding function [132]. 2

The range of D determines the subset of Rn actually available for exploration by the

evolutionary algorithm [132].

The fitness of an individual is an indication of the quality of the candidate solution

represented by the individual. The fitness function is a mapping which provides this

information. It is the fitness function which the evolutionary algorithm actually attempts

to optimize and Merkle defines as [132]:

Definition 53 (Fitness function): Let I be a non-empty set (the individual space), D :

I −→ Rn (the decoding function), f : Rn −→ R (the objective function), and Ts : R −→ R

(the fitness scaling function). Then Φ , Ts ◦ f ◦D is called a fitness function [132]. 2
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The objective function is determined by the mathematical function that one is trying to op-

timize. Since optimization problems can typically be expressed in a mathematical function,

an EA is suited to find acceptable or feasible solutions to many problems2 that exist today.

The specification of the decoding function D and the fitness scaling function Ts are design

issues. An important design criteria for the scaling function is that it preserve the partial

ordering induced on the individual space by the decoding and objective functions [132].

Bäck’s framework defines a collection of individuals as µ and in terms of population

transformations, the µ individuals are represented by Iµ. The actual population trans-

formation is represented by the following relationship: T : Iµ → Iµ, where µ ∈ N [13].

In some EAs, the resultant population size as the algorithm executes is not identical to

the size of the initial population or even the population size from the previous phase;

therefore, the population transformation should be represented as T : Iµ → Iµ
′
, indicating

succeeding populations may contain the same or different numbers of individuals. This

framework also represents all population sizes, evolutionary operators, and parameters as

sequences [132, 184]. This is due to the fact that different EAs use these factors in slightly

different ways. The general algorithm thus recognizes and explicitly identifies this nuance.

Looking to Bäck, Merkle and Van Veldhuizen for guidance, we see that an EA is defined

as [13, 132, 135, 184]:

Definition 54 (Evolutionary Algorithm): Let

• I be a non-empty set (the individual space),

• {µ(i)}i∈N a sequence in Z+ (the parent population sizes),

• {µ′(i)}i∈N a sequence in Z+ (the offspring population sizes),

• Φ : I −→ R (a fitness function),

• ι :
⋃∞
i=1(I

µ)(i) −→ {true, false} (the termination criterion),

• χ ∈ {true, false},

2The reader is reminded that EAs are typically suited to solve NP-Complete problems and those prob-
lems that are currently impossible to solve on available computing platforms in a reasonable amount of
time and in which optimized methods to find the global optima do not exist or are too time consuming to
be feasible.
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• r a sequence {r(i)} of recombination operators
r(i) : X(i)r −→ T

(

Ω
(i)
r , T

(

Iµ
(i)
, Iµ

′(i)
))

,

• m a sequence {m(i)} of mutation operators
m(i) : X(i)m −→ T

(

Ω
(i)
m , T

(

Iµ
′(i)

, Iµ
′(i)
))

,

• s a sequence {s(i)} of selection operators
s(i) : X(i)s × T (I,R) −→ T

(

Ω
(i)
s , T

((

Iµ
′(i)+χµ(i)

)

, Iµ
(i+1)

))

,

• Θ
(i)
r ∈ X(i)r (the recombination parameters),

• Θ
(i)
m ∈ X(i)m (the mutation parameters), and

• θ
(i)
s ∈ X(i)s (the selection parameters).

Then the algorithm shown in Figure A.4 is called an Evolutionary Algorithm [132]. 2

t := 0;

initialize P (0) := {a1(0), . . . ,aµ(0)} ∈ Iµ(0)
;

while (ι({P (0), . . . , P (t)}) 6= true) do

recombine: P ′(t) := r
(t)

Θ
(t)
r

(P (t));

mutate: P ′′(t) := m
(t)

Θ
(t)
m

(P ′(t));

select:
if χ

then P (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t));

else P (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t) ∪ P (t));
fi

t := t+ 1;
od

Figure A.4 Evolutionary Algorithm Outline

The clear and concise definition of applicable EA terms and operators, along with a

consistent mathematical formulation is presented. This provides the necessary background

for understanding the multiobjective terminology and operators as well as a mathematical

formulation.
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A.3 Generic MOEA

A further motivation of conducting research into implicit and explicit BB-based

MOEAs is to understand what constitutes a generic MOEA. The NFL Theorem [204]

is valid and states that it is not possible to find a single algorithm, that outperforms every

other algorithm, in the attempted solving of all classes of optimization problems. How-

ever an understanding of a generic MOEA aids researchers in their quest to solve MOPs.

The development of a generic MOEA lends insight into workings of MOEAs in general.

Through the development process, a researcher gains additional understanding of what

comprises an MOEA and an understanding of the various operators and other mechanisms

present in many of the aforementioned MOEAs. A generic MOEA should include a wide

variety of operators, possibly all of the operators presented in the previous summary of

MOEAs.

The performance of a generic MOEA could parallel the performance of each of the

specific MOEAs discussed in this chapter as it would contain the same operators. This has

the added benefit of allowing researchers to easily test new ideas with any combination

of implemented operators as applied to different MOEA problem classes. The usefulness

of this effort lies in the possibility of determining a guideline for which operator and

parameter settings provide good solutions to different classes of MOPs. A generic MOEA

also provides researchers the ability to test the combination of different operators found in

other MOEAs on the same test bed MOEA. As researchers are continually developing new

operators or modifications of existing operators, a generic MOEA would allow researchers

to make a somewhat easy comparison of the general effect of new or modified operators.

Currently researchers must compare their new or modified operator to other operators

present in entirely different MOEAs or implement the comparison operators in his/her

MOEA. A generic MOEA, that the MOEA community as a whole contributes new and

modified operators to, allows for a single test bed and comparison. The contribution

by numerous researchers to this MOEA would provide a continually evolving MOEA that

could advance the state-of-the-art in the MOEA field as well as provide an easy mechanism

to compare and contrast the performance of a variety of operators as applied to various

classes of MOPs.
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Appendix B. Additional MOP Details

Chapter IV presents a discussion of MOPs selected for inclusion in an unconstrained,

constrained, NP -Complete and real-world MOP test suite. This appendix presents a more

detailed discussion of the selected unconstrained MOPs as well as details of other MOP

test suites and test function generators.

B.1 Unconstrained MOPs

Previous research into MOEA test suites and MOEA test suite generators was lacking

until the late 1990s when Van Veldhuizen [189, 184, 188] discussed the issue of using

standardized MOEA test suites to compare MOEAs. He was one of the first researchers

to address the issue of MOP characteristics, their associated search spaces, and criteria

for selecting an MOP as a good test problem. At the time of his research, he identified

the problem with MOEA testing, MOEAs were not tested against MOPs with large search

spaces or high dimensionality in the genotype or phenotype spaces and hence this was

motivation for some of the research he conducted [184]. Other researchers have presented

test suite MOPs and MOP test suite generators since then [43, 50, 52, 53, 44, 54, 189,

184, 188, 192]. Researchers use test suites to analyze the efficiency and effectiveness of

MOEA approaches. The efficiency is the computational resources used and execution time

whereas the effectiveness is the quality of the results obtained from the MOEA. The latter

is typically addressed in the analysis of the results of an MOEA.

Unconstrained MOPs were identified from the literature and summarized in [184].

A subset of the 30 identified unconstrained MOPs were selected for use in a standardized

MOEA test suite by Van Veldhuizen. All 30 of the MOPs he identified were not included

in his test suite as many exhibit similar characteristics or do not meet the guidelines

suggested for test suite problems and hence do not contribute to the proposed test suite.

Each of the MOPs selected has different characteristics in terms of their genotypical and

phenotypical solution sets. The main genotype characteristics analyzed were: connected,

disconnected, symmetric, scalable, and the solution type, number of functions and number

of constraints. The geometry, connected, disconnected, concave and/or convex properties
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of the phenotype space were also looked at. Consideration of all of the aforementioned

characteristics led to the development of the test suite presented in his work. Another

development of a test suite reflects similar functionality [210]. Some of their “generated”

test functions have similar characteristics to MOPs from Van Veldhuizen’s test suite.

Those MOPs chosen for inclusion into Van Veldhuizen’s test suite were selected based

on an analysis of their genotypical and phenotypical characteristics previously described.

The MOPs he included allow for a good comparison of different MOEAs when applied to

a limited test suite. His selected test suite MOPs have varying characteristics in terms of

their genotype and phenotype structures as well as Ptrue and PFtrue .

Schaffer’s MOP allows for the determination of an analytical solution for PFtrue .

The resultant PFtrue set is a convex curve and its Ptrue set is a line in the genotype space.

Fonseca’s MOP was selected due to the problem formulation and the ability to add decision

variables (scalability) without modifying the location or shape of PFtrue . The resultant

PFtrue set is a concave curve. Poloni’s MOP is a maximization problem and can be viewed

as a more difficult MOP due to the characteristic of a two part disconnected Pareto front.

Kursawe’s MOP is nonsymmetric and contains three disconnected curves on the Pareto

front. Deb’s MOP is selected for its attribute of having four disconnected curves on the

Pareto front. These five MOPs were selected for their varying characteristics and level

of MOEA difficulty. This standardized test suite allows one to compare the results of

their MOEA to other MOEAs. Without a standard test suite, one cannot compare the

performance on an MOEA to other MOEAs.

These MOPs, selected by Van Veldhuizen, exhibit varying complexity levels and

Pareto front (phenotype) characteristics such as concave, convexity, connected, discon-

nected, scalable, uniform and non-uniform distribution of points. Thus, each of the MOPs

in his standard test suite were very carefully selected from a large variety of well known

MOPs.
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B.2 Constrained MOPs

Another constrained MOP (MOP-CO) with six constraints is that proposed by

Osyczka and Kundu [152] with two objective functions and six genotype variables as follows:

Minimize F = (f1(~x), f2(~x)), where

f1(x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2)

f2(x) = x21 + x22 + x23 + x24 + x25 + x26

Subject to

c1(x) = x1 + x2 − 2 ≥ 0,

c2(x) = 6− x1 − x2 ≥ 0,

c3(x) = 2 + x1 − x2 ≥ 0,

c4(x) = 2− x1 + 3x2 ≥ 0,

c5(x) = 4− x3 − 3)2 − x4 ≥ 0,

c6(x) = (x5 − 3)2 + x6 − 4 ≥ 0,

0 ≤ x1, x2, x6 ≤ 10, 1 ≤ x3, x5 ≤ 5, 0 ≤ x4 ≤ 6 (B.1)

The PFtrue is shown in figure B.1 reflecting six regions representing the intersection of

specific constraints. Maintaining subpopulations at the different intersections is a difficult

MOEA problem. The Ptrue solution values are x4 = 0 and x6 = 0 with the remaining

variable values associated with each region presented in table B.1.

Table B.1: MOP-C5 Ptrue solution values, [152]

Region x1 x2 x3 x5

AB 5 1 (1, ..., 5) 5

BC 5 1 (1, ..., 5) 1

CD (4.06,...,5) (0.68, ...,1) 1 1

DE 0 2 (1, ..., 3.73) 1

EF (0, ..., 1) (2, ...1) 1 1
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Figure B.1 MOP-C5 connected PFtrue regions [152]

B.3 Test Function Generator

The concept of a creating a test function generator has also been identified in the

MOEA literature by Deb [53]. Deb has presented work on a modified test suite and a

test suite generator. The concept of this approach is to create a test suite of modifiable

MOPs such that the engineer or scientist can change the complexity of each of the MOPs

via one of the function parameters [52] (This is the same concept as the Tanaka function

formulation presented). In [43], Deb presents generic two-objective functions as a potential

test suite, shown in Equation (B.2). He selected these functions so that modifications to the

functions in turn change the characteristics of the resulting Pareto front and can test the

performance of the MOEA across MOPs of varying complexity. He states that convexity

as well as discontinuity can be affected via the function h, convergence may be affected by

modifying the g function to be multi-modal, deceptive, or contain other characteristics and

diversity may be affected by choosing a non-linear or multi-dimensional function for f1.

He further presents an analysis of the parameter interactions present in these modifiable
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functions.

Minimize f1(~x) = f1(x1, x2, . . . , xm),

Minimize f2(~x) = g(xm+1, . . . , xN )h(f1(x1, . . . , xm), g(xm+1, . . . , xN )). (B.2)

Deb’s test suite generator presented in Equation (B.2) is useful to the MOEA com-

munity but is somewhat complex to understand [43]. One must be very knowledgeable of

functions in order to select a f , g and h function. Deb presents a number of functions

to use for f , g, and h and which combinations of these functions yield MOPs of varying

characteristics [43]. Problems have been identified with the test functions that Deb pro-

poses. In some of Deb’s test problems, the difficulty in finding PFtrue is due to the specific

discretization of the genotype space chosen versus the fact that PFlocal exists [184]. While

this problem exists, this does not mean that Deb’s test suite in not useful. In fact, the

functions that he presents can be used to evaluate MOEA performance. However it is

important that one understand the MOPs used to test MOEA performance in order to

make the correct analysis of the MOEA performance realized.

Deb proposes the test functions present in Table B.2 for use in an MOP test suite [43,

46].

Table B.2: Deb’s MOEA Test Suite Functions [42, 43]

MOP Definition Constraints

ZDT1

convex

PFtrue

F = (f1(x1), f2(~x)), where

f1(x1) = x1,

f2(~x) = g(1−
√

(f1/g))

g(~x) = 1 + 9
m
∑

i=2

xi/(m− 1)

m = 30; 0 ≤ xi ≤ 1
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Table B.2: (continued)

MOP Definition Constraints

ZDT2

nonconvex

PFtrue

F = (f1(x1), f2(~x)), where

f1(x1) = x1

f2(~x) = g(1− (f1/g)
2)

g(~x) = 1 + 9
m
∑

i=2

xi/(m− 1)

m = 30; 0 ≤ xi ≤ 1

ZDT3

noncont

PFtrue

F = (f1(x), f2(~x)), where

f1(x1) = x1

f2(~x) = g(1−
√

(f1/g)− (f1/g) sin(10πf1))

g(~x) = 1 + 9
m
∑

i=2

xi/(m− 1)

m = 10, 0 ≤ xi ≤ 1

ZDT4 lo-

cal PFtrue

F = (f1(x), f2(~x)), where

f1(x1) = x1

f2(~x) = g(1−
√

(f1/g))

g(~x) = 1 + 10(m− 1) +

m
∑

i=2

(x2
i − 10 cos(4πxi))

m = 10, 0 ≤ x1 ≤ 1

Deceptive

MOP de-

ceptive,

unitation

F = (f1(x), f2(~x)), where

f1(x1) = 1 + u(x1)

f2(~x) = g/f1

g(~x) =

m
∑

i=2

v(u(xi))

m = 11, 0 ≤ xi ≤ 1

v(u(xi)) = 2 + u(xi)

if u(xi) < 5

= 1 if u(xi) = 5
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Table B.2: (continued)

MOP Definition Constraints

ZDT6

nonuni-

form

PFtrue

F = (f1(x), f2(~x)), where

f1(x1) = 1− exp(−4xi) sin6(6πx1)

f2(~x) = g(1− (f1/g)
2)

g(~x) = 1 + 9((
m
∑

i=2

xi)/(m− 1))0.25)

m = 10, 0 ≤ xi ≤ 1

Deb also proposes another test function generator for constrained problems [50]. The

constrained test function generator is presented in Equation (B.3) and results in what he

refers to as MOPs CTP2-7.

Minimize f1(x) = x1

Minimize f2(x) = g(x)

(

1− f1(x)

g(x)

)

(B.3)

Subject toc(x) = cos(θ)(f2(x)− e)− sin(θ)f1(x) ≥

a|sin(bπ(sin(θ)(f2(x)− e) + cos(θ)f1(x))
c|d

Deb restricts x1 to be in the interval [0, 1] and bounds the other variables based on

the selection of the g(x) function. The six constraint parameters, θ, a, b, c, d, and e, are

used for tuning the MOP [50, 48]. Deb varies the constraint parameters to yield MOPs of

varying characteristics.

A problem exists with Deb’s test suite generator, as well as many of the MOP test

suites that exist. Many of the MOPs contain a low dimensionality in terms of the number

of decision variables and objective functions. Low dimensionality MOPs present easy

visualization of the Pareto Optimal solutions and the Pareto front but may not allow the

MOEA the opportunity to perform as well as it could considering the restricted size of

the phenotype space. Again, this is because an MOEA is assumed to be most effective for

high-dimensionality problems, in the genotype and/or phenotype spaces. This illustrates

the need for a test suite containing problems of high-dimensionality or increased complexity
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in terms of the number of decision variables or objective functions or both. Additionally,

there has not been a great deal of testing on discrete, high dimensional, or constrained

MOPs. A test suite containing problems with these characteristics is proposed and used

in this dissertation. Additionally, the use of real-world problems allows one to have some

confidence that a particular instantiation of an MOEA will perform well on a certain class

of real-world problem.

Deb’s problems are presented for completeness but are not used for testing purposes

in this effort. Many of his problems are similar to the MOPs selected for testing in this

effort. The answer to the question if one best test suite exists, is a definite no.
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