
On Challenging Techniques for Constrained
Global Optimization

Isabel A. C. P. Espı́rito Santo, Lino Costa, Ana Maria A. C. Rocha, M. A. K. Azad
and Edite M. G. P. Fernandes

Abstract This chapter aims to address the challenging and demanding issue of
solving a continuous nonlinear constrained global optimization problem. We pro-
pose four stochastic methods that rely on a population of points to diversify the
search for a global solution: genetic algorithm, differential evolution, artificial fish
swarm algorithm and electromagnetism-like mechanism. The performance of dif-
ferent variants of these algorithms is analyzed using a benchmark set of problems.
Three different strategies to handle the equality and inequality constraints of the
problem are addressed. An augmented Lagrangian-based technique, the tournament
selection based on feasibility and dominance rules, and a strategy based on ranking
objective and constraint violation are presented and tested. Numerical experiments
are reported showing the effectiveness of our suggestions. Two well-known engi-
neering design problems are successfully solved by the proposed methods.

1 Introduction

The problem that is addressed in this chapter is a continuous nonlinear constrained
global optimization problem with the general form

min
x∈Ω

f (x), subject to h(x) = 0 , g(x)≤ 0 , (1)

where some of the functions f :Rn →R, h :Rn →Rm and g :Rn →Rp are nonlinear
and Ω = {x ∈Rn : l ≤ x ≤ u}. The function f (x) is the objective function, the equa-

Isabel A. C. P. Espı́rito Santo, Lino Costa and Ana Maria A. C. Rocha
Department of Production and Systems, University of Minho, 4710-057 Braga, Portugal,
e-mail: {iapinho,lac,arocha}@dps.uminho.pt

M. A. K. Azad and Edite M. G. P. Fernandes
Algoritmi R&D Centre, University of Minho, 4710-057 Braga, Portugal,
e-mail: {akazad,emgpf}@dps.uminho.pt

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154273288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

tions h j(x) = 0, j = 1, . . . ,m and the inequalities g j(x) ≤ 0, j = 1, . . . , p define the
equality and inequality constraints of the problem, respectively. The vectors l and u
are the lower and upper bounds, respectively, on the continuous decision variables
x, and n represents the number of variables. The feasible region of the problem is
the set F = {x ∈ Rn : h(x) = 0,g(x) ≤ 0, l ≤ x ≤ u}. A point x is a feasible point
if x ∈ F . If the function f is not assumed to be convex then the problem (1) may
have many minima in the feasible region. In this chapter, we look for a minimizer,
x∗ ∈ F , such that f (x∗) ≤ f (x) for all feasible points x ̸= x∗. This class of global
optimization problem arises frequently in real-world applications of different fields.
Specially for large-scale problems and non-smooth problems, derivative-free and
stochastic methods are the most appropriate methods. Some well-known derivative-
free methods like the deterministic pattern search method [35, 36] cannot guarantee
convergence to the global minimum. Stochastic algorithms based on a point-to-point
search, like the simulated annealing [28], and on a population of points, like particle
swarm optimization [42], evolutionary algorithm [57], genetic algorithm [20, 25],
differential evolution [4, 6, 38, 54], electromagnetism-like mechanism [2, 50] and
artificial fish swarm algorithm [51] are available in the literature. Global optimiza-
tion algorithms are usually divided into two main classes, the deterministic and the
stochastic one. Deterministic methods provide a theoretical guarantee of locating the
global minimizer, or at least an approximate global minimizer to within a prescribed
tolerance, in a finite number of steps. The DIviding RECTangles based method [32],
branch-and-bound based methods [10, 29] and interval analysis based techniques
[27, 29, 59] are the most known in the literature. Stochastic methods, on the other
hand, incorporate probabilistic (stochastic) elements, either in the problem data, for
instance in the objective function and constraints, or in the algorithm itself, or in
both. The convergence proofs for this type of methods involve the use of probability
theory [51]. Stochastic algorithms are guaranteed to converge in infinite steps with
probability one, but in practice there is no guarantee that the obtained solution will
actually be the global optimum, or by how far the algorithm has failed to locate the
true global optimum. Because global optimization problems are undecidable on un-
bounded search spaces and NP-hard on bounded spaces, there may exist practical
limits during the solution process. For example, methods based on analytic trans-
formations lead to transformed problems of exponentially increasing size, while the
branch-and-bound method may split the problem into an exponential number of
subproblems. Usually, stochastic methods are faster in locating a global optimum
than deterministic ones. For the study herein presented, four well-known stochastic
methods were chosen. They are population-based methods and mainly inspired by
evolutionary and swarm intelligence theories.

In most global optimization algorithms (both deterministic and stochastic) it is
possible to identify two separate phases. The exhaustive exploration of the search
space is delegated to the global phase and most advanced techniques use stochastic
methods to search for promising regions where global minima do exist. Then, the
algorithms employ deterministic methods to exploit locally the promising regions
found so far. This is known as the local phase of the algorithms.

Techniques for Constrained Global Optimization 3

While addressing the issue of solving global optimization problems we will ana-
lyze the practical behavior of the chosen solution methods and compare results with
others in the literature. A set of benchmark simple bound constrained problems and
another one with general constrained problems are used in the comparisons.

This chapter is structured in five sections. Section 2 aims at describing some
popular and interesting population-based stochastic methods for simple bound con-
strained global optimization: (i) genetic algorithm; (ii) differential evolution; (iii)
artificial fish swarm algorithm; (iv) electromagnetism-like mechanism. Section 3 is
devoted to describing and discussing approaches for effective constraint-handling,
namely: augmented Lagrangian-based techniques, tournament selection based on
feasibility and dominance rules, and the ranking of objective function and constraint
violation. A numerical comparison with other methods available in the literature,
when solving two well-known engineering design problems, is shown in Section 4.
We conclude the chapter in Section 5.

2 Population-Based Methods for Bound Constrained Problems

In population-based methods, a set (population) of candidate solutions (points) is
randomly generated at the first iteration and is manipulated throughout the iterative
process by means of a class of operations. The used operations depend on the the-
oretical principles that define the algorithmic structure, for example, they may use
nature-inspired principles, copy physical processes and follow swarm intelligence
principles. Although they may be computationally demanding, they are the most
capable of performing the exploration of the search space for global minima, when
compared with point-to-point search methods.

In the remaining part of the chapter, the following notation is used: xi ∈ Rn de-
notes the ith point of a population; xbest is the point that has the least objective
function value, when compared with all the other points in the set F ; xi

j ∈ R is the
jth (j = 1, . . . ,n) component of the point xi of the population and psize is the number
of points in the population. Hereafter PI represents the set of indices {1,2, . . . , psize}
and a random number ξ uniformly distributed between 0 and 1 is represented by
ξ ∼ U[0,1]. In the iterative processes k represents the iteration counter.

2.1 Genetic algorithm

A Genetic Algorithm (GA) is a population-based algorithm that uses techniques
inspired by evolutionary biology such as inheritance, selection, crossover and mu-
tation [26]. GAs start from a population of points of size psize. Traditionally, the
potential optimal solutions to the optimization problem are represented as binary
strings, but other encodings are also possible such as real representation of solu-
tions for continuous problems. In this implementation, a real instead of a binary

4 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

representation is used since it is more suitable for continuous problems. Therefore,
each point of the population xi, for i ∈ PI, is an n dimensional vector. The initial
population is randomly generated. A fitness function is defined in order to compare
the points of the population (in terms of the objective function value alone if the
problem is unconstrained and in terms of objective function value and constraint
violation when the problem has equality and inequality constraints). A stochastic
selection is implemented, guaranteeing that better points are more likely to be se-
lected. New points in the search space are generated by the application of genetic
operators - crossover and mutation - to the selected points from the population. Mu-
tation introduces diversity in the population since crossover, exclusively, could not
assure the exploration of new regions of the search space. Elitism is implemented
by maintaining, during the search, a given number e, of the best points in the popu-
lation.

Crossover combines two points in order to generate new ones. A Simulated Bi-
nary Crossover (SBX) [17], that simulates the working principle of single-point
crossover operator for binary strings, is implemented. Two points, xr1 and xr2 , are
randomly selected from the pool, i.e., indices r1,r2 are randomly chosen from the
set of indices that contains the remaining psize − e points, mutually different, and
with probability pcross, two new points, wr1 and wr2 , are generated according to

wr1
j = 0.5

(
(1+β j)x

r1
j +(1−β j)x

r2
j

)
wr2

j = 0.5
(
(1−β j)x

r1
j +(1+β j)x

r2
j

)
,

β j =

(2ξ j)

1
ηcross+1 if ξ j ≤ 0.5(
1

2(1−ξ j)

) 1
ηcross+1

if ξ j > 0.5

for j = 1, . . . ,n, where ξ j ∼ U[0,1] and ηcross > 0 is an external parameter of the
distribution of β j. This procedure is repeated until the number of generated points
equals the number of points in the pool.

A Polynomial Mutation is applied, with a probability pmut, to the points produced
by the crossover operator. This operator guarantees that the probability of creating
a new point vi, closer to the previous one wi (i ∈ PI) is greater than the probability
of creating one away from it. It can be componentwise expressed by:

vi
j = wi

j +(u j − l j)ι j , ι j =

{
(2ξ j)

1
ηmut+1 −1 if ξ j < 0.5

1− (2(1−ξ j))
1

ηmut+1 if ξ j ≥ 0.5

for j = 1, . . . ,n, where ξ j ∼ U[0,1] and ηmut > 0 is an external parameter of the
distribution of ι j and l j and u j are the bounds of the decision variables (l j ≤ x j ≤ u j).
The GA proceeds according to Algorithm 1.

Modified GA with diversity preserving mechanism. Maintaining diversity among
solutions in population is an important task, which will allow a crossover operator
to constantly search for better solutions. There exist a number of ways to maintain
and promote diversity in a population such as the niching methods or sharing mecha-
nisms [18] and the mutation [26]. In this experiment, we introduce a niching method
to preserve diversity among the solutions in the population. A simple niching stra-

Techniques for Constrained Global Optimization 5

Algorithm 1 Genetic algorithm
1: Randomly generate xi ∈ Ω , for i ∈ PI; set k = 0; set parameters
2: While the stopping condition is not met do

2.1 evaluate the population and select the best e points
2.2 select by tournaments psize − e points from the population
2.3 apply SBX crossover to psize − e points
2.4 apply mutation to psize − e points
2.5 replace the worst psize − e points
2.6 set k = k+1

tegy is implemented in the tournament selection operator. When comparing two
solutions, xi1 and xi2 , a normalized distance di1,i2 is measured between them. If this
distance is smaller than a critical distance σ , the solutions are compared with their
objective function values. Otherwise, they are not compared and another solution xi3

is checked. If a specified number (nt) of solutions are checked and none of them sat-
isfy the critical distance, the i1th solution is declared as winner. The normalized dis-

tance is calculated in the variable space by di1,i2 =
(

∑n
j=1(x

i1
j − xi2

j)
2/(u j − l j)

)1/2
,

where l and u are the bounds of the decision variables. Thus, the solutions that are
far away from each other are not compared and diversity among solutions in popu-
lation is preserved.

Benchmark problems. We use three classical and well-known nonlinear optimiza-
tion benchmark problems [21] (see Table 1) to compare the performance of various
solution methods. The table reports the name of the problem, the objective function
f (x), the number of variables ‘n’, the default set Ω , the known (global) optimal
solution ‘ fopt’, the global minimizer and the number of local minima. To observe
the consistency of the outcome due to the stochastic nature of the algorithms, we
run each problem 30 times. Each run uses a different seed to randomly generate the
starting points of the population in the set Ω . Population size is set to be dependent
on the dimension of the problem psize = min{100,10n}.

Stopping condition. All the algorithms presented hereafter in this section stop when
the best solution, f (xbest), is within 0.01% accuracy of the known optimal solution
fopt, in relative terms, or the number of function evaluations exceeds a limit n fmax,
i.e., when ∣∣∣ f (xbest)− fopt

∣∣∣≤ ε∗
∣∣ fopt

∣∣+(ε∗)2 OR n feval > n fmax (2)

holds, where n feval is the number of function evaluations required to reach the op-
timal solution with a specified tolerance. In this section, we set ε∗ to 10−4 and
n fmax = 50000. Based on this stopping condition, a comparison of several solution
methods may be performed using the three criteria:

• ‘accuracy’, which measures how close the method gets to the known optimal
solution;

6 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

• ‘efficiency’, which is measured by the required number of function evaluations
to reach the optimal solution;

• ‘reliability’, which is measured by the number of successful runs.

Here, a run is called a ‘success’ if the best solution obtained by the algorithm is
within 0.01% accuracy of the known optimal solution.

Results. The results presented in subsequent tables refer to the best of the best func-
tion values obtained in the 30 runs, ‘ fbest’, the average value of the best solutions
in the 30 runs, ‘ favg’, the standard deviation of the best solutions, ‘st. dev.’, and the
average number of function evaluations obtained over the 30 runs, ‘n f eavg’.

Table 1 Selected test problems for bound constrained optimization.

Problem

Goldstein and Price f (x) = (1+(x1 + x2 +1)2(19−14x1 +3x2
1 −14x2 +6x1x2 +3x2

2))

(30+(2x1 −3x2)
2(18−32x1 +12x2

1 +48x2 −36x1x2 +27x2
2))

(GP) n = 2 Ω = [−2,2]2, fopt = 3, global at (0,−1), 4 locals

Modified Himmelblau f (x) = (x2
1 + x2 −11)2 +(x1 + x2

2 −7)2 +0.1((x1 −3)2 +(x2 −2)2)

(MHB) n = 2 Ω = [−6,6]2, fopt = 2.8379e-11, global at (3,2), 4 locals

Rastrigin f (x) = 10n+∑n
i=1(x

2
i −10cos(2πxi))

(RA-n) n = 2,5,10 Ω = [−5.12,5.12]n, fopt = 0, global at (0, . . . ,0), > 50 locals

Table 2 shows the results obtained by a basic GA framework, as outlined in Al-
gorithm 1, as well as those obtained by the modified GA with diversity preserving
mechanism. The values set to the parameters of the algorithms are displayed at the
bottom row of the table. We may observe that both GA reached the 50000 func-
tion evaluations in all 30 runs (0% of successful runs) with the problem RA-10, but
solved the remaining problems GP, MHB, RA-2 and RA-5 with 100% of success-
ful runs. The modified GA needs in general less function evaluations to achieve the
required accuracy.

To show the evolution of the population of solutions throughout the iterative pro-
cess and how they converge to the global minimum, Fig. 1 shows three plots relative
to the problem RA-2. For a better view, the population here has only twenty points.
The plot on the left, shows the population spread all over the set [−5.12,5.12]2 at
the initial iteration; the plot in the center shows the population at iteration 40 and
the plot on the right presents the population at iteration 80 converging to the optimal
solution.

Techniques for Constrained Global Optimization 7

Table 2 Results using GA versions.

Prob. Algorithm 1 Modified GA
fbest favg st. dev. n f eavg fbest favg st. dev. n f eavg

GP 3.00e+00 3.00e+00 4.88e-05 675 3.00e+00 3.00e+00 4.05e-01 795
MHB 1.14e-10 3.61e-09 2.10e-09 8422 8.72e-11 3.14e-09 1.86e-09 7448
RA-2 1.92e-10 2.46e-09 1.51e-09 10394 1.32e-10 2.35e-09 1.50e-09 7965
RA-5 1.54e-09 6.07e-09 2.22e-09 38173 7.11e-10 6.01e-09 2.04e-09 35458

RA-10 2.18e-06 9.47e-06 4.22e-06 50000 2.04e-06 8.27e-06 2.39e-06 50000

Parameter values: e = 0.1psize, pcross = 0.9, ηcross = 20, pmut =
1
n , ηmut = 20, σ = 1√

n , nt = 0.5psize

Population at generation:0

x
1

x 2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Population at generation:40

x
1

x 2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Population at generation:80

x
1

x 2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 1 Three movement graphs of 20 points at k = 0,k = 40,k = 80 using GA for problem RA-2.

2.2 Differential evolution

Differential evolution (DE) is a simple yet powerful evolutionary algorithm pro-
posed by Storn and Price [56] for global optimization problems with simple bounds.
DE is a floating point encoding that creates a new candidate point by combining the
current point and several other points of the same population. DE has three pa-
rameters: amplification factor of the differential variation M, crossover control pa-
rameter CR, and population size psize. The initial population is generated randomly
and should cover the entire search space Ω . Let xi

k represent a point at iteration k,
herein denoted by target point. DE follows three operations to generate the popu-
lation for the next iteration. It performs mutation to create the mutant points vi

k+1,
i = 1, . . . , psize, each relative to the corresponding target point xi

k. The most com-
monly used mutation, refereed as DE/rand/1, is

vi
k+1 = xr1

k +M (xr2
k − xr3

k) (3)

with indices r1,r2,r3 randomly chosen from the set PI, mutually different and differ-
ent from the running index i, so that psize must be greater or equal to four to allow
for this condition. M is a real and constant parameter of the set [0,2] which con-
trols the amplification of the differential variation (xr2

k − xr3
k). xr1

k is called the base
point. There are other frequently used mutation strategies available in the literature

8 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

[15, 43, 56, 60]. In order to increase the diversity, crossover is introduced. A trial
point ui

k+1 is componentwise formed by

ui
j,k+1 =

{
vi

j,k+1 if(ξ j ≤CR) or j = si

xi
j,k if(ξ j >CR) and j ̸= si

, j = 1,2, . . . ,n. (4)

In (4), the random number ξ j ∼ U[0,1], and aims to perform the mixing of jth
component of the points. Further, CR ∈ [0,1] is a constant parameter for crossover
which has to be determined by the user, and uniformly chosen random index si from
the set {1,2, . . . ,n} ensures that ui

k+1 gets at least one component from vi
k+1. When

generating the mutant point, some components can be generated outside the domain
Ω . So, the components of each point are checked and if required they are projected
onto the boundary of the search space Ω .

Finally, a selection is performed. The trial point replaces the target point for
the next iteration only if it has better or equal fitness. The above three operations
are repeated until a stopping condition is verified. It is not an easy task to set ap-
propriate values for the parameters since these depend on the nature and size of
the optimization problems. DE performance depends on the amplification factor of
differential variation and crossover control parameter. Hence adaptive control pa-
rameters have been implemented in DE in order to obtain a competitive algorithm.
The self-adaptive technique proposed by [11] for parameters M and CR generates a
different set Mi,CRi for each point in the population:

Mi
k+1 =

{
Ml +ξ1(Mu −Ml) if ξ2 < τ1
Mi

k otherwise and CRi
k+1 =

{
ξ3 if ξ4 < τ2
CRi

k otherwise (5)

where Ml and Mu are the lower and upper bounds of M, respectively, 0 < τ1,τ2 <
1 and each ξ j ∼ U[0,1], j = 1, . . . ,4. The values of CR are generated randomly
from [0,1].

Modified DE with mixing mutation. The most commonly used mutation (3) has
an exploratory effect but it slows down the convergence of DE. In this context sev-
eral modifications have been proposed for an effective DE for global optimization
problems [11, 15, 33, 43, 60].

In a population-based solution method, it is very important to obtain optimal so-
lutions in a minimum time period. The DE algorithm should be capable of exploring
the whole search space as well as exploiting around the neighborhood of a reference
point (this can be the best point). With these arguments, other modifications in DE
are proposed. The new modified DE, ‘mDE’, uses: (i) a combination of two muta-
tion strategies with a weight factor ω; (ii) a cyclical usage of the overall best point
as base point in mutation; (iii) self-adaptive techniques for parameters M, CR, as
well as for the weight ω . Hence, two intermediate mutant points, vi,1

k+1 and vi,2
k+1,

are generated and combined using a scalar weight factor ω ∈ [0,1] to form actual
mutant point vi

k+1:
vi

k+1 = ω i
k+1vi,1

k+1 +(1−ω i
k+1)v

i,2
k+1 (6)

Techniques for Constrained Global Optimization 9

where ω i
k+1 is a self-adaptive weight factor, which aims to balance the combination

of the two intermediate mutant points, randomly generated from [0,1] in a way
similar to that described in (5) for parameter CR, and

vi,1
k+1 = xr1

k +Mi
k+1(x

r2
k − xr3

k) and vi,2
k+1 = xr4

k +Mi
k+1(x

r5
k − xr6

k). (7)

The indices r1,r2,r3 are randomly chosen from the set PI, mutually different and
also different from the running index i and r1 is the index of the best point among
the three. Indices r4,r5,r6 are also randomly chosen from PI, mutually different
and also different from i. Furthermore, at every R iterations, the mutant point is
alternatively generated by

vi
k+1 = xbest +Mi

k+1(x
r1
k − xr2

k) (8)

where the best point found so far is used as the base point and the other two points for
the differential variation are randomly chosen as previously described. Algorithm 2
below contains the main steps of this mDE.

Algorithm 2 Modified differential evolution algorithm
1: Randomly generate xi ∈ Ω , for i ∈ PI; set k = 0; set parameters
2: Evaluate the population and select xbest

3: While the stopping condition is not met do
3.1 for i = 1, . . . , psize do

if MOD(k,R) = 0 then compute mutant point vi using (8)
else using (6) and (7)

compute trial point ui by crossover
evaluate new population
perform selection and select xbest

3.2 set k = k+1

Experimental results. Table 3 shows the results obtained by our proposal of a DE
framework, presented in Algorithm 2, as well as those obtained by the variant of
DE method proposed in [11], usually denoted by ‘jDE’, when solving the above de-
scribed set of problems in Table 1. The algorithms stop when the stopping condition
(2) is satisfied. Both algorithms stopped with successful runs for all problems ex-
cept jDE that did not stop successfully for problem RA-10 in all 30 runs. It is shown
that mDE is more efficient and reliable than jDE. mDE is able to reach the optimal
solutions with the proposed accuracy requiring less function evaluations than jDE.

We include Fig. 2 to show the progress of average of the best objective function
values of RA-10 with respect to number of function evaluations, after 30 runs. To
analyze the progress of both mDE and jDE, we run the algorithms until the num-
ber of function evaluations reaches n fmax = 50000. We observe that the progress
towards fopt by mDE is better than that of jDE where mDE converged to the best
solution before n fmax reached in all 30 runs. The value of favg obtained here by
mDE was 3.50×10−9 whereas by jDE it was 5.58×10−3.

10 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

Table 3 Results using DE algorithms.

Prob. jDE (in [11]) mDE (Algorithm 2)
fbest favg st. dev. n f eavg fbest favg st. dev. n f eavg

GP 3.00e+00 3.00e+00 1.00e-04 739 3.00e+00 3.00e+00 8.23e-05 509
MHB 2.84e-10 5.31e-09 2.69e-09 1358 1.55e-10 4.29e-09 2.76e-09 1010
RA-2 6.06e-10 5.49e-09 2.71e-09 1350 4.64e-10 4.14e-09 2.66e-09 1057
RA-5 2.64e-09 7.17e-09 2.02e-09 11378 1.97e-09 6.41e-09 2.48e-09 8130

RA-10 9.97e-06 5.58e-03 1.17e-02 50000 5.09e-09 7.94e-09 1.22e-09 43560

Parameter values: Ml = 0.1, Mu = 1, τ1 = τ2 = 0.1, R = 10

4.0E4 4.5E4 5.0E4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

5000 10000 15000 20000 25000
0

20

40

60

80

100

120

Profile of average of best objective function of RA−10

Number of function evaluations

A
ve

ra
ge

 o
f b

es
t o

bj
ec

tiv
e

fu
nc

tio
n

va
lu

es

mDE
jDE

Fig. 2 Progress of mDE and jDE towards the optimum solution of RA-10.

2.3 Artificial fish swarm algorithm

The artificial fish swarm algorithm is a recent and easy to implement artificial life
computing algorithm that simulates fish swarm behaviors inside water [58]. Fishes
desire to stay close to the swarm, protecting themselves from predators and looking
for food, and to avoid collisions within the group. Fish behaviors inside water can
be summarized as follows [31]: (i) random behavior - fish swims randomly in water
looking for food and other companions; (ii) searching behavior - fish tends directly
and quickly to regions with more food, by vision or sense; (iii) swarming behavior
- fish naturally assembles in groups which is a living habit in order to guarantee the
existence of the swarm and avoid dangers; (iv) chasing behavior - fish finds the food
dangling quickly after a fish, or a group of fishes, in the swarm that discovered food;
(v) leaping behavior - fish leaps to look for food in other regions when it stagnates
in a region.

The environment in which the artificial fish moves, searching for the minimum,
is the feasible search space Ω of the minimization problem (1). The position of an
artificial fish in the solution space is herein denoted by a point x (a vector in Rn).

Techniques for Constrained Global Optimization 11

The artificial fish swarm (AFS) algorithm uses a population of points to identify
promising regions looking for a global solution [58].

The crucial issue of the artificial fish swarm algorithm is the ‘visual scope’ of
each point xi. This represents a closed neighborhood centered at xi with a positive
radius defined by v = ς max j∈{1,...,n}(u j − l j), where ς is a positive visual parameter.
In general, this parameter is maintained fixed over the iterative process. However,
experiments show that a slow reduction accelerates the convergence to the solution
[50]. The following update ς = max

{
ςmin, µς ς

}
, every V iterations, where 0 <

µς < 1 and ςmin > 0, is proposed.
Let Ii be the set of indices of the points inside the ‘visual scope’ of xi (i /∈ Ii

and Ii ⊂ PI) and ni
p be the number of points in the ‘visual scope’. If the condition

ni
p/psize ≤ θ holds, where θ ∈ (0,1] is the crowd parameter, the ‘visual scope’ of xi

is said to be not crowded. Depending on the relative positions of the points in the
population, three possible situations may occur:

• when ni
p = 0, the ‘visual scope’ is empty, and the point xi, with no other points in

its neighborhood to follow, has a random behavior moving randomly inside the
‘visual scope’;

• when the ‘visual scope’ is crowded, the point has some difficulty in following
any particular point, and has a searching behavior choosing randomly another
point (from the ‘visual scope’) and moving towards it;

• when the ‘visual scope’ is not crowded, the point is able either to swarm moving
towards the central point of the ‘visual scope’, or to chase moving towards the
best point of the ‘visual scope’. The algorithm simulates both movements and
chooses the best in the sense that a better objective function value is obtained.

The swarming behavior is characterized by a movement towards the central point
in the ‘visual scope’ of xi, defined by c = ∑ j∈Ii x j/ni

p. However, the swarming be-
havior is activated only if the central point has a better objective function value than
that of xi. Otherwise, the point xi follows the searching behavior. In the searching
behavior, a point is randomly chosen inside the ‘visual scope’, xrand, and a move-
ment towards it is carried out if the random point improves over xi. Otherwise, the
point has a random behavior.

The chasing behavior is carried out when a point, denoted by xmin, with the min-
imum objective function value inside the ‘visual scope’ of xi, satisfies f (xmin) ≡
min

{
f (x j) : j ∈ Ii}< f (xi). However, if this last condition is not satisfied then the

point activates the searching behavior.
Finally, when the best point of the population, xbest, does not change for a certain

number of iterations, the algorithm may have fallen into a local minimum. To be
able to overcome this ‘stagnation’ and try to converge to the global minimum, the
leaping behavior is implemented. At every L iterations, a point is randomly selected
from the population and a random movement is carried inside the set Ω . We refer to
[50, 58] for details.

Priority-based modified AFS. New heuristics have been incorporated into the AFS
algorithm aiming to improve accuracy and reduce computational costs. They are

12 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

mainly focused on: (i) a priority-based AFS strategy, aiming to speed convergence;
(ii) a selection behavior aiming to define the population for the next iteration; (iii) a
local search, aiming to refine the search around xbest, at the end of each iteration.

The proposed priority-based strategy is implemented only when the ‘visual
scope’ of a point xi is not crowded. Instead of simulating both swarming and chasing
behaviors at the same time, it tries one behavior at each time. Ranking the chasing
behavior with highest priority, the movement in direction to xmin is carried out first
if f (xmin)< f (xi). Otherwise, the swarming behavior will be the alternative. So, the
movement in direction to c is then carried out if f (c)< f (xi). However, if the latter
condition does not hold then the point has a searching behavior. Algorithm 3 con-
tains the main steps of this modified AFS algorithm, herein denoted by ‘mAFS-P’.
We remark that this modified AFS algorithm has been devised to consider the bound
constraints of the problem, i.e., all movements are maintained inside Ω . Thus, each
point movement, either towards the central c, the xmin or xrand, defines a trial point,
herein denoted by yi, that is defined componentwise by yi

j = xi
j +ξ di

j, j = 1, . . . ,n,
where di represents the vector with the direction of movement and ξ is a uniformly
distributed real value from the interval [0,1]. Then any point’s component outside
the bounds, is projected onto Ω . At the end of each iteration, the algorithm imple-
ments a selection operation aiming to accept the trial point yi only if it improves
over the current point xi. Details of these new proposals can be found in [50, 51].

After defining the population for the next iteration, the best point is selected and
a local search procedure is used to refine locally the search around xbest. We propose
the well-known Hooke and Jeeves pattern search algorithm [30]. This is a derivative-
free deterministic method that exploits the neighborhood of a point for a better ap-
proximation using two types of moves: the exploratory move and the pattern move.
It is a variant of the well-known coordinate search method (a search along the co-
ordinate axes) and it incorporates a pattern move to accelerate the progress of the
algorithm, by exploiting information obtained from the search in previous success-
ful iterations.

Algorithm 3 Modified artificial fish swarm algorithm
1: Randomly generate xi ∈ Ω , for i ∈ PI; set k = 0; set parameters
2: Evaluate the population and select xbest

3: While the stopping condition is not met do
3.1 For i = 1, . . . , psize do

if ‘visual scope’ of xi is empty then random behavior else
if ‘visual scope’ is crowded then searching behavior else

if f (xmin)< f (xi) then chasing behavior else
if f (c)< f (xi) then swarming behavior else searching behavior

3.2 selection operation
3.3 select xbest

3.4 if ‘stagnation’ occurs then leaping behavior
3.5 apply a local search to xbest

3.6 set k = k+1

Techniques for Constrained Global Optimization 13

Experimental results. To assess the performance of the modified AFS algorithm,
Algorithm 3 is tested with the previously described set of problems (see Table 1) and
compared with the basic version of AFS. when solving the above described set of
problems in Table 1. The stopping condition (2) is used once more to terminate the
algorithms. The results are displayed in Table 4. We observe that mAFS-P was able
to solve the problems GP, MHB, RA-2 and RA-5 with 100% of successful runs, and
the problem RA-10 with 38% of successful runs, while the basic AFS reached the
50000 function evaluations in all 30 runs (0% of successful runs) with the problems
RA-5 and RA-10.

Table 4 Results using AFS algorithms.

Prob. AFS mAFS-P (Algorithm 3)
fbest favg st. dev. n f eavg fbest favg st. dev. n f eavg

GP 3.00e+00 3.00e+00 2.27e-05 914 3.00e+00 3.00e+00 1.50e-06 1760
MHB 1.64e-10 4.04e-09 2.53e-09 30056 2.88e-11 2.93e-10 1.65e-10 1882
RA-2 1.28e-10 1.10e-08 8.16e-09 38012 1.44e-10 1.22e-09 7.54e-10 4017
RA-5 1.03e-07 1.66e-06 1.32e-06 50094 4.66e-11 1.85e-09 2.40e-09 8890

RA-10 2.08e-05 7.10e-01 4.48e-01 50080 1.43e-10 6.30e-01 4.88e-01 36198

Parameter values: initial ς = n, ςmin = 10−6, µς = 0.9, V = n, θ = 0.8, L = psize

To complement our study, we show the profiles of the relative performance of
the two algorithms/solvers (AFS and mAFS-P) in comparison, when solving a set
of problems, as proposed by Dolan and Moré [22]. The profiles are generated con-
sidering a set of 25 bound constrained problems selected from the benchmark set
presented in Appendix B of [3]. These profiles plot the values of the cumula-
tive distribution function ρ(τ), for each value τ ∈ R, of the ratios r j, which for
j = 1,2 are given by: 1+mp j −min{mp1 ,mp2}, if min{mp1 ,mp2} < 0.00001, or
mp j/min{mp1 ,mp2}, otherwise, where mp1 and mp2 represent the metric of solver 1
and solver 2 respectively. The value of ρ j(1) gives the probability that the solver j
will win over the other in comparison. The higher the ρ the better the solver is. Fig-
ure 3 contains the profiles that correspond to the metrics fbest (plot on the left) and
favg (plot on the right). The plot on the left shows that mAFS-P outperforms AFS in
92% of the tested problems. This means that in 92% of the problems the values of
fbest obtained by mAFS-P are smaller than or equal to those obtained by AFS, while
in 76%, AFS gives values of fbest smaller than or equal to those of mAFS-P. When
the metric favg is considered (plot on the right) we can also conclude that mAFS-P
outperforms AFS.

14 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

1 1.2 1.4 1.6 1.8 2 2.2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ(
τ)

Performance profile of f
best

AFS

mAFS−P

1 1.2 1.4 1.6 1.8 2 2.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ(
τ)

Performance profile of f
avg

AFS

mAFS−P

Fig. 3 Comparison between AFS and mAFS-P based on performance profiles.

2.4 Electromagnetism-like mechanism

The electromagnetism-like mechanism (EM) is a stochastic population-based algo-
rithm that mimics the behavior of electrically charged particles and is specifically
designed for solving bound constrained problems. In other words, a set of points is
sampled from the feasible region Ω and these points imitate the role of the charged
particles in basic electromagnetism theory [9]. The EM algorithm starts with a pop-
ulation of randomly generated points from the feasible region and, analogous to
electromagnetism theory, each sample point of the population is considered as a
charged particle that is released to the space. The charge of each point is related to
its objective function value and determines the magnitude of attraction or repulsion
of the point over the sample population. The charge of point xi is then computed by
qi = exp

(
−n(f (xi)− f (xbest))/∑psize

j=1 (f (x j)− f (xbest))
)

.
This way the points that have smaller objective function values possess higher

charges. Different approaches to evaluate the charges could be found in [2, 19, 33,
45]. The charges are then used to find a direction to move the points in the popula-
tion. The direction is evaluated as a combination of the forces exerted on a partic-
ular point via other points. Like the electromagnetic forces, this force is calculated
by adding vectorially the forces from each of the other points calculated separately.
Hence,

F i =
psize

∑
j ̸=i

F i
j ≡

(x j − xi)

qiq j

∥x j − xi∥2 if f (x j)< f (xi) (attraction)

(xi − x j)
qiq j

∥x j − xi∥2 if f (x j)≥ f (xi) (repulsion)
, (9)

for i = 1,2, . . . , psize. Note that the force computation (9) is based on the Coulomb’s
law of the electromagnetism theory that states that the total force exerted on a point

Techniques for Constrained Global Optimization 15

via other points is inversely proportional to the square of the distance between the
points and directly proportional to the product of their charges.

Then, each point xi is moved according to the direction of the total force F i by
a random step length. To maintain feasibility, the force exerted on each point is
normalized and scaled by the allowed range of movement towards the lower bound
l j, or the upper bound u j, of the set Ω , for each component j. Thus, for i ∈ PI but
i ̸= best

xi
j =

xi

j +ξ
F i

j

∥F i∥
(u j − xi

j) if F i
j > 0

xi
j +ξ

F i
j

∥F i∥
(xi

j − l j) otherwise
, j = 1,2, . . . ,n. (10)

The random step length ξ is assumed to be uniformly distributed between 0 and 1.
Finally the EM algorithm also performs a local refinement that is applied to the

best point of the population. xbest is componentwise assigned to a temporary point
y. Then a random movement of maximum length σ max j(u j − l j), where σ > 0, is
carried out and if a better position is obtained within Mlocal iterations, xbest is re-
placed by y, the search ends for that component and proceeds to another one. In [9]
it is shown that this simple random local search improves accuracy at a reduced
computational cost. More sophisticated local search procedures have been imple-
mented to enhance the EM algorithm: a deterministic local search procedure [47]
and a stochastic one [48]. The formal description of the EM algorithm is depicted
in Algorithm 4 below.

Algorithm 4 Electromagnetism-like mechanism algorithm
1: Randomly generate xi ∈ Ω , for i ∈ PI; set k = 0; set parameters
2: Evaluate the population and select xbest

3: While the stopping condition is not met do
3.1 compute the charges ci, i ∈ PI
3.2 compute the total forces F i, i ∈ PI
3.3 move the points except xbest

3.4 evaluate the new population and select xbest

3.5 apply a local search to xbest

3.6 set k = k+1

Modified EM based on memory force vector. In order to improve its search ability
and efficiency and to extend to larger dimensional problems, a simple modification
has been introduced in the original EM algorithm. The force F i, used to move the
point xi as outlined in (10), is a linear combination of the force exerted on that point
at the current iteration k, F i

k , with the total force of the previous iteration, F i
k−1, as

follows: F i = F i
k +β F i

k−1, where β is a positive memory constant which adjusts the
change in the movement force vector. The point can memorize the previous force
and adjust the current force to move the point. Further, the Hooke and Jeeves (HJ)
pattern search algorithm [30, 35] is used to refine the best point of the population

16 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

instead of the random line search of the original EM. This is a derivative-free method
that searches in the neighborhood of xbest for a better approximation using two types
of moves: the exploratory move and the pattern move. We refer to [47] for details
concerning the use of HJ in the EM context.

To analyze the influence of the parameter β to the final results, we use the mean
absolute error MAE = | fopt − favg|/n, a scaled distance between the average perfor-
mance and the optimal value [39], that aims to measure the accuracy of the solutions
found by the algorithm, and tested three values of β : 0.1,0.5 and 0.9. Figure 4 is
a 100% stacked column chart for the values of MAE obtained by the selected β
values. For each problem, we can compare the percentage that each β value con-
tributes to the total. The smaller the percentage is the better. Overall, the area of the
bars corresponding to β = 0.1 is smaller than the others - 13% in contrast with 42%
(for β = 0.5) and 45% (for β = 0.9). This indicates that 0.1 is a better choice for β .

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GP MHB RA-2 RA-5 RA-10

β = 0.1 β = 0.5 β = 0.9

Fig. 4 MAE comparison for the three values of β .

Experimental results. The numerical experiments carried out with both EM algo-
rithms are summarized in Table 5. The set of tested problems is described in Table 1.
As previously referred, the values set to the parameters are displayed at the bottom
row of the table. The results show that the modified EM based on the HJ local search
algorithm performs well and has 100% of successful runs with all the tested prob-
lems, according to the stopping condition in (2). When solving the problems RA-5
and RA-10, the EM algorithm (in Algorithm 4) only stops when the maximum num-
ber of function evaluations is reached in all 30 runs.

3 Constraint-Handling Techniques

Most stochastic methods for global optimization are primarily developed for uncon-
strained or simple bound constrained problems. After that, they are extended to more
general constrained problems by modifying the solution procedures or by applying

Techniques for Constrained Global Optimization 17

Table 5 Results using EM algorithms.

Prob. Algorithm 4 Modified EM (with local HJ)
fbest favg st. dev. n f eavg fbest favg st. dev. n f eavg

GP 3.00e+00 3.00e+00 2.49e-05 420 3.00e+00 3.00e+00 1.14e-06 357
MHB 6.53e-11 1.71e-09 1.18e-09 19249 2.80e-12 1.35e-10 1.08e-10 855
RA-2 4.48e-11 2.08e-09 1.57e-09 25657 7.25e-11 1.03e-09 5.54e-10 3490
RA-5 3.74e-08 4.43e-07 4.25e-07 50027 7.58e-11 6.74e-09 3.59e-09 13582

RA-10 3.52e-07 1.59e-06 7.88e-07 50052 1.20e-10 2.69e-10 1.29e-10 14143

Parameter values: σ = 0.001, Mlocal = 10, β = 0.1

penalty function methods. The penalty technique is by far the most used strategy,
but others deserve attention for their efficiency [40]. The four main categories of
constraint-handling techniques are: (i) methods based on penalty functions - where
the constraint violation is combined with the objective function to define the penalty
function that aims at penalizing infeasible solutions [7, 14, 25, 39, 42, 49, 51]; (ii)
methods based on multiobjective optimization concepts - where both constraint vi-
olation and objective function are goals to be minimized separately [1, 2, 28]; (iii)
methods based on biasing feasible over infeasible solutions - where constraint vi-
olation and objective function are used separately and optimized by some sort of
order being the violation the most important [4, 16, 44, 52, 53]; (iv) methods based
on preserving feasibility of solutions - where infeasible points are discarded or re-
paired [12]. Three classes of challenging constraint-handling techniques are herein
described and tested.

3.1 Augmented Lagrangian-based techniques

Methods based on penalty functions transform the constrained problem into a se-
quence of unconstrained subproblems by adding a weighted constraint violation
term to the objective function. This term is known as penalty term and the main goal
is to penalize the objective function when constraints are violated. The penalty func-
tion is the objective to be minimized in the unconstrained subproblem. It depends on
a positive penalty parameter that should be updated throughout the iterative process,
so that the sequence of the solutions of the unconstrained subproblems converges to
the solution of the constrained problem. With most penalty functions, the solution
of the constrained problem is reached for an infinite value of the penalty [8]. In fact,
the penalty parameter aims at balancing objective and constraint violation. Small
values of the penalty can produce almost optimal but infeasible solutions, whereas
large values can give feasible solutions although an optimal solution at the bound-
ary may not be found. Different penalties may emerge depending on the way the
penalty parameter varies throughout the iterative process. The most used are an-

18 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

nealing penalties, dynamic penalties and adaptive penalties [7, 39, 54]. Annealing
penalties use an annealing criterion to attenuate the fitness of infeasible solutions.
With dynamic penalties, a penalty parameter changes over time and depends on the
iteration counter. The updating formula may even depend on user defined constants.
On the other hand, in the adaptive penalty strategy, the user does not need to spec-
ify any constant value to tune the penalty updating formula. This formula depends
on information gathered from the population, for instance the level of constraint
violation and the mean objective function values.

We are interested in a particular class of penalty functions known as augmented
Lagrangian functions to handle the equality and inequality constraints of the prob-
lem (1). An augmented Lagrangian is a more sophisticated penalty function for
which a finite penalty parameter value is sufficient to yield convergence to the so-
lution of the constrained problem [8], avoiding the side-effects associated with ill-
conditioning of simpler penalty functions.

Augmented Lagrangian functions. Augmented Lagrangian functions depend on a
penalty parameter as well as on the Lagrange multiplier vectors associated with
the constraints of the problem. With augmented Lagrangian functions, the esti-
mation of the multiplier vectors ought to be considered during the iterative pro-
cess. Augmented Lagrangians are quite common in deterministic type methods
[10, 13, 23, 24, 36] in both local and global optimization contexts, but more rare
and only recently applied to heuristics that rely on a population of points to con-
verge to an approximate solution of the subproblems [14, 25, 49, 51]. Conn et al.
[13] proposed an augmented Lagrangian method for nonconvex optimization with
equality constraints and proved global convergence results. Lewis and Torczon [36]
extended the algorithm with the augmented Lagrangian

P(x) = f (x)+
m

∑
j=1

λ jh j(x)+
µ
2

m

∑
j=1

h j(x)2 (11)

to derivative-free pattern search methods where µ > 0 is the penalty parameter and
λ ∈ Rm is the multiplier vector associated with the constraints h(x) = 0. It is ex-
pected that as iterations proceed µ increases and the sequence of minimizers of (11)
converges to the solution of the constrained problem [8]. The choice of values for the
sequence of penalty parameters is a nontrivial issue. If the algorithm is struggling to
generate feasible solutions, it is convenient to increase the penalty parameter. How-
ever, very large values can cause a slow convergence. This augmented Lagrangian
framework may be extended to the more general problem like (1) adding to (11) the
term related with the inequality constraint violation [8, 23, 24]:

La,1(x) = P(x)+
1

2µ

p

∑
j=1

([
max

{
0,δ j +µg j(x)

}]2 −δ 2
j

)
(12)

where δ ∈ Rp is the multiplier vector associated with the constraints g(x)≤ 0. The
main drawback of La,1(x) is that the function is not twice continuously differen-
tiable. Thus derivative-free methods are the most appropriate for computing the se-

Techniques for Constrained Global Optimization 19

quence of minimizers of the objective function La,1(x) for a sequence of µ values.
The estimation of the multiplier vectors λ and δ in this iterative process may fol-
low the well-known first-order updating formulae: λ j,k+1 = λ j,k + µkh j(xk+1) for
j = 1, . . . ,m and δ j,k+1 = max

{
0,δ j,k +µkg j(xk+1)

}
for j = 1, . . . , p, where a safe-

guarded scheme is used to maintain the multiplier vectors bounded throughout the
process, λ j,k ∈ [λ−,λ+] for j = 1, . . . ,m and δ j,k ∈ [0,δ+](j = 1, . . . , p), for all k.
Other papers available in the global optimization area consider the Powell-Hestenes-
Rockafellar (PHR) augmented Lagrangian function

La,2(x) = f (x)+
µ
2

{
m

∑
j=1

[
h j(x)+

λ j

µ

]2

+
p

∑
j=1

[
max

{
0, g j(x)+

δ j

µ

}]2
}

(13)

where, as previously stated, λ j, j = 1, . . . ,m and δ j, j = 1, . . . , p are the multipliers
that are tuned according to the previously described updating formulae (see [10]).
Birgin et al. [10] combine an augmented Lagrangian approach with the determinis-
tic global αBB optimization method and its convex α-underestimation. A stochas-
tic population-based method has also been implemented in the PHR augmented La-
grangian context [50] when computing the minimizers of (13). We remark that tradi-
tional augmented Lagrangian methods are locally convergent if the subproblems are
solved within a prescribed tolerance, yielding εk-approximate global minimizers of
the subproblems, and the sequence of tolerances converges to zero as k → ∞ [8, 36].
In this type of augmented Lagrangian penalty algorithm, the penalty parameter is
usually increased when the constraint violation has not been reduced, otherwise it
is not changed. Algorithm 5 describes the main steps of the herein implemented
augmented Lagrangian algorithm.

Algorithm 5 Augmented Lagrangian algorithm
1: Given: µ0,λ0,δ0,ε0; set k = 0; set parameters
2: Randomly generate x0 in Ω
3: While the stopping condition is not met do

3.1 For the fixed values µk,λk,δk, compute xbest an εk-approximation to

argminLa(x) subject to x ∈ Ω

3.2 set xk+1 = xbest

3.3 reduce εk and increase µk if appropriate
3.4 update λk and δk
3.5 set k = k+1

Since equality constraints are the most difficult to be satisfied, a common pro-
cedure in stochastic methods for global optimization is to convert the equality con-
straints of the problem into inequality constraints: |h j(x)| ≤ ζ , where ζ is a positive
relaxation parameter. In general, the relaxation parameter is fixed over the entire it-
erative process. Typically, 10−3, 10−4 and 10−5 are common values in the literature.
This strategy directly affects the accuracy of the computed solution. The smaller the

20 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

ζ value the more difficult the problem is. The vector of the mp = m+ p inequality
constraints is then defined by G(x)= (|h1(x)|−ζ , . . . , |hm(x)|−ζ ,g1(x), . . . ,gp(x))

T ,
the corresponding multipliers vector is represented by ∆ ∈ Rmp and the augmented
Lagrangian has the form

La,3(x) = f (x)+
µ
2

{
mp

∑
j=1

[
max

{
0, G j(x)+

∆ j

µ

}]2
}
. (14)

The augmented Lagrangian algorithm to be implemented with the function (14)
is similar to the Algorithm 5 considering appropriate modifications relative to the
multiplier vector. We refer the reader to [49, 51] for details.

Benchmark problems. For the numerical experiments presented in this section we
consider 13 benchmark constrained nonlinear programming problems described in
full detail in [37, 52]. The problems are known as g01-g13 (the ‘g’ suit). Some
characteristics of these test problems are shown in Table 6 including the best known
optimal solutions fopt [37].

Stopping condition. Let ϑ(x) = ∑m
j=1

∣∣h j(x)
∣∣+∑p

j=1 max{0,g j(x)} be the herein
used measure of constraint violation. The numerical results obtained with each one
of the constraint-handling techniques presented in this section are based on the fol-
lowing stopping condition. The algorithms stop when(

ϑ(xbest)≤ ε∗ AND
∣∣∣ f (xbest)− fopt

∣∣∣≤ 102ε∗
∣∣ fopt

∣∣+ ε∗
)

OR n feval > n fmax

(15)
is true, where ε∗ is set to 10−6 and the maximum number of function evaluations,
n fmax, is set to 300000.

Results. We run Algorithm 5, using GA (based on Algorithm 1) with the augmented
Lagrangian (12), using EM (based on the Algorithm 4) with the Lagrangian (13) and
using the AFS algorithm with the Lagrangian (14) to solve the bound constrained
subproblems in Step 3.1 of the algorithm. Table 7 presents a synthesis of the com-
putational results: fbest and favg for the problems g01-g13. The values set to the
parameters of the algorithms are displayed in the bottom row of the table. From the
table, we may conclude that the results obtained by EM-La,2 for the set g01-g13 are
slightly better than the others in comparison.

3.2 Tournament selection based on feasibility and dominance rules

Taking into consideration that evolutionary algorithms are based on a population of
points, Deb [16] proposed a penalization scheme that ensures that an infeasible so-
lution can never be better than a feasible one. The technique has been widely used in
the context of differential evolution, genetic algorithm, particle swarm optimization,
artificial bee colony and electromagnetism-like mechanism [5, 16, 46]. This tech-
nique is appropriate to tackle inequality constraints. In order to deal with equality

Techniques for Constrained Global Optimization 21

Table 6 Test problems for constrained optimization.

Prob. Type of fopt Prob. Type of fopt

f n m p f n m p

g01 quadratic -15.00000000 13 0 9 g08 general -0.09582504 2 0 2
g02 general -0.80361910 20 0 2 g09 general 680.630057 7 0 4
g03 polynomial -1.00050010 10 1 0 g10 linear 7049.24802 8 0 6
g04 quadratic -30665.53867 5 0 6 g11 quadratic 0.74990000 2 1 0
g05 cubic 5126.496714 4 3 2 g12 quadratic -1.00000000 3 0 1
g06 cubic -6961.813876 2 0 2 g13 general 0.05394151 5 3 0
g07 quadratic 24.30620907 10 0 8

Table 7 Results obtained with augmented Lagrangian techniques.

GA-La,1 EM-La,2 AFS-La,3

fbest favg fbest favg fbest favg

g01 -14.9995 -14.6320 -14.9997 -14.7323 -14.9995 -14.9989
g02 -0.5728 -0.4523 -0.5157 -0.4288 -0.5558 -0.5043
g03 -1.0000 -0.9934 -0.9965 -0.9943 -1.0000 -0.9995
g04 -30650.546 -30645.783 -30665.539 -30665.422 -30664.798 -30663.487
g05 5131.4481 5156.3980 5126.5181 5131.2619 5126.5871 5128.5040
g06 -6944.8840 -6939.8921 -6958.7753 -6954.5228 -6961.7921 -6961.4422
g07 24.8900 25.1332 24.3080 24.3095 25.1260 25.7707
g08 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958
g09 680.6493 680.8867 680.6319 680.6488 680.6303 680.6349
g10 7124.2540 7283.9911 7066.0691 7212.2501 7054.4879 7074.6165
g11 0.7500 0.7500 0.7836 0.9891 0.7500 0.7500
g12 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
g13 0.0539 0.3142 0.0539 0.0548 0.0540 0.0543

Parameter values: µ0 = 1, ε0=0.1, λ− =−1012, λ+ = δ+ = 1012, ζ = 10−5,
In GA: λ0=δ0=1; in AFS and EM: λ0=δ0=0 (componentwise)

constraints a reformulation into inequality constraints should be considered, as pre-
viously explained in this section. Hence, based on the vector of constraints, G(x),
constraint violation is measured by ϑG(x) = ∑mp

j=1 max{0,G j(x)}. A fitness func-
tion for a comparison between points that uses constraint violation for infeasible
solutions is proposed. The tournament based constraint method to handle inequal-
ity constraints is based on a penalty function which does not require any penalty
parameter. Further, another important advantage of this approach is that it does not
require the computation of the objective function value for infeasible points. The fit-
ness function then considers the constraint violation to assess infeasible points and
is expressed by:

22 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

F(x) =
{

f (x), if the point is feasible
fmax +ϑG(x), otherwise

where fmax is the objective function value of the worst feasible solution in the pop-
ulation. When all points are infeasible then its value is set to zero. Here, a point
is considered feasible if ϑG(x) ≤ 10−6. Thus, the fitness of an infeasible point de-
pends not only on the constraint violation, but also on the population of points at
hand. Figure 5 depicts the behavior of a typical fitness F(x) in both feasible and
infeasible regions. To handle simple bound constraints, a projection technique is im-

f(x)

F(x)

G(x)

f(x)

Infeasible Feasible

fmax

G(x) = 0

F(x)

Fig. 5 Typical fitness F(x) in both feasible and infeasible regions.

plemented, i.e., each generated point is componentwise projected onto the boundary
of the set Ω .

To select the best solution, a tournament selection is exploited to make sure that:
(i) when two feasible solutions are compared, the one with better objective function
value is chosen; (ii) when one feasible and one infeasible solutions are compared,
the feasible solution is chosen; (iii) when two infeasible solutions are compared, the
one with smaller constraint violation is chosen.

Experimental results. The tournament selection technique based on the feasibility
and dominance rules was implemented in the GA, DE and EM algorithms context.
To simplify the notation, these solvers are herein denoted by ‘GA-f&d’, ‘DE-f&d’
and ‘EM-f&d’ respectively. The results obtained when solving the problems g01-
g13 are listed in Table 8. The results show that DE-f&d outperforms GA-f&d and
EM-f&d.

3.3 Ranking the objective function and constraint violation

Using the relationship between the objective function and constraint violation, a
stochastic ranking (SR) for constraint-handling in global optimization is proposed
in [52]. This ranking ensures that the good feasible points as well as promising
infeasible ones are ranked in the top of the population. A probability p f of using

Techniques for Constrained Global Optimization 23

Table 8 Results using feasibility and dominance rules.

GA-f&d DE-f&d EM-f&d
fbest favg fbest favg fbest favg

g01 -14.9999 -14.8873 -14.9993 -14.9987 -14.9999 -14.9998
g02 -0.7408 -0.5230 -0.7949 -0.7561 -0.7777 -0.4948
g03 -1.0000 -1.0000 -1.0001 -1.0001 -0.9992 -0.9959
g04 -30651.343 -30644.545 -30664.503 -30663.166 -30648.166 -30628.347
g05 5128.3653 5198.4028 5126.3579 5206.1841 5126.6708 5143.5152
g06 -6961.7988 -6961.7020 -6961.8362 -6614.2729 -6961.7885 -6961.4934
g07 24.5523 25.2021 24.2316 24.2690 28.9110 35.6513
g08 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958
g09 680.7745 680.8148 680.6565 680.6886 680.6839 681.3311
g10 7053.6216 7228.9648 7049.9227 7074.4042 7097.1938 7400.9558
g11 0.7490 0.7490 0.7500 0.8566 0.7500 0.7500
g12 -1.0000 -1.0000 -1.0000 -0.9999 -1.0000 -1.0000
g13 0.4418 0.6992 0.5532 0.8619 0.0902 0.3866

Parameter value: ζ = 10−5

only the objective function for comparison in ranking in the infeasible regions of
the search space is introduced. Thus, given any pair of two adjacent points, the
probability of comparing them (to see which one is fitter) according to the objective
function is 1 if both individuals are feasible; otherwise it is p f .

Runarsson and Yao [53] proposed another constraint-handling technique for con-
strained problems in order to find the right balance between the objective function
and the constraint violation. This method is called global competitive ranking and is
herein denoted by ‘GcR’. In this method, a point is ranked by comparing it against
all other points of the population. This is different from the stochastic ranking where
two adjacent points compete for a given rank. In this ranking method, ϑ(x) measures
constraint violation of a point x. We consider an individual point as a feasible one
if ϑ(x) ≤ 10−6. After calculating f and ϑ for all points in the population, they are
sorted separately in ascending order (since we consider the minimization problem)
and given ranks. Special consideration is given to tied values. In the case of tied
values the same higher rank will be given. For example, in these eight individu-
als, already in ascending order, ⟨6,(5,8),1,(2,4,7),3⟩ (individuals in parentheses
have the same value) the corresponding ranks are r(6) = 1,r(5) = r(8) = 2,r(1) =
4,r(2) = r(4) = r(7) = 5,r(3) = 8. After the ranking of all the points based on the
objective function f and the constraint violation ϑ , separately, the fitness function
of each point xi is given by

FGcR(xi) = p f
ri, f −1
psize −1

+(1− p f)
ri,ϑ −1
psize −1

(16)

where FGcR means fitness based on the global competitive ranking, and ri, f and ri,ϑ
are the ranks of point xi based on the objective function and constraint violation,

24 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

respectively. p f indicates the probability that the fitness is calculated based on the
rank of objective function. It is clear from the above that p f can be used easily to
bias the calculation of fitness according to the objective function or the constraint
violation. The probability should take a value 0.0 < p f < 0.5 in order to guarantee
that a feasible solution may be found. From (16), the fitness of a point is a value
between 0 and 1, and the best point in a population has the lowest fitness value.

Implementation within DE. When implementing the global competitive ranking
technique in the differential evolution framework, the selection operation relies on
the fitness (16). Thus, when evaluating the points at the current iteration k (xi

k), and
additionally the trial points for iteration k+1 (ui

k+1), all of them are ranked together
as above and their corresponding fitness FGcR are calculated. Then, to decide which
will be the points for the new population (at iteration k+ 1), a selection based on
their calculated fitness is performed

xi
k+1 =

{
ui

k+1 if FGcR(ui
k+1)≤ FGcR(xi

k)

xi
k otherwise

.

After performing selection, the best point, xbest, is chosen based on the lowest fitness
function of the new points. See [4, 5] for details concerning GcR implementation in
a DE context.

Experimental results. To analyze the performance of the GcR technique we solved
the previously referred 13 constrained nonlinear programming problems using the
differential evolution technique, as described in Algorithm 2. The solver is here-
after denoted by ‘DE-GcR’. For comparative purposes, Table 9 shows the results
obtained by DE-GcR and those obtained by an evolutionary strategy combined with
the stochastic ranking and global competitive ranking techniques, denoted by ‘ES-
SR’ [52] and ‘ES-GcR’ [53] respectively. The values of fbest and favg in the second
and third columns of the table are obtained using the stopping condition (15). The
fourth column contains the values of fbest obtained with DE-GcR using the stopping
condition suggested in [52, 53], as registered in the bottom row of the table. The
values used for kmax are 175 for g12 and 1750 for the remaining problems. We may
conclude that DE-GcR performs better than the other two in comparison. Based on
the stopping condition (15), we may conclude that the strategy GcR is more effective
in reaching a good solution than DE-f&d, when implemented in a DE context (see
second and third columns of Table 9 versus fourth and fifth columns of Table 8).

4 Engineering Design Problems

This section is devoted to presenting a comparative study of the previously described
stochastic algorithms combined with the presented constraint-handling approaches,
when solving two well-known engineering design problems. First, a non-smooth
problem is considered. It belongs to a class of economic dispatch problems. Then,

Techniques for Constrained Global Optimization 25

Table 9 Results using ranking techniques (with p f = 0.45).

DE-GcR DE-GcR† ES-SR† ES-GcR†
fbest favg fbest fbest fbest

g01 -14.9994 -14.9987 -15.0000 -15.0000 -15.0000
g02 -0.8035 -0.7409 -0.8036 -0.8035 -0.8035
g03 -1.0001 -1.0001 -1.0001 -1.0000 -1.0000
g04 -30664.507 -30663.181 -30665.540 -30665.539 -30665.539
g05 5126.4625 5129.0287 5126.3531 5126.4970 5126.4970
g06 -6961.9236 -6961.9126 -6961.9236 -6961.8140 -6943.5600
g07 24.2316 24.2716 24.2316 24.3070 24.3080
g08 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958
g09 680.6570 680.6845 680.6301 680.6300 680.6310
g10 7049.9309 7074.5823 7049.2461 7054.3160 ∗
g11 0.7500 0.8667 0.7500 0.7500 0.7500
g12 -1.0000 -0.9999 -1.0000 -1.0000 -1.0000
g13 0.0539 0.0539 0.0539 0.0539 0.0539

† Stopping condition: (k > kmax) OR (| fbest − fopt| ≤ 10−5); (∗) not solved

a smooth problem concerned with a pressure vessel design problem is presented,
where two of the variables should take values from a specified set.

4.1 A non-smooth economic dispatch problem

The objective of the economic dispatch problem is to find the optimal combination
of power dispatches from different power generating units in a given time period
to minimize the total generation cost while satisfying the specified load demands
and the generating units operating conditions. Generally, the cost function for each
generating unit can be represented by a quadratic function, but due to valve-point
loading effects the resulting cost function has additional nondifferentiable terms. We
consider and solve the following nonsmooth economic dispatch problem to verify
the effectiveness of the proposed solution methods. The problem has three genera-
ting units and the hourly power demand is equal to 850 (see other data in [55]):

min
3

∑
i=1

aix2
i +bixi + ci +

∣∣di sin(ei(xi,min − xi))
∣∣

subject to
3

∑
i=1

xi = 850 and xi,min ≤ xi ≤ xi,max, i = 1,2,3.

We run Algorithm 1 combined with the technique based on the feasibility and dom-
inance rules, denoted by ‘GA-f&d’, Algorithm 2 combined with the feasibility and
dominance rules - ‘DE-f&d’ - and combined with the global competitive ranking

26 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

technique as well - ‘DE-GcR’, Algorithm 3 combined with the augmented La-
grangian technique, herein denoted by ‘AFS-La,3’ and Algorithm 4 combined with
the feasibility and dominance rules denoted by ‘EM-f&d’. Values listed in the Ta-
ble 10 correspond to: (i) optimal values for the design variables; (ii) the optimal
objective function value obtained from the best run, ‘ fbest’. In the tables, ‘-’ means
unavailable information. The algorithms are allowed to run until the number of func-
tion evaluations reaches n fmax = 15 000. Our results are compared with the results
listed in [41] and those obtained by two well-known solvers available through NEOS
server (http://www.neos-server.org/neos) - LINDO is a global solver and IPOPT is a
local one. The results achieved by the herein proposed population-based algorithms
are competitive with those of the literature. GA-f&d is able to achieve the least value
of all.

Table 10 Results for the economic dispatch problem.

Best solution found
GA-f&d DE-f&d DE-GcR AFS-La,3 EM-f&d in [41] LINDO IPOPT

x1 300.27 498.93 300.27 300.27 299.68 300.27 598.67 251.20
x2 400.00 251.20 400.00 399.98 399.96 400.00 101.60 399.20
x3 149.73 99.87 149.73 149.75 150.36 149.73 149.73 199.60

fbest 8234.06 8241.17 8234.07 8234.09 8234.44 8234.07 8382.73 8562.41

4.2 Pressure vessel design problem

This example corresponds to the design of a cylindrical pressure vessel with both
ends capped with a hemispherical head [28, 34]. The problem consists of minimi-
zing the total cost of the material, forming and welding of the cylindrical vessel, and
has four design variables subject to four inequality constraints. The herein denoted
variables x1 and x2 are integer multiples of 0.0625. We then consider xi = 0.0625ni
and work with the integer variables n1 and n2.

The heuristic herein implemented to deal with the integer variables can be sum-
marized as follows. Whenever new trial points are evaluated, the components that
correspond to integer variables are rounded to the nearest integer. Then, the corre-
sponding constraint violation and objective function values are computed, since they
are crucial to evaluate fitness for comparative purposes. All the other procedures
inside the algorithms proceed as if those variables were continuous. The results ob-
tained with the ‘GA-f&d’, ‘DE-f&d’, ‘DE-GcR’ and ‘EM-f&d’, when solving the
pressure vessel design problem, are reported in Table 11. The results available in
[28, 34] are also listed. When solving this problem, the algorithms are allowed to
run until the number of function evaluations reaches n fmax = 50 000. The reported
solutions are competitive with others available in the literature. Between the four

Techniques for Constrained Global Optimization 27

algorithms herein tested, GA-f&d gives the least value of f . The proposed meth-
ods are able to solve a difficult nonlinear constrained optimization problem using a
simple heuristic to tackle integer variables.

Table 11 Results for the vessel design problem.

Best solution found
GA-f&d DE-f&d DE-GcR EM-f&d in [28] in [34]

x1 0.8125 0.8125 0.8125 0.8125 0.768326 1.125
x2 0.3750 0.4375 0.4375 0.4375 0.379784 0.625
x3 41.8844 42.0985 42.0985 42.0841 39.80962 58.2789
x4 179.3074 176.6360 176.6360 176.8150 207.2256 43.7549

fbest 5 890.999 6 059.708 6 059.708 6 061.472 5 868.765 7 198.433

5 Conclusions

To address the solving of nonlinear constrained global optimization problems, this
chapter is organized into three parts, excluding the Introduction and this section. The
first part consists of Section 2 where global optimization problems with only simple
bound constraints are analyzed. The second part includes the Section 3 where gen-
eral constrained problems are addressed and the final part resumes to the Section 4
where two engineering design problems are presented and solved.

Constraint-handling involving population-based algorithms is a challenging is-
sue. This study describes and tests three strategies. Our selection contains: the tech-
nique based on augmented Lagrangian functions, the tournament selection based
on feasibility and dominance rules and a technique that relies on ranking the ob-
jective function and constraint violation (in Section 3). These methodologies are
combined with four population-based stochastic methods. Two of them are in-
spired by evolutionary theories, namely the genetic algorithm and the differential
evolution, the other uses swarm intelligence approaches, namely the artificial fish
swarm algorithm, and another is based on basic electromagnetism theory, known as
electromagnetism-like mechanism. Besides introducing the basic ideas behind these
well-known stochastic methods, other novel and recent variants are presented, an-
alyzed and compared (in Section 2). For each of these sections, we selected a set
of benchmark problems which are solved with all the proposed strategies. The re-
ported numerical results show that our choices are effective in solving typical global
optimization problems.

Acknowledgments. The fourth author acknowledges Ciência 2007 of FCT, Fundação para a
Ciência e a Tecnologia (Foundation for Science and Technology), Portugal for the financial sup-
port under fellowship grant: C2007-UMINHO-ALGORITMI-04. The other authors acknowledge

28 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

FEDER COMPETE, Programa Operacional Fatores de Competitividade (Operational Programme
Thematic Factors of Competitiveness) and FCT for the financial support under project grant:
FCOMP-01-0124-FEDER-022674.

References

1. Aguirre AH, Rionda SB, Coello Coello CA, Lizárraga GL, Montes EM (2004) Handling con-
straints using multiobjective optimization concepts. International Journal for Numerical Meth-
ods in Engineering 59:1989–2017

2. Ali MM, Golalikhani M (2010) An electromagnetism-like method for nonlinearly constrained
global optimization. Computers and Mathematics with Applications 60:2279–2285

3. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochas-
tic algorithms on selected continuous global optimization test problems. Journal of Global
Optimization 31:635–672

4. Azad MAK, Fernandes EMGP (2011) Modified differential evolution based on global com-
petitive ranking for engineering design optimization problems. Lecture Notes in Computer
Science, Vol 6784, Part III, B Murgante et al. (eds.) 245–260

5. Azad MAK, Fernandes EMGP (2011) Global Competitive Ranking for Constraints Handling
with Modified Differential Evolution. In Proceedings of International Conference on Evolu-
tionary Computation Theory and Applications, 42–51 SciTePress, Paris, France

6. Azad MAK, Fernandes EMGP, Rocha AMAC (2010) Nonlinear continuous global optimiza-
tion by modified differential evolution. In International Conference of Numerical Analysis and
Applied Mathematics 2010, TE Simos et al. (eds.) Vol. 1281, 955–958

7. Barbosa HJC, Lemonge ACC (2008) An adaptive penalty method for genetic algorithms in
constrained optimization problems. In Frontiers in Evolutionary Robotics, Iba H (ed.) 34 pag.
I-Tech Education Publ., Austria

8. Bertsekas DP (1999) Nonlinear Programming, 2nd edn. Athena Scientific, Belmont
9. Birbil SI, Fang S (2003) An electromagnetism-like mechanism for global optimization. Jour-

nal of Global Optimization 25:263–282
10. Birgin EG, Floudas CA, Martinez JM (2010) Global minimization using an augmented La-

grangian method with variable lower-level constraints. Mathematical Programming 125:139-
162

11. Brest J, Greiner S, Bošković B, Mernik M, Žumer V (2006) Self-adapting control parame-
ters in differential evolution: a comparative study on numerical benchmark problems. IEEE
Transaction on Evolutionary Computation 10:646–657

12. Chootinan P, Chen A (2006) Constrained handling in genetic algorithms using a gradient-
based repair method. Computers and Operations Research 33:2263–2281

13. Conn AR, Gould NIM, Toint PhL (1991) A globally convergent augmented Lagrangian al-
gorithm for optimization with general constraints and simple bounds. Journal on Numerical
Analysis 28:545–572

14. Costa L, Espı́rito Santo IACP, Denysiuk R, Fernandes EMGP (2010) Hybridization of a ge-
netic algorithm with a pattern search augmented Lagrangian method. Proc. of 2nd Interna-
tional Conference on Engineering Optimization, H Rodrigues et al. (eds), 10 pag. Lisbon

15. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a
neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computation
13:526–553

16. Deb K (2000) An efficient constraint handling method for genetic algorithms. Computer Meth-
ods in Applied Mechanics and Engineering 186:311–338

17. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex
Systems 9:115–149

Techniques for Constrained Global Optimization 29

18. Deb K, Goldberg D (1989) An investigation of niche and species formation in genetic function
optimization. Proc. of the Third International Conference on Genetic Algorithms, 42–50

19. Debels D, DeReyck B, Leus R, Vanhoucke M (2005) A hybrid scatter
search/electromagnetism metaheuristic for project scheduling. European Journal of Op-
erational Research 169:638–653

20. Deep K, Dipti (2008) A self-organizing migrating genetic algorithm for constrained optimiza-
tion. Applied Mathematics and Computation 198:237–250

21. Dixon LCW, Szegö GP (1978) The global optimization problem: an introduction. In: Dixon
LCW, Szegö GP (eds.) Towards Global Optimisation 2. North-Holland, Amsterdam, 1–15

22. Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles.
Mathematical Programming 91:201–213

23. Espı́rito Santo IACP, Fernandes EMGP (2010) Simplified model for the activated sludge sys-
tem: WWTP cost minimization via an augmented Lagrangian pattern search method. In Inter-
national Conference of Numerical Analysis and Applied Mathematics 2010, TE Simos et al.
(eds.), Vol. 1281, 971–974

24. Espı́rito Santo IACP, Fernandes EMGP, Araújo MM, Ferreira EC (2007) Cost minimization
of a WWTP using an augmented Lagrangian pattern search based solver. In 10 th. IWA Spe-
cialised Conference on Design, Operation and Economics of Large Wastewater Treatment
Plants Publishing, Wien 17–20

25. Espı́rito Santo IACP, Costa L, Denysiuk R, Fernandes EMGP (2010) Hybrid genetic pattern
search augmented Lagrangian algorithm: application to WWTP optimization. Lecture Notes
in Management Science, Proceedings of 2nd International Conference on Applied Operational
Research, Collan M (ed.) Vol. 2, 45–56

26. Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley

27. Hansen ER, Walster GW (2004) Global Optimization Using Interval Analysis, CRC Press
28. Hedar A-R, Fukushima M (2006) Derivative-free filter simulated annealing method for con-

strained continuous global optimization. Journal of Global Optimization 35:521–549
29. Hendrix EMT, G.-Toth B (2010) Introduction to Nonlinear and Global Optimization, Opti-

mization and its Applications 37, Springer-Verlag
30. Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. Jour-

nal of the Association for Computing Machinery 8:212–229
31. Jiang M, Wang Y, Pfletschinger S, Lagunas MA, Yuan D (2007) Optimal multiuser detection

with artificial fish swarm algorithm. CCIS 2, ICIC 2007, D-S Huang et al. (eds.) Springer-
Verlag 1084–1093

32. Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lips-
chitz constant. Journal of Optimization Theory and Applications 79:157–181

33. Kaelo P, Ali MM (2006) A numerical study of some modified differential evolution algo-
rithms. European Journal of Operational Research 169:1176–1184

34. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering opti-
mization: harmony search theory and practice. Computer Methods in Applied Mechanics and
Engineering 194:3902–3933

35. Lewis RM, Torczon V (1999) Pattern search algorithms for bound constrained minimization.
SIAM Journal on Optimization 9:1082–1099

36. Lewis RM, Torczon V (2002) A globally convergent augmented Lagrangian pattern search
algorithm for optimization with general constraints and simple bounds. SIAM Journal on Op-
timization 12:1075–1089

37. Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello Coello
CA, Deb K (2006) Problem definitions and evaluation criteria for the CEC2006
(http://www.ntu.edu.sg/home/EPNSugan/index files/CEC-06/CEC06.htm)

38. Liao TW (2010) Two hybrid differential evolution algorithms for engineering design opti-
mization. Applied Soft Computing 10:1188–1199

39. Liu J-L, Lin J-H (2007) Evolutionary computation of unconstrained and constrained prob-
lems using a novel momentum-type particle swarm optimization. Engineering Optimization
39:287–305

30 I.A.C.P.E. Santo, L. Costa, A.M.A.C. Rocha, M.A.K. Azad, E.M.G.P. Fernandes

40. Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling techniques. IEEE Trans-
actions on Evolutionary Computation 14:561–579

41. Park JB, Lee KS, Shin JR, Lee KY (2005) A particle swarm optimization for economic dis-
patch with nonsmooth cost functions. IEEE Transactions on Power Systems 20:34–42

42. Petalas YG, Parsopoulos KE, Vrahatis MN (2007) Memetic particle swarm optimization. An-
nals of Operations Research 156:99–127

43. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adap-
tation for global numerical optimization. IEEE Transactions on Evolutionary Computation
13:398–417

44. Ray T, Liew KM (2003) Society and Civilization: an optimization algorithm based on the
simulation of social behavior. IEEE Transactions on Evolutionary Computation 7:386–396

45. Rocha AMAC, Fernandes EMGP (2008) On charge effects to the electromagnetism-like algo-
rithm. In Euro Mini Conference Continuous Optimization and Knowledge-Based Technolo-
gies, Sakalauskas L, Weber GW, Zavadskas EK (eds.) ISBN: 978-9955-28-283-9, 198–203

46. Rocha AMAC, Fernandes EMGP (2008) Feasibility and dominance rules in the
electromagnetism-like algorithm for constrained global optimization problems. Lecture Notes
in Computer Science, Computational Science and Its Applications, O Gervasi et al. (eds.)
5073:768–783

47. Rocha AMAC, Fernandes EMGP (2009) Modified movement force vector in a
electromagnetism-like mechanism for global optimization. Optimization Methods and Soft-
ware 24:253–270

48. Rocha AMAC, Fernandes EMGP (2009) Hybridizing the electromagnetism-like algorithm
with descent search for solving engineering design problems. International Journal of Com-
puter Mathematics, 86:1932-1946

49. Rocha AMAC, Fernandes EMGP (2011) Numerical study of augmented Lagrangian algo-
rithms for constrained global optimization. Optimization 60(10-11):1359–1378

50. Rocha AMAC, Fernandes EMGP, Martins TFMC (2011) Novel fish swarm heuristics for
bound constrained global optimization problems. Lecture Notes in Computer Science, Vol
6784, Part III, B Murgante et al. (eds.) 185–199

51. Rocha AMAC, Martins TFMC, Fernandes EMGP (2011) An augmented Lagrangian fish
swarm based method for global optimization. Journal of Computational and Applied Math-
ematics 235:4611-4620

52. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization.
IEEE Transaction on Evolutionary Computation 4:284–294

53. Runarsson TP, Yao X (2003) Constrained evolutionary optimization – the penalty function ap-
proach. In: Evolutionary Optimization: International Series in Operations Research and Man-
agement Science, R Sarker et al. (eds.) 87–113

54. Silva EK, Barbosa HJC, Lemonge ACC (2011). An adaptive constraint handling technique for
differential evolution with dynamic use of variants in engineering optimization. Optimization
and Engineering 12:31–54

55. Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Evolutionary programming techniques for
economic load dispatch. IEEE Transactions on Evolutionary Computation 7:83–94

56. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11:341–359

57. Tahk M-J, Woo H-W, Park M-S (2007) A hybrid optimization method of evolutionary and
gradient search. Engineering Optimization 39:87–104

58. Wang X, Gao N, Cai S, Huang M (2006) An artificial fish swarm algorithm based and ABC
supported QoS unicast routing scheme in NGI. Lecture Notes in Computer Science, ISPA, G
Min et al.(eds.) 4331:205–214

59. Zhang X, Liu S (2008) Interval algorithm for global numerical optimization. Engineering
Optimization 40:849–868

60. Zhang J, Sanderson AC (2009) JADE: Adaptive differential evolution with optional external
archive. IEEE Transactions on Evolutionary Computation 13:945–958

