8,856 research outputs found

    Multi-bot Easy Control Hierarchy

    Get PDF
    The goal of our project is to create a software architecture that makes it possible to easily control a multi-robot system, as well as seamlessly change control modes during operation. The different control schemes first include the ability to implement on-board and off-board controllers. Second, the commands can specify either actuator level, vehicle level, or fleet level behavior. Finally, motion can be specified by giving a waypoint and time constraint, a velocity and heading, or a throttle and angle. Our code is abstracted so that any type of robot - ranging from ones that use a differential drive set up, to three-wheeled holonomic platforms, to quadcopters - can be added to the system by simply writing drivers that interface with the hardware used and by implementing math packages that do the required calculations. Our team has successfully demonstrated piloting a single robots while switching between waypoint navigation and a joystick controller. In addition, we have demonstrated the synchronized control of two robots using joystick control. Future work includes implementing a more robust cluster control, including off-board functionality, and incorporating our architecture into different types of robots

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Multi-robot team formation control in the GUARDIANS project

    Get PDF
    Purpose The GUARDIANS multi-robot team is to be deployed in a large warehouse in smoke. The team is to assist firefighters search the warehouse in the event or danger of a fire. The large dimensions of the environment together with development of smoke which drastically reduces visibility, represent major challenges for search and rescue operations. The GUARDIANS robots guide and accompany the firefighters on site whilst indicating possible obstacles and the locations of danger and maintaining communications links. Design/methodology/approach In order to fulfill the aforementioned tasks the robots need to exhibit certain behaviours. Among the basic behaviours are capabilities to stay together as a group, that is, generate a formation and navigate while keeping this formation. The control model used to generate these behaviours is based on the so-called social potential field framework, which we adapt to the specific tasks required for the GUARDIANS scenario. All tasks can be achieved without central control, and some of the behaviours can be performed without explicit communication between the robots. Findings The GUARDIANS environment requires flexible formations of the robot team: the formation has to adapt itself to the circumstances. Thus the application has forced us to redefine the concept of a formation. Using the graph-theoretic terminology, we can say that a formation may be stretched out as a path or be compact as a star or wheel. We have implemented the developed behaviours in simulation environments as well as on real ERA-MOBI robots commonly referred to as Erratics. We discuss advantages and shortcomings of our model, based on the simulations as well as on the implementation with a team of Erratics.</p

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version
    • …
    corecore