27,744 research outputs found

    Self-* overload control for distributed web systems

    Full text link
    Unexpected increases in demand and most of all flash crowds are considered the bane of every web application as they may cause intolerable delays or even service unavailability. Proper quality of service policies must guarantee rapid reactivity and responsiveness even in such critical situations. Previous solutions fail to meet common performance requirements when the system has to face sudden and unpredictable surges of traffic. Indeed they often rely on a proper setting of key parameters which requires laborious manual tuning, preventing a fast adaptation of the control policies. We contribute an original Self-* Overload Control (SOC) policy. This allows the system to self-configure a dynamic constraint on the rate of admitted sessions in order to respect service level agreements and maximize the resource utilization at the same time. Our policy does not require any prior information on the incoming traffic or manual configuration of key parameters. We ran extensive simulations under a wide range of operating conditions, showing that SOC rapidly adapts to time varying traffic and self-optimizes the resource utilization. It admits as many new sessions as possible in observance of the agreements, even under intense workload variations. We compared our algorithm to previously proposed approaches highlighting a more stable behavior and a better performance.Comment: The full version of this paper, titled "Self-* through self-learning: overload control for distributed web systems", has been published on Computer Networks, Elsevier. The simulator used for the evaluation of the proposed algorithm is available for download at the address: http://www.dsi.uniroma1.it/~novella/qos_web

    Providing Transaction Class-Based QoS in In-Memory Data Grids via Machine Learning

    Get PDF
    Elastic architectures and the ”pay-as-you-go” resource pricing model offered by many cloud infrastructure providers may seem the right choice for companies dealing with data centric applications characterized by high variable workload. In such a context, in-memory transactional data grids have demonstrated to be particularly suited for exploiting advantages provided by elastic computing platforms, mainly thanks to their ability to be dynamically (re-)sized and tuned. Anyway, when specific QoS requirements have to be met, this kind of architectures have revealed to be complex to be managed by humans. Particularly, their management is a very complex task without the stand of mechanisms supporting run-time automatic sizing/tuning of the data platform and the underlying (virtual) hardware resources provided by the cloud. In this paper, we present a neural network-based architecture where the system is constantly and automatically re-configured, particularly in terms of computing resources

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE

    Constrained tGAP for generalisation between scales: the case of Dutch topographic data

    Get PDF
    This article presents the results of integrating large- and medium-scale data into a unified data structure. This structure can be used as a single non-redundant representation for the input data, which can be queried at any arbitrary scale between the source scales. The solution is based on the constrained topological Generalized Area Partition (tGAP), which stores the results of a generalization process applied to the large-scale dataset, and is controlled by the objects of the medium-scale dataset, which act as constraints on the large-scale objects. The result contains the accurate geometry of the large-scale objects enriched with the generalization knowledge of the medium-scale data, stored as references in the constraint tGAP structure. The advantage of this constrained approach over the original tGAP is the higher quality of the aggregated maps. The idea was implemented with real topographic datasets from The Netherlands for the large- (1:1000) and medium-scale (1:10,000) data. The approach is expected to be equally valid for any categorical map and for other scales as well

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table
    • 

    corecore