13 research outputs found

    Constraint satisfaction problems for reducts of homogeneous graphs

    Get PDF
    For n >= 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain Hn whose relations are first-order definable in (Hn, E) the constraint satisfaction problem for Gamma is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete

    Constraint Satisfaction Problems for Reducts of Homogeneous Graphs

    Get PDF
    For n >= 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain Hn whose relations are first-order definable in (Hn, E) the constraint satisfaction problem for Gamma is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete

    Constraint satisfaction problems for reducts of homogeneous graphs

    Get PDF
    For n >= 3, let (H-n, E) denote the nth Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain H-n whose relations are first-order definable in (H-n, E) the constraint satisfaction problem for F either is in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete

    The Complexity of Combinations of Qualitative Constraint Satisfaction Problems

    Full text link
    The CSP of a first-order theory TT is the problem of deciding for a given finite set SS of atomic formulas whether T∪ST \cup S is satisfiable. Let T1T_1 and T2T_2 be two theories with countably infinite models and disjoint signatures. Nelson and Oppen presented conditions that imply decidability (or polynomial-time decidability) of CSP(T1∪T2)\mathrm{CSP}(T_1 \cup T_2) under the assumption that CSP(T1)\mathrm{CSP}(T_1) and CSP(T2)\mathrm{CSP}(T_2) are decidable (or polynomial-time decidable). We show that for a large class of ω\omega-categorical theories T1,T2T_1, T_2 the Nelson-Oppen conditions are not only sufficient, but also necessary for polynomial-time tractability of CSP(T1∪T2)\mathrm{CSP}(T_1 \cup T_2) (unless P=NP)

    On The Relational Width of First-Order Expansions of Finitely Bounded Homogeneous Binary Cores with Bounded Strict Width

    Full text link
    The relational width of a finite structure, if bounded, is always (1,1) or (2,3). In this paper we study the relational width of first-order expansions of finitely bounded homogeneous binary cores where binary cores are structures with equality and some anti-reflexive binary relations such that for any two different elements a, b in the domain there is exactly one binary relation R with (a, b) in R. Our main result is that first-order expansions of liberal finitely bounded homogeneous binary cores with bounded strict width have relational width (2, MaxBound) where MaxBound is the size of the largest forbidden substructure, but is not less than 3, and liberal stands for structures that do not forbid certain finite structures of small size. This result is built on a new approach and concerns a broad class of structures including reducts of homogeneous digraphs for which the CSP complexity classification has not yet been obtained.Comment: A long version of an extended abstract that appeared in LICS 202

    The Complexity of Combinations of Qualitative Constraint Satisfaction Problems

    Full text link
    The CSP of a first-order theory TT is the problem of deciding for a given finite set SS of atomic formulas whether T∪ST \cup S is satisfiable. Let T1T_1 and T2T_2 be two theories with countably infinite models and disjoint signatures. Nelson and Oppen presented conditions that imply decidability (or polynomial-time decidability) of CSP(T1∪T2)\mathrm{CSP}(T_1 \cup T_2) under the assumption that CSP(T1)\mathrm{CSP}(T_1) and CSP(T2)\mathrm{CSP}(T_2) are decidable (or polynomial-time decidable). We show that for a large class of ω\omega-categorical theories T1,T2T_1, T_2 the Nelson-Oppen conditions are not only sufficient, but also necessary for polynomial-time tractability of CSP(T1∪T2)\mathrm{CSP}(T_1 \cup T_2) (unless P=NP).Comment: Version 2: stronger main result with better presentation of the proof; multiple improvements in other proofs; new section structure; new example

    The combined basic LP and affine IP relaxation for promise VCSPs on infinite domains

    Full text link
    Convex relaxations have been instrumental in solvability of constraint satisfaction problems (CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs, and most recently promise CSPs. In this work, we extend an existing tractability result to the three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear programming and affine integer programming relaxation for exact solvability of promise valued CSPs over infinite-domains. This extends a result of Brakensiek and Guruswami [SODA'20] for promise (non-valued) CSPs (on finite domains).Comment: Full version of an MFCS'20 pape

    Canonical Polymorphisms of Ramsey Structures and the Unique Interpolation Property

    Full text link
    Constraint satisfaction problems for first-order reducts of finitely bounded homogeneous structures form a large class of computational problems that might exhibit a complexity dichotomy, P versus NP-complete. A powerful method to obtain polynomial-time tractability results for such CSPs is a certain reduction to polynomial-time tractable finite-domain CSPs defined over k-types, for a sufficiently large k. We give sufficient conditions when this method can be applied and illustrate how to use the general results to prove a new complexity dichotomy for first-order expansions of the basic relations of the spatial reasoning formalism RCC5
    corecore