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CONSTRAINT SATISFACTION PROBLEMS FOR REDUCTS OF

HOMOGENEOUS GRAPHS∗

MANUEL BODIRSKY †‖, BARNABY MARTIN ‡ , MICHAEL PINSKER §∗∗, AND ANDRÁS

PONGRÁCZ ¶††

.

Abstract. For n ≥ 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable
homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the
complete graph on n vertices. We show that for all structures Γ with domain Hn whose relations
are first-order definable in (Hn, E) the constraint satisfaction problem for Γ is either in P or is
NP-complete.

We moreover show a similar complexity dichotomy for all structures whose relations are first-order
definable in a homogeneous graph whose reflexive closure is an equivalence relation.

Together with earlier results, in particular for the random graph, this completes the complexity
classification of constraint satisfaction problems of structures first-order definable in countably infinite
homogeneous graphs: all such problems are either in P or NP-complete.

1. Introduction.

1.1. Constraint satisfaction problems. A constraint satisfaction problem
(CSP) is a computational problem in which the input consists of a finite set of variables
and a finite set of constraints, and where the question is whether there exists a mapping
from the variables to some fixed domain such that all the constraints are satisfied.
We can thus see the possible constraints as relations on that fixed domain, and in an
instance of the CSP, we are asked to assign domain values to the variables such that
certain specified tuples of variables become elements of certain specified relations.

When the domain is finite, and arbitrary constraints are permitted, then the CSP
is NP-complete. However, when only constraints from a restricted set of relations on
the domain are allowed in the input, there might be a polynomial-time algorithm
for the CSP. The set of relations that is allowed to formulate the constraints in the
input is often called the constraint language. The question which constraint languages
give rise to polynomial-time solvable CSPs has been the topic of intensive research
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over the past years. It was conjectured by Feder and Vardi [FV99] that CSPs for
constraint languages over finite domains have a complexity dichotomy: they are either
in P or NP-complete. Over the years, the conjecture was proved for substantial
classes (for example when the domain has at most three elements [Sch78, Bul06] or
when the constraint language contains a single binary relation without sources and
sinks [HN90, BKN09]). Various methods, combinatorial (graph-theoretic), logical,
and universal-algebraic were brought to bear on this classification project, with many
remarkable consequences. A conjectured delineation for the dichotomy was given in
the algebraic language in [BKJ05], and finally the conjecture, and in particular this
delineation, has recently been proven to be accurate [Bul17, Zhu17].

When the domain is infinite, the complexity of the CSP can be outside NP,
and even undecidable [BN06]. But for natural classes of such CSPs there is often
the potential for structured classifications, and this has proved to be the case for
structures first-order definable over the order (Q, <) of the rationals [BK09] or over
the integers with successor [BMM18]. Another classification of this type has been
obtained for CSPs where the constraint language is first-order definable over the
random (Rado) graph [BP15a], making use of structural Ramsey theory. This paper
was titled ‘Schaefer’s theorem for graphs’ and it can be seen as lifting the famous
classification of Schaefer [Sch78] from Boolean logic to logic over finite graphs, since
the random graph is universal for the class of finite graphs.

1.2. Homogeneous graphs and their reducts. The notion of homogeneity
from model theory plays an important role when applying techniques from finite-
domain constraint satisfaction to constraint satisfaction over infinite domains. A
relational structure is homogeneous if every isomorphism between finite induced sub-
structures can be extended to an automorphism of the entire structure. Homogeneous
structures are uniquely (up to isomorphism) given by the class of finite structures that
embed into them. The structure (Q, <) and the random graph are among the most
prominent examples of homogeneous structures. The class of structures that are first-
order definable over a homogeneous structure with finite relational signature is a very
large generalization of the class of all finite structures, and CSPs for those structures
have been studied independently in many different areas of theoretical computer
science, e.g. in temporal and spatial reasoning, phylogenetic analysis, computational
linguistics, scheduling, graph homomorphisms, and many more; see [Bod12] for
references.

While homogeneous relational structures are abundant, there are remarkably
few countably infinite homogeneous (undirected, irreflexive) graphs ; they have been
classified by Lachlan and Woodrow [LW80]. Besides the random graph mentioned
earlier, an example of such a graph is the countable homogeneous universal triangle-
free graph, one of the fundamental structures that appears in most textbooks in
model theory. This graph is the up to isomorphism unique countable triangle-free
graph (H3, E) with the property that for every finite independent set X ⊆ H3 and for
every finite set Y ⊆ H3 there exists a vertex x ∈ H3 \ (X ∪Y ) such that x is adjacent
to every vertex in X and to no vertex in Y .

Further examples of homogeneous graphs are the graphs (H4, E), (H5, E), and
so forth, which together with (H3, E) are called the Henson graphs, and their
complements. Here, (Hn, E) for n > 3 is the generalization of the graph (H3, E)
above from triangles to cliques of size n. Finally, the list of Lachlan and Woodrow
contains only one more family of infinite graphs, namely the graphs (Cs

n, E) whose
reflexive closure Eq is an equivalence relation with n classes of equal size s, where
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1 ≤ n, s ≤ ω and either n or s equals ω, as well as their complements. We remark
that (Cs

n, Eq) is itself homogeneous and first-order interdefinable with (Cs
n, E), and

so we shall sometimes refer to the homogeneous equivalence relations.

All countable homogeneous graphs, and even all structures which are first-
order definable over homogeneous graphs, are ω-categorical, that is, all countable
models of their first-order theory are isomorphic. Moreover, all countably infinite
homogeneous graphs Γ are finitely bounded in the sense that the age of Γ, i.e.,
the class of finite structures that embed into Γ, can be described by finitely many
forbidden substructures. Finitely bounded homogeneous structures also share with
finite structures the property of having a finite description: up to isomorphism,
they are uniquely given by the finite list of forbidden structures that describes their
age. Recent work indicates the importance of finite boundedness for complexity
classification [BPT13, BP11, BM16, BKO+17], and it has been conjectured that all
structures with a first-order definition in a finitely bounded homogeneous structure
enjoy a complexity dichotomy, i.e., their CSP is either in P or NP-complete
(cf. [BPP14, BP16a, BKO+17]). The structures first-order definable in homogeneous
graphs therefore provide the most natural class on which to test further the methods
developed in [BP15a] specifically for the random graph.

In this article we obtain a complete classification of the computational complexity
of CSPs where all constraints have a first-order definition in one of the Henson graphs.
We moreover obtain such a classification for CSPs where all constraints have a first-
order definition in a countably infinite homogeneous graph whose reflexive closure is
an equivalence relation, expanding earlier results for the special cases of one single
equivalence class (so-called equality constraints [BK08]) and infinitely many infinite
classes [BW12]. Together with the above-mentioned result on the random graph, this
completes the classification of CSPs for constraints with a first-order definition in
any countably infinite homogeneous graph, by Lachlan and Woodrow’s classification.
Our result is in accordance with the delineations between tractability and hardness
predicted in general for structures with a first-order definition in a finitely bounded
homogeneous structure [BPP14, BP16a, BKO+17].

Following an established convention (e.g., [Tho91, BP11], and many more) we
call a relational structure Γ a reduct of a structure ∆ if it has the same domain as
∆ and all relations of Γ are first-order definable without parameters in ∆. That
is, for us a reduct of ∆ is as the classical definition of a reduct with the difference
that we first allow a first-order expansion of ∆. With this terminology, the present
article provides a complexity classification of the CSPs for all reducts of countably
infinite homogeneous graphs. In other words, for every such reduct we determine the
complexity of deciding its primitive positive theory, which consists of all sentences
which are existentially quantified conjunctions of atomic formulas and which hold in
the reduct. We remark that all reducts of such graphs can be defined by quantifier-free
first-order formulas, by homogeneity and ω-categoricity.

For reducts of (Hn, E), the CSPs express computational problems where the task
is to decide whether there exists a finite graph without any clique of size n that meets
certain constraints. An example of a reduct whose CSP can be solved in polynomial
time is (Hn, E, {(x, y, u, v) | E(x, y) ⇒ E(u, v)}), where n ≥ 3 is arbitrary. As it turns
out, for every CSP of a reduct of a Henson graph which is solvable in polynomial time,
the corresponding reduct over the random graph, i.e., the reduct whose relations are
defined by the same quantifier-free formulas, is also polynomial-time solvable. On
the other hand, the CSP of the reduct (Hn, {(x, y, u, v) | E(x, y) ∨ E(u, v)}) is NP-
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complete for all n ≥ 3, but the corresponding reduct over the random graph can be
decided in polynomial time.

Similarly, for reducts of the graph (Cs
n, E) whose reflexive closure is an equivalence

relation with n classes of size s, where 1 ≤ n, s ≤ ω, the computational problem is to
decide whether there exists an equivalence relation with n classes of size s that meets
certain constraints. For example, consider the structure (C2

ω ;Eq,A) where

A :=
{

(x1, y1, x2, y2, x3, y3) | if Eq(x1, y1), Eq(x2, y2) and Eq(x3, y3) then there is

an odd number of i ∈ {1, 2, 3} such that xi 6= yi
}

.

This structure is a reduct of (C2
ω ;E) and it follows from our results in Section 7.2

that its CSP can be solved in polynomial time.

1.3. Results. Our first result is the complexity classification of the CSPs of all
reducts of Henson graphs, showing in particular that a uniform approach to infinitely
many ‘base structures’ in the same language (namely, the n-th Henson graph for each
n ≥ 3) is, in principle, possible.

Theorem 1.1. Let n ≥ 3, and let Γ be a finite signature reduct of the n-th
Henson graph (Hn, E). Then CSP(Γ) is either in P or NP-complete.

We then obtain a similar complexity dichotomy for reducts of homogeneous
equivalence relations, expanding earlier results for special cases [BW12, BK08].

Theorem 1.2. Let (Cs
n, E) be a graph whose reflexive closure Eq is an equivalence

relation with n classes of size s, where 1 ≤ n, s ≤ ω and one of s or n is ω. Then
for any finite signature reduct Γ of (Cs

n, E), the problem CSP(Γ) is either in P or
NP-complete.

Together with the classification of countable homogeneous graphs, and the fact
that the complexity of the CSPs of the reducts of the random graph have been
classified [BP15a], this completes the CSP classification of reducts of all countably
infinite homogeneous graphs, confirming further instances of the open conjecture that
CSPs of reducts of finitely bounded homogeneous structures are either in P or NP-
complete [BPP14, BP16a, BKO+17].

Corollary 1.3. Let Γ be a finite signature reduct of a countably infinite
homogeneous graph. Then CSP(Γ) is either in P or NP-complete.

We are going to provide more detailed versions of Theorems 1.1 and 1.2, which
describe in particular the delineation between the tractable and the NP-complete
cases algebraically, in Sections 5 and 8. We would like to emphasize that our proof
does not assume or use the dichotomy for CSPs of finite structures, as opposed to
some other dichotomy results for CSPs of infinite structures such as [BMM18].

1.4. The strategy. The method we employ follows broadly the method invented
in [BP15a] for the corresponding classification problem where the ‘base structure’ is
the random graph. The key component of this method is the usage of Ramsey theory
(in our case, a result of Nešetřil and Rödl [NR89]) and the concept of canonical
functions introduced in [BP14]. There are, however, some interesting differences and
novelties that appear in the present proof, as we now shortly outline.

1.4.1. Henson graphs. When studying the proofs in [BP15a], one might get
the impression that the complexity of the method grows with the model-theoretic
complexity of the base structure, and that for the random graph we have really reached
the limits of bearableness for applying the Ramsey method.

However, quite surprisingly, when we step from the random graph to the graphs
(Hn, E), which are in a sense more complicated structures from a model-theoretic
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point of view∗, the classification and its proof become easier again. It is one of
the contributions of the present article to explain the reasons behind this effect.
Essentially, certain behaviours of canonical functions (cf. Section 2) existing on the
random graph cannot be realised in (Hn, E). For example the behaviour ‘max’
(cf. Section 2) plays no role for the present classification, but accounts over the
random graph for the tractability of, inter alia, the 4-ary relation defined by the
formula E(x, y) ∨ E(u, v).

Remarkably, we are able to reuse results about canonical functions over the
random graph, since the calculus for composing behaviours of canonical functions
is the same for any other structure with a smaller type space, and in particular
the Henson graphs. Via this meta-argument we can, on numerous occasions, make
statements about canonical functions over the Henson graphs which were proven
earlier for the random graph, ignoring completely the actual underlying structure;
even more comfortably, we can a posteriori rule out some possibilities in those
statements because of the Kn-freeness of the Henson graphs. Instances of this
phenomenon appear in the analysis of canonical functions in Section 3.11.

On the other hand, along with these simplifications, there are also new additional
difficulties that appear when investigating reducts of (Hn, E) and that were not
present in the classification of reducts of the random graph, which basically stem
from the lower degree of symmetry of (Hn, E) compared to the random graph. For
example, in expansions of Henson graphs by finitely many constants, not all orbits
induce copies of Henson graphs; the fact that the analogous statement does hold for
the random graph was used extensively in [BP15a], for example in the rather technical
proof of Proposition 7.18 of that paper.

1.4.2. Equivalence relations. Similarly to the situation for the equivalence
relation with infinitely many infinite classes studied in [BW12], there are two
interesting sources of NP-hardness for the reducts Γ of other homogeneous equivalence
relations: namely, if the equivalence relation is invariant under the polymorphisms of
Γ, then the structure obtained from Γ by factoring by the equivalence relation might
have an NP-hard CSP, implying NP-hardness for the CSP of Γ itself; or, roughly, for
a fixed equivalence class the restriction of Γ to that class might have an NP-hard CSP,
again implying NP-hardness of the CSP of Γ (assuming that Γ is a model-complete
core, see Sections 3 and 6). But whereas for the equivalence relation with infinitely
many infinite classes both the factor structure and the restriction to a class are again
infinite structures, for the other homogeneous equivalence relations one of the two is a
finite structure. This obliges us to combine results about CSPs of finite structures with
those of infinite structures. As it turns out, the two-element case is, not surprisingly,
different from the other finite cases and, quite surprisingly, significantly more involved
than the other cases. One particularity of this case is that tractability is, for some
reducts, implied by a ternary non-injective canonical function which we obtain by
our Ramsey-analysis. Among all the classification results for ω-categorical structures
obtained so far, this ternary function is the first example of a non-injective canonical
function leading to a maximal tractable class. The occurrence of this phenomenon
is of technical interest in the quest for a proof of the CSP dichotomy conjecture for
reducts of finitely bounded homogeneous structures via a reduction to the finite CSP
dichotomy.

∗For example, the random graph has a simple theory [TZ12], whereas the Henson graphs are
among the most basic examples of structures whose theory is not simple.
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1.5. Overview. We organize the remainder of this article as follows. Basic
notions and definitions, as well as the fundamental facts of the method we are going
to use, are provided in Section 2.

Sections 3 to 5 deal with the Henson graphs: Section 3 is complexity-free and
investigates the structure of reducts of Henson graphs via polymorphisms and Ramsey
theory. In Section 4, we provide hardness and tractability proofs for different classes
of reducts. Section 5 contains the proof of Theorem 1.1, and we discuss the complexity
classification in more detail, formulating in particular a tractability criterion for CSPs
of reducts of Henson graphs.

We then turn to homogeneous equivalence relations in Sections 6 to 8. Similarly
to the Henson graphs, the first section (Section 6) is complexity-free and investigates
the structure of reducts of homogeneous equivalence relations via polymorphisms and
Ramsey theory. Section 7 contains the algorithms proving tractability where it applies.
Finally, Section 8 provides the proof of Theorem 1.2, and describes in detail the
delineation between the tractable and the NP-complete cases.

We finish this work with further research directions in Section 9.

2. Preliminaries.

2.1. General notational conventions. We use one single symbol, namely E,
for the edge relation of all homogeneous graphs; since we never consider several such
graphs at the same time, this should not cause confusion. Moreover, we use E for the
symbol representing the relation E, for example in logical formulas. In general, we
shall not distinguish between relation symbols and the relations which they denote.
The binary relation N(x, y) is defined by the formula ¬E(x, y) ∧ x 6= y.

When E is the edge relation of a homogeneous graph whose reflexive closure is
an equivalence relation, then we denote this equivalence relation by Eq; so Eq(x, y)
is defined by the formula E(x, y) ∨ x = y.

When t is an n-tuple, we refer to its entries by t1, . . . , tn. When f : A → B is a
function and C ⊆ A, we write f [C] := {f(a) | a ∈ C}.

2.2. Henson graphs. For n ≥ 2, denote the clique on n vertices by Kn. For
n ≥ 3, the graph (Hn, E) is the up to isomorphism unique countable graph which is

• homogeneous : any isomorphism between two finite induced subgraphs of
(Hn, E) can be extended to an automorphism of (Hn, E), and

• universal for the class of Kn-free graphs : (Hn, E) contains all finite (in fact,
all countable) Kn-free graphs as induced subgraphs.

The graph (Hn, E) has the extension property: for all disjoint finite U,U ′ ⊆ Hn

such that U is not inducing any isomorphic copy of Kn−1 in (Hn, E) there exists
v ∈ Hn such that v is adjacent in (Hn, E) to all members of U and to none in U ′.
Up to isomorphism, there exists a unique countably infinite Kn-free graph with this
extension property, and hence the property can be used as an alternative definition
of (Hn, E).

2.3. Homogeneous equivalence relations. For 1 ≤ n, s ≤ ω the graph
(Cs

n, E) is the up to isomorphism unique countable graph whose reflexive closure
is an equivalence relation Eq with n classes Ci, where 0 ≤ i < n, all of which have
size s. Clearly, (Cs

n, E) is homogeneous and universal in a similar sense as above.

2.4. Constraint satisfaction problems. For a relational signature τ , a first-
order τ -formula is called primitive positive (or pp for short) if it is of the form

∃x1, . . . , xn (ψ1 ∧ · · · ∧ ψm)
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where the ψi are atomic, i.e., of the form y1 = y2 or R(y1, . . . , yk) for a k-ary relation
symbol R ∈ τ and not necessarily distinct variables yi.

Let Γ be a structure with a finite relational signature τ . The constraint
satisfaction problem for Γ, denoted by CSP(Γ), is the computational problem of
deciding for a given primitive positive (pp-) τ -sentence φ whether φ is true in Γ.
The following lemma has been first stated in [JCG97] for finite domain structures Γ
only, but the proof there also works for arbitrary infinite structures.

Lemma 2.1. Let Γ = (D,R1, . . . , Rℓ) be a relational structure, and let R be a
relation that has a primitive positive definition in Γ, i.e., a definition via a pp formula.
Then CSP(Γ) and CSP(D,R,R1, . . . , Rℓ) are polynomial-time equivalent.

When a relation R has a primitive positive definition in a structure Γ, then we
also say that Γ pp-defines R. Lemma 2.1 enables the so-called universal-algebraic
approach to constraint satisfaction, as exposed in the following.

2.5. The universal-algebraic approach. We say that a k-ary function (also
called operation) f : Dk → D preserves anm-ary relationR ⊆ Dm if for all t1, . . . , tk ∈
R the tuple f(t1, . . . , tk), calculated componentwise, is also contained in R. If an
operation f does not preserve a relation R, we say that f violates R. We say that a
set of operations preserves a relation when all of its elements do.

If f preserves all relations of a structure Γ, we say that f is a polymorphism of Γ,
and that f preserves Γ. We write Pol(Γ) for the set of all polymorphisms of Γ. The
unary polymorphisms of Γ are just the endomorphisms of Γ, and denoted by End(Γ).

The set of all polymorphisms Pol(Γ) of a relational structure Γ forms an algebraic
object called a function clone (see [Sze86], [GP08]), which is a set of finitary operations
defined on a fixed domain that is closed under composition and that contains all
projections. Moreover, Pol(Γ) is closed in the topology of pointwise convergence, i.e.,
an n-ary function f is contained in Pol(Γ) if and only if for all finite subsets A
of Γn there exists an n-ary g ∈ Pol(Γ) which agrees with f on A. We will write
F for the closure of a set F of functions on a fixed domain in this topology; so
Pol(Γ) = Pol(Γ). This closure is sometimes referred to as local closure, and closed sets
as locally closed, but we will use the terminology topologically closed throughout this
work. For an arbitrary set F of functions on a fixed domain, when Γ is the structure
whose relations are precisely those which are preserved by all functions in F , then
Pol(Γ) is the smallest topologically closed function clone containing F (cf. [Sze86]).

When Γ is a countable and ω-categorical structure, then we can characterize
primitive positive definable relations via Pol(Γ), as follows.

Theorem 2.2 (from [BN06]). Let Γ be a countable ω-categorical structure.
Then the relations preserved by Pol(Γ) are precisely those having a primitive positive
definition in Γ.

Theorem 2.2 and Lemma 2.1 imply that if two countable ω-categorical structures
Γ,∆ with finite relational signatures have the same clone of polymorphisms, then their
CSPs are polynomial-time equivalent. Moreover, if Pol(Γ) is contained in Pol(∆), then
CSP(Γ) is, up to polynomial time, at least as hard as CSP(∆).

Note that the automorphisms of a structure Γ are just the bijective unary
polymorphisms of Γ whose inverse function is also a polymorphism of Γ; the set
of all automorphisms of Γ is denoted by Aut(Γ). For every reduct Γ of a structure ∆
we have that Pol(Γ) ⊇ Aut(Γ) ⊇ Aut(∆). In particular, this is the case for reducts
of the homogeneous graphs (Hn, E) and (Cs

n, E). Conversely, it follows from the ω-
categoricity of homogeneous graphs (D,E) (in our case, D = Hn or D = Cs

n) that
every topologically closed function clone containing Aut(D,E) is the polymorphism

7



clone of a reduct of (D,E).

When (D,E) is a homogeneous graph, and F is a set of functions and g is a
function on the domain D, then we say that F generates g if g is contained in the
smallest topologically closed function clone which contains F ∪ Aut(D,E). This is
the same as saying that for every finite S ⊆ D, there exists a term function over
F ∪ Aut(D,E) which agrees with g on S. By the discussion preceding Theorem 2.2,
this is equivalent to g preserving all relations which are preserved by F ∪Aut(D,E).

We finish this section with a general lemma that we will refer to on numerous
occasions; it allows us to restrict the arity of functions violating a relation. For a
structure Γ and a tuple t ∈ Γk, the orbit of t in Γ is the set {α(t) | α ∈ Aut(Γ)}. We
also call this the orbit of t with respect to Aut(Γ).

Lemma 2.3 (from [BK09]). Let Γ be a relational structure. Suppose that R ⊆ Γk

intersects at most m orbits of k-tuples in Γ. If Pol(Γ) contains a function violating
R, then Pol(Γ) also contains an m-ary operation violating R.

2.6. Canonical functions. It will turn out that the polymorphisms relevant
for the CSP classification show regular behaviour with respect to the underlying
homogeneous graph, in a sense that we are now going to define.

Definition 2.4. Let ∆ be a structure. The type tp(a) of an n-tuple a =
(a1, . . . , an) of elements in ∆ is the set of first-order formulas with free variables
x1, . . . , xn that hold for a in ∆. For structures ∆1, . . . ,∆k and k-tuples a1, . . . , an ∈
∆1 × · · · ×∆k, the type of (a1, . . . , an) in ∆1 × · · · ×∆k, denoted by tp(a1, . . . , an), is
the k-tuple containing the types of (a1i , . . . , a

n
i ) in ∆i for each 1 ≤ i ≤ k.

We bring to the reader’s attention the well-known fact that in ω-categorical
structures, in particular in (Hn, E) and (Ck

n, E), two n-tuples have the same type
if and only if their orbits coincide.

Definition 2.5. Let ∆1, . . . ,∆k and Λ be structures. A behaviour B between
∆1, . . . ,∆k and Λ is a partial function from the types over ∆1, . . . ,∆k to the types over
Λ. Pairs (s, t) with B(s) = t are also called type conditions. We say that a function
f : ∆1×· · ·×∆k → Λ satisfies the behaviour B if whenever B(s) = t and (a1, . . . , an)
has type s in ∆1 × · · · × ∆k, then the n-tuple (f(a11, . . . , a

1
k), . . . , f(a

n
1 , . . . , a

n
k)) has

type t in Λ. A function f : ∆1 × · · · ×∆k → Λ is canonical if it satisfies a behaviour
which is a total function from the types over ∆1 × · · · ×∆k to the types over Λ.

We remark that since our structures are homogeneous and have only binary
relations, the type of an n-tuple a is determined by its binary subtypes, i.e., the types
of the pairs (ai, aj), where 1 ≤ i, j ≤ n. In other words, the type of a is determined
by which of its components are equal, and between which of its components there is
an edge. Therefore, a function f : (Hn, E)k → (Hn, E) or f : (Cs

n, E)k → (Cs
n, E) is

canonical iff it satisfies the condition of the definition for types of 2-tuples.

To provide immediate examples for these notions, we now define some behaviours
that will appear in our proof as well as in the precise CSP classification. For m-
ary relations R1, . . . , Rk over a set D, we will in the following write R1 · · ·Rk for
the m-ary relation on Dk defined as follows: R1 · · ·Rk(x

1, . . . , xm) holds for k-tuples
x1, . . . , xm ∈ Dk if and only if Ri(x

1
i , . . . , x

m
i ) holds for all 1 ≤ i ≤ k. For example,

when p, q ∈ D3 are triples of elements in a homogeneous graph (D,E), then EN=(p, q)
holds if and only if E(p1, q1), N(p2, q2), and p3 = q3 hold in (D,E). We start with
behaviours of binary injective functions f on homogeneous graphs.

Definition 2.6. Let (D,E) be a homogeneous graph. We say that a binary
injective operation f : D2 → D is

8



• balanced in the first argument if for all u, v ∈ D2 we have that E=(u, v)
implies E(f(u), f(v)) and N=(u, v) implies N(f(u), f(v));

• balanced in the second argument if (x, y) 7→ f(y, x) is balanced in the first
argument;

• balanced if f is balanced in both arguments;
• E-dominated (N -dominated) in the first argument if for all u, v ∈ D2 with
6==(u, v) we have that E(f(u), f(v)) (N(f(u), f(v)));

• E-dominated (N -dominated) in the second argument if (x, y) 7→ f(y, x) is
E-dominated (N -dominated) in the first argument;

• E-dominated (N -dominated) if it is E-dominated (N -dominated) in both
arguments;

• of behaviour min if for all u, v ∈ D2 with 6= 6=(u, v) we have E(f(u), f(v)) if
and only if EE (u, v);

• of behaviour max if for all u, v ∈ D2 with 6= 6=(u, v) we have N(f(u), f(v)) if
and only if NN (u, v);

• of behaviour p1 if for all u, v ∈ D2 with 6= 6=(u, v) we have E(f(u), f(v)) if
and only if E(u1, v1);

• of behaviour p2 if (x, y) 7→ f(y, x) is of behaviour p1;
• of behaviour projection if it is of behaviour p1 or p2;
• of behaviour xnor if for all u, v ∈ D2 with 6= 6=(u, v) we have E(f(u), f(v)) if
and only if EE (u, v) or NN (u, v).

Each of these properties describes the set of all functions of a certain behaviour.
We explain this for the first item defining functions which are balanced in the first
argument, which can be expressed by the behaviour consisting of the following two
type conditions. Let (u, v) be any pair of elements u, v ∈ D2 such that E=(u, v), and
let s be the type of the pair (u, v) in (D,E)×(D,E). Let x, y ∈ D satisfy E(x, y), and
let t be the type of (x, y) in (D,E). Then the first type condition is (s, t). Now let s′

be the type in (D,E) × (D,E) of any pair (u, v), where u, v ∈ D2 satisfy N=(u, v),
and let t′ be the type in (D,E) of any x, y ∈ D with N(x, y). The second type
condition is (s′, t′).

To justify the less obvious names of some of the above behaviours, we would like
to point out that a binary injection of behaviour min is reminiscent of the Boolean
minimum function on {0, 1}, where E takes the role of 1 and N the role of 0: for
u, v ∈ H2

n with 6= 6=(u, v), we have E(f(u), f(v)) if u, v are connected by an edge in
both coordinates, and N(f(u), f(v)) otherwise. The names ‘max’ and ‘projection’ can
be explained similarly.

Definition 2.7. Let (D,E) be a homogeneous graph. We say that a ternary
injective operation f : D3 → D is of behaviour

• majority if for all u, v ∈ D3 with 6= 6= 6=(u, v) we have that E(f(u), f(v)) if
and only if EEE (u, v), EEN (u, v), ENE (u, v), or NEE (u, v);

• minority if for all u, v ∈ D3 with 6= 6=6=(u, v) we have E(f(u), f(v)) if and
only if EEE (u, v), NNE (u, v), NEN (u, v), or ENN (u, v).

In this article, contrary to min and minority, neither max nor majority will play a
role but we introduce them for the sake of completeness since they occur in [BP15a].

When we want to explain a type condition over a homogeneous graph (D,E),
we are going to express it in the form f(R1, . . . , Rk) = S for binary relations
R1, . . . , Rk and a binary relation S; the meaning is that whenever p, q ∈ Dk, then
R1 · · ·Rk(p, q) implies S(f(p), f(q)). The relations we use in this notation range
among {E,N,Eq, 6=,=}. Examples of type conditions expressed this way include
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f(E,N) = N (meaning that EN (p, q) implies N(f(p), f(q)), for all p, q ∈ D2),
and f(E,=) = E. In the latter, note that the second = has different semantic
content from the first. Similarly, the majority behaviour in Definition 2.7 can be
expressed by writing f(E,E,E) = f(E,E,N) = f(E,N,E) = f(N,E,E) = E and
f(N,N,N) = f(E,N,N) = f(N,E,N) = f(N,N,E) = N . As another example,
note that E-dominated in the first argument can be expressed as f(6=,=) = E, or
equivalently, as the conjunction of f(E,=) = E and f(N,=) = E. Our notation is
justified by the fact that the type conditions satisfied by a function induce a partial
function from types to types, and that in the case of homogeneous graphs, all that
matters is the three types of pairs, given by the relations E, N , and =; the relation
6= is the union of E and N , and used as a shortcut.

Definition 2.8. Let (D,E) be a homogeneous graph. We say a ternary canonical
injection f : D3 → D is hyperplanely of behaviour projection if the functions (u, v) 7→
f(c, u, v), (u, v) 7→ f(u, c, v), and (u, v) 7→ f(u, v, c) are of behaviour projection for
all c ∈ D. Similarly other hyperplane behaviours, such as hyperplanely E-dominated,
are defined.

Note that hyperplane behaviours are defined by conditions for the type functions
f(=, ·, ·), f(·,=, ·), and f(·, ·,=). For example, hyperplanely E-dominated precisely
means that

f(=,=, 6=) = f(=, 6=,=) = f(6=,=,=) = E .

2.7. Achieving canonicity in Ramsey structures. The next proposition,
which is an instance of more general statements from [BP11, BPT13], provides us with
the main combinatorial tool for analyzing functions on Henson graphs. Equip Hn with
a total order ≺ in such a way that (Hn, E,≺) is homogeneous; up to isomorphism,
there is only one such structure (Hn, E,≺), called the random ordered Kn-free graph.
The order (Hn,≺) is then isomorphic to the order (Q, <) of the rationals. By [NR89],
(Hn, E,≺) is a Ramsey structure, which implies the following proposition – for more
details, see the survey [BP11].

Proposition 2.9. Let f : Hk
n → Hn, let c1, . . . , cr ∈ Hn, and let (Hn, E,≺

, c1, . . . , cr) be the expansion of (Hn, E,≺) by the constants c1, . . . , cr. Then

{α ◦ f ◦ (β1, . . . , βr) | α ∈ Aut(Hn, E,≺), β1, . . . , βr ∈ Aut(Hn, E,≺, c1, . . . , cr)}

contains a function g such that
• g is canonical as a function from (Hn, E,≺, c1, . . . , cr) to (Hn, E,≺);
• g agrees with f on {c1, . . . , cr}

k.
In particular, f generates a function g with these properties.

Similarly, Ramsey theory allows us to produce canonical functions on (Cs
n, E),

expanded with a certain linear order. Equip Cs
n with a total order ≺ so that the

equivalence classes of (Cs
n, Eq) are convex with respect to ≺, i.e., whenever Eq(u, v)

holds and u ≺ w ≺ v, then Eq(u,w). Moreover, in the case where the size of the
classes s = ω, we require the order ≺ to be isomorphic to the order of the rational
numbers on each equivalence class, and in case where the number of classes n = ω,
we require the order to be isomorphic to the order of the rational numbers between
the classes (note that we already required convexity, so that ≺ naturally induces a
linear order between the classes).

If the number of classes n is finite and their size s = ω infinite, let P1, . . . , Pn

denote unary predicates such that Pi contains precisely the elements in the i-th
equivalence class of Eq with respect to the order on the classes induced by ≺. The
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structure (Cω
n , E,≺, P1, . . . , Pn) is homogeneous and a Ramsey structure, since its

automorphism group is, as a topological group, isomorphic to Aut(Q;<)n, and since
being a Ramsey structure is a property of the automorphism group (as a topological
group) [KPT05]. Thus, by [BP11, BPT13], we have the following analogous statement
to Proposition 2.9 for this structure. In the statement, we may drop the mention of
the auxiliary relations P1, . . . , Pn, since these are first-order definable in (Cs

n, E,≺)
and since the types over first-order interdefinable structures coincide; in other words,
the relations were only needed temporarily in order to achieve homogeneity, required
in [BP11, BPT13], but not for the Ramsey property.

Proposition 2.10. Let n ≥ 1 be finite. Let f : (Cω
n )

k
→ Cω

n , and let c1, . . . , cr ∈
Cω

n . Then

{α ◦ f ◦ (β1, . . . , βr) | α ∈ Aut(Cω
n , E,≺), β1, . . . , βr ∈ Aut(Cω

n , E,≺, c1, . . . , cr)}

contains a function g such that

• g is canonical as a function from (Cω
n , E,≺, c1, . . . , cr) to (Cω

n , E,≺);
• g agrees with f on {c1, . . . , cr}

k.

In particular, f generates a function g with these properties.

If the class size s is finite and their number n = ω, we add s unary predicates
Q1, . . . , Qs where Qi contains precisely the i-th element for each equivalence class with
respect to the order ≺. Then (Cs

ω, E,≺, Q1, . . . , Qs) is homogeneous and Ramsey,
since its automorphism group is isomorphic as a topological group to Aut(Q;<), so
that we obtain an analogue of Propositions 2.9 and 2.10 also in this case. Again, we
may drop the relations Q1, . . . , Qn, which are first-order definable in (Cn

ω , E,≺), in
the statement.

Proposition 2.11. Let s ≥ 1 be finite. Let f : (Cs
ω)

k
→ Cs

ω, and let c1, . . . , cr ∈
Cs

ω. Then

{α ◦ f ◦ (β1, . . . , βr) | α ∈ Aut(Cs
ω , E,≺), β1, . . . , βr ∈ Aut(Cs

ω , E,≺, c1, . . . , cr)}

contains a function g such that

• g is canonical as a function from (Cs
ω, E,≺, c1, . . . , cr) to (Cs

ω, E,≺);
• g agrees with f on {c1, . . . , cr}

k.

In particular, f generates a function g with these properties.

3. Polymorphisms over Henson graphs. We investigate polymorphisms of
reducts of (Hn, E). We start with unary polymorphisms in Section 3.1, obtaining
that we can assume that the relations E and N are pp-definable in our reducts, since
otherwise their CSP can be modeled by a reduct of equality and hence has already
been classified in [BK08].

We then turn to binary polymorphisms in Section 3.2, obtaining Lemma 3.6 telling
us that, excluding in addition just one degenerate case where all polymorphisms are
essentially unary functions, we may further assume the existence of a binary injective
polymorphism.

Building on the results of those sections, we show in Section 3.3 via an analysis
of ternary polymorphisms that for any reduct which pp-defines the relations E and
N , either the polymorphisms preserve a certain relation H (and hence, H is pp-
definable in the reduct by Theorem 2.2), or there is a polymorphism of behaviour min
(Proposition 3.9).
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3.1. The unary case: model-complete cores. A countable ω-categorical
structure ∆ is called a model-complete core if Aut(∆) is dense in End(∆), or
equivalently, every endomorphism of ∆ is an elementary self-embedding, i.e., preserves
all first-order formulas over ∆. Every countable ω-categorical structure Γ is
homomorphically equivalent to an up to isomorphism unique ω-categorical model-
complete core ∆, that is, there exists homomorphisms from Γ into ∆ and vice-
versa [Bod07]. Since the CSPs of homomorphically equivalent structures are equal,
it has proven fruitful in classification projects to always work with model-complete
cores. The following proposition essentially calculates the model-complete cores of
the reducts of Henson graphs.

Proposition 3.1. Let Γ be a reduct of (Hn, E). Then either End(Γ) contains
a function whose image induces an independent set or End(Γ) = Aut(Γ) =
Aut(Hn, E).

Proof. Assume that End(Γ) 6= Aut(Hn, E). Then, since Γ is ω-categorical and
by Theorem 2.2 and Lemma 2.3, there exists an f ∈ End(Γ) which violates E or N .
If f violated N but not E, then there would be a copy of Kn in the range of f , a
contradiction.

Thus, we may assume that f violates E, i.e., there exists (u, v) ∈ E such that
(f(u), f(v)) ∈ N or f(u) = f(v). If for some such (u, v) we have f(u) = f(v), then one
can generate by topological closure from f a function whose image is an independent
set. Since this is the first time we appeal to an argument with a flavour of topological
closure, let us give it in longhand. First fix u, v ∈ Hn such that E(u, v) so that
f(u) = f(v). Given a subset A of vertices containing m ≥ 1 edges, we argue there is a
g generated by f so that g[A] contains fewer vertices than A. Indeed, take any a, b ∈ A
with E(a, b), and an automorphism α ∈ Aut(Hn, E) mapping (a, b) to (u, v), and use
g = f(α(x), α(y)). Note that g maps the edge (a, b) to a single vertex, so that g[A]
is indeed smaller than A. By iterating this method, we can see that for every finite
subset A of Hn, there is a function g generated by f so that g[A] is an independent
set. The conclusion that then f also generates a function which sends the entire
domain Hn onto an independent set is achieved via a typical compactness argument
which appears in one form or another in most works on polymorphism clones of ω-
categorical structures; it uses topological closure together with ω-categoricity. The
modern and perhaps most elegant way to present it is to consider an equivalence
relation ∼ on the set F of all functions generated by f , defined by g ∼ g′ if and only
if {α ◦ g | α ∈ Aut(Hn, E)} = {α ◦ g′ | α ∈ Aut(Hn, E)}. Then the factor space F/∼
is compact since (Hn, E) is ω-categorical. This has first been observed, in slightly
different form, in [BP15b]; we refer to [BP16b] for a proof of the variant we are using
here. Let (Ai)i∈ω be an increasing sequence of finite sets so that

⋃

i∈ω Ai = Hn. Fix a
function gi generated by f which sends Ai onto an independent set. By compactness,
a subsequence of ([gi]∼ | i ∈ ω) converges in F/∼ to a class [g]∼. This means that
there are αi ∈ Aut(Hn, E), for i ∈ ω, such that a subsequence of (αi ◦ gi | i ∈ ω)
converges to g. But then g maps Hn onto an independent set.

Thus, we may assume that there exists (u, v) ∈ E such that (f(u), f(v)) ∈ N , and
that no edges are collapsed to = by f . If there existed (u′, v′) ∈ N such that f(u′) =
f(v′), then picking an automorphism α ∈ Aut(Hn, E) such that (α(f(u)), α(f(v))) =
(u′, v′), we would have that f ◦ α ◦ f collapses an edge to =. Having considered this
situation above, we may hence assume that f is injective.

By Proposition 2.9, the operation f generates an injective canonical function
g : (Hn, E,≺, u, v) → (Hn, E,≺) such that f(u) = g(u) and f(v) = g(v); in fact, since
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f is unary, we can disregard the order ≺ and assume that g is canonical as a function
from (Hn, E, u, v) to (Hn, E) [Pon17, Proposition 3.7].

Let

Uuv := {x ∈ Hn | E(u, x) ∧ E(v, x)} ,

Uuv := {x ∈ Hn | E(u, x) ∧N(v, x)} ,

Uuv := {x ∈ Hn | N(u, x) ∧ E(v, x)} ,

and Uuv := {x ∈ Hn | N(u, x) ∧N(v, x)}.

As all four of these sets contain an independent set of size n, we cannot have g(N) = E
on any of them, as this would introduce a copy ofKn. Since no non-edges are collapsed
to = by our assumption above, we infer that N is preserved by g on all four sets.

If g violates E on Uuv, then, since Uuv induces an isomorphic copy of (Hn, E)
therein, g generates a function whose image is an independent set. Thus, we may
assume that g preserves E on Uuv.

Then g preserves N between Uuv and any other orbit X of Aut(Hn, E, u, v), as
otherwise it would send non-edges to edges between these orbits, and the image of
the n-element induced subgraph of (Hn, E) induced by any point in X together with
a copy of Kn−1 in Uuv would be isomorphic to Kn.

Assume that g violates E between Uuv and another orbit X of Aut(Hn, E, u, v).
Let A ⊆ Hn be finite with an edge (x, y) in A. Then there exists an α ∈ Aut(Hn, E)
such that α(x) ∈ X and α[A \ {x}] ⊆ Uuv. The function (g ◦ α) ↾A preserves N ,
and it maps (x, y) to a non-edge. By an iterative application of this step we can
systematically delete all edges of A. Hence, by topological closure, g generates a
function whose image is an independent set. Thus, we may assume that g preserves
E between Uuv and any other orbit of Aut(Hn, E, u, v).

Let X and Y be infinite orbits of Aut(Hn, E, u, v), and assume that g violates N
between X and Y . There exist vertices x ∈ X and y ∈ Y , and a copy of Kn−2 in
Uuv such that (x, y) is the only non-edge in the graph induced by these n vertices.
Then, by the above, the image of this n-element set under g induces a copy of Kn, a
contradiction. Hence, we may assume that g preserves N on Hn \ {u, v}.

If g violates E on Hn \ {u, v}, then we can systematically delete the edges of
any finite subgraph of (Hn, E) whilst preserving the non-edges, and conclude that g
generates a function whose image is an independent set. Thus, we may assume that
g preserves E on Hn \ {u, v}.

Assume that g violates E between u and Uuv. Given any finite A ⊆ Hn with a
vertex x ∈ A, there exists a β ∈ Aut(Hn, E) such that β(x) = u and β[A \ {x}] ⊆
Uuv ∪Uuv. Since, as observed earlier, g preserves N between Uuv and any other orbit
of Aut(Hn, E, u, v), including the orbits Uuv and {u}, we conclude that (g ◦ β) ↾A
preserves N , and it maps edges from x to non-edges. Thus, we can systematically
delete the edges of A, and consequently, g generates a function whose image is an
independent set. Hence, we may assume that g preserves E between u and Uuv.

There exists a vertex x ∈ Uuv and a copy of Kn−2 in Uuv such that (x, u) is the
only non-edge in the graph induced by these n − 1 vertices together with u. Thus,
if g violates N between {u} and Uuv, then the image of this n-element set under g
induces a copy of Kn, a contradiction. Hence, g preserves N between u and Uuv.

By symmetry, we may assume that g preserves N between v and Uuv. Thus, g
preserves N . As g deletes the edge between u and v, we can systematically delete the
edges of any finite subgraph of (Hn, E). Hence, g generates a function whose image
is an independent set.
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In the first case of Proposition 3.1, the model-complete core of the reduct is in fact
a reduct of equality. Since the CSPs of reducts of equality have been classified [BK08],
we do not have to consider any further reducts with an endomorphism whose image
induces an independent set.

Lemma 3.2. Let Γ be a reduct of (Hn, E), and assume that End(Γ) contains a
function whose image is an independent set. Then Γ is homomorphically equivalent
to a reduct of (Hn,=).

Proof. Trivial.

In the second case of Proposition 3.1, it turns out that all polymorphisms preserve
the relations E, N , and 6=, by the following lemma and Theorem 2.2.

Lemma 3.3. Let Γ be a reduct of (Hn, E). Then the following are equivalent:

(1) End(Γ) = Aut(Hn, E).
(2) E and N have primitive positive definitions in Γ.
(3) E, N , and 6= have primitive positive definitions in Γ.

Proof. Since E and N are orbits of pairs with respect to Aut(Hn, E), the
implication from (1) to (2) is an immediate consequence of Theorem 2.2 and
Lemma 2.3. For the implication from (2) to (3), it is enough to observe that the
primitive positive formula ∃z(E(x, z)∧N(y, z)) defines x 6= y. Finally, the implication
from (3) to (1) follows from the homogeneity of (Hn, E).

Before moving on to binary polymorphisms, we observe the following corollary of
Proposition 3.1, first mentioned in [Tho91].

Corollary 3.4. For every n ≥ 3, the permutation group Aut(Hn, E) is a
maximal closed subgroup of the full symmetric group on Hn, i.e., every closed subgroup
of the full symmetric group containing Aut(Hn, E) either equals Aut(Hn, E) or the
full symmetric group.

Proof. Let G ⊇ Aut(Hn, E) be a closed subgroup of the full symmetric group on
Hn. Its closure G in the set of all unary functions on Hn is a closed transformation
monoid, i.e., a topologically closed monoid of unary functions, and hence the monoid
of endomorphisms of a reduct of (Hn, E) (cf. for example [BP14]). By Proposition 3.1,
G either contains a function e whose image induces an independent set, or it equals
Aut(Hn, E). In the latter case, G = Aut(Hn, E), and in the first case we prove that
G equals the full symmetric group. Since G is closed in the full symmetric group, it
suffices to prove that for every k ≥ 1 and all s, t ∈ Hk

n there exists an element of G
which sends s to t. Since e ∈ G, there exists a β ∈ G such that e and β agree on the
tuples s and t, and consequently β sends the two tuples into independent sets. By
the homogeneity of (Hn, E), we have that β(s) and β(t) lie in the same orbit of G,
and hence so do s and t.

We remark that the automorphism group of the random graph has five closed su-
pergroups [Tho91], which leads to more cases in the corresponding CSP classification
in [BP15a].

3.2. Higher arities: generating injective polymorphisms. We investigate
at least binary functions preserving E and N (and hence, by Theorem 2.2, also 6=,
since this relation is pp-definable from E and N by Lemma 3.3); our goal in this
section is to show that they generate injections. Every unary function gives rise to a
binary function by adding a dummy variable; the following definition rules out such
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“improper” higher-arity functions.

Definition 3.5. A finitary operation f(x1, . . . , xn) on a set is essential if it
depends on more than one of its variables xi.

Lemma 3.6. Let f : H2
n → Hn be a binary essential function that preserves E

and N . Then f generates a binary injection.

Proof. Let ∆ be the structure with domain Hn and whose relations are those
preserved by {f} ∪ Aut(Hn, E); in particular, E, N , and 6= are relations of ∆. It is
sufficient to show that Pol(∆) contains a binary injection (see Section 2.5).

We follow the strategy of the proof of [BP14, Theorem 38]. By [BP14, Lemma
42] it is enough to show that for all primitive positive formulas φ over ∆ we have that
whenever φ∧x 6= y and φ∧s 6= t are satisfiable in ∆, then the formula φ∧x 6= y∧s 6= t
is also satisfiable in ∆. Still following the proof of [BP14, Proposition 38] it is enough
to show the following claim.

Claim. Given two 4-tuples a = (x, y, z, z) and b = (p, p, q, r) in H4
n such that

x 6= y and q 6= r, there exist 4-tuples a′ and b′ such that tp(a) = tp(a′) and tp(b) =
tp(b′) in (Hn, E) and such that f(a′, b′) is a 4-tuple whose first two coordinates are
different and whose last two coordinates are different.

Proof of Claim. We may assume that x 6= z and p 6= q. We may also assume that
f itself is not a binary injection.

In the following, we say that a point (u, v) ∈ H2
n is good if f(u, v) 6= f(u,w) for

all v 6= w. Assume without loss of generality that there exist u1 6= u2, v ∈ Hn such
that f(u1, v) = f(u2, v). In particular, as f preserves 6=, the points (u1, v) and (u2, v)
are good. First fix any values z′, q′ such that (z′, q′) is good. We may assume that
for any x′, y′, p′ ∈ Hn with tp(x′, y′, z′) = tp(x, y, z) and tp(p′, q′) = tp(p, q) we have
f(x′, p′) = f(y′, p′), otherwise the tuples a′ = (x′, y′, z′, z′) and b′ = (p′, p′, q′, r′) are
appropriate with any r′ ∈ Hn with tp(p′, q′, r′) = tp(p, q, r). Hence, as f preserves
6=, all the points (x′, p′) with tp(x′, z′) = tp(x, z) and tp(p′, q′) = tp(p, q) are good.
So we obtained that whenever the point (s, t) is good, and s0, t0 ∈ Hn are such that
tp(s, s0) = tp(x, z) and tp(t, t0) = tp(p, q), then (s0, t0) is also good, or otherwise we
are done. We show that whatever the types Q1 = tp(x, z) and Q2 = tp(p, q) are, we
can reach any point (s4, t4) in H2

n from a given good point (s0, t0) by at most four
such steps. To see this, note that Q1 and Q2 are different from = by assumption.
Now let s1, s2, s3, t1, t2, t3 be such that

• s0, s1, s2, s3, s4 are pairwise different except that s0 = s4 is possible, and
• t0, t1, t2, t3, t4 are pairwise different except that t0 = t4 is possible, and
• (s0, s1), (s1, s2), (s2, s3), (s3, s4) ∈ Q1 and all other pairs (si, sj) are in N
except that s0 = s4 is possible, and

• (t0, t1), (t1, t2), (t2, t3), (t3, t4) ∈ Q2 and all other pairs (ti, tj) are in N except
that t0 = t4 is possible.

These rules are not in contradiction with the extension property of (Hn, E), thus
such vertices exist, and we can propagate the good property from (s0, t0) to (s4, t4).
Hence, every point is good, or we are done. If f(u1, v) = f(u2, v) for all u1, u2, v ∈ Hn

with tp(u1, u2) = tp(x, y), then f would be essentially unary, since (Hn, E) and its
complement have diameter 2. As f is a binary essential function, we can choose
x′, y′, p′ ∈ Hn such that tp(x′, y′) = tp(x, y) and f(x′, p′) 6= f(y′, p′). By choosing
points z′, q′, r′ ∈ Hn such that tp(x′, y′, z′) = tp(x, y, z) and tp(p′, q′, r′) = tp(p, q, r)
the tuples a′ = (x′, y′, z′, z′) and b′ = (p′, p′, q′, r′) are appropriate.

The following lemma allows us to drop the restriction to binary essential functions.

Lemma 3.7. Let k ≥ 2. Every essential function f : Hk
n → Hn that preserves E
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and N generates a binary injection.

Proof. By [BP14, Lemma 40], every essential operation generates a binary
essential operation over the random graph; the very same proof works for the Henson
graphs. Therefore, we may assume that f itself is binary. The assertion now follows
from Lemma 3.6.

3.3. The relation H. Let us investigate the case in which Γ, a reduct of (Hn, E),
pp-defines E and N (and hence, 6=). The following relation characterizes the NP-
complete cases in this situation.

Definition 3.8. We define a 6-ary relation H(x1, y1, x2, y2, x3, y3) on Hn by

∧

i,j∈{1,2,3},i6=j,u∈{xi,yi},v∈{xj ,yj}

N(u, v)

∧
(

(E(x1, y1) ∧N(x2, y2) ∧N(x3, y3))

∨ (N(x1, y1) ∧ E(x2, y2) ∧N(x3, y3))

∨ (N(x1, y1) ∧N(x2, y2) ∧ E(x3, y3))
)

.

Our goal for this section is to prove the following proposition, which states that
if Γ is a reduct of (Hn, E) with E and N primitive positive definable in Γ, then either
H has a primitive positive definition in Γ, in which case CSP(Γ) is NP-complete, or
Pol(Γ) has a certain canonical polymorphism which will imply tractability of the CSP.
NP-completeness and tractability for those cases will be shown in Section 4.

Proposition 3.9. Let Γ be a reduct of (Hn, E) with E and N primitive positive
definable in Γ. Then at least one of the following holds:

(a) There is a primitive positive definition of H in Γ.
(b) Pol(Γ) contains a canonical binary injection of behaviour min.

3.3.1. Arity reduction: down to binary. With the ultimate goal of
producing a binary canonical polymorphism of behaviour min, we now show that
under the assumption that Γ has a polymorphism preserving E and N yet violating
H , it also has a binary polymorphism which is not of behaviour projection. We begin
by ruling out some ternary behaviours which do play a role on the random graph.

Lemma 3.10. On (Hn, E), there are no ternary functions of behaviour majority
or satisfying the type conditions f(N,N,E) = f(E,N,N) = E.

Proof. These could introduce a Kn in the Kn-free graph (Hn, E), in the following
fashions.

Suppose f has behaviour majority, and choose x1, . . . , xn−1 ∈ Hn inducing a
copy of Kn−1, as well as a distinct x0 ∈ Hn adjacent to x1 and no other xi. Then
{f(x0, x1, x2), f(x1, x2, x0), f(x2, x0, x1)} induces K3, and is adjacent to any element
in {f(xi, xi, xi) | 2 < i ≤ n− 1} since E is preserved, so that altogether we obtain a
copy of Kn.

Suppose now f satisfies the type conditions f(N,N,E) = f(E,N,N) = E, and
choose elements x1, . . . , xn−1 ∈ H3

n such that NNE (xi, xj) holds for distinct 1 ≤
i, j ≤ n− 1. Pick furthermore x0 ∈ H3

n with ENN (x0, xi) for all 1 ≤ i ≤ n− 1. Then
{f(x0), . . . , f(xn−1)} induces a Kn.

Proposition 3.11. Let f : Hk
n → Hn be an operation that preserves E and

N and violates H. Then f generates a binary injection which is not of behaviour
projection.
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Proof. Since H consists of three orbits of 6-tuples in (Hn, E), we may assume that
f is ternary, by Lemma 2.3. Moreover, since f preserves E and N , it can only violate
H if it is essential. Thus, by Lemma 3.7, f generates a binary injection g. If g is
not of behaviour projection, then we have proved the proposition. Otherwise, assume
without loss of generality that it is of behaviour p1. Consider the ternary function
g(g(g(f(x, y, z), x), y), z). This function is injective, since g is. Moreover, it violates
H : if x1, x2, x3 ∈ H are so that t := f(x1, x2, x3) /∈ H , then t has pairwise distinct
entries since f preserves 6=. Hence, because g is of behaviour p1, t

′ := g(t, x1) has
the same type as t, and so do t′′ := g(t′, x2) and t′′′ := g(t′′, x3), proving the claim.
By substituting f by this function, we can therefore in the following assume that f is
itself injective.

We now prove the proposition by showing that a function of the form (x, y) 7→
f(x, y, α(x)), or (x, y) 7→ f(x, α(x), y), or (x, y) 7→ f(y, x, α(x)), where α ∈
Aut(Hn, E), is not of type projection.

Fix x1, x2, x3 ∈ H such that f(x1, x2, x3) /∈ H . In the following, we will write
xi := (x1i , x

2
i , x

3
i ) for 1 ≤ i ≤ 6. So (f(x1), . . . , f(x6)) /∈ H . If there exists α ∈

Aut(Hn, E) such that α(xi) = xj for 1 ≤ i 6= j ≤ 3, then our claim follows: for
example, if i = 1 and j = 3, then the function (x, y) 7→ f(x, y, α(x)) violates H , and
hence cannot be of behaviour projection.

We assume henceforth that there is no such automorphism α. In this situation,
by permuting arguments of f if necessary, we can assume without loss of generality
that

ENN (x1, x2), NEN (x3, x4), and NNE (x5, x6).

We set

S := {y ∈ H3
n | NNN (xi, y) for all 1 ≤ i ≤ 6} .

Consider the binary relations Q1Q2Q3 on H3
n, where Qi ∈ {E,N} for 1 ≤ i ≤

3. We show that either our claim above proving the proposition holds, or for each
such relation Q1Q2Q3, whether E(f(u), f(v)) or N(f(u), f(v)) holds for u, v ∈ S
with Q1Q2Q3(u, v) does not depend on u, v; that is, whenever u, v, u′, v′ ∈ S satisfy
Q1Q2Q3(u, v) and Q1Q2Q3(u

′, v′), then E(f(u), f(v)) if and only if E(f(u′), f(v′)).
Note that this is another way of saying that f satisfies some type conditions on S.
We go through all possibilities of Q1Q2Q3.

(1) Q1Q2Q3 = ENN . Let α ∈ Aut(Hn, E) be such that (x21, x
2
2, u2, v2) is mapped

to (x31, x
3
2, u3, v3); such an automorphism exists since

NNN (x1, u),NNN (x1, v),NNN (x2, u),NNN (x2, v)

hold, and since (x21, x
2
2) has the same type as (x31, x

3
2), and (u2, v2) has the

same type as (u3, v3). We are done if the operation g defined by g(x, y) :=
f(x, y, α(y)) is not of type projection. Otherwise, E(g(u1, u2), g(v1, v2)) iff
E(g(x11, x

2
1), g(x

1
2, x

2
2)). Combining this with the equations (f(u), f(v)) =

(g(u1, u2), g(v1, v2)) and (g(x11, x
2
1), g(x

1
2, x

2
2)) = (f(x1), f(x2)), we get that

E(f(u), f(v)) iff E(f(x1), f(x2)), and so our claim holds for this case.
(2) Q1Q2Q3 = NEN or Q1Q2Q3 = NNE . These cases are analogous to the

previous case.
(3) Q1Q2Q3 = NEE . Let α be defined as in the first case. Reasoning as above,

if the operation defined by f(x, y, α(y)) is of type projection, then one gets
that E(f(u), f(v)) iff N(f(x1), f(x2)).
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(4) Q1Q2Q3 = ENE or Q1Q2Q3 = EEN . These cases are analogous to the
previous case.

(5) Q1Q2Q3 = EEE or Q1Q2Q3 = NNN . Trivial since f preserves E and N .
Now we show that f actually cannot satisfy the type conditions above on S.

First note that setting h(x, y, z) := f(e1(x), e2(y), e3(z)) for self-embeddings e1, e2, e3
of (Hn, E) such that (e1, e2, e3)(u) ∈ S for all u ∈ H3

n, we obtain a function h
which satisfies the same type conditions everywhere; such embeddings exist since
by its definition, the projection of S onto any coordinate has an induced copy
of (Hn, E). Then, if {(f(x1), f(x2)), (f(x3), f(x4)), (f(x5), f(x6))} has E twice or
more, by (1) and (2) we get that h satisfies two type conditions from the minority
behaviour, say h(N,N,E) = E and h(E,N,N) = E, contradicting Lemma 3.10. If
{(f(x1), f(x2)), (f(x3), f(x4)), (f(x5), f(x6))} has E no times, then by (3) and (4) h
is of behaviour majority, again contradicting Lemma 3.10. Thus, the set must have
precisely one E, contradicting f(x1, x2, x3) /∈ H .

3.3.2. Producing min. By Proposition 3.11, it remains to show the following
to obtain a proof of Proposition 3.9.

Proposition 3.12. Let f : H2
n → Hn be a binary injection preserving E and N

that is not of behaviour projection. Then f generates a binary canonical injection of
behaviour min.

In the remainder of this section we will prove this proposition by a Ramsey
theoretic analysis of f , which requires the following definitions and facts from [BP14]
concerning behaviours with respect to the homogeneous expansion of the graphs
(Hn, E) by the total order ≺ from Section 2.7. At this point, it might be appropriate
to remark that canonicity of functions on Hn, and even the notion of behaviour, does
depend on which underlying structure we have in mind, in particular, whether or not
we consider the order ≺ (which we almost managed to ignore so far). Let us define
the following behaviours for functions from (Hn, E,≺)2 to (Hn, E); we write ≻ for
the relation {(a, b) | b ≺ a}.

Definition 3.13. Let f : H2
n → Hn be injective. If for all u, v ∈ H2

n with u1 ≺ v1
and u2 ≺ v2

• E(f(u), f(v)) if and only if EE (u, v), then f behaves like min on input (≺,≺).
• E(f(u), f(v)) if and only if E(u1, v1), then f behaves like p1 on input (≺,≺).
• E(f(u), f(v)) if and only if E(u2, v2), then f behaves like p2 on input (≺,≺).

Analogously, we define behaviours on input (≺,≻) using pairs u, v ∈ H2
n with u1 ≺ v1

and u2 ≻ v2.
Proposition 3.14. Let f : H2

n → Hn be an injection which is canonical as a
function from (Hn, E,≺)2 to (Hn, E,≺) and suppose f preserves E and N . Then it
behaves like min, p1 or p2 on input (≺,≺) (and similarly on input (≺,≻)).

Proof. By definition of the term canonical; one only needs to enumerate all
possible types of pairs (u, v), where u, v ∈ H2

n, and recall that (Hn, E) does not
contain any clique of size n, which makes some behaviours impossible to be realized
by f .

Definition 3.15. If an injection f : H2
n → Hn behaves like X on input (≺,≺)

and like Y on input (≺,≻), where X,Y ∈ {min, p1, p2}, then we say that f is of
behaviour X/Y .

In the following lemmas, we show that every injective canonical binary function
which behaves differently on input (≺,≺) and on input (≺,≻) generates a function
which behaves the same way on both inputs, allowing us to ignore the order again.

Lemma 3.16. Suppose that f : H2
n → Hn is injective and canonical from
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(Hn, E,≺)2 to (Hn, E,≺), and suppose that it is of type min /pi or of type pi/min,
where i ∈ {1, 2}. Then f generates a binary injection of type min.

Proof. Since the calculus for behaviours on the Henson graphs is the same as that
on the random graph, the same proof as in [BP15a] works.

Lemma 3.17. No binary injection f : H2
n → Hn can have behaviour p1/p2.

Proof. Such a behaviour would introduce a Kn in a Kn-free graph.
Having ruled out some behaviours without constants, we finally introduce

constants to the language to prove Proposition 3.12.
Proof. [of Proposition 3.12] Fix a finite set C := {c1, . . . , cm} ⊆ Hn on which the

fact that f is not of behaviour projection is witnessed. Invoking Proposition 2.9, we
may henceforth assume that f is canonical as a function from (Hn, E,≺, c1, . . . , cm)2

to (Hn, E,≺). We are going to show that f generates a binary injection g of behaviour
min. Then another application of Proposition 2.9 to g yields a canonical function g′;
this function is still of behaviour min because any function of the form α(g(β(x), γ(y))
is of type min, for automorphisms α, β, γ of (Hn, E), and g′ is generated from
operations of this type by topological closure.

To obtain g, consider in the structure (Hn, E,≺, c1, . . . , cm) the orbit

O := {a ∈ Hn | N(a, ci) and a ≺ ci for all 1 ≤ i ≤ m}.

Then O induces a structure isomorphic to (Hn, E,≺), as it satisfies the extension
property for totally ordered Kn-free graphs: the same extensions can be realized in
O as in (Hn, E,≺). Therefore, by Lemma 3.14, f has one of the three mentioned
behaviours on input (≺,≺) and on input (≺,≻). By Lemmas 3.16 and 3.17, we may
assume that f behaves like a projection on O, for any other combination of behaviours
implies that it generates a binary injection of behaviour min.

Assume without loss of generality that f behaves like p1 on O. Let u ∈ O2

and v ∈ (Hn \ {c1, . . . , cm})2 satisfy 6= 6= (u, v); we claim that f behaves like p1
or like min on {u, v}. Otherwise we must have NE (u, v) and E(f(u), f(v)). Pick
q1, . . . , qn−1 ∈ O2 forming a clique in the first coordinate, an independent set in
the second coordinate, and such that the type of (qi, v) equals the type of (u, v) in
(Hn, E,≺, c1, . . . , cn). Then by canonicity, the image of {q1, . . . , qn−1, v} under f
forms a clique of size n, a contradiction.

Suppose next that there exist u ∈ O2 and v ∈ (Hn \C)
2 with 6= 6= (u, v) such that

f does not behave like p1 (and hence, by the above, behaves like min) on {u, v}. This
means that EN (u, v) and N(f(u), f(v)). We use topological closure to show that f
generates a binary injection which behaves like min. To this end, set

S := {p ∈ H2
n | tp(p, v) = tp(u, v) in (Hn, E,≺, c1, . . . , cn)} ⊆ O2 .

Now let q0 ∈ H2
n be arbitrary. Pick a self-embedding e of (Hn, E) whose

range is contained in O. Then the function r : H2
n → H2

n defined by (x, y) 7→
(f(e(x), e(y)), f(e(y), e(x))) has the property that EN (p, q) implies EN (r(p), r(q))
and NE (p, q) implies NE (r(p), r(q)), for all p, q ∈ H2

n, since f behaves like p1 on
O. Moreover, since f is injective, we have that p 6= q implies 6= 6=(r(p), r(q)). By
the latter property, there exist self-embeddings e1, e2 of (Hn, E) such that for the
function r′ : H2

n → H2
n defined by r′ := (e1, e2) ◦ r we have that r′(q0) = v, that

r′(p) ∈ O2 for all p ∈ H2
n \ {q0}, and that r′(p) ∈ S for all p ∈ H2

n with EN (p, q0).
Then the function h : H2

n → H2
n defined by h(x, y) := (f(r′(x, y)), y) has the property

that NN (h(p), h(q0)) holds for all p ∈ H2
n with EN (p, q0), since f behaves like min

between S and v. Moreover, NE (h(p), h(q0)) holds for all p ∈ H2
n with NE (p, q0),
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since f behaves like p1 or like min between O2 and v. Finally, for any p, p′ ∈ H2
n

distinct from q0 we have that EN (p, p′) implies EN (h(p), h(p′)) and NE (p, p′) implies
NE (h(p), h(p′)), since f behaves like p1 on O. Similarly, one can construct a function
h′ on H2

n which preserves EN and NE between any p, p′ ∈ H2
n distinct from q0, and

such that NE (p, q0) implies NN (h′(p), h′(q0)). Iterating such functions for different
choices of q0, we obtain functions rA : H2

n → H2
n for every finite subset A ⊆ H2

n such
that EN (p, p′) or NE (p, p′) implies NN (rA(p), rA(p

′)) for all p, p′ ∈ A. By topological
closure (cf. Proposition 3.1), one then gets a function r : H2

n → H2
n which has this

property everywhere, and then f(r) is the desired binary injection of behaviour min.
So we assume henceforth that f behaves like p1 on {u, v} for all u ∈ O2 and all

v ∈ (Hn \ C)2 with 6= 6=(u, v). We then claim that f must behave like p1 or like min
on {u, v} for all u, v ∈ (Hn \ C)2 with 6= 6=(u, v). Otherwise, we must have NE (u, v)
and E(f(u), f(v)). Pick q1, . . . , qn−2 ∈ O2 forming a clique in the first coordinate,
an independent set in the second coordinate, and adjacent to u and v in the first
coordinate. Applying f we get a clique of size n, a contradiction.

If there exist u, v ∈ (Hn \ C)2 with EN (u, v) and N(f(u), f(v)), then by
precomposing f with a self-embedding e of (Hn, E) whose range equals Hn \ C, we
may moreover assume that f behaves like p1 or like min on {u′, v′}, for all u′, v′ ∈ H2

n.
A standard iterating argument, similar to the one above (or the one given in detail
in the proof of Proposition 3.1), then shows that f generates a binary injection g of
type min.

We thus henceforth assume that f behaves like p1 on {u, v} for all u, v ∈ (Hn\C)
2.

We next claim that f must behave like p1 or like min on {u, v} for all u ∈ H2
n and all

v ∈ (Hn \ C)2 with 6= 6=(u, v). Otherwise, we must have NE (u, v) and E(f(u), f(v)).
Pick q1, . . . , qn−2 ∈ H2

n forming a clique in the first coordinate, an independent set
in the second coordinate, adjacent to u in both coordinates, and adjacent to v in
precisely the first coordinate. Applying f we get a clique of size n, a contradiction.

A similar argument as two paragraphs above now shows that if there exist u, v ∈
H2

n with EN (u, v) and N(f(u), f(v)), then f generates a binary injection g of type
min.

It thus remains to consider the case where f behaves like p1 on {u, v} whenever
u ∈ H2

n and v ∈ (Hn \ C)2, and where there exist u, v ∈ H2
n such that NE (u, v)

and E(f(u), f(v)). Pick q1, . . . , qn−2 ∈ (Hn \ C)2 which are adjacent to u and v in
the first coordinate and not the second, which form a clique in the first coordinate,
and which form an independent set in the second coordinate. The image of the set
{u, v, q1, . . . , qn−2} under f then is a clique of size n, so that this case cannot occur.

4. CSPs over Henson graphs.

4.1. Hardness of H. We now show that any reduct of (Hn, E) which has H
among its relations, and hence by Lemma 2.1 every reduct which pp-defines H , has
an NP-hard CSP. We first show hardness directly by reduction from positive 1-in-3-
SAT; then, we provide another proof via h1 clone homomorphisms which gives further
insight into the mathematical structure of such reducts, and draws connections to the
general dichotomy conjecture for reducts of finitely bounded homogeneous structures.

4.1.1. Reduction from positive 1-in-3-SAT. We start by showing hardness
directly, which however does not tell us anything about the structure of the
polymorphism clones of reducts which pp-define H .

Proposition 4.1. CSP(Hn, H) is NP-hard.
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Proof. We reduce positive 1-in-3-SAT to CSP(Hn, H). Each variable v in an
instance φ of the former becomes two variables v, v′ in the corresponding instance ψ
of the latter. Each clause (u, v, w) from φ becomes a tuple H(u, u′, v, v′, w, w′) in ψ.
It is easy to see that φ is a yes-instance of 1-in-3-SAT if and only if ψ is a yes-instance
of CSP(Hn, H), and the result follows.

4.1.2. Clone homomorphisms. We will now show another way to prove NP-
hardness of CSP(Hn, H) via a structural property of Pol(Hn, H), using general results
from [BP16a] (a strengthening of the structural hardness proof in [BP15b]). This will
allow us to show that the dichotomy for the Henson graphs is in line with the di-
chotomy conjecture, for CSPs of reducts of finitely bounded homogeneous structures,
from [BP16a] (and the earlier dichotomy conjecture for the same class, due to Bodirsky
and Pinsker (cf. [BPP14]), which has recently been proved equivalent [BKO+17].

Definition 4.2. Let Γ be a structure. A projective clone homomorphism of Γ
(or Pol(Γ)) is a mapping from Pol(Γ) onto its projections which

• preserves arities;
• fixes each projection;
• preserves composition.

A projective strong h1 clone homomorphism of Γ is a mapping as above, where the
third condition is weakened to preservation of composition of any function in Pol(Γ)
with projections only.

Recall that Pol(Γ) is equipped with the topology of pointwise convergence, for
any structure Γ.

Theorem 4.3 (from [BP16a]). Let Γ be a countable ω-categorical structure in a
finite relational language which has a uniformly continuous projective strong h1 clone
homomorphism. Then CSP(Γ) is NP-hard.

Proposition 4.4. The structure (Hn, H) has a uniformly continuous projective
strong h1 clone homomorphism. Consequently, CSP(Hn, H) is NP-hard.

Proof. Note that H consists of three orbits of 6-tuples with respect to Aut(Hn, E).
Let a1, a2, a3 ∈ H be representatives of those three orbits. By reshuffling the ai we
may assume that ENN (a1, a2), NEN (a3, a4), NNE(a5, a6) (where ai denotes the i-th
row of the matrix (a1, a2, a3), for 1 ≤ i ≤ 6).

We claim that whenever f ∈ Pol(Hn, H) is ternary, and b1, b2, b3 ∈ H are so that
tp(b1, b2, b3) = tp(a1, a2, a3), then tp(f(b1, b2, b3)) = tp(f(a1, a2, a3)) in (Hn, E). To
see this, let c1, c2, c3 ∈ H be so that tp(c1, c2, c3) = tp(b1, b2, b3), and such that no
entry of any ci is adjacent to any component of any bj or aj . Suppose that f(b1, b2, b3)
and f(a1, a2, a3) do not have the same type, then one of them, say f(a1, a2, a3), does
not have the same type as f(c1, c2, c3). Without loss of generality, this is witnessed
on the first two components of the 6-tuples f(c1, c2, c3) and f(a1, a2, a3). For 1 ≤
i ≤ 3, consider the 6-tuple di := (ci1, c

i
2, a

i
3, . . . , a

i
6), i.e., in ai we replace the first

two components by the components from ci. Then di ∈ H , but f(d1, d2, d3) /∈ H , a
contradiction.

Let f ∈ Pol(Hn, H). Then precisely one out of (f(a1), f(a2)), (f(a3), f(a4)),
and (f(a5), f(a6)) is contained in E. If this is the case for the first pair, then it
follows from the claim above that f satisfies the three type conditions f(E,N,N) = E
and f(N,E,N) = f(N,N,E) = N ; in the other two cases we obtain similar type
conditions.

Let ξ be the mapping which sends every ternary f ∈ Pol(Hn, H) to the ternary
projection which is consistent with the type conditions satisfied by f (in the case
considered above, the projection onto the first coordinate). Then ξ clearly preserves
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arities and projections. Moreover, let f ∈ Pol(Hn, H) and say without loss of
generality that f(E,N,N) = E, so that ξ(f) is the first projection. Then whenever
g1, g2, g3 ∈ Pol(Hn, H) are ternary projections, we have ξ(f(g1, g2, g3)) = g1; this
is easy to verify by checking the behaviour of f(g1, g2, g3) on a suitable triple of
the form (E,N,N), (N,E,N), or (N,N,E). Hence, ξ satisfies the definition of
a strong projective h1 clone homomorphism for ternary functions. It has been
observed (see e.g. [BP18]) that ξ then uniquely extends to a strong projective h1
clone homomorphism of the entire clone Pol(Hn, H). Since the value of every f under
ξ can be seen on any test matrix (a1, a2, a3) as above, we have that ξ is uniformly
continuous, and so is its extension (the latter follows from the proof in [BP18]).

4.2. Tractability of min. We now show that if a reduct Γ of (Hn, E) with finite
relational signature has a polymorphism which is of behaviour min, then CSP(Γ) is
in P. We are going to apply Theorem 4.5 below for the structure ∆ := (Hn, E). In
the theorem, ∆̂ denotes the expansion of ∆ by the inequality relation 6= and by the
complement R̂ of each relation R in ∆.

Theorem 4.5 (Proposition 14 in [BCKvO09]). Let ∆ be an ω-categorical
structure, and let Γ be a reduct of ∆. If Γ has a polymorphism e which is an embedding
of ∆2 into ∆, and if CSP(∆̂) is in P, then CSP(Γ) is in P as well.

Proposition 4.6. Let Γ be a reduct of (Hn, E) which has a polymorphism of
behaviour min. Then CSP(Γ) is in P .

Proof. To apply Theorem 4.5 to ∆ = (Hn, E), we first show that the CSP for
∆̂ = (Hn, E, Ê, 6=) can be solved in polynomial time. Given an input primitive positive
formula, we identify all variables x, y such that x = y is a constraint in the input.
Then the formula is satisfiable if and only if for all variables x1, . . . , xn we have

• E(xi, xj) is not in the input for some distinct i, j ∈ {1, . . . , n} (in particular,
the statement for x1 = · · · = xn implies that the input does not contain
constraints of the form E(x, x)),

• there are no constraints of the form x1 6= x1, and
• there are no constraints of the form E(x1, x2) and Ê(x1, x2).

Since n is fixed, it is clear that these conditions can be checked in polynomial time.
Now let f ∈ Pol(Γ) be a canonical binary injection of behaviour min. Each of

the type conditions f(N,=) = E and f(=, N) = E is impossible, because they would
introduce a Kn. Further, f(E,=) = N or f(=, E) = N , for the same reason. But
then g(x, y) := f(f(x, y), f(y, x)) is of behaviour min and N -dominated, and therefore
an embedding from (Hn, E)2 into (Hn, E). Hence, CSP(Γ) is in P by Theorem 4.5.

5. Summary for the Henson graphs.

5.1. Proof of the complexity dichotomy. We are ready to assemble our
results to prove the dichotomy for the CSPs of reducts of Henson graphs.

Proof. [of Theorem 1.1] Let Γ be a reduct of (Hn, E). If End(Γ) contains a
function whose image is an independent set, then CSP(Γ) equals the CSP for a reduct
of (Hn,=) by Lemma 3.2, and such CSPs are either in P or NP-complete [BK08].
Otherwise, End(Γ) = Aut(Hn, E) by Proposition 3.1. Lemma 3.3 shows that E, N ,
and 6= are pp-definable in Γ.

If also the relation H is pp-definable in Γ, then CSP(Γ) is NP-hard by
Proposition 4.4 (or Proposition 4.1); it is in NP since Γ is a reduct of (Hn, E), which
is a finitely bounded homogeneous structure.

So let us assume that H is not pp-definable in Γ; then Proposition 3.9 shows that
Pol(Γ) contains a canonical binary injection f of behaviour min. Hence, CSP(Γ) is in
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P by Proposition 4.6.

5.2. Discussion. We can restate Theorem 1.1 in a more detailed fashion as
follows.

Theorem 5.1. Let Γ be a reduct of a Henson graph (Hn, E). Then one of the
following holds.

(1) Γ has an endomorphism inducing an independent set, and is homomorphically
equivalent to a reduct of (Hn,=).

(2) Pol(Γ) has a uniformly continuous projective clone homomorphism.
(3) Pol(Γ) contains a binary canonical injection which is of behaviour min and

N -dominated.
Items (2) and (3) cannot simultaneously hold, and when Γ has a finite relational
signature, then (2) implies NP-completeness and (3) implies tractability of its CSP.

The first statement of Theorem 5.1 follows directly from the proof of Theorem 1.1,
with the additional observation that the strong h1 clone homomorphism defined in
Proposition 4.4 is in fact a clone homomorphism. When (3) holds for a reduct,
then (2) cannot hold, because (3) implies the existence of f(x, y) ∈ Pol(Γ) and α ∈
Aut(Γ) satisfying the equation f(x, y) = αf(y, x), an equation impossible to satisfy
by projections. In fact, by further analyzing case (1), using what is known about
reducts of equality, one can easily show that it also implies either (2) or (3), so that
we have the following.

Corollary 5.2. For every reduct Γ of a Henson graph (Hn, E), precisely one
of the following holds.

• Pol(Γ) has a uniformly continuous projective clone homomorphism.
• Pol(Γ) contains f(x, y) ∈ Pol(Γ) and α ∈ Aut(Γ) such that f(x, y) =
αf(y, x).

When Γ has a finite relational signature, then the first case implies NP-completeness
and the second case implies tractability of its CSP.

6. Polymorphisms over homogeneous equivalence relations. We now
investigate polymorphisms of reducts of the graphs (Cs

n, E), for 2 ≤ n, s ≤ ω, with
precisely one of n, s equal to ω. Recall from Section 2 that we write Eq for the reflexive
closure of E, that Eq is an equivalence relation with n classes of size s, and that we
denote its equivalence classes by Ci for 0 ≤ i < n.

Similarly to the case of the Henson graphs, we start with unary polymorphisms
in Section 6.1, reducing the problem to model-complete cores.

We then turn to higher-arity polymorphisms; here, the organization somewhat
differs from the case of the Henson graphs. The role of the NP-hard relation H from
the Henson graphs is now taken by the two sources of NP-hardness mentioned in the
introduction: the first source being that factoring by the equivalence relation Eq yields
a structure with an NP-hard problem, and the second source being that restriction to
some equivalence class yields a structure with an NP-hard problem. In Section 6.2,
we show that in fact, one of the two sources always applies for model-complete cores
when 2 < n < ω or 2 < s < ω. Consequently, only the higher-arity polymorphisms of
the reducts of (Cω

2 , E) and (C2
ω , E) require deeper investigation using Ramsey theory;

this will be dealt with in Sections 6.3 and 6.4, respectively.

6.1. The unary case: model-complete cores.

Proposition 6.1. Let Γ be a reduct of (Cs
n, E), where 1 ≤ n, s ≤ ω, and at

least one of n, s equals ω. Then either End(Γ) = Aut(Γ) = Aut(Cs
n, E), or End(Γ)

contains an endomorphism onto a clique or an independent set.
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Proof. Assume that End(Γ) 6= Aut(Cs
n, E), so there is an endomorphism f of Γ

violating either E or N .

Case 0. If n = 1 or s = 1 then the statement is trivial.

Case 1. If n = s = ω, so Eq has infinitely many infinite classes, we can refer to
[BW12].

Case 2. Assume that 1 < n < ω and s = ω.
Suppose that f violates Eq and preserves N ; then clearly, iterating applications

of automorphisms of (Cω
n , E) and f , we could send any finite subset of Cω

n to an
independent set in (Cω

n , E), contradicting that the number of equivalence classes is
the fixed finite number n.

If f preserves both Eq and N , then there exist a, b with E(a, b) and f(a) = f(b).
Via a standard iterative argument using topological closure, one then sees that f
generates a function whose range is an independent set.

Therefore, it remains to consider the case where f violates N . Fix u, v ∈ Cω
n

with N(u, v) and Eq(f(u), f(v)). Without loss of generality we may assume u ∈ C0

and v ∈ C1. By Proposition 2.10, we may assume that f is canonical as a function
from (Cω

n , E,≺, u, v) to (Cω
n , E,≺). Clearly, f must preserve Eq on each class Ci with

i > 1, as otherwise canonicity would imply the existence of an infinite independent
set in (Cω

n , E). For the same reason, f preserves Eq on each of the four sets

C−
0 := {a ∈ C0 | a ≺ u} ,

C+
0 := {a ∈ C0 | u ≺ a} ,

C−
1 := {a ∈ C1 | a ≺ v} ,

and C+
1 := {a ∈ C1 | v ≺ a}.

If N is not preserved between two sets among S := {C−
0 , C

+
0 , C

−
1 , C

+
1 , C2, C3, . . .},

then we pick these two sets along with n− 2 further sets from S belonging to distinct
equivalence classes. The union of this collection induces a copy of (Cω

n , E) on which
f preserves Eq but not N , and a standard iterative argument shows that f generates
a function whose range is contained in a single equivalence class. Hence, we may
assume that N is preserved between any two sets in S. Since n is finite, this is only
possible if Eq is preserved on C−

0 ∪ C+
0 and on C−

1 ∪ C+
1 . By composing f with an

automorphism of (Cω
n , E), we may thus assume that f [C−

i ∪ C+
i ] ⊆ Ci for i ∈ {0, 1}

and that f preserves the classes Ci for i > 1. Either f(u) /∈ C0 or f(v) /∈ C1. Assume
without loss of generality that f(u) ∈ Ci where i > 0. Let e be a self-embedding
of (Cω

n , E) with range Cω
n \ {v}. Then f ◦ e preserves all equivalence classes except

for the element u, which it moves from C0 to Ci. Iterating applications of f ◦ e and
automorphisms, and using topological closure, we obtain a function which joins C0

and Ci. By further iteration, we obtain a function which joins all classes.

Case 3. Assume that s < ω and n = ω.
Suppose that f violates N and preserves Eq; then, by topological closure, f

generates a mapping onto a clique. If it preserves both Eq and N , then as above, f
generates a function whose range is an independent set.

Therefore, we may assume that f violates Eq. Fix u, v ∈ Cs
ω with E(u, v) such

that N(f(u), f(v)). By Proposition 2.11, we may assume that f is canonical as a
function from (Cs

ω , E,≺, u, v) to (Cs
ω , E,≺). If f preserves N , then by topological

closure f generates a function whose range induces an independent set. Otherwise,
there exist a, b ∈ Cs

ω with N(a, b) and Eq(f(a), f(b)). Without loss of generality, a is
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not contained in the class of u and v. Then {a′ ∈ Cs
ω | tp(a′, b) = tp(a, b) in (Cs

ω , E,≺
, u, v)} contains an infinite independent set S. By canonicity, we have Eq(f(a′), f(b))
for all a′ ∈ S, so that S is mapped into a single class. Since this class is finite, there
exist a′, a′′ ∈ S with f(a′) = f(a′′), and so by topological closure, we can generate a
function from f whose range is contained in a single equivalence class.

If the second case of Proposition 6.1 applies to a reduct Γ of (Cs
n, E), then Γ is

homomorphically equivalent to a reduct of equality, and its CSP is understood. In
the following sections, we investigate essential polymorphisms of reducts Γ of (Cs

n, E)
satisfying End(Γ) = Aut(Γ) = Aut(Cs

n, E). In particular, such reducts are model-
complete cores. The following proposition implies that in the situation where 2 < s
the equivalence relation Eq is invariant under Pol(Γ).

Proposition 6.2. Let Γ be a reduct of (Cs
n, E), where 1 ≤ n ≤ ω and 2 < s ≤ ω.

If End(Γ) = Aut(Cs
n, E), then E, N , and Eq are preserved by Pol(Γ).

Proof. By Lemma 2.3, the condition End(Γ) = Aut(Cs
n, E) implies that all

polymorphisms of Γ preserve E and N , and hence also Eq since Eq(x, y) has the
primitive positive definition ∃z (E(x, z)∧E(z, y)). Note that we need that the classes
contain at least three elements for this definition to work.

If s = 1, then Eq is pp-definable as equality, but if s = 2 then Eq is not in general
pp-definable; this will account for an additional non-trivial (tractable) case in our
analysis.

Since in the situation of Proposition 6.2, Eq is an equivalence relation which
is invariant under Pol(Γ), it follows that Pol(Γ) acts naturally on the equivalence
classes of Eq: for f(x1, . . . , xn) ∈ Pol(Γ) and classes Ci1 , . . . , Cin of Eq, the class
f(Ci1 , . . . , Cin) is then defined as the equivalence class of f(ci1 , . . . , cin), where ci1 ∈
Ci1 , . . . , cin ∈ Cin are arbitrary.

Moreover, if we fix any class C of Eq and expand the structure Γ by the predicate
C to a structure (Γ, C), then Pol(Γ, C) acts naturally on C via restriction of its
functions. Since Aut(Cs

n, E) can flip any two equivalence classes, all such actions are
isomorphic, i.e., for any two classes C,C′ there exists a bijection i : C → C′ such that

Pol(Γ, C′) = {(x1, . . . , xn) 7→ i(f(i−1(x1), . . . , i
−1(xn))) | f ∈ Pol(Γ, C)}

Pol(Γ, C) = {(x1, . . . , xn) 7→ i−1(f(i(x1), . . . , i(xn))) | f ∈ Pol(Γ, C′)}

(in fact any bijection i works, since any permutation on C extends to an automorphism
of (Cs

n, E) which fixes the elements of C′ pointwise). It is for this reason that in the
following, it will not matter if we make statements about all such actions, or a single
action.

In the following sections, we analyze these two types of actions.

6.2. The case 2 < n < ω or 2 < s < ω. It turns out that in these cases, one of
the two types of actions always yields hardness of the CSP. We are going to use the
following fact about function clones on a finite domain.

Proposition 6.3 (from [HR94]). Every function clone on a finite domain of at
least three elements which contains all permutations as well as an essential function
contains a unary constant function.

We can immediately apply this fact to the action of Pol(Γ) on the equivalence
classes, when there are more than two, but finitely many classes.

Proposition 6.4. Let Γ be a reduct of (Cω
n , E), where 2 < n < ω, such that

End(Γ) = Aut(Cω
n , E). Then the action of Pol(Γ) on the equivalence classes of Eq

has no essential and no constant operation.
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Proof. The action has no constant operation because N is preserved. Therefore,
it cannot have an essential operation either, by Proposition 6.3.

Similarly, we can apply the same fact to the action of Pol(Γ, C) on any equivalence
class C on Cs

ω if this class is finite and has more than two elements.
Proposition 6.5. Let Γ be a reduct of (Cs

ω , E), where 2 < s < ω, such
that End(Γ) = Aut(Cs

ω , E). Then for any equivalence class C of Eq, the action
of Pol(Γ, C) on C has no essential and no constant operation.

Proof. The action has no constant operation because E is preserved. Therefore,
it cannot have an essential operation either, by Proposition 6.3.

6.3. The case of two infinite classes: n = 2 and s = ω. The following
proposition states that either one of the two sources of hardness applies, or Pol(Γ)
contains a ternary canonical function with a certain behaviour.

Proposition 6.6. Let Γ be a reduct of (Cω
2 , E) such that End(Γ) = Aut(Cω

2 , E).
Then one of the following holds:

• the action of Pol(Γ) on the equivalence classes of Eq has no essential function;
• the action of Pol(Γ, C) on some (or any) class C has no essential function;
• Pol(Γ) contains a canonical ternary injection of behaviour minority which is
hyperplanely of behaviour balanced xnor.

To prove the proposition, we need to recall a special case of Post’s classical result
about function clones acting on a two-element set. Comparing this statement with
Proposition 6.3 sheds light on why the case of this section is more involved than the
cases of the preceding section.

Proposition 6.7 (Post [Pos41]). Every function clone with domain {0, 1}
containing both permutations of {0, 1} as well as an essential function contains a
unary constant operation or the ternary addition modulo 2.

We moreover require the following result on polymorphism clones on a countable
set.

Proposition 6.8 (from [BK08]). Every polymorphism clone on a countably
infinite set which contains all permutations as well as an essential operation contains
a binary injection.

We now combine these two results to a proof of Proposition 6.6.
Proof. [of Proposition 6.6] Recall that the equivalence classes of Eq are denoted

by C0 and C1, and that E, N , and Eq are preserved by the functions of Pol(Γ), by
Proposition 6.2. Suppose that the first statement of the proposition does not hold.
Then by Proposition 6.7, the action of Pol(Γ) on {C0, C1} contains a unary constant
operation, or a function which behaves like ternary addition modulo 2. The first case
is impossible since the unary functions in Pol(Γ) preserve N , so the latter case holds
and Pol(Γ) contains a ternary function g which acts like x + y + z modulo 2 on the
classes.

Suppose now in addition that the second statement of the proposition does not
hold either, and fix some equivalence class C. Since the action of Pol(Γ, C) on C
contains all permutations of C, by Proposition 6.8 it also contains a binary injection.
Therefore Pol(Γ) contains for each i ∈ {0, 1} a binary function fi whose restriction to
Ci is an injection on this set.

We claim that there is a single function f ∈ Pol(Γ) which has this property for
both C0 and C1. Note that since N is preserved by f0, it maps C1 into itself. If f0
is essential on C1, then Proposition 6.8 implies that together with all permutations
which fix the classes, it generates a function which is injective on C1; this function is
then injective on both classes C0, C1. So assume that f0 is not essential on C1, say
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without loss of generality that it depends only on the first coordinate (and injectively
so, since it preserves E). Then f0(f1(x, y), f0(x, y)) preserves both classes and is
injective on each of them.

By Proposition 2.9, we may assume that f is canonical as a function from
(Cω

2 , E,≺) × (Cω
2 , E,≺) to (Cω

2 , E,≺). We claim that f is also canonical as a
function from (Cω

2 , E) × (Cω
2 , E) to (Cω

2 , E). To prove this, it suffices to show
that if u, v, u′, v′ ∈ Cω

2 × Cω
2 are so that (u, v) and (u′, v′) have the same type

in (Cω
2 , E) × (Cω

2 , E), then (f(u), f(v)) and (f(u′), f(v′)) have the same type in
(Cω

2 , E). There exist u′′, v′′ ∈ Cω
2 × Cω

2 such that (u′, v′) and (u′′, v′′) have the same
type in (Cω

2 , E,≺)× (Cω
2 , E,≺) and such that EqEq(u, u′′) and EqEq(v, v′′); by the

canonicity of f as a function from (Cω
2 , E,≺)× (Cω

2 , E,≺) to (Cω
2 , E,≺), it suffices to

show that (f(u), f(v)) and (f(u′′), f(v′′)) have the same type in (Cω
2 , E). Since Eq

is preserved, we have Eq(f(u), f(u′′)) and Eq(f(v), f(v′′)), and so Eq(f(u), f(v))
implies Eq(f(u′′), f(v′′))) and vice-versa, by the transitivity of Eq. Failure of
canonicity can therefore only happen if Eq(f(u), f(v)) and Eq(f(u′′), f(v′′))), and
precisely one of f(u) = f(v) and f(u′′) = f(v′′) holds, say without loss of generality
the former. But then picking any v′′′ ∈ Cω

2 ×C
ω
2 distinct from v such that EqEq(v, v′′′)

and such that the type of (u, v) equals the type of (u, v′′′) in (Cω
2 , E,≺)× (Cω

2 , E,≺)
shows that f(v) = f(u) = f(v′′′) by canonicity, contradicting the fact that f is
injective on each equivalence class.

We analyze the behaviour of the canonical function f : (Cω
2 , E) × (Cω

2 , E) →
(Cω

2 , E). Because E and N are preserved, we have f(E,E) = E and f(N,N) = N .
Moreover, because f is injective on the classes, and because Eq is preserved, we have
f(=, E) = f(E,=) = E.

We next claim that either f(·, N) = N or f(N, ·) = N . Otherwise, there exist
Q,P ∈ {E,=} such that f(Q,N) 6= N and f(N,P ) 6= N . Pick u, v, w ∈ (Cω

2 )
2 such

that QN (u, v),NP(v, w), and NN (u,w). Then Eq(f(u), f(w)) and N(f(u), f(w)), a
contradiction.

Assume henceforth without loss of generality that f(N, ·) = N . Then f(P,N) 6=
N for P 6= N , because there are only two equivalence classes. Moreover, f(E,N) =
= or f(=, N) = = would imply that f is not injective on the classes, so we have
f(E,N) = f(=, N) = E.

Summarizing, f is a binary injection of behaviour p1, balanced in the first
argument, and E-dominated in the second argument.

Let q ∈ Pol(Γ) be any ternary injection (for example, (x, y, z) 7→ f(x, f(y, z))),
and set h(x, y, z) := f(g(x, y, z), q(x, y, z)). We now show that h is canonical by
establishing all type conditions satisfied by it. To this end, we use the behaviour of f
and the fact that g acts like x+ y+ z modulo 2 on the classes. The latter fact implies
that g satisfies certain type conditions as well, as is easily verified: g(Eq,Eq,N) =
g(Eq,N,Eq) = g(N,Eq,Eq) = N , g(Eq,Eq,Eq) = Eq, and moreover g(Eq,N,N) =
Eq, g(N,Eq,N) = Eq, and g(N,N,Eq) = Eq. In the following table, u, v, w ∈ (Cω

2 )
2

are three pairs for which ===(u, v, w) does not hold, and according to the type of
(u, v, w) in (Cω

2 , E) × (Cω
2 , E) the type of h(u, v, w) in (Cω

2 , E) is computed. By
the symmetry of the type conditions of g listed above, and since of q we only use
injectivity so that 6=(q(u, v, w)) holds, the value of a triple of types does not change
if its components are permuted. Therefore, we only list all possibilities of types for
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(u, v, w) up to permutations.

tp(u, v, w) tp(g(u, v, w), q(u, v, w)) tp(h(u, v, w))
EEE (E, 6=) E
NNN (N, 6=) N
EEN (N, 6=) N
ENN (Eq, 6=) E
=EE (Eq, 6=) E
=NN (Eq, 6=) E
=EN (N, 6=) N
==E (Eq, 6=) E
==N (N, 6=) N

So h acts like a minority which is hyperplanely of behaviour balanced xnor.

6.4. The case of infinitely many classes of size two: n = ω and s = 2.
Recall that in this situation, Proposition 6.2 does not apply, and Eq might not be
pp-definable in a reduct Γ of (C2

ω, E), even if Γ is a model-complete core. We first
show that if this happens, then Pol(Γ) contains a certain binary canonical function
(Proposition 6.9). We then show, in Proposition 6.10, that if Eq does have a primitive
positive definition in Γ, then either one of the two sources of hardness applies, or Pol(Γ)
contains a ternary function of a certain behaviour.

Proposition 6.9. Let Γ be a reduct of (C2
ω , E) such that End(Γ) = Aut(C2

ω, E),
and such that Eq is not pp-definable. Then Γ enjoys a binary canonical polymorphism
of behaviour min which is N -dominated.

Proof. By Theorem 2.2, Γ has a polymorphism f which violates Eq. By the
assumption, all endomorphisms preserve E and N , and hence, by Lemma 2.3, so does
f . By the same lemma, because Eq consists of two orbits with respect to the action
of the automorphism group of (C2

ω , E) on pairs, we may assume that f is binary.

We refer to sets of the form C × D, where C,D are equivalence classes of Eq,
as squares. Note that each square is the disjoint union of precisely two edges in the
product graph (C2

ω , E)2, and that each of these edges is mapped by f to an edge in
(C2

ω , E), since f preserves E. We say that f splits a square if it does not map this
square into a single class; in this case, it necessarily maps it into two classes, by the
previous observation.

By composing f with automorphisms from the inside, we may assume that f
violates Eq on a square of the form C × C. Writing C = {u, v}, we may invoke
Proposition 2.11 and assume that f is canonical when viewed as a function from
(C2

ω , E,≺, u, v)× (C2
ω , E,≺, u, v) to (C2

ω , E,≺). We set S := C2
ω \ C and S′ := {x ∈

S | x ≺ u ∧ x ≺ v}.

We now distinguish two cases to show the following.

Claim. f generates a binary function f ′ which still splits C × C and satisfies
either f ′(N, ·) = N or f ′(·, N) = N .

Case 1: We first assume that f splits a square within (S′)2. Then, by canonicity,
it splits all squares within (S′)2. In that case, the function f(e(x), e(y)), where e is a
self-embedding from (C2

ω, E,≺) onto the structure induced therein by S′, is canonical
whilst splitting all squares. Replacing f by this function, we henceforth assume f to
split all squares. The constants u, v which were introduced to witness the occurrence
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of a splitting will not be of importance to us anymore in the further discussion of this
case.

The function g on (C2
ω)

2 sending every pair (x, y) to the pair (f(x, y), f(y, x)) is
canonical when viewed as a function

(C2
ω, E,≺)× (C2

ω, E,≺) → ((C2
ω)

2,EE ,EN ,NE ,NN ,E=,=E ,N=,=N ,≺≺) ,

by the canonicity of f . In the following, we analyse the behaviour of g.
We start by observing that every square consists of an upward edge and a

downward edge in (C2
ω , E,≺)2, the orientation being induced by the order ≺: by

the upward edge (p, q) ∈ EE we refer to the one on which the order ≺ agrees in both
coordinates between p and q, and by the downward one we refer to the other edge in
the square (on which ≺ disagrees between the coordinates). Let U be the set of points
contained in an upward edge, and V the set of points contained in a downward edge,
so that (C2

ω)
2 is the disjoint union of U and V . We are going to verify the following

properties of g:
(i) g[U ] ⊆ U and g[V ] ⊆ V .
(ii) E=(p, q), =E (p, q), and NN (p, q) all imply NN (g(p), g(q)), for all p, q ∈

(C2
ω)

2.
(iii) NN (g(p), g(q)) for all p ∈ U and all q ∈ V .
(iv) On U as well as on V , either f(N, ·) = N or f(·, N) = N holds.

Of Property (i), we give the argument that g[U ] ⊆ U ; proving g[V ] ⊆ V is similar.
Let p = (p1, p2), q = (q1, q2) ∈ (C2

ω)
2 be so that (p, q) forms an upward edge, and

say that p1 ≺ q1 and p2 ≺ q2. If f(p1, p2) ≺ f(q1, q2), then by canonicity also
f(p2, p1) ≺ f(q2, q1), and so (g(p), g(q)) is related by ≺ in both coordinates. Since f
preservesE, (g(p), g(q)) is also related byE in both coordinates, and hence (g(p), g(q))
forms an upward edge. If f(q1, q2) ≺ f(p1, p2), then a similar argument shows that
(g(p), g(q)) forms an upward edge.

Property (ii) follows since f preserves N and because f splits all squares.
For (iii), suppose that NN (g(p), g(q)) does not hold for some p ∈ U and q ∈ V .

We cannot have EE (p, q) since p is contained in an upward and q in a downward edge,
so by (ii), p and q must be related by N in one coordinate. Say we have N=(p, q);
the other situations are handled similarly. Pick q′ ∈ V distinct from q such that the
types of (p, q) and (p, q′) in (C2

ω , E,≺) × (C2
ω , E,≺) coincide. Then, by canonicity,

we have that g(p), g(q) are equivalent with respect to Eq in the same coordinate as
g(p), g(q′); hence, so are g(q), g(q′), by the transitivity of Eq. By canonicity, we then
know that for the unique q′′ ∈ V with E=(p, q′′), we have that g(q) and g(q′′) are
equivalent in that very same coordinate, since the types of (q, q′) and either (q, q′′) or
(q′′, q) agree. Again by transitivity, g(p), g(q′′) are then equivalent in that coordinate,
contradicting (ii).

To see Property (iv), suppose that both f(N, ·) = N and f(·, N) = N do not
hold on U . Then there exist p, q, p′, q′ ∈ U such that p, q are related by N in the
first coordinate, p′, q′ are related by N in the second coordinate, and Eq(f(p), f(q))
and Eq(f(p′), f(q′)) hold. But then we could pick q′′ ∈ U such that tp(p, q′′) =
tp(p′, q′) in (C2

ω , E,≺) × (C2
ω , E,≺); any such q′′ necessarily satisfies NN (q, q′′). By

canonicity we would have Eq(f(p), f(q′′)), and hence, by transitivity, this would imply
Eq(f(q), f(q′′)), a contradiction since f preserves N .

Now suppose that f(N, ·) = N on both U and V . Then the function f ′(x, y) :=
f(g(x, y)) = f(f(x, y), f(y, x)) has the same property by (iii), and moreover it splits
all squares, so we are done. If f(·, N) = N on both U and V , then by symmetry
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f ′(x, y) := f(f(y, x), f(x, y)) has the same property everywhere and splits all squares.
It remains to consider the case where, say, f(N, ·) = N on U and f(·, N) = N on V .
The function f ′(x, y) := f ◦ g satisfies f ′(N, ·) = N . To see this, let p, q ∈ (C2

ω)
2 be

related by N in the first coordinate. If p, q ∈ U , then g(p), g(q) are related by N in
the first coordinate, and because g[U ] ⊆ U , we have N(f(g(p)), f(g(q))). When p ∈ U
and q ∈ V , then NN (g(p), g(q)) by (iii), and so N(f ′(p), f ′(q)) since f preserves N .
Finally, if p, q ∈ V , then g(p), g(q) are related by N in the second coordinate, and
using g[V ] ⊆ V , we see that N(f ′(p), f ′(q)). Since f ′ moreover splits all squares
by (ii), we are done.

Case 2: Assume now that f does not split any square within (S′)2. We claim that
f(N, ·) = N or f(·, N) = N on (S′)2: otherwise, there would exist p, q, p′, q′ ∈ (S′)2

such that p, q are related by N in the first coordinate, p′, q′ are related by N in the
second coordinate, and Eq(f(p), f(q)) and Eq(f(p′), f(q′)) hold. But then we could
pick q′′ ∈ (S′)2 such that tp(p, q′′) = tp(p′, q′) in (C2

ω, E,≺, u, v)×(C2
ω, E,≺, u, v); any

such q′′ necessarily satisfies NN (q, q′′). By canonicity we would have Eq(f(p), f(q′′)),
and hence, by transitivity, this would imply Eq(f(q), f(q′′)), a contradiction since f
preserves N . We assume without loss of generality that f(N, ·) = N on (S′)2.

The function f(e(x), e(y)), where e is a self-embedding from (C2
ω , E, u, v) onto the

structure induced therein by S′∪{u, v}, still splits C×C, splits no square within S×S,
and satisfies f(N, ·) = N on S2. Invoking Proposition 2.11 again, we may assume that
that function is moreover canonical as a function from (C2

ω , E,≺, u, v)×(C2
ω, E,≺, u, v)

to (C2
ω , E,≺). Replacing f by this function, we may therefore henceforth assume that

f itself enjoys the listed properties.

Note that the function f(e(x), e(y)) as in the preceding paragraph does not
distinguish between elements of S′ and those of S \ S′, since e sends the entire set S
into S′ before f is applied. In particular, it has the property that for any p ∈ C × C
and any q ∈ (C2

ω)
2, the type of (f(p), f(q)) in (C2

ω , E) only depends on the type of
(p, q) in (C2

ω , E, u, v) × (C2
ω , E, u, v), and not on the more precise type of (p, q) in

(C2
ω , E, u, v,≺)× (C2

ω , E, u, v,≺) (which does distinguish between S′ and S \ S′).

We now distinguish two subcases to show that f generates a binary function f ′

which splits C × C and such that f ′(N, ·) = N everywhere, thus proving the claim.

Case 2.1: If f(N, ·) = N on S×C, then by canonicity and the remark above, one
easily concludes N(f(p), f(q)) for all p ∈ C ×C and all q ∈ S ×C, so that altogether
f(N, ·) = N everywhere. Hence, setting f ′ := f we have achieved our goal.

Case 2.2: If f(N, ·) = N does not hold on S × C, then there exists c ∈ S × C
such that N(f(c), f(q)) for any q ∈ S2. To see this, we can pick any c ∈ S × C
so that there exists q′ ∈ S × C related to c by N in the first coordinate and such
that Eq(f(c), f(q′)). Then, if there existed q ∈ S2 with Eq(f(c), f(q)), we would
have Eq(f(q), f(q′)); replacing q′ by q′′ ∈ S × C such that tp(c, q′) = tp(c, q′′) in
(C2

ω , E,≺, u, v) and such that q′, q′′ are related by N in both coordinates, this would
yield a contradiction to the preservation of N .

We are going to check the following properties of the function g on (C2
ω)

2 defined
by (x, y) 7→ (x, f(x, y)).

(i) Whenever p, q ∈ (C2
ω)

2 are related by N in the first coordinate, then so are
g(p), g(q).

(ii) If p ∈ (C2
ω)

2, and q ∈ S2 is related to p by N in the first coordinate, then
NN (g(p), g(q)).

(iii) Writing a := (u, u) and b := (v, u), we have E=(a, b) and EN (g(a), g(b)).

Property (i) is obvious from the definition of g. Property (ii) is clear if p ∈ C2
ω × C,
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since in that case NN (p, q) and since f preserves N . If p ∈ S2, then it follows from
the fact that f(N, ·) = N on S. Finally, consider the case where p ∈ C × S. If we
had Eq(f(p), f(q)), then picking q′ ∈ S2 such that N=(q, q′) and such that tp(p, q) =
tp(p, q′) in (C2

ω, E,≺) × (C2
ω, E,≺), we would get Eq(f(p), f(q′)) by canonicity, and

so Eq(f(q), f(q′)), contradicting that f(N, ·) = N on S. Property (iii) just restates
that f splits C × C.

Let e1, e2 be self-embeddings of (C2
ω , E) such that the range of (e1, e2) ◦ g is

contained in S × C2
ω and such that (e1, e2) ◦ g(a) = c. Using that assumption, g′ :=

g ◦ (e1, e2) ◦ g clearly also satisfies (i) and (ii). Moreover, since (e1, e2) ◦ g(a) = c,
and since EN ((e1, e2) ◦ g(a), (e1, e2) ◦ g(b)), we have (e1, e2) ◦ g(b) ∈ S2; this implies
EN (g′(a), g′(b)), since N(f(c), f(q)) for all q ∈ S2. Hence, g′ still satisfies (iii).

We then pick a pair (e′1, e
′
2) of self-embeddings of (C2

ω, E) with (e′1, e
′
2)◦ g

′(b) = c,
and consequently (e′1, e

′
2) ◦ g

′(a) ∈ S2. Then g′′ := g ◦ (e′1, e
′
2) ◦ g

′ = g ◦ (e′1, e
′
2) ◦ g ◦

(e1, e2) ◦ g has the property that whenever p, q ∈ (C2
ω)

2 are related by N in the first
coordinate, then NN (g′′(p), g′′(q)); this is because every point went through S2 in one
of the applications of g, and because of (ii). Moreover, we have EN (g′′(a), g′′(b)).

Setting f ′ to be the projection of g′′ onto the second coordinate then completes
the proof.

Wrap-up. Replacing f by f ′ from the claim, we thus henceforth assume that
f(N, ·) = N . For the function h on (C2

ω)
2 defined by (x, y) 7→ (f(x, y), f(y, x)), we

are going to prove the following properties.

(i) If p, q ∈ (C2
ω)

2 are related by N in some coordinate, then h(p), h(q) are related
by N in the same coordinate.

(ii) There are p′, q′ ∈ (C2
ω)

2 with E=(p′, q′) such that h(p′), h(q′) are related by
N in the first coordinate.

(iii) There are p′′, q′′ ∈ (C2
ω)

2 with EN (p′′, q′′) such that NN (h(p′′), h(q′′)).
(iv) There are p′′′, q′′′ ∈ (C2

ω)
2 with =N (p′′, q′′) such that NN (h(p′′′), h(q′′′)).

Property (i) is obvious because f(N, ·) = N , and (ii) follows because f splits a square.
To see (iii), we first observe that there exist p, q ∈ (C2

ω)
2 with equal first coordinate

and such that h(p), h(q) are related by N in the first coordinate: simply pick p, p′

with =E (p, p′) within the square that is split; then NN (h(p), h(p′)), and so for any
q ∈ (C2

ω)
2 with =N (p, q) and =N (p′, q) we have that h(q) must be related by N in

the first coordinate to either h(p) or h(p′), showing the observation. Now fix p, q with
this property, and pick v ∈ (C2

ω)
2 with EN (p, v) and EN (q, v). Then h(v) is related

to h(p) and h(q) by N in the second coordinate by (i), but also necessarily to one of
them in the first coordinate, showing (iii). The proof of (iv) is similar.

Using these properties, we first construct, by composition and topological closure,
a function h′ on (C2

ω)
2 which yields NN (h′(p), h′(q)) for all p, q ∈ (C2

ω)
2 which are

related by N in at least one coordinate. To do this, let {(pi, qi) | i > 0} be an
enumeration of all pairs in (C2

ω)
2 which are related by N in at least one coordinate.

We proceed inductively, constructing functions h0, h1, . . . with the property that:
NN (hn(pj), hn(qj)), for all 0 < j ≤ n, and hn(pj) and hn(qj) are related by N
in at least one coordinate, for all j > n. For the base case, we set h0 := h (note
that the first conjunct of the inductive hypothesis acts here on an empty set of
pairs). Suppose we have already constructed hn. Then hn(pn+1) and hn(qn+1) are
related by N in at least one coordinate. If NN (hn(pn+1), hn(qn+1)), then we set
hn+1 := hn. If EN (hn(pn+1), hn(qn+1)), then let (α, β) be a pair of automorphisms
of (C2

ω , E) such that (α, β)(hn(pn+1)) = p′′ (from (iii)), and (α, β)(hn(qn+1)) = q′′.
Setting hn+1 := h ◦ (α, β) ◦ hn then yields the desired property for (pn+1, qn+1). If
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NE (hn(pn+1), hn(qn+1)), then EN (π ◦ hn(pn+1), π ◦ hn(qn+1)), where π : (C2
ω)

2 →
(C2

ω)
2 is defined by (x, y) 7→ (y, x) (i.e., π is a pair of projections); we can thus

proceed as before. The cases =N (hn(pn+1), hn(qn+1)) and N=(hn(pn+1), hn(qn+1))
are treated similarly, using (iv) instead of (iii). By topological closure, we obtain the
function h′.

Setting h′′ := h′ ◦ h, we retain the defining property of h′ by (i), but moreover
have NN (h′′(p′), h′′(q′)), for the pair (p′, q′) from (ii).

The function g0 := f ◦ h′′ then satisfies g0(N, ·) = g0(·, N) = N , and moreover
satisfies N(g(p′), g(q′)), since NN (h′′(p′), h′′(q′)) and since f preserves N .

Let {(pi, qi) | i ≥ 0} be an enumeration of all pairs in (C2
ω)

2 related by E=,
where (p0, q0) = (p′, q′). As above, we obtain, by composition and topological closure,
for every i ≥ 0 a function gi which satisfies gi(N, ·) = gi(·, N) = N and such that
N(gi(pi), gi(qi)). Setting t0 := g0, and tn+1 := f(tn(x, y), gn+1(x, y)) for all n ≥ 0,
we obtain binary functions t0, t1, . . . satisfying ti(N, ·) = ti(·, N) = N and with the
property that N(ti(pj), ti(qj)) for all j ≤ i. By topological closure, we obtain a binary
function t satisfying t(N, ·) = t(·, N) = N and N(t(p), t(q)) for all p, q ∈ (C2

ω)
2 with

E=(p, q). This function clearly has behaviour min and is N -dominated in the first
argument; since it preserves E, these properties also imply that it is N -dominated in
the second argument.

We now turn to the case where Eq is pp-definable in a reduct Γ, so that Pol(Γ)
acts on its equivalence classes.

Proposition 6.10. Let Γ be a reduct of (C2
ω , E) such that End(Γ) = Aut(C2

ω , E)
and such that Eq is pp-definable. Then one of the following holds:

• the action of Pol(Γ) on the equivalence classes of Eq has no essential function;
• the action of Pol(Γ, C) on some (or any) equivalence class of C has no
essential function;

• Pol(Γ) contains a ternary canonical function h such that h(N, ·, ·) =
h(·, N, ·) = h(·, ·, N) = N which behaves like a minority on {E,=} (so
h(E,=,=) = E etc.).

To prove the proposition, we are again going to make use of Propositions 6.7
and 6.8, and the following lemma. We are going to say that a ternary function f on
C2

ω behaves like x + y + z modulo 2 on an equivalence class C = {0, 1} of Eq if the
restriction of f to C is of the form α◦gC , where α ∈ Aut(C2

ω, E) and gC is the ternary
function on C defined by gC(x, y, z) = x + y + z modulo 2. Note that this property
can be expressed in terms of type conditions satisfied on C: namely, f behaves like
x + y + z modulo 2 on C if and only if it satisfies f(E,E,E) = E, f(E,E,=) =
f(E,=, E) = f(=, E,E) = =, and f(E,=,=) = f(=,=, E) = f(=, E,=) = E on C.
In other words, f behaves like a minority on the types {E,=}.

Lemma 6.11. Let Γ be a reduct of (C2
ω, E) such that End(Γ) = Aut(C2

ω , E), Eq
is pp-definable, and Pol(Γ) contains a ternary function which behaves like x + y + z
modulo 2 on some equivalence class. Then Pol(Γ) contains a ternary function which
behaves like x+ y + z modulo 2 on all equivalence classes.

Proof. Let C0, C1, . . . be the equivalence classes of Eq. We show, by induction over
n, that for all n ∈ ω, Pol(Γ) contains a function gn which equals x+y+z modulo 2 on
each class C0, . . . , Cn. The lemma then follows by a standard compactness argument:
by ω-categoricity, there exist αn ∈ Aut(C2

ω , E), for n ∈ ω, such that (αn ◦ gn)n∈ω

converges to a function g ∈ Pol(Γ) (cf. for example the proof of Proposition 3.1).
That function then has the desired property: for every i ∈ ω, there exists n > i such
that g agrees with αn ◦ gn on Ci, and hence it behaves like x+ y+ z modulo 2 on Ci.
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For the base case n = 0, the statement follows from the assumption of the lemma.
Now suppose it holds for n. By the assumption that End(Γ) = Aut(D,E), we may
assume that gn(x, x, x) = x for all x ∈ C0 ∪ · · · ∪Cn+1, and in particular gn preserves
each of the classes C0, . . . , Cn+1. In particular, the restriction of gn to any Ci with
0 ≤ i ≤ n actually equals the function x+ y + z modulo 2 on that class.

Assume first that gn is not essential on Cn+1; by composing it with an
automorphism of (C2

ω, E), we may assume it is a projection, without loss of generality
to the first coordinate, on Cn+1. Let g′n ∈ Pol(Γ) be a ternary function which has
the properties of gn, but with the roles of Cn and Cn+1 switched. Such a function g′n
can be obtained by composing gn in all arguments with the same automorphism that
switches Cn and Cn+1. Then

gn+1(x, y, z) := gn(g
′
n(x, y, z), g

′
n(y, z, x), g

′
n(z, x, y))

has the desired property.
Next assume that gn is essential on Cn+1, and write g′n for its restriction to Cn+1.

Let α ∈ Aut(C2
ω , E) flip the two elements of Cn+1, and fix all other elements of C2

ω;
then the restriction α′ of α to Cn+1 is the only non-trivial permutation of Cn+1. By
Proposition 6.7, there exists a term h′(x, y, z) over {g′n, α

′} which induces either a
constant function or the function x + y + z modulo 2 on Cn+1. The term h(x, y, z)
obtained from h′ by replacing all occurrences of α′ by α, and all occurrences of g′n
by gn induces a ternary function on C2

ω whose restriction to Cn+1 equals h′. Since h
preserves E, it cannot be constant on Cn+1, and hence it is equal to x+ y+ z modulo
2 on Cn+1. For each 0 ≤ i ≤ n, since gn equals x+ y + z modulo 2 on Ci, and since
α is the identity on Ci, it is easy to see that the term function h, restricted to Ci,
is of the form β′ ◦ g, where β′ is a permutation on Ci and g either equals x + y + z
modulo 2 or a projection on Ci. Hence, iterating the preceding case we obtain the
desired function.

Proof. [of Proposition 6.10] Suppose that neither of the first two items hold. Then
by Proposition 6.8, Pol(Γ) contains a binary function f acting injectively on the classes
of Eq; moreover, using Proposition 6.7 and since E is preserved, we see that Pol(Γ)
contains a ternary function which equals x+y+z modulo 2 on some equivalence class.
Hence, by Lemma 6.11 it contains a ternary function g which behaves like x + y + z
modulo 2 on all equivalence classes.

Observe first that since f acts injectively on the classes of Eq, we have that
whenever p, q ∈ (C2

ω)
2 are not equivalent with respect to Eq in at least one coordinate,

then Eq(f(p), f(q)) cannot hold. In other words, we have the type conditions
f(N,Eq) = f(Eq,N) = f(N,N) = N .

We next argue that on each class C the operation f is essentially unary. Write
C = {0, 1}. Since E is preserved, we have E(f(0, 0), f(1, 1)); similarly, we know that
E(f(0, 1), f(1, 0)). Since f moreover preserves Eq, the four values are contained in a
single class. Hence either f(0, 1) = f(0, 0) and f(1, 0) = f(1, 1), or f(1, 0) = f(0, 0)
and f(0, 1) = f(1, 1). In the first case, the restriction of f to C only depends on its
first argument, and in the second case on its second argument. Assume without loss
of generality that the former, i.e., f(E,=) = E and f(=, E) = =, holds on infinitely
many equivalence classes C. By precomposing f with self-embeddings of (C2

ω , E) we
may assume that f satisfies these type conditions everywhere. In particular, we then
have that f is also canonical as a function from (C2

ω , E)2 to (C2
ω, E).

The function q(x, y, z) := f(x, f(y, z)) satisfies q(N, ·, ·) = q(·, N, ·) = q(·, ·, N) =
N , and q(P,Q,R) = P if P,Q,R ∈ {E,=}.
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Consider the function t on (C2
ω)

3 which sends every triple (x, y, z) to the triple
(q(x, y, z), q(y, z, x), q(z, x, y)). Then, whenever P,Q,R ∈ {E,=} and p, q ∈ (C2

ω)
3

satisfy PQR(p, q), then also PQR(t(p), t(q)), by the properties of q. Moreover, when-
ever p, q ∈ (C2

ω)
3 are related by N in at least one coordinate, then NNN (t(p), t(q)).

By the latter property of t, there exist α, β, γ ∈ Aut(C2
ω , E) such that the function

(α, β, γ) ◦ t(x, y, z) := (α(q(x, y, z)), β(q(y, z, x)), γ(q(z, x, y)))

sends any product Ci×Cj×Ck of three equivalence classes into the cube C3 of a single
equivalence class; moreover, this function still has the properties of t mentioned above.
Set h(x, y, z) := g ◦ (α, β, γ) ◦ t(x, y, z) = g(α(q(x, y, z)), β(q(y, z, x)), γ(q(z, x, y))).
Then h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = g(N,N,N) = N . We claim that h behaves
like a minority on {E,=}. If P,Q,R ∈ {E,=} then h(P,Q,R) = g(P,Q,R). Since
(α, β, γ) ◦ t(x, y, z) maps the product of three equivalence classes into the cube of a
single equivalence class, and since g behaves like x+y+z modulo 2 on each equivalence
class, the claim follows.

7. Polynomial-time tractable CSPs over homogeneous equivalence

relations. We provide two polynomial-time algorithms: the first one is designed
for the CSPs of reducts of (Cω

2 , E) with a ternary injective canonical polymorphism
of behaviour minority which is hyperplanely of behaviour balanced xnor (Section 7.1),
and the second one for reducts of (C2

ω, E) with a ternary canonical polymorphism h
such that

h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N

and which behaves like a minority on {=, E} (Section 7.2).

7.1. Two infinite classes. We consider the case where Γ is a reduct of
(Cω

2 , E) which is preserved by a canonical injection h of behaviour minority which
is hyperplanely of behaviour balanced xnor (cf. Proposition 6.6). Our algorithm for
CSP(Γ) is an adaptation of an algorithm for reducts of the random graph [BP15a].

We first reduce CSP(Γ) to the CSP of a structure that we call the injectivization
of Γ, which can then be reduced to a tractable CSP over a Boolean domain.

Definition 7.1. A tuple is called injective if all its entries are pairwise distinct.
A relation is called injective if all its tuples are injective. A structure is called injective
if all its relations are injective.

Definition 7.2. We define injectivizations for relations, atomic formulas, and
structures.

• Let R be any relation. Then the injectivization of R, denoted by inj(R), is
the (injective) relation consisting of all injective tuples of R.

• Let φ(x1, . . . , xn) be an atomic formula in the language of Γ, where x1, . . . , xn
is a list of the variables that appear in φ. Then the injectivization of
φ(x1, . . . , xn) is the formula Rinj

φ (x1, . . . , xn), where R
inj
φ is a relation symbol

which stands for the injectivization of the relation defined by φ.
• The injectivization of a relational structure Γ, denoted by inj(Γ), is the
relational structure with the same domain as Γ whose relations are the
injectivizations of the atomic formulas over Γ, i.e., the relations Rinj

φ .
To state the reduction to the CSP of an injectivization, we also need the following

operations on instances of CSP(Γ). Here, it will be convenient to view instances of
CSP(Γ) as primitive positive τ -sentences.

Definition 7.3. Let Φ be an instance of CSP(Γ). Then the injectivization of Φ,

34



denoted by inj(Φ), is the instance ψ of CSP(inj(Γ)) obtained from φ by replacing each

conjunct φ(x1, . . . , xn) of Φ by Rinj
φ (x1, . . . , xn).

We say that a constraint in an instance of CSP(Γ) is false if it defines an empty
relation in Γ. Note that a constraint R(x1, . . . , xk) might be false even if the relation
R is non-empty (simply because some of the variables from x1, . . . , xk might be equal).
The proof of the following statement is identical to the proof for the random graph
instead of (Cω

2 , Eq) in [BP15a].
Proposition 7.4 (Lemma 71 in [BP15a]). Let Γ be preserved by a binary

injection f of behaviour E-dominated projection. Then CSP(Γ) can be reduced to
CSP(inj(Γ)) in polynomial time.

We are now in a position to give our reduction.
Proposition 7.5. Let Γ be a reduct of (C2

ω, E) such that End(Γ) = Aut(C2
ω , E)

and Γ has a ternary injection f which behaves like minority. Further, let ∆ be
({0, 1}; 0, 1, {(x, y, z) : z + y + z = 1 mod 2}). There is a polynomial time reduction
from CSP(inj(Γ)) to CSP(∆).

Proof. Note that f preserves inj(Γ) since f is injective. From f one can derive
a polymorphism f ′ on the two-element structure obtained from Γ by factoring by
the equivalence classes, which behaves like the ternary minimum function on domain
{0, 1}.

Take an instance φ for CSP(inj(Γ)) and build an instance φ′ for CSP(∆) in
the following manner. The variable set remains the same and every constraint
(b1, . . . , bk) ∈ R from φ becomes (a1, . . . , ak) ∈ R′ in φ′ where bi ∈ Cai

. From
Proposition 6.7, through the presence of f ′ and the lack of a polymorphism of Γ
identifying one equivalence class alone, we can assume that the relations of φ′ are
preserved by x+y+z mod 2, and can thus be taken to be pp-definable in the relation
(x+ y + z = 1 mod 2) (see e.g. [CKS01]).

Suppose φ is a yes-instance of CSP(inj(Γ)), then φ′ is a yes-instance of CSP(∆),
by application of the polymorphism f ′.

Suppose φ′ is a yes-instance of CSP(∆), with solution f : V → {0, 1}. Then we
can build a satisfying assignment for φ by choosing any injective function from V to
(C2

ω , E) sending x→ Cf(x).
Corollary 7.6. Let Γ be a reduct of (Cω

2 , E) which is preserved by a ternary
injection h of behaviour minority which is hyperplanely of behaviour balanced xnor.
Then CSP(Γ) can be solved in polynomial time.

Proof. Note that the binary function h(x, y, y) is of type p1 and E-dominated in
the second argument. So the statement is a consequence of Proposition 7.4 and 7.5.

7.2. Infinitely many classes of size two. We now prove tractability of
CSP(Γ) for reducts Γ of (C2

ω , Eq) in a finite language such that Pol(Γ) contains a
ternary canonical function h such that

h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N

which behaves like a minority on {=, E}.
Proposition 7.7. A relation R with a first-order definition in (C2

ω, Eq) is
preserved by h if and only if it can be defined by a conjunction of formulas of the
form

N(x1, y1) ∨ · · · ∨N(xk, yk) ∨ Eq(z1, z2) (7.1)
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for k ≥ 0, or of the form

N(x1, y1) ∨ · · · ∨N(xk, yk)∨ (|{i ∈ S : xi 6= yi}| ≡2 p) (7.2)

where p ∈ {0, 1} and S ⊆ {1, . . . , k}.
The proof is inspired from a proof for tractable phylogeny constraints [BJP17].
Proof. For the backwards implication, it suffices to verify that formulas of the form

in the statement are preserved by h. Let o, p, q ∈ R, and let r := h(o, p, q). Assume
that R has a definition by a formula φ of the form as described in the statement.
Suppose for contradiction that r does not satisfy φ. For any conjunct of φ violated
by r, of the form N(x1, y1) ∨ · · · ∨ N(xk, yk) ∨ θ, the tuple r must therefore satisfy
Eq(x1, y1) ∧ · · · ∧ Eq(xk, yk). Since h has the property that h(N, ·, ·) = h(·, N, ·) =
h(·, ·, N) = N , this means that each of o, p, and q also satisfies this formula. This
in turn implies that o, p, and q must satisfy the formula θ. It suffices to prove
that r satisfies θ, too, since this contradicts the assumption that r does not satisfy φ.
Suppose first that θ is of the formEq(z1, z2). In this case, r must also satisfy Eq(z1, z2)
since h preserves Eq. So assume that θ is of the form |{i ∈ S : xi 6= yi}| ≡2 p for
S ⊆ {1, . . . , k} and p ∈ {0, 1}. Since each of o, p, q satisfies this formula and h behaves
like a minority on {E,=}, we have that r satisfies this formula, too.

For the forwards implication, letR be an n-ary relation with a first-order definition
in (C2

ω, Eq) that is preserved by h. Define ∼ to be the equivalence relation on (C2
ω)

n

where a ∼ b iff Eq(ai, aj) ⇔ Eq(bi, bj) for all i, j ≤ n. Note that h preserves ∼. For
a ∈ (C2

ω)
n, let Ra be the relation that contains all t ∈ R with t ∼ a. Let ψa be the

formula
∧

i<j≤n,Eq(ai,aj)

Eq(xi, xj)

and ψ′
a be the formula

∧

i<j≤n,N(ai,aj)

N(xi, xj) .

Note that t ∈ (C2
ω)

n satisfies ψa ∧ ψ′
a if and only if t ∼ a, and hence a tuple from R

is in Ra if and only it satisfies ψa ∧ ψ
′
a.

Pick representatives a1, . . . , am for all orbits of n-tuples in R.

Claim 1.
∨

i≤m(ψai
∧ ψ′

ai
) is equivalent to a conjunction of formulas of the form

(7.1) from the statement.
Rewrite the formula into an equivalent formula ψ0 in conjunctive normal form of

minimal size where every literal is either of the form Eq(x, y) or of the form N(x, y).
Suppose that ψ0 contains a conjunct with literals Eq(a, b) and Eq(c, d). Since ψ0 is
of minimal size there exists r ∈ (C2

ω)
n that satisfies Eq(a, b) and none of the other

literals in the conjunct, and similarly there exists s ∈ (C2
ω)

n that satisfies Eq(c, d)
and none of the other literals. By assumption, r ∼ r′ ∈ R and s ∼ s′ ∈ R. Since R is
preserved by h, we have t′ := h(r′, s′, s′) ∈ R. Then t ∼ t′ since h preserves ∼, and
hence t satisfies ψ0. But t satisfies none of the literals in the conjunct, a contradiction.
Hence, all conjuncts of ψ0 have form (7.1) from the statement.

Let t ∈ (C2
ω)

n, set l :=
(

n
2

)

, and let i1j1, . . . , iljl be an enumeration of
(

{1,...,n}
2

)

.

The tuple b ∈ {0, 1}(
n

2) with bs = 1 if tis 6= tjs and bs = 0 otherwise is called
the split vector of t. We associate to Ra the Boolean relation Ba consisting of all
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split vectors of tuples in Ra. Since R and Ra are preserved by h, the relation Ba is
preserved by the Boolean minority operation, and hence has a definition by a Boolean
system of equations. Therefore, there exists a conjunction θa of equations of the form
|{s ∈ S : xis = yjs}| ≡2 p, p ∈ {0, 1} such that θa ∧ ψa ∧ ψ

′
a defines Ra.

Claim 2. The following formula φ defines R:

φ := ψ0 ∧
∧

a∈{a1,...,am}

(¬ψa ∨ θa)

It is straightforward to see that this formula can be rewritten into a formula of the
form as required in the statement.

To prove the claim, we first show that every t ∈ R satisfies φ. Clearly, t satisfies ψ0.
Let a ∈ {a1, . . . , am} be arbitrary; we have to verify that t satisfies ¬ψa ∨ θa. If there
are indices i, j ∈ {1, . . . , n} such that N(ti, tj) and Eq(ai, aj), then t satisfies ¬ψa. We
are left with the case that for all i, j ∈ {1, . . . , n} if Eq(ai, aj) then Eq(ti, tj). In order
to show that t satisfies θa, it suffices to show that there exists a t′ ∈ Ra such that for
all i, j ≤ n with Eq(ai, aj) we have ti = tj iff t′i = t′j . Note that t′ := h(a, a, t) ∼ a
since h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = h. Moreover, t′ ∈ R and thus t′ ∈ Ra.
Finally, for all i, j ≤ n with Eq(ai, aj) we have ti = tj iff t′i = t′j because h behaves
as a minority on {E,=}. Hence, t satisfies φ.

Next, we show that every tuple t that satisfies φ is in R. Since t satisfies ψ0 we
have that t ∼ a for some a ∈ {a1, . . . , am}. Thus, t |= ψa ∧ ψ′

a. By assumption, t
satisfies ¬ψa ∨ θa and hence t |= θa. Therefore, t ∈ Ra and in particular t ∈ R.

Proposition 7.8. There is a polynomial-time algorithm that decides whether a
given set Φ of formulas as in the statement of Proposition 7.7 is satisfiable.

Proof. Let X be the set of variables that appear in Φ. Create a graph G with
vertex set X that contains an edge between z1 and z2 if Φ contains a formula of the
form Eq(z1, z2). Eliminate all literals of the form N(xi, yi) in formulas from Φ when
xi and yi lie in the same connected component of G. Repeat this procedure until no
more literals get removed.

We then create a Boolean system of equations Ψ with variable set
(

X
2

)

as follows;
if x, y ∈ X are distinct, for better readability we write xy for the respective Boolean
variable instead of {x, y}. For each formula |{i ∈ S | xi 6= yi}| ≡2 p we add the
Boolean equation

∑

i∈S xiyi = p. We additionally add for all xy, yz, xz ∈
(

X
2

)

the
equation xy+yz = xz. If the resulting system of equations Ψ does not have a solution
over {0, 1}, reject the instance. Otherwise accept.

To see that this algorithm is correct, observe that the literals that have been
removed in the first part of the algorithm are false in all solutions, so removing them
from the disjunctions does not change the set of solutions.

If the algorithm rejects, then there is indeed no solution to Φ. To see this, suppose
that s : C2

ω → C2
ω is a solution to Φ. Define b :

(

X
2

)

→ {0, 1} as follows. Note that for
every variable xiyi that appears in some Boolean equation in Ψ, a literal N(xi, yi) has
been deleted in the first phase of the algorithm (recall the syntactic form in (7.2); we
only add Boolean equations to Ψ if all the literals involving N have been deleted), and
hence we have Eq(s(xi), s(yi)). Define s′(xiyi) := 1 if s(xi) 6= s(yi) and s

′(xiyi) := 0
otherwise. Then s′ is a satisfying assignment for Ψ.

We still have to show that there exists a solution to Φ if the algorithm accepts.
Let s′ :

(

X
2

)

→ {0, 1} be a solution to Ψ. For each connected component C in the
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graph G at the final stage of the algorithm we pick two values aC , bC ∈ C2
ω such

that Eq(aC , bC), and such that N(aC , d) and N(bC , d) for all previously picked values
d ∈ C2

ω. Moreover, for each connected component C of G we pick a representative rC .
Define s(rC) := aC , and for x ∈ C define s(x) := aC if s′(xrC) = 0, and s(x) := bC
otherwise.

Then s satisfies all formulas in Ψ that still contain disjuncts of the form N(xi, yi),
since these disjuncts are satisfied by s. Formulas of the form |{i ∈ S : xi 6= yi}| ≡2

p are satisfied, too, since xi and yi lie in the same connected component C, and
hence s(xi) 6= s(yi) iff s′(xrC) 6= s′(yirC), which is the case iff s′(xrC) + s′(yirC) =
s′(xiyi) = 1 because of the additional equations we have added to Ψ. Therefore,
|{i ∈ S : xi = yi}| ≡2 p iff

∑

i∈S s
′(xiyi) = p.

Corollary 7.9. Let Γ be a reduct of (C2
ω , Eq) with finite signature and such

that Pol(Γ) contains a ternary canonical injection h as described in the beginning of
Section 7.2. Then CSP(Γ) is in P.

Proof. Direct consequence of Proposition 7.7 and Proposition 7.8.

8. Summary for the homogeneous equivalence relations.

Theorem 8.1. Let Γ be a finite signature reduct of (Cs
n, E), where either 2 <

n < ω or 2 < s < ω, and either n or s equals ω. Then one of the following holds.
(1) Γ is homomorphically equivalent to a reduct of (Cs

n,=), and CSP(Γ) is in P
or NP-complete by [BK08].

(2) End(Γ) = Aut(Cs
n, E), Pol(Γ) has a uniformly continuous h1 clone homo-

morphism, and CSP(Γ) is NP-complete.
Proof. If Γ has an endomorphism whose image is a clique or an independent

set, then Γ is homomorphically equivalent to a reduct of (Cs
n,=) and the complexity

classification is known from [BK08]. Otherwise, courtesy of Propositions 6.1 and 6.2,
we may assume that End(Γ) = Aut(Cs

n, E), and that there is a pp-definition of E, N ,
and Eq in Γ.

In the first case, that Eq has a finite number n ≥ 3 of classes, we use
Proposition 6.4 to see that the action of Pol(Γ) on the classes of Eq has no essential
and no constant operation. It follows that this action has a uniformly continuous
projective clone homomorphism as in Definition 4.2. The mapping which sends every
function in Pol(Γ) to the function it becomes in the action on the classes of Eq is
a uniformly continuous clone homomorphism [BP15b], and hence the original action
of Pol(Γ) has a uniformly continuous projective clone homomorphism as well. This
implies NP-completeness of CSP(Γ) (Theorem 4.3).

In the second case, that Eq has classes of finite size s ≥ 3, we use Proposition 6.5
to see that the action of Pol(Γ, C) on some equivalence class C has no essential and no
constant operation, and hence has a uniformly continuous projective clone homomor-
phism. Picking any c ∈ C, we have that Pol(Γ, c) ⊆ Pol(Γ, C) since C is pp-definable
from c and Eq. Consequently, Pol(Γ, c) has a uniformly continuous projective clone
homomorphism as well. Because Γ is a model-complete core, this implies that Pol(Γ)
has a uniformly continuous projective h1 clone homomorphism [BP16a], and hence
CSP(Γ) is NP-complete by Theorem 4.3.

Theorem 8.2. Suppose Γ is a finite signature reduct of (Cω
2 , E). Then one of

the following holds.
(1) Γ is homomorphically equivalent to a reduct of (Cω

2 ,=), and CSP(Γ) is in P
or NP-complete by [BK08].

(2) End(Γ) = Aut(Cω
2 , E), Pol(Γ) contains a canonical ternary injection of

behaviour minority which is hyperplanely of behaviour balanced xnor, and
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CSP(Γ) is in P.
(3) End(Γ) = Aut(Cω

2 , E), Pol(Γ) has a uniformly continuous h1 clone homo-
morphism, and CSP(Γ) is NP-complete.

Proof. As in the proof of Theorem 8.1 we may assume that End(Γ) =
Aut(Cω

2 , E), and that E, N and Eq are pp-definable. We apply Proposition 6.6.
The first two cases from that proposition imply a uniformly continuous projective
h1 clone homomorphism, and hence NP-completeness of the CSP, as in the proof of
Theorem 8.1. The third case in Proposition 6.6 yields case (2) here, and tractability
as detailed in Section 7.1.

Theorem 8.3. Suppose Γ is a finite signature reduct of (C2
ω, E). Then one of

the following holds.

(1) Γ is homomorphically equivalent to a reduct of (C2
ω ,=), and CSP(Γ) is in P

or NP-complete by [BK08].
(2) End(Γ) = Aut(C2

ω , E), Eq is not pp-definable, Pol(Γ) contains a canonical
binary injective polymorphism of behaviour min that is N -dominated, and
CSP(Γ) is in P.

(3) End(Γ) = Aut(C2
ω, E), Eq is pp-definable, Pol(Γ) contains a ternary

canonical function h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which
behaves like a minority on {E,=}, and CSP(Γ) is in P.

(4) End(Γ) = Aut(C2
ω , E), Pol(Γ) has a uniformly continuous h1 clone homo-

morphism, and CSP(Γ) is NP-complete.

Proof. As in Theorem 8.1 we may assume that End(Γ) = Aut(C2
ω , E), and that

therefore E andN are pp-definable. If Eq is not pp-definable, then by Proposition 6.9,
we have a binary injective polymorphism of behaviour min that is N -dominated, and
we have a polynomial algorithm from Theorem 4.5, similarly as in Proposition 4.6 for
reducts of (Hn, E). Suppose now that Eq is pp-definable. We apply Proposition 6.10.
As before, the first two cases imply NP-completeness of CSP(Γ). The third case from
Proposition 6.10 yields tractability as detailed in Section 7.2.

Summarizing, we obtain a proof of Theorem 1.2.

Proof. [of Theorem 1.2] The statement follows from the preceding three theorems,
together with [BW12] (for Cω

ω ) and [BK08] (for C1
ω and Cω

1 ).

9. Outlook. We have classified the computational complexity of CSPs for
reducts of the infinite homogeneous graphs. Our proof shows that the scope of the
classification method from [BP15a] is much larger than one might expect at first
sight. The general research goal here is to identify larger and larger classes of infinite-
domain CSPs where systematic complexity classification is possible; two dichotomy
conjectures are given for CSPs of reducts of finitely bounded homogeneous structures
in [BPP14] and [BP16a], where these have now been proved equivalent in [BKO+17].
We have given additional evidence for these conjectures by proving that they hold for
all reducts of homogeneous graphs. The next step in this direction might be to show
a general complexity dichotomy for reducts of homogeneous structures whose age is
finitely bounded and has the free amalgamation property (the Henson graphs provide
natural examples for such structures). The present paper indicates that this problem
might be within reach.
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[BCKvO09] Manuel Bodirsky, Hubie Chen, Jan Kára, and Timo von Oertzen. Maximal infinite-
valued constraint languages. Theoretical Computer Science (TCS), 410:1684–
1693, 2009. A preliminary version appeared at ICALP’07.

[BJP17] Manuel Bodirsky, Peter Jonsson, and Trung Van Pham. The Complexity of Phylogeny
Constraint Satisfaction Problems. ACM Transactions on Computational Logic
(TOCL), 18(3), 2017. An extended abstract appeared in the conference STACS
2016.
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