311 research outputs found

    A tabu search heuristic for routing in WDM networks.

    Get PDF
    Optical networks and Wavelength-Division Multiplexing (WDM) have been widely studied and utilized in recent years. By exploiting the huge bandwidth of optical networks, WDM appears to be one of the most promising technologies to meet the dramatically increased demand for bandwidth. Since optical resources in optical networks are very expensive, development of dynamic lightpath allocation strategies, which utilize network resource efficiently, is an important area of research. We assume that there is no optical wavelength conversion device in the network, and the wavelength-continuity constraint must be satisfied. Exact optimization techniques are typically too time-consuming to be useful for practical-sized networks. In this thesis we present a tabu search based heuristic approach which is used to establish an optimal lightpath dynamically in response to a new communication request in a WDM network. As far as we know, this is the first investigation using tabu search techniques for dynamical lightpath allocation in WDM networks. We have tested our approach with networks having different sizes. And then we have compared our results with those obtained using the MILP approach. In the vast majority of cases, tabu search was able to quickly generate a solution that was optimal or near-optimal, indicating that tabu search is a promising approach for the dynamic lightpath allocation problem in WDM networks. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .W36. Source: Masters Abstracts International, Volume: 43-01, page: 0247. Advisers: Subir Bandyopadhyay; Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Multicast Routing In Optical Access Networks

    Get PDF
    Widely available broadband services in the Internet require high capacity access networks. Only optical networking is able to efficiently provide the huge bandwidth required by multimedia applications. Distributed applications such as Video-Conferencing, HDTV, VOD and Distance Learning are increasingly common and produce a large amount of data traffic, typically between several terminals. Multicast is a bandwidth-efficient technique for one-to-many or many-to-many communications, and will be indispensable for serving multimedia applications in future optical access networks. These applications require robust and reliable connections as well as the satisfaction of QoS criteria. In this chapter, several access network architectures and related multicast routing methods are analyzed. Overall network performance and dependability are the focus of our analysis

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Specifically, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both

    Future PON Data Centre Networks

    Get PDF
    Significant research efforts have been devoted over the last decade to design efficient data centre networks. However, major concerns are still raised about the power consumption of data centres and its impact on global warming in the first place and on the electricity bill of data centres in the second place. Passive Optical Network (PON) technology with its proven performance in residential access networks can provide energy efficient, high capacity, low cost, scalable, and highly elastic solutions to support connectivity inside modern data centres. Here, we focus on introducing PONs in the architecture of data centres to resolve many issues in current data centre designs such as high cost and high power consumption resulting from the large number of access and aggregation switches needed to interconnect hundreds of thousands of servers. PONs can also overcome the problems of switch oversubscription and unbalanced traffic in data centres where PON architectures and protocols have historically been optimised to deal with these problems and handle bursty traffic efficiently. In this thesis, five novel PON data centre designs are proposed and compared to facilitate intra and inter rack communications. In addition to maximising the use of only passive optical devices, other challenges have to be addressed by these designs including off-loading the inter-rack traffic from the Optical Line Terminal (OLT) switch to avoid undesired power consumption and delays, facilitating multi-path routing, and reducing or eliminating the need for expensive tuneable lasers. The Scalability of the proposed architectures in terms of efficiently accommodating hundreds of thousands of servers is discussed. CAPEX and energy consumption of the proposed architectures are also investigated and savings compared to conventional architectures, such as the Fat-Tree and BCube, are demonstrated. The Routing and Wavelength Assignment (RWA) in intra and inter rack communication and the resource provisioning needed to cater for different applications that can be hosted in data centre are optimised using Mixed Integer Linear Programming (MILP) models to minimise the PON designs power consumption. Furthermore, real-time energy-efficient routing and resource provisioning algorithms are developed. In addition to optimising the power consumption, delay is also considered for the delay sensitive applications that can be hosted in the proposed data centre architectures. To further reduce power consumption and overcome issues related to link oversubscription and multi-path routing, Software Defined Network (SDN) based design is proposed

    Performance Analysis of Optical WDM Networks

    Get PDF
    An optical network provides a common infrastructure over which a verity of services can be delivered. These networks are also capable of delivering bandwidth in a flexible manner, supports capacity up gradation and transparency in data transmission. It consists of optical source (LED, LASER) as transmitter and optical fibre as transmission medium with other connectors and photo detector, receiver set. But due to limitation of electronic processing speed, it’s not possible to use all the BW of an optical fibre using a single high capacity channel or wavelength. The primary problem in a WDM network design is to find the best possible path between a source-destination node pair and assign available wavelength to this path for data transmission. To determine the best path a series of measurements are performed which are known as performance matrices. From these performance matrices, the Quality of Service parameters are determined. Here we have designed four different network topologies having different number of nodes, but each having equal capacity. We have simulated all these networks with different scenario to obtain the performance matrices. Then we have compared those performance matrices to suggest which network is be st under the present case.
    corecore