20 research outputs found

    Presentations of constrained systems with unconstrained positions

    Get PDF
    International audienceWe give a polynomial-time construction of the set of sequences that satisfy a finite-memory constraint defined by a finite list of forbidden blocks, with a specified set of bit positions unconstrained. Such a construction can be used to build modulation/error-correction codes (ECC codes) like the ones defined by the Immink-Wijngaarden scheme in which certain bit positions are reserved for ECC parity. We give a lineartime construction of a finite-state presentation of a constrained system defined by a periodic list of forbidden blocks. These systems, called periodic-finite-type systems, were introduced by Moision and Siegel. Finally, we present a linear-time algorithm for constructing the minimal periodic forbidden blocks of a finite sequence for a given period

    On row-by-row coding for 2-D constraints

    Full text link
    A constant-rate encoder--decoder pair is presented for a fairly large family of two-dimensional (2-D) constraints. Encoding and decoding is done in a row-by-row manner, and is sliding-block decodable. Essentially, the 2-D constraint is turned into a set of independent and relatively simple one-dimensional (1-D) constraints; this is done by dividing the array into fixed-width vertical strips. Each row in the strip is seen as a symbol, and a graph presentation of the respective 1-D constraint is constructed. The maxentropic stationary Markov chain on this graph is next considered: a perturbed version of the corresponding probability distribution on the edges of the graph is used in order to build an encoder which operates in parallel on the strips. This perturbation is found by means of a network flow, with upper and lower bounds on the flow through the edges. A key part of the encoder is an enumerative coder for constant-weight binary words. A fast realization of this coder is shown, using floating-point arithmetic

    Structural and Computational Existence Results for Multidimensional Subshifts

    Get PDF
    Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.Symbolidynamiikka on matematiikan ala, joka tutkii äärettömän pituisten symbolijonojen ominaisuuksia, tai moniulotteisessa tapauksessa äärettömän laajoja symbolihiloja. Siirtoavaruudet ovat tällaisten jonojen tai hilojen kokoelmia, jotka on määritelty kieltämällä jokin joukko äärellisen kokoisia kuvioita, ja äärellisen tyypin siirtoavaruudet saadaan kieltämällä vain äärellisen monta kuviota. Wangin tiilitykset ovat yksinkertaisin esimerkki moniulotteisista siirtoavaruuksista. Ne ovat värillisistä neliöistä muodostettuja tiilityksiä, joissa kaikkien vierekkäisten sivujen on oltava samanvärisiä. Moniulotteinen symbolidynamiikka on vahvasti yhteydessä laskettavuuden teoriaan, sillä monia siirtoavaruuksien perusominaisuuksia ei ole mahdollista tunnistaa tietokoneohjelmilla, vaan korkeamman tason laskennallisilla malleilla. Väitöskirjassani tutkin moniulotteisten siirtoavaruuksien rakennetta ja sen suhdetta niiden laskennallisiin ominaisuuksiin. Ensimmäisessä osassa keskityn tiettyihin äärellisen tyypin siirtoavaruuksien rakenteellisiin ominaisuuksiin: äärellisten kuvioiden muodostamaan järjestykseen ja Cantor-Bendixsonin astelukuun. Halutunlaisia siirtoavaruuksia rakentamalla osoitan, että molemmat ominaisuudet ovat olennaisesti laskennallisten ehtojen rajoittamia. Väitöskirjan toisessa osassa tutkin erilaisia tapoja määritellä moniulotteisia siirtoavaruuksia, sekä sitä, miten nämä tavat vertautuvat toisiinsa ja tunnettuihin siirtoavaruuksien luokkiin. Käsittelen määritelmiä, jotka perustuvat toisen kertaluvun logiikkaan, kvanttorilaajennukseksi kutsuttuun rajoitettuun loogiseen kvantifiointiin, sekä monipäisiin äärellisiin automaatteihin. Näistä kolmesta määritelmästä kahteen liittyy erilliset siirtoavaruuksien hierarkiat, joiden todistan romahtavan äärellisen korkuisiksi. Kvanttorilaajennuksen tutkimus valottaa myös niin kutsuttujen sofisten siirtoavaruuksien rakennetta, jota ei vielä tunneta hyvin: kyseisessä luvussa selvitän tarkasti, mitkä siirtoavaruudet voivat laajentaa sofisen avaruuden ei-sofiseksi.Siirretty Doriast

    Coding and Probabilistic Inference Methods for Data-Dependent Two-Dimensional Channels

    Get PDF
    Recent advances in magnetic recording systems, optical recording devices and flash memory drives necessitate to study two-dimensional (2-D) coding techniques for reliable storage/retrieval of information. Most channels in such systems introduce errors in messages in response to certain data patterns, and messages containing these patterns are more prone to errors than others. For example, in a single-level cell flash memory channel, inter-cell interference (ICI) is at its maximum when 101 patterns are programmed over adjacent cells in either horizontal or vertical directions. As another example, in two-dimensional magnetic recording channels, 2-D isolated-bits patterns are shown empirically to be the dominant error event, and during the read-back process inter-symbol interference (ISI) and inter-track interference (ITI) arise when these patterns are recorded over the magnetic medium. Shannon in his seminal work, ``A Mathematical Theory of Communications," presented two techniques for reliable transmission of messages over noisy channels, namely error correction coding and constrained coding. In the first method, messages are protected via an error correction code (ECC) from random errors which are independent of input data. The theory of ECCs is well studied, and efficient code construction methods are developed for simple binary channels, additive white Gaussian noise (AWGN) channels and partial response channels. On the other hand, constrained coding reduces the likelihood of corruption by removing problematic patterns before transmission over data-dependent channels. Prominent examples of constraints include a family of binary one-dimensional (1-D) and 2-D (d,k)\left(d,k\right)-run-length-limited (RLL) constraints which improves resilience to ISI timing recovery and synchronization for bandwidth limited partial response channels, where d and k represent the minimum and maximum number of admissible zeros between two successive ones in any direction of array. In principle, the ultimate coding approach for such data-dependent channels is to design a set of sufficiently distinct error correction codewords that also satisfy channel constraints. Designing channel codewords satisfying both ECC and channel constraints is important as it would achieve the channel capacity. However, in practice this is difficult, and we rely on sub-optimal methods such as forward concatenation method (standard concatenation), reverse concatenation method (modified concatenation), and combinations of these approaches. In this dissertation, we focus on the problem of reliable transmission of binary messages over data-dependent 2-D communication channels. Our work is concerned with several challenges in regard to the transmission of binary messages over data-dependent 2-D channels. Design of Two-Dimensional Magnetic Recording (TDMR) Detector and Decoder: TDMR achieves high areal densities by reducing the size of a bit comparable to the size of the magnetic grains resulting in 2-D ISI and very high media noise. Therefore, it is critical to handle the media noise along with the 2-D ISI detection. In this work, we tune the Generalized Belief Propagation (GBP) algorithm to handle the media noise seen in TDMR. We also provide an intuition into the nature of hard decisions provided by the GBP algorithm. Investigation into Harmful Patterns for TDMR channels: This work investigates into the Voronoi based media model to study the harmful patterns over multi-track shingled recording systems. Through realistic quasi micromagnetic simulations studies, we identify 2-D data patterns that contribute to high media noise. We look into the generic Voronoi model and present our analysis on multi-track detection with constrained coded data. We show that 2-D constraints imposed on input patterns result in an order of magnitude improvement in the bit error rate for TDMR systems. Understanding of Constraint Gain for TDMR Channels: We study performance gains of constrained codes in TDMR channels using the notion of constraint gain. We consider Voronoi based TDMR channels with realistic grain, bit, track and magnetic-head dimensions. Specifically, we investigate the constraint gain for 2-D no-isolated-bits constraint over Voronoi based TDMR channels. We focus on schemes that employ the GBP algorithm for obtaining information rate estimates for TDMR channels. Design of Novel Constrained Coding Methods: In this work, we present a deliberate bit flipping (DBF) coding scheme for binary 2-D channels, where specific patterns in channel inputs are the significant cause of errors. The idea is to eliminate a constrained encoder and, instead, embed a constraint into an error correction codeword that is arranged into a 2-D array by deliberately flipping the bits that violate the constraint. The DBF method relies on the error correction capability of the code being used so that it should be able to correct both deliberate errors and channel errors. Therefore, it is crucial to flip minimum number of bits in order not to overburden the error correction decoder. We devise a constrained combinatorial formulation for minimizing the number of flipped bits for a given set of harmful patterns. The GBP algorithm is used to find an approximate solution for the problem. Devising Reduced Complexity Probabilistic Inference Methods: We propose a reduced complexity GBP that propagates messages in Log-Likelihood Ratio (LLR) domain. The key novelties of the proposed LLR-GBP are: (i) reduced fixed point precision for messages instead of computational complex floating point format, (ii) operations performed in logarithm domain, thus eliminating the need for multiplications and divisions, (iii) usage of message ratios that leads to simple hard decision mechanisms

    Channel coding for high speed links

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2008.Includes bibliographical references (p. 139-144).This thesis explores the benefit of channel coding for high-speed backplane or chip-to-chip interconnects, referred to as the high-speed links. Although both power-constrained and bandwidth-limited, the high-speed links need to support data rates in the Gbps range at low error probabilities. Modeling the high-speed link as a communication system with noise and intersymbol interference (ISI), this work identifies three operating regimes based on the underlying dominant error mechanisms. The resulting framework is used to identify the conditions under which standard error control codes perform optimally, incur an impractically large overhead, or provide the optimal performance in the form of a single parity check code. For the regime where the standard error control codes are impractical, this thesis introduces low-complexity block codes, termed pattern-eliminating codes (PEC), which achieve a potentially large performance improvement over channels with residual ISI. The codes are systematic, require no decoding and allow for simple encoding. They can also be additionally endowed with a (0, n - 1) run-length-limiting property. The simulation results show that the simplest PEC can provide error-rate reductions of several orders of magnitude, even with rate penalty taken into account. It is also shown that channel conditioning, such as equalization, can have a large effect on the code performance and potentially large gains can be derived from optimizing the equalizer jointly with a pattern-eliminating code. Although the performance of a pattern-eliminating code is given by a closed-form expression, the channel memory and the low error rates of interest render accurate simulation of standard error-correcting codes impractical. This work proposes performance estimation techniques for coded high-speed links, based on the underlying regimes of operation.(cont)It also introduces an efficient algorithm for computing accurate marginal probability distributions of signals in a coded high-speed link.by Natasa Blitvic.S.M
    corecore