
Turku Centre for Computer Science

TUCS Dissertations
No 200, July 2015

Ilkka Törmä

Structural and Computational
Existence Results for
Multidimensional Subshifts

Structural and Computational
Existence Results for

Multidimensional Subshifts

Ilkka Törmä

To be presented, with the permission of the Faculty of Mathematics and
Statistics of the University of Turku, for public criticism in Auditorium

Calonia 1 on July 31, 2015, at 12 noon.

University of Turku
Department of Mathematics and Statistics

FI-20014 Turku
Finland

2015

Supervisors

Jarkko Kari
Department of Mathematics and Statistics
University of Turku
FI-20014 Turku
Finland

Reviewers

Emmanuel Jeandel
Lorraine Research Laboratory in Computer Science and its Applications
University of Lorraine
Campus Scientifique - BP 239
F-54506 Vandœuvre-lès-Nancy
France

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
McAllister Building, Pollock Road
State College, PA 16802
USA

Opponent

Alexander Shen
Department of Computer Science
University of Montpellier
LIRMM
161 Rue Ada
F-34095 Montpellier Cedex 5
France

ISBN 978-952-12-3237-4
ISSN 1239-1883

Abstract

Symbolic dynamics is a branch of mathematics that studies the structure of
infinite sequences of symbols, or in the multidimensional case, infinite grids
of symbols. Classes of such sequences and grids defined by collections of for-
bidden patterns are called subshifts, and subshifts of finite type are defined
by finitely many forbidden patterns. The simplest examples of multidimen-
sional subshifts are sets of Wang tilings, infinite arrangements of square tiles
with colored edges, where adjacent edges must have the same color. Mul-
tidimensional symbolic dynamics has strong connections to computability
theory, since most of the basic properties of subshifts cannot be recognized
by computer programs, but are instead characterized by some higher-level
notion of computability.

This dissertation focuses on the structure of multidimensional subshifts,
and the ways in which it relates to their computational properties. In the
first part, we study the subpattern posets and Cantor-Bendixson ranks of
countable subshifts of finite type, which can be seen as measures of their
structural complexity. We show, by explicitly constructing subshifts with
the desired properties, that both notions are essentially restricted only by
computability conditions. In the second part of the dissertation, we study
different methods of defining (classes of) multidimensional subshifts, and
how they relate to each other and existing methods. We present definitions
that use monadic second-order logic, a more restricted kind of logical quan-
tification called quantifier extension, and multi-headed finite state machines.
Two of the definitions give rise to hierarchies of subshift classes, which are
a priori infinite, but which we show to collapse into finitely many levels.
The quantifier extension provides insight to the somewhat mysterious class
of multidimensional sofic subshifts, since we prove a characterization for the
class of subshifts that can extend a sofic subshift into a nonsofic one.

i

ii

Tiivistelmä

Symbolidynamiikka on matematiikan ala, joka tutkii äärettömän pituisten
symbolijonojen ominaisuuksia, tai moniulotteisessa tapauksessa äärettömän
laajoja symbolihiloja. Siirtoavaruudet ovat tällaisten jonojen tai hilojen ko-
koelmia, jotka on määritelty kieltämällä jokin joukko äärellisen kokoisia ku-
vioita, ja äärellisen tyypin siirtoavaruudet saadaan kieltämällä vain äärellisen
monta kuviota. Wangin tiilitykset ovat yksinkertaisin esimerkki moniulottei-
sista siirtoavaruuksista. Ne ovat värillisistä neliöistä muodostettuja tiilityk-
siä, joissa kaikkien vierekkäisten sivujen on oltava samanvärisiä. Moniulot-
teinen symbolidynamiikka on vahvasti yhteydessä laskettavuuden teoriaan,
sillä monia siirtoavaruuksien perusominaisuuksia ei ole mahdollista tunnis-
taa tietokoneohjelmilla, vaan korkeamman tason laskennallisilla malleilla.

Väitöskirjassani tutkin moniulotteisten siirtoavaruuksien rakennetta ja
sen suhdetta niiden laskennallisiin ominaisuuksiin. Ensimmäisessä osassa
keskityn tiettyihin äärellisen tyypin siirtoavaruuksien rakenteellisiin omi-
naisuuksiin: äärellisten kuvioiden muodostamaan järjestykseen ja Cantor-
Bendixsonin astelukuun. Halutunlaisia siirtoavaruuksia rakentamalla osoi-
tan, että molemmat ominaisuudet ovat olennaisesti laskennallisten ehtojen
rajoittamia. Väitöskirjan toisessa osassa tutkin erilaisia tapoja määritellä
moniulotteisia siirtoavaruuksia, sekä sitä, miten nämä tavat vertautuvat
toisiinsa ja tunnettuihin siirtoavaruuksien luokkiin. Käsittelen määritelmiä,
jotka perustuvat toisen kertaluvun logiikkaan, kvanttorilaajennukseksi kut-
suttuun rajoitettuun loogiseen kvantifiointiin, sekä monipäisiin äärellisiin
automaatteihin. Näistä kolmesta määritelmästä kahteen liittyy erilliset siir-
toavaruuksien hierarkiat, joiden todistan romahtavan äärellisen korkuisik-
si. Kvanttorilaajennuksen tutkimus valottaa myös niin kutsuttujen sofisten
siirtoavaruuksien rakennetta, jota ei vielä tunneta hyvin: kyseisessä luvussa
selvitän tarkasti, mitkä siirtoavaruudet voivat laajentaa sofisen avaruuden
ei-sofiseksi.

iii

iv

Acknowledgements

I’ll begin by thanking my advisor, Professor Jarkko Kari, who has given me
both excellent guidance and a substantial amount of freedom in conducting
my PhD research. As an undergraduate student, his lectures on cellular au-
tomata and tiling systems sparked my interest in the mathematical research
of these topics, and at the time I was beginning to write my Master’s thesis,
he gave me the opportunity of joining his research group as an intern. Doing
research under Jarkko has been an amazing experience, and I have learned
a lot from him.

Secondly, I’d like to thank Ville Salo, my colleague, co-author, and friend.
I started my PhD studies one year after Ville, and for most of that time I
have shared an office with him. The majority of our research has been a
joint effort, and many fun days have passed while we figuratively banged
our heads together over various problems. Without Ville, this dissertation
would be quite different.

Several other people have also had an influence on my research. I’d like
to thank Charalampos “Babis” Zinoviadis, also an occupant of our office,
for introducing me to several interesting research directions, and for moral
support during my studies. Thanks are due to Jyrki Lahtonen and Roope
Vehkalahti for engaging seminar sessions on group theory and other topics,
and for being fun people in general. Professors Juhani Karhumäki and Luca
Zamboni introduced me to the exciting and useful fields of computational
complexity and combinatorics on words. My knowledge of topology and
measure theory is largely due to the courses of Professor Kari Ylinen, who
also showed me the importance of mathematical rigor. I’ve had the pleasure
to discuss mathematics and other things with several scholars from French
universities that have visited or been a part of our research group, including
Pierre Guillon (who suggested me the topic of my Master’s thesis), Timo
Jolivet, Nathalie Aubrun and Alexis Ballier. I’d also like to thank Professor
Michael Schraudner for inviting me to visit the Center of Mathematical
Modeling in University of Chile, and all the great people I met there.

Of course, I’m grateful to Professor Emmanuel Jeandel and Professor
Stephen G. Simpson for reviewing my dissertation, and to Professor Alexan-
der Shen for agreeing to act as my opponent.

v

An essential part of my studies has been the friendly atmosphere of
the Department of Mathematics and Statistics (which was called just the
Department of Mathematics when I started there). I owe a thanks to all my
colleagues there, especially the administrative staff, Tuire and Sonja, who
made my life much easier by reminding me of all the important stuff I tend
to forget.

I’m thankful to Turku Centre for Computer Science, University of Turku,
Turku University Foundation, and Nokia Foundation for providing financial
support during my PhD studies.

Last but not least, I want to thank all my friends and family for their
support. I’m grateful to my mother for everything she has done for me, and
to Juho and Sampo for keeping my feet on the ground. A special thanks goes
to Suvi, my spouse and best friend, for being the co-author of our everyday
life and many adventures.

Turku, June 2015
Ilkka Törmä

vi

Contents

1 Introduction 1

1.1 Multidimensional Symbolic Dynamics 1

1.2 Connections to Computability Theory 4

1.3 The Structure of This Dissertation 5

2 Definitions 9

2.1 Multidimensional Symbolic Dynamics 9

2.2 Some Discrete Geometry . 12

2.3 Partial Orders and Cantor-Bendixson Derivatives 13

2.4 Computability and Logic . 14

2.5 A Few Words on the Figures and Proofs 18

3 Preliminary Results and Constructions 21

3.1 Determinism, Bounded Signal Property, and Countability . . 21

3.2 Cantor-Bendixson Derivatives of Subshifts 26

3.3 Simulation of Counter Machines in Countable SFTs 27

3.4 Multidimensional Sofic Shifts 33

4 Structural Properties of Countable Two-Dimensional SFTs 37

4.1 Introduction . 37

4.2 The One-Dimensional Case 38

4.3 Cantor-Bendixson Ranks and Complexity of Derivatives . . . 40

4.4 Structure of Subpattern Posets 48

4.4.1 Infinite Chains and Antichains 48

4.4.2 Hyperarithmetical Subpattern Posets 49

4.4.3 The Skeleton Layer . 52

4.4.4 The Hyperarithmetical Layer 57

4.4.5 The Control Layer . 64

4.4.6 Further Results . 75

4.5 Subpattern Posets and The Bounded Signal Property 76

vii

5 Two-Dimensional Subshifts Defined by Logical Formulas 81
5.1 Introduction . 81
5.2 Logical Formulas and Structures 82
5.3 Hierarchies of MSO-Definable Subshifts 86
5.4 The u-MSO Hierarchy . 89
5.5 Other C-u-MSO Hierarchies 95
5.6 Lower Levels of C-u-MSO Hierarchies 96

6 Quantifier Extensions of Two-Dimensional Subshifts 101
6.1 Introduction . 101
6.2 The Quantifier Extensions . 102
6.3 Universal Extensions of Sofic Shifts 106
6.4 Quantifier Extensions of Deterministic Subshifts 118

7 Multidimensional Subshifts Defined by Finite Automata 121
7.1 Introduction . 121
7.2 Choosing the Machines . 123
7.3 Definitions . 124
7.4 One Head . 128
7.5 Two Heads . 132
7.6 Three Heads . 139

8 Conclusions 143
8.1 The Structure of Subshifts . 143
8.2 Subshifts and Logical Quantification 145
8.3 Plane-Walking Automata and the Use of Arithmetical Programs148
8.4 Collapsing Hierarchies . 150
8.5 Beyond Integer Lattices . 151

viii

Chapter 1

Introduction

1.1 Multidimensional Symbolic Dynamics

Consider a system of some kind that evolves with time, like a swinging pen-
dulum or traffic flowing through a city, whose behavior we wish to analyze.
Most of the time, we cannot describe the system perfectly, but can only
observe some parts of it; also, the system probably cannot be monitored
constantly, but only at certain intervals. One way of studying the evolution
of the system is to divide its possible states into some finitely many classes,
and recording its class at certain intervals. For example, we could describe
the traffic flow at a given time as ‘low’, ‘normal’ or ‘high’, and write down
this description once every 10 minutes. Given enough observations, this se-
quence may then provide us with a wealth of information about the traffic
system. This method of encoding the evolution of a dynamical system into a
sequence of discrete values is the motivation behind the field of mathematics
known as (one-dimensional) symbolic dynamics. The associated theory deals
with efficient encodings of different systems, and the intrinsic properties of
the symbolic sequences themselves.

The field of symbolic dynamics is often said to originate from the 1898
article of Hadamard [Had98], where he studies the properties of certain
geometrical objects called geodesics by encoding them into sequences of
symbols. In 1938 and 1940, Morse and Hedlund published a two-part article
titled ‘Symbolic Dynamics’ [MH38, MH40], where one-dimensional symbolic
dynamics was treated from an abstract point of view, focusing mostly on dy-
namical notions of symbolic sequences. Hedlund’s influential article [Hed69]
on certain natural functions between subshifts of finite type (SFTs), which
are classes of sequences defined by finitely many forbidden patterns that
they must avoid, took a more combinatorial approach. The field has since
grown significantly, and different classes of subshifts have been studied from
the dynamical, algebraic and computational viewpoints by numerous au-

1

Figure 1.1: A set of five Wang tiles with three colors: white, light gray, and
dark gray.

thors. The books [LM95, Kit98, Kůr03] provide a comprehensive overview
of the subject.

Multidimensional symbolic dynamics is a generalization of the theory
from sequences of symbols to tilings on multidimensional grids. The sim-
plest and most intuitive examples of multidimensional symbolic dynamical
systems are given by sets of Wang tiles. A Wang tile is a square whose four
edges are colored by some colors drawn from a finite set of choices; an exam-
ple is shown in Figure 1.1. We can place two such tiles next to each other, if
their adjacent edges have the same color. If we have a suitable collection of
Wang tiles, we can cover a large region with them, but it may also be that
the coloring forces every sufficiently large patch to contain a mismatched
pair of tiles. This concept was introduced by Hao Wang in [Wan61] for the
purpose of encoding certain problems in mathematical logic into problems
of geometry. In the article, he stated the famous tiling problem, sometimes
known as the domino problem: given a set of Wang tiles, decide whether
they can tile the infinite plane (or equivalently, an arbitrarily large square
region). In other words, the tiling problem asks whether the subshift of
finite type defined by forbidding tiles with mismatched edges is nonempty.
It was proved by Berger in [Ber66] (and simplified by Robinson in [Rob71])
that the tiling problem is undecidable, or that it cannot be solved by a fixed
algorithm. The result also shows that there exist sets of Wang tiles that
only produce aperiodic tilings. This is something that cannot happen in
the one-dimensional setting, since any nonempty one-dimensional subshift
of finite type contains a periodic sequence. The quest for finding the small-
est set of Wang tiles that only produces aperiodic tilings has attracted some
attention in the past. Berger’s original tileset consisted of thousands of tiles,
Robinson’s simplified solution only requires 56 tiles, and the current record
is 13, achieved in [Cul96] with a modification of the set of 14 tiles of [Kar96].
Very recently, an aperiodic tileset of size 11 was found, but the result has
not been published yet. This settles the question of the aperiodic tileset of
minimal size, since the same group also proved that all tilesets of size at
most 10 either do not tile the plane, or produce a periodic tiling [JR15].

Because of the added freedom provided by additional ‘directions’, mul-
tidimensional subshifts are generally speaking much harder to analyze than
their one-dimensional counterparts. As a simple example, consider the one-

2

dimensional golden mean shift, which is the set of those infinite sequences
of zeros and ones where two ones cannot occur next to each other. The first
of the two sequences

· · · 0010100011010010 · · ·

and

· · · 0010100001010010 · · ·

is not a member of the golden mean shift, since it contains the forbidden
pattern 1 1, but the second one is (unless, of course, 1 1 occurs somewhere
outside the shown segment). To every subshift we can associate a nonnega-
tive real number, called its topological entropy, that in some sense measures
its size and complexity. More explicitly, the entropy of a subshift is the
asymptotic growth rate of the number of patterns occurring in it. The en-
tropy of the golden mean shift is not very hard to compute explicitly using

just elementary combinatorics and calculus, and its value is exactly log 1+
√

5
2 ,

the logarithm of the golden mean φ = 1+
√

5
2 (which gives the subshift its

name). On the other hand, consider the two-dimensional golden mean shift,
also known as the hard squares model, which is the set of those infinite two-
dimensional grids where every grid square has been labeled by either 0 or
1, and neither of the two-dimensional patterns 1 1 and 1

1 occurs anywhere.
An example of a member of the two-dimensional golden mean shift shift is
the following grid:

...
1 0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0

· · · 0 0 1 0 0 0 1 0 0 · · ·
0 0 0 1 0 0 0 0 1
1 0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 0 1

...

Again, we assume that neither of the forbidden patterns occurs anywhere
outside the finite rectangle shown here. Even though the two-dimensional
golden mean shift is one of the simplest multidimensional subshifts, with
only two forbidden patterns of size 2, no exact formula for its entropy is
currently known; in fact, it is an open problem whether such a formula
even exists! This subshift has been thoroughly investigated in the past. For
example, it is known from [Bax99] that its entropy is approximately

1.5030480824753322643220663294755536893857810

3

and in [Pav12], it was proved that good approximations for its entropy are
relatively easy to produce by a computer program.

Another difficult open problem in multidimensional symbolic dynamics
is a possible characterization of sofic shifts. A subshift is sofic, if it can
be obtained from an SFT by re-labeling its tilings using a local rule. For
example, the one-dimensional golden mean shift can be re-labeled by the
rules 0 0 7→ 1, 0 1 7→ 0 and 1 0 7→ 0 to create a sofic shift known as the even
shift. As the name implies, the even shift is the set of sequences where there
are an even number of 0’s between any two consecutive 1’s, and because of
their long-range constraints, the even shift is not an SFT. For example, the
sequence

· · · 1000011100001100 · · ·

is a member of the even shift. It is known that one-dimensional sofic shifts
are exactly those whose admissible patterns can be described by a regular
language (see Section 4 of [LM95]), which implies that they are computa-
tionally very simple and (for the most part) easy to analyze. By contrast,
the class of two-dimensional sofic shifts is still badly understood. There are
several nontrivial conditions that every multidimensional sofic shift necessar-
ily satisfies [Des06, HM10, KM13, Pav13], and conversely, some conditions
that guarantee soficness [Moz89, DRS10, AS13, OP15], but none of them
gives a complete characterization for the class.

1.2 Connections to Computability Theory

The connection of multidimensional symbolic dynamics to computability
and logic has remained strong, and many results on one-dimensional sub-
shifts have multidimensional versions with a computational conclusion in-
stead of an algebraic of combinatorial one. For example, the topological
entropy of a one-dimensional subshift of finite type is always of the form
r logα, where r ∈ Q≥0 is a nonnegative rational number and α > 1 is a Per-
ron number, an algebraic integer largest in absolute value among its algebraic
conjugates [Lin84]. Conversely, every such number is the entropy of some
one-dimensional SFT. On the other hand, the entropies of multidimensional
SFTs are exactly the right recursively enumerable nonnegative real numbers,
that is, the limits of recursively enumerable descending sequences of rational
numbers [HM10]. It was earlier proved in [HKC92] that the entropy of a
given one-dimensional cellular automaton, and thus a two-dimensional SFT,
is uncomputable even up to a constant error. This means that even the mys-
terious two-dimensional golden mean shift mentioned above is much better
behaved than multidimensional subshifts in general. The uncomputability
of entropy and the undecidability of the tiling problem are examples of the

4

more general phenomenon that most properties of multidimensional SFTs
and sofic shifts cannot be checked effectively.

Another example of the computational nature of multidimensional sub-
shifts is given by the geometric notion of projective subdynamics. The pro-
jective subdynamics of a two-dimensional subshift is the collection of all hor-
izontal rows that occur in its infinite grids. It is always a one-dimensional
subshift, and its structure may or may not reflect that of the original two-
dimensional subshift. For example, it is not very hard to see that the pro-
jective subdynamics of the two-dimensional golden mean shift is exactly
the one-dimensional golden mean shift, so in this case the two subshifts
are very closely related. In general, however, the projective subdynamics
of two-dimensional sofic shifts can be extremely complicated, since they
are restricted only by a computational condition. Namely, it was inde-
pendently proved in [DRS10] and [AS13], following a similar but weaker
result in [Hoc09], that a one-dimensional subshift can be realized as the
projective subdynamics of a two-dimensional sofic shift if and only if there
is a computer program that outputs an infinite sequence of forbidden pat-
terns defining it. The projective subdynamics of two-dimensional SFTs are
computationally equally complex, but there are some additional geometric
restrictions [PS14, Gui12].

The phenomena of having computational characterizations for properties
of multidimensional subshifts, and of most of their properties being undecid-
able, are due to the fact that it is very easy to embed arbitrary computation
into a multidimensional SFT. For example, most proofs of the undecidability
of the tiling problem reduce it to the halting problem of Turing machines
by constructing a set of Wang tiles that simulates the computation of a
given Turing machine, and produces an infinite valid tiling only if the ma-
chine never halts. Usually, the most difficult aspect of such constructions is
to guarantee that every valid tiling contains a simulated computation, and
this is achieved by forcing longer and longer computations to occur at every
region of a tiling.

1.3 The Structure of This Dissertation

As the title suggests, the main results of this dissertation are constructions of
multidimensional subshifts with various structural and computational prop-
erties. Chapter 2 presents the notation and mathematical formalism used
here. We formally define subshifts and their topological and combinatorial
structure, together with different notions of computability and the ways in
which they relate to symbolic dynamics. We also present some simple ex-
amples of the concepts. The chapter is meant to be mostly self-contained,
although we present some basic results of symbolic dynamics without proof.

5

Chapter 3 contains a collection of results that we use repeatedly through
the course of this dissertation. Many of them are original, others have been
collected from various sources. Section 3.1 contains more examples of simple
subshifts, and its purpose is to give some intuition on the structural concepts
of determinism, the bounded signal property, and countability. Intuitively, a
two-dimensional subshift is deterministic if the upper half of any of its tilings
uniquely determines the lower half.1 For example, the set of Wang tiles in
Figure 1.1 defines a deterministic subshift, since all valid tilings consist of
infinite ‘stripes’ stretching from southwest to northeast. The bounded signal
property, on the other hand, means that the set of horizontal rows occur-
ring in the tilings of the subshift is structurally simple (in a certain precise
sense), and countability means that the number of tilings in the subshift is
at most countably infinite. Especially in the context of multidimensional
SFTs, countability is a very interesting and nontrivial restriction, and we
study it more thoroughly in Chapter 4. Section 3.2 contains some examples
and general results on the Cantor-Bendixson derivative, which is a notion
arising from abstract topology that can be applied to subshifts. Section 3.3
contains our first construction of a complicated subshift: the simulation of
arbitrary counter machines in countable SFTs. It provides us with a flexible
‘template’ for embedding computation in SFTs and sofic shifts that we can
modify as needed, and we make use of some variant of the construction in
every chapter of this dissertation. Finally, in Section 3.4 we discuss multidi-
mensional sofic shifts, in particular the few known necessary conditions for
a subshift to be sofic.

The following four chapters are based on the original publications [ST13,
Tör14b, Tör14a, ST14], but they have been extended and heavily modified
to fit the common theme and formalism of this dissertation. In Chapter 4,
we study the structural properties of countable SFTs and sofic shifts, con-
centrating on the aforementioned Cantor-Bendixson derivative, the related
Cantor-Bendoxson rank, and the subpattern poset. The subpattern poset is
a partial ordering of the tilings of a subshift based on the finite patterns they
contain: tilings with many distinct patterns are ‘greater’ than simpler ones.
The subpattern poset and Cantor-Bendixson derivative operation are con-
nected in subtle ways, and especially in the countable case, both can be seen
as indicators of the structural complexity of a given subshift. Section 4.2
is an extended introduction to the topic through the simpler case of one-
dimensional subshifts. In Section 4.3, we investigate the Cantor-Bendixson
ranks of countable SFTs, and the computational complexity of their deriva-
tives. The original content of this section consists of the characterization
of the set of possible ranks of countable SFTs, and the minimal rank of

1Recall that a two-dimensional subshift is simply a certain kind of collection of infinite
tilings.

6

a countable SFT containing an uncomputable tiling. Some related upper
and lower bounds were obtained earlier in [BDJ08, JV11, ST13, BJ13] using
various constructions, the main idea of which has been to find the struc-
turally simplest way of embedding computation into a countable SFT. In
our construction, we use an enhanced version of a finite state machine with
one counter, which gives an optimal solution, at least from the point of
view of the Cantor-Bendixson rank. In Section 4.4, we direct our interest
to subpattern posets of countable SFTs and sofic shifts. In the most in-
volved construction of this dissertation, we give a near-characterization for
the possible subpattern posets of countable SFTs and sofic shifts.2 As is
usually the case with properties of multidimensional subshifts, it turns out
that the characterization is computational, so a vast collection of partially
ordered sets can be realized as subpattern posets. Finally, in Section 4.5, we
show that the subpattern posets of those countable SFTs that possess the
bounded signal property are much more restricted.

Chapters 5 and 6 are variations of the same idea: defining multidimen-
sional subshifts using logical operations. In Chapter 5, we consider logical
formulas that express local or global restrictions on tilings, and define their
associated subshifts as the sets of those tilings that satisfy the restrictions.
Our approach is analogous to defining classes of finite graphs by logical for-
mulas such as ∀v∃w e(v,w), where the variables v and w represent vertices,
and the binary relation e denotes the existence of an edge; this formula cor-
responds to the class of directed graphs without sink vertices. Intuitively,
we define classes of tilings by quantifying over the tilings of other subshifts,
and checking a local (or at least finitary) condition. We continue the re-
search started in [JT13], and study certain hierarchies of formulas obtained
by counting quantifier alternations. The main results of the chapter state
that the hierarchies collapse to at most four distinct levels, the highest of
which has a simple computational characterization. In other words, every
formula ∃x1∀x2 · · · ∃xn φ is equivalent to one of the form ∀x∃y ψ, where the
variables denote tilings, in the sense that they define the same subshift. We
also obtain characterizations for the lower classes of the hierarchies.

In Chapter 6, we investigate the effect of quantification on the class of
sofic shifts in the slightly more concrete context of quantifier extensions,
which produce new subshifts from existing ones through universal and ex-
istential quantification. The concept is a generalization of the multi-choice
shift spaces in [LMP13]: while multi-choice shift spaces intuitively represent
the condition “the tiles at these coordinates can be chosen freely”, quantifier
extensions correspond to the more general “the tiles at these coordinates can

2The word near-characterization here means the following. We show that the subpat-
tern posets of multidimensional countable SFTs are exactly those partially ordered sets
that satisfy a certain computability condition, up to a collection of ‘degenerate’ elements
whose behavior we can mostly control.

7

be chosen freely, as long as these additional restrictions are respected”. In
the main result of the section, we show that for all nontrivial instances of
the ‘additional restrictions’, the class of multidimensional sofic shifts is not
closed under the universal quantifier extension. In some special cases, this
can be proved by a computability-theoretic argument, but the general result
requires combinatorial tools.

In Chapter 7, we study another unusual method of defining multidi-
mensional subshifts, this time using automata theory. We define a class of
finite state machines, called plane-walking automata, that can walk freely
on tilings, and may reject it by entering a special rejecting state. The
collection of tilings that the machine never rejects, no matter where it is
initialized, forms a subshift. This is somewhat similar to the definition of
regular languages using two-way finite automata, except that we view infi-
nite computations as accepting. We study the hierarchy of subshift classes
obtained by increasing the number of heads of the plane-walking automata.
This has been studied before in [DM02], but with a slightly different accep-
tance model, and using immobile pebbles instead of several mobile heads.
In view of the results of Chapter 5, the reader may not be surprised that the
hierarchy we define collapses to the class of three-headed automata in all
dimensions, and that this class has a computational characterization, which
is due to the fact that three-headed finite automata can simulate arbitrary
computation. We also prove some limitations of one- and two-headed au-
tomata, which depend heavily on the dimension of the tiling they are walking
on.

Finally, Chapter 8 contains some reflections on our results and possible
future directions. In particular, we discuss the nature of the collapsing
hierarchies in Chapters 5 and 7, and possible generalizations of our results
to the more abstract context of subshifts on groups, as well as state several
open problems.

8

Chapter 2

Definitions

2.1 Multidimensional Symbolic Dynamics

In this chapter, we present the notation and formalism used in this disser-
tation. It is assumed that the reader is familiar with elementary set theory,
topology, automata theory, and computability theory, but other than that,
the presentation is largely self-contained. We adopt the convention that the
set of natural numbers N = {0, 1, 2, . . .} contains 0.

To begin with, let A be a finite set of symbols or letters, called the
alphabet, endowed with the discrete topology. The set of finite words over A
is denoted A∗, and the length of a word w ∈ A∗ by |w|. The empty word of
length 0 is denoted by ε. Fix an integer dimension d ≥ 1. A d-dimensional
pattern over S is a pair P = (D, s), where D = D(P) ⊂ Zd is the domain of
P , and s : D → A is the arrangement of symbols in it. We denote P~v = s(~v)
for ~v ∈ D. The restriction of P to a smaller domain E ⊂ Zd is denoted
P |E . The set of d-dimensional finite patterns over A is denoted Pd(A), and
the set of patterns with domain D ⊂ Zd is denoted AD. A full pattern with
domain Zd is called a configuration, and the set AZd of all configurations is
called the d-dimensional full shift on A. A configuration x ∈ AZd is uniform
if there exists a ∈ A with x~n = a for all ~n ∈ Zd. For a dimension d′ < d,
a d′-dimensional vector ~v ∈ Zd′ and a d-dimensional configuration x ∈ AZd ,
we denote by x~v the restriction of x to the hyperplane Zd−d′ × {~v}, that is,

the (d− d′)-dimensional configuration y ∈ AZd−d′ defined by y~n = x(~n,~v) for

all n ∈ Zd−d′ . In particular, if x ∈ AZ2
and i ∈ Z, then xi ∈ AZ is the i’th

horizontal row of x.

We make the full shift a topological space by giving it the product topol-
ogy. A clopen base for it is given by cylinder sets, which are sets of the form
{x ∈ AZd | x|D(P) = P} for finite patterns P ∈ Pd(A). The clopen subsets

of AZd are exactly the finite unions of cylinder sets. When we want to stress
the topological properties of configurations, we may call them points of AZd .

9

For a pattern P over A and ~n ∈ Zd, we define the translation of P by
~n, denoted σ~n(P), as the pattern with domain D(P) − ~n and arrangement

function ~v 7→ P~v−~n. The restriction σ~n : AZd → AZd of σ~n to the full shift

is simply called the translation by ~n, and it defines an action of Zd on AZd .
If d = 1, this is also called the shift action. For a configuration x ∈ AZd , we
denote its orbit by O(x) = {σ~n(x) | ~n ∈ Zd}. For two patterns P and Q,
we say that P occurs in Q at ~n ∈ Zd if σ~n(Q)D(P) = P . If P occurs in Q at
some coordinate, we denote P @ Q.

Remark 2.1. We sometimes regard two finite patterns equal if they are trans-
lates of each other, and sometimes not. The choice should always be clear
from the context. Similarly, the alphabet A is sometimes identified with
A{

~0}, the set of singleton patterns.

In the one-dimensional setting d = 1, where configurations are bi-infinite
sequences of symbols, the shift action defines a dynamical system on the full
shift. Intuitively, if the shift action is applied to such a sequence repeatedly,
we can think of it as shifting to the left at a steady pace of, say, one step
each second. This intuition is especially fitting, if the sequence was obtained
by observing another system at certain time intervals, and recording its
behavior. In the multidimensional case, we have more than one degree of
freedom, so it make less sense to think of the full shift as evolving in time,
which is why we think of σ as a spatial translation operation, instead of a
temporal one.

A d-dimensional subshift over A is a topologically closed subset X ⊂ AZd

satisfying σ~n(X) = X for all ~n ∈ Zd. Alternatively, all subshifts X can be

defined by a set F ⊂ Pd(A) of forbidden patterns as XF = {x ∈ AZd | ∀P ∈
F : P 6@ x}. If F is finite, then XF is a subshift of finite type (SFT for
short), and if the domain of every pattern of F is of the form {~0, ~ei}, where
e1, . . . , ed is the natural basis of Zd, then XF is a tiling system. The language
of a subshift X ⊂ AZd is B(X) = {P ∈ Pd(A) | x ∈ X,P @ x}, the
set of finite patterns occurring in its configurations. For a domain D ⊂
Zd, we denote BD(X) = B(X) ∩ AD, and the set of symbols occurring
in X is denoted A(X) = B{~0}(X). If d = 1 and n ∈ N, we also denote

Bn(X) = B(X) ∩ An. The orbit closure O(x) of a configuration x ∈ AZd is

a subshift, and we denote B(x) = B(O(x)). A subshift X ⊂ AZd is strongly
irreducible (with constant M > 0) if for any two domains D,D′ ⊂ Zd such
that min{‖~n− ~m‖ | ~n ∈ D, ~m ∈ D′} ≥M where ‖ · ‖ denotes the maximum
norm, and any two patterns P ∈ BD(X) and P ′ ∈ BD′(X), there exists a
configuration x ∈ X with x|D = P and x|D′ = P ′.

Let X and Y be d-dimensional subshifts, possibly over different alpha-
bets. A block map is a continuous function f : X → Y which intertwines the
shift maps on X and Y : f ◦ σ~n|X = σ~n|Y ◦ f for all ~n ∈ Zd. Alternatively,
a block map f can be defined by a local function F : BD(X) → A(Y) by

10

f(x)~n = F (x|D+~n) for all x ∈ X and ~n ∈ Zd, where D ⊂ Zd is a finite
domain, called the neighborhood of f [Hed69]. Block maps with neighbor-
hood {~0} are called symbol maps. An image of a subshift under a block
map is a subshift, and images of SFTs are called sofic shifts. Two subshifts
are called conjugate if there is a bijective block map between them. It is
known that every SFT is conjugate to a tiling system, and every sofic shift
is the image of a tiling system under a symbol map. Block maps are the
‘natural’ morphisms between subshifts, and we treat conjugate subshifts as
essentially equivalent. In particular, conjugacies respect the properties of
being an SFT and being a sofic shift, as well as most interesting notions of
computability.

Example 2.2. Let A = {0, 1}, and let F ⊂ P2(A) be the set of patterns
where the letter 1 occurs twice. Then XF ⊂ AZ2

is the set of two-dimensional
configurations containing at most one letter 1. This subshift, or some version
of it, is sometimes called the sunny side up shift (see [PS14]). It is a sofic
shift.

A famous example of an SFT is the two-dimensional golden mean shift
on the same alphabet, defined by the forbidden patterns 1 1 and 1

1 . Since
the patterns are of size 2 × 1 and 1 × 2, respectively, X is even a tiling
system. In its configurations, no two letters 1 can be adjacent, but there are
no other restrictions.

For a subshift X ⊂ AZd , the block maps from X to itself are called cel-
lular automata. The set of limit spacetime diagrams of a cellular automaton
f : X → X is the (d+ 1)-dimensional subshift

{x ∈ AZd+1 | ∀i ∈ Z : xi ∈ X ∧ xi = f(xi+1)}.

The reason we do not call such configurations simply the spacetime diagrams
of f is that f might not be surjective, and in this case only rows with an
infinite chain of preimages appear in limit spacetime diagrams. The set of
such rows is usually called the limit set of f .

To define a one-dimensional SFT or sofic shift, instead of supplying the
forbidden patterns, we usually use the notation

B−1(L) = {x ∈ AZ | ∀r ∈ N : ∃u ∈ L : x[−r,r] @ u}

where L ⊂ A∗ is a regular language. As the notation xi for x ∈ AZ2
and

i ∈ Z implies, we sometimes think of a two-dimensional configuration as
being a one-dimensional configuration with legal rows as the alphabet. In
particular, we may use the notation x[i,j] to extract a finite list of rows from
x.

See [LM95, Section 13.10] for a short survey on multidimensional sym-
bolic dynamics.

11

2.2 Some Discrete Geometry

We call a vector (i, j) ∈ Z2 with gcd(i, j) = 1 a direction, and we denote by
SLd(Z) the restriction of the special linear group SLd(R) to those functions
that map Zd bijectively to itself. In the two-dimensional case, SL2(Z) is the
group 2 × 2 integer matrices of determinant ±1. It follows from Bezout’s
identity that for any two directions ~d,~e ∈ Z2, there exists an element L ∈
SL2(Z) with L(~d) = ~e. For a configuration x ∈ AZd and L ∈ SLd(Z), we

define L(x) ∈ SZd by L(x)~n = xL−1(~n) for all ~n ∈ Zd, and for a subshift

X ⊂ AZd , we define L(X) = {L(x) | x ∈ X}. From the linearity of L it
follows that L(X) is also a subshift. We fix a special element Lπ

2
=
(

0 −1
1 0

)
∈

SL2(Z) which performs a counterclockwise rotation by π
2 . For simplicity, we

denote L2
π
2

= Lπ.

We say that a subshift X ⊂ AZd has a period if there exists a vector
~n ∈ Zd \ {(0, 0)} such that x = σ~n(x) holds for all x ∈ X, and ~n is then
called a period of X. If X has a period ~n, and every period it has is a rational
multiple of ~n, then we say X is singly periodic. If X has d periods which are
linearly independent over R, then we say X is totally periodic. We define
periods, single periodicity and total periodicity of individual configurations
analogously. If a configuration has no period, it is aperiodic, and a subshift is
aperiodic is all of its configurations are. A one-dimensional configuration y ∈
AZ is periodic if y = σp(y) for some p > 0, and we say y is eventually periodic
if for some n0, p > 0, we have yi = yi+p for all i > n0 and yi = yi−p for all i <
−n0. A two-dimensional configuration is horizontally (vertically) eventually
periodic if its rows (columns, respectively) are eventually periodic.

We define the projective subdynamics of a subshift X ⊂ AZ2
as the set

of horizontal rows appearing in its configurations: Proj(X) = {x0 | x ∈ X}.
For a general direction ~d ∈ Z2, the ~d-projective subdynamics Proj~d(X) of X

is defined as Proj(L(X)), where L ∈ SL2(Z) is such that L(Lπ
2
(~d)) = (0, 1).

This means that we examine the contents of discrete lines perpendicular to
~d, and in particular, Proj(X) = Proj(0,1)(X). For a configuration x ∈ SZ2

,
we define Proj(x) = {xi | i ∈ Z} as the set of rows of x, and generalize this
to Proj~d(x) analogously.

We say that a subshift X ⊂ AZ2
has the bounded signal property in

direction ~d, if for some subshift Y ⊂ BZ2
conjugate to X, there exists

a countable one-dimensional SFT Z ⊂ BZ such that Proj~d(Y) ⊂ Z (see

Lemma 3.1). When the direction is not given, the default value ~d = (0, 1) is
assumed. Intuitively, having the bounded signal property in some direction
means that the subshift can send information in that direction only using a
bounded number of signals. The bounded signal property in a fixed direction
is, by definition, invariant under conjugacy. However, it is certainly possible
that the rows of X are not contained in a countable SFT but those of Y

12

are, while X and Y are conjugate. In our constructions, when we state that
a subshift we construct has the bounded signal property, we always mean
that its set of rows is actually contained in a countable SFT.

Let X ⊂ AZ2
be a two-dimensional subshift, and denote the upper half-

plane by H = {(i, j) | i ∈ Z, j ≥ 1}. We say that X is southward determin-
istic, if whenever x, y ∈ X are such that x|H = y|H , we have x = y. If X
is an SFT defined by a finite set F ⊂ Pd(A) of forbidden patterns, we say
X is extendably southward deterministic, if it is southward deterministic,
and whenever x ∈ AZ2

is such that no pattern of F occurs in x|H , there
exists y ∈ X with x|H = y|H . Note that extendable southward determinism
depends on the set F , and is not necessarily preserved by conjugacy. By the
translation invariance of X and a compactness argument, south determinism
is equivalent to the existence of an integer i ≥ 1 such that x~n = y~n for all
~n ∈ [−i, i]× [1, i] implies x~0 = y~0, when x, y ∈ X. We say X is deterministic

in the direction ~d if L(X) is southward deterministic, where L ∈ SL2(Z)
is such that L(Lπ

2
(~d)) = (1, 0). Note that for Wang tiles, it is common to

define northwest determinism as the property that a tile is uniquely defined
by its north and west neighbors, whereas we would call the corresponding
SFT southeast deterministic, since the tiles to the southeast of a known
half plane are determined. The definitions of determinism and the bounded
signal property via orthogonal directions are similar to the notion of slic-
ing as defined in [DFW13], although we consider SFTs rather than cellular
automata.

Remark 2.3. The definitions of projective subdynamics, the bounded signal
property and determinism could be extended to arbitrary dimensions, but
for simplicity, we only use them in the two-dimensional context.

2.3 Partial Orders and Cantor-Bendixson Deriva-
tives

By a preorder we mean a reflexive and transitive binary relation on a set P .
If the preorder is antisymmetric, then P with this order is called a poset,
or a partially ordered set. If it is also total, then P is a chain. From any
preorder ≤ on a set P , we obtain a poset (P̃ ,≤) where P̃ is the set of ≤-
equivalence classes of P (that is, the equivalence classes of the equivalence
relation (p ≤ q) ∧ (q ≤ p)) and ≤ is the natural induced order among these
classes. We often use the elements of P and their ≤-equivalence classes
interchangeably.

We obtain a natural preorder on the full shift AZd by defining x ≤ y by
B(x) ⊂ B(y). This is equivalent to O(x) ⊂ O(y). We denote the condition
x ≤ y and y ≤ x by x ≈ y. To a subshift X ⊂ AZ2

, we associate its
subpattern poset SP(X) = (X̃,≤). Comparisons between points of X refer

13

to comparisons between the associated elements of the subpattern poset. In
particular, chains in X refer to chains in X̃.

We say a poset P has the ascending chain condition, or ACC, if p1 ≤
p2 ≤ · · · implies that for some n ∈ N, pi = pj for all i, j ≥ n. That
is, every ascending chain is eventually constant. Symmetrically, we define
the descending chain condition DCC. For posets (P,≤), (Q,4), we denote
by P � Q the poset (P ∪̇Q, (≤)∪̇(4)), that is, the disjoint union of P and
Q where the order among elements of P is ≤, the order among elements
of Q is 4, and there are no relations between elements of P and Q. For
posets ((Pi,≤i))i∈I , we similarly write �iPi to denote the disjoint union of
all posets Pi. For a poset (P,≤), we write −P for the poset (P,≥), where
p ≥ q is defined by q ≤ p. Note that a poset P has the ACC if and only if
−P has the DCC. An order-embedding of a poset (P,≤) to a poset (Q,4)
is an injective function φ : P → Q such that p ≤ q if and only if φ(p) 4 φ(q)
for all p, q ∈ P . If φ is bijective, it is called an order-isomorphism. The
height of an element p ∈ P is the maximal cardinality of a chain that can be
embedded in the sub-poset {q ∈ P | q ≤ p} of P , minus one. In particular,
the height of a minimal element is 0.

Let X be a topological space. For every ordinal λ, we define the Cantor-
Bendixson derivative of order λ of X, denoted by X(λ), by transfinite in-
duction:

• X(0) = X,

• X(α+1) = {x ∈ X(α) | x is not isolated in X(α)}, and

• X(α) =
⋂
β<αX

(β), if α is a limit ordinal.

There must exist an ordinal λ such that X(λ) = X(λ+1), as X is a set. The
lowest such λ is called the Cantor-Bendixson rank of X, and is denoted
rank(X). From the definition of the derivative operator, it is clear that then
X(rank(X)) is a perfect space. We say that a topological space X is ranked
if and only if X(rank(X)) = ∅. The rank rankX(x) of a point x in a ranked
topological space X is the smallest ordinal λ such that x /∈ X(λ).

2.4 Computability and Logic

Let φ be a formula in first-order arithmetic. If φ contains only bounded
quantifiers, then we say φ is Σ0

0 and Π0
0. For all n > 0, we say φ is Σ0

n if
it is equivalent to a formula of the form ∃k : ψ where ψ is Π0

n−1, and φ is
Π0
n, if it is equivalent to a formula of the form ∀k : ψ where ψ is Σ0

n−1. This
classification is called the arithmetical hierarchy (see e.g. [Odi89, Chapter
IV.1] for an introduction to the topic). A subset X of N is Σ0

n or Π0
n, if

X = {x ∈ N | φ(x)} for some formula φ with the corresponding classification.

14

It is known that the Σ0
1 sets are exactly the recursively enumerable sets, and

the Π0
1 sets their complements. When classifying sets of objects other than

natural numbers (e.g. finite patterns), we assume that the objects are in

some natural and computable bijection with N. Also, a subshift X ⊂ AZd

is given the same classification as its language, and analogously, we say
that X is recursive if its language is. In a slightly more general way, any
topologically closed set X ⊂ AN is given the same classification as the set
{x[0,n−1] | x ∈ X,n ∈ N} ⊂ A∗ of finite prefixes of elements of X. See [CR98]
for a general survey on Π0

1 sets. The nonstandard quantifier ∃∞n : φ(n) has
the meaning ‘there exist infinitely many n ∈ N such that φ(n).’

A subset X ⊂ N is many-one reducible (or simply reducible) to another
set Y ⊂ N, if there exists a computable function f : N→ N such that n ∈ X
if and only if f(n) ∈ Y for all n ∈ N. We also say that X is Turing-reducible
to Y , denoted X ≤T Y , if there exists an oracle Turing machine that can
decide the membership problem of X using Y as an oracle. If X ≤T Y
and Y ≤T X both hold, then X is Turing equivalent to Y , and we denote
X ≡T Y . If every set in a class C ⊂ 2N is reducible to X ⊂ N, then X is
said to be C-hard. If, in addition, X is in C, then X is C-complete. These
definitions are understood with respect to many-one reductions, not Turing
reductions, unless explicitly stated otherwise.

Using Turing reductions, the arithmetical hierarchy can be extended
into the hyperarithmetical hierarchy. We will not define it rigorously, as the
definition is somewhat tedious and we only use it in Section 4.4, but we
give a short outline of the features that are relevant to us. A computable
ordinal is a chain α = (N, R), where R ⊂ N2 is a computable well-ordering
of N. For each computable ordinal α, there exists a set 0(α) ⊂ N such
that 0(0) = ∅, and α < β implies 0(α) ≤T 0(β). Furthermore, for successor
ordinals, 0(α+1) contains exactly those numbers n ∈ N for which the oracle
Turing machine with index n never halts on input n using 0(α) as an oracle.
A set X ⊂ N is hyperarithmetical, if it is Turing equivalent to 0(α) for some
computable ordinal α. A more complete treatment of this subject can be
found in [Sac90].

In some of our constructions, we need a computational device, and
counter machines fit the bill. A k-counter machine is defined as a quin-
tuple M = (k,Q, δ, q0, qf), where k ∈ N is the number of counters Q is a
finite state set, q0, qf ∈ Q the initial and final states and

δ ⊂ Q× [1, k]× {Z,P,−1, 0, 1} ×Q

the transition relation. An instantaneous description (ID) of M is an el-
ement of Q × Nk, with the interpretation of (q, n1, . . . , nk) being that the
machine is in state q with counter values n1, . . . , nk. The machine operates
in possibly nondeterministic steps as directed by δ. If we have (p, i,Z, q) ∈ δ

15

((p, i,P, q) ∈ δ), then from any ID (p, n1, . . . , nk) such that ni = 0 (ni > 0,
respectively), the machine M may move to the ID (q, n1, . . . , nk). If we have
(p, i, r, q) ∈ δ with r ∈ {−1, 0, 1}, then from any ID (p, n1, . . . , ni, . . . , nk),
the machine M may move to the ID (q, n1, . . . , ni + r, . . . , nk). We denote
the possibility of a move from an ID I1 to an ID I2 via a transition d ∈ δ by

I1
d→ I2. We may assume that counter machines never try to decrement a

counter below 0. The machine is initialized from the ID (q0, n, 0, . . . , 0) for
an input n ∈ N, and it halts when it reaches the final state qf , accepting the
input. The set of inputs that the machine eventually accepts is called its
language. The machine M is called reversible if at most one transition of δ is
applicable to any given ID. Note that the transition relation of a reversible
counter machine need not be bijective, only injective. The classical reference
for counter machines is [Min67], although our precise definition comes from
[Mor96].

There is a convenient way of converting an arbitrary counter machine
into a reversible machine with only two counters, and we use this in several
constructions. The following result can be extracted from the proofs in
[Mor96], and we especially note that while the original results concern only
deterministic machines, the following lemmas hold even for nondeterministic
ones with exactly the same proofs.

Lemma 2.4 (Proved as Theorem 3.1 of [Mor96]). For any k-counter ma-
chine M = (k,Q, δ, q0, qf) there exists a reversible (k + 2)-counter machine
M ′ = (k + 2, Q ∪Q′, δ′, q0, qf) such that for all mi, ni, h ∈ N and q, p ∈ Q,

(q,m1, . . . ,mk)⇒M (p, n1, . . . , nk)

holds if and only if there exists ` ∈ N with

(q,m1, . . . ,mk, h, 0)⇒∗M ′ (p, n1, . . . , nk, `, 0)

where the intermediate states of the computation are in Q′. Also, all tran-
sitions of δ′ whose first component is in Q′ are deterministic.

Note in particular that the countability of the set of infinite computations
is preserved by the transformations.

In addition to the standard counter machines, we also use counter ma-
chines with string input, shortened CMS. We are not aware of such machines
being defined before. A CMS is a tuple M = (k, k′, A,Q, δ, q0, qf), where k,
Q, q0 and qf have the same meaning as for conventional counter machines,
while k′ < k is the number of output counters, A is the finite input alphabet,
and the transition relation has the type

δ ⊂ Q×
(
([1, k]× {Z,P,−1, 0, 1}) ∪ Ā

)
×Q,

16

where Ā = A∪{#} for a new symbol # /∈ A. An ID of M is now an element
(q, w, n1, . . . , nk) of Q × A∗ × Nk, with the interpretation that M is in the
state q ∈ Q reading the input word w ∈ A∗ and has the counter values
n1, . . . , nk ∈ N. The operation of a CMS M is identical to a conventional
counter machine, except for transitions of the form (p, a, q) ∈ δ for a ∈ Ā.
If such a transition exists, then from any ID (p, w, n1, . . . , nk) with wnk = a
in the case a ∈ A, or |w| ≤ nk in the case a = #, M may move to the ID
(q, w, n1, . . . , nk).

The CMS is initialized from an ID (q0, w, 0, . . . , 0) for w ∈ A∗, and halts
when it reaches the final state qf . The tuple (n1, . . . , nk′) ∈ Nk′ of the
first k′ counter values in the final state qf is the output of M on w, and
is denoted M(w). Note that n1 is the value of the first counter, not the
greatest counter value. If M never halts or reaches an ID from which no
valid transition exists, no output is generated.

The intuitive meaning of the above definition is that in one step, a CMS
may increment or decrement one of its counters, check whether a counter is
zero, or check the input symbol under the last counter, if one exists. When
it halts, the counter values of the final ID are considered as outputs. Thus a
CMS can be interpreted as a partial function from A∗ to Nk′ . Conventional
counter machines are computationally universal, and it is not hard to see
that the same holds for these devices.

Especially in Chapter 4 and Chapter 7, we also use the following variant
of a counter machine, called an arithmetical program. This is essentially the
model MP1RM (More Powerful One-Register Machine) defined in [Sch72].
An arithmetical program is a tuple M = (Q, δ, q0, qf), where the transition
relation

δ ⊂ Q×
(
({+,−, ·, /} × N) ∪ N ∪ N2

)
×Q

is finite.

The machine has one counter, so its IDs have the form (q, n) ∈ Σ×N, and
it operates on them as follows. If (q, (op,m), p) ∈ δ for op ∈ {+,−, ·, /}, the
machine M can move to to ID (p, n opm). If (q, n, p) ∈ δ, or if (q, (m, k), p) ∈
δ for some k,m ∈ N such that n ≡ m mod k, then the machine can move
to (p, n). We may assume that the program never divides the counter value
by a number unless it has checked that the division would be exact, and
never subtracts m unless the counter value is at least m. An arithmetical
program is essentially a one-counter machine augmented with the ability to
multiply and divide the counter by, and check its congruence class modulo,
some constant values. The machine is initialized in the ID (q0, n) for an
input value n ∈ N, which is accepted if the final state qf is reached during
the computation. The determinism and reversibility of arithmetical pro-
grams are defined analogously to counter machines. It is easy to see that
arithmetical programs can simulate counter machines in the following sense.

17

Lemma 2.5. Let M = (k,Q, δ, q0, qf) be a k-counter machine. Then there
exists an arithmetical program M ′ = (Q, δ′, q0, qf) such that for all q, p ∈ Q
and m1, . . . ,mk, n1, . . . , nk ∈ N,

(q,m1, . . . ,mk)⇒M (p, n1, . . . , nk)

holds if and only if

(q, pm1
1 , . . . , pmkk)⇒M ′ (p, pn1

1 , . . . , pnkk)

does, where pi is the i’th prime number. Also, M ′ is deterministic and/or
reversible if and only M is.

However, it is also known that a deterministic two-counter machine can
be simulated in such a way that the counter values need not be encoded as
a product of prime powers.

Lemma 2.6 ([Sch72]). Deterministic arithmetical programs and determin-
istic two-counter machines accept the same set of languages. In particular,
if a set L ⊂ N is recursively enumerable, then the set {2n | n ∈ L} is accepted
by some deterministic arithmetical program.

However, no characterization is known for the class of languages accepted
by arithmetical programs. It has been shown that the set of prime numbers
is not accepted by any arithmetical program [IT93].

2.5 A Few Words on the Figures and Proofs

As most of our results are constructions of different subshifts with some
desired properties, whose configurations are infinite two-dimensional config-
urations, it should not surprise the reader that this dissertation contains a
lot of pictures. For example, in Chapter 4, the configurations of our SFTs
have large uniformly colored triangles and rectangles, and we specify which
edges of these shapes can be glued together. However, in some of our gen-
eral proofs we assume that SFTs are given a tiling systems, but this will be
explicitly stated.

Multiple levels of abstraction are used in figures. In Figure 3.1, an actual
partial configuration of an SFT is given. However, most figures are projec-
tions of the actual SFTs, leaving out some details which are explained in the
text. Figure 3.5 is an example of a projection where most of the detail is left
in. Some of the different overlapping regions are not shown (for example,
the area to the left of the computation head should be colored differently
from the area on its right), and only partial information about the state of
the computation head is shown. On many occasions, we take this further,
drawing discrete versions of rational lines as straight lines and leaving out

18

the contours of tiles to reduce clutter, and the details are given in the text.
An example of this approach is Figure 4.9.

Most of the subshifts appearing in this thesis are two-dimensional. In all
informal descriptions of two-dimensional subshifts and configurations, the y-
axis is vertical and increases upward, while the x-axis is horizontal increases
to the right. In other words, the notions ‘up’ and ‘north’ refer to the vector
(0, 1), and ‘right’ and ‘east’ refer to (1, 0). Also, rows are horizontal and
columns are vertical.

As is common practice, we do not go in too much detail on statements
whose proof is a straightforward geometrical case analysis, and we do not
show the specifics of the counter machines used in the proofs, but instead
just give the algorithms they execute in pseudocode.

19

20

Chapter 3

Preliminary Results and
Constructions

3.1 Determinism, Bounded Signal Property, and
Countability

Throughout the later chapters of this dissertation, especially in Chapter 4,
we discuss the properties of determinism, countability and the bounded
signal property for an SFT. We show by the examples listed in Table 3.1
that essentially all combinations of the three are possible. We do not know
examples of uncountable SFTs with the bounded signal property in every di-
rection. Thus, in the examples, we are satisfied with the downward bounded
signal property for uncountable SFTs. Similarly, as it is known that only
periodic SFTs are deterministic in every direction [BL97], we usually give
only one direction of determinism. The nondeterministic SFTs we present
are deterministic in no direction. Example 3.4 is essentially a simplified
version of Construction 3.11, but otherwise, the results of this section serve
mainly as an introduction to the different concepts. We begin with the fol-
lowing structure lemma of countable sofic shifts (and in particular SFTs) in
order to make the nature of the bounded signal property more explicit. The
version we give is Lemma 1 in [ST12a] (see also Lemma 4.8 of [PS14]).

Lemma 3.1. Let X ⊂ AZ be a one-dimensional countable sofic shift. Then
there exists a finite set T of tuples of words in B(X) such that every config-
uration x ∈ X is representable as

x = ∞u0v1u
n1
1 · · ·u

nm−1

m−1 vmu
∞
m

for a unique t = (u0, . . . , um, v1, . . . , vm) ∈ T . In particular, X has only
finitely many periodic configurations.

21

Thus, the configurations of one-dimensional countable sofic shifts consist
of long segments with a common small period, separated by a bounded
number of short period-breaking patterns. If a two-dimensional subshift has
the bounded signal property in the vertical direction, then its horizontal
rows are of this simple form. The name “bounded signal property” refers to
the short period-breaking patterns, which can be seen as ‘signals’ traveling
in the two-dimensional configurations.

Next, we move on to the examples mentioned above.

Example 3.2. We give an example of a countable SFT which does not
have the bounded signal property in any direction but is deterministic in
all but the six directions (1, 0), (−1, 0), (0, 1), (0,−1), (1,−1) and (−1, 1).
This is the grid shift from [ST12b]. It consists of infinite horizontal and
vertical lines that divide each configuration into rectangles. The rectangles
are forced to be squares by coloring their northwest half differently from the
southeast half, using a diagonal signal as a separator. The grid shift is over
the alphabet {0, 1, 2} and is defined by the allowed patterns of size 2 × 2
which occur in Figure 3.1.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Figure 3.1: A partial configuration of the grid shift containing exactly the
allowed 2× 2 patterns.

Example 3.3. We give an example of a countable SFT which is determin-
istic in no direction, but has the bounded signal property in every direction.
First, consider the SFT X ⊂ {0, 1, 2}Z2

defined by the allowed patterns of
size 2 × 2 which occur in Figure 3.2. This SFT is not deterministic in any
direction (x, y) ∈ Z2 with y ≥ 0. Analogously, the rotated version Lπ(X)
is not deterministic in any direction (x, y) ∈ Z2 with y ≤ 0, so X × Lπ(X)
is not deterministic in any direction. However, it is countable and has the
bounded signal property in every direction.

22

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0 0 2 2 2 2

0 0 0 0 2 2 2 2

0 0 0 0 2 2 2 2

0 0 0 0 2 2 2 2

Figure 3.2: A partial configuration of the quarter plane shift containing
exactly the allowed 2× 2 patterns.

Example 3.4. We give an example of a downward deterministic uncount-
able SFT with the bounded signal property. An indirect way to find such
an example is to use Construction 3.11, presented later in this chapter: Let
M be a nondeterministic counter machine with a single counter that it can
choose to increment or preserve on each step, use Lemma 2.4 to make it re-
versible, and plug the resulting machine in Construction 3.11. The resulting
SFT is then south deterministic and has the bounded signal property, but
it is uncountable as the choice of whether the counter is incremented or not
at each step is visible in the configuration.

We also give a direct construction, which can be regarded as a ‘broken’
version of Construction 3.11: There, a bouncing signal moves upward in an
expanding cone, and its movement is extendably north deterministic. We
did not make this choice of direction only because the counter machine in-
tuitively computes in this direction. This example reverses the direction
of determinism, making the SFT extendably south deterministic, and illus-
trates what can go wrong with this choice.

The two-dimensional SFT X has the alphabet depicted in Figure 3.3,
and its forbidden patterns are exactly those 2 × 2 patterns where the lines
of adjacent or diagonally adjacent tiles do not match. An example configu-
ration is depicted in Figure 3.4.

Figure 3.3: The alphabet of X in Example 3.4.

23

A configuration of X may contain at most one occurrence of the bottom
left tile in Figure 3.3, which then forces an infinite cone to extend to the
northeast. Inside this cone, a signal travels back and forth with speed 2,
bouncing between the walls.

Figure 3.4: An example configuration of X in Example 3.4.

The resulting SFT X is south deterministic (every row is the image of
the one above it under a cellular automaton of radius 2), and it clearly has
the downward bounded signal property. It is also uncountable, since for
every sequence c = (ci)i∈N ∈ {0, 1}N, we can construct a configuration of X
where, on its i’th visit to the right border of the cone, the signal bounces
back using the tile on the bottom right in Figure 3.3 if ci = 0, and the tile
on the top right if ci = 1. For example, the configuration in Figure 3.4
corresponds to a sequence beginning with 010. These configurations are all
distinct, and their number is uncountable.

An interesting property of SFTs that are both deterministic and have
the bounded signal property is that they, in a sense, come from the type of
cellular automata studied in [ST12a] (cellular automata on one-dimensional
countable sofic shifts). We state the following theorems only for downward
determinism, as one can apply a transformation in GL2(Z) to rotate the
direction of determinism.

24

Table 3.1: The 8 different combinations of determinism, countability and
the bounded signal property. The ‘yes’ cases are emphasized. In the first
column, we use the auxiliary subshifts X = {x ∈ {0, 1}Z2 | x = σ(1,0)(x)}
and Y = {x ∈ {0, 1}Z2 | x ∈ {σ(1,0)(x), σ(1,1)(x)}}.

Subshift Deterministic Bounded signal property Countable

{0, 1}Zd no in no direction no

Ex. 3.2 × Ex. 3.3 no in no direction yes

Ex. 3.3 ×X no downward no

Ex. 3.3 no in all directions yes

Y downward in no direction no

Ex. 3.2 southwest in no direction yes

Ex. 3.4 downward downward no

{0}Z2
in all directions in all directions yes

Proposition 3.5. Let X ⊂ AZ2
be a deterministic countable SFT with the

bounded signal property. Then there is a cellular automaton f on a countable
one-dimensional SFT Y ⊂ (B∪̇{#})Z such that X is conjugate to the set of
limit spacetime diagrams of f not containing #.

The need for the special symbol # comes from the fact that our defini-
tion of determinism allows for SFTs where half-planes can be locally legal,
while not having legal extensions (so a half-plane can have 0 or 1 exten-
sions to the full plane). If we assume that all half-planes extend to a unique
configuration, we have the following more natural result.

Proposition 3.6. Let X ⊂ AZ2
be an extendably deterministic countable

SFT with the bounded signal property. Then there is a cellular automaton f
on a countable one-dimensional SFT Y ⊂ BZ such that X is conjugate to
the set of limit spacetime diagrams of f . Furthermore, the alphabet B, the
forbidden patterns of Y , and the local function of f are computable from the
forbidden patterns of X.

A similar result is true for SFTs without the bounded signal property,
but with Y not necessarily countable. The constructions in this thesis are
deterministic only in the weaker sense, and thus do not directly come from
cellular automata on countable SFTs. Furthermore, even if one restricts
to the limit spacetime diagrams where the symbol # does not occur, the
direction of determinism in our constructions is usually not a very interesting

25

one: Most of our deterministic constructions are cones extending northeast
from a seed pattern, and everything of interest happens within the cone.
The direction of determinism, however, usually has a negative y-component.
That is, the cellular automaton can only recreate a finite initial pattern from
the infinite tail of the cone.

While our examples imply that all the combinations of determinism,
countability and the bounded signal property are possible, there are some
interesting connections between them, as for instance, Lemma 4.48 holds for
countable SFTs with the bounded signal property and deterministic SFTs
with the bounded signal property for slightly different reasons, but not for
general SFTs with the bounded signal property.

3.2 Cantor-Bendixson Derivatives of Subshifts

In this section, we give some intuition about the Cantor-Bendixson deriva-
tives of subshifts, and prove preliminary results about it for general topo-
logical spaces. Recall that the Cantor-Bendixson derivative of a topological
space is obtained by removing all isolated points from it. We note here that
in a subshift X ⊂ AZd , a configuration x is isolated if and only if there
exists a pattern (D, s) ∈ B(X) such that x is the only element of X with
x|D = s. Conversely, the configuration x is not isolated if and only if for all
n ∈ N, there exists another configuration y ∈ X which is distinct from x but
satisfies x|[−n,n]d = y|[−n,n]d . We use this fact without any explicit mention
in many of our proofs. As for the subpattern order, for two configurations
x, y ∈ X we have x ≤ y if and only if there exists a sequence (~vn)n∈N of
translation vectors in Zd such that x = limn→∞ σ

~vn(y).

Example 3.7. Consider the two-dimensional SFT X ⊂ {0, 1}Z2
defined by

the three forbidden patterns 10, 0
1 and 1

0 . The subshift X contains the
all-0 and all-1 uniform configurations x0, x1 ∈ X, together with an infinite
number of configurations with a left half plane filled with 0, and a right half
plane filled with 1. If x ∈ X is a configuration of the latter kind, then the
pattern P = 01 occurs in it at some coordinate ~n ∈ Z2, and x is the only
configuration of X with this property. Consequently, x is isolated in X.
On the other hand, the uniform configurations are not isolated, since for all
n ∈ N, there exist non-uniform configurations that agree with them on the
square domain [−n, n]2. This implies that the Cantor-Bendixson derivative
of X is X(1) = {x0, x1}. We can similarly prove that X(2) = ∅, so that X is
ranked and rank(X) = 2.

As for the subpattern poset of X, note first that the uniform configu-
rations are incomparable, since the only pattern they share is the empty
one. On the other hand, any non-uniform configuration x ∈ X satisfies
x > x0 and x > x1, since we have x0 = limn→∞ σ

(−n,0)(x) and x1 =

26

limn→∞ σ
(n,0)(x). All non-uniform configurations are translates of each

other, so they lie in the same ≤-equivalence class. Thus the subpattern
poset of X is order-isomorphic to the three-element poset {2, 3, 6} ordered
by divisibility.

Note that in the above example, the ranked subshift X was countable.
This is no coincidence, and in fact the following result shows that exactly
the countable subshifts are ranked.

Lemma 3.8 ([BDJ08]). A subshift X ⊂ AZd is ranked if and only if it is
countable.

The proofs of the following general results are straightforward, but we
give them for completeness.

Lemma 3.9. A subspace of a ranked topological space is ranked. Further-
more, taking the Cantor-Bendixson rank is an order-preserving operation
from ranked topological spaces to ordinals.

Proof. Clearly, X ⊂ Y implies X(λ) ⊂ Y (λ) for all ordinals λ by transfinite
induction. Because Y is ranked, Y (λ) = ∅ holds for the Cantor-Bendixson
rank λ of Y . Then also X(λ) = ∅, so the Cantor-Bendixson rank of X cannot
be more than λ.

Lemma 3.10. Let X be a topological space and Y an open subset of X.
Then, for all ordinals λ, we have X(λ) ∩ Y = Y (λ).

Proof. It is clear that Y (λ) ⊂ X(λ) and Y (λ) ⊂ Y , so it is enough to show
that X(λ) ∩ Y ⊂ Y (λ) for every ordinal λ. We prove the claim by transfinite
induction. As a base case, we have X(0)∩Y = Y = Y (0). Now, let λ = λ′+1
for some ordinal λ′. Let x ∈ X(λ) ∩ Y , and let U be an open neighborhood
of x in Y . Since U is also open in X, there exists

y ∈ X(λ′) ∩ U = Y (λ′) ∩ U

with y 6= x. As for limit ordinals λ, we have X(λ′)∩Y ⊂ Y (λ′), for all λ′ < λ,
so

X(λ) ∩ Y =
⋂
λ′<λ

X(λ′) ∩ Y ⊂
⋂
λ′<λ

Y (λ′) = Y (λ),

which concludes the proof.

3.3 Simulation of Counter Machines in Countable
SFTs

We present a general construction for embedding the computations of a
counter machine into a countable SFT. We can also enforce the bounded

27

signal property and – if the counter machine is reversible – determinism.
This construction, or some variant of it, will be used in all of the remaining
chapters of this thesis.

Construction 3.11 (Embedding computations in a countable SFT with the
bounded signal property). Suppose we are given a nondeterministic counter
machine M = (k,Q, δ, q0, qf) with

δ ⊂ Q× [1, k]× {Z,P,−1, 0, 1} ×Q.

Further suppose that the set of infinite computations of M is countable; note
that the set of halting computations is countable for every counter machine,
as such computations are finite. We construct a countable SFT XM with the
bounded signal property whose configurations correspond to computation
histories of M in a concrete way. The basic structure of XM is very similar
to that of the subshift in Example 3.4. A single horizontal row ofXM consists
of a computation zone, which contains segments of special counter symbols
whose lengths encode the counter values, together with a ‘zig zag head’ that
holds a state of M . The head sweeps back and forth, updating its state and
the counter values, and the computation area increases in size, so that XM

will contain an infinite computation cone extending to the northeast. If M
is reversible, then XM will be south deterministic. However, as the counter
machine is running upward, we describe how rows evolve bottom-up.

Since the alphabet of XM depends on that of M and the local rules
are somewhat complex, we do not define XM with decorated tiles as in
Example 3.4. Instead, we first define a set of legal rows Y , and then add
constraints that state which configurations may occur on top of each other
(which may further reduce the set of legal rows). That is, we first define a
subshift YM such that Proj(XM) ⊂ YM , and then describe a relationR ⊂ Y 2

M

which is a subSFT of Y 2
M such that XM = {x ∈ SZ2 | ∀i : (xi, xi+1) ∈ R}.

We begin by defining the alphabet of XM . First, we define the auxiliary

head alphabet HM = {−1←, 0←, 1←,−1→, 1→} × Q × [1, k]. The alphabet of XM

is then AM = {0, 1} ∪ (({`, r} ∪HM)×
∏k
i=1{Pi,Zi}). The intuition is that

HM is the ‘state’ of the zig zag head – the arrow determines its direction,
and the other components its Q-state and the counter it is modifying – the
k components in the end of AM encode the counter values as strings of the
form Pmi Zni , and the other values of AM are used to control the geometry of
XM .

We define a (partial) function φ : N×HM × N ∪ ×Nk → AZ
M to encode

the configurations of YM in a concise form. For all n`, nr, n1, . . . , nk ∈ N∪∞
such that ni ≤ n` + nr + 1 for each i, and all h ∈ HM , let

φ((n`, h, nr), (n1, . . . , nk)) = ∞0.(`n`hrnr ×
k∏
i=1

Pnii Zn`+nr+1−ni
i)1∞.

28

The interpretation is that each ni is the value in the ith counter, the width
of the computation area of the current row is n` + 1 + nr, and the zig zag

head is represented by h. The interpretation of h = (
b→, q, i) is that the zig

zag head is moving to the right in order to reach the right border of the

computation zone. The interpretation of h = (
b←, q, i) for b ∈ {−1, 0, 1} is

that the zig zag head is moving left, and trying to increment the counter i by
b. The subshift YM is the orbit closure of the image of φ and configurations
∞01∞ where computation has not started yet.

For the degenerate configurations x = ∞01∞, we allow (x, x) ∈ R and
(x, y) ∈ R for y = φ((0, h, n), (n, 0, . . . , 0)), where n ∈ N is arbitrary and

h = (
0←, q0, 1). The choice of h here (other than the initial state q0 ∈ Q) is

somewhat arbitrary. We also take the orbit closure of R, which puts into
it the degenerate configurations with n = ∞. In our applications, we may
further restrict the initial state by requiring, for example, that n = 0.

Configurations φ((m`, h,mr), (n1, . . . , nk)) are followed by configurations
of the same form. Note in particular that the left border of the computation

area does not move. If h = (
b→, q, i) for b = ±1, the zig zag head is moving

to the right, so the values (m`, h,mr) are updated to (m` + 2, h,mr − 1) if

mr ≥ 1, and to (m`, (
b←, q, i),mr + 1) if mr = 0. The counter values are not

changed at this point.

If h = (
b←, q, i) for b ∈ {−1, 0, 1}, the zig zag head is moving to the left,

so the values (m`, h,mr) are updated to (m` − 1, h′,mr + 2) if m` ≥ 1, and
(m`, hnext,mr + 1) if m` = b = 0. The case m` = 0, b = ±1 leads to an

error. Define h′ = h if ni 6= m` − 1, and h′ = (
0←, q, i) otherwise. In the

latter case, the value ni is also updated to ni+b, and we set the bit b to 0 in
order to prevent the zig zag head from updating the same counter multiple

times. The element hnext ∈ HM can be chosen as (
b→, p, j) if there exists

a transition (q, j, b, p) ∈ δ for b ∈ {−1, 0, 1}. The case where q = qf is the
halting state is handled separately. Depending on the application of XM , it
may cause a tiling error, a loop where hnext = h, or something else entirely.

We remark here that, in contrast to Example 3.4, the movement of the
head is north deterministic, so the possible uncountability of XM can only
be the result of M having uncountably many computation histories. The
beginning of a computation is shown in Figure 3.5.

We claim that there are only countably many configurations in XM .
Namely, if one of the rows is in the orbit of φ((m`, h,mr), (n1, . . . , nk)) for
finite m` and mr, then the configuration contains a full computation cone,
and thus corresponds to an infinite computation of M . If none of the rows
are of this form, then the configuration contains at most one back-and-forth
sweep of the zig zag head, and it is easy to see that there are only countably
many such degenerate configurations.

29

←

→

→
→

→

←

←

→

←

←

←

←

←

→

→

←

←

←

←

→

←

←

→

←

←

→

→

←

→
→

Figure 3.5: The base of a computation cone, with some details omitted.
The limits of the cone are indicated by thick lines, and the zig-zag head
by a yellow tile with an arrow indicating its direction. The red counter is
incremented in the first two computation steps.

Finally, south determinism is proved as follows if M is reversible. The
movement of the zig zag head is reversible and not influenced by the actual
transitions of M . It is a simple case analysis that the operation of updating
a counter during the sweep is reversible. Consider then the step where the
zig zag head is situated at the left border of the computation cone, and
nondeterministically chooses a transition from δ. The inverse step can be
deterministically chosen depending on which counters contain the value 0.

In [JV11], a similar encoding of ‘computation in a cone’ is used, but
instead of counter machines, computation histories of Turing machines are
embedded into configurations of countable SFTs. While both approaches
have their merits, we feel that it is slightly more obvious how the counter
machine construction works and why the resulting subshift is countable.

30

Also, in our approach, the resulting subshift has the bounded signal prop-
erty, and its Cantor-Bendixson rank is much lower.

Now, it is relatively easy to modify this construction to simulate a
counter machine with string input, or an arithmetical program. However,
there is a minor caveat in the case of CMSs: their input is given as a string,
and the construction given here does not forbid giving an infinite string
as input, so unless the inputs are restricted by the machine itself or some
additional structure, the resulting SFT is not countable.

Construction 3.12 (Embedding CMSs and arithmetical programs in a
countable SFT). Recall Construction 3.11 and its notation, and let M =
(k, k′, A,Q, δ, q0, qf) be a CMS. To simulate M in an SFT XM with the
bounded signal property, we modify Construction 3.11 as follows. First, the

alphabet of the zig zag head is HM = { 0←, 1←,−1←,→} ×Q × [1, k] × A, and
that of XM is AM = {0, 1} ∪ ((A ∪ {#}) × ({`, r} ∪HM) ×

∏k
i=1{Pi,Zi}).

The zig zag head effectively remembers also the A-symbol under the first
counter, updating it every time the first counter is moved, and each row of
the computation cone contains a word w ∈ (A∪{#})∗ representing the input
to M . We guarantee by 2× 2 forbidden patterns that w ∈ A∗#∗, and that
it is a prefix of the word above it. It it intuitively clear that the CMS M is
correctly simulated on configurations that contain the infinite computation
cone. The shortcoming of this construction is that the input word may be
infinite, so the SFT XM is not countable unless the set of possible inputs is
restricted in some way.

Now, let M = (Q, δ, q0, qf) be an arithmetical program. In this case, the
alphabet of XM will look somewhat simpler than in Construction 3.11, but
the movement of the zig zag head is more complicated. The alphabet of XM

is simply AM = {0,Z, `, r}∪QM ∪Q′M , and the non-degenerate rows of XM

have the form ∞0.`n`qrnrq′Z∞, so that the computation zone is infinite and
the subset {`, r} ∪QM ⊂ AM plays the role of the positive counter symbol
P. The sets QM and Q′M should me thought of as the state sets of two
finite state automata, the first of which is the zig zag head and the second
is called the counter head, and we do not specify them explicitly. Each ID
(q, n) of M corresponds to a configuration with n` = n and nr = 0, where
the zig zag head lies next to the counter head.

If the transition requires a number m ∈ N to be added to or subtracted
from the counter, the two heads simply move m steps to the right or left, re-
spectively. Multiplication by m ≥ 2 are handled by the following procedure.
First, the zig zag head starts moving to the left with speed m+ 1, and the
counter head to the right with speed m− 1. When the zig zag head reaches
the left end of the computation zone, it turns to the right. Eventually, the
zig zag head reaches the counter head, and if the counter value was n ∈ N,
this happens at the coordinate mn. The procedure for division is similar,

31

except that the counter head moves to the left. Equality to m is easy to
check with an SFT rule, and to check the congruence class of the counter
modulo m, the zig zag head walks to the left border of the computation zone,
and walks back by steps of length m. See Figure 3.6 for a visualization of
the construction.

q0 r0

q1 r1

q←2 r→2

q←2 r→2

q→2 r→2

q→2 r→2

q→2 r→2

q→2 r→2

q2 r2

q3 r3

q←3 r3

q←3 r3

q←3 r3

q←3 r3

q←3 r3

q←3 r3

q←3 r3

q←3 r3

q←3 r3

q→3 r3

q→3 r3

q4 r4

Figure 3.6: The simulation of an arithmetical program that first adds 7
to the counter, then multiplies it by 2, subtracts 5, and checks its parity
modulo 3.

The above procedure for simulating an arithmetical program can also be
applied directly to two independent finite state machines and an unmoving
‘anchor’ (here, the left end of the computation zone). This is one of the
main tools of Chapter 7, where we construct subshifts using multihead finite
automata. Since the Cantor-Bendixson rank of the simulating subshift is
also very low, it is used in several optimality results in Chapter 4. In general,

32

arithmetical programs seem to be the simplest computationally universal
devices that can be simulated by local rules, in the sense of having as few
‘moving parts’ as possible.

3.4 Multidimensional Sofic Shifts

A major part of this thesis, especially Chapter 6, is devoted to the study
of multidimensional sofic shifts and their properties. In this section, we
discuss some known facts about them, and present the class of countably
covered sofic shifts, which are given special attention.

Definition 3.13. A sofic shift X ⊂ AZd is countably covered if it is the
image of a countable SFT via a block map.

This notion is not standard in the literature. Of course, all countably
covered sofic shifts are themselves countable, and all countable SFTs are also
countably covered sofic shifts. We also remark that it is not known whether
every countable sofic shift is countably covered. The following lemma allows
us to easily construct new countably covered sofic shifts from existing ones.

Lemma 3.14. Let X ⊂ AZ2
be a countably covered sofic shift, and let

Y ⊂ (A×B)Z
2

be an SFT. If the subshift Y ∩ (X ×BZ2
) is countable, then

it is a countably covered sofic shift.

Proof. Since X is countably covered, there exists a countable SFT Z ⊂ CZ2

and a surjective block map f : Z → X. Let N ⊂ Z2 be the neighborhood of
f . Let D ⊂ Z2 be a finite domain such that the SFTs Z and Y are defined
by sets of forbidden patterns F ⊂ CD and G ⊂ (A×B)D, respectively.

Consider now the set

F ′ = F ×BD ∪ {(P,Q) ∈ (C ×B)D+N | (f(P), Q|D) ∈ G}

of finite patterns over C ×B. This set defines an SFT Y ′ ⊂ Z ×BZ2
, since

every pattern whose first component is in F is forbidden. Thus we can define
a block map g : Y ′ → X×BZ2

by g(z, z′) = (f(z), z′). Since Z is countable,
every configuration x ∈ X ×BZ2

has at most countably many g-preimages.
Furthermore, for all y′ ∈ Y ′ we have g(y′) ∈ Y , since every pattern that
would cause some Q ∈ G to occur in the image is forbidden in Y . In fact,
we have

Y ′ = {(z, z′) ∈ Z ×BZ2 | (f(z), z′) ∈ Y } = g−1(Y ∩ (X ×BZ2
)),

and Y ′ is countable, since Y ∩ (X × BZ2
) is countable and g is countable-

to-one. The image of Y ′ under the block map g is exactly Y ∩ (X × BZ2
),

and the claim follows.

33

In a typical use case of Lemma 3.14, we have a countably covered sofic
shift X ⊂ AZ2

and a subset A′ ⊂ A, and we wish to superimpose a label
from another alphabet L on top of each occurrence of a symbol of A′. In this
case, we would define B = L∪ {#}, where # /∈ L is a new symbol denoting
‘no label,’ and define Y by the forbidden symbols (a, `) for all a ∈ A\A′ and
` ∈ L, and (a,#) for all a ∈ A′. Of course, if there are configurations in X
with infinitely many occurrences of some element of A′, we need to impose
some additional constraints on Y to ensure the countability of Y ∩(X×BZ2

).
The class of one-dimensional sofic shifts has a simple and useful charac-

terization, which we will present as Lemma 4.3. It is very much related to
the Myhill-Nerode theorem on regular languages. On the other hand, the
class of multidimensional sofic shifts lacks such a description, and remains
somewhat mysterious. The following combinatorial lemma is one of the
few known methods for showing a multidimensional subshift to be nonsofic,
and it is actually a partial analogue of Lemma 4.3. We use it in the two-
dimensional case, but (a suitable modification of) it holds in all dimensions.
A proof of the result has appeared explicitly at least in [KM13], but the
technique is much older, presumably originating from the theory of picture
languages. In the proof, the notation ∂D for a domain D ⊂ Z2 stands for
the set

{~n ∈ Z2 \D | (~n+ {±~e1,±~e2}) ∩D 6= ∅} ⊂ Z2.

Lemma 3.15. Let X ⊂ AZ2
be a sofic shift. Then there exists a number

C > 0 such that for all n ≥ 1 and all sets Λ ⊂ X of size more than Cn, there
exist x 6= y ∈ Λ such that c(x, y, n) ∈ X, where c(x, y, n) ∈ SZ2

is defined by
c(x, y, n)|[0,n−1]2 = x|[0,n−1]2 and c(x, y, n)|Z2\[0,n−1]2 = y|Z2\[0,n−1]2.

Proof. Since X is sofic, there exist a tiling system Y ⊂ BZ2
and a surjective

symbol map φ : Y → X. We claim that the bound C = |B|4 suffices.
Namely, let n ≥ 1 and Λ ⊂ X with |Λ| > Cn be arbitrary, and for all
x ∈ Λ, choose a preimage x̃ ∈ φ−1(x), and denote f(x) = x̃|∂[0,n−1]2 . Since
|∂[0, n− 1]2| = 4n, the number of different values f(x) for x ∈ Λ is at most
|B|4n = Cn. Thus there exist distinct x, y ∈ Λ with x̃|∂[0,n−1]2 = ỹ|∂[0,n−1]2 .

But then the configuration c(x̃, ỹ, n) ∈ BZ2
is in Y , since it satisfies the local

constraints of Y . It follows that φ(c(x̃, ỹ, n)) = c(x, y, n) ∈ X.

Another useful condition for a multidimensional subshift to be sofic is a
computational one. It is a special case of the following general result on the
computational complexity of subshifts.

Lemma 3.16. Let X ⊂ AZd be a subshift, and let k ∈ N. If X is Π0
k, then

it can be defined by a Σ0
k set of forbidden patterns. Conversely, a subshift

defined by a Σ0
k set of forbidden patterns is Π0

k+1. In particular, SFTs and
sofic shifts are Π0

1 subshifts.

34

Proof. For the first claim, we simply note that the complement of B(X) is
a Σ0

k set of forbidden patterns for X. Let then F ⊂ Pd(A) be a Σ0
k set of

finite patterns, and let X = XF . Denote by BF ⊂ Pd(A) the set of patterns
where no pattern of F occurs. For any given pattern P ∈ Pd(A), we have
P ∈ B(X) if and only if the condition

∀n ∈ N : (D(P) ⊂ [−n, n]d ⇒ ∃Q ∈ BF ∩A[−n,n]d : P @ Q)

holds. Here we consider the domain of P to be fixed. Since BF is a Σ0
k set,

we see that B(X) is a Π0
k+1 set.

In addition to the combinatorial Lemma 3.15 and the computational
Lemma 3.16, there exists a dynamical soficness condition. It is not used in
this dissertation, but we include the statement for completeness. Recall that
the (topological) entropy of a d-dimensional subshift X ⊂ AZd is defined as
the nonnegative real number

h(X) = lim
n→∞

1

nd
log |B[0,n−1]d(X)|,

which can be shown to always exist. Intuitively, it is a measure of the
‘size’ of X, or the asymptotic amount of freedom we have in constructing an
arbitrary configuration x ∈ X. As already noted in Chapter 1, it was proved
in [HM10] that the entropies of multidimensional SFTs are exactly the right
recursively enumerable nonnegative reals, which shows another connection
between multidimensional symbolic dynamics and recursion theory. Now,
the dynamical condition states the following.

Proposition 3.17 ([Des06]). Let X ⊂ AZd be a sofic shift. Then the set
of entropies {h(Y) | Y ⊂ X sofic} of all sofic subshifts of X is dense in the
interval [0, h(X)].

As a corollary, for every a ∈ [0, h(X)] there exists a (not necessarily sofic)
subshift Y ⊂ X with h(Y) = a. The proposition is not vacuous, as there

exist subshifts X ⊂ AZd with positive entropy such that every subshift Y ⊂
X satisfies either h(Y) = h(X) or h(Y) = 0. This follows, for example, from
the multidimensional analogue of the Jewett-Krieger theorem, announced in
[Wei85] (see [Ros87] for a more detailed proof). The original Jewett-Krieger
theorem states that for any measure-theoretic dynamical system (X,T, µ),
there exists a minimal subshift Y ⊂ AZ with a unique shift-invariant measure
ν such that (X,T, µ) is measure-theoretically isomorphic to (Y, σ, ν). In
particular, the topological entropy of Y equals the measure-theoretic entropy
of (X,T, µ), which can be any nonnegative real number.

Complementing the above set of results that restrict the class of multi-
dimensional SFTs and sofic shifts, there are numerous constructions of such

35

objects that push these boundaries and show that, in some sense or other,
they are close to being the best we can obtain. For example, while Propo-
sition 3.17 states that positive-entropy sofic shifts have many subsystems,
Boyle, Pavlov and Schraudner constructed in [BPS10] a positive-entropy
sofic shift in which these subsystems are ‘poorly separated,’ in that their
intersection is nonempty and consists of a single uniform configuration. In
the one-dimensional case, this is impossible.

The following powerful result, which we will use in some of our con-
structions, complements Lemma 3.16 by showing that any one-dimensional
Π0

1 subshift can be implemented as the projective subdynamics of a two-
dimensional sofic shift. Hochman presented the result in [Hoc09] for a
three-dimensional sofic shift, and the two-dimensional case was indepen-
dently proved in [DRS10] and [AS13]. In both proofs, an infinite hierarchy
of computations running in the SFT cover processes longer and longer words
of the one-dimensional configuration, and produces a tiling error if a forbid-
den one is found. Their differences lie in the actual implementation of this
hierarchy.

Theorem 3.18 ([DRS10, AS13]). Let X ∈ AZ be a one-dimensional Π0
1

subshift. Then the vertically periodic two-dimensional subshift

{y ∈ AZ2 | ∃x ∈ X : ∀(i, j) ∈ Z2 : y(i,j) = xi}

is sofic.

36

Chapter 4

Structural Properties of
Countable Two-Dimensional
SFTs

4.1 Introduction

In this section, we study the geometric and hierarchical structure of two-
dimensional subshifts. More explicitly, we analyze the abstract structure
of their subpattern posets, and the possible Cantor-Bendixson ranks they
may possess. The former notion was introduced in the context of quasiperi-
odic configurations in [Dur99], and applied to countable two-dimensional
SFTs in [BDJ08]. The notion of Cantor-Bendixson rank, on the other hand,
originates from abstract topology. The ranks of general Π0

1 subsets of the
one-sided full shift have been studied extensively [CCS+86, CDJS93], but in
the context of subshifts, the notion was also first studied in [BDJ08]. Since
the notion of Cantor-Bendixson rank is particularly suitable in the context
of countable subshifts, and has resulted in very fruitful research in the past,
we also restrict our attention to this subclass.

Another reason for restricting to countable SFTs is that the study of mul-
tidimensional symbolic dynamics has traditionally placed much emphasis on
SFTs with aperiodic configurations, and several complicated constructions
of such objects with highly nontrivial properties exist [Rob71, Moz89, Hoc09,
DRS10, DRS12]. Intuitively, it seems that few things can be achieved us-
ing multidimensional Π0

1 subshifts but not multidimensional SFTs. In order
to find limitations to what SFTs can do, one approach is to restrict to a
subclass of SFTs with an additional limitation, and prove that some further
restricting properties must follow. The results of [BDJ08] can be consid-
ered to follow this schema: if we restrict ourselves to the class of nonempty
countable SFTs, then we can always find doubly periodic configurations.

37

In [BDJ08], some structural limitations on the subpattern poset of a
countable SFT were proved, including the ascending chain condition (The-
orem 4.20 in this chapter). The main motivation for studying these objects
was the following result.

Theorem 4.1 (Theorem 3.11 in [BDJ08]). Every infinite two-dimensional
countable SFT contains a singly periodic configuration.

The results of [BDJ08] were complemented in [ST13] with constructions
of countable SFTs with an infinite descending chain, and a subpattern poset
containing an order-embedded copy of every finite poset. In this section, we
present a generalization of these results, giving an almost complete charac-
terization of the possible subpattern posets of countable SFTs. This class
of posets is defined by a very weak computability condition, implying that
the restriction of countability for SFTs is, in the end, rather weak. Ex-
cept for the complicated main construction of this section, we have tried to
make our constructions deterministic and having countable projective sub-
dynamics, if possible. Interestingly, the construction of an SFT with high
Cantor-Bendixson rank is possible with any one of the three properties of
determinism, countability and the bounded signal property, but we show
that determinism or countability, in conjunction with the bounded signal
property, already forbids an infinite descending chain.

The problem of finding an infinite Cantor-Bendixson rank was solved
in [JV11] by drawing runs of a Turing machine on the configurations of
the SFTs. Once it is shown that the SFT is countable, the existence of
an infinite Cantor-Bendixson rank follows easily, as the ranks obtained are
cofinal in the Cantor-Bendixson ranks of countable Π0

1 sets. In [ST13], we
gave an alternative example of rank more than ω with a more geometric
construction, and also showed a perhaps simpler alternative for embedding
computations, using a counter machine instead of a Turing machine. In the
constructions presented here, we rely heavily on counter machines and Con-
struction 3.11, and also prove the complete characterization of the possible
Cantor-Bendixson ranks of countable SFTs using arithmetical programs.

In addition to the constructions presented above, we include the con-
struction of a countable SFT whose derivatives grow in complexity from
[ST13], and an SFT with infinite rank which is not of computational nature.

This chapter is based on the article [ST13].

4.2 The One-Dimensional Case

In this section we look at the Cantor-Bendixson ranks of one-dimensional
(not necessarily countable) sofic shifts to illustrate the difference between
the one-dimensional and the multidimensional case. It is more natural to

38

consider sofic shifts instead of SFTs, as sofic shifts are closed under the
derivative operation by Proposition 4.5, but the derivative of an SFT can
be a proper sofic shift, by Example 4.7.

One-dimensional sofic shifts have a useful and well-known characteriza-
tion, Lemma 4.3, in terms of the different contexts of words that appear in
them. We give the characterization without proof, but for example, it easily
follows from Theorem 3.2.10 of [LM95].

Definition 4.2. Let X ⊂ AZ be a subshift with A(X) = A. The extender
set of a word v ∈ A∗ in X is EX(v) = {(w,w′) ∈ (A∗)2 | wvw′ @ X}.

The assumptionA(X) = A is only for definiteness, as we can then discuss
the extender sets of words in a subshift X without specifying the alphabet
A. The following fundamental result should be compared to Lemma 3.15,
which is its multidimensional analogue.

Lemma 4.3. A one-dimensional subshift is sofic if and only if it has a finite
number of different extender sets.

We now relate the extender sets of words in a subshift and its derivative.

Lemma 4.4. Let X ⊂ AZ be a subshift, and let u, v ∈ A∗. If we have
EX(u) = EX(v), then EX(1)(u) = EX(1)(v).

Proof. Let EX(u) = EX(v), and suppose that (w,w′) ∈ EX(1)(u) \EX(1)(v).
Then wvw′ 6@ X(1), so the set of points x ∈ X with x[0,|wvw′|−1] = wvw′ is
finite. But since we have EX(u) = EX(v), these points are in a bijective
correspondence with the points y ∈ X such that y[0,|wuw′|−1] = wuw′, which

implies that wuw′ 6@ X(1), a contradiction.

This implies that the number of different extender sets cannot increase
in the derivative, so the two previous lemmas give the following:

Proposition 4.5. The derivative of a one-dimensional sofic shift is sofic.

A simple further analysis proves the following result.

Proposition 4.6. All one-dimensional sofic shifts have finite rank. More
explicitly, the rank of a one-dimensional sofic shift is bounded by the number
of different extender sets in it.

Proof. Let X ⊂ AZ be a sofic shift, and let k ∈ N be the number of different
extender sets in X. If X 6= X(1), then necessarily X 6= AZ, so we may choose
u /∈ B(X). Further, choose v ∈ B(X) \ B(X(1)). We have EX(u) 6= EX(v)
and EX(1)(u) = ∅ = EX(1)(v). By Lemma 4.4, X(1) has at most k−1 different
extender sets. By induction, X(i) has at most k − i different extender sets,
and it is then clear that X(i) = X(i+1) for some i ≤ k.

39

We now show an example of an SFT whose derivative is proper sofic (sofic
but not an SFT). Compare this with the SFT constructed in Theorem 4.13,
which is in particular a two-dimensional SFT whose derivative is not an
SFT.

Example 4.7. The subshift X = B−1(a∗b∗c∗) is a countable SFT. The
isolated points in it are all configurations where both letters a and c occur.
Thus, its derivative is X(1) = B−1(a∗b∗+ b∗c∗), which is a proper sofic shift.

Finally, we show that a countable one-dimensional sofic shift has a rather
uninteresting subpattern poset.

Lemma 4.8. Let X ⊂ AZ be a sofic shift. If a word w ∈ A∗ occurs in-
finitely many times in some configuration x ∈ X, then X has a periodic
configuration in which w occurs.

Lemma 4.9. Let X ⊂ AZ be a countable sofic shift, and let x, y ∈ X. We
have x < y if and only if x = ∞u∞ for some word u ∈ A+, and y is an
eventually periodic point with y(−∞,i] = ∞u or y[i,∞) = u∞ for some i ∈ Z.

Proof. Since x and y are in X, it follows from Lemma 3.1 that they are
eventually periodic. Suppose first that x = ∞u∞ is periodic. One of the
infinite tails of y, say y[0,∞), contains arbitrarily long subwords of x. By the
theorem of Fine and Wilf [FW65], we then have y[i,∞) = u∞ for some i ∈ N.

Suppose then that x is not periodic, and let wi = x[−i,i]. Since wi @ y
but x 6= y, the configuration y must contain infinitely many copies of wi
for all i ∈ N. By Lemma 4.8, every word wi occurs in a periodic point of
X. Since x is itself not periodic and the lengths of the wi grow without
bound, there are infinitely many periodic points in X, a contradiction with
Lemma 3.1.

In particular, the maximum cardinality of a chain that can be embedded
in the subpattern poset of a one-dimensional countable sofic shift is 2.

4.3 Cantor-Bendixson Ranks and Complexity of
Derivatives

The two main constructions of this section concern the computational com-
plexity of the k’th derivative of a countable SFT, and the set of all attainable
Cantor-Bendixson ranks.

Theorem 4.13 shows that there exists an SFT whose derivatives of order
less than ω have maximal possible computational complexity. This is essen-
tially Theorem 1 in [ST12b], although we make the bounded signal property
explicit, and determinize the construction.

40

Theorem 4.14 is a slight improvement on Theorem 4.3 in [JV11] and
Theorem 4.5 in [ST13], which state that Cantor-Bendixson ranks of count-
able two-dimensional SFTs are cofinal in the Cantor-Bendixson ranks of
countable Π0

1 sets. More specifically, the theorem of [JV11] states that for
every countable Π0

1 set with Cantor-Bendixson rank λ, there is a countable
SFT with rank λ + 11, and the proof used a method for simulating Turing
machines in countable SFTs. In [ST13], this was improved to λ + 4 using
Construction 3.11. The construction in Theorem 4.3 in [JV11] could be
made deterministic, but counter machines are essential for the bounded sig-
nal property. Furthermore, the bounded signal property forces the binary
track (which contains a point of the Π0

1 set) used in the proof of Theo-
rem 4.14 to be simulated ‘in software’, while [JV11] uses an actual tape.
In this thesis, we further lower the simulation overhead from 4 to 3 using
Construction 3.12 for arithmetical programs.

We start with an upper bound for the computational complexity of
derivatives, which we then reach with a construction. A generalization of
the following lemma was proved in [CCS+86, Lemma 1.2 (3)], but we include
a proof for completeness.

Lemma 4.10. Fix a d-dimensional Π0
k subshift X ⊂ AZd. Given a finite

pattern P ∈ Pd(A), it is Π0
k+2 whether P ∈ B(X(1)).

Proof. Let m ∈ N be such that D(P) ⊂ [−m,m]d. Then P occurs in the
derivative X(1) if and only if P ∈ B(X) and for all n ≥ m, there exist
two distinct patterns Q 6= R ∈ B(X) such that [−n, n]d ⊂ D(Q) = D(R),
Q|[−n,n]d = R|[−n,n]d , and Q|D(P) = P . This condition is clearly Π0

k+2.

The following construction shows that the bound given by Lemma 4.10
on the complexity of k’th derivatives of Π0

1 subshifts is strict, and can be
attained by a single deterministic countable SFT with the bounded signal
property. In particular, it implies that Proposition 4.5 is far from true in
dimension two, since two-dimensional sofic shifts are Π0

1, while their deriva-
tives may be Π0

3-complete, and thus highly nonsofic by Lemma 3.16. The
rank of the subshift we construct is ω + k for some finite k. We start with
a definition, and a classical recursion-theoretic lemma.

Definition 4.11. For k ∈ N, denote by Φk the set of first-order arithmetical
formulas with k free variables and only bounded quantifiers. For k, ` ∈
N, denote by φk` the `’th formula in Φk, ordered first by length and then
lexicographically.

Lemma 4.12 (Lemma 2 in [KSW60]). Let k ∈ N, and let φ ∈ Φ2k+1 be
an arithmetical formula. Then there exists a formula ψ ∈ Φk+1, uniformly
computable from φ and k, such that

∀n1 ∃n2 · · · ∀n2k−1 ∃n2k ∀n2k+1 φ(n1, . . . , n2k+1)

41

is equivalent to

∃∞n1 ∃∞n2 · · · ∃∞nk ∀nk+1 ψ(n1, . . . , nk+1).

We denote ψ = I(φ) in the above lemma. With this result, we can
transform alternating quantifiers into infinitary ones, and the application to
derivatives is rather straightforward.

Theorem 4.13. There exists a deterministic countable two-dimensional
SFT X ⊂ AZ2

with the bounded signal property such that the problem
whether P @ X(k) for a given pattern P ∈ P2(A) is Π0

2k+1-complete, for
all k ∈ N.

Proof. As an illustration of the idea, consider the closure of the subset of
{0, 1}N consisting of points of the form

0`10k10n110n2 · · · 0nk10∞

where I(φ2k+1
`)(n1, n2, . . . , nk, nk+1) is true for all nk+1 ∈ N. This set is

Π0
1-complete. Clearly, the derivative of this closed set contains only those

points of the form
0`10k10n110n2 · · · 0nk−110∞,

where I(φ2k+1
`)(n1, n2, . . . , nk−1, nk, nk+1) holds for infinitely many nk ∈ N

and all nk+1 ∈ N. Thus the derivative is Π0
3-complete, and we could verify

by induction that the n’th derivative is Π0
2n+1-complete. The construction

of X is an implementation of the same idea using a suitable counter machine
and Construction 3.11.

Let M be a nondeterministic counter machine that operates as per Al-
gorithm 1. The machine M simply guesses the parameters k ∈ N and ` ∈ N,
then guesses the k numbers n1, . . . , nk ∈ N, and finally checks in an infinite
loop that I(φ2k+1

`)(n1, n2, . . . , nk−1, nk, nk+1) holds for all nk+1 ∈ N. By
Lemma 2.4, we may assume that M is reversible. Note that the set of infi-
nite computations of M is countable, since the choice b = 1 can be made only
finitely many times during a computation. We plug M in Construction 3.11
to obtain the corresponding countable deterministic SFT X = XM with the
bounded signal property. In this case, the final state of M results in a tiling
error in XM . Even after applying Lemma 2.4, the nondeterministic guesses
of M are visible in the SFT, so a finite initial part of a computation cone
where the parameters k and ` have been chosen occurs in X(k) if and only
if the formula

∃∞n1 · · · ∃∞nk ∀nk+1 I(φ2k+1
l)(n1, . . . , nk+1)

is true. But by Lemma 4.12, this is equivalent to

∀n1 ∃n2 · · · ∀n2k−1 ∃n2k ∀n2k+1 φ
2k+1
l (n1, . . . , n2k+1),

42

Algorithm 1 The program of the counter machine M

1: k ← −1
2: repeat
3: k ← k + 1
4: choose b ∈ {0, 1}
5: until b = 1
6: `← −1
7: repeat
8: `← `+ 1
9: choose b ∈ {0, 1}

10: until b = 1
11: for all i ∈ {1, . . . , k} do
12: ni ← −1
13: repeat
14: ni ← ni + 1
15: choose b ∈ {0, 1}
16: until b = 1
17: for all nk+1 ∈ N do
18: if not I(φ2k+1

`)(n1, . . . , nk+1) then
19: reject

and thus the subshift X(k) is Π0
2k+1-hard in the sense of the claim. By

Lemma 4.10, it is actually Π0
2k+1-complete.

In this dissertation, we have not tried to extend Theorem 4.13 beyond
the first infinite ordinal ω, which would of course be a natural strengthening
of the result. The complexity of X(λ) for countable SFTs X and computable
ordinals λ probably covers the hyperarithmetical hierarchy. However, there
cannot exist a single countable SFT X such that X(λ) has maximal compu-
tational complexity for all computable ordinals λ, simply because the rank
of X is a computable ordinal.

Next, we prove that deterministic countable SFTs with the bounded sig-
nal property can have arbitrarily high computable Cantor-Bendixson ranks.
We use both Lemma 2.4 and Lemma 2.5 to make the construction deter-
ministic, and to optimize the simulation overhead to 3 (from the value 11 in
Theorem 4.3 of [JV11], and 4 in [ST13]). Even without these optimization
steps, we would obtain arbitrarily high computable Cantor-Bendixson ranks
with countable SFTs with the bounded signal property.

Theorem 4.14. For any countable Π0
1 set S ⊂ {0, 1}N, there is a countable

deterministic SFT X ⊂ AZ2
with the bounded signal property for which

rank(X) = rank(S) + 3 holds.

43

Proof. Without loss of generality we assume that S 6= ∅. Since S is Π0
1,

there exists a Turing machine TS which outputs a potentially infinite list of
words F ⊂ {0, 1}∗ such that

S = {x ∈ {0, 1}N | ∀n ∈ N : x[0,n−1] /∈ F}.

We denote by TS(n) the (finite) list of words produced by TS after n com-
putation steps. We define a counter machine MS by Algorithm 2.

Algorithm 2 The program of the counter machine MS

1: n← 0
2: W = {λ}
3: loop
4: choose wn ∈ {0, 1}
5: W ←W ∪ {w0 · · ·wn}
6: if W ∩ TS(n) 6= ∅ then reject

7: n← n+ 1

By Lemma 2.4, we can assume that MS is reversible, and by Lemma 2.5,
there exists a reversible arithmetical program M ′S that simulates it. It is
clear that the infinite computation histories ofM ′S form a countable set, since
each corresponds to an element of S. We then apply Construction 3.12 to
M ′S to obtain our SFT X. Here, the single counter of M ′S is always initialized
to 1 in the SFT, and rejection results in a tiling error.

For all coordinates ~n ∈ Z2, the set X~n of configurations of X where
the computation starts at ~n is homeomorphic to S, since the choices of the
bits wn ∈ {0, 1} are visible in the configurations and are the only source
of nondeterminism in MS . Furthermore, each set X~n is open in X, so by
Lemma 3.10, we have

X(λ) =
⋃
~n∈Z2

X
(λ)
~n ∪ Y

for every ordinal λ ≤ rank(S), where Y ⊂ X contains only configurations
where the computation does not start.

Now, we describe the set Y , and show that its Cantor-Bendixson rank
is exactly 3. Let y ∈ Y be arbitrary, so that y does not contain the start
of a computation, and let α = rank(Y). If y contains the left border of the
computation zone, we claim it cannot contain both the zig zag head and the
counter head. This is because M is executing an algorithm whose memory
consumption increases with time (it remembers the set W which increases
in size), so for all m ≥ 0 there exists t ≥ 0 such that after t computation
steps, the value of the counter is at least m. Thus, if y contains the left
border, it may also contain a single infinite sweep of the zig zag head, but
nothing more, and then any pattern containing both the zig zag head and

44

the left border is isolating for y. Conversely, if y contains the counter head,
it may also contain a single sweep of the zig zag head, but nothing more. If
y is not isolated in Y , then it is periodic in some direction, and thus α ≤ 3.
Finally, Figure 4.1 shows an example configuration of rank α − 3, which
contains the left border of a computation cone and the zig zag head. Such
a configuration exists in Y , since Algorithm 2 requires the zig zag head to
visit the left border infinitely many times. This shows that α = 3, and the
theorem is proved.

q←
q←

q←
q←

q←
q←

q←
q←

q→
q→

q→
q→

q→

Figure 4.1: A configuration of minimal Cantor-Bendixson rank in the space
Y of Theorem 4.14.

In [CCS+86] it is proved that the rank of a nonempty countable Π0
1 set

can be any recursive successor ordinal. Thus, Theorem 4.14 shows that for
any recursive ordinal α not of the form λ + n for a limit ordinal λ and
n ∈ {0, 1, 2}, there exists a countable deterministic two-dimensional SFT
with Cantor-Bendixson rank exactly λ. In [BDJ08], it it shown that the
ranks λ and λ + 1 cannot be achieved for any countable subshift. In the
context of countable SFTs, the remaining case of λ + 2 has been settled in
the preprint [BJ13].

Theorem 4.15 (Theorem 5.3 in [BJ13]). For a limit ordinal λ, there exists
no countable SFT with Cantor-Bendixson rank λ+ 2.

Corollary 4.16. The Cantor-Bendixson ranks of countable SFTs are ex-
actly the finite ordinals, and those of the form λ+n, where λ is a computable
limit ordinal and n ≥ 3.

45

With the same construction, we also obtain the upper bound 5 for the
smallest possible rank of a countable SFT with an uncomputable configura-
tion. For Π0

1 subshifts (and closed sets in general), the smallest such rank
is known to be 2 [CDTW12]. Applied to such a set, the construction in
Theorem 4.14 gives a countable SFT with rank 5, and clearly preserves the
computability and uncomputability of non-degenerate points. Furthermore,
the following result can be found in [BJ13].

Proposition 4.17 (Corollary 4 in [BJ13]). An SFT of Cantor-Bendixson
rank at most 4 contains only computable configurations.

This proves that our bound is strict.

Corollary 4.18. The minimal Cantor-Bendixson rank of an SFT contain-
ing an uncomputable configuration is 5.

Finally, we present our geometric construction of an infinite Cantor-
Bendixson rank as another, perhaps more natural, example of how infinite
ranks might arise in countable SFTs. The construction has the bounded
signal property, but it is not deterministic.

Example 4.19. We give an example of a countable two-dimensional SFT
X of rank at least ω with the bounded signal property. For a motivating
example, consider the one-dimensional subshift containing points of the form

∞0ak0m1ak−1b0m2ak−2b20m3 · · · 0mkbk0∞,

where k ∈ N and mi ∈ N for all i ∈ {1, . . . , k} are arbitrary. For all
k ∈ N, the subshift contains configurations with k ‘islands’ floating in a sea
of 0’s, but no configuration contains an infinite number of islands. This is
a countable subshift with infinite rank, and in the following, we construct a
two-dimensional SFT X that uses exactly the same idea.

Define an SFT X over the alphabet in Figure 4.2, and the obvious 2× 2
patterns (the gray areas labeled T and B are of different colors). A configu-
ration of X may contain one infinite horizontal dedicated line (the thick line
in the figure), whose top and bottom halves are colored differently. On the
two sides of the line one may have (perhaps infinite) right triangles. The
top and bottom triangles must be located on the same coordinates, meaning
that their right angles are vertically opposite.

From the top corner of every triangle above the dedicated line, an in-
crement signal is sent to the right, and it is absorbed by the tile to the
southwest of the top corner of the next triangle on the right. The symmet-
ric condition holds for the triangles below the dedicated line. This causes
the heights of the higher triangles to increase to to right, and those of the
lower triangles to increase to the left. See Figure 4.3 for a clarifying picture.

46

T

B B
T

B B

T
T B

B

T

B

T

B

T
B

T T

B T

Figure 4.2: The alphabet of the SFT in Example 4.19.

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T T

T

T

T

T

T

T

T

T

T

T T

T

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B B B B B B

Figure 4.3: An example configuration of the SFT X.

47

We first claim that X is countable. Indeed, for each (n,m) ∈ N2, if a
configuration x ∈ X contains a pair of opposite triangles of sizes n and m,
then there are at most n + m − 1 pairs of triangles in x, since the size of
the higher (lower) triangles decreases to the left (right, respectively). The
number of ways to arrange these points triangles is countable. One can also
check that the number of exceptional points (ones containing, say, an infinite
triangle or just signals) is countable.

Next, we show that X(ω) is a nonempty set of finite rank. First, the
isolated points of X are exactly those that only contain finite triangles, and
whose rightmost lower and leftmost higher triangles are of size 2 (the height
of a tile being 1). In general, if x ∈ X contains only finite triangles, we say
that x has type (n,m) if the rightmost lower triangle and leftmost higher
triangle have sizes n and m, respectively. It is then easy to see that for all
k ∈ N, the set X(k) will contain all of X, except for the configurations of
type (n,m) with n+m < k+ 4. Then X(ω) is nonempty, but will consist of
only exceptional points, and clearly X(ω+k) = ∅ for some finite k.

4.4 Structure of Subpattern Posets

4.4.1 Infinite Chains and Antichains

In this section, we investigate the subpattern posets of countable SFTs, in
particular their structure as abstract posets. It is known that the subpat-
tern poset of a countable subshift has the ACC, meaning that it contains no
infinite increasing chain. A proof of this result can be found in [BDJ08, The-
orem 3.7] using the theory of Cantor-Bendixson derivatives, and in [ST12b]
with a more concrete approach. We repeat the latter proof here for com-
pleteness.

Theorem 4.20. The subpattern poset of a countable subshift has the ACC.

Proof. Let X ⊂ AZd be a subshift, and let (xi)i∈N be a sequence of config-
urations of X with xi < xi+1 for all i ∈ N. We will show that X is un-
countable. For each binary word w ∈ {0, 1}∗, we define a number `w ≥ |w|,
and a finite pattern Pw @ x|w| with domain [−`w, `w]d ⊂ Zd, as follows.
First, let `ε = 0, and let Pε = x0|~0. Next, suppose that we have defined
the pattern Pw @ xi, where i = |w| > 0. Since xi < xi+1, there exists
a number ` > `w and two distinct coordinates ~m 6= ~n ∈ Zd such that
xi+1|[−`w,`w]+~m = xi+1|[−`w,`w]+~n = Pw, but xi+1|[−`,`]+~m 6= xi+1|[−`,`]+~n.
Then we define `w0 = `w1 = `, Pw0 = xi+1|[−`,`]+~m and Pw1 = xi+1|[−`,`]+~n.

Note that the above construction guarantees that Pw @ Pv, if w ∈ {0, 1}∗
is a prefix of v ∈ {0, 1}∗. Furthermore, the domain of Pw only depends on
the length |w|. Then, each infinite word u ∈ {0, 1}N defines a configuration
xu ∈ X by xu = limi→∞ Pu[0,i] , where the patterns have been centered to

48

the origin, and the configurations are all distinct by the construction of the
patterns Pw. We have described an injection from {0, 1}N to X, which means
that X is uncountable.

A subpattern poset of a countable SFT may contain infinite antichains,
and in fact they are harder to avoid than produce. The grid subshift of
Example 3.2 has this property, but even the one-dimensional countable SFT
B−1(0∗1∗2∗) contains an infinite antichain. This leaves us with the case of
infinite downward chains, which was left open in [BDJ08]. It was later shown
in [ST13], with a complicated construction, that the subpattern posets of
countable SFTs may have infinite downward chains. In the next subsection,
we generalize this result, and provide an almost complete description of the
isomorphism classes of subpattern posets of countable SFTs.

4.4.2 Hyperarithmetical Subpattern Posets

In this section, we show that the subpattern posets of countable SFTs can
be almost characterized, up to a subset of bounded height, by a computabil-
ity condition. For this, recall the definition of hyperarithmetical sets from
Section 2.4.

Definition 4.21. A hyperarithmetical poset is a poset (P,�) such that both
P ⊂ N and � ⊂ N2 are hyperarithmetical sets.

We will prove that the subpattern posets of countable SFTs are, up
to order-isomorphism, almost exactly the hyperarithmetical posets. One
direction of our result, that subpattern posets are always hyperarithmetical,
follows rather easily from general computability theory.

Lemma 4.22 (Part of Theorem 1.1 of [CCS+86]). Let X ⊂ {0, 1}N be
a countable Π0

1 set, and let x ∈ X have rank λ + n in X, where λ is a
computable limit ordinal and n < ω. Then x ≤T ∅(λ+2n).

Theorem 4.23. Let X ⊂ AZd be a countable two-dimensional Π0
1 subshift

with Cantor-Bendixson rank λ + n, where λ is a computable limit ordinal
and n < ω. Then there exists a hyperarithmetical poset (P,�), with P and
� Turing-reducible to ∅(λ+2n+2), which is order-isomorphic to SP(X).

Proof. In this proof, for a computable ordinal α and i ∈ N, we denote by

M
(α)
i the oracle Turing machine with index i and oracle 0(α), which may

compute numbers, finite patterns, other Turing machines, or whatever is
convenient for us at that point. First, every configuration x ∈ X has rank
at most λ+ n in X, so Lemma 4.22 implies that x ≤T ∅(λ+2n). This means

that there exists an index i ∈ N such that M
(λ+2n)
i (m) = x[−m,m]d ∈ Pd(A)

for every m ∈ N. In the above case, we denote x = xi.

49

Consider the problem of determining whether xi ∈ X for a given index
i ∈ N. There is an index e ∈ N such that, given i ∈ N, the oracle machine

M
(λ+2n)
e checks for each k ∈ N whether

(
M

(λ+2n)
i (m)

)k
m=0

is a consistent

sequence of cocentric square patterns on A, none of which contains any of
the forbidden patterns of X, and halts as soon as this is not the case. The

divergence of M
(λ+2n)
e on input i, which is equivalent to xi ∈ X, is Turing

reducible to ∅(λ+2n+1).
Next, consider the problem whether xi ≤ xj holds for given indices

i, j ∈ N. There exists an index f ∈ N such that, given an index i ∈ N and

a pattern P ∈ Pd(A), the machine M
(λ+2n)
f checks for each k ∈ N whether

P occurs in xi
[−k,k]d

, halting if it does, and diverging if the computation of

xi
[−k,k]d

by M
(λ+2n)
i diverges. We can also find an index g ∈ N such that,

given i ∈ N and P ∈ Pd(A), the machine M
(λ+2n+1)
g checks for all k ∈ N that

the computation of xi
[−k,k]d

halts but M
(λ+2n)
f (j, xi

[−k,k]d
) diverges; if this is

not the case, the machine halts. In the case that xj ∈ X, the divergence

of M
(λ+2n+1)
g is equivalent to xi ≤ xj , which is thus Turing reducible to

∅(λ+2n+2). Determining xi ≈ xj is then also Turing reducible to ∅(λ+2n+2).
We now construct the poset (P,�), where P ⊂ N and P,� ≤T ∅(λ+2n+2).

The set P is defined inductively by

i ∈ P ⇐⇒ xi ∈ X ∧ ∀j < i : (j ∈ P =⇒ xi 6≈ xj)

for all indices i ∈ N. This means that i ∈ P if and only if xi ∈ X is the
lowest-indexed member of its ≈-equivalence class, and thus P is in a natural
bijection with X̃, the underlying set of SP(X). The ordering � is simply
defined by

i � j ⇐⇒ xi ≤ xj

for all i, j ∈ P , which makes it a hyperarithmetical relation Turing reducible
to ∅(λ+2n+2). The aforementioned bijection becomes an order-isomorphism
between SP(X) and (P,�), which finishes the proof.

Corollary 4.24. The subpattern poset of a two-dimensional countable Π0
1

subshift is order-isomorphic to a hyperarithmetical poset.

We proceed to the converse claim, that all hyperarithmetical posets can
be realized as subpattern posets of countable SFTs, up to a subset of ele-
ments of bounded height. For our construction, we need the following useful
result.

Theorem 4.25 (Part of Theorem 4.14 of [JM69]). Let α be a computable
ordinal. Then there exists a set N ⊂ N with N ≡T 0(α) and a computable
function f : N → N such that, denoting N = {n0, n1, . . .} with ni < ni+1,
we have

50

1. f(n0) = n0, and f(ni+1) = ni for all i ∈ N, and

2. N is the only infinite subset of N with property 1.

In the above situation, we denote N = Tr(f), and call it the trace of f .

This result is usually stated as ‘hyperarithmetical sets are exactly the
unique infinite branches of computable trees.’

Theorem 4.26. Let (P,�) be a hyperarithmetical poset with the ascending
chain condition. Then there exists a countable two-dimensional SFT X ⊂
AZ2

and an order-embedding φ : P → SP(X) such that every element in
SP(X) \ φ(P) has height at most 3.

Intuitively, the above theorem states that a very large class of posets,
including all finite posets and the reversals of all computable ordinals, can
be ‘almost’ realized as the subpattern posets of countable SFTs. The rest
of this section is devoted to the proof of this result, which takes the form of
an explicit construction of the SFT X. For this, fix the hyperarithmetical
poset (P,�), and let f : N→ N be a computable function such that P and
� are both Turing reducible to the trace Tr(f). The existence of such an f
is guaranteed by Theorem 4.25. We may assume without loss of generality
that 0 /∈ P . The countable SFT X ⊂ Xs×Xh×Xc consists of three layers,
each of which is an SFT itself, and we construct them separately.

The intuition behind the construction is the following. We will construct
a geometric structure that resembles a one-way infinite chain in a directed
graph, and each vertex corresponds to a computation step of a counter
machine. The machine stores an element p of the poset P , and performs an
infinite computation, during which it slowly enumerates the set P and the
relation �. Conversely, to each element p ∈ P corresponds exactly one such
computation chain, say (xpi)i∈N. Now, since the counter machine enumerates
the relation �, it can also enumerate the set c(p) = {q ∈ P | q ≺ p}. We
construct the chain in such a way that for all q ∈ c(p) and for infinitely
many indices i ∈ N, a copy of a long initial segment of the chain (xqj)j∈N
terminates at the vertex xpi . Thus the chain (xpi)i∈N is actually part of
an infinite rootless tree Tp, which contains all finite subtrees of all Tq for
q ∈ c(p). The tree Tp corresponds to the configuration φ(p) ∈ X, and the
above condition on Tp and Tq corresponds exactly to φ(q) � φ(p).

The main difficulties in the construction are various synchronization and
timing constraints, and the condition of countability. First of all, the counter
machine simulated in the chains is nondeterministic: it constructs a hyper-
arithmetical set N ⊂ N one guess at a time, and uses the computable func-
tion f : N→ N given by Theorem 4.25 to guarantee that N = Tr(f). How-
ever, this requires that the computation run for infinitely many steps, but
the initial segments attached to the chain (xpi)i∈N are all finite. Because of

51

this, we need to synchronize the computations of the different branches, that
is, guarantee that they all make the exact same nondeterministic guesses,
and this is enforced locally by the vertices that connect the initial segments
to the chain. This causes another issue, since the vertices are implemented
in the SFT X as finite triangular regions of tiles, and the synchronization
condition is complex enough that we check it by a simulated computation,
which must fit inside the region. Fortunately, this problem can be solved
by computing the above set N ⊂ N very slowly, allowing the triangular re-
gions to grow to accommodate the computations. Finally, the countability
of X is achieved partially as a side product of the above considerations (in
particular the guarantee that apart from the choice of the element of P ,
the simulated counter machines have a unique infinite computation path),
and partially by the choice of geometry and suitable forbidden patterns that
restrict the shape of its configurations.

4.4.3 The Skeleton Layer

The first layer, Xs, is called the skeleton layer, and it provides a rigid geo-
metric structure to X. The remaining layers contain simulations of counter
machines, which we anchor to the structure of the skeleton layer. Through-
out the construction and the proof of its correctness, we also define several
classes of infinite rootless trees, since configurations of the skeleton layer are
structured as such objects.

Definition 4.27. A skeleton tree is an infinite directed tree T = (V,E, π),
where π : V → N is a labeling of the vertices, satisfying the following
conditions.

• It is connected, and π(v) ∈ {2n | n ≥ 2} for all v ∈ V .

• The set of edges E is partitioned into two disjoint subsets, the successor
edges Es and the child edges Ec.

• If (v, w) ∈ Es, then π(w) = 2π(v). We say that v is a successor of w,
and w a predecessor of v.

• If (v, w) ∈ Ec, then π(w) = 8π(v). We say that v is a child of w, and
w a parent of v.

• Every vertex has either one predecessor, or one parent, but not both.

• Every vertex has at most one child, and at most one successor.

• A vertex v ∈ V has a successor if and only if π(v) > 4.

The value π(v) is called the width of the vertex v ∈ V (the reason for this
terminology will soon be clear).

52

The alphabet of Xs is depicted in Figure 4.4, and its forbidden patterns
are the obvious 2× 2 ones, plus a couple of other patterns that we describe
below. An example configuration is shown in Figure 4.5. As can be seen in
the latter figure, some configurations of Xs contain a southeast half-plane
colored with H, whose border we call the dedicated line, and chains of shrink-
ing triangular shapes (areas colored with the two lighter grays), which we
call vertex triangles. We say that a vertex triangle is rooted at the coordinate
of the dedicated line that contains its southeast corner. Each vertex triangle
consists of a light and dark triangular region, which we call its outer and
inner triangles, respectively. For example, in Figure 4.5, the triangle ACD
is a vertex triangle rooted at C, and its outer and inner triangles are ABD
and BCD, respectively. Note that the discrete line from B to D has slope
8. The dark gray area between the dedicated line and a vertex triangle is
called its shadow.

0 0

H H
H

5

H

i

i+ 1

6

0

H

Figure 4.4: The alphabet of the skeleton layer Xs. The endpoints of the
thick lines are labeled by integers from 0 to 6, and i ranges from 0 to 5.

Now, the configurations of Xs are closely related to skeleton trees. Notice
that the north corner of a vertex triangle ∆ is always attached to another
vertex triangle ∆′, by the west corner of its inner or outer triangle. In the
former case, we call ∆′ the parent of ∆, and in the latter, the predecessor
of ∆. In Figure 4.5, the large triangle above ACD is its parent, while ACD
itself is the predecessor of the smaller triangle below it. In order to make
the connection between the skeleton layer and the set of skeleton trees even
more explicit, we add some new forbidden patterns to Xs. First, analogously
to the last condition of Definition 4.27, we require that a vertex tree must
have a successor, unless its width is exactly 4. This can be implemented by
forbidding every 4 × 4 pattern whose southwest corner coincides with that
of a large vertex triangle without a successor. Second, we require that if the
tile at the bottom left corner of Figure 4.4 (the southwest corner of a vertex
triangle with no successor) occurs at some coordinate (i, j) ∈ Z2, then the

53

H

A

B C

D

Figure 4.5: A configuration of the skeleton layer Xs. The letter H refers to
the color of the half-plane, while A, B, C and D denote intersection points
of the discrete lines.

54

middle tile of the rightmost column (the east corner of a shadow) occurs
at (i − 4, j − 8). We call this the shadow condition, and it concludes the
definition of Xs.

Now, it is easy to see that every configuration x ∈ Xs containing a finite
vertex triangle ∆ gives rise to a unique skeleton tree Ts(x) = (V,E, π): the
vertex set V consists of the vertex triangles of x, the edge set E inherits their
parent and predecessor relations, and the labeling π : V → N is defined by
their widths. Note that since x contains a dedicated line, it cannot contain
an infinite vertex triangle: the southeast corner of that triangle would lie on
some coordinate ~n of the dedicated line, and then its shadow would cover
all coordinates to the northeast of ~n, contradicting the fact that ∆ must
have an infinite chain of predecessors and parents. The converse of this
observation also holds.

Lemma 4.28. Let T = (V,E, π) be a skeleton tree. Then there exists a
configuration x ∈ Xs such that Ts(x) is isomorphic to T . Moreover, x is
unique up to translation.

Proof. Let v ∈ V be an arbitrary vertex. We construct the configuration x so
that the vertex triangle corresponding to v is rooted at the origin. For each
vertex w ∈ V , we define the number n(w) ∈ Z so that n(w) = n(u) + 2π(u)
holds for all (u,w) ∈ E. We first set n(v) = 0, and since T is a connected
tree, this unambiguously defines n(w) for all w ∈ V .

Now, we claim that there exists a configuration x ∈ Xs such that for all
w ∈ V , there is a vertex triangle ∆(w) of width π(w) rooted at (n(w), n(w))
in x. We first prove that if we place such vertex triangles on the infinite
plane, no triangle overlaps another one or its shadow. For this, it suffices to
show that no two vertices u 6= w ∈ V satisfy n(u) ≤ n(w) ≤ n(u) + π(u) +
min

(
π(u), 1

2π(w)
)
, unless (u,w) ∈ E. We call this the overlap condition;

see Figure 4.6 for a visualization of it.

To prove that the overlap condition holds, assume n(u) ≤ n(w), and let
u = v0, v1, . . . , vk = w be the unique minimal-length undirected path from
u to w in the tree T . By the properties of skeleton trees, there is an index
m ∈ {1, . . . , k} such that (vi, vi+1) ∈ E for all i < m and (vi+1, vi) ∈ E for
all i ≥ m. Note that n(vi) ≥ n(u) + 2(2i − 1)π(u) holds for i ≤ m. Thus, in
the case m = k, we have

n(w) = n(vm) ≥ n(u) + 2(2m − 1)π(u) ≥ n(u) + 2π(u),

with equality only if m = 1, that is, (u,w) ∈ E. Since 1
2π(w) ≥ π(u) also

holds, the overlap condition is satisfied in this case.

Suppose then that m < k, so that there are two possibilities for the
number n(vm+1). First, if vm is the predecessor of vm+1, then we have
n(w) < n(u), so this case cannot hold. Thus vm is the parent of vm+1 and

55

n(v)n(u) n(w)

H

Figure 4.6: The overlap condition can be violated in two ways. On the
left, we have n(u) ≤ n(v) < n(u) + 2π(u) < n(u) + 1

2π(v), so that the east
border of ∆(u) crosses the south border of ∆(v). On the right, we have
n(v) ≤ n(w) < n(v) + π(v) + 1

2π(w) < π(v), so that the south border of
∆(w) intersects the shadow of ∆(v).

56

the predecessor of vm−1, and we have π(vm) = 8π(vm+1) = 2π(vm−1). Using
this, we obtain that

n(vm+1) = n(vm)− 2π(vm+1) = n(vm−1) +
3

2
π(vm−1).

Since n(vi+1) = n(vi)−π(vi) and π(vi) = 2m−i−2π(vm) hold for all i ≥ m+1,
this implies that

n(w) = n(vm−1) +
3

2
π(vm−1)−

k−1∑
i=m+1

π(vi)

= n(u) + 2(2m−1 − 1)π(u) +
3

2
π(vm−1)− 1

4
π(vm) + 2π(w)

= n(u) + 2(2m−1 − 1)π(u) + π(vm−1) + 2π(w).

In the case m > 1, the last term is greater than n(u) + 2π(u), and if m = 1,
it is greater than n(u)+π(u)+2π(w), so the overlap condition holds in both
cases. Furthermore, if w is a leaf, then π(w) = 4, and the above calculation
implies n(w)−n(vm−1) = π(vm−1)+8, so that the east corner of the shadow
of ∆(vm−1) lies at the coordinate (n(w) − 8, n(w) − 8). Thus, the shadow
condition also holds for ∆(w).

Now, we can construct the configuration x by placing the dedicated line
at {(a, a) | a ∈ Z}, adding a vertex triangle ∆(w) of width π(w) rooted at
(n(w), n(w)) for all vertices w ∈ V , adding the shadows of these triangles,
and filling the rest of x with the white tiles. If there is a leaf vertex w ∈ V
with an infinite chain of predecessors, then ∆(w) is the leftmost vertex
triangle in x, and we must additionally place an infinite shadow whose east
corner lies at (n(w) − 8, n(w) − 8) in order for ∆(w) to satisfy the shadow
condition. Since no two vertex triangles overlap, they inherit their parent
and predecessor relations from the skeleton tree T , and the shadow condition
is satisfied for all width-4 triangles, the configuration x contains no forbidden
patterns of Xs, and thus x ∈ Xs. The condition that Ts(x) is isomorphic
to T holds by construction, and it is also easy to see that the position of
∆(v) completely determines x, so that the configuration is unique up to
translation.

Before moving on to the second layer ofX, we note that the skeleton layer
Xs is not countable, since there exist uncountably many different skeleton
trees. However, the two remaining layers will restrict the structure of X to
ensure its countability.

4.4.4 The Hyperarithmetical Layer

The second layer of X is called the hyperarithmetical layer, and we denote it
by Xh. Its purpose is to simulate the computation of a function f : N→ N

57

given by Theorem 4.25, which can then be used to compute the structure of
the hyperarithmetical poset (P,�). For this, we define another kind of tree.

Definition 4.29. Let M = (k,Q, δ, q0, qf) be a nondeterministic counter
machine. An M -tree is a directed tree T = (V,E, π, I), where π : V → N
and I : V → Q × Nk are labelings of the vertices, satisfying the following
conditions.

• (V,E, π) is a skeleton tree.

• The label of a leaf v ∈ V is the initial ID I(v) = (q0, 0, . . . , 0) of M .

• For every vertex v ∈ V that has a predecessor w ∈ V , there exists a

transition d ∈ δ with I(v)
d→ I(w).

Intuitively, an M -tree is simply a skeleton tree that simulates a computa-
tion of M in each of its successor chains. Analogously to the skeleton layer,
the well-behaved configurations of the hyperarithmetical layer Xh basically
encode M -trees into geometric shapes.

Before proceeding to the definition of Xh, we fix the behavior of the
counter machine M , the idea for which is the following. The machine will
have three special counters, the poset counter nposet, the set counter nset,
and the branch counter nbr, along with a special branch state qbr. The poset
counter holds an element of the hyperarithmetical poset P , and the highest
value of that counter in an M -tree T = (V,E, π, I) (with respect to the
order �) is the poset value of that tree. The control layer will later ensure
that if v ∈ V is a vertex of T and w ∈ V is its child, then the poset counter
value of I(w) is strictly lower than that of I(v) in the order �. The branch
counter and branch state interact with the control layer to achieve this. The
set counter, on the other hand, encodes an initial segment of the trace set
Tr(f) ⊂ N, which is used to compute the set P and the relation �.

The program of M is shown in Algorithm 3, and it contains some uncon-
ventional notation, which we now explain. First, the notation in parallel
means that the first block of code should be executed at the same time as
the second; the program takes turns executing one step of the first block,
one step of the second, one of the first again, etc. The reason for this is that
we want the first block to be ‘synchronized’ across any two computation
histories of M , if they make the same nondeterministic choices in the first
block. Second, the notation ni ←↩ m for a counter ni and a value m ∈ N,
first used on line 3.11, signifies that the counter ni is given the value m
instantaneously : the value m is first computed into an auxiliary counter,
whose value is then copied to ni in one step. An ordinary counter ma-
chine does not have this functionality, but we can implement is as a special
kind of transition. Third, we denote by 2N∗ the set of pairs (`,K), where
` ∈ N and K ⊂ {0, 1, . . . , `}. The function e : 2N∗ → N, first used on the

58

same line as the instantaneous assignment operation, encodes an element of
2N∗ into a natural number. The details of the encoding function are irrel-
evant, as long as it is computable, has a computable inverse, and satisfies
e(`1,K1) ≤ e(`2,K2) whenever `1 ≤ `2. Then there exists an increasing
computable function t : N → N with the following property. Given two
encodings of pairs (`1,K1), (`2,K2) ∈ 2N∗ , a counter machine simulated by
the SFT of Construction 3.11 can decide in at most 2t(`1+`2) horizontal rows
whether the conditions `1 ≤ `2 and K1 = K2 ∩ {0, 1, . . . , `1} hold. This
function is used on line 3.10, and the reason for including it will become
clear in the next subsection.

Finally, we define two oracle Turing machines MP and M≺ with the
following properties. If the machine MP is given a number p ∈ N as input
and the set Tr(f) ⊂ N as an oracle, it decides whether p ∈ P . Similarly,
if the machine M≺ is given two numbers r, p ∈ N as input and Tr(f) as
an oracle, it decides whether r ≺ p holds. The existence of the machines
follows from the definition of the function f . Now, given a finite set K ⊂ N
and `, p ∈ N, we denote by MK

P `` p ∈ P the condition that the machine
MP accepts the input p using the oracle K, and only queries the oracle with
values from {0, . . . , `}. We define MK

P `` p /∈ P and MK
≺ `` r ≺ p similarly,

and denote by MK
≺ (`, p) the set of those numbers r ∈ {0, . . . , `} for which

MK
≺ `` r ≺ p holds. Note that these notions are computable from `, p, r and

K. We also note that on line 3.21, it may be that neither of MK
P `` p /∈ P

or MK
P `` p ∈ P holds, if the machine MP needs to query the oracle with

some value t > `.

Let v ∈ V be a vertex of an M -tree (V,E, π, I) with label I(v) =
(q, n1, . . . , nk). We call the state q ∈ Q the M -state of v. Also, the value of
the poset counter in I(v) is called the poset element of v, and the element
of 2N∗ encoded in its set counter is the initial segment computed at v.

We now move on to the definition of Xh. Its alphabet is depicted in
Figure 4.7, and an example configuration in Figure 4.8. In the alphabet, the
labels I and In of the lines range over the set Q× {0, 1}k.

We now list the forbidden patterns of the hyperarithmetical layer Xh.
First, naturally, every 2 × 2 pattern of tiles where the lines of neighboring
tiles do not match is forbidden. Next, in a pattern of shape 2×1 consisting of
two tiles with a vertical signal (bottom row, second tile from the right), if the
labels of the signals are (p, a1, . . . , ak) and (q, b1, . . . , bk), where p, q ∈ Q and
ai, bi ∈ {0, 1}, then we require that p = q and ai ≤ bi for all i ∈ {1, . . . , k}.
This means that the labels of a group of vertical lines are decreasing (not
necessarily strictly) to the west, and we can use such a group to model an ID
of M : its state is the common state of the signals, and the value of counter
i is the number of tiles whose i’th bit is 1. Analogously, we require that the
labels of a group of horizontal signals are decreasing to the north, so that it
also models an ID of M .

59

Algorithm 3 The program of the counter machine M used in Xh

1: in parallel
2: ` = −1
3: K ← ∅
4: loop
5: `← `+ 1
6: choose b ∈ {0, 1}
7: if b = 1 then
8: if f(`) 6= min(`,maxK) then reject . Here, max ∅ =∞
9: K ← K ∪ {`}

10: wait for t(2`) steps
11: nset ←↩ e(`,K)

12:

13: p← 0
14: repeat
15: p← p+ 1
16: choose b ∈ {0, 1}
17: until b = 1
18: nposet ←↩ p
19: loop
20: if MK

P `` p /∈ P then reject
21: else if MK

P `` p ∈ P then
22: for r ∈MK

≺ (`, p) do
23: wait for r + 3 steps
24: nbr ←↩ r
25: visit state qbr

d

I1

I2 d

I1

I2

(I3, I1)

I1

d

I1

I2

(I4, I1)

(I1, I3)

d

I1

I2

(I1, I3)

I

I

I I

I

I

I

I

I

I I0

I1 I1

I2 I1 I1

I2

I2

Figure 4.7: The alphabet of the hyperarithmetical layer Xh. The labels I
and In have the type Q × {0, 1}k, and they represent “slices” of an ID of
M . The allowed combinations of these labels, and the forbidden patterns of
Xh, are explained in the main text.

60

The purpose of the tiles with a black circle is to transform a group
of horizontal signals to one of vertical signals, while preserving their labels.
Conversely, the purpose of the white circles is to transform a group of vertical
signals back to horizontal ones, and also compute a transition d ∈ δ. For this,
every 2 × 2 pattern containing two white circles, connected by a line, with
different transitions d 6= d′ ∈ δ, is forbidden. Also, the labels I1, I2, I3, I4

in the tiles containing white circles are restricted so that a diagonal line
of white circles actually implements the transition δ. It is not hard to see
that such restrictions can be chosen, since every tile obtains the information
about the signals that arrive to its northwest and southeast neighbors, and
counter values are either updated in increments or decrements of 1, or copied
directly from another counter in case of the special transitions mentioned
above.

The labels I1 and I2 in the T-junction and crossing tiles have no re-
strictions, and the purpose of these tiles is to allow one computation to
‘merge’ into another. The crossing tile must have another crossing tile or a
T-junction above it, and the T-junction tile must have an empty tile above
it. The label I0 is the initial ID (q0, 0, . . . , 0) of M , and the tile that contains
it is called the seed tile, since it starts a new computation of M .

Finally, we define a new SFT Y ⊂ Xs×Xh that enables the hyperarith-
metical layer to interact with the skeleton layer. The idea is that the com-
putational structures of the hyperarithmetical layer will ‘attach’ themselves
to the geometric shapes of the skeleton layer, and that the configurations
of Y correspond to M -trees. With this in mind, the additional forbidden
patterns of Y are the following. First, a vertex triangle of width more than 4
with no successor is forbidden, and similarly, a vertex triangle of width more
than 32 with no child is forbidden. This guarantees that the width of every
vertex triangle in Y is a power of 2, and that all leaves of the corresponding
skeleton tree have width 4. Second, every tile whose Xh-component contains
a black circle, and whose Xs-component is not part of a vertex triangle, is
forbidden, and conversely, the southeast corner of every vertex triangle must
contain a black circle. Similarly, every tile whose Xh-component is a white
circle, and whose Xs-component is neither completely white nor the north
corner of a vertex triangle, is forbidden, and the north corner of a vertex
triangle must be paired with the fourth tile on the bottom row of Figure 4.7.
Finally, we require that in a group of vertical signals, the rightmost one is
either a cross or a T-junction, or coincides with the east border of some
vertex triangle. Conversely, the east border of every vertex triangle must be
paired with a rightmost vertical signal.

The above constraints force the groups of computation signals to travel
along the south and east borders of the vertex triangles, so that to each
finite vertex triangle ∆ in a configuration of Y corresponds an ID I(∆) of
the counter machine M . In this way, each configuration y ∈ Y containing

61

Figure 4.8: A configuration of the hyperarithmetical layer Xh. The white
circles have labels from δ (see Figure 4.7). This configuration cannot occur
as the second layer of a configuration of Y , since the southernmost black
circles cannot be paired with the southeast corners of finite vertex triangles.

62

a finite vertex triangle corresponds to a unique M -tree TM (y). As in the
previous subsection, the converse also holds.

Lemma 4.30. Let T = (V,E, π, I) be an M -tree. Then there exists a con-
figuration y ∈ Y such that TM (y) is isomorphic to T . Furthermore, y is
unique up to translation.

Proof. First, since T ′ = (V,E, π) is a skeleton tree by definition, Lemma 4.28
implies that there exists a configuration x ∈ Xs of the skeleton layer such
that Ts(x) is isomorphic to T ′, and it is unique up to translation. Thus
it suffices to prove that there exists a unique configuration x′ ∈ Xh of the
hyperarithmetical layer such that (x, x′) ∈ Y and the tree TM (x, x′) is iso-
morphic to T . Our construction is visualized in Figure 4.9.

H

Figure 4.9: Constructing the configuration x′ ∈ Xh.

First, take a vertex triangle ∆ of x of width 2n for some n ≥ 2. We
consider ∆ as an element of the vertex set V , so that I(∆) is an ID of the
machine M . We attach to the east border of ∆ a group of n − 1 vertical
signals, the eastmost one being superimposed on the border, containing the
ID I(∆). If n ≥ 3, we analogously attach a group of n− 1 horizontal signals

63

to the south border of ∆. In the intersection points of these groups we place
n− 1 black circles.

Now, if ∆ has a predecessor ∆′, then the north corner of ∆ is attached
to the west corner of ∆′, and since T is a skeleton tree, there exists a

transition d ∈ δ such that I(∆)
d→ I(∆′) holds. We may assume that

the southeast corner of ∆′ is located at the origin. It is not hard to see
from the geometry of the skeleton layer Xs that the rectangular domain
D = [−2π(∆), 0] × [0, 2π(∆) − 1] ⊂ Z2 of the configuration x contains
only tiles of the vertex triangle ∆ and white tiles. This means that in the
configuration x′, we can extend the vertical signals of ∆ and the horizontal
signals ∆′ into the domain D, and place white circles with label d at their
intersections. Finally, if ∆′ is the parent of ∆ instead of its predecessor, we
can simply attach the vertical signals of ∆ into the horizontal signals of ∆′

using the T-junction and crossing tiles.

The hyperarithmetical tree Th(x, x′) is clearly isomorphic to T , and the
configuration x′ is completely determined by T and x, since the signals of
the hyperarithmetical layer can only be attached to vertex triangles.

As the skeleton layer Xs, the SFT Y is not countable. In fact, if a
configuration x ∈ Xs contains infinitely many vertex triangles with children,
then even the set {x′ ∈ Xh | (x, x′) ∈ Y } is uncountable, since the infinitely
many simulated computations of M can be chosen independently, and the
nondeterministic choices of M are visible in the corresponding configuration
x′.

4.4.5 The Control Layer

Finally, we define the control layer Xc. The purpose of this layer is to link
the different computation paths of M together in a configuration. As with
the previous layers, we define a class of trees corresponding to Xc (or X, to
be more exact).

Definition 4.31. Let T = (V,E, π, I) be an M -tree. We say that T is
controlled, if the following conditions hold for all vertices v ∈ V .

• v has a child if and only if the M -state of v is qbr.

• If v has a child w ∈ V , then the poset element of w is equal to the
branch counter value of v, and the initial segments (`1,K1), (`2,K2) ∈
2N∗ computed at w and v, respectively, satisfy K1 = K2∩{0, 1, . . . , `1}.

The class of controlled M -trees is denoted by CM .

These constraints have some important consequences. First of all, for an
edge (v, w) ∈ E of a controlled M -tree T = (V,E, π, I), the set computed

64

at v is a subset of the set computed at w. This implies that there is a single
set N ⊂ N such that the set computed at any vertex of T is a subset of
N . Because of the checks in Algorithm 3, we necessarily have N = Tr(f).
This means that in any infinite sequence of predecessors, for large enough
` ∈ N, the condition MK

P `` p ∈ P in the algorithm is actually equivalent
to p ∈ P , and similarly for MK

P `` p /∈ P and the set MK
≺ (`, p). Since the

branch counter of a vertex v ∈ V gets its value from the set MK
≺ (`, p), this

in turn means that the poset element of the possible child of v is strictly
less than that of v in the order �. These observations give us the following
result.

Lemma 4.32. Let T = (V,E, π, I) be a controlled M -tree, let v, w ∈ V be
two vertices with respective poset elements p, r ∈ P ∪ {0}, and suppose that
(v, w) ∈ E. If p = 0, then w is a predecessor of v. If p ∈ P , then either w
is a predecessor of v and r = p, or w is a parent of v and r ≺ p.

Let us define a function γ : CM → P ∪ {0} as follows. Consider a
controlled M -tree T = (V,E, π, I) ∈ CM . If the set

RT = {p ∈ P | the poset element of some v ∈ V is p} ⊂ P

contains a greatest element p ∈ P with respect to �, then γ(T) = p. Oth-
erwise, γ(T) = 0. Note that we assumed 0 /∈ P in the beginning of the
construction, so the two cases cannot be confused. Next, we show that this
function is actually a complete invariant for the isomorphism of controlled
M -trees.

Lemma 4.33. Two controlled M -trees are isomorphic if and only if they
have the same images under γ. In particular, the class of controlled M -trees
is countable up to isomorphism.

The proof of this result is the first and only place where we use the
ascending chain condition of the poset (P,�).

Proof. It is clear that isomorphic controlled M -trees have the same γ-value.
For the converse, let T = (V,E, π, I) ∈ CM be a controlled M -tree. First,
suppose that RT = ∅, that is, the poset element of every vertex of T is 0.
Lemma 4.32 implies that there are no parent relations in T , so it is just an
infinite chain of predecessors, where the computation is forever stuck in the
first loop of Algorithm 3. Thus the tree T is determined up to isomorphism
in this case.

Suppose then that RT ⊂ P is nonempty. We show that in this case RT
contains a greatest element. Let v, w ∈ V be two vertices with respective
poset elements p, r ∈ P . We denote v −→ w if there exists a directed path
from v to w in the tree T . By Lemma 4.32, the condition v −→ w implies

65

p � r, and w −→ v implies r � p. If these conditions do not hold, then
there exists a third vertex u ∈ V such that v, w −→ u. Lemma 4.32 implies
that the poset element of u is an upper bound for p and r with respect to �.
Thus, RT is a directed subset of P , meaning that any pair of its elements
has a upper bound in it. Since P has the ascending chain condition, the set
RT contains a greatest element, which is then γ(T).

Now, let v ∈ V be a leaf of T , let C = (v0, v1, . . .) be the maximal chain
of predecessors starting from v = v0, and suppose further that the poset
element of some vn is γ(T). Such objects exist, since every vertex of T is
either a leaf or a predecessor. By Lemma 4.32, none of the vertices of C
have parents, so C is an infinite chain, and the labels of its vertices are
completely determined from the facts that the poset element of vn is γ(T),
and the set computed at every vi is a subset of Tr(f). In particular, the set
Cbr ⊂ C of those vertices whose M -state is qbr is determined.

Now, every vertex w ∈ Cbr has a child whose poset element p ∈ P equals
the branch counter value of w, and satisfies p ≺ γ(T). This child is the
last vertex in a maximal predecessor chain Cw = (w0, . . . , w`) whose length
and labels are completely determined by the vertex w. In particular, those
vertices of Cw whose M -state is equal to qbr are determined, analogously
to the set Cbr. Continuing this argument inductively, we can show that the
structure of the tree T , and thus it isomorphism class, is determined by the
value γ(T). This finishes the proof.

Lemma 4.34. The function γ is surjective.

Proof. Let p ∈ P ∪ {0} be arbitrary. We construct a controlled M -tree
T such that γ(T) = p. We already saw in the proof of Lemma 4.33 that
γ(T) = 0 is satisfied by the infinite predecessor chain that never chooses a
value for the poset counter, so we assume p ∈ P .

First, let C = (v0, v1, . . .) be an infinite chain of vertices, each a successor
of the next one, whose labels give the computation history of M that chooses
p as the value of the poset counter, and correctly chooses initial segments of
the set Tr(f) into the set counter. Let n ∈ N be such that the M -state of the
vertex vn is qbr, and note that the width of vn is exactly 2n+2. We add to vn
a child, and to that child, a chain of successors of length n− 4, so that the
smallest one has width 4. Denote this chain by C ′ = (w0, . . . , wn−3), where
w0 if the leaf of width 4, and wn−3 is the child of vn. Let r ∈ P be the value
of the branch counter at vn, and note that r ≺ p. Because the machine M
waits for r+ 1 steps on line 3.23 before entering the state qbr, we know that
the length of the chain C ′ is at least r. Thus, there is enough time for the
simulated machine M to choose r as the value of its poset counter in the
chain C ′, and we choose the labels of the chain so that this is the case. This
means that the poset element of wn−3 is r. We also choose the set counters

66

in the chain C ′ to properly contain initial segments of Tr(f), and then the
two conditions of Definition 4.31 hold for the vertex vn and its child wn−3.

We repeat the above operation of adding a new predecessor chain for
each vertex with M -state qbr. Of course, this may introduce new such
vertices, and we iteratively repeat the procedure for them too. It is easy to
see that as a limit of this process, we obtain a controlled M -tree T ∈ CM
with γ(T) = p.

We now move on to actually defining the control layer Xc. For this,
we define another counter machine Mc, called the control machine, which is
simpler than M . Its behavior is defined in Algorithm 4. The idea is that we
superimpose a simulated computation of Mc on every vertex triangle ∆ that
has a child ∆′, which guarantees that the two conditions of Definition 4.31
hold locally. The machine is given four inputs: the set counter e(`1,K1)
of ∆′, the set counter e(`2,K2) of ∆, the poset counter p1 of ∆′, and the
branch counter p2 of ∆. Note that since the computation of M simulated
in ∆′ has run for 3 fewer steps than the one simulated in ∆, we necessarily
have `1 ≤ `2.

Algorithm 4 The program of the control machine Mc

1: input e(`1,K1), e(`2,K2) ∈ N, p1, p2 ∈ N
2: if p1 6= p2 then reject . Instantaneous
3: else if `1 > `2 then reject
4: else if K1 6= K2 ∩ {0, 1, . . . , `1} then reject . Total time t(2`2)
5: else accept

To construct the control layer, let XMc be the SFT that simulates the
control machine Mc, as given by Construction 3.11. The control layer Xc is
exactly XMc , but mirrored along the y-axis, and with the modification that
the background letters 0 and 1 are merged into one new letter #. We also
allow the letter # to occur as the north or west neighbor of any other letter,
and we allow the simulated machine to accept its input without producing a
forbidden pattern (rejecting the input still produces one). Finally, we allow
the counters to be initialized with arbitrary values. See Figure 4.10 for an
example configuration of Xc.

To define the final SFT X ⊂ Y ×Xc ⊂ Xs×Xh×Xc, we introduce some
additional forbidden patterns. The idea is that the outer half (the light gray
part) of every vertex triangle with a child will contain a computation cone,
where a computation of Mc is simulated. First, all tiles of the skeleton layer
Xs which are not part of an outer triangle (the light gray part of a vertex
triangle) must be paired with the new letter # on the control layer. Second,
the east corner of the base of a computation cone must be paired with the
southeast corner of an outer triangle with a child, or the fourth tile on the

67

Figure 4.10: A configuration of Xc. The gray areas are truncated compu-
tation cones surrounded by #-letters (the white tiles). The rightmost cone
has a counter initialized at the value 2. The zig-zag heads are not shown.

bottom row of Figure 4.4, and conversely, this tile can only be paired with
said corner of the computation cone. Also, to enforce the first condition of
Definition 4.31, we require that the aforementioned tile can only be paired
with a signal carrying the branch state qbr on the hyperarithmetical layer,
and this signal cannot be paired with the third tile on the bottom row of
Figure 4.4. This cone must cover as large an area as possible within the
outer triangle, which is achieved by requiring that the cone can only be
truncated at the border of said triangle. Now, the southwest border of the
computation cone intersects the horizontal signals of the vertex triangle ∆
that contains it, and the vertical signals of its child. The four inputs of
the simulated machine Mc are initialized by forcing a counter symbol to be
placed at the intersection of the appropriate signal with the border of the
cone. This concludes the definition of X; see Figure 4.11 for a schematic
view of the way in which the control layer interacts with Y .

Now, for any configuration (x, y, z) ∈ X, recall that the first two layers
(x, y) ∈ Y define an M -tree TM (x, y). We show that this tree is necessarily
controlled, and that all controlled M -trees arise in this way.

Lemma 4.35. For all configurations (x, y, z) ∈ X such that x ∈ Xs contains
a finite vertex triangle, the M -tree TM (x, y) is controlled.

Proof. It is enough to show that the two conditions of Definition 4.31 hold
for all vertex triangles ∆ in x. The first condition, that ∆ has a child if

68

∆

A

B

π(∆)
2

Figure 4.11: The interplay of Xc and Y , drawn out of scale. The light gray
area is a truncated computation cone on the control layer, and the dotted
line is the zig-zag head. The dashed lines are the signals of the two vertex
triangles. The signals intersect the border of the cone at the white circles,
and define the initial value of some of the counters (shown in dark gray).

69

and only if its M -state is qbr, follows from the condition that the tile at
the southwest corner of the inner triangle of ∆ contains the top corner of
another vertex triangle ∆′ if and only if the signal that it is paired with has
state qbr.

For the second condition, suppose that the child ∆′ exists, and consider
the simulated control machine Mc running in the vertex triangle ∆. Let
(`1,K1), (`2,K2) ∈ 2N∗ be the initial segments computed at ∆′ and ∆, let
p1 ∈ P ∪ {0} be the poset counter of ∆′, and let p2 ∈ P be the branch
counter of ∆. These values are given as input to Mc, and in one step it is
able to decide whether p1 = p2. We now show that the computation cone of
Mc has enough space for it to complete its computation, which implies that
it eventually accepts its inputs, which in turn is equivalent to the second
condition of Definition 4.31 holding locally at ∆.

For this, let π(∆) = 2n+2 be the width of ∆, so that its M -state I(∆)
is the n’th step in the simulated computation of M . An easy calculation
shows that the southwest border of the computation cone of Mc meets the
hypotenuse of ∆ at distance exactly d = π(∆)/2 = 2n+1 from the south
border of ∆ (point A in Figure 4.11). Because of line 3.10, we know that
the machine M has computed for at least t(2`2) steps, or in other words,
n ≥ t(2`2). By the definition of the function t, this implies that the simulated
machine Mc has enough space to complete its computation, which concludes
the proof.

Lemma 4.36. Let T = (V,E, π, I) be a controlled M -tree. Then there exists
a configuration (x, y, z) ∈ X, unique up to translation, such that TM (x, y)
is isomorphic to T .

Proof. The existence and uniqueness of the configuration (x, y) ∈ Y is given
by Lemma 4.30, so it remains to show it for the final component z ∈ Xc in
the control layer.

Consider a vertex triangle ∆ of the configuration x. If ∆ has no child, we
fill its Xc-components in z with the background letter #, which introduces
no forbidden patterns. If ∆ has a child ∆′, we pair the base of a computation
cone with the southwest corner of its inner triangle, and extend the cone
to the hypotenuse of its outer triangle, as shown in Figure 4.11. If the
control machine Mc simulated in this cone has enough time to complete its
computation, it accepts its inputs, since the conditions of Definition 4.31
hold for ∆ and ∆′. We fill the remaining part of the configuration z with
the letter #, and it is easy to see that the resulting configuration (x, y, z)
is in X. The uniqueness of z follows from the facts that the bases of the
computation cones have to be placed exactly at the aforementioned corners,
they can only be truncated at the borders of the triangles, and the algorithm
of Mc is deterministic.

70

The above lemmas enable us to define a function φ : P → SP(X), where
SP(X) is the subpattern poset of X, as follows. Given an element p ∈ P ,
let T ∈ CM be a controlled M -tree such that γ(T) = p. The existence of
T is guaranteed by Lemma 4.34, and it is unique up to isomorphism by
Lemma 4.33. By Lemma 4.36, there exists a configuration (x, y, z) ∈ X,
unique up to translation, such that TM (x, y) is isomorphic to T . Again by
Lemma 4.36, this is equivalent to γ(TM (x, y)) = p. We define φ(p) ∈ SP(X)
to be the ≈-equivalence class of (x, y, z), which is uniquely determined by
p. For clarity, we denote TM (x, y, z) = TM (x, y) in the following.

Proposition 4.37. The function φ is an order-embedding of P into SP(X).

Proof. First, let p, q ∈ P be two elements such that φ(p) ≤ φ(q) ∈ SP(X).
Then there exist x ∈ φ(p) and y ∈ φ(q) such that γ(TM (x)) = p and
γ(TM (y)) = q. Now, γ(T) is defined as the largest element of P that occurs
as the poset element of any vertex of T ∈ CM . This means that p is the
poset element of some vertex triangle ∆ in x. Since x ≤ y in the subpattern
order, the pattern of ∆ also occurs in y, which implies p � γ(TM (y)) = q.
In particular, if we have φ(p) = φ(q), then p = q, which implies that φ is
injective.

Now, let p, q ∈ P be such that p ≺ q. We show that φ(p) ≤ φ(q) in
the ordering of the subpattern poset SP(X), and for that, let x ∈ φ(p) and
y ∈ φ(q) be again such that γ(TM (x)) = p and γ(TM (y)) = q. Then q
is the greatest element of P occurring as the poset element of the vertex
triangles of y, so there exists an infinite predecessor chain in the tree TM (y)
where the poset element is eventually chosen as q by the simulated machine
M . Since p ≺ q, the machine enters the branch state qbr infinitely many
times with the branch counter value p, and attached to each of the vertices
where this happens, we find a predecessor chain where the poset element is
eventually chosen to be p. The length of these chains grows without bound,
and as a limit of the corresponding chains of vertex triangles in y, we find
a configuration z ∈ X with an infinite predecessor chain of vertex triangles
with eventual poset element p. It is easy to see that γ(TM (z)) = p, and then
z is a translate of x by Lemma 4.33 and Lemma 4.36. In particular, we have
x ≈ z ≤ y, so that φ(p) ≤ φ(q).

We have shown that φ(p) ≤ φ(q) implies p � q and p ≺ q implies
φ(p) ≤ φ(q) for all p, q ∈ P , and in particular, φ is injective. Furthermore,
since φ is a function, p = q trivially implies φ(p) = φ(q), so that φ is indeed
an order-embedding.

Having obtained the desired order-embedding, we still need to analyze
the elements of SP(X) that are not in the range of φ.

71

Proposition 4.38. Each ≤-equivalence class in SP(X) which is not in the
image of φ has height at most 3 in SP(X). Moreover, the union of these
classes is a countable subset of X.

Proof. Let ξ = (x, y, z) ∈ X be a configuration whose ≤-equivalence class
C = [ξ] is in SP(X) \ φ(P). First suppose that the Xs-component x con-
tains a finite vertex triangle. Then the poset counter of every vertex triangle
in ξ is necessarily 0, and in the proof of Lemma 4.33 we saw that the M -
tree TM (ξ) consists of a single infinite predecessor chain, and the simulated
computation of M is also completely determined. This implies that the
configuration is determined up to translation, so the class C is countable,
and the lower segment {C ′ ∈ SP(X) | C ′ < C} contains only ≤-equivalence
classes of configurations without finite vertex triangles. Also, since no tri-
angle in the configuration x has a child, the control layer z does not contain
a computation cone.

Suppose then that x contains no finite vertex triangles. We proceed with
a case analysis on the structure of the configuration. In the following, let
η = (x′, y′, z′) ∈ X be a configuration with η < ξ.

Claim 4.39. The configuration x contains at most two infinite vertex trian-
gles, which have a total of at most one east border and at most one south
border.

Proof of claim. An infinite vertex triangle is either an infinite cone that
opens in one of three directions, an infinite half plane, or the entire configu-
ration. Thus, if x contained three infinite vertex triangles, they would have
to be two cones, and either a cone or a half plane. If one of the infinite cones
contains a southeast corner, then that corner is attached to an H-colored
half plane, and no other vertex triangles fit into x. Also, if an infinite cone
contains a southwest corner, then the north corner of another cone is at-
tached to it. Thus, one of the infinite cones has a north corner, and another
then necessarily has a southwest corner attached to it. But then it is easy
to see that x has no room for a third infinite vertex triangle.

In particular, the configuration x′ has at most one infinite vertex triangle,
which may be either a half plane or the entire configuration. In fact, x′ does
not contain a corner of any shape: a vertex triangle, an inner triangle or a
shadow. From this it follows that any configuration of the skeleton layer Xs

that is below x′ is uniform.

Claim 4.40. The configuration y contains at most 4 groups of signals, of
which at most two are horizontal and at most two are vertical. If x contains
no south border of a vertex triangle, y has at most one horizontal group,
and similarly for east borders and vertical groups.

72

Proof of claim. It is not hard to see that y can contain at most one vertical
group without a rightmost signal. These rightmost signals are attached to
the east borders of distinct infinite vertex triangles in x, and the claim for
vertical groups follows from Claim 4.39. The case of horizontal groups is
completely analogous.

The above result also implies that y contains a bounded number of ‘ex-
ceptional’ tiles with white or black circles, that is, ones that lie on either
end of the diagonal rows of circles, or next to the finitely many signals that
encode the counter values of the simulated machine M . From this it follows
that y′ contains no such exceptional tiles.

Claim 4.41. The configuration z contains at most two (necessarily infinite)
computation cones, at most one of which has a base.

Proof of claim. The latter claim follows from Claim 4.39 and the fact that
every base of a computation cone must be attached to the south border of
a vertex triangle. Also, we claim that z contains at most one west corner of
a computation cone (point A in Figure 4.11), and at most one north corner
(point B in the figure). Suppose for a contradiction that there are two north
corners. They lie on the same line of slope 2, and between them we have a
west corner of a computation cone. Borders of the cone extend south from
the upper north corner and southeast from the west corner, which meet at
the base of the cone. But then we have a finite computation cone inside
a finite vertex triangle, a contradiction. Thus there is at most one north
corner, and similarly, at most one west corner.

Finally, we show that z cannot contain both the base of a computation
cone, and the west corner of one. Namely, if z contains a base, then x con-
tains the south border of a vertex triangle, and the north corner of another
vertex triangle. The west corner of a computation cone must be attached
to the northwest border of a vertex triangle, but this is impossible in our
case, since the vertex triangle extends infinitely to the south. This finishes
the proof the the claim.

As a corollary, the configuration z′ does not contain any corner of a
computation cone. Now, we focus on the structure of the configuration
η = (x′, y′, z′).

Claim 4.42. If the configuration x′ contains a border of a vertex triangle,
then y′ does not contain both horizontal and vertical signals, and z′ does not
contain a border of a computation cone. Also, if y′ contains both horizontal
and vertical signals, then z′ does not contain an east border of a computation
cone.

Proof of claim. We know that the configuration y′ contains no exceptional
tiles with circles, so if it contains both horizontal and vertical signals, then

73

it contains a two-way infinite diagonal line of circles. This line necessarily
crosses the border of the vertex triangle in x′, which produces a forbidden
pattern, since black circles are only allowed inside vertex triangles, and
white ones outside them. On the other hand, if z′ contains the border of a
computation cone, then this border is also two-way infinite and crosses the
border of the vertex triangle, producing a forbidden pattern.

For the latter claim, observe that y and z only contain finitely many
lines of circles and borders of computation cones, which thus cross in only
finitely many coordinates. This implies that no such crossings are present
in η.

Now we enumerate the possibilities for the contents of η.

1. The configuration x′ contains an infinite vertex triangle in the shape
of a half plane. In this case, y′ contains only horizontal or only vertical
signals, and z′ contains no border of a computation cone. Then z′ is in
fact the uniform configuration containing only #-letters. Also, η con-
tains no crossings of ‘exceptional’ signals in y′ (ones whose neighbors
have different labels, or bordermost ones) with the triangle border in
x′, since there are only finitely many of those in ξ. Thus η is periodic
in one direction and eventually periodic in all others, and its height in
SP(X) is 1.

2. The configuration x′ contains an infinite vertex triangle that fills it
completely. Then, x′ consists of either an inner or an outer triangle.
In the former case, the configuration z′ is uniform, and in the latter, it
may contain a border of a computation cone, and a single sweep of the
zig-zag head to the border and back. In both cases, the configuration
y′ contains no exceptional signals, but may contain an infinite line
of black circles. A moment’s reflection shows that all configurations
below η are then periodic in some direction and eventually periodic in
others, so the height of η is at most 2. Furthermore, if the configuration
z′ contains no computation cone, then η has height at most 1.

3. The configuration x′ contains no vertex triangles. In this case, z′ is
again uniform, and y′ may contain an infinite line of white circles, or
some exceptional signals, but not both, since there are only finitely
many intersections of circle lines and exceptional signals in y. This
implies that η is periodic in some direction and eventually periodic in
others, and has height at most 1.

We have shown that the height of η in the subpattern poset SP(X) is at
most 2 in all cases. This implies that the height of ξ is at most 3 in the case
that it contains no finite vertex triangle. Also, if ξ contains a finite vertex

74

triangle, then it contains no computation cone, so the height of η is at most
1. Thus ξ has height at most 3 also in this case.

Finally, we show that the possibilities for the configurations ξ and η,
and those below them, amount to a countable subset of X. Namely, if ξ
contains a finite vertex triangle, it is defined up to translation, and if not,
then it can be uniquely defined from the shapes and positions of the at
most two infinite vertex triangles in x, the positions and labels of the at
most 4 groups of signals in y, and the shapes and positions of the at most
two computation cones in z and the counters and zig-zag heads in them.
Note that the contents of a computation cone with a base are completely
determined by the signals in y, since the control machine Mc is deterministic.
The configurations below η are even simpler.

What remains is to collect the above results into a proof of the main
theorem of this section.

Proof of Theorem 4.26. We have constructed a two-dimensional SFT X and
a function φ : P → SP(X), which we proved to be an order-embedding in
Proposition 4.37. Moreover, for each p ∈ P , Lemma 4.33 and Lemma 4.36
imply that the image φ(p) ∈ SP(X) consists of translations of a single con-
figuration of X, and is thus countable. As a countable union of countable
sets, the image φ(P) ⊂ X is countable. On the other hand, Proposition 4.38
shows that X \φ(P) is also countable, so that X is a countable SFT. Propo-
sition 4.38 also states that every configuration in the above set has height
at most 3 in the subpattern poset.

4.4.6 Further Results

Because almost all imaginable posets are hyperarithmetical, we obtain the
following results as direct corollaries of Theorem 4.26. They were proved
in [ST13] using several different constructions. In particular, the first result
was proved using a simpler version of the above.

Corollary 4.43. There exists a countable SFT X ⊂ AZ2
such that an infi-

nite descending chain can be order-embedded into SP(X).

Corollary 4.44. There exists a countable SFT X ⊂ AZ2
such that every

finite poset can be order-embedded in SP(X).

In addition to countable SFTs, it is interesting to study the subpattern
posets of countably covered sofic shifts, which constitute a strictly larger
class. The following analogue of Theorem 4.26 holds for these subshifts.

Proposition 4.45. Let (P,�) be a hyperarithmetical poset with the ascend-
ing chain condition. Then there exists a two-dimensional countably covered

75

sofic shift Y ⊂ {0, 1}Z2
on the binary alphabet, and an order-embedding

ψ : P → SP(Y), such that SP(Y) \ ψ(P) is a three-element chain.

Proof. Let X ⊂ AZ2
be the countable SFT given by Theorem 4.26 for the

poset (P,�), and let φ : P → SP(X) be the associated order-embedding.
Define a block map g : X → {0, 1}Z2

as follows. For each configuration x ∈
X and ~n ∈ Z2, if the Xh-layer of the tile x~n contains a black circle and marks
the top of the poset counter of a simulated machine M , then g(x)~n = 1. In
all other cases, g(x)~n = 0. In this way, every finite vertex triangle ∆ of x is
marked with exactly one letter 1, and from its position we can infer the poset
element of ∆, if we know the position of its southeast corner. Moreover, the
set S = {x+y | a vertex triangle of x has its southeast corner at (x, y)} can
be inferred from the image g(x). Now, the poset element of every leaf of x
is 0, so the positions of all the leaves can be determined from S. After that,
the entire configuration of x can be inferred, so that g is injective on the set
of configurations with finite vertex triangles.

We define Y = g(X), and then Y is a countably covered sofic shift. Since
g respects the subpattern order of X and Y , we can lift it to the subpattern
posets and define an order-preserving function g̃ : SP(X)→ SP(Y). We can
then define the desired order-embedding by ψ = g̃ ◦ φ.

It remains to analyze the remaining set SP(Y)\ψ(P). If a configuration
y ∈ [y] ∈ SP(Y)\ψ(P) contains two occurrences of 1, then it has a preimage
x ∈ X under g that contains a finite vertex triangle. Then x is necessarily a
translate of the configuration with an infinite computation of M that never
chooses a nonzero value for its poset counter. Thus y is determined up to
translation and has height 2, and below it we find only the configurations
with a single 1, and the all-0 configuration.

4.5 Subpattern Posets and The Bounded Signal
Property

We now prove that a countable SFT, or even an uncountable downward
deterministic SFT, cannot be used for the construction in the previous sec-
tion, if it has the downward bounded signal property. More precisely, we
show that the subpattern posets of such subshifts have the descending chain
property. If both the assumption of countability and the assumption of
downward determinism are removed, an infinite downward chain is possible,
examplified by the horizontally periodic SFT

{x ∈ {0, 1}Z2 | x = σ(1,0)(x)}.

Instead of proving the theorem for the bounded signal property directly,
we prove the more natural general result that if an SFT is either determin-
istic with countable projective subdynamics, or is itself countable, then its

76

chains cannot be much longer than the Cantor-Bendixson rank of its projec-
tive subdynamics. In the rest of this section, a deterministic tiling system
means one where each row actually determines the one below it.

Definition 4.46. Let λ be an ordinal. An SFT X ⊂ AZ2
has the PCB(λ)

property if its horizontal projective subdynamics is ranked and has Cantor-
Bendixson rank at most λ.

By Proposition 4.6 and Lemma 3.9, the bounded signal property implies
the PCB(r)-property for some finite r ∈ N. Recall that for a two-dimensional
configuration x ∈ AZ2

and i ∈ Z, the notation xi refers to the i’th row of x,
seen as a one-dimensional configuration.

Definition 4.47. Let X ⊂ AZ2
be an SFT, and denote its projective subdy-

namics by Y = Proj(X). We say X has the R property if for all rows y ∈ Y ,
there exists a number k ≥ 2 and a configuration z ∈ Y k such that z1 = y,
zk ∈ O(y) and zi /∈ O(y) for all i ∈ [2, k−1] with the following property: For
any configuration x ∈ X and indices m < n ∈ Z such that xn, xm ∈ O(y),
but xi /∈ O(y) for all i ∈ [m + 1, n − 1], we must have n = m + k − 1 and
x[m,n] ∈ O(z).

In the above definition, configurations z = (z1, . . . , zk) of the subshift
Y k consist of k configurations of Y stacked on top of each other. Intuitively,
an SFT X having the R property means that if two rows of a configuration
x ∈ X have the same content up to a translation, and no other rows between
them do, then this translation and all the rows between them are uniquely
determined. In the case that X is a tiling system, it follows by induction
that if a horizontal row repeats in x ∈ X up to a translation, the rows in
between are taken from a configuration of X with a non-horizontal period.

Lemma 4.48. Let X ⊂ AZ2
be a countable or downward deterministic tiling

system. Then, X has the R property.

Proof. To show this, let y ∈ Y = Proj(X) be an arbitrary row of X, and
suppose that there exist i, j, t ∈ Z and x ∈ X such that i < j and xi = y =
σ−t(xj). We assume that the difference j − i is minimal with respect to y.
Define also the tuple of rows z = x[i,j] ∈ Y j−i+1.

First, suppose that X is downward deterministic, and suppose we have
a configuration x′ ∈ X and indices m < n ∈ Z such that x′n, x

′
m ∈ O(y), but

x′i /∈ O(y) for all i ∈ [m + 1, n − 1]. This means that x′n = σr(xi) for some
r ∈ Z, and since X is deterministic, we actually have x′n−p = σr(xi−p) for
all p ∈ N. In particular, this implies n = m+ i−j and x′[m,n] = x[i,j] ∈ O(z).

Now, suppose that X is countable, and let x′ ∈ X and m < n ∈ Z be as
above. We assume for contradiction that either n−m 6= j−i or x′[m,n] /∈ O(z)

holds. In any case we have two distinct configurations z = x[i,j] ∈ Y j−i+1

77

and z′ = x′[m,n] ∈ Y
[n−m+1], which contain no forbidden patterns of X, and

whose top and bottom rows are translates of y. Now we can form arbitrarily
thick horizontal stripes by stacking suitable translates of these configurations
on top of each other, so that their bottom- and topmost rows overlap. Taking
the limit, we obtain an uncountable number of configurations of X, which
contradicts its countability.

Lemma 4.49. If X ⊂ AZ2
is an SFT with the R property and countable

projective subdynamics and x ∈ X has a period, then the height of x is at
most 1 in the subpattern poset SP(X).

Proof. Suppose x ∈ X has the period vector ~n ∈ Z2. If ~n is horizontal,
then its rows are periodic, so there are only finitely many different rows in
x. Some row must then repeat infinitely many times upward and some row
must repeat infinitely many times downward. Since X has the R property,
x is in fact horizontally periodic and vertically eventually periodic, and the
claim is proved similarly to Lemma 4.9.

Now, assume that ~n is not horizontal, so it has a nonzero y-coordinate
i ∈ Z, which we may assume to be positive. As the projective sybdynamics
Proj(X) is countable,

Y = {x[1,i] | x ∈ X,x = σ~n(x)}

is a countable one-dimensional SFT (since we restrict to the configurations
with period ~n). If we have x[1,i] ∈ Y , for a configuration x ∈ X, then x is
horizontally eventually periodic, and the claim follows as above.

Using the above lemma, we prove an upper bound for the length of
downward chains occurring in an SFT with the R property, in terms of the
rank of its projective subdynamics. As a corollary, we obtain the result
that infinite downward chains cannot occur in countable SFTs with the
bounded signal property. Recall that for a configuration x ∈ AZ2

, the
notation Proj(x) stands for the set of rows in x.

Proposition 4.50. Let λ be an ordinal, and let X ⊂ AZ2
be a countable

or downward deterministic tiling system with the horizontal bounded signal
property. Then X does not contain a proper decreasing chain of length
rank(Proj(X)) + 3.

Proof. Observe first that X has the R property by Lemma 4.48. Denote
λ = rank(Proj(X)) + 1, and assume on the contrary that (xα)α≤λ+2 is a
decreasing chain in X. Consider an arbitrary row y = xαm, where α ≤ λ and
m ∈ Z.

First, consider the case that y is isolated in the subshift Xβ ⊂ SZ gen-
erated by the set of rows Proj(xβ), for some β < α. Then some word w @ y

78

isolates y in the set Proj(xβ), meaning that every row in xβ that contains w
is a translated version of y. Because xβ is strictly above xα in the subpattern
order and the pattern w occurs in xα, it occurs infinitely many times in xβ.

There are two possibilities: either every occurrence of w in the config-
uration xβ is on one of finitely many rows, in which case y is periodic,
or the word occurs on infinitely many rows. In the first case we have
xα = limi→∞ σ

(ni,k)(xβ) for some k ∈ Z and a sequence (ni)i∈N of dis-
tinct integers, since every occurrence of w in the configuration xα is also on
one of finitely many rows. Since X has the bounded signal property, every
row of xβ is eventually periodic in both directions, and their eventual period
is bounded, which implies that xα has a horizontal period. By Lemma 4.49,
the height of xα is at most 1, contradicting the assumption α ≤ λ.

Thus the word w occurs on infinitely many distinct rows of xβ, and each
of these rows is equal to y. Since X has the R property, the contents of the
rows between these occurrences are determined up to horizontal translation.
In fact, since X is a countable or deterministic tiling system, we can show
the contents are completely determined, using the same arguments as in the
proof of Lemma 4.48. This implies that xβ is eventually periodic in some
direction ~n ∈ Z2. Moreover, the long periodic parts of xβ are approximations
to xα, since the pattern w only occurs there, so that xα has ~n as a period.
As above, the height of xα is at most 1, a contradiction.

We have shown that for every pair of ordinals β < α ≤ λ, no row of xα

is isolated in the subshift Xβ generated by Proj(xβ). Denote

λα = min
m∈Z

rankProj(X)(x
α
m)

for all α ≤ λ; this is the minimal rank of a row of xα in the projective
subdynamics of X. It follows from a straightforward transfinite induction
agument that α ≤ λα ≤ λ for all α ≤ λ. In particular, the Cantor-Bendixon
rank of Proj(X) is at least λ, contradicting the definition of λ.

Since all (deterministic) SFTs can be recoded into (deterministic) tiling
systems, we have the following corollary.

Corollary 4.51. Let X ⊂ AZ2
be a countable or deterministic SFT with the

bounded signal property. Then the subpattern poset of X does not contain
arbitrarily long chains.

Corollary 4.52. Let X ⊂ AZ2
be a countable SFT with an infinite down-

ward chain. Then the projective subdynamics of X in any direction has
Cantor-Bendixson rank at least ω.

A similar result was proved in [BDJ08]: if the Cantor-Bendixon rank of
a countable SFT X ⊂ AZ2

is λ, then there are downward chains of at most
length λ in X.

79

80

Chapter 5

Two-Dimensional Subshifts
Defined by Logical Formulas

5.1 Introduction

As has been established, multidimensional symbolic dynamics is intimately
related to computability theory, and thus to mathematical logic. In fact,
the initial motivation for defining Wang tiles in [Wan61] was to translate
certain problems of first-order logic into the language of discrete geometry,
hoping that they would be easier to solve. In this chapter, we explore the
connections of multidimensional subshifts and monadic second-order (MSO)
logic. More explicitly, we follow the approach of [JT09, JT13] and define
two-dimensional subshifts by monadic second-order logical formulas. We
show that certain hierarchies obtained by counting quantifier alternations
are finite, solving an open problem posed in [JT13].

In mathematical logic and formal language theory, classes of finite struc-
tures defined by MSO formulas have been studied extensively. Examples
include finite words, trees, grids and graphs; see [LN99, MS08] and refer-
ences therein for a more complete list. Intuitively, the idea is to find some
convenient underlying set for a combinatorial object, like the indices of a
finite word or the vertices of a graph, and model the rest of the structure
by functions and relations on this set. For example, one would have sev-
eral unary predicates that express whether a given index of a word holds
a certain letter, or in the case of graphs, a binary predicate expressing the
existence of an edge between two vertices. For finite words and trees, it
is known that MSO formulas define exactly the regular languages, and the
quantifier alternation hierarchy collapses to the second level [Büc60]. On
the other hand, the analogous hierarchy of picture languages was shown to
be infinite in [MT97] and strict in [Sch98]. Although subshifts behave more
like sets of words or trees than picture languages in this sense, the reasons

81

are different: MSO-definable languages are regular because the geometry of
a finite word is so simple, while the subshift hierarchy collapses since we
can simulate arbitrary computation already on the third level. The concept
of constructing subshifts by quantifying over infinite configurations is con-
tinued in the next chapter with a more restricted model, called quantifier
extension.

This chapter is based on the conference article [Tör14b].

5.2 Logical Formulas and Structures

In this section, we review the basic idea of classifying finite or infinite struc-
tures using logical formulas, and then show how it can be applied to sub-
shifts. As a motivating example, consider a finite directed graph G = (V,E),
where V is a finite set of vertices and E ⊂ V 2 the set of edges. We would
like define a predicate logic that allows us to quantify over the vertices and
edges of the graph, and pose some conditions on its local structure. For this,
we define V as the universe of the logic, so that first-order variables refer
to the vertices of G. The existence of a edge between vertices v, w ∈ V is
modeled by a binary predicate e(v, w), which holds if and only if (v, w) ∈ E.
Using this predicate and the standard logical connectives, we can formulate
various properties of G. For example, G is a complete directed graph if and
only if the first-order formula ∀v∀w e(v,w) holds in it, or in other words, G is
a model for the formula. We may also say that the formula defines the class
of complete directed graphs. Similarly, the formula ∀v∃w(e(v,w) ∨ e(w, v))
defines the class of graphs without isolated vertices. Note that we use a dis-
tinct font for the variables of logical formulas in order to distinguish them
from the actual values that they hold.

It turns out that some natural properties, such as connectivity, are not
definable in this first-order logic [LN99], but can be defined if second-order
quantifiers are allowed. For example, connectivity can be defined by the
formula

∀v∀w∃F(∀u(F(u) 6= v)∧
(F(u) 6= u⇒
(e(u,F(u))∧
((∃u′ 6= u : F(u′) = F(u))⇒ F(u) = w))))

where the value of the second-order variable F is a function f : V → V .
More generally, second-order variables can model functions or predicates on
the universe of any number of variables. The above formula guarantees that
the iteration v, f(v), f2(v), . . . enumerates a path in G that eventually leads
to w.

82

We now introduce the precise model-theoretic terminology used in this
section. A signature τ = (F,R, α) consists of a set F or function labels, a set
R or relation labels with F ∩ R = ∅, and an arity function α : F ∪ R → N.
For example, the signature of graph theory would be τG = (∅, {e}, α), where
α(e) = 2. A structure is a tuple M = (U, τ, I), where U is the universe
or underlying set, τ = (F,R, α) is a signature, and I is an interpretation
function that assigns to each function label f ∈ F an actual function I(f) :
Uα(f) → U , and to each relation label r ∈ R a subset I(r) ⊂ Uα(r). The
structures of graph theory are vertex sets, and the edge sets are defined by
the possible interpretations of the edge relation e.

We continue the line of research of [JT09, JT13], and define subshifts by
monadic second-order (MSO) formulas. This means that the second-order
variables can only be monadic predicates. For this, we define a signature for
two-dimensional configurations over a fixed alphabet A. Every configuration
x ∈ AZ2

defines a structure Mx = (Z2, τA, Ix), whose signature τA depends
only on A and contains the following labels:

• Four unary functions, named North, South, East and West, and called
adjacency functions in this article. They are interpreted in the struc-
ture Mx as Ix(North)((a, b)) = (a, b + 1), Ix(East)((a, b)) = (a + 1, b)
and so on for a, b ∈ Z. In particular, this interpretation is independent
of both the configuration x and the alphabet A.

• For each symbol a ∈ A, a unary symbol predicate Pa. It is interpreted
as Ix(Pa)(~v) for ~v ∈ Z2 being true if and only if x~v = a.

The MSO formulas that we use are defined with the signature τA as
follows.

• A term (of depth k ∈ N) is a chain of k nested applications of the
adjacency functions to a first-order variable.

• An atomic formula is either t = t′ or P (t), where t and t′ are terms
and P is either a symbol predicate or a second-order variable, which
must also be a unary predicate.

• A formula is either an atomic formula, or an application of a logical
connective (∧,∨,¬, . . .) or first- or second-order quantification to other
formulas.

The radius of a formula is the maximal depth of a term occurring in it.
First-order variables (usually denoted ~n1, . . . ,~n`) are interpreted as elements
of Z2, and the monadic second-order variables (usually denoted X1, . . . ,X`)
as subsets of Z2. A formula without second-order variables is first-order,
and a formula without free variables is closed.

83

Let φ be a closed MSO formula of radius r ∈ N, let D ⊂ Z2 be an
arbitrary domain, and let P ∈ P2(A) be a pattern with D + [−r, r]2 ⊂
D(P). We say that P is a D-model for φ, denoted P |=D φ, if φ is true
in the structure Mx for any configuration x ∈ AZ2

with x|D(P) = P , when
the quantification of the first-order variables in φ is restricted to D. It is
clear that the definition of P |=D φ does not depend on the choice of the
configuration x. If D = Z2, then P = x, and we denote x |= φ and say that
x models φ. We define a set of configurations Xφ = {x ∈ AZ2 | x |= φ},
which is always shift-invariant, but may not be a subshift. A subshift is
MSO-definable if it equals Xφ for some MSO formula φ.

As we find it more intuitive to quantify over configurations than sub-
sets of Z2, and we later wish to quantify over the configurations of specific
subshifts, we introduce the following definitions.

• The notations ∀x[X] and ∃x[X] (read for all (or exists) x in X) define
a new configuration variable x, which represents a configuration of
a subshift X ⊂ BZ2

over a new alphabet B. We say that X is an
auxiliary subshift of φ.

• For x[X] quantified as above, a symbol b ∈ B and a term t, the no-
tation xt = b defines an atomic formula that is true if and only if the
configuration x ∈ X represented by x satisfies xt = b.

MSO formulas with configuration variables instead of ordinary second-order
variables are called extended MSO formulas, and the modeling relation |=
and the notationXφ are extended to them in the obvious way. Next, we show
that if we restrict ourselves to using only MSO-definable auxiliary subshifts,
extended MSO formulas have the same expressive power as ordinary ones.

Lemma 5.1. Let φ be an extended MSO formula that defines a subshift
Xφ ⊂ AZ2

. If the auxiliary subshifts of φ are MSO-definable, then so is Xφ.

Proof. We transform the extended MSO formula φ into an equivalent MSO
formula φ̂. The transformation ψ̂ of an extended MSO formula ψ, which
need not be closed, is defined inductively as follows.

• If ψ is an atomic MSO formula, then ψ̂ = ψ.

• The operation ·̂ commutes with ¬ and ordinary MSO quantification,
and distributes over ∧ and ∨.

• Suppose that ψ = Qx[Xθ]η for an extended MSO formula η and an
MSO formula θ, where Xθ ⊂ BZ2

. Denote B = {b1, . . . , bk}. In the
case Q = ∀, we define

ψ̂ = ∀X1 · · · ∀Xk
((
θ̄ ∧ ∀~n

∨
i

(Xi(~n) ∧
∧
j 6=i
¬Xj(~n))

)
⇒ η̂

)
,

84

and if Q = ∃, then

ψ̂ = ∃X1 · · · ∃Xk
(
θ̄ ∧ ∀~n

k∨
i=1

(Xi(~n) ∧
∧
j 6=i
¬Xj(~n)) ∧ η̂

)
,

where θ̄ is obtained from θ by replacing every subformula Pbi(t) by
Xi(t), where t is a term. In other words, we replace the configuration
variable x by the k second-order variables X1, . . . ,Xk, each of which
represents a symbol of B. In any coordinate, we allow exactly one of
the Xi to be true.

• If ψ has the form xt = bi, where t is a term, bi ∈ B, and the configu-
ration variable x is quantified as above, then ψ̂ is Xi(t).

It is easy to see that a configuration x ∈ AZ2
models φ̂ if and only if it

models φ, and thus Xφ = Xφ̂.

Conversely to the above lemma, we can easily convert an MSO formula
to an extended MSO formula by replacing every second-order variable with a
configuration variable over the binary full shift. In the rest of this chapter,
unless stated otherwise, by second-order variables we mean configuration
variables, and by MSO formulas we mean extended MSO formulas.

Example 5.2. The two-dimensional golden mean shift is defined by the
formula

∀~n
(
P1(~n) =⇒

(
P0(North(~n)) ∧ P0(East(~n))

))
.

Also, the sunny side up shift is defined by the formula

∀~m∀~n
(
P1(~n) =⇒ (P0(~m) ∨ ~m = ~n)

)
.

Another way to define the sunny side up shift is to use a second-order quan-
tifier:

∃X∀~n
(
X(~n)⇐⇒

(
X(North(~n)) ∧ X(West(~n))

))
∧
(
P1(~n) =⇒

(
X(~n) ∧ ¬X(South(~n)) ∧ ¬X(East(~n))

))
.

We can produce an equivalent extended MSO formula, as per the above
remark:

∃x[{0, 1}Z2
]∀~n
(
x~n = 1⇐⇒ (xNorth(~n) = 1 ∧ xWest(~n) = 1)

)
∧
(
P1(~n) =⇒ (x~n = 1 ∧ xSouth(~n) = 0 ∧ xEast(~n) = 0)

)
.

85

5.3 Hierarchies of MSO-Definable Subshifts

In this section, we recall the definition of a hierarchy of subshift classes de-
fined in [JT09, JT13], and then generalize it using extended MSO formulas.
We also state some general lemmas about MSO-definable subshifts.

Definition 5.3. Let C be a class of subshifts. An MSO formula ψ is over
C with universal first-order quantifiers, or C-u-MSO for short, if it is of the
form

ψ = Q1x1[X1]Q2x2[X2] · · ·Qnxn[Xn]∀~n1 · · · ∀~n`φ,

where each Qi is a quantifier, Xi ∈ C, and φ is quantifier-free. If there are k
contiguous groups of similar quantifiers (or k − 1 quantifier alternations in
the case k > 0) and Q1 is the existential quantifier ∃, then ψ is called Σ̄k[C],
and if Q1 is the universal quantifier ∀, then ψ is Π̄k[C]. The set Xψ is given
the same classification. If C is the singleton class containing only the binary
full shift {0, 1}Z2

, then ψ is called u-MSO, and we denote Σ̄k[C] = Σ̄k and
Π̄k[C] = Π̄k. The classes Σ̄k and Π̄k for k ∈ N form the u-MSO hierarchy.

In [JT13], the u-MSO hierarchy was denoted by the letter C, but we use
the longer name for clarity. We note without proof that we have Σ̄n = Σ̄n[C]
and Π̄n = Π̄n[C], if C is the class of all full shifts, not just the binary ones.
In the rest of this article, C denotes an arbitrary class of subshifts, unless
otherwise noted.

Remark 5.4. We use several hierarchies of subshifts obtained by counting
quantifier alternations in different kinds of formulas, and the notation for
them can be confusing. In general, classes defined by computability con-
ditions (the arithmetical hierarchy) are denoted by Π and Σ, while classes
defined by MSO formulas via the modeling relation are denoted by Π̄ and Σ̄.
As an example, Π0

1 is the class of subshifts whose language is co-recursively
enumerable, while Π̄1 is the class of subshifts definable by u-MSO formulas
of the form ∀x1 · · · ∀xkφ, where φ is first order.

We proceed with the following result, stated for u-MSO formulas in
[JT13]. The proof is completely analogous, but we present it for complete-
ness.

Theorem 5.5 (Generalization of Theorem 13 of [JT13]). Let φ be a closed
C-u-MSO formula over an alphabet A. Then for all x ∈ AZ2

, we have x |= φ
if and only if x |=D φ for every finite domain D ⊂ Z2.

Proof. We prove the following stronger claim. Let ψ be the C-u-MSO for-
mula

ψ = Q1x1[X1] · · ·Qnxn[Xn] ∀~n1 · · · ∀~n`
η(y1, . . . , ym, x1, . . . , xn,~n1, . . . ,~n`),

86

where the Qi are quantifiers, and fix any values yi ∈ BZ2

i for the free second-
order variables yi. Then the formula ψ is equivalent to

ψ′ = ∀D ∈ 2Z
2

∗ Q1x1[X1] · · ·Qnxn[Xn]

∀~n1 ∈ D · · · ∀~n` ∈ D

η(y1, . . . , ym, x1, . . . , xn,~n1, . . . ,~n`),

where we denote by 2Z
2

∗ the set of all finite subsets of Z2. The result follows
from this claim by restricting to formulas with no free variables.

First, it is clear that of ψ holds, then so does ψ′. We proceed to prove
the converse by induction on n, the number of second-order quantifiers, and
thus suppose that ψ′ holds. If n = 0, the claim is clear, so we assume n ≥ 1.
We first handle the easier case Q1 = ∀. For this, it suffices to note that
the order of the universal quantifications ∀D ∈ 2Z

2

∗ and ∀x1[X1] in ψ′ can be
freely changed, after which x1 can be handled as a free variable in a formula
with n − 1 second-order quantifiers, which is equivalent to ψ without the
prefix ∀x1[X1] by the induction hypothesis. Considering every possible value
for x1, we obtain the claim.

Consider next the case Q1 = ∃. For each k ∈ N, if we assign the value
[−k, k]2 ⊂ Z2 to the variable D, there exists a valid choice xd1 ∈ X1 for
the variable x1 in ψ′, and by compactness, the sequence (xk1)k∈N has a limit
point x1 ∈ AZ2

1 . Let then D ∈ 2Z
2

∗ be arbitrary. Choose k0 ∈ N such that
xk01 agrees with x1 on the domain D + [−r, r]2, where r ∈ N is the radius
of ψ, and choose [−k0, k0]2 and xk01 as the values of the free variables D

and x1 in the formula ψ′ with the prefix ∀D ∈ 2Z
2

∗ ∃x1[X1] removed. This
formula is true by the choice of kk01 , and thus it is also true if we assign the
value D to the free variable D; but this means that xk01 , and then also x1,
is a valid choice for x1 in the formula ψ′ for the value D of the variable D.
Thus if we choose x1 as the value of x1, the formula ψ′ with the order of
the quantifications ∀D ∈ 2Z

2

∗ and ∃x1[X1] swapped is true. By the induction
hypothesis, when we consider x1 as a free variable, the formula ψ is also
true. This finishes the proof of the claim, and thus of the theorem.

We remark here that Theorem 5.5 is the main reason for us to restrict to
the class of C-u-MSO formulas, since it no longer holds if we allow arbitrary
existential quantification of first-order variables. The following corollaries
show the power of this result.

Corollary 5.6. Every C-u-MSO formula φ defines a subshift.

Proof. Let r ∈ N be the radius of φ, and A its alphabet. By Theorem 5.5,
the set Xφ is defined by the set of forbidden patterns

{x|D+[−r,r]2 | D ⊂ Z2 finite, x ∈ AZ2
, x 6|=D φ},

and thus is a subshift by definition.

87

Corollary 5.7. For all k, n ∈ N, we have Π̄n[Π0
k] ⊂ Π0

k+1. In particular,
the u-MSO hierarchy only contains Π0

1 subshifts.

Proof. Let φ = ∀x1[X1]∃x2[X2] . . . Qnxn[Xn]ψ be a Π̄n[Π0
k] formula, where

each Xi ⊂ AZ2

i is a Π0
k subshift and ψ is first-order. Then the product

subshift
∏n
i=1Xi is also Π0

k. Let P ∈ P2(A) be a finite pattern, and let
r ∈ N be the radius of φ. Theorem 5.5, together with a basic compactness
argument, implies that P ∈ B(Xφ) holds if and only if for all finite domains

D(P) ⊂ D ⊂ Z2, there exists a pattern Q ∈ AD+[−r,r]2 such that Q|D(P) = P
and Q |=D φ. For a fixed D, denote this condition by CP (D).

We show that deciding CP (D) for given pattern P and domain D is
∆0
k+1. Denote E = D+[−r, r]2 and L = BE(

∏n
i=1Xi). Note that L ⊂ AE is

a finite set, and computing it from the domain D is Π0
k. Moreover, given a

pattern Q ∈ AE and the set L, the condition Q |=D φ can be easily checked
by a Turing machine. Thus the condition CP (D) can be decided by an
oracle Turing machine that computes the set L from E using a Π0

k oracle,
and then goes through the finite set AE , searching for such a pattern Q.
Thus the condition CP (D) is ∆0

k+1, which implies that deciding P ∈ B(Xφ)
is Π0

k+1.

Finally, we show that if the final second-order quantifier of a u-MSO
formula is universal, it can be dropped. This does not hold for C-u-MSO
formulas in general. The proof is exactly that of [JT13, Lemma 7], so we
omit it.

Lemma 5.8. If k ≥ 1 is odd, then Π̄k = Π̄k−1, and if it is even, then
Σ̄k = Σ̄k−1.

Example 5.9. Define the two-dimensional mirror shift Xmirror ⊂ {0, 1,#}Z
2

by the forbidden patterns a
and

a for a 6= #, every two-element pat-
tern {~0 7→ #, (n, 0) 7→ #} for n > 0, and every three-element pattern
{(−n, 0) 7→ a,~0 7→ #, (n, 0) 7→ b} for n > 0 and a 6= b. A ‘typical’ configu-
ration of Xmirror contains one infinite column of #-symbols, whose left and
right sides are mirror images of each other. It is well-known that Xmirror is
not a sofic shift, but we do not have a direct reference for the fact. It can
be proved using Lemma 3.15, and the same argument is applied in [KM13,
Example 2.4] to a slightly different subshift.

We show that the mirror subshift can be implemented by an SFT-u-MSO
formula ψ = ∀x[X]∀~n1∀~n2∀~n3φ in the class Π̄1[SFT]. This also shows that
Lemma 5.8 fails outside the u-MSO hierarchy.

Let X be the SFT whose alphabet is seen in Figure 5.1, defined by
the obvious 2 × 2 forbidden patterns. Define the quantifier-free part of the

88

a

b

c

Figure 5.1: A pattern of X in Example 5.9, containing its entire alphabet.

SFT-u-MSO formula φ as φ = φ1 ∧ (φ2 =⇒ φ3), where

φ1 = P#(~n2)⇐⇒ P#(North(~n2))

φ2 = x~n1 = a ∧ x~n2 = b ∧ x~n3 = c ∧ P#(~n2)

φ3 = ¬P#(~n1) ∧ ¬P#(~n3) ∧ (P0(~n1)⇐⇒ P0(~n3))

This formula simply states that the #-symbol only occurs in vertical columns,
and if the symbol b of X is on this column, then the symbols a and c are on
top of distinct symbols which are not #. It is easy to see that the subshift
Xψ is exactly Xmirror, with ψ defined as above.

5.4 The u-MSO Hierarchy

We argue that the u-MSO hierarchy is a quite natural hierarchy of MSO-
definable subshifts. Namely, the lack of existential first-order quantification
makes it easy to prove that every u-MSO formula actually defines a subshift
(Corollary 5.6), and quantifier alternations give rise to interesting hierarchies
in many contexts. The following is already known about the hierarchy.

Theorem 5.10 ([JT13]). The class of subshifts defined by formulas of the
form ∀~nφ, where φ is first-order, is exactly the class of SFTs. The class
Π̄0 = Σ̄0 consists of the threshold counting shifts, which are obtained from
subshifts of the form {x ∈ AZ2 | P occurs in x at most n times} for patterns
P ∈ P2(A) and n ∈ N using finite unions and intersections. Finally, the
class Σ̄1 consists of exactly the sofic shifts.

The subshifts in the class Π̄0 are called threshold counting shifts, since
they can ‘count’ the number of occurrences of finitely many patterns up to a
finite threshold. In this section, we show that the u-MSO hierarchy collapses
to the third level, which consists of exactly the Π0

1 subshifts. This gives
negative answers to the questions posed in [JT13] of whether the hierarchy
is infinite, and whether it only contains sofic shifts.

Theorem 5.11. For all n ≥ 2 we have Π0
1 = Π̄n.

89

Proof. As we have Π̄n ⊂ Π0
1 by Corollary 5.7, and clearly Π̄n ⊂ Π̄n+1 also

holds for all n ∈ N, it suffices to prove that Π0
1 ⊂ Π̄2. Let thus X ⊂ AZ2

be an arbitrary Π0
1 subshift. We construct an MSO formula of the form

φ = ∀y[BZ2
]∃z[CZ2

]∀~n ψ(~n, y, z) such that Xφ = X.
The main idea is the following. We use the universally quantified con-

figuration variable y to specify a finite square R ⊂ Z2 and a word w ∈ A∗,
which may or may not encode the pattern x|R of a configuration x ∈ AZ2

.
The existentially quantified variable z enforces that either w does not cor-
rectly encode x|R, or that it encodes some pattern of B(X). As R and w
are arbitrary and universally quantified, this guarantees x ∈ X. The main
difficulty is that the value of the variable y comes from a full shift, so we have
no control over it; the configuration may contain infinitely many squares, or
none at all.

To overcome this problem, we first define an auxiliary SFT Y ⊂ BZ2
,

whose configurations contain the aforementioned squares. The alphabet B
consists of the tiles seen in Figure 5.2, where every label wi ranges over A,
and it is defined by the set FY of 2×2 forbidden patterns where some colors
or lines of neighboring tiles do not match. A configuration of Y contains at
most one maximal pattern colored with the lightest gray in Figure 5.2, and
if said pattern is finite, its domain is a square. We call this domain the input
square, and the word w ∈ A∗ that lies above it is called the input word.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

Figure 5.2: A pattern of Y . In this example, the input word w ∈ A∗ is of
length 10.

We now define another SFT S, this time on the alphabet A × B × C.
The alphabet C is more complex than B, and we specify it in the course of
the construction. The idea is to simulate a computation in the third layer
to ensure that if the second layer contains a valid configuration of Y , and
the input word encodes the contents of the input square in the first layer,
then that square pattern is in B(X). We also need to ensure that a valid
configuration exists even if the encoding is incorrect, or if second layer is
not in Y . For this, every locally valid square pattern of Y containing an

90

input square will be covered by another square pattern in the third layer,
inside which we perform the computations. We will force this pattern to be
infinite if the second layer is a configuration of Y .

Now, we describe the local rules of the SFT S using an example config-
uration (x, y, z) ∈ S, where y and z are values of the respective variables y
and z. The coordinates of every 2× 2 rectangle R ⊂ Z2 such that y|R ∈ FY
are called defects. Also, a non-defect coordinate ~v ∈ Z2 such that y~v = is
called a seed. Denote C = C1 ∪ C2, where C1 is the set of tiles depicted in
Figure 5.3 (a). Their adjacency rules in S are analogous to those of Y . The
rules of S also force the set of seeds to coincide with the set of coordinates
~v ∈ Z2 such that z~v = . These coordinates are the southwest corners
of computation squares in z, whose square shape is again enforced by a di-
agonal signal. The southwest half of a computation square is colored with
letters of C2. See Figure 5.3 (b) for an example of a computation square.

a)
C2

b)

D D

DD

DD

D D

D D

D D

D D

Figure 5.3: The alphabet C (a) and a pattern of the third layer of S (b),
with the elements of C2 represented by the featureless light gray tiles. The
dashed line represents the border of an input square on the second layer.
Defects are marked with the letter D.

A computation square may not contain defects or coordinates ~v ∈ Z2

such that y~v = , and conversely, the north or east border of a computation
square contains a tile that is directly or diagonally adjacent to a defect. This
constraint is enforced by a signal emitted from the northwest corner of the
square (the dotted line in Figure 5.3 (b)), which travels along the north
and east borders, and disappears when it first encounters a defect. If the

91

signal reaches the southeast corner of the computation square, a tiling error
is produced.

We now describe the set C2, and for that, let M be a CMS with input
alphabet Σ = A × (A ∪ {0, 1,#}) and two initial states q1 and q2. This
machine is simulated on the southwest halves of the computation squares
using Construction 3.12, and we will fix its functionality later. The alpha-
bet C2 is the product of SM , the alphabet of the countable SFT XM that
simulates M , and the alphabet C3 shown in Figure 5.4, which is used to feed
the machine M its input. Note that the colors and lines in C3 are disjoint
from those in C1, even though the figures suggest otherwise. The idea is to
initialize the counter machine M with either the input word (if it correctly
encodes the input square), or a proof that the encoding is incorrect, in the
form of one incorrectly encoded symbol.

a

a0

a

ac s

s

b

b

b

b

a

ab

b

a

a#

Figure 5.4: The sub-alphabet C3. The letters a and b range over A, the
letter c over {0, 1}, and the letter s over the input alphabet Σ of M .

The white squares and circles of C3 must be placed on the letters of the
input word w ∈ A∗ of the computation square, the square on the leftmost
letter and circles on the rest, and the computation cone of M must be placed
on the square. The A-letters of these tiles must match the letters of w, and
the second component is 1 if the tile lies on the corner of the input square,
0 if not, b ∈ A in the presence of a vertical signal, and # in the presence
of a diagonal signal. Such signals are sent by a white diamond tile, called
a candidate error, which can only be placed on an interior tile of the input
square, and whose letter must match the letter on the first layer x. The
other component of C2 simulates the machine M , which uses the tiles with
the dotted vertical line and label s ∈ Σ (the fourth tile form the left in
Figure 5.4) as its input, and can never halt in a valid configuration. See
Figure 5.5 for a visualization. We also require that for a pattern c2

c1 to be
valid, where ci ∈ Ci for i ∈ {1, 2}, the tile c2 should have a gray south
border with no lines. Other adjacency rules between tiles of C1 and C2 are
explained by Figure 5.3 (a).

We now describe the counter machine M . Note first that from an input
u ∈ Σ∗ of the simulated machine M one can deduce the input word w ∈ A∗,
the height h ∈ N of the input square, and the positions and contents of all
candidate errors. Now, when started in the state q1, the machine checks

92

that there are no candidate errors at all, that |w| = h2, and that the square
pattern P ∈ Ah×h, defined by P(i,j) = wih+j for all i, j ∈ [0, h − 1], is in
B(X). If all this holds, M runs forever (the check for P ∈ B(X) can indeed
take infinitely many steps). When started in q2, the machine checks that
there is exactly one candidate error at some position (i, j) ∈ [0, h − 1]2 of
the input square containing some letter b ∈ A, and that one of |w| 6= h2

or wih+j 6= b holds. If this is the case, M enters an infinite loop, and halts
otherwise.

←
→

→
←

←
→

→
→

→

Figure 5.5: An infinite computation square with an input word of length 11
and a single candidate error. The computation cone is shown in dark gray.

The definition of the SFT S is now complete, and it can be realized using
a set F of forbidden patterns of size 3 × 3 over the alphabet A × B × C.
We define the quantifier-free formula ψ(~n, y, z) as ¬

∨
P∈F ψP , where ψP

states that the pattern P occurs at the coordinate ~n. This is easily doable
using the adjacency functions, color predicates and the variables y and z.
If we fix some values y ∈ BZ2

and z ∈ CZ2
for the variables y and z, then

x |= ∀~nψ(~n, y, z) holds for a given x ∈ AZ2
if and only if (x, y, z) ∈ S.

Let x ∈ AZ2
be arbitrary. We proceed to show that x is a model for φ

if and only if x ∈ X. Suppose first that x models φ, and let ~v ∈ Z2 and
h ≥ 1 be arbitrary. Let y ∈ Y be a configuration whose input square has
interior D = ~v + [0, h − 1]2, and whose input word correctly encodes the
pattern x|D. By the assumption that x |= φ, there exists a configuration

93

z ∈ CZ2
such that (x, y, z) ∈ S, so that the southwest neighbor of ~v is the

southwest corner of a computation square in z, which is necessarily infinite,
since no defects occur in y. In this square, M runs forever, and it cannot be
initialized in the state q2 as the encoding of the input square is correct. Thus
its computation proves that x|D ∈ B(X). Since D ⊂ Z2 was an arbitrary
square domain, we have x ∈ X.

Suppose then x ∈ X, and let y ∈ BZ2
be arbitrary. We construct a

configuration z ∈ CZ2
such that (x, y, z) ∈ S, which proves x |= φ. First, let

T ⊂ Z2 be the set of seeds in y, and for each ~s ∈ T , let `(~s) ∈ N ∪ {∞} be
the height of the maximal square D(~s) = ~s+ [0, `(~s)− 1]2 that contains no
defects. We claim that D(~s) ∩ D(~r) = ∅ holds for all ~s 6= ~r ∈ T . Suppose
the contrary, and let ~v ∈ D(~s) ∩ D(~r) be lexicographically minimal. Then
the coordinate ~v is on the south border of D(~s) and the west border of D(~r)
(or vice versa). Since these borders contain no defects, the tile y~v is a south
border tile and a west border tile, a contradiction.

Now, we can define the domain D(~s) to be a computation square in z for
every seed ~s ∈ T . If the computation square contains an input square and an
associated input word which correctly encodes its contents, we initialize the
simulated machine M in the state q1. Then the computation does not halt,
since the input square contains a pattern of B(X). Otherwise, we initialize
M in the state q2, and choose a single candidate error from the input square
such that M does not halt, and thus produces no forbidden patterns. With
these choices we have (x, y, z) ∈ S, completing the proof.

We have now characterized every level of the u-MSO hierarchy. The
first level Π̄0 = Σ̄0 contains the threshold counting shifts and equals Π̄1 by
Lemma 5.8, the class Σ̄1 = Σ̄2 contains the sofic shifts, and the other levels
coincide with the class Π0

1.
The quantifier alternation hierarchy of MSO-definable picture languages

was shown to be strict in [Sch98]. It is slightly different from the u-MSO
hierarchy, as existential first-order quantification is allowed. However, in the
case of pictures we know the following. Any MSO formulaQL∃~nQR φ, where
QL and QR are strings of quantifications and φ is quantifier-free, is equiva-
lent to a formula of the form QL∃XQR∀~n ψ, where ψ is also quantifier-free.
See [MS08, Section 4.3] for more details. This implies that the analogue of
the u-MSO hierarchy for picture languages is infinite. The proof of the result
of [Sch98] relies on the fact that one can simulate computations within the
pictures, and the maximal time complexity of these computations depends
on the number of quantifier alternations. In the case of infinite configura-
tions, this argument naturally falls apart.

Finally, Theorem 5.11 and Lemma 5.1 have the following corollary (which
was also proved in [JT13]).

Corollary 5.12. Every Π0
1 subshift is MSO-definable.

94

5.5 Other C-u-MSO Hierarchies

Next, we generalize Theorem 5.11 to hierarchies of Π0
k-u-MSO formulas.

The construction is similar to the above but easier, since we can restrict the
values of the variable y to lie in a geometrically well-behaved subshift.

Theorem 5.13. For all k ≥ 1 and n ≥ 2 we have Π0
k+1 = Π̄n[Π0

k]. Further-
more, Π0

2 = Π̄n[SFT] for all n ≥ 2.

Proof. As in Theorem 5.11, it suffices to show that for a given Π0
k+1 subshift

X ⊂ AZ2
, there exists a Π̄2[Π0

k] formula φ = ∀y[Y]∃z[Z]∀~n ψ such that

Xφ = X. In our construction, Y ⊂ BZ2
is a Π0

k subshift and Z = CZ2
is a

full shift.
For a square pattern P ∈ Ah×h, define the word w(P) ∈ Ah2 by wih+j =

P(i,j) for all i, j ∈ [0, h − 1]. By Lemma 3.16, there is a Π0
k predicate R ⊂

A∗ × N such that the set

F = {P ∈ Ah×h | h ∈ N, ∃n ∈ N : R(w(P), n)}

of forbidden patterns defines the subshift X. As in Theorem 5.11, configu-
rations of Y may contain one input square with an associated input word.
This time, the input word is of the form w#n for some w ∈ A∗, n ∈ N and a
new symbol #. As Y is a Π0

k subshift, we can enforce that R(w, n) holds, so
that w does not encode any square pattern of X. This can be enforced by
SFT rules if k = 1: a simulated counter machine checks R(w, n) by running
forever if it holds. As before, the existentially quantified variable z enforces
that w does not correctly encode the contents of the input square in the first
layer.

We now prove that X = Xφ, and for that, let x ∈ X and y ∈ Y be
arbitrary. If y has a finite input square D ∈ Z2 and input word w#n, then
w ∈ A∗ cannot correctly encode the pattern x|D ∈ B(X), and thus a valid
choice for the variable z exists. Degenerate cases of y (with, say, an infinite
input square) are handled as in Theorem 5.11. Thus we have x |= φ. Next,
suppose that x /∈ X, so there is a square domain D ⊂ Z2 with x|D /∈ B(X).
Construct the configuration y ∈ Y such that the input square has domain
D, the word w ∈ A∗ correctly encodes x|D, and the number n ∈ N of #-
symbols is such that R(w, n) holds. For this value of the variable y, no valid
choice for z exists, and thus x 6|= φ.

Corollary 5.12, Theorem 5.13 and a simple induction argument give the
following corollary.

Corollary 5.14. For every k ∈ N, every Π0
k subshift is MSO-definable.

However, the converse does not hold, since one can construct an MSO
formula defining a subshift whose language is not Π0

k for any k ∈ N.

95

5.6 Lower Levels of C-u-MSO Hierarchies

The results of [JT13] and Theorem 5.11 give a complete classification of
the different levels of the u-MSO hierarchy. In this section, we study the
possible analogues of these results in some more general C-u-MSO hierar-
chies. Example 5.9 already showed that the class Π̄1[SFT] is not contained
in the class of sofic shifts, so we proceed with a characterization of this class.
Before the theorem, we give the following definition.

Definition 5.15. Let k ∈ N. A subshift X ⊂ AZ2
is Σ0

k-bounded, if there
exists K ∈ N and a Σ0

k set F ⊂ P2(A) of forbidden patterns for X such
that |D(P)| ≤ K for all P ∈ F . We denote by BΣ0

k the class of Σ0
k-bounded

subshifts.

In other words, a subshift is Σ0
k-bounded, if it has a Σ0

k set of forbidden
patterns whose domains have bounded size, although their diameter may be
unbounded. Note that BΣ0

k is not a subset of Σ0
k nor Π0

k, but we do have
BΣ0

k ⊂ Π0
k+1.

Example 5.16. The mirror shift Xmirror ⊂ {0, 1,#}Z
2

of Example 5.9 is
Σ0

1-bounded. In the example, an infinite set of forbidden patterns is given
for it, and all of them have domains of at most 3 coordinates. It is also easy
to see that the set is recursively enumerable, or Σ0

1.

Theorem 5.17. For all k ≥ 1, we have Π̄1[Π0
k] = BΣ0

k+1. We also have
Π̄1[SFT] = BΣ0

2.

Proof. First, suppose that a subshift X ⊂ AZ2
is in the class Π̄1[Π0

k]. Since
Π0
k subshifts are closed under direct product, we may assume that X is

defined by a formula ψ = ∀y[Y]∀~n1 · · · ∀~n`φ(y,~n1, . . . ,~n`), where Y ⊂ BZ2

is a Π0
k subshift. Let r ∈ N be the radius of ψ. For an `-tuple of vectors

~n ∈ (Z2)`, denote S(~n) =
⋃`
i=1 ~ni + [−r, r]2. Then X is defined by the set

of forbidden patterns

F = {P ∈ P2(A) | ~n ∈ (Z2)`, P ∈ AS(~n), Q ∈ BS(~n)(Y), P 6|=S(~n) φ(Q,~n)}.

The set F is Σ0
k+1, since B(Y) is Π0

k, and we have |D(P)| ≤ `(2r + 1)2 for
all P ∈ F . This shows that Π̄1[Π0

k] ⊂ BΣ0
k+1.

We prove the converse direction for Π̄1[SFT], since the general case is
essentially similar. Let X ⊂ AZ2

be defined by a Σ0
2 set of forbidden patterns

F ⊂ P2(A), whose domain size is bounded by K ∈ N. Then there exists a
Π0

1 predicate R ⊂ P2(A)×N such that F = {P ∈ P2(A) | ∃n ∈ N : R(P, n)}.
Define an SFT Y ⊂ BZ2

as follows. It has a total of K + 1 layers, labeled
Yi for i ∈ {0, . . . ,K}, so that Y ⊂

∏K
i=0 Yi. For each i ∈ {0, . . . ,K}, let

πi : Y → Yi be the natural projection map. The last K layers are identical

96

SFTs defined by the allowed 2× 2 patterns of Figure 5.6 for all a ∈ A. The
central tile in the figure is called the point of the layer, and we denote the
tile by ā. Note that in a configuration y ∈ Y containing all K points at
some coordinates (i1, j1), . . . , (iK , jK) ∈ Z2, the coordinate

p(y) =
(

min
1≤`≤K

i`, min
1≤`≤K

j`
)
∈ Z2

can be recognized by a local condition.

a

a

a

a

a

a

a

Figure 5.6: A configuration of the layer Yi of Y in Theorem 5.17, where
i ∈ {1, . . . ,K} and a ranges over A.

The first layer Y0 is given by Construction 3.12, and its configurations
simulate the computations of a CMS M . The computation cone of the
simulated machine is based on the coordinate p(y), so that whenever a con-
figuration of Y contains all K points, it also contains the simulation of a
computation. Its input consists of the intersection of the horizontal and
vertical signals of the last K layers with the diagonal border of the compu-
tation cone, as shown in Figure 5.7, so that M effectively receives a K-tuple
~n ∈ (Z2)K of relative positions in Z2, together with a K-tuple ~a ∈ AK of
symbols from A. Let P = {~ni 7→ ~ai | i ∈ {1, . . . ,K}} ∈ P2(A) be the pattern
formed by the coordinates and their respective symbols. Now, the machine
M first nondeterministically guesses a number n ∈ N by incrementing a
counter and stopping at some point, visits a special state qguess, and then
checks (with an infinite computation) that R(P, n) holds. If the condition
fails, then M halts, producing a tiling error. This means that the configura-
tions of Y where all K points occur and the simulated machine eventually
makes a guess enumerate exactly the forbidden patterns P ∈ F .

Of course, it is possible that the simulated machine never makes the
guess for n in a configuration of Y , but we can ignore this case by enforcing
the guess with a first-order variable. Define the extended MSO formula

φ = ∀y[Y]∀~n0 · · · ∀~nK(π0(y)~n0 6= qguess) ∨
K∨
i=1

∨
a∈A

(Pa(~ni) ∧ πi(y)~ni 6= ā),

97

Figure 5.7: A schematic diagram of a simulation of the CMS in a config-
uration y of the SFT Y . Note how the information about the points (the
black dots) is passed to the simulated machine. The computation cone has
its base at p(y) (the gray circle).

where we have denoted by a the elements of A, and by ā the correspond-
ing points of the Yi. The formula simply states that none of the patterns
enumerated by Y occur in the configuration simultaneously with the special
state of M . It is clear that a configuration x ∈ AZ2

models the formula φ
if and only if x ∈ X. The general claim follows similarly, except that the
extra tiles of the last K layers and the CMS of the first layer can simply be
replaced by a Π0

k rule.

We now consider the larger classes Σ̄2[Π0
k], and show that their relation

to the Σ0
k-bounded subshifts is the same as that of sofic shifts to SFTs.

Proposition 5.18. Let k ∈ N. A subshift X ⊂ AZ2
is in the class Σ̄2[Π0

k]
if and only if it is the image of a Σ0

k+1-bounded subshift under a block map.

Proof. First, let X = f(Xφ), where φ = ∀y[Y]∀~n1 · · · ∀~n`ψ is a Π̄1[Π0
k] for-

mula over an alphabet B, and f : Xφ → X is a block map. For each a ∈ A,
let θa(x,~n) be the quantifier-free formula with free variables x (a configura-
tion variable over B) and ~n stating that f(x)~n = a. Such a formula exists,
since the block map f has a finite neighborhood. Then we have X = Xη,
where η is the Σ̄2[Π0

k] formula

∃x[BZ2
]∀y[Y]∀~n1 · · · ∀~n`∀n

(
ψ̄ ∧

∧
a∈A

(Pa(~n)⇒ θa(x,~n))
)
,

98

and ψ̄ is obtained from the quantifier-free part ψ by replacing each symbol
predicate Pb(t) by xt = b.

Second, suppose that X is defined by the Σ̄2[Π0
k] formula ∃y[Y]∀z[Z]φ,

where Y ⊂ BZ2
and Z are Π0

k subshifts and φ is first-order. Then

{(x, y) | x ∈ AZ2
, y ∈ Y,∀z ∈ Z : x |= φ(y, z)} ⊂ (A×B)Z

2

is clearly a Π̄1[Π0
k] subshift and thus Σ0

k+1-bounded, and its image in the
projection map (x, y) 7→ x is exactly X.

Finally, we give some separation results for the classes Π̄1[Π0
k] and Σ̄2[Π0

k].
We first show that Σ0

k-bounded subshifts have certain geometric restrictions,
so that the class does not contain some relatively simple sofic shifts.

Example 5.19. We present a binary sofic shift X ⊂ {0, 1}Z2
such that X /∈

Π̄1[subshifts]. Define X as the vertically constant subshift whose projective
subdynamics is exactly the one-dimensional subshift B−1(0∗110+10+110∗).
It is clear that X is sofic (this also follows from Theorem 3.18). Suppose
that we have X ⊂ Xψ for an extended MSO formula

ψ = ∀y1[Y1] · · · ∀yn[Yn]∀~n1 · · · ∀~n` φ,

where φ is quantifier-free and the Yi are arbitrary subshifts. Let r ∈ N be
the radius of ψ, and let x ∈ {0, 1}Z2

be the vertically constant configuration
defined by

· · ·x(−2,0)x(−1,0).x(0,0)x(1,0) · · · = ∞011.0r`+1110∞.

Now, for all values of the variables yi and the coordinates ~nj , there exists
m ∈ [0, r`] such that the vertical column V = {m}×Z does not contain the
value of any term in φ. This means that changing every cell x~v for ~v ∈ V
into a 1 does not affect the truth value of φ. The changed configuration is
in X, so it models φ with the above choices of the yi and ~nj , and thus x also
models φ. But we clearly have x /∈ X, which implies X 6= Xψ.

From Example 5.16 and Example 5.19, we have the following corollary.

Corollary 5.20. The class of sofic shifts is incomparable to Π̄1[SFT].

It is easy to see that for all k ∈ N, the class Σ̄2[Π0
k] contains all subshifts

of the form X ∩ Y , where X ∈ Π̄1[Π0
k] and Y is a sofic shift. We end

this section by presenting an example, due to Ville Salo, which shows this
inclusion to be strict.

Example 5.21. Let A = {0, 1,#}, and let X ⊂ AZ2
be the subshift defined

by the following set of forbidden patterns. First, every three-element pattern

99

{~0 7→ #, (0, 1) 7→ b, (0, n) 7→ #} for b ∈ {0, 1} and n ≥ 2 is forbidden, as
is every pattern containing two #-symbols on different vertical columns.
This means that a configuration of X contains at most one vertical segment
of #-symbols, and is otherwise binary. Second, every rectangular pattern
P ∈ A(2n+1)×(n+2) whose central vertical column contains b#nc for some
b, c 6= #, and whose two sides satisfy

|{(i, j) ∈ [0, n− 1]2 | P(i,j+1) 6= P(n+1+i,j+1)}| < dlog ne,

is forbidden. In other words, the two square patterns on either side of a
height-n segment of #-symbols can disagree on at most dlog ne coordinates.

First, we sketch a proof for the fact that X is the image of a Σ0
0-bounded

subshift under a block map. For that, let Y be the following Σ0
0-bounded

subshift defined over an alphabet A×B. We require by the same forbidden
patterns as with X that configurations of Y contain at most one vertical
segment of #-symbols on the first layer. On the second layer, we simulate
a CMS M using Construction 3.12 so that the computation cone is placed
on the unique pattern b

, where b ∈ {0, 1}. Its infinite input string is the
entire first layer, copied onto the right border of the computation cone by
infinitely many two-cell forbidden patterns, using some computable ordering
of Z2. The machine M checks that the first layer is actually a configuration
of X by simply checking for larger and larger square patterns around the
base of its cone that they do not contain any of the forbidden patterns
mentioned in the previous paragraph. The projection to the first layer of Y
then gives exactly X, and it is easy to see that the set of forbidden patterns
for Y is computable.

Second, we show that X is not an intersection of a Π̄1[Π0
k] subshift and a

sofic shift for any k ∈ N. For that, suppose for contradiction that Y ∩Z = X,
where Y ∈ Π̄1[Π0

k] and Z is a sofic shift. First, Theorem 5.17 implies that
Y is defined by a set of forbidden patterns whose domain size is bounded
by some K ∈ N. For each n ≥ exp(K), the subshift Y contains every
configuration y ∈ {0, 1,#}Z2

with exactly one height-n vertical segment of
#-symbols, since every size-K patterns that occurs in y is in B(X). Thus,
given such a configuration y, we have y ∈ X if and only if y ∈ Z. Let P ⊂
{0, 1}[0,n−1]2 be a maximal-cardinality set of binary n × n square patterns,
any two elements of which differ in more than dlog ne coordinates. We clearly
have |P| ≥ 2bn

2/(2+logn)c. Now, for each pattern P ∈ P, let xP ∈ X be a
configuration that contains the pattern P at the origin (that is, xP |[0,1]2 =
P), a height-n segment of #-symbols on its right border, and on the right-
hand side of the segment, a translated copy of P . By the above, we have
xP ∈ Z, and since the size of P is superexponential in n, Lemma 3.15 implies
that for large enough n, there are two distinct patterns P,Q ∈ P such that
c(xP , xQ, n) ∈ Z. But P and Q differ in more than dlog ne coordinates, so
that c(xP , xQ, n) /∈ X, a contradiction.

100

Chapter 6

Quantifier Extensions of
Two-Dimensional Subshifts

6.1 Introduction

In this chapter, we continue the theme of defining multidimensional subshifts
by logical formulas, although in a more restricted form than in Chapter 5.
We define two operations that extend one subshift by another, called quanti-
fier extensions. The name comes from the intuition that these operations in
some sense correspond to universal and existential quantification in logical
formulas. Also, while second-order quantifiers in extended MSO formulas
allow us to define a subshift X ⊂ AZ2

with the help of another (possibly
entirely unrelated) subshift Y ⊂ BZ2

, the quantifier extensions take an aux-
iliary subshift Y over the same alphabet A, and extend X into a subshift
Z ⊃ X over a larger alphabet Â ⊃ A. Intuitively, the extended alphabet
contains a ‘wildcard’ symbol where we can substitute a pattern of Y , and
the extended subshift contains those configurations where this substitution
can be done. They are inspired by the concept of multi-choice shift spaces,
as defined in [LMP13] and studied further in [MP11]. The multi-choice shift
space of a binary subshift is simply its universal extension by the binary full
shift. Multi-choice shift spaces, on the other hand, were inspired by con-
strained systems with unconstrained positions, which are studied in coding
theory [CMNW02, PCM06].

The main results of this chapter show that the class of sofic shifts is closed
under the quantifier extensions in the one-dimensional case, but not in gen-
eral, even when the sofic shifts are extended by very simple subshifts. In a
way, this is to be expected, since one-dimensional sofic shifts correspond to
regular languages, so most natural (and some unnatural) operations respect
the property of being sofic, and on the other hand, the class of multidimen-
sional sofic shifts is much less well-behaved, and still badly understood. The

101

topic of this chapter is more concrete than that of Chapter 5, and the results
are also sharper, at least in some sense. Our main result also solves an open
problem presented in [LMP13].

This chapter is based on the article [Tör14a].

6.2 The Quantifier Extensions

We begin by defining our objects of interest, the quantifier extensions of
multidimensional subshifts.

Definition 6.1. Let X,Y ⊂ AZd be d-dimensional subshifts, let � /∈ A be
a new symbol and denote Â = A ∪ {�}. For two possibly infinite patterns
P ∈ ÂD and Q ∈ AD of the same shape D ⊂ Zd, denote by P (Q) ∈ AD the
pattern with

P
(Q)
~v =

{
Q~v, if P~v = �
P~v, otherwise.

In other words, P (Q) is defined by replacing the �-symbols of P with the
corresponding contents of Q. We define two quantifier extension subshifts
for X and Y , the universal extension A(X,Y) ⊂ ÂZd and the existential

extension E(X,Y) ⊂ ÂZd , with the respective sets of forbidden patterns

{P ∈ Pd(A) | ∃Q ∈ BD(P)(Y) : P (Q) /∈ B(X)} and

{P ∈ Pd(A) | ∀Q ∈ BD(P)(Y) : P (Q) /∈ B(X)}

It is easy to see that for a configuration x ∈ ÂZd , we have x ∈ A(X,Y)
if and only if x(y) ∈ X holds for all y ∈ Y , and x ∈ E(X,Y) if and only if
there exists y ∈ Y such that x(y) ∈ X. In the formalism of MSO logic, the
two extensions are defined by the MSO formulas

Qy[Y]∃x[X]∀~n
∧
a∈A

(
(x~n = a)⇒ (Pa(~n) ∨ (P�(~n) ∧ y~n = a))

)
, (6.1)

where the quantifier Q is ∀ in the case of A(X,Y), and ∃ in the case of
E(X,Y). If the subshift X is definable by an MSO formula φ, we can
simplify (6.1) to Qy[Y]φ′, where φ′ is obtained from φ by replacing every
symbol predicate Pa(t) with the formula Pa(t) ∨ (P�(t) ∧ yt = a). Thus, the
symbol � represents a ‘hole’ in the configuration x that can be filled with
the contents of another configuration y, and the extensions quantify over all
such y to decide whether x is valid or not.

Our perspective in this chapter is to study which properties the exten-
sions respect. More explicitly, if one or both of X and Y possess a property,
like being an SFT or sofic shift, do the extensions also possess it? We mainly

102

focus on the universal extension, as the question of soficness is particularly
interesting for it. First, we show that the universal extension respects the
property of being an SFT in the following sense.

Proposition 6.2. Let X ⊂ AZd be an SFT and Y ⊂ AZd any subshift.
Then the universal extension A(X,Y) is an SFT.

Proof. Let F ⊂ Pd(A) be a finite set of forbidden patterns for X. Without
loss of generality, we may assume that the patterns of F have a common
finite domain D ⊂ Zd. We claim that

F̂ = {P ∈ ÂD | ∃Q ∈ BD(Y) : P (Q) ∈ F}

is a set of forbidden patterns for A(X,Y). For that, let x ∈ ÂZd be arbitrary.
If x ∈ A(X,Y), it is clear that no patterns of F̂ occur in x. Conversely, if
x /∈ A(X,Y), then there exists a configuration y ∈ Y such that x(y) /∈ X,
or in other words, there exists ~n ∈ Zd such that x(y)|D+~n ∈ F . This implies
that the pattern P = x|D+~n of x is in F̂ , since the corresponding pattern
Q = y|D+~n ∈ BD(Y) of y satisfies P (Q) ∈ F . Since F̂ is finite, A(X,Y) is
an SFT, as claimed.

Example 6.3. The above result does not hold for the existential extension,
even in the simple one-dimensional case where Y = {0, 1}Z and X ⊂ {0, 1}Z
is a mixing SFT. Namely, let X be defined by the single forbidden pattern
0100, and consider the eventually periodic configurations x = ∞01(0�)∞ and
x′ = ∞(0�)0∞. We have x ∈ E(X,Y) by substituting the letter 1 to every
�, and x′ ∈ E(X,Y) by substituting 0. It is easy to see that these are the
only possible substitutions, and thus ∞01(0�)n0∞ /∈ E(X,Y) for all n ≥ 1.
This implies that E(X,Y) is not an SFT.

The following result shows in particular that even though the extension
in the above example is not an SFT, it is sofic. The special case X ⊂
Y = {0, 1}Z of the one-dimensional universal extension was first proved in
[PCM06].

Proposition 6.4. Let X,Y ⊂ AZd be d-dimensional sofic shifts. Then the
existential extension E(X,Y) is sofic. If d = 1, then the universal extension
A(X,Y) is also sofic.

Proof. Let φ : X ′ → X and ψ : Y ′ → Y be surjective block maps, where
X ′ and Y ′ are SFTs, and define the auxiliary subshift Z = {#, �}Zd . Then
E(X,Y) is obtained from the SFT

{(x, y, z) | ∀~v ∈ Zd : φ(x)~v = ψ(y)~v ∨ z~v 6= �} ⊂ X ′ × Y ′ × Z,

103

by applying the block map ξ defined by

ξ(x, y, z)~v =

{
�, if z~v = �
φ(x)~v, otherwise.

Alternatively, since X and Y are sofic shifts, they are defined by some
Σ̄1 formulas of the form φ1 = ∃Z1

1 · · · ∃Zn1∀~n1ψ1 and φ2 = ∃Z1
2 · · · ∃Zm2 ∀~n2ψ2,

respectively, where the ψi are quantifier-free. By the simplified version
of (6.1), the extension E(X,Y) is then defined by an extended MSO for-
mula ∃y[Y]∃Z1

1 · · · ∃Zn1∀~n1ψ
′
1, where ψ′1 is also quantifier-free. We then apply

Lemma 5.1 to this formula, rearrange the terms, and reuse the first-order
variables, obtaining the equivalent MSO formula

φ = ∃Y1 · · · ∃Yk∃Z1
1 · · · ∃Zn1∃Z1

2 · · · ∃Zm2 ∀~n(ψ̄2 ∧
k∨
i=1

(Yi(~n)∧
∧
j 6=i
¬Yj(~n))∧ ψ̂′1),

where the Yi are ordinary second-order variables, and k ∈ N is the size of
the alphabet of Y . Also, the subformulas ψ̂′1 and ψ̄2 are quantifier-free, so
φ is a Σ̄1 formula. Theorem 5.10 implies that φ defines a sofic shift.

In the case d = 1, we know that a subshift is sofic if and only if its
language is regular, if and only if it can be defined by a regular set of
forbidden words [LM95, Chapter 3]. The sets B(Y) and L = A∗ \ B(X)
are thus regular, so they are recognized by some finite automata F1 and F2.
Now, A(X,Y) is defined by the set

{w ∈ Â∗ | ∃v ∈ B|w|(Y) : w(v) ∈ L}

of forbidden words. This set is regular, since it can be recognized by a
nondeterministic finite automaton that guesses the word v one letter at a
time, and checks that v ∈ B(Y) and w(v) ∈ L by simulating F1 and F2.
Thus the universal extension A(X,Y) is sofic.

In higher dimensions, we have a very weak analogue of Proposition 6.4 for
the universal extension, where automata theory is replaced by computability
theory. Recall from Lemma 3.16 that the language of a multidimensional
sofic shift is always Π0

1.

Lemma 6.5. Let X,Y ⊂ AZd be Π0
1 subshifts. Then the universal extension

A(X,Y) is Π0
2. If X is Π0

1 and Y is Σ0
1, then A(X,Y) is also Π0

1.

Proof. Let P ∈ Â[0,n−1]d be an arbitrary hypercube pattern. We have P /∈
B(A(X,Y)) if and only if there exists a pattern Q ∈ A[0,n−1]d such that
Q ∈ B(Y) but P (Q) /∈ B(X). Since the languages of X and Y are Π0

1, the
proposition Q ∈ B(Y) is Π0

1, while P (Q) /∈ B(X) is Σ0
1. Thus the complement

104

of B(A(X,Y)) is a Σ0
2 language, implying that B(A(X,Y)) is a Π0

2 subshift.
Furthermore, if B(Y) is a Σ0

1 language, then the complement of B(A(X,Y))
is also Σ0

1, and we obtain the latter claim.

The first bound in the above result is sharp, even in the case of one-
dimensional subshifts.

Proposition 6.6. There exist two countable one-dimensional Π0
1 subshifts

X,Y ⊂ AZ such that the language of the universal extension A(X,Y) is
Π0

2-complete.

Proof. Define A = {0, . . . , 6}, and define X by the set of forbidden patterns

{46} ∪ {ij | i, j ∈ S, i > j} ∪ {01a2b+13c4d5 | a, b, c, d ∈ N, a = c}.

It is clear that X is a Π0
0 subshift, and it is easily seen to be countable.

Next, let Φ be an arithmetical formula with bounded quantifiers such that
the set

N = {k ∈ N | ∀m ∈ N : ∃n ∈ N : Φ(k,m, n)}

is Π0
2-hard. Define Y by the set

{0, 1, 46} ∪ {ij | i, j ∈ S, i > j} ∪ {23k4m5 | k,m ∈ N,∃n ∈ N : Φ(k,m, n)}

of forbidden patterns. Since this set is Σ0
1 by form, Y is a countable Π0

1

subshift.
Define the function w : N → L = {01k2� | k ∈ N} by w(k) = 01k2�.

We note that for all a ∈ A, there exists a letter b ∈ B1(Y) such that ba
is forbidden in X, which implies that �a is forbidden in A(X,Y). Thus
w(k) occurs in A(X,Y) if and only if the infinite tail w(k)�∞ does. By the
definition of X and Y , this is the case if and only if 23k4m5 /∈ B(Y) for all
m ∈ N. But this is equivalent to k ∈ N , which means that N = w−1(L ∩
B(A(X,Y))), and thus the language of A(X,Y) is Π0

2-hard. Lemma 6.5
implies that A(X,Y) is a Π0

2 subshift, so the claim is proved.

As a corollary of Lemma 6.5, Theorem 3.18, and the above proposition,
we obtain the following counterpart of Proposition 6.4.

Corollary 6.7. There exist countable sofic shifts X,Y ⊂ AZ2
such that the

universal extension A(X,Y) is not sofic.

Proof. Let X ′, Y ′ ⊂ SZ be the Π0
1 subshifts of Proposition 6.6. By Theo-

rem 3.18, the vertically periodic countable two-dimensional subshifts X,Y ⊂
AZ2

whose projective subdynamics are X ′ and Y ′, respectively, are sofic.
It is easy to see that the extension A(X,Y) is just the vertically periodic
two-dimensional version of A(X ′, Y ′). Thus A(X,Y) is Π0

2-hard, and by
Lemma 3.16, it is not sofic.

105

While this result is interesting in itself, the proof is not very satisfying,
since the subshift Y that we extend by is computationally complex, and we
use the simpler structure of X only to check a universally quantified property
of B(Y). It can be said that the computational complexity of the extension
is entirely due to that of Y . However, if we restrict Y to be a computable
subshift, meaning that its language is both Π0

1 and Σ0
1, then Lemma 3.16

shows that the language of A(X,Y) is Π0
1, so a recursion theoretic proof for

the nonsoficness of A(X,Y) will no longer work.

In the next section, we concentrate on the problem of finding pairs of
computationally simple sofic shifts X and Y such that the extension A(X,Y)
is not sofic. The following special case was implicitly left as an open prob-
lem in [LMP13]: is the extension A(X, {0, 1}Z2

) a sofic shift for every two-
dimensional binary sofic shift X ⊂ {0, 1}Z2

? Theorem 6.9 in particular
shows that the answer is negative.

In [LMP13], the following notions were defined.

Definition 6.8. Let X ⊂ AZd be a d-dimensional subshift, and denote by Ã
the nonempty subsets of A. The multi-choice shift space associated to X is
defined as the subshift X̃ ⊂ ÃZd , which contains exactly those configurations
x̃ ∈ ÃZd for which every configuration x ∈ AZd that satisfies x~n ∈ x̃~n for all
~n ∈ Zd is in X. For a pattern P ∈ Pd(Ã), denote Π(P) =

∏
~n∈D(P) |P~n|.

The independence entropy of X is the quantity

hind(X) = lim
n→∞

1

nd
max{log Π(P) | P ∈ B[0,n−1]d(X̃)}

Intuitively, the independence entropy of X is a measure for how much
of the entropy of X comes from collections of coordinates whose value can
be chosen independently. In the binary case A = {0, 1}, the multi-choice

shift space X̃ is identical to A(X, {0, 1}Zd) up to renaming the symbols. In
[LMP13], it was asked whether the multi-choice shift space associated to a
two-dimensional sofic shift is necessarily sofic, and the above problem is a
restatement of this question in the binary case.

6.3 Universal Extensions of Sofic Shifts

In this section, we characterize those two-dimensional subshifts Y that al-
ways yield sofic universal extensions A(X,Y) for sofic shifts X. It turns out
that this holds only in the class of finite subshifts, or in other words, every
infinite subshift extends some sofic shift to a nonsofic shift, and conversely,
a finite subshift does not. The result is likely to hold for any number of
dimensions, but we restrict our attention to the two-dimensional case for
simplicity.

106

Theorem 6.9. Let Y ⊂ AZ2
be a subshift. The following conditions are

equivalent:

1. Y is finite.

2. A(X,Y) is sofic for all sofic shifts X ⊂ BZ2
over all alphabets B.

3. A(X,Y) is sofic for all strongly irreducible sofic shifts X ⊂ AZ2
.

4. A(X,Y) is sofic for all countably covered sofic shifts X ⊂ AZ2
.

Before proceeding to the proof, we present a couple of auxiliary results.
Most of them are not needed in the special case of binary full shifts, but
we use them because Theorem 6.9 is much more general. First, we need
the following result from symbolic dynamics. It is slightly stronger than the
version in [LM95], but the missing details can be extracted from its proof.

Lemma 6.10 (Marker Lemma). Let A be a finite alphabet. For all n ∈ N
there exists a block map fn : AZ → {0, 1}Z, called the n-marker map, such
that:

1. The radius of fn is at most rn = n|A|
2n+1

.

2. For k < n − 1, the word 10k1 does not occur in any configuration of
fn(AZ).

3. If x ∈ AZ is such that fn(x)[−n+1,n−1] = 02n−1, then the word x[−n,n]

is periodic with period less than n.

4. The function (n,w) 7→ Fn(w), where w ∈ Arn and Fn is the local
function of fn, is computable.

Proof. Lemma 10.1.8 of [LM95] states the existence of a clopen set C ⊂ AZ

such that the shifted sets σi(C) are disjoint for all i ∈ [0, n − 1], and if a
configuration x ∈ AZ satisfies σi(x) /∈ C for all i ∈ [−n+ 1, n− 1], then the
word x[−n,n] is periodic with period less than n. We define the marker map by

fn(x)i = 1 if and only if σi(x) ∈ C for all i ∈ Z, and then fn : AZ → {0, 1}Z
is a block map satisfying (2) and (3). The remaining claims follow from the
construction of C in [LM95].

Finally, we present a general construction of grid-like countably covered
sofic shifts.

Lemma 6.11. For all m,n ∈ N∪{∞}, there exists a countably covered sofic
shift X = XG(m,n) over the alphabet {#} ∪ {0, 1}2 such that:

• For all x ∈ X, the set D(x) = {~v ∈ Z2 | x~v 6= #} is a (possibly
infinite) rectangle.

107

• For all k ≥ 2, 1 ≤ a ≤
(
m+k
k

)
and 1 ≤ b ≤

(
n+k
k

)
, there is a config-

uration x = xk,a,b ∈ X such that D(x) = [0, ak] × [0, bk], and for all
~v = (i, j) ∈ D(x) we have π1(x~v) = 1 (π2(x~v) = 1) if and only if i ≡
0 mod k (j ≡ 0 mod k, respectively), where π1, π2 : {0, 1}2 → {0, 1}
are the projections to the first and second components.

• If m = ∞ (n = ∞), then every horizontal (vertical) line of 1’s in
the second (first) layer of X is infinite to the right (upwards), and
otherwise, every configuration of X contains only finitely many vertical
(horizontal) lines of 1’s in its first (second) layer.

Proof. We construct a countable SFT Y ⊂ AZ2
and a symbol map π : A→

{0, 1} such that π(Y) = X. The alphabet A is the set of tiles in Figure 6.1,
where the labels C` range over [0, `] if ` ∈ N, and {∞} if ` = ∞. Note
that some tiles are forbidden if m or n is infinite. Every 2 × 2 pattern
where the lines or colors of some tiles do not match (including the diagonal
lines) is forbidden in Y . Then the regions colored by L, R, B, and T in a
configuration y ∈ Y , if nonempty, form a left half plane, a right half plane, a
downward infinite rectangle, and an upward infinite rectangle, respectively.
The rectangular area not contained in them is called the grid of y. It is
divided into rectangles by the grid lines (the thick lines in Figure 6.1), which
stretch from one end of the grid to the other. These rectangles are actually
squares, all of the same size, because of the diagonal lines. We also forbid
every 2× 2 pattern containing such a square, so that every square contains
at least one interior tile, shown in the fifth column of the figure. If m (n) is
infinite, then so is the width (height) of every grid, as it cannot have a right
(top, respectively) border. See Figure 6.2 for an example configuration of
Y .

B L B L
B B B

Cm
Cn

R
B

B R R

L L L
Cm
Cn

R R T

L T L
T T T Cm

Cn
R

T
T R

m 6=∞n 6=∞

Figure 6.1: The alphabet of the grid SFT Y in the proof of Lemma 6.11.

The labels Cm of the interior tiles have the following rules if m 6= ∞.
Inside a square of the grid, they must be horizontally constant and downward
increasing (all patterns cd for c 6= d and c

d for c > d are forbidden). On the

108

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0 0

1 0

2 0

1 1

0

0

1

0

2

0

1

1

2

1

2

2

0

0

1

0

2

0

1

1

2

1

2

2

0

0

1

0

2

0

1

1

2

1

2

2

0

0

1

0

2

0

1

1

2

1

2

2

0

0

1

0

2

0

1

1

2

1

2

2

0

0

1

0

2

0

1

1

2

1

2

2

0

0

1

0

2

0

1

1

2

1

2

2

0

0

1

0

2

0

1

1

2

1

2

2

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

L L R R

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

B

T

Figure 6.2: A configuration of the grid SFT Y , where n = m = 2. The white
tiles are mapped to the symbol #, and the horizontal and vertical grid lines
to symbols 1 in the two layers of XG(m,n).

border of two horizontally adjacent squares, all 3× 2 patterns except[
− + −
e | e

] [
− + −
e | e+1

] [
e | e
f | f

] [
e | e
f | f+1

] [
e | e+1
m | e+1

] [
m | c
m | c

] [
e | e+1
− + −

] [
m | c
− + −

]
for c, d ∈ [0,m] and e, f ∈ [0,m− 1] are forbidden (the symbols −, | and +
represent horizontal, vertical and crossing grid lines, including T-junctions).
Denote by V k

m the set of length-k downward increasing column vectors over
[0,m]. The above rules imply that for all horizontally adjacent grid squares
with k × k interior tiles, the column vector formed by the top-left labels of
the interior tiles of the right square is the lexicographical successor of that of
the left square with respect to the set V k

m. For example, the lexicographical

successor of
0
2
2

in V 3
2 is

1
1
1
, not

1
0
0
, since the latter vector is not in the set

V 3
2 . Because of this, the width of any grid containing such a square is at

most |V k
m| =

(
m+k
k

)
squares. To ensure countability, we also require that the

labels next to the left border of a grid are all 0. We introduce analogous
rules for the top-left labels, but transposed, so that the height of the grid
is at most

(
n+k
k

)
squares. This concludes the definition of Y , and to define

X, we specify the symbol map π. We set π(t) 6= # if and only if the tile t
contains a gray region, and then π1(π(t)) = 1 (π2(π(t)) = 1) if and only if t
contains a vertical (horizontal) grid line. The three conditions for X follow
easily.

109

Finally, we show that Y is countable, and for that, let y ∈ Y . If a
finite grid square occurs in y, then there are countably many choices for the
position of the grid, which uniquely determines its contents (because of the
restrictions on the column vectors introduced above) and the rest of y. If y
contains no grid tiles, then it consists of the L, R, B and T -tiles, for which
we have countably many choices. In the case of infinite squares, since the
labels of the interior tiles are decreasing in one direction and constant in the
other, our choices are again restricted to a countable set.

We are now ready to prove Theorem 6.9. In its proof, we will modify
the sofic shifts XG(m,n) by superimposing new symbols on top of their con-
figurations with Lemma 3.14. They provide a rigid geometric structure for
the construction.

Proof of Theorem 6.9. (1 ⇒ 2): Let Y ⊂ AZ2
be a finite subshift, and

denote Y = {y1, . . . , yk}. The configurations yi must all be periodic, and
we let p ∈ N be a common horizontal and vertical period for all of them.
Let Z be a two-dimensional SFT and φ : Z → X a surjective block map,
and define the SFT Z ′ ⊂ Zk × Y k × {�,#}Z2

as follows. A configuration
z′ = (z1, . . . , zk, yn1 , . . . , ynk , t) ∈ Zk × Y k × {�,#}Z2

is in Z ′ if and only if

• {yn1 , . . . , ynk} = {y1, . . . , yk}, which can be checked by p×p patterns,

• if t~v = � for some ~v ∈ Z2, then φ(zi)~v = yni~v for all i ∈ [1, k], and

• if t~v = # for some ~v ∈ Z2, then φ(zi)~v = φ(zj)~v for all i, j ∈ [1, k].

We then define the block map ψ : Z ′ → ÂZ2
by

ψ(z′)~v =

{
�, if t~v = �,
φ(z1)~v, otherwise.

It is easily verified that ψ(Z ′) = A(X,Y), and thus the extension is sofic.
(2⇒ 3): Trivial.
(3⇒ 4): Let Z ⊂ BZ2

be a countable SFT defined by forbidden patterns
of size 2× 2, and let φ : BZ2 → X be a symbol map with φ(Z) = X, so that
X ⊂ AZ2

is a countably covered sofic shift. We may assume |A| ≥ 2, which
implies X 6= AZ2

, so let P ∈ An×n be a forbidden pattern of X for some
n ≥ 2, and let P ′ ∈ Bn×n be a pattern such that φ(P ′) = P . Note that P ′

does not occur in the subshift Z. Define a new SFT Z ′ ⊂ BZ2
by the set of

forbidden patterns

F = {Q ∈ B[−3n,4n−1]2 | Q|[0,n−1]2 /∈ B(Z) and P ′ 6@ Q},

so that Z ′ intuitively contains configurations that locally look like configu-
rations of Z, except in the vicinity of occurrences of P ′, where everything

110

is allowed. Our intermediate goal is to prove that Z ′ is strongly irreducible,
and high-level the idea is that given any two correct patterns of Z ′ whose
domains are far apart, we fill the remaining part of Z2 with copies of P ′

and obtain a valid configuration. However, the since two patterns only have
to be correct in Z ′, but not necessarily in Z, it may be that we have to
carefully place some additional copies of P ′ near their borders, which makes
the proof quite technical.

Claim 6.12. The SFT Z ′ is strongly irreducible with constant 12n.

Proof of Claim. For this, let Q1, Q2 ∈ B(Z ′) be two patterns whose domains
have minimum distance at least 12n. We construct a configuration y ∈ Z ′
such that y|D(Qi) = Qi for i ∈ {1, 2}. For this, let zi ∈ Z ′ be a configuration
such that zi|D(Qi) = Qi. Denote

Di = {~v ∈ Z2 | ∀~w ∈ [0, 2n− 1]2 : (~v − ~w + [0, 2n− 1]2) ∩D(Qi) 6= ∅}

and

Ei = [0, n− 1]2 + {~v ∈ Z2 | zi|[0,n−1]2+~v = P ′, Di ∩ ([−2n− 1, 3n]2 +~v) 6= ∅},

and set Gi = Di ∪ Ei. The set Di is a ‘thickened’ version of D(Qi), which
has the property that every ~v /∈ Di is an element of some 2n×2n square that
does not intersect Di. The set Ei, on the other hand, contains the domain
of every occurrence of P ′ in zi not too far from the thickened set Di.

Let x ∈ BZ2
be a periodic configuration defined by x|[0,n−1]2+(in,jn) = P ′

for all i, j ∈ Z, and define the configuration y by

y~v =


z1
~v , if ~v ∈ G1,

z2
~v , if ~v ∈ G2,

x~v, otherwise.

Note that G1 ∩ G2 = ∅, since the minimum distance between these sets is
at least 2n+ 2. Since D(Qi) ⊂ Gi, we have y|D(Qi) = Qi for i ∈ {1, 2}, so it
remains to show that y ∈ Z ′. For this, let ~v ∈ Z2 be arbitrary, and denote
Q = y|[−3n,4n−1]+~v. We prove that Q /∈ F .

Suppose first that ~v + ~w /∈ D1 ∪D2 for some ~w ∈ [0, n− 1]2. Because of
the properties of D1 and D2, and since their minimum distance is at least
4n+ 2, there exists a 2n× 2n square domain D ⊂ Z2 which is disjoint from
D1∪D2 and contains ~w. If D intersects G1∪G2, then it intersects E1∪E2,
which implies that P ′ @ Q. If D does not intersect G1 ∪ G2, then we have
y|D = x|D, and it again follows that P ′ @ y|D @ Q. In either case, we have
Q /∈ F .

Suppose then that ~v+[0, n−1]2 ⊂ D1∪D2. Since the setsDi have positive
minimum distance, we may further assume ~v+[0, n−1]2 ⊂ D1 by symmetry.

111

Consider the pattern Q′ = z1|D(Q) ∈ B(Z ′). If we have Q′|[0,n−1]2+~v ∈
B(Z), then Q /∈ F , since Q|[0,n−1]2+~v = Q′|[0,n−1]2+~v. Otherwise we must
have P ′ @ Q′ by the definition of Z ′, so let ~w ∈ [−3n, 3n]2 be such that
Q′|[0,n−1]2+~w+~v = P ′. A simple calculation shows that

([0, n− 1]2 + ~v) ∩ ([−2n− 1, 3n]2 + ~w + ~v) 6= ∅,

and since [0, n− 1]2 +~v ⊂ D1, we have [0, n− 1]2 +~v+ ~w ⊂ E1 ⊂ G1 by the
definition of the set E1. Thus we have Q|[0,n−1]2+~v+~w = P ′ by the definition
of y, implying Q /∈ F . This shows that y ∈ Z ′, and finishes the proof.

Now, the image X ′ = φ(Z ′) is a strongly irreducible sofic shift, and then
the extension A(X ′, Y) is sofic by assumption. We define an SFT X̃ ⊂ ÂZ2

by the forbidden patterns

{Q ∈ Â[0,n−1]2 | ∃T ∈ B[0,n−1]2(Y) : Q(T) = P},

and claim that A(X,Y) = A(X ′, Y)∩X̃, so that A(X,Y) is also sofic. From
X ⊂ X ′ and P 6@ X it follows that A(X,Y) ⊂ A(X ′, Y) ∩ X̃. Let then
x ∈ A(X ′, Y) ∩ X̃, and let y ∈ Y be arbitrary. Since x ∈ A(X ′, Y), we have
x(y) ∈ X ′, and since x ∈ X̃, we also have P 6@ x(y). This implies that x(y)

has a φ-preimage in Z ′ where P ′ does not occur, and thus x(y) ∈ X. Since
y was arbitrary, we have x ∈ A(X,Y), and the claim is proved.

(4⇒ 1): Let Y ⊂ AZ2
be infinite. Then for all p ∈ N there exists y ∈ Y

which is not p-periodic either in the horizontal or the vertical direction.
If either condition cannot be satisfied for some p, then the other can be
satisfied for all p. Thus we may assume that Y has no common horizontal
period. We also have |A| ≥ 2.

Our goal is now to construct a countably covered sofic shift X ⊂ AZ2

such that A(X,Y) is not sofic. We proceed by constructing a countably
covered sofic shift Z and a block map φ : Z → AZ2

whose image we define
as X. After this, it will be easy to show that the extension is not sofic, using
Lemma 3.15. The subshift Z is a subset of Z1 × Z2 × Z3, where Z1 is the
input layer, Z2 the computation layer, and Z3 the output layer. We define
the layers sequentially:

1. Define Z1, a countably covered sofic shift, using Lemma 6.11.

2. Define the SFT Z2 using Construction 3.12, and a countable sofic shift
Z ′ ⊂ Z1 × Z2.

3. Define Z3, a countably covered sofic shift, using Lemma 6.11 a second
time, and construct the sofic shift Z ⊂ Z ′ × Z3.

112

The purpose of the three layers is the following. First, the input layer
encodes a number m ∈ N, an arbitrary square pattern S ∈ {0, 1}[0,m−1]2 , and
an arbitrary coordinate ~n ∈ [0,m− 1]2. The index ~n is further encoded into
a word w ∈ A∗, but it can be decoded using the marker map of Lemma 6.10.
This data is given as input to a CMS M simulated on the computation layer.
Finally, the output layer encodes another square pattern R ∈ {0, 1}[0,m−1]2 ,
which is required to satisfy S~n = R~n. The information about the number n
and the coordinate ~n is passed to the output layer by the output counters
of M . We construct Z and the block map φ so that the word w can be
an arbitrary pattern of Y in the universal extension A(X,Y), which implies
that we must have S~n = R~n for all ~n ∈ [0,m − 1]2, implying S = R. An
application of Lemma 3.15 then gives us a contradiction.

We begin with Z1, which is defined by superimposing a label from A×
{0, 1} on each vertical column of the grid shift XG(1,∞) given by Lemma 6.11.
More formally, let us define an auxiliary label alphabet LA = {�} ∪ (A ×
{0, 1}), where � is a new symbol meaning ‘no label,’ and denote by G =
{#}∪{0, 1}2 the alphabet of XG(1,∞). We define Z1 = Z ′1∩(XG(1,∞)×LZ2

A),
where Z ′1 is the SFT with the following forbidden patterns:

• every symbol (t, `) ∈ G × LA where exactly one of t ∈ {(1, 0), (1, 1)}
and ` = � holds, and

• every 1× 2 pattern
(t1,`1)
(t2,`2)

∈ (G× LA)1×2 where `1 and `2 differ from

� and each other.

It is easy to see that the cells of every vertical column of 1’s in XG(1,∞) are
given the same label, and no other cells are labeled. As all configurations
of XG(1,∞) contain only finitely many columns, the subshift Z1 is countable,
and thus a countably covered sofic shift by Lemma 3.14.

We move on to the computation layer Z2, where we once again simulate
a counter machine. Let M = (k, k′, LA, Q, δ, q0, qf) be a CMS whose func-
tionality we define later; for now, we only require that its input alphabet is
LA, the label alphabet of the input layer Z1. Let XM ⊂ AZ2

M be the SFT
given by Construction 3.12 that simulates M , and define Z2 from it by the
following modification. There is a new symbol H in the alphabet of Z2 that
is treated as part of the computation cone. When the simulated machine M
reaches the final state qf , the next horizontal row of the computation cone
is filled with the H-symbols, and we guarantee by 2× 2 forbidden patterns
that all the subsequent rows are filled by H as well. The row containing the
final state qf is called the output row of the computation cone.

The subshift Z ′ ⊂ Z1×Z2 is defined by finitely many additional forbidden
patterns. First, the base of the computation cone in Z2 can only be paired
with the bottom left corner of the grid in Z1, that is, the upper right corner
of a pattern a b

c with a = c = # 6= b, and conversely, the bottom left

113

corner of the grid can only be paired with the base of the computation cone.
Second, the input word w ∈ L∗A of the simulated machine M is given by the
labels of the input grid, which are vertically constant. In particular, if the
input word is infinite, then so are the squares of the input grid, and then
the input word is of the form `�∞ for some ` ∈ A×{0, 1}. This means that
there are only countably many possible input words, and if the CMS M is
deterministic, then Z ′ is also countable, thus a countably covered sofic shift
by Lemma 3.14.

We now specify the CMS M , and for that, let g : N → N be any
computable function with m ≥

(g(m)+2
g(m)

)
for all m ≥ 3, g(m) → ∞ and

g(m)/m → 0, for example m 7→ b
√
mc − 1. The machine M has four

output counters, and on an input word w ∈ L∗A, it behaves as follows.
First, it checks that w = u0�n−1u1�n−1 · · ·�n−1un−1 for some n ∈ N and
u =∈ (A× {0, 1})n, rejecting if not. It then checks that n = m2 + 2rm2 for

some m ∈ N, again rejecting if not, where rm2 = m2|A|2m2+1
is the radius of

the m2-marker map fm2 : AZ → {0, 1}Z from Lemma 6.10. Decompose the
word u = (u(1), u(2)) into u(1) ∈ An and u(2) ∈ {0, 1}n. Using the radius rm2

for fm2 , the machine M next computes the image v = Fm2(u(1)) ∈ {0, 1}m2

of u(1) under the local function Fm2 : A∗ → {0, 1}∗. By the properties of
fm2 , the resulting word v contains at most one 1-symbol.

Next, M checks whether vi = 1 for some (then necessarily unique) index

i ∈ [0,m2 − 1]. If this is the case, then denoting c = u
(2)
rm2+i ∈ {0, 1}, the

machine M outputs the four numbers mg(m) + 1, g(m), ag(m) + c and
bg(m), where a, b ∈ [0,m − 1] are such that i = a + mb. Otherwise, M
outputs mg(m) + 1, g(m), 0 and 0.

We then define the output layer Z3, which is similar in structure to the
input layer Z1. It is defined by superimposing new symbols on the grid shift
XG(2,2) as follows:

1. Each vertical column of 1’s gets a label from {�, 0, 1} and each hori-
zontal row one from {�, $}. A row or column whose label is not � is
called special.

2. Every intersection of a row and a column (that is, every symbol (1, 1))
gets a label from {0, 1}. These labels are called the elements of the
grid that contains them. The intersection of a special row and a special
column has the same label as the column, and such elements are called
marked.

3. Every coordinate in a grid (every symbol except #) gets a label from
{ , , }, with the obvious 2× 2 forbidden patterns. The leftmost
coordinate of a special horizontal row must have label , and con-
versely, a label on the left edge of the grid must lie on a special
horizontal row.

114

Because of the diagonal signal of the third item, if a configuration of Z3

contains a finite grid, then at most one of its rows can be special. Since every
configuration of XG(2,2) contains only finitely many rows and columns of 1’s,
Z3 is countable, and thus a countably covered sofic shift by Lemma 3.14.

Finally, we define the subshift Z ⊂ Z ′ × Z3. The idea is to place the
finite grid of Z3 on the southwest corner of the H-region of Z2, and using
the outputs of M to control its size and labels. For this, every symbol (a, b)
where the Z2-layer of a is not H (part of an output row of M) and b is not
(the outside of the grid in Z3), is forbidden in Z, so the grid of Z3 lies on
the H-region of Z2.

Next, recall that the four output values of the simulated CMS M are of
the form mg(m)+1, g(m), ag(m)+c and bg(m), where m ∈ N, a, b ∈ [0,m−
1] and c ∈ {0, 1}. Recall also that the counters of the machine M simulated
in Z2 are represented as words Pi · · ·PiZi · · ·Zi. For a configuration z ∈ Z
and (i, j) ∈ Z2, we require that z(i,j) is on the bottom row of the Z3-grid if
and only if z(i,j−1) contains a P1 on the sublayer of the first counter of M .
This means that the output mg(m) + 1 of the first counter is exactly the
width of the Z3-grid, if either (and thus both) exists. Similarly, we force the
second output value g(m) to be exactly the width of a grid square, by stating
that if z(i,j) contains the bottom-most 1 of a column and z(i−1,j) is also in
the grid, then z(i−1,j−1)z(i,j−1) contains P2Z2 or Z2Z2 on the sublayer of the
second counter. A column whose bottom coordinate is at (i, j) is special if
and only if z(i−1,j−1)z(i,j−1)z(i+1,j−1) contains either P3Z3Z3 or P3P3Z3 on
the sublayer of the third counter, and the label of the special column is 0 in
the former case and 1 in the latter. With the above inputs, this means that
the a’th column from the left is special, with label c. Finally, the position
of the diagonal tile on the bottom row of the grid must coincide with the
fourth output counter, so the b’th row from the bottom is special.

See Figure 6.3 for a visualization of a configuration of Z. Since the
position of the output grid is determined by the computation layer, Z is
countable, and thus a countably covered sofic shift by Lemma 3.14 and the
fact that countably covered sofic shifts are closed under direct product. As
we explained earlier in the proof, the finite-width Z1-grid (which contains
m2 + 2rm2 columns for some m ∈ N) and the finite Z3-grid (which contains
m rows and columns with distance g(m)) encode two square patterns S,R ∈
{0, 1}[0,m−1]2 in every configuration that contains both of them. The pattern
S is encoded in the binary word v[rm2 ,rm2+m2−1] of length m2, where the long

word v ∈ {0, 1}m2+2rm2 consists of the binary labels of the Z1-columns, while
the pattern R is encoded in the elements of the Z3-grid. In the configuration,
we may also specify one coordinate ~n ∈ [0,m− 1]2 by choosing the A-labels
of the Z1-columns so that the marker map computed by M places a 1 at
that exact coordinate. The output counters of M force the corresponding

115

element of the Z3-grid to be marked, and then S and R must agree on that
coordinate.

Finally, we define the block map φ : Z → AZ2
with neighborhood

{0} × {0, 1, 2, 3} ⊂ Z2 and local function Φ as follows. Without loss of
generality, we assume 0, 1 ∈ A by renaming the elements of A if necessary.
Let c1, c2, c3, c4 be symbols of the alphabet of Z. First, if the Z1-layer of the
symbol c4 is #, then

Φ

(
c1
c2
c3
c4

)
=


b, if the Z1-layer of c3 has label (a, b) ∈ A× {0, 1},
a, if the Z1-layer of c3 is # and that of c2 has label (a, b),

1, if the Z1-layer of c2 is # and that of c1 is not,

0, otherwise.

Second, if c4 is an element of the Z3-grid, then the image of Φ at that
coordinate is its label (in {0, 1}). Finally, if the Z2-label of c4 is not H and
the Z3-label of c3 is not #, then the Φ-image is 1. In all cases not mentioned
here, the Φ-image is 0.

Now, we describe the sofic shift X = φ(Z). Choose such values for the
number m ≥ 3, the words u ∈ Am

2+2rm2 and v ∈ {0, 1}m2+2rm2 , and the
pattern R ∈ {0, 1}[0,m−1]2 , that if the image Fm2(u) ∈ {0, 1}m2

of the marker
map contains a 1 at some (necessarily unique) coordinate i = a+ bm, then
vrm2+i = R(a,b). Then there exists a configuration x = xm,u,v,R ∈ X as

follows. For every (i, j) ∈ [0, n−1]2, we have x(g(m)i,g(m)j) = R(i,j) (given by
the elements of the Z3-grid, whose southwest corner lies at the origin). We
also have x(i,−1) = 1 for all i ∈ [0,mg(m)]. For some n < 0, the configuration
x has a horizontal row of 1’s of length m(m2+2rm2)+1 to the right of (0, n) ∈
Z2, above which are the two rows u00m−1u10m−1 · · · 0m−1um2+2rm2−1 and

v00m−1v10m−1 · · · 0m−1vm2+2rm2−1 of the same length (given by the bottom

rows of the Z1-grid). For all other coordinates ~v ∈ Z2, we have x~v = 0.
Configurations of X which are not translates of some xm,u,v,R do not contain
such finite rows of 1’s.

Finally, we show that the universal extension A(X,Y) ∈ ÂZ2
is not

sofic. Let the configuration x = xm,u,v,R ∈ X and n < 0 be as above,
and denote by S ∈ {0, 1}[0,m−1]2 the square pattern encoded by the binary
word v[rm2 ,rm2+m2−1] ∈ {0, 1}m

2
. Construct a new configuration x̂ ∈ ÂZ2

by
replacing those symbols in x that encode u with �-symbols.

Claim 6.13. With the above definitions, we have x̂ ∈ A(X,Y) if and only if
S = R.

Proof of Claim. Suppose first that S = R, and let y ∈ Y be any configura-
tion. If the Fm2-image of the word y(0,1−n)y(m,1−n) · · · y(m(m2+2rm2−1),1−n) ∈
Am

2+2rm2 substituted to the �-symbols of x̂ contains a 1, then the patterns

116

Figure 6.3: Left: a schematic diagram of a configuration of Z with a finite
Z3-grid, not drawn to scale. The dotted lines represent the columns of the
Z1-grid, whose labels are read by the CMS. The dashed lines represent the
output counters. The computation ends at the base of the Z3-grid, whose el-
ements are denoted by small circles, of which the filled one is marked. Right:
its Φ-image. The white and gray circles represent symbols picked from {0, 1}
and A, respectively. The horizontal bars represent rows of symbols 1.

117

S and R agree on the respective coordinate since they are equal, and we
have x̂(y) ∈ X. If the image does not contain a 1, we automatically have
x̂(y) ∈ X.

Conversely, suppose we have S 6= R, so there exists i = a + mb ∈
[0,m2 − 1] such that vrm2+i 6= R(a,b). Denote k = m2 + 2rm2 and D =

{(0, 1−n), (m, 1−n), . . . , (m(k−1), 1−n)} ⊂ Z2. Since Y is not horizontally
periodic, there exists a pattern P ∈ BD(Y) that, when interpreted as a
word u ∈ Ak, satisfies Fm2(u)i = 1 for the marker map Fm2 . We now have
x̂(y) /∈ X, as otherwise the machine M would mark the column a and row b
in the φ-preimage of this configuration, and we would have S(a,b) = R(a,b),
a contradiction. Thus x̂ /∈ A(X,Y), and we have shown that x̂ ∈ A(X,Y)
if and only if S = R.

Suppose now for a contradiction that A(X,Y) is sofic, and let C > 0 be
given for it by Lemma 3.15. Let R ∈ {0, 1}[0,m−1]2 be a square pattern, and
let x̂m,R = x̂m,u,v,R, where u ∈ Am2+2rm2 is arbitrary, and v ∈ {0, 1}m2+2rm2

encodes the pattern R. There are 2m
2

such configurations for a given m ∈ N,
and Cmg(m) < 2m

2
holds when m is large enough, by the definition of the

function g. Then there are two patterns R 6= R′ ∈ {0, 1}[0,m−1]2 such that,
with the notation of Lemma 3.15, we have c(x̂m,R, x̂m,R

′
,mg(m) + 1) ∈

A(X,Y). But this configuration is exactly x̂m,u,v
′,R where v′ ∈ {0, 1}m2+rm2

encodes the pattern R′, contradicting Claim 6.13.

6.4 Quantifier Extensions of Deterministic Sub-
shifts

In this section, we briefly discuss a possible strengthening of Theorem 6.9.
Namely, we note that the subshift X constructed in the proof of Theorem 6.9
is not downward deterministic, which leads us to studying the extensions of
downward deterministic subshifts. The next result may seem surprising, but
the proof is elementary.

Proposition 6.14. Let X ⊂ AZ2
be a downward deterministic subshift,

and let Y ⊂ AZ2
be any subshift. If A(X,Y) 6= X, then Y is downward

deterministic, and if Y contains at least two configurations, then A(X,Y)
is downward deterministic.

In other words, when extending a deterministic subshift X by another
subshift Y , if one of Y or A(X,Y) is nontrivial, then the other must be
deterministic.

Proof. Let n ∈ N be such that the rectangle x[−n,n]×[1,n] determines the

cell x~0 for all configurations x ∈ X, and denote D = [−n, n] × [1, n] ∪ {~0}.

118

Suppose first that A(X,Y) 6= X, and let P ∈ BD(A(X,Y)) be such a pattern
that P~0 = �. Let Q,R ∈ BD(Y) be two patterns such that Q[−n,n]×[1,n] =

R[−n,n]×[1,n], and consider the substitutions P (Q), P (R) ∈ BD(X). We have

P
(Q)
[−n,n]×[1,n] = P

(R)
[−n,n]×[1,n], which implies P

(Q)
~0

= P
(R)
~0

by the determinism
of X, and thus Q~0 = R~0. But this means that Y is downward deterministic.

Suppose then that Y is a nontrivial subshift, and let P,Q ∈ BD(A(X,Y))
be such patterns that P[−n,n]×[1,n] = Q[−n,n]×[1,n]. Now, if P~0 ∈ A, let
R ∈ BD(Y) be such that R~0 6= P~0. Such a pattern R exists, since at least

two distinct letters occur in Y . Since P (R), Q(R) ∈ B(X) agree on the domain
[−n, n]× [1, n], we have Q~0 = P~0 by the determinism of X. Symmetrically,
if we have Q~0 ∈ A, then P~0 = Q~0, and thus P~0 = � if and only if Q~0 = �.
This means that the extension A(X,Y) is downward deterministic.

The subshifts constructed in Corollary 6.7 are vertically constant, thus
downward deterministic, so even for downward deterministic sofic shifts
X,Y ⊂ SZ2

, the universal extension A(X,Y) need not be sofic. However,
the construction relies on Y being computationally difficult, and not much
can be said if Y is computable. Namely, by Proposition 6.14 and Lemma 6.5,
if there exist downward deterministic sofic shifts X and Y , with Y recursive,
such that A(X,Y) is not sofic, then A(X,Y) is a downward deterministic Π0

1

subshift which is not sofic, and it is currently unknown whether such an ob-
ject exists. In particular, Lemma 3.15 cannot be applied, since all downward
deterministic subshifts also satisfy its conclusion. Recall Proposition 3.17,
which states that every multidimensional sofic shift X has a collection of
sofic subsystems whose entropies are dense in the interval [0, h(X)]. But
since downward deterministic subshifts have zero entropy, they always sat-
isfy this condition, too.

Finally, we remark that if the existential extension E(X,Y) of two sub-
shifts X,Y ⊂ AZ2

is not equal to X, then it cannot be deterministic, since
any subset of �-symbols in a configuration of E(X,Y) can always be replaced
by some symbols of A.

119

120

Chapter 7

Multidimensional Subshifts
Defined by Finite Automata

7.1 Introduction

In this section, we discuss multihead finite automata on infinite multidimen-
sional configurations, which we call plane-walking automata, and use them
to define classes of subshifts. Our model is based on the general idea of a
graph-walking automaton. In this model, the automaton is placed on one of
the nodes of a graph with colored nodes, and it repeatedly reads the color
of the current node, updates its internal state, and steps to an adjacent
node. The automaton eventually enters an accepting or rejecting state, or
runs forever without making a decision. Usually, we collect the graphs that
it accepts, or the ones that it does not reject, and call this collection the
language of the automaton. We restrict our attention to machines that are
deterministic, although an interesting continuation of our research would be
to consider nondeterministic or alternating machines.

Well-known such models include the two-way deterministic finite au-
tomata (2DFA) walking back-and-forth on a finite word, and tree-walking
automata traversing a tree. See [HKM09] for a survey on multihead au-
tomata on words, and the references in [Boj08] for information on tree-
walking automata. In multiple dimensions, our automata are based on the
concept of picture-walking (or 4-way) automata for accepting picture lan-
guages, defined in [BH67] and surveyed in [IT91, KS11]. In the article
[DM02], a study on pebble automata was conducted that is very similar to
the one we present here, and we rely on some of their results in the sim-
plest case where our automata have only one head. However, their approach
is different from ours in several other respects too; for example, their au-
tomata accept topologically open sets of configurations, not subshifts. Also,

121

in the recent preprint [ABS14], the authors define a class of G-subshifts1

for a finitely generated group G by allowing a Turing machine to walk on
the Cayley graph of G. Their approach is very similar to ours in the case
G = Zd, with the exception that we use multiple heads that cannot modify
the contents of the input configuraion.

The first question about subshifts accepted by plane-walking automata
is how this class relates to existing classes of subshifts. We compare the
class of subshifts accepted by a one-head deterministic automaton to SFTs
and sofic shifts, which correspond to local and regular languages. It is well-
known that in the one-dimensional finite case, graph-walking automata with
a single head (2DFA) define precisely the regular languages. However, for
more complicated graphs, deterministic graph-walking automata often de-
fine a smaller class than the one obtained by letter-to-letter projections from
local languages (which is often considered the natural generalization of reg-
ularity): deterministic tree-walking automata do not define all regular tree
languages [BC08] and deterministic picture-walking automata do not accept
all recognizable picture languages [GVR97]. We show in Theorem 7.11 that
this is also the case for a one-head deterministic plane-walking automaton in
the multidimensional case: the class of subshifts defined is strictly between
SFTs and sofic shifts.

Already in [BH67], the basic model of picture-walking automata was
augmented by pebbles, and we similarly consider classes of subshifts defined
by multihead plane-walking automata. In [BH67, Theorem 3], it was shown
that the hierarchy obtained as the number of pebbles grows is infinite in
the case of pictures (by a diagonalization argument). Similar results are
known for one-dimensional words [HY75] and trees [BSSS06]. In [DM02], it
was shown that for a specific model of accepting infinite configurations by
automata with finitely many pebbles, the hierarchy collapses to the third
level, which is characterized by a computability condition. We show that
the same result holds for multihead automata: three heads are enough to
recognize any subshift definable in our model, and this class coincides with
Π0

1 subshifts. In particular, it properly contains the class of sofic shifts.
However, we are not able to separate the second and third levels in the
case of one or two dimensions, although we find it very likely that they are
distinct, as is the case in three or more dimensions. We discuss why this
problem appears hard to us, suggest a possible separating language, and
state a related open problem for two-counter machines.

This chapter is based on the conference article [ST14].

1For a group G, a G-subshift over an alphabet A is a subset of AG which is closed in
the product topology, and invariant under the translation action of G.

122

7.2 Choosing the Machines

The basic idea in this article is to define subshifts by deterministic and
multihead finite automata as follows: Given a configuration x ∈ SZd , we
initialize the heads of the automaton on some of its cells, and let them run
indefinitely, moving around and reading the contents of x. If the automaton
halts in a rejecting state, then we consider x to be rejected, and otherwise
it is accepted.

After this high-level idea has been established, there are multiple a pri-
ori inequivalent ways of formalizing it, and we begin with a discussion of
such choices. Much of this freedom is due to the fact that many different
definitions and variants of multihead finite automata exist in the literature,
both in the case of finite or infinite pictures and one-dimensional words (see
[HKM09] and references therein).

Heads or pebbles? A multihead automaton can be defined as having
multiple heads capable of moving around the input, or as having one mobile
head and several immobile pebbles that the head can move around. In the
latter case, one must also decide whether the markers are indistinguishable
or distinct, and whether they can store information or not. In this article, we
choose the former approach of having multiple mobile heads. The opposite
choice was made in [DM02], where the authors consider finite automata with
one mobile head and several stationary pebbles, which are distinguishable
from each other but cannot store any other information.

Global control or independent heads? Next, we must choose how the
heads of our machines interact. The traditional approach is to have a single
global state that controls each head, but in our model, this could be consid-
ered ‘physically infeasible,’ as the heads may travel arbitrarily far from each
other. For this reason, and in order not to have too strong a model, the
heads of our automata are independent, and can interact only when they lie
in the same cell. Note that in the case of only one mobile head, this choice
is moot.

Synchronous or asynchronous motion? Now that the heads have no
common memory, we must decide whether they still have a common percep-
tion of time and can synchronize their motion. In the synchronous updating
scheme, all heads update their states and positions simultaneously, so that
the distance between two heads moving in the same direction in steps of
the same length stays constant. The other option is asynchronous updating,
where the heads may update at different paces, possibly nondeterministi-
cally. We choose the synchronous scheme, as it is easier to formalize and
allows us to shoot carefully synchronized signals, which we feel are the most
interesting aspect of multihead plane-walking automata.

Next, we need to decide how exactly a plane-walking automaton defines
a subshift. Recall that a subshift is defined by a possibly infinite set of

123

finite forbidden patterns in a translation-invariant way. In our model, the
forbidden patterns should be exactly those that support a rejecting run of
the automaton. In some sense, this choice is dual to that made in [DM02],
where an infinite configuration is accepted if and only if the automaton
eventually enters an accepting state on it.

How do we start? There are at least three different methods of initial-
izing the automaton. First, we could always initialize our automata at the
origin ~0 ∈ Zd, decide the acceptance of a configuration based on this single
run, and restrict to automata that define translation-invariant sets. Second,
we may quantify over all coordinates of Zd, initialize all the heads at the
same coordinate, and reject if some choice leads to rejection. In the third
option, we quantify over all k-tuples of coordinates, and place the k heads
in them independently. The first definition is not very satisfying, since most
one-head automata would have to be discarded, and of the remaining two,
we choose the former, as it is more restrictive. Note, however, that the first
definition of always initializing the automaton at the origin was chosen in
[DM02], without restricting to translation-invariant sets. We also quantify
over a set of initial states, so that our subshift classes are closed under finite
intersection, and accordingly seem more natural.

How do we end? Finally, we have a choice of what constitutes as a
rejecting state. Can a single head cause the whole computation to reject,
or does every head have to reject at the same time, and if that is the case,
are they further required to be at the same position? We again choose the
most restrictive option.

All of the above models are similar, in that by adding a few more heads
or counters, one can usually simulate an alternative definition. Sometimes,
one can even show that two models are equivalent. For example, [BH67,
Theorem 2.3] states that being able to distinguish markers is not useful in
the case of finite pictures; however, the argument seems impossible to apply
to plane-walking automata.

To recap, our definition of choice is the deterministic k-head plane-
walking finite automaton with local information sharing, synchronous up-
dating, quantification over single initial coordinate and initial state, and
rejection with all heads at a single coordinate, with the (necessarily ambigu-
ous) shorthand kPWDFA.

7.3 Definitions

We now formally define our machines, runs, acceptance conditions and the
subshifts they define. For this section, let the dimension d ≥ 1 be fixed.

Definition 7.1. Let k ≥ 1. A k-headed deterministic plane-walking au-
tomaton, kPWDFA for short, is a 5-tuple M = (Q,A, δ, I, R), where Q =

124

Q1 × · · · ×Qk is the finite set of global states, the Qi are the local states, A
is the finite alphabet, and δ = (δ1, . . . , δk) is the list of transition functions

δj : Q̃j ×A→ Qj × Zd,

where Q̃j = Q′1 × · · · ×Q′j−1 ×Qj ×Q′j+1 × · · · ×Q′k, and Q′i = Qi ∪ {?} for
a new symbol ? /∈ Qi. We call I ⊂ Q the set of initial states, and R ⊂ Q the
set of rejecting states.

Note that all functions above are total, so a plane-walking automaton
always has a next state to jump to. The intuition behind this definition is
that δj is the transition function of head j, and the state of another head is
given as the symbol ? if it does not lie in the same coordinate as head j.

Definition 7.2. Let M = (Q,A, δ, I, R) be a kPWDFA. An instantaneous
description or ID of M is an element of IDM = (Zd)k ×Q. Given a config-

uration x ∈ AZd , we define the update function Mx : IDM → IDM . Namely,
given c = (~v1, . . . , ~vk, q1, . . . , qk) ∈ IDM , we define Mx(c) as follows. If
(q1, . . . , qk) ∈ R and ~v1 = · · · = ~vk, then we say c is rejecting, and Mx(c) = c.
Otherwise, Mx(c) = (~w1, . . . , ~wk, p1, . . . , pk), where ~wj = ~vj + ~uj and

δj(q
′
1, . . . , q

′
j−1, qj , q

′
j+1, . . . , q

′
k, x~vj) = (pj , ~u

j),

where we write q′i = qi if ~vi = ~vj , and q′i = ? otherwise. The run of M on

x ∈ AZd from c ∈ IDM is the infinite sequence M∞x (c) = (Mn
x (c))n∈N. We

say the run is accepting if no Mn
x (c) is rejecting. We define the subshift of

M by

Acc(M) = {x ∈ AZd | ∀q ∈ I,~v ∈ Zd : M∞x (~v, . . . , ~v, q) is accepting.}

Intuitively, the set Acc(M) consists of those configurations where one
can choose any any initial coordinate of Zd, place all the heads of M on that
coordinate in any initial state, and be sure that the automaton runs forever.
It could also be defined by forbidding those finite patterns that support a
rejecting run of M starting from an initial state, which perhaps makes it
clearer that Acc(M) is actually a subshift. We now define our hierarchy of
interest:

Definition 7.3. For k > 0, define

PWd
k = {Acc(M) |M is a d-dimensional kPWDFA.}

It is easy to see that PWd
k ⊂ PWd

k+1 holds for all k > 0, and that every

PWd
k only contains Π0

1 subshifts. Since a deterministic finite state automa-
ton can clearly check any local property, every d-dimensional SFT is in the
class PWd

1. To make it easier to express these kinds of relations between
the PWd

k and other classes of multidimensional subshifts, we introduce the
following notation for the rest of this chapter.

125

Definition 7.4. For d ≥ 1, we denote by SFTd the class of d-dimensional
SFTs, and by soficd the class of d-dimensional sofic shifts.

With this notation, the above remark states that SFTd ⊂ PWd
1.

Remark 7.5. We note some robustness properties of our definition of a
kPWDFA and the classes PWd

k. While the definition only allows infor-
mation sharing when several heads lie in the same cell, we may assume that
heads can communicate if they are at most t cells away from each other.
Namely, if we had a stronger k-head automaton where such behavior is
allowed, then we could simulate its computation step by Θ(ktd) steps of a
kPWDFA whose heads visit, one by one, the Θ(td) cells at most t steps away
from them, and remember which other heads they saw in which states. Also,
while we allow the machines to move by any finite vector, we may assume
these vectors all have length 0 or 1 by simulating a step of length r by r
steps of length 1.

Proposition 7.6. The classes PWd
k are closed under conjugacy, finite in-

tersection, and the action of any transformation in SLd(Z).

Proof. For the first claim, let X ∈ PWd
k be a d-dimensional subshift over an

alphabet A, and φ : Y → X a conjugacy between X and another subshift
Y ⊂ BZd defined by the local rule Φ : BN → A on the finite neighbor-
hood N ⊂ Zd. Since X ∈ PWd

k, there is a kPWDFA M = (Q,A, δ, I, R),
where Q = Q1 × · · · × Qk, such that X = Acc(M). We define a new
kPWDFA M̂ = (Q̂, B, δ̂, Î, R) as follows. The local states of new the state
set, that is, the components of Q̂ =

∏k
i=1

(
Qi ×B≤|N |

)
, consist of the lo-

cal states of M , together with all words of length at most |N | over the
alphabet B. The new transition function δ̂ works in the following way. If
the local state of a head is (q, ε) at a coordinate ~n ∈ Zd of a configura-

tion y ∈ BZd , then it enters the neighborhood loop, in which it visits the
coordinates N + ~n in a fixed order, and records the contents of the pattern
y|N+~n one by one into the second component of its state, keeping the first
component constant. When the loop is complete, the head returns to the
coordinate ~n, and performs the transition determined by δ in the case that
the symbol under the head is Φ(y|N+~n). The initial states of M̂ are exactly
Î = {((q1, ε), . . . , (qk, ε)) | (q1, . . . , qk) ∈ I}, and then it is easy to see that M̂
simulates the computation of M on the configuration φ(y), with each step
of M corresponding to exactly |N | steps of M̂ .

Next, to prove the case of finite intersections, it suffices to prove that the
intersection of two subshifts X,Y ∈ PWd

k is also in PWd
k. For this, it suffices

to take the kPWDFA whose state set, transition function, initial state set
and rejecting state set are all disjoint unions of those of the kPWDFA M
and M ′ that accept the subshifts X and Y . Namely, when started on the
initial states of M , the automaton accepts exactly the configurations of X,

126

and when started on an initial state of M ′, it accepts exactly those of Y ,
and thus the subshift is accepts is exactly X ∩ Y .

Finally, let M = (Q,A, δ, I, R) be a kPWDFA, and let L ∈ SLd(Z) be
a linear transformation. Consider the kPWDFA M̄ = (Q,S, δ̄, I, R), where
the new transition function δ̄ = (δ̄1, . . . , δ̄k) is defined by δ̄i(q1, . . . , qk, a) =
(p, L(~v)), where (p,~v) = δi(q1, . . . , qk, a), for all qj ∈ Q̃j and a ∈ A. If the

automaton M̄ is initialized at some coordinate ~n of a configuration x ∈ AZd ,
then it follows from the definition of L−1(x) and the linearity of L that it
essentially simulates the computation of M on the configuration L−1(x).
Thus we have Acc(M̄) = L(Acc(M)).

In particular, the two-dimensional classes PW2
k are closed under hori-

zontal and vertical mirroring, and rotation by π
2 .

As stated, the main goal of this chapter is to compare the classes PWd
k

to existing classes of subshifts and each other, and for this, we recall and
define a few subshifts and classes thereof. In most of our examples, we use
the binary alphabet A = {0, 1}, the configurations contain the symbol 0 in
all but a bounded number of coordinates.

Definition 7.7. Recall the two-dimensional sunny side up subshift from
Example 2.2, which is the subshift of {0, 1}Z2

where at most one symbol 1 can
occur in a configuration. We generalize this subshift by the d-dimensional
m-sunny side up subshift, which is the d-dimensional subshift Xd

m ⊂ {0, 1}Z
d

with forbidden patterns {P | |P |1 > m}, that is, every finite pattern where
the letter 1 occurs more than m times. A d-dimensional subshift is m-sparse
if it is a subshift of Xd

m, and sparse if it is m-sparse for some m ∈ N.

If X ⊂ AZd is a d1-dimensional subshift and d2 > d1, we define XZd2−d1

as the d2-dimensional subshift where the contents of every d1-dimensional
hyperplane ~m + {

∑d1
i=1 ni~ei | ~n ∈ Zd1} ⊂ Zd2 for ~m ∈ {0}d1 × Zd2−d1 are

independently taken from X.

Put simply, an n-sparse subshift is one where at most n symbols 1 may
occur, and the sunny side up subshifts are the ones with no additional con-
straints. Recall also the definition of the two-dimensional mirror subshift
Xmirror ⊂ {0, 1,#}Z

2
from Example 5.9 in Chapter 5. We generalize this

example to multiple dimensions as follows.

Definition 7.8. Let d ≥ 2. The d-dimensional mirror subshift Xd
mirror ⊂

{0, 1,#}Zd is defined by the following forbidden patterns.

• All patterns P of domain {~0, ~ei} for i ∈ {2, . . . , d} with |P |# = 1.

• All patterns {~0 7→ #, n · ~ei 7→ #} for i ∈ {2, . . . , d} and n ≥ 1.

• All patterns {−n · ~e1 7→ a,~0 7→ #, n · ~e1 7→ b} for n ≥ 1 and a 6= b.

127

Intuitively, the rules of Xd
mirror are that if two symbols # are adjacent on

some (d−1)-dimensional hyperplane perpendicular to the first axis ~e1, then
that hyperplane must be filled with the symbols #, and there is at most one
such hyperplane, whose two sides are mirror images of each other. In two
dimensions, the hyperplane is just a vertical line. None of the multidimen-
sional mirror subshifts is sofic.

7.4 One Head

Now, let us begin analyzing the classes PWd
k, starting with the case of a

single head. Of course, plane-walking automata with one head are trivially
equivalent to pebble automata with no pebbles, which means that there
is a definite overlap with [DM02] in the two-dimensional case. Thus we
are able to directly use, or at least easily generalize, some results from the
aforementioned article, including the following.

Lemma 7.9 (proved as Proposition 6 of [DM02]). Let M = (Q,A, δ, I, R)

be a 1PWDFA of dimension d, and let x ∈ AZd be a uniform configuration.
Let (~vn, qn)n∈N be the run of M on x from the origin. Then the sequence of
states (qn)n∈N and the sequence of displacements (~vn+1 − ~vn) are eventually
periodic, with the periods and transient lengths being bounded by |Q|.

In [DM02], it was also proved that automata with only one pebble exhibit
similar behavior, only with slightly higher bounds.

Our first results place the class PWd
1 between SFTd and soficd.

Lemma 7.10. In all dimensions d ≥ 1, we have (X1
1)Z

d−1 ∈ PWd
1 \ SFTd.

In particular, the class PWd
1 properly contains SFTd.

Proof. Note that X = (X1
1)Z

d−1
is the d-dimensional subshift where no ‘row’

(a translate of the set Z · ~e1) may contain two symbols 1. First, we claim
X is not an SFT. Suppose on the contrary that it is defined by a finite set
of forbidden patterns with domain [0, n− 1]d for some n ∈ N. Consider the

configurations x0, x1 ∈ {0, 1}Zd where xi~0 = xin·~e1+i·~e2 = 1 and xi~v = 0 for all

other ~v ∈ Zd. Since any pattern with domain [0, n− 1]d occurs in x0 if and
only if it occurs in x1, we have x0 ∈ X if and only if x1 ∈ X, a contradiction
since clearly x0 /∈ X and x1 ∈ X.

To show that X ∈ PWd
1, we construct a one-head automaton M1 such

that X = Acc(M1). The idea is that the head will walk in the direction
of the first axis, and increment a counter when it sees a symbol 1. If the
counter reaches 2, the automaton rejects. More precisely, the automaton is
M1 = ({q0, q1, q2}, {0, 1}, δ, {q0}, {q2}), where δ(q0, a) = (qa, ~e1), δ(q1, a) =
(q1+a, ~e1) and δ(q2, a) = (q2,~0) for a ∈ {0, 1}. If there are two symbols 1

on any of the rows of a configuration x ∈ {0, 1}Zd , say x~v = x~w = 1 where

128

~w = ~v + n~e1 for some n ≥ 1, then the run of M1 on x from the initial ID
(q0, ~v) is not accepting, since the rejecting ID (q2, ~w + ~e1) is entered after
n+ 1 steps. Thus, x /∈ Acc(M1). On the other hand, it is easy to see the if
no row of x ∈ {0, 1}Z2

contains two symbols 1, then x ∈ Acc(M1).

Theorem 7.11. In all dimensions d ≥ 1, we have PWd
1 ⊂ soficd, with

equality if d = 1.

Proof. We first show PWd
1 ⊂ soficd. The proof of this is quite standard, see

for example [KM01]. Suppose that X ∈ PWd
1 is a subshift over the alphabet

A, and let M = (Q,A, δ, I, R) be a 1PWDFA accepting X. We construct
an SFT Y over the alphabet 2Q ×A, such that the second component of Y
contains exactly X. The forbidden patterns of Y are

• every symbol (Q′, a) ∈ 2Q ×A such that I 6⊂ Q′ or R ∩Q′ 6= ∅, and

• every two-element pattern {~0 7→ (Q1, a1), ~v 7→ (Q2, a2)} such that
δ(q1, a1) = (q2, ~v) for some q1 ∈ Q1 and q2 /∈ Q2.

Now, if we initialize M on the second component of some y ∈ Y in any
initial state q0 ∈ I, it is easy to see by induction that if it lies at ~v in state
q ∈ Q after some n steps, then the first component of y~v contains q, which
implies that q /∈ R. Thus, every run of M on the second component of y
is accepting. Conversely, suppose that M accepts a configuration x ∈ AZd .
For each ~n ∈ Zd, denote

z~n =
⋃
{q ∈ Q | ~m ∈ Zd, q0 ∈ I, n ∈ N,Mn

x (~m, q0) = (q, ~n)}.

These are exactly the states in which the automaton M may step on the
coordinate ~n in one of its infinite runs. We have defined a configuration
z ∈ (2Q)Z

d
, and it is easy to see that (z, x) ∈ Y . Thus X = Acc(M).

It is well-known that a one-dimensional subshift is sofic if and only if it
can be defined by a regular language of forbidden words [LM95]. Since 2-
way deterministic finite automata only recognize regular languages, we have
sofic1 ⊂ PW1

1, and from the first part of the proof it follows that the classes
coincide.

Remark 7.12. For all dimensions d1 < d2, all k ≥ 1, and all subshifts X ∈
PWd1

k , we have XZd2−d1 ∈ PWd2
k , since a d2-dimensional kPWDFA can

simply simulate a d1-dimensional one on any d1-dimensional hyperplane.
In particular, if a subshift X ⊂ SZ is sofic, then XZd−1 ∈ PWd

1 for any
dimension d ≥ 2.

Of course, since multidimensional SFTs may contain very complicated
configurations, the same is true for the classes PWd

1. In particular, for
all d ≥ 2 there are subshifts in PWd

1 whose languages are Π0
1-complete.

129

However, just like in the case of SFTs, the sparse parts of subshifts in PWd
1

are simpler.

Theorem 7.13. Let the dimension d ≥ 1 be arbitrary, and let X ∈ PWd
1.

For all m ∈ N, the intersection X ∩Xd
m of X with the m-sunny side up shift

is recursive.

Proof. Let X = Acc(M) for a 1PWDFA M = (Q, {0, 1}, δ, I, R) that only
takes steps of length 0 and 1 (this assumption is valid by Remark 7.5), and

denote the intersection X ∩Xd
m by Y ⊂ {0, 1}Zd . We assume without loss

of generality that Y contains a configuration with at least two symbols 1.

Claim 7.14. It is decidable whether a given configuration y ∈ Xd
m is in Y .

In other words, it is decidable whether there exists ~v ∈ Zd such that
started from ~v in one of the initial states q0 ∈ I, the automaton M eventually
rejects y.

Proof of Claim. To decide this, note first that if M does not see any symbols
1, then it does not reject – otherwise, the all-0 configuration would not be
in Y . By Lemma 7.9, the automaton enters a cycle of length at most |Q|
after at most |Q| steps, and by our assumption, the net displacements in the
cycle and the transient part are both in the set W = {~u ∈ Zd | ‖~u‖ ≤ |Q|}.
If we denote ZW = {n · ~w | n ∈ Z, w ∈W}, then the automaton stays within
the domain ~v + ZW +W +W until it finds a 1. Let E ⊂ Zd be the convex
hull of D = {~n ∈ Zd | y~n = 1}, and let F = E +W +W .

Now, since the automaton eventually enters the domain F , we have
F ∩ ~v + ZW + W + W 6= ∅, or in other words, v ∈ F + W + W + ZW .
Denote G = F + W + W + W , and suppose that we have v /∈ G, so that
min{‖~v − ~u‖ | u ∈ F} ≥ 3|Q|. Since the automaton enters a loop of length
at most |Q| after at most |Q| steps, it will cycle through that loop at least
twice before entering F . If we denote by ~d ∈ Zd the net displacement of M
in the course of the loop, then the starting position ~v+ ~d results in the head
of M entering the domain F in exactly the same state and position as with
~v (note that it will not enter F during the transient part of its run). This
argument is visualized in Figure 7.1; if we translate the starting position by
the vector ~d, the number of loops that M makes before entering the set F
just decreases by one. Thus it suffices to analyze the initial positions in the
finite domain G.

From each starting position in the domain G, we now simulate the ma-
chine until it first enters F or exits G+W (in which case it never enters F).
Now, we note that if the machine exits F after the first time it is entered,
then it does not reject y. Namely, the domain F = E+W+W is convex and
contains a 0-filled border thick enough that A must be in a loop, heading
off to infinity. Thus, if M ever rejects y, it must do so by entering F from G

130

without exiting W +G, then staying inside F , and rejecting before entering
a loop, which we can easily detect. This finishes the proof of decidability of
y ∈ Y .

1

1

1

Figure 7.1: An illustration of the proof of Theorem 7.13, not drawn to scale.
The gray zone represents the set F , and the circles represent the head of
M . The leftmost dark circle is at the coordinate ~v, and the rightmost dark
circle is at ~v + ~d.

Now, given a binary pattern P ∈ Pd({0, 1}) with domain D ⊂ Zd, we
claim that it is decidable whether P occurs in a configuration of Y . If
|P |1 > m, the answer is of course ‘no’ since Y is m-sparse, so suppose
|P |1 ≤ m. Construct the configuration y with y|D = P and y~v = 0 for all
~v ∈ Zd \ D. If y ∈ Y , which is decidable by the above argument, then we
answer ‘yes’. If y /∈ Y and |P |1 = m, then we can safely answer ‘no’.

In the remaining case y /∈ Y and |P |1 < m, we have found a rejecting
run of M that only visits some finite set of coordinates C ⊂ Zd. If there
exists a configuration x ∈ Y such that x|D = P , then necessarily x~v =
1 for some coordinate ~v ∈ C \ D, for otherwise M would reject x too.
For all these finitely many ~v, we construct a new pattern by adding the
singleton pattern {~v 7→ 1} into P , and call this algorithm recursively on
it. If one of the recursive calls returns ‘yes’, then we answer ‘yes’ as well.
Otherwise, we answer ‘no’. The correctness of this algorithm follows easily
by induction.

For the previous result to be nontrivial, it is important to explicitly take
the intersection with a sparse subshift instead of assuming that the subshift
X is sparse, for the following reason.

131

Proposition 7.15. For all dimensions d ≥ 2, the class PWd
1 contains no

nontrivial sparse subshifts.

Proof. Let M be a 1PWDFA such that the subshift Acc(M) is sparse and
contains at least two configurations. We may assume that Xd

1 ⊂ Acc(M)
by recoding if necessary. Recall the notation of the proof of Theorem 7.13.
If M can reach a position ~w ∈ Zd from an initial position ~v ∈ Zd the origin
without encountering a 1, then ~v − ~w ∈ W + W + ZW . Let V ⊂ Zd be
an infinite set such that ~v − ~w /∈ ZW + W + W for all ~v 6= ~w ∈ V . Such
a set exists since d ≥ 2. Define the configuration x ∈ {0, 1}Zd by x~v = 1
for all ~v ∈ V , and x~n = 0 for all ~n ∈ Zd \ V . Then x ∈ Acc(M), since the
automaton M encounters at most one symbol 1 on every run on x. This
contradicts the sparsity of Acc(M).

7.5 Two Heads

In this section, we show that two heads are already quite powerful in the
one- and two-dimensional settings, and results such as the above do not hold
for them. This results from the fact that the heads can carefully synchro-
nize their movement even when moving in different directions at different
speeds, so that they meet again at a precisely defined coordinate. In two
dimensions, this allows us to perform exhaustive search on a configuration,
in the following sense.

Proposition 7.16. For all m ≥ 0, the m-sunny side up shift X2
m is in

PW2
2.

Proof. We assume m ≥ 1, since the case m = 0 is trivial. For all a, b, c, d ∈ N
with a+ b+ c+d = m+ 1, we construct a two-head automaton Ma,b,c,d with
the following property. When started on top of a symbol 1 at the coordinate
~0, the automaton rejects a configuration if and only if

• the top right quarter-plane N× N contains at least a symbols 1,

• the top left quarter-plane (−∞,−1]×N contains at least b symbols 1,

• the bottom left quarter-plane (−∞,−1]× (−∞,−1] contains at least
c symbols 1, and

• the bottom right quarter-plane N× (−∞,−1] contains at least d sym-
bols 1.

Clearly, the intersection of the subshifts accepted by the finitely many au-
tomata Ma,b,c,d is precisely X2

m.
Since the four cases are essentially symmetric, it is enough to construct

an automaton Ma that checks that there are at least a symbols 1 in the

132

top right quarter-plane, and then returns to its starting position. First, the
automaton checks that it is indeed on top of a symbol 1, and enters an
infinite loop if not.

The two heads of Ma are called the L-head and the diagonal head. Both
heads remember a number j ∈ [0, a], the number of the diagonal head being
called the count, and the other the height. In the initial state, the count is 1
and the height is 0. We inductively preserve the following invariant. If both
heads are at the coordinate (0, n) for some n ∈ N and the count is ` < a, then
there are exactly ` symbols 1 in the coordinates Dn = {(i, j) ∈ N×N | i+j ≤
n}, and if ` = a, then the domain Dn contains at least a symbols 1. Also, the
height is precisely the number of 1s on the column between (0, n) and (0, 0).
We now explain how, if both heads of the automaton are at the coordinate
(0, n) with count ` and height h so that the invariant holds, the heads can
move to the coordinate (0, n+ 1), preserving the invariant.

The automaton sends its L-head to south at speed 1, and the diagonal
head southeast at speed 1/2 (that is, the diagonal head is translated by
(1,−1) every other step). Every time the L-head encounters a symbol 1, it
decrements the height counter, which reaches the value 0 precisely at the
origin. From the origin, the L-head turns to east, again using the height
counter to remember the number of 1’s it has seen on the row. The two
heads meet at the coordinate (n, 0). Now, the heads move one step to the
right, possibly incrementing the width and height counters. The heads then
repeat the procedure in reverse, with the difference that the diagonal head
increments the count value for every 1 it encounters on its way northwest,
up to the value of a. The heads meet again at (0, n+ 1), and the invariant
is preserved. See Figure 7.2 for a visualization of this process.

1

1 1

1

1

1

(0, 0)

(0, n)

(0, n+ 1)

Figure 7.2: The movements of the L-head and the diagonal head.

Finally, if the count is a and the heads are at position (0, n), they can
return to the origin together with the aid of the height counter.

133

In [DM02], it was shown that on a uniform configuration, an automaton
with two pebbles can perform a ‘sweeping search’ on a half-plane similarly
to the above, and that such a search is essentially its only possible nontrivial
behavior. Using this construction, it would not be very hard to show that,
with the appropriate formalism, two-pebble automata can also recognize
every two-dimensional m-sunny side up subshift.

The following proposition gives the separation of the classes PWd
1 and

PWd
2 for d ≤ 2. It can be thought of as an analogue of the well-known

result that two counters are enough for arbitrarily complicated (though not
arbitrary) computation. The result is of a computational nature, and before
proving it, we recall Construction 3.12, where we embed the computations of
an arithmetical program in a countable SFT, and especially the remark after
it. In practice, the construction gives us a way of simulating an arithmetical
program with a one-dimensional 2PWDFA; the rows of the associated SFT
correspond to the steps of a run of the automaton. Note that in order to
use the construction as such, we allow the heads to communicate with each
other over a distance of one cell; see Remark 7.5.

Proposition 7.17. For d ≤ 2, there is a 2-sparse Π0
1-complete subshift

X ∈ PWd
2.

Proof. We only prove the case d = 2, as the one-dimensional case is even
easier. Let X ⊂ {0, 1}Z2

be the subshift of X2
2 where either the two symbols

1 are on different rows, or their distance is not 2n for any n ∈ L, for a fixed
Σ0

1-complete set L ⊂ N. It is clear that X is a Π0
1-complete subshift. Let P

be an arithmetical program that recognizes the set L′ = {2n | n ∈ L}.
To prove that X ∈ PW2

2, we construct a 2PWDFA M for it. Since
the class PW2

2 is closed under finite intersection, Proposition 7.16 implies
that we may restrict our attention to configurations of the 2-sunny side up
shift X2

2 . First, our machine checks whether it is started on a symbol 1
and that another symbol 1 occurs on the same row to the left, by doing a
left-and-right sweep with one of the heads. If the other 1 is never found,
then M runs forever without halting. Otherwise, the two heads position
themselves on top of the rightmost 1 and to its left, and start simulating
the arithmetical program P exactly as in Construction 3.12. The leftmost
1 is used as the border of the computation cone, so that the distance N ≥ 1
of the two symbols 1 is the input of P . The heads also remember on which
side of the rightmost 1 they are, in order to recognize the border; apart
from this, the rightmost 1 is ignored after the beginning of the simulation.
The automaton rejects the configuration as soon as the simulated program
P halts, and otherwise continues the computation infinitely.

Now, let x ∈ X2
2 be arbitrary. If M is not started on the rightmost 1 of a

row of x that contains two 1’s, then it does not reject x. Suppose then that
this holds, and let N ≥ 1 be the distance between the two 1’s. If N ∈ L′,

134

then the simulated program P eventually halts and the automaton rejects,
and we have x /∈ X. Otherwise, the program and thus the automaton run
forever, and x ∈ X since M does not reject x from any starting position.
This shows that Acc(M) = X.

We do not believe that all 2-sparse Π0
1-complete subshifts are in PWd

2

for d ≤ 2, but we cannot currently prove this. In three or more dimensions,
however, we obtain the following analogue of Proposition 7.15, which is
proved similarly.

Theorem 7.18. For all dimensions d ≥ 3, the class PWd
2 contains no

nontrivial sparse subshifts.

Proof. Let M be a 2PWDFA taking only steps of length 0 or 1 such that
Acc(M) is sparse and contains at least two configurations. We may again
assume that Xd

1 ⊂ Acc(M). As in the proof of Theorem 7.13, we can use
Lemma 7.9 to show that there exists some p ∈ N such that, denoting again
W = {~v ∈ Zd | ‖~v‖ ≤ p} and ZW = {n · ~w | n ∈ Z, ~w ∈ W}, we have
the following. Let the two heads of M be initialized on some coordinates
~v = ~v0 ∈ Z2 and ~w = ~w0 ∈ Z2 in any states, and denote by (~vn)n≤N and
(~wn)n≤N their itineraries up to some timestepN ∈ N. If we have ‖~v−~w‖ ≤ p,
then ~vn ∈ ~v + ZW + W and ~wn ∈ ~w + ZW + W until either head sees a
symbol 1. If ‖~v − ~w‖ > p, then this holds until either head sees a symbol 1
or the heads meet each other. Note that in the former case, the heads may
travel together, but in that case we can view them as a single head with a
larger but finite ‘combined’ state space.

Analogously to the proof of Proposition 7.15, let V ⊂ Zd be an infinite
set such that ~v − ~w /∈ ZW + ZW + W + W for all ~v, ~w ∈ V , and ~0 ∈ V .
Define a configuration x ∈ {0, 1}Zd by x~v = 1 for all ~v ∈ V , and x~v = 0 for
all ~v ∈ Zd \V . We prove that x is accepted by M , contradicting the sparsity
of Acc(M), and for that, let M∞x (c) be a run of M in x started from some
initial ID c = (~w, ~w, q0) for ~w ∈ Zd.
Claim 7.19. The heads of M visit at most one letter 1 during the run M∞x (c).

Proof of claim. We may assume that M encounters a 1 at the origin after
some number of steps. By the first paragraph, both heads stay in the region
~w+ZW+W until the origin is found, say by the first head. This implies that
~w ∈ ZW +W , so the second head stays in the domain ZW +ZW +W +W
until it encounters the origin or the first head. The first head, on the other
hand, is restricted to the domain ZW + W until it meets the second head
again. If the heads meet, they must do so in a coordinate of ZW +W , and
after this, they are confined to the domain ZW +ZW +W +W until one of
them reaches the origin again. All in all, the heads never leave the domain
ZW +ZW +W +W , and thus never reach a symbol 1 outside the origin.

135

Define a configuration y ∈ Xd
1 that has a single letter 1 at the origin,

and 0 everywhere else. By the above claim, we have M∞x (c) = M∞y (c), that
is, the run of M on y from the initial ID c is exactly the same as that on
x, since x~n = y~n for all coordinates ~n ∈ Zd visited during the run. Since
Xd

1 ⊂ Acc(M), the run is accepting, and thus x ∈ Acc(M), contradicting
the sparsity of Acc(M).

The following result does not concern plane-walking automata as such,
but combined with Theorem 7.18, it provides examples of sofic shifts out-
side the class PWd

2. Its proof uses a construction very similar to that of
Theorem 5.17. However, since we cannot control the structure of our aux-
iliary subshifts with first-order variables, the proofs differ in many details.
Also, this construction is one of the few one in this dissertation where we
use a Turing machine for computation, instead of some variant of a counter
machine.

Theorem 7.20. In all dimensions d ≥ 2, every sparse Π0
1 subshift is sofic.

Proof. We prove the result in two dimensions, and then discuss how to
generalize it to d ≥ 3.

We will show that every two-dimensional Π0
1 subshiftX over the alphabet

{0, . . . , k} containing all symbols except 0 at most once is sofic. This proves
the original claim, since the class of sofic shifts is closed under renaming
the symbols. Since X is a Π0

1, there is a computable sequence (Pi)i∈N of
forbidden patterns for it. We will construct an SFT Y ⊂ {0, . . . , k}Z2 × Z,
where Z is also an SFT, such that the projection of Y to the first layer is
exactly X. The SFT Z ⊂

∏k
i=1 Zi consists of k identical layers Zi, and in

each of them, we simulate a Turing machine T with state set Q, initial state
q0 ∈ Q, and tape alphabet Γ, whose functionality we describe later.

The k signal layers are identical to each other, and their tiles are shown
in Figure 7.3. The labels qi ∈ Q in the gray circles are the states of the
Turing machine T , and ai, bi ∈ Γ are symbols of the tape alphabet. The
upper half plane of the configuration is the computation region, and the
background colors form the signals of the layer. On the computation region,
an infinite computation of T is simulated in a standard way, with time
increasing upwards. The initial state q0 is assigned to the coordinate of
intersection of the signals, called the point of the configuration, and the
other tiles of the bottom row of the computation region are given arbitrary
labels from the tape alphabet Γ. One computation step of T is simulated on
each subsequent row using suitable 2 × 2 forbidden patterns, and if T ever
halts, a tiling error is introduced.

Now, the point of each layer corresponds exactly to one of the nonzero
symbols of a configuration of X, similarly to Theorem 5.17. More precisely,
for all i ∈ {0, . . . , k}, we forbid from the subshift Y all symbols (j, s) ∈

136

{0, . . . , k}Z2 ×A(Z) where j = i but the Zi-component of s is not the point
of Zi, or j 6= i but the Zi-component of s is the point of Zi. This already
implies that every configuration on the first layer of Y contains at most one
occurrence of i.

a−4 a−3 a−2 a−1 q0 a1 a2 a3 a4

a−4 a−3 a−2 q1 b0 a1 a2 a3 a4

a−4 a−3 a−2 b−1 q2 a1 a2 a3 a4

a−4 a−3 a−2 b−1 b0 q3 a2 a3 a4

a−4 a−3 a−2 b−1 b0 b1 q4 a3 a4

q0
a0

q1
a−1

q2

b0

q3
a1

q4
a2

Figure 7.3: A configuration of the signal layer Zi. The gray circles contain
the head of the simulated Turing machine T , and the white circles contain
elements of its tape alphabet Γ.

Next, we relate the different layers Zi to one another by introducing
restrictions on the initial tape contents of the simulated machines. We re-
quire the tape alphabet Γ to contain the (k − 1)-fold Cartesian product
{ , , , }k−1 as a subset; these are the discolored and label-less ver-
sions of the tiles of the other layers Zj . We require that on the bottom of
the computation region of Zi, the tape symbol of each tile consists exactly
of the discolored versions of the tiles of the other layers at that coordinate.
The reason for this is that now the relative positions of all points in the con-
figuration can be deduced from the tape of the Turing machine T simulated
by the layer Zi, in the sense that the simulated machine T can enumerate
the rectangular patterns Rj = x|[−j,j]2+~n for all j ∈ N, where ~n ∈ Z2 is the
coordinate of the i’th point of x. See Figure 7.4 for a visualization of this
argument. Finally, we construct the machine T so that it enumerates in par-
allel the forbidden patterns (Pi)i∈N and the rectangular patterns (Rj)j∈N,
and halts as soon as any element of the former sequence occurs in an element
of the latter.

137

Figure 7.4: The signal regions of the other layers transmit the information
about the positions of their points (the black circles) to the layer Zi, whose
point is shown in gray.

Now, a given configuration x ∈ {0, . . . , k}Zd is a projection of a config-
uration of Y if and only if every symbol i ∈ {1, . . . , k} occurs in x at most
once, and for the one occurring at the coordinate ~n ∈ Z2 as defined above,
no forbidden pattern Pi occurs in the rectangle x|[−j,j]2+~n for any i, j ∈ N.
This is equivalent to x ∈ X.

This construction can be generalized to d ≥ 3 dimensions in a rela-
tively straightforward way. Namely, instead of the signal and computa-
tion regions being half-planes, they are d-dimensional half-spaces. Likewise,
the signal regions of the layers Zi contain d-dimensional pyramids instead
of two-dimensional cones, and the simulated Turing machine is run on a
(d − 1)-dimensional lattice instead of a one-dimensional tape. The rest of
the construction is unchanged.

Combining Theorem 7.20, Theorem 7.18 and Proposition 7.15, we obtain
the following.

Corollary 7.21. For all dimensions d ≥ 2, we have PWd
1 (soficd, and for

all dimensions d ≥ 3, we have PWd
2 6⊂ soficd.

While Theorem 7.20 in particular implies that all sparse PWd
2 subshifts

are sofic, we can show that this is no longer true if we drop the requirement of
sparsity. In particular, the next result shows that the class PWd

1 is properly
contained in PWd

2 for all d ≥ 2.

Proposition 7.22. In all dimensions d ≥ 2, we have Xd
mirror ∈ PWd

2\soficd.

Proof. First, as stated earlier in this chapter, the mirror subshift Xd
mirror ⊂

{0, 1#}Zd is not sofic for any dimension d ≥ 2. To show that Xd
mirror ∈ PWd

2,

138

we informally describe a 2PWDFA for it. Using the fact that PWd
2 is closed

under intersection, we restrict to the SFT defined by the forbidden patterns
of the first point of Definition 7.8: all patterns P of domain {~0, ~ei} with
|P |# = 1. We can also assume there is at most one hyperplane of symbols
#, as this can be checked by a 1PWDFA that walks in the direction of the
first axis from its initial position, and halts if it sees the symbol # twice.

Under these assumptions, the mirror property is easy to check. When
initialized on a coordinate containing a letter b ∈ {0, 1}, one of the heads of
the 2PWDFA memorizes the letter b in its finite memory. Then, one of the
heads starts traveling to the direction ~e1, and the other to ~e1 + ~e2. If the
latter sees a hyperplane of symbols #, it turns to the direction ~e1−~e2. If the
heads meet, they check that the letter b in the initial position matches the
letter under the current position, and if not, the configuration is rejected.

7.6 Three Heads

In this section, we collapse the hierarchy of plane-walking automata to its
third level. This can be thought of as an analogue of the well-known result
that three counters and a finite memory are enough for arbitrary computa-
tion, as opposed to two counters, which can perform arbitrarily complex but
not arbitrary computation. We also note that it was proved in [DM02] that
pebble automata with three pebbles are equally powerful to pebble automata
with an arbitrary number of counters, and indeed to Turing machines, when
it comes to recognizing topologically open sets of configurations. The next
result shows that in this sense, three-headed plane-walking automata are
similar to three-pebble automata. It should also be compared to the results
of Chapter 5, where several quantifier alternation hierarchies were shown to
collapse into finitely many different levels.

Theorem 7.23. In all dimensions d ≥ 1, the classes PWd
k for k ≥ 3

coincide with the class of Π0
1 subshifts.

Proof. We only need to show that PWd
3 contains all Π0

1 subshifts. Namely,
PWd

k ⊂ PWd
k+1 holds for all k ≥ 1, and since a counter machine can easily

enumerate patterns supporting a rejecting computation of a multihead finite
automaton, every PWd

k subshift is also Π0
1.

Let C be a counter machine that, when started from the initial ID c0,
outputs a sequence (Pi)i∈N of patterns by writing an encoding of each of
them in turn to a special counter, and visiting a special state qout. We
construct a 3PWDFA MC accepting exactly those configurations where no
Pi occurs. The heads of MC are called the pointer head, the zig-zag head,
and the counter head. The machine has a single initial state, and when
started from any position ~v ∈ Zd of a configuration x, it checks that no Pi

139

occurs in x at ~v. Since MC is started from every position, it will then forbid
all translates of the Pi.

The machine simulates an arithmetical program as in the proof of Propo-
sition 7.17, but in place of the ‘leftmost symbol 1’, we use the pointer head.
The crucial difference here is that unlike a symbol 1, the pointer head can
be moved freely. This allows us to walk around the configuration, and ex-
tract any information we want from it. The arithmetical program simulates
Algorithm 5, which finally simulates the counter machine MC .

Algorithm 5 The algorithm that the three-head automaton MC simulates.

1: c← c0 . An ID of C, set to the initial ID
2: ~u← ~0 ∈ Zd . Position of the pointer head relative to initial position
3: P : ∅ → {0, 1} . A finite pattern at the initial position
4: loop
5: repeat
6: c← NextIDC(c) . Simulate one step of C
7: until State(c) = qout . C outputs something
8: P ′ ← OutputOf(c) . A forbidden pattern
9: while D(P ′) 6⊂ D(P) do

10: ~w ← LexMin(D(P) \D(P ′)) . Lexicographic minimum
11: while ~u 6= ~w do
12: ~d← NearestUnitVector(~w − ~u) . Nearest vector ±~ei
13: MoveBy(~d) . Move the heads of MC to the given direction
14: ~u← ~u+ ~d

15: b← ReadSymbol . Read symbol of x under the pointer head
16: P ← P ∪ {~u 7→ b} . Expand P by one coordinate

17: if P |D(P ′) = P ′ then halt . The forbidden pattern P ′ was found

The algorithm keeps in its memory a finite pattern P = x|D(P)+~v, where

~v ∈ Zd is the initial position of the heads, and a vector ~u ∈ Zd containing
~w−~v, where ~w ∈ Zd is the current position of the pointer head. The machine
C is simulated step by step, and whenever it outputs a forbidden pattern
P ′, the algorithm checks whether D(P) contains its domain. If so, it then
checks whether x|D(P ′)+~v = P ′. If this holds, then the algorithm halts, the
arithmetical program simulating it halts, and the automaton MC moves all
of its heads to the pointer and rejects. If P ′ does not occur, the simulation
of C continues.

If the domain D(P ′) is not contained in D(P), then the algorithm ex-
pands P , which is done in the outer while-loop of Algorithm 5. To find out
the contents of x at some coordinate ~w + ~v for ~w ∈ D(P ′), the algorithm
chooses a unit direction (one of ±~ei for i ∈ {1, . . . , d}) that would take the
pointer head closer to ~w+ ~v, and signals it to MC via the arithmetical pro-

140

gram. In a single sweep of the zig-zag head to the pointer and back, MC can
easily move all of its heads one step in any unit direction. Then the sim-
ulation continues, and the algorithm updates ~u accordingly. When ~u = ~w
finally holds, the algorithm orders MC to read the symbol x~v+~u under the
pointer, which is again doable in a single sweep. The bit b = x~v+~u is given
to the algorithm, which expands P by defining P~u = x~v+~u.

For a configuration x and initial coordinate ~v ∈ Zd, the automaton MC

thus computes the sequence of patterns (Pi)i∈N and checks for each i ∈ N
whether x|D(Pi)+~v = Pi holds, rejecting if it does. Since ~v is arbitrary, we

have x ∈ Acc(MC) if and only if no Pi occurs in x. Thus the class PWd
3

contains an arbitrary Π0
1 subshift.

141

142

Chapter 8

Conclusions

8.1 The Structure of Subshifts

In Chapter 4, we investigated the topological and dynamical structure of
multidimensional subshifts, in particular countable SFTs, formalized as their
Cantor-Bendixson ranks and subpattern posets. In Theorem 4.13, we pre-
sented a countable SFT whose iterated derivatives are maximally complex
from the computational point of view. This construction has been published
already in [ST13]. Following that, we proved in Theorem 4.14 that any rank
of the form λ + 3, where λ is a computable ordinal, can be attained by a
countable SFT, and Theorem 4.15 from the preprint [JV11] shows that this
is actually the characterization of the ranks of countable SFTs. Using the
same construction, we presented an example of a countable SFT of rank 5
that contains an uncomputable configuration. It is known from the results
of the preprint [JV11] that all configurations of countable STFs of rank at
most 4 are computable, so the example proves the strictness of this bound.

In Section 4.4, we concentrated on the subpattern posets, and proved
Theorem 4.26 with the most complex construction in this dissertation. To-
gether with Corollary 4.24, it gives a complete characterization for the
‘higher structure’ of the subpattern posets of countable Π0

1 subshifts and
SFTs, in the sense that only the elements of height at most 3 cannot be
precisely controlled. Finally, we showed that the bounded signal property
severely restricts the structure of a countable SFT, forcing its subpattern
poset to have the descending chain property.

While the Cantor-Bendixson ranks of one-dimensional sofic shifts and
two-dimensional countable SFTs have now been completely characterized (as
the finite ordinals in the first case, and those of the form λ+3 for computable
ordinals λ in the second), the exact structures of their derivatives have not.
In particular, it would be interesting to understand which SFTs and sofic
shifts are ‘integrable’ within the classes of SFTs or sofic shifts, in the sense of

143

arising as the Cantor-Bendixson derivative of another subshift in the class,
and which subshifts have SFT derivatives. For example, we claim that the
one-dimensional countable SFT X = B−1(0∗1∗2∗) is not integrable within
the class of sofic shifts. For this, suppose on the contrary that Y ⊂ AZ is a
sofic shift with Y (1) = X. For all m ∈ N, the subshift Y necessarily contains
a pattern a0`1m2nb for some (a, b) 6= (0, 2) and arbitrarily large `, n ∈ N.
But since Y is sofic, for some (a, b) 6= (0, 2) and `, n ∈ N there exist infinitely
many m as above, and then both a0`1 and 12nb are patterns of the derivative
Y (1) = X, a contradiction (in fact, X is not integrable at all, by a slightly
extended argument). An analogous argument shows that the sofic shift
B−1(0∗10∗20∗) is not integrable within the class of sofic shifts either, even
though it has the integral B−1({0k10`10m20n | k, `,m, n ∈ N, ` ≥ m}). Of
course, it would also be interesting to know what happens in the case of an
uncountable sofic shift.

The bounded signal property and its relatives are interesting also in the
two-dimensional uncountable case: We can construct an uncountable SFT
X which has the bounded sofic signal property (the projective sybdynamics
is contained in a countable sofic shift) in all rational directions except the
horizontal one, and even the horizontal projective subdynamics is countable.
This SFT is like a transposed version of Example 3.4, but one edge of the
infinite cone is not a straight line, but instead a discrete version of a parabola.
Furthermore, the signal inside the cone always bounces in the same way, but
every bounce is independently given an label from {0, 1}. Figure 8.1 shows
an example configuration of X.

0

0

1

0

1

Figure 8.1: An example configuration of the uncountable X which has the
bounded sofic signal property in all rational directions except one.

For any direction ~d ∈ Z2 except the horizontal one, there is a bound
on the number of gray triangles and labeled tiles that a line in direction
~d can pass in a configuration of X, and thus the ~d-projective subdynamics
of X is contained in a countable sofic shift. It is also easy to see that the

144

rows of X form a countable set, since all configurations of X are translates
of each other except for the labels, and each row contains at most one
labeled tile. Furthermore, the image of X under the symbol map f : X →
{0, 1}Z2

that sends each tile with label 1 to 1 and everything else to 0 is
an uncountable sofic shift with the bounded sofic signal property in every
direction. However, we do not see how to construct an uncountable SFT
which has the bounded signal property or bounded sofic signal property in
every direction. In fact we conjecture that this cannot be done.

Conjecture 8.1. An uncountable SFT cannot have the bounded signal
property, or even the bounded sofic signal property, in every rational direc-
tion.

With Theorem 4.26, we have obtained a pretty complete understand-
ing of the ‘high-level structure’ of the subpattern posets of countable SFTs.
Conversely, it would be interesting to study the elements of height at most
3 in these posets, and in particular, obtain a characterization for the finite
posets that are exactly realizable as subpattern posets. For example, we
know that the two-element poset {0, 1} with 0 < 1 cannot be realized as the
subpattern poset of a countable SFT, but it is of course order-isomorphic
to the subpattern poset of the sunny side up subshift, which is a countably
covered sofic shift. This direction of research has already been initiated in
the preprint [BJ13], which studies the geometric structure of configurations
of low rank in countable SFTs and countable subshifts in general. In addi-
tion, even though Theorem 4.26 shows that infinite descending chains can
be found in the subpattern posets of countable SFTs, [BJ13] provides some
restrictions on the structure of these chains in relation to the whole SFT;
namely, the set of configurations that lie below all elements of the chain in
the subpattern order must contain a configuration of height at least 2. In-
tuitively, this means that complicated structures in subpattern posets need
some additional ‘support’ in the form of auxiliary configurations of bounded
height.

8.2 Subshifts and Logical Quantification

In Chapter 5, we studied classes of two-dimensional subshifts defined by
monadic second-order logic, focusing on the natural class of u-MSO formulas.
We provided a complete characterization of the class of subshifts definable
by u-MSO formulas, and for all the (finitely many) levels of the associated
quantifier alternation hierarchy, which correspond to well-known classes of
subshifts. More explicitly, it was already known from the results of [JT13]
that the class Σ̄0 = Π̄0 = Π̄1 corresponds exactly to the threshold counting
shifts, while Σ̄1 coincides with the class of sofic shifts. We showed that for

145

all n ≥ 2, the class Π̄n contains exactly the Π0
1 subshifts, and in particular,

the whole hierarchy collapses to Π̄2. The proof of this fact was an intricate
construction of a Π̄2 formula implementing an arbitrary Π0

1 subshift. We
also extended this construction to prove the analogous result for the larger
classes Π̄n[Π0

k] of generalized u-MSO formulas: the class Π̄n[Π0
k] coincides

with Π0
k+1 for all k ≥ 1 and n ≥ 2. Since every extended MSO formula can be

mechanically translated into an equivalent standard MSO formula, provided
that its auxiliary subshifts are MSO-definable, we obtained as a corollary
that all arithmetical (Π0

k for some k ≥ 0) subshifts are MSO-definable.

Having proved that the extended u-MSO hierarchies are finite, we moved
on to study their lower levels. Even though the equality Π̄1 = Π̄0 holds
for ordinary u-MSO formulas, it is no longer true in the extended case:
when quantifying universally over the configurations of a nontrivial subshift,
the contents of arbitrarily distant coordinates may be strongly correlated.
We introduced the classes BΣ0

k of Σ0
k-bounded subshifts for k ≥ 0, which

are defined by a Σ0
k set of forbidden patterns with bounded domain size

(but not necessarily bounded diameter). The geometric properties of Σ0
k-

bounded subshifts are interesting: each of the classes BΣ0
k properly contains

the SFTs, but is incomparable with the class of sofic shifts. It turned out
that universal quantification over arithmetical subshifts gives rise to the Σ0

k-
bounded classes. More precisely, we showed in Theorem 5.17 that Π̄1[Π0

k] =
BΣ0

k+1 holds for all k ≥ 1. As for the class Σ̄2[Π0
k], its relation to Π̄1[Π0

k]
is exactly the same as that of Σ̄2 to Π̄1, that is, its closure under images of
block maps.

The class of Σ0
k-bounded subshifts, and more generally, the class of sub-

shifts defined by forbidden patterns of bounded-cardinality domains, is an
interesting object of study in its own right. In Example 5.19, we presented
a simple binary sofic shift which does not lie in the latter class, while in Ex-
ample 5.16, we proved that the nonsofic mirror subshift Xmirror does. This
shows that the geometry of the class is, in some sense, very limited, even
though it contains uncountably many subshifts, and the computational com-
plexity of the subshifts it contains is unbounded. It is also easy to see that
the class contain every SFT, and every sparse subshift. We showed that the
classes Σ̄2[Π0

k] on the next level of the hierarchy are obtained by taking the
closures of the corresponding classes Π̄1[Π0

k] under block map images. The
sofic shifts are contained in all these classes, and Example 5.21 shows that
the relationship between sofic shifts and Σ0

k-bounded subshifts is anything
but simple.

Moreover, in this dissertation we have only considered classes of u-MSO
formulas. The reason for this is mainly that general MSO formulas are less
well-behaved from the viewpoint of multidimensional symbolic dynamics,
in the sense that they do not always define subshifts. For example, if we
take any closed formula φ over an alphabet A such that Xφ ⊂ AZ2

is a

146

nontrivial subshift, then ¬φ defines the set AZ2 \Xφ, or the complement of
Xφ, which is not topologically closed. In particular, we have not presented a
characterization for MSO-definable subshifts in this dissertation. It is very
likely that MSO-definable are exactly those whose language satisfies some
suitable (hyper)computability condition, such as being hyperarithmetical or
analytical (a subset of N is analytical, if it can be defined by a second-order
logical formula), but we leave this problem open for now.

Question 8.2. Is there a simple characterization for the class of MSO-
definable subshifts?

The following chapter continued the theme of constructing subshifts us-
ing logical operations, but with a more concrete and combinatorial approach.
We studied the quantifier extension operations on two-dimensional subshifts,
which can be seen as ‘simplified’ universal and existential quantifiers, and
proved some of their basic properties. We showed that the classes of SFTs
and one-dimensional sofic shifts are closed under the universal extension, and
that the class of general sofic shifts is closed under the existential extension.
However, as may have been be expected from the results of Chapter 5, the
universal extension of a multidimensional sofic shift may not be sofic itself.
We proved this first by a computation-theoretical argument using a Π0

1-
complete extension, and then in Theorem 6.9 by a geometric construction
using an arbitrary infinite subshift. As with most of the proofs of non-
soficness in this dissertation, the crucial counting argument was given by
Lemma 3.15.

In the final section of the latter Chapter 6, we discussed the effect of
determinism on the universal extension. It turned out that if two subshifts
X,Y ⊂ AZ2

are both deterministic, then so is their extension A(X,Y) ⊂
ÂZ2

; however, we do not know whether Theorem 6.9 can be extended to
the case of deterministic sofic shifts, since the existence of deterministic Π0

1

subshifts which are not sofic is still an open problem.

Question 8.3. Let X,Y ⊂ AZ2
be downward deterministic sofic shifts, and

suppose that the language B(Y) is computable. Is the universal extension
A(X,Y) necessarily a sofic shift?

In Theorem 6.9, we fixed the infinite subshift Y , and then meticulously
constructed a sofic shift X such that the extension A(X,Y) is not sofic. This
raises the natural dual problem in which, given a fixed sofic shift X, we try
to find another subshift Y that yields a nonsofic extension.

Question 8.4. For a given sofic shift X ⊂ AZ2
, does there exist a (sofic or

recursive) subshift Y ⊂ AZd such that the universal extension A(X,Y) is
not sofic?

147

By Proposition 6.2, the answer is negative in both cases if X is an SFT.
Corollary 6.7 and Theorem 6.9 show that there exist some particular and
quite intricate sofic shifts X for which the answer is positive in both cases.

Finally, recall from Proposition 6.4 that the existential extension of ev-
ery one-dimensional SFT by another SFT is a sofic shift, but Example 6.3
showed that it may not be an SFT, even when extending by a full shift.
This raises the following question.

Question 8.5. Let X,Y ⊂ AZ be SFTs. When is the existential extension
E(X,Y) an SFT?

8.3 Plane-Walking Automata and the Use of Arith-
metical Programs

In Chapter 7, we introduced another way of defining multidimensional sub-
shifts: plane-walking finite automata with multiple heads. As with MSO
logic, this model also gives rise to a natural hierarchy of subshift classes,
obtained by increasing the number of heads. We showed that the classes
PWd

1 of subshifts recognized by one-headed automata lie between the d-
dimensional SFTs and sofic shifts, and in the one-dimensional case we even
proved PW1

1 = sofic1. In the case of one and two heads, we also showed
that there exists a ‘critical dimension’ (2 in the case of one head, and 3
in the case of two) in which no sparse subshifts can be recognized. Using
the terminology of [DM02], this is due to the inability of these automata
to search the world, that is, visit every coordinate of a uniform or sparse
configuration from a single initial position. In [DM02] it was proved that
an automaton with at most 2 immobile pebbles cannot search the world on
a uniform configuration, although it can search an infinite quarter plane,
using a technique similar to that in the proof of Proposition 7.16. However,
even if we restrict our attention to sparse subshifts, two heads are still vastly
more powerful than one, especially in the computational sense: the sparse
part of every subshift in PWd

1 has a decidable language, while PW1
2 contains

a Π0
1-complete sparse subshift. We also showed that, like each Σ0

k-bounded
class BΣ0

k, the classes PWd
2 are incomparable with sofic shifts. Finally, we

proved the analogue of Theorem 5.11 for plane-walking automata: in every
dimension d, the hierarchy (PWd

k)k≥1 collapses to the third level PWd
3, since

three-headed automata can recognize any Π0
1 subshift.

The basic comparisons obtained in this chapter are summarized in Fig-
ure 8.2. A major missing link in our classification is the separation of PWd

2

and PWd
3 in dimensions d ≤ 2. We leave this problem unsolved, but state

the following conjecture.

148

d = 1 SFT1

PW1
1 = sofic1

PW1
2

Π0
1 = PW1

3

= PW1
4 = · · ·

6=

6=

?

d = 2 SFT2

PW2
1

sofic2 PW2
2

Π0
1 = PW1

3

= PW1
4 = · · ·

6=

6=6=

6= ?

d ≥ 3 SFTd

PWd
1

soficd PWd
2

Π0
1 = PW1

3

= PW1
4 = · · ·

6=

6=6=

6= 6=

Figure 8.2: A comparison of the classes of subshifts studied in Chapter 7
in dimensions d = 1, d = 2 and d ≥ 3. The solid, dashed and dotted lines
denote inclusion, incomparability and an unknown relation, respectively, as
we only know PWd

2 6⊂ soficd for d = 2.

Conjecture 8.6. For d ≤ 2, there exists a sparse Π0
1 subshift which is not

in PWd
2. In particular we have PWd

2 (PWd
3, and the classes sofic2 and

PW2
2 are incomparable.

Recall from Construction 3.12, and its application to the proof of Propo-
sition 7.17, that two heads are enough for a plane-walking automaton to
simulate any arithmetical program on a sparse subshift. It is known that
two-counter machines (which are basically equivalent to arithmetical pro-
grams by [Sch72]) cannot compute all recursive functions, and in particular
cannot recognize the set of prime numbers [IT93]. A natural candidate for
realizing Conjecture 8.6 in the one-dimensional case would thus be the sub-
shift X ⊂ X1

2 where the distance of the two 1’s cannot be a prime number.
However, instead of simply simulating an arithmetical program, the au-

tomaton may use the position of the rightmost 1 in the middle of the com-
putation, and a priori compute something an ordinary arithmetical program
cannot. In some sense it thus simulates an arithmetical program that re-
members its input. Conversely, we also believe that a run of a 2PWDFA on
a 2-sparse subshift can be simulated by such a machine. All currently known
proof techniques for limitations of two-counter machines break down if one
is allowed to remember the input value, which raises the following question.

Question 8.7. Can arithmetical programs (or two-counter machines) that
remember their input (for example, in the sense that they can check whether
the current counter value is greater than the input) recognize all recursively
enumerable sets? In particular, can they recognize the set of prime numbers?

149

Other tools for separating classes of multihead automata are diagonal-
ization, where an automaton with much more than k heads can analyze the
behavior of one with k heads, and choose to act differently from it on some
inputs, and computability arguments, where algorithms of certain complex-
ity can only be computed by machines with enough heads. These techniques
have been succesfully applied in the past to classes of finite structures de-
fined by different types of automata, but they do not extend to the infinite
case, or at least d-dimensional lattices. In particular, they cannot separate
PWd

2 from PWd
3, since both are capable of universal computation.

Finally, we remark that the method of simulating arithmetical programs
with finite automata, Construction 3.12, was also used in Chapter 4 to prove
Theorem 4.14 and Corollary 4.18, both of which give strict upper bounds for
the possible Cantor-Bendixson ranks of certain countable SFTs; the former
characterizes the set of ranks of countable SFTs, while the latter gives the
minimal rank of a countable SFT with an uncomputable configuration. The
corresponding lower bounds have been proved in the preprint [BJ13], and
close upper bounds had previously been obtained in [BDJ08] and [ST13],
first using Turing machines and then counter machines. The use of arith-
metical programs in Construction 3.12 seems to be close to optimal in the
sense of minimizing the Cantor-Bendixson rank and the size of the sub-
pattern poset of the resulting countable SFT, while being able to simulate
arbitrarily complex computation. We believe that it can be applied to other
problems of a similar nature, that is, to construct in some precise sense the
simplest possible SFT that satisfies a given condition, like containing an
uncomputable configuration.

8.4 Collapsing Hierarchies

The main results of Chapter 5 and Chapter 7 prove the collapse of certain
hierarchies of multidimensional subshifts: one definable by u-MSO formulas
in the former case, and those recognized by multi-headed finite automata in
the latter. The results show that in this respect, subshifts are not at all sim-
ilar to languages of finite pictures, since in the latter context, all analogous
hierarchies tend to be infinite, and usually even strict. The crucial difference
here is infinite space: As mentioned above, the main general tools for prov-
ing the infinity of hierarchies of multi-headed automata are diagonalization
and computability arguments, and they can be used also in the context of
logical formulas. However, the reason that diagonalization works is that it
is possible for an automaton to exhaustively simulate another, which is no
longer true in the presence of infinite resources; this is of course the intuitive
message of the Halting Problem. Computability arguments also break down
when all sufficiently high classes of the hierarchy are capable of universal

150

computation. However, they can still be used to separate the lower levels of
the hierarchies, as we did with PWd

1 and PWd
2.

On the other hand, the MSO hierarchy is known to collapse to the second
level, the analogue of Σ̄2, in the case of languages of finite words [Büc60].
However, the aforementioned class is exactly that of regular languages, which
is the prototypical example of a nontrivial but computationally simple family
of formal languages. In view of this fact, it could be said that the collapse
of the hierarchies in the case of finite words and infinite multidimensional
configurations happens for very different reasons: in the former case, the
geometry of the space is so simple that MSO logic is unable to make much
use of it, whereas infinite configurations provide so great a freedom that all
possible logical structures can be simulated ‘in software’ already with three
quantifier alternations.

8.5 Beyond Integer Lattices

In this dissertation, we have studied subshifts defined on the d-dimensional
lattices Zd, and mostly the case d = 2. However, as mentioned briefly
in the beginning of Chapter 7, the theory of multidimensional symbolic
dynamics can be generalized to cover more general classes of groups. We
repeat the definition for convenience: for a group G, a G-subshift over an
alphabet A is a subset of AG which is closed in the product topology, and
invariant under the translation action of G. The elements of AG can be
visualized as labelings of the Cayley graph of G with labels drawn from the
alphabet A. This generalization is not new: after Robinson presented his
simplified proof for the undecidability of the tiling problem on the plane
in the 1971 paper [Rob71], he proved a weaker version of the result on
the hyperbolic plane in [Rob78]. The undecidability of the unrestricted
tiling problem on the hyperbolic plane was finally proved independently
in [Mar08] and [Kar08]. The tiling problem has also been considered in
the context of more exotic groups; see for example [AK13]. A very fruitful
branch of symbolic dynamics on arbitrary groups considers cellular automata
on the full shifts AG. See [CSC09] for a comprehensive presentation of
the topic. For example, the important class of amenable groups has been
characterized in terms of the surjectivity and injectivety properties of cellular
automata on the corresponding full group shifts [CSMS99, Bar10] (presented
as Corollary 5.12.2 in [CSC09]).

In the recent preprint [ABS14], a class of G-subshifts called G-effective
subshifts was defined for a finitely generated group G. Intuitively, a subshift
X ⊂ AG is G-effective if there exists a Turing machine that walks on the
Cayley graph of G along the finitely many generators, and recognizes a set of
forbidden patterns for X. The similarity with the concept of plane-walking

151

automata is immediate. An article on the generalization of plane-walking
automata to subshifts on arbitrary finitely generated groups, tentatively
named group-walking automata, is currently in the making by the author and
Ville Salo. Some of the results from Chapter 7 carry over to group-walking
automata as such, but there are also some major differencies. First, if G is
a torsion group (meaning that every element generates a finite subgroup),
then no number of heads is enough to recognize a nontrivial sparse subshift.
This surprising result is due to the fact that the automaton will eventually
walk in one of finitely many ‘directions’, and every direction in G leads
to a finite loop, so it is impossible for the automaton to search the world,
to use the terminology of [DM02]. Second, if the group G is not torsion,
but has an undecidable word problem, then we can only prove that the
hierarcy of automata collapses to the fourth level, instead of the third. The
proof is similar to that of Theorem 7.23, except that the fourth head is
used for probing the geometry of the group, which cannot be deduced by
the simulated arithmetical program. More exotic groups may give rise to
even stranger phenomena; for example, we do not currently know whether
the hierarchy given by the number of heads collapses on any infinite torsion
group.

152

Bibliography

[ABS14] Nathalie Aubrun, Sebastián Barbieri, and Mathieu Sablik. A
notion of effectiveness for subshifts on finitely generated groups.
ArXiv e-prints, December 2014.

[AK13] Nathalie Aubrun and Jarkko Kari. Tiling problems on
Baumslag-Solitar groups. In Turlough Neary and Matthew
Cook, editors, Proceedings Machines, Computations and Uni-
versality 2013, volume 128 of Electronic Proceedings of Theo-
retical Computer Science, page 35–46. Springer, 2013.

[AS13] Nathalie Aubrun and Mathieu Sablik. Simulation of effective
subshifts by two-dimensional subshifts of finite type. Acta Appl.
Math., 126(1):35–63, August 2013.

[Bar10] Laurent Bartholdi. Gardens of Eden and amenability on cellular
automata. J. Eur. Math. Soc. (JEMS), 12(1):241–248, 2010.

[Bax99] R. J. Baxter. Planar lattice gases with nearest-neighbor exclu-
sion. Ann. Comb., 3(2-4):191–203, 1999. On combinatorics and
statistical mechanics.

[BC08] Miko laj Bojańczyk and Thomas Colcombet. Tree-walking au-
tomata do not recognize all regular languages. SIAM J. Com-
put., 38(2):658–701, 2008.

[BDJ08] Alexis Ballier, Bruno Durand, and Emmanuel Jeandel. Struc-
tural aspects of tilings. In Pascal Weil Susanne Albers, editor,
Proceedings of the 25th Annual Symposium on the Theoretical
Aspects of Computer Science, pages 61–72, Bordeaux, France,
February 2008. IBFI Schloss Dagstuhl. 11 pages.

[Ber66] Robert Berger. The undecidability of the domino problem.
Mem. Amer. Math. Soc. No., 66, 1966. 72 pages.

[BH67] Manuel Blum and Carl Hewitt. Automata on a 2-dimensional
tape. In Switching and Automata Theory, 1967. SWAT 1967.

153

IEEE Conference Record of the Eighth Annual Symposium on,
pages 155 –160, oct. 1967.

[BJ13] Alexis Ballier and Emmanuel Jeandel. Structuring multi-
dimensional subshifts. ArXiv e-prints, September 2013.

[BL97] Mike Boyle and Douglas Lind. Expansive subdynamics, 1997.

[Boj08] Miko laj Bojańczyk. Tree-walking automata. In Carlos Mart́ın-
Vide, Friedrich Otto, and Henning Fernau, editors, LATA, vol-
ume 5196 of Lecture Notes in Computer Science, pages 1–2.
Springer, 2008.

[BPS10] Mike Boyle, Ronnie Pavlov, and Michael Schraudner. Multi-
dimensional sofic shifts without separation and their factors.
Trans. Amer. Math. Soc., 362(9):4617–4653, 2010.

[BSSS06] Miko laj Bojańczyk, Mathias Samuelides, Thomas Schwentick,
and Luc Segoufin. Expressive power of pebble automata. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, Automata, Languages and Programming, vol-
ume 4051 of Lecture Notes in Computer Science, pages 157–168.
Springer Berlin Heidelberg, 2006.

[Büc60] J Richard Büchi. Weak second-order arithmetic and finite au-
tomata. Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

[CCS+86] Douglas Cenzer, Peter Clote, Rick L. Smith, Robert I. Soare,
and Stanley S. Wainer. Members of countable Π0

1 classes. Ann.
Pure Appl. Logic, 31(2-3):145–163, 1986. Special issue: second
Southeast Asian logic conference (Bangkok, 1984).

[CDJS93] Douglas Cenzer, Rodney Downey, Carl Jockusch, and
Richard A. Shore. Countable thin Π0

1 classes. Ann. Pure Appl.
Logic, 59(2):79–139, 1993.

[CDTW12] Douglas Cenzer, Ali Dashti, Ferit Toska, and Sebastian
Wyman. Computability of countable subshifts in one dimen-
sion. Theory of Computing Systems, 51(3):352–371, 2012.

[CMNW02] Jorge Campello de Souza, Brian H. Marcus, Richard New, and
Bruce A. Wilson. Constrained systems with unconstrained po-
sitions. IEEE Trans. Inform. Theory, 48(4):866–879, 2002.

[CR98] D. Cenzer and J. B. Remmel. Π0
1 classes in mathematics. In

Handbook of recursive mathematics, Vol. 2, volume 139 of Stud.
Logic Found. Math., pages 623–821. North-Holland, Amster-
dam, 1998.

154

[CSC09] Tullio Ceccherini-Silberstein and Michel Coornaert. Cellular
Automata and Groups. Springer, 2009.

[CSMS99] Tullio G. Ceccherini-Silberstein, Antonio Machi, and Fabio
Scarabotti. Amenable groups and cellular automata. Annales
de l’institut Fourier, 49(2):673–685, 1999.

[Cul96] Karel Culik, II. An aperiodic set of 13 wang tiles. Discrete
Mathematics, 160(1–3):245 – 251, 1996.

[Des06] Angela Desai. Subsystem entropy for Zd sofic shifts. Indag.
Math. (N.S.), 17(3):353–359, 2006.

[DFW13] A. Dennunzio, E. Formenti, and M. Weiss. Multidimensional
Cellular Automata: closing property, quasi-expansivity and
(un)decidability issues. submitted to Theoretical Computer Sci-
ence, 2013.

[DM02] Marianne Delorme and Jacques Mazoyer. Pebble automata.
Figures families recognition and universality. Fund. Inform.,
52(1-3):81–132, 2002. Special issue on cellular automata.

[DRS10] Bruno Durand, Andrei Romashchenko, and Alexander Shen.
Effective closed subshifts in 1D can be implemented in 2D. In
Fields of logic and computation, volume 6300 of Lecture Notes
in Comput. Sci., pages 208–226. Springer, Berlin, 2010.

[DRS12] Bruno Durand, Andrei Romashchenko, and Alexander Shen.
Fixed-point tile sets and their applications. J. Comput. System
Sci., 78(3):731–764, 2012.

[Dur99] Bruno Durand. Tilings and quasiperiodicity. Theoret. Comput.
Sci., 221(1-2):61–75, 1999. ICALP ’97 (Bologna).

[FW65] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic
functions. Proc. Amer. Math. Soc., 16:109–114, 1965.

[Gui12] Pierre Guillon. Projective subdynamics and universal shifts. In
Automata 2011—17th International Workshop on Cellular Au-
tomata and Discrete Complex Systems, Discrete Math. Theor.
Comput. Sci. Proc., AP, pages 123–133. Assoc. Discrete Math.
Theor. Comput. Sci., Nancy, 2012.

[GVR97] Dora Giammarresi, Foscari Venezia, and Antonio Restivo. Two-
dimensional languages, 1997.

155

[Had98] Jacques Hadamard. Les surfaces à courbures opposées et leurs
lignes géodésiques. Journal de Mathématiques Pures et ap-
pliquées, 4:27–74, 1898.

[Hed69] Gustav A. Hedlund. Endomorphisms and automorphisms of
the shift dynamical system. Math. Systems Theory, 3:320–375,
1969.

[HKC92] Lyman P. Hurd, Jarkko Kari, and Karel Culik. The topological
entropy of cellular automata is uncomputable. Ergodic Theory
Dynam. Systems, 12(2):255–265, 1992.

[HKM09] Markus Holzer, Martin Kutrib, and Andreas Malcher. Multi-
Head Finite Automata: Characterizations, Concepts and Open
Problems. ArXiv e-prints, June 2009.

[HM10] Michael Hochman and Tom Meyerovitch. A characterization of
the entropies of multidimensional shifts of finite type. Ann. of
Math. (2), 171(3):2011–2038, 2010.

[Hoc09] Michael Hochman. On the dynamics and recursive properties of
multidimensional symbolic systems. Invent. Math., 176(1):131–
167, 2009.

[HY75] Pei Hsia and Raymond T. Yeh. Marker automata. Information
Sciences, 8(1):71 – 88, 1975.

[IT91] Katsushi Inoue and Itsuo Takanami. A survey of two-
dimensional automata theory. Information Sciences, 55(1–3):99
– 121, 1991.

[IT93] Oscar H. Ibarra and Nicholas Q. Trân. A note on simple pro-
grams with two variables. Theor. Comput. Sci., 112(2):391–397,
May 1993.

[JM69] C. G. Jockusch, Jr. and T. G. McLaughlin. Countable retracing
functions and Π0

2 predicates. Pacific J. Math., 30:67–93, 1969.

[JR15] Emmanuel Jeandel and Michael Rao. Personal communication,
2015.

[JT09] Emmanuel Jeandel and Guillaume Theyssier. Subshifts, lan-
guages and logic. In Developments in language theory, volume
5583 of Lecture Notes in Comput. Sci., pages 288–299. Springer,
Berlin, 2009.

[JT13] Emmanuel Jeandel and Guillaume Theyssier. Subshifts as mod-
els for MSO logic. Inform. and Comput., 225:1–15, 2013.

156

[JV11] Emmanuel Jeandel and Pascal Vanier. Π0
1 sets and tilings. In

Theory and Applications of Models of Computation (TAMC),
volume 6648 of Lecture Notes in Computer Science, pages 230–
239, 2011.

[Kar96] Jarkko Kari. A small aperiodic set of Wang tiles. Discrete
Math., 160(1-3):259–264, 1996.

[Kar08] Jarkko Kari. On the undecidability of the tiling problem. In Vil-
iam Geffert, Juhani Karhumäki, Alberto Bertoni, Bart Preneel,
Pavol Návrat, and Mária Bieliková, editors, SOFSEM 2008:
Theory and Practice of Computer Science, volume 4910 of Lec-
ture Notes in Computer Science, pages 74–82. Springer Berlin
Heidelberg, 2008.

[Kit98] Bruce P. Kitchens. Symbolic dynamics – One-sided, two-sided
and countable state Markov shifts. Universitext. Springer-
Verlag, Berlin, 1998.

[KM01] Jarkko Kari and Cristopher Moore. New results on alternating
and non-deterministic two-dimensional finite-state automata.
In STACS 2001 (Dresden), volume 2010 of Lecture Notes in
Comput. Sci., pages 396–406. Springer, Berlin, 2001.

[KM13] Steve Kass and Kathleen Madden. A sufficient condition for
non-soficness of higher-dimensional subshifts. Proc. Amer.
Math. Soc., 141(11):3803–3816, 2013.

[KS11] Jarkko Kari and Ville Salo. A survey on picture-walking
automata. In Werner Kuich and George Rahonis, editors,
Algebraic Foundations in Computer Science, pages 183–213.
Springer-Verlag, Berlin, Heidelberg, 2011.

[KSW60] G. Kreisel, J. Shoenfield, and Hao Wang. Number theoretic con-
cepts and recursive well-orderings. Arch. Math. Logik Grundla-
genforsch., 5:42–64, 1960.

[Kůr03] Petr Kůrka. Topological and symbolic dynamics, volume 11 of
Cours Spécialisés [Specialized Courses]. Société Mathématique
de France, Paris, 2003.

[Lin84] Douglas A. Lind. The entropies of topological Markov shifts and
a related class of algebraic integers. Ergodic Theory Dynam.
Systems, 4(2):283–300, 1984.

157

[LM95] Douglas Lind and Brian Marcus. An introduction to symbolic
dynamics and coding. Cambridge University Press, Cambridge,
1995.

[LMP13] Erez Louidor, Brian Marcus, and Ronnie Pavlov. Independence
entropy of Zd-shift spaces. Acta Applicandae Mathematicae,
pages 1–21, 2013.

[LN99] Leonid Libkin and Juha Nurmonen. Counting and locality
over finite structures: a survey. In Generalized quantifiers and
computation (Aix-en-Provence, 1997), volume 1754 of Lecture
Notes in Comput. Sci., pages 18–50. Springer, Berlin, 1999.

[Mar08] Maurice Margenstern. The domino problem of the hyper-
bolic plane is undecidable. Theoretical Computer Science,
407(1–3):29 – 84, 2008.

[MH38] Marston Morse and Gustav A. Hedlund. Symbolic dynamics.
American Journal of Mathematics, 60(4):pp. 815–866, 1938.

[MH40] Marston Morse and Gustav A. Hedlund. Symbolic dynamics
ii. sturmian trajectories. American Journal of Mathematics,
62(1):pp. 1–42, 1940.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines.
Prentice-Hall Inc., Englewood Cliffs, N.J., 1967. Prentice-Hall
Series in Automatic Computation.

[Mor96] Kenichi Morita. Universality of a reversible two-counter ma-
chine. Theoretical Computer Science, 1996.

[Moz89] Shahar Mozes. Tilings, substitution systems and dynamical sys-
tems generated by them. J. Analyse Math., 53:139–186, 1989.

[MP11] Tom Meyerovitch and Ronnie Pavlov. On independence and en-
tropy for high-dimensional isotropic subshifts. ArXiv e-prints,
December 2011.

[MS08] Oliver Matz and Nicole Schweikardt. Expressive power of
monadic logics on words, trees, pictures, and graphs. In Jörg
Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Au-
tomata, volume 2 of Texts in Logic and Games, pages 531–552.
Amsterdam University Press, 2008.

[MT97] Oliver Matz and Wolfgang Thomas. The monadic quantifier
alternation hierarchy over graphs is infinite. In In Twelfth An-
nual IEEE Symposium on Logic in Computer Science, pages
236–244. IEEE, 1997.

158

[Odi89] Piergiorgio Odifreddi. Classical recursion theory, volume 125 of
Studies in Logic and the Foundations of Mathematics. North-
Holland Publishing Co., Amsterdam, 1989. The theory of func-
tions and sets of natural numbers, With a foreword by G. E.
Sacks.

[OP15] Nic Ormes and Ronnie Pavlov. Extender sets and multidi-
mensional subshifts. Ergodic Theory and Dynamical Systems,
FirstView:1–16, 1 2015.

[Pav12] Ronnie Pavlov. Approximating the hard square entropy con-
stant with probabilistic methods. Ann. Probab., 40(6):2362–
2399, 2012.

[Pav13] Ronnie Pavlov. A class of nonsofic multidimensional shift
spaces. Proc. Amer. Math. Soc., 141(3):987–996, 2013.

[PCM06] T. Lei Poo, Panu Chaichanavong, and Brian H. Marcus. B.h.:
Trade-off functions for constrained systems with unconstrained
positions. IEEE Trans. Inf. Theory, pages 1425–1449, 2006.

[PS14] Ronnie Pavlov and Michael Schraudner. Classification of sofic
projective subdynamics of multidimensional shifts of finite type.
To appear in Transactions of the American Mathematical Soci-
ety. Published online November 4, 2014, 2014.

[Rob71] Raphael M. Robinson. Undecidability and nonperiodicity for
tilings of the plane. Invent. Math., 12:177–209, 1971.

[Rob78] Raphael M. Robinson. Undecidable tiling problems in the hy-
perbolic plane. Inventiones mathematicae, 44(3):259–264, 1978.

[Ros87] A. Rosenthal. Strictly ergodic models and topological mixing
for Z2-action. Israel Journal of Mathematics, 60(1):31–38, 1987.

[Sac90] G. E. Sacks. Higher recursion theory. Perspectives in mathe-
matical logic. Springer-Verlag, 1990.

[Sch72] Rich Schroeppel. A two counter machine cannot calculate 2N ,
1972. Massachusetts Institute of Technology A.I. Memo 257.

[Sch98] Nicole Schweikardt. The monadic quantifier alternation hierar-
chy over grids and pictures. In Computer science logic (Aarhus,
1997), volume 1414 of Lecture Notes in Comput. Sci., pages
441–460. Springer, Berlin, 1998.

159

[ST12a] Ville Salo and Ilkka Törmä. Computational aspects of cellular
automata on countable sofic shifts. Mathematical Foundations
of Computer Science 2012, pages 777–788, 2012.

[ST12b] Ville Salo and Ilkka Törmä. On Derivatives and Subpattern
Orders of Countable Subshifts. ArXiv e-prints, August 2012.

[ST13] Ville Salo and Ilkka Törmä. Constructions with countable sub-
shifts of finite type. Fundamenta Informaticae, 126(2-3):263–
300, 2013.

[ST14] Ville Salo and Ilkka Törmä. Plane-Walking Automata. ArXiv
e-prints, August 2014. Presented in a shortened form at AU-
TOMATA 2014.

[Tör14a] Ilkka Törmä. Quantifier Extensions of Multidimensional Sofic
Shifts. ArXiv e-prints, January 2014. To appear in Proceedings
of the AMS.

[Tör14b] Ilkka Törmä. Subshifts, MSO logic, and collapsing hierarchies.
In Josep Diaz, Ivan Lanese, and Davide Sangiorgi, editors, The-
oretical Computer Science, volume 8705 of Lecture Notes in
Computer Science, pages 111–122. Springer Berlin Heidelberg,
2014.

[Wan61] Hao Wang. Proving theorems by pattern recognition II. Bell
System Technical Journal, 40:1–42, 1961.

[Wei85] Benjamin Weiss. Strictly ergodic models for dynamical systems.
Bulletin (New Series) of the American Mathematical Society,
13(2):143–146, 10 1985.

160

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3237-4
ISSN 1239-1883

Ilkka Törm
ä

Ilkka Törm
ä

S
tructural and C

om
putational Existence Results for M

ultidim
ensional S

ubshifts

S
tructural and C

om
putational Existence Results for M

ultidim
ensional S

ubshifts

	Introduction
	Multidimensional Symbolic Dynamics
	Connections to Computability Theory
	The Structure of This Dissertation

	Definitions
	Multidimensional Symbolic Dynamics
	Some Discrete Geometry
	Partial Orders and Cantor-Bendixson Derivatives
	Computability and Logic
	A Few Words on the Figures and Proofs

	Preliminary Results and Constructions
	Determinism, Bounded Signal Property, and Countability
	Cantor-Bendixson Derivatives of Subshifts
	Simulation of Counter Machines in Countable SFTs
	Multidimensional Sofic Shifts

	Structural Properties of Countable Two-Dimensional SFTs
	Introduction
	The One-Dimensional Case
	Cantor-Bendixson Ranks and Complexity of Derivatives
	Structure of Subpattern Posets
	Infinite Chains and Antichains
	Hyperarithmetical Subpattern Posets
	The Skeleton Layer
	The Hyperarithmetical Layer
	The Control Layer
	Further Results

	Subpattern Posets and The Bounded Signal Property

	Two-Dimensional Subshifts Defined by Logical Formulas
	Introduction
	Logical Formulas and Structures
	Hierarchies of MSO-Definable Subshifts
	The u-MSO Hierarchy
	Other C-u-MSO Hierarchies
	Lower Levels of C-u-MSO Hierarchies

	Quantifier Extensions of Two-Dimensional Subshifts
	Introduction
	The Quantifier Extensions
	Universal Extensions of Sofic Shifts
	Quantifier Extensions of Deterministic Subshifts

	Multidimensional Subshifts Defined by Finite Automata
	Introduction
	Choosing the Machines
	Definitions
	One Head
	Two Heads
	Three Heads

	Conclusions
	The Structure of Subshifts
	Subshifts and Logical Quantification
	Plane-Walking Automata and the Use of Arithmetical Programs
	Collapsing Hierarchies
	Beyond Integer Lattices

