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ABSTRACT

Recent advances in magnetic recording systems, optical recording devices and

flash memory drives necessitate to study two-dimensional (2-D) coding tech-

niques for reliable storage/retrieval of information. Most channels in such

systems introduce errors in messages in response to certain data patterns,

and messages containing these patterns are more prone to errors than others.

For example, in a single-level cell flash memory channel, inter-cell interfer-

ence (ICI) is at its maximum when 101 patterns are programmed over adja-

cent cells in either horizontal or vertical directions. As another example, in

two-dimensional magnetic recording channels, 2-D isolated-bits patterns are

shown empirically to be the dominant error event, and during the read-back

process inter-symbol interference (ISI) and inter-track interference (ITI) arise

when these patterns are recorded over the magnetic medium. Shannon in his

seminal work, “A Mathematical Theory of Communications,” presented two

techniques for reliable transmission of messages over noisy channels, namely

error correction coding and constrained coding. In the first method, mes-

sages are protected via an error correction code (ECC) from random errors

which are independent of input data. The theory of ECCs is well studied,

and efficient code construction methods are developed for simple binary chan-

nels, additive white Gaussian noise (AWGN) channels and partial response

channels. On the other hand, constrained coding reduces the likelihood of

corruption by removing problematic patterns before transmission over data-

dependent channels. Prominent examples of constraints include a family of

binary one-dimensional (1-D) and 2-D (d, k)-run-length-limited (RLL) con-
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straints which improves resilience to ISI timing recovery and synchronization

for bandwidth limited partial response channels, where d and k represent the

minimum and maximum number of admissible zeros between two successive

ones in any direction of array. In principle, the ultimate coding approach for

such data-dependent channels is to design a set of sufficiently distinct error

correction codewords that also satisfy channel constraints. Designing chan-

nel codewords satisfying both ECC and channel constraints is important as

it would achieve the channel capacity. However, in practice this is difficult,

and we rely on sub-optimal methods such as forward concatenation method

(standard concatenation), reverse concatenation method (modified concatena-

tion), and combinations of these approaches. In this dissertation, we focus on

the problem of reliable transmission of binary messages over data-dependent

2-D communication channels. Our work is concerned with several challenges

in regard to the transmission of binary messages over data-dependent 2-D

channels.

1. Design of Two-Dimensional Magnetic Recording (TDMR) Detector and

Decoder: TDMR achieves high areal densities by reducing the size of a

bit comparable to the size of the magnetic grains resulting in 2-D ISI and

very high media noise. Therefore, it is critical to handle the media noise

along with the 2-D ISI detection. In this work, we tune the Generalized

Belief Propagation (GBP) algorithm to handle the media noise seen in

TDMR. We also provide an intuition into the nature of hard decisions

provided by the GBP algorithm.

2. Investigation into Harmful Patterns for TDMR channels: This work in-

vestigates into the Voronoi based media model to study the harmful

patterns over multi-track shingled recording systems. Through realistic

quasi micromagnetic simulations studies, we identify 2-D data patterns
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that contribute to high media noise. We look into the generic Voronoi

model and present our analysis on multi-track detection with constrained

coded data. We show that 2-D constraints imposed on input patterns

result in an order of magnitude improvement in the bit error rate for

TDMR systems.

3. Understanding of Constraint Gain for TDMR Channels: We study per-

formance gains of constrained codes in TDMR channels using the notion

of constraint gain. We consider Voronoi based TDMR channels with re-

alistic grain, bit, track and magnetic-head dimensions. Specifically, we

investigate the constraint gain for 2-D no-isolated-bits constraint over

Voronoi based TDMR channels. We focus on schemes that employ the

GBP algorithm for obtaining information rate estimates for TDMR chan-

nels.

4. Design of Novel Constrained Coding Methods: In this work, we present

a deliberate bit flipping (DBF) coding scheme for binary 2-D channels,

where specific patterns in channel inputs are the significant cause of er-

rors. The idea is to eliminate a constrained encoder and, instead, embed

a constraint into an error correction codeword that is arranged into a

2-D array by deliberately flipping the bits that violate the constraint.

The DBF method relies on the error correction capability of the code

being used so that it should be able to correct both deliberate errors

and channel errors. Therefore, it is crucial to flip minimum number of

bits in order not to overburden the error correction decoder. We devise

a constrained combinatorial formulation for minimizing the number of

flipped bits for a given set of harmful patterns. The GBP algorithm is

used to find an approximate solution for the problem.
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5. Devising Reduced Complexity Probabilistic Inference Methods: We

propose a reduced complexity GBP that propagates messages in Log-

Likelihood Ratio (LLR) domain. The key novelties of the proposed

LLR-GBP are: (i) reduced fixed point precision for messages instead of

computational complex floating point format, (ii) operations performed

in logarithm domain, thus eliminating the need for multiplications and

divisions, (iii) usage of message ratios that leads to simple hard decision

mechanisms.
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CHAPTER 1

Introduction

Machine learning techniques have gained attention recently in communica-

tions [2], signal processing [3], and error-correction coding [4] for predictive

inference tasks. Many of these inference problems can be reformulated as the

computation of marginal probabilities of a joint probability distribution over

the set of solutions of a constraint satisfaction problem (CSP) [5, 6]. A CSP

consists of a number of variables and a number of constraints, where each con-

straint specifies admissible values of a subset of variables. A solution to a CSP

is an assignment of variables satisfying all the constraints. Message passing

algorithms have been successfully used for solving hard CSPs [7]. Traditional

low-complexity approximate algorithms for solving these problems are based

on belief propagation (BP) [8, 9] which operate on factor graphs. BP, as an

algorithm to compute marginals over a factor graph, has its roots in the broad

class of Bayesian inference problems [10]. It is well known that the BP algo-

rithm gives exact inference only on cycle-free graphs (trees). It has been also

observed that in some applications BP surprisingly can provide close approx-

imations to exact marginals on loopy graphs. However, an understanding of

the behavior of BP in the latter case is far from complete. Moreover, it is

known that BP does not perform well on graphs which contain a large number

of short cycles. The validity of BP algorithm for computing marginal prob-

ability distributions relies on the assumption that messages sent over factor

graph into a node from its neighboring nodes are independent. In factor graphs

with cycles, failures of BP algorithm show the existence of correlation among
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messages. Statistical physicists attribute these correlations among messages

over a loopy factor graph (a factor graph with cycles) to the geometry of the

solution space of CSPs. The density of constraint is determined by α = M
N

and this parameter identifies satisfiability thresholds for the solution space of

CSPs [11–15]. As N → ∞, a CSP becomes less likely to be satisfiable as α

grows. We assume that there exists a SAT threshold αC for a given CSP. At

fixed α when N → ∞, a CSP is almost surely satisfiable if α < αC , and the

problem is almost surely un-satisfiable if α > αC . In statistical physics, there

is an assumption on existence of a critical value αd for constraint density, which

is smaller than the threshold density αC , at which the structure of the solution

space changes. Below the critical value, a CSP has exponentially many solu-

tions which form a big cluster and the Hamming distance of solutions are very

small [16]. However, close to the critical threshold, the solution space consists

of many smaller clusters and the solutions are far apart. Each cluster has

its local minimas such that there exist exponentially many widely separated

solutions. These local minimas can be traps for local search algorithms, like

BP algorithm.

The Survey Propagation (SP) algorithm is proposed to find satisfying solu-

tions for highly dense constraint density and large instances of random K-SAT

problems around the critical value. A random K-SAT refers to a satisfiability

problem with a set of variables and a set of clauses (with Boolean functions)

in which each clause contains K literals. K-SAT problems have been shown

to be NP-complete for K ≥ 3 [17]. The SP has its origin in statistical physics

based on the cavity method [18] and has been shown to deal with the cluster-

ing phenomenon of solution space for large instances K-SAT problems at much

higher densities than previous methods [19]. In the original derivation of SP

algorithm, the messages are sent among clusters in the solution space of CSPs,
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which provides information about the fraction of solutions (assignments) in a

cluster in which given variables are frozen or free. The SP’s updates can be

obtained from BP with an extended variable space {0, 1, ?}, where ? or joker

state represents the state of variables which are free in a cluster of solution

space. Experimental studies show that SP is more efficient than BP for random

SAT problems [20]. A new class of message-passing algorithm called gener-

alized belief propagation (GBP) is introduced in [1] to solve the problem of

computing marginal probability distributions on factor graphs with short cy-

cles. The algorithm relies on the extension of cluster variation method [21,22],

which is called the region graph method. The GBP algorithm provides ap-

proximate marginals by minimizing the Gibbs free energy using region graph

method. In GBP, messages are sent among clusters of variables nodes instead

of the node-to-node message passing fashion in BP and SP. GBP algorithm is

used over dense graphs for detection and information rate estimation for two-

dimensional (2-D) inter-symbol interference and Gaussian channels [23, 24].

Furthermore, GBP has been successfully employed for decoding of classical

and quantum LDPC codes on sparse graphs with short cycles [25, 26]. More

recently GBP has been shown empirically to have good performance, in either

accuracy or convergence properties, for certain applications [24, 27].

In this dissertation, we focus on the problem of reliable transmitting bi-

nary messages over data-dependent communication channels and recovering

them back at the receiver side. This problem is one of the most fundamental

problems in communication theory, and can be considered as an instance of

a CSP. Shannon in his seminal work [28] introduced two coding schemes for

reliable transmission of information over noisy channels, namely error correc-

tion coding and constrained coding. The first method protects user messages

against random errors, which are independent of input data, by introducing
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redundancy in the messages prior to transmission. On the other hand, a

constrained coding method assumes that channel solely introduces errors in

response to specific patterns in input messages, and removing these problem-

atic patterns makes the channel noiseless. We consider the following challenges

in regard to reliable transmission of binary messages over data-dependent 2-D

channels, which include, but not limited to, (i) design of novel error correction

and constrained coding techniques, (ii) use of state-of-the-art message-passing

algorithms for probabilistic inference, and (iii) devising reduced complexity

2-D detection and decoding methods. The organization of the dissertation is

as follows:

In Chapter 2, we propose a method to handle the media noise seen in

a TDMR channel, as an example of a data-dependent 2-D channel, using

the Generalized Belief Propagation (GBP) based detector. We use the GBP

algorithm for signal detection in conjunction with a Belief Propagation (BP)

algorithm for Low-Density Parity-Check (LDPC) decoding. We give an insight

into the nature of signal classification (hard decisions) by GBP to be motivated

towards minimizing frame-error-rate. We also evaluate the performance of the

GBP algorithm for different choices of regions suitable for TDMR. The GBP

algorithm can be formulated to handle correlation in the media noise and

exchange information in a turbo fashion with the BP algorithm for further

gains in the TDMR performance.

We study the pattern dependent characteristics of media noise in TDMR

using a Voronoi media model in Chapter 3. We identify the no-isolated-bits

constraint that reduces the impact of media noise. We study the performance

of the constrained coding using a BCJR based multi-track detector. When

the media noise is high compared to the electronic noise, the rate loss due to

constrained coding is compensated by the performance gains when compared
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against uncoded systems with the same storage density. We also introduce

the main idea of our method for generating 2D constrained sequences based

on the GBP algorithm.

In Chapter 4, we investigate performance gains of incorporating con-

strained codes in Two dimensional Magnetic Recording (TDMR) channels

using the notion of constraint gain. A Voronoi based TDMR channels with

realistic grain, bit, track and magnetic-head dimensions is considered as the

TDMR channel model. We focus on 2-D n.i.b. constraint for the Voronoi

based TDMR channels. We focus on schemes that employ the generalized be-

lief propagation algorithm for obtaining information rate estimates for TDMR

channels.

In Chapter 5, we propose a coding scheme for data-dependent 2-D channels

which is based on a deliberate bit flipping method. Deliberate errors are intro-

duced into an error correction codeword which is arranged into a 2-D array to

remove harmful patterns before transmission. The technique relies on the er-

ror correction capability of the code being used, and the number of deliberate

errors should be small enough not to overburden the error correction decoder.

In this chapter, we focus on minimizing the number of deliberate errors in

the DBF scheme for removing a set of given configurations from input pat-

terns. We devise a probabilistic graphical model for the minimization problem

by reformulating it as a 2-D MAP problem. We use the GBP algorithm to

find an approximate solution for the 2-D MAP formulation of the problem.

Statistics of the number of bit flips for removing 2-D isolated-bits patterns are

extracted, and we show that how these numbers are comparable with the error

correction capability of BCH codes being used. Furthermore, we investigate

the suitability of DBF method for imposing 2-D constraint over a BSC against

classical constrained coding methods which suffer from error propagation.
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In Chapter 6, we propose a LLR version in order to reduce both the com-

putational complexity and the storage requirements for GBP. From a compu-

tational perspective, the main advantages of the proposed approach are:

1. arithmetic operations are performed in fixed point formats rather the

computationally complex floating point formats,

2. multiplications in the belief and message update rules are reduced to

additions,

3. divisions in the message update rules are reduced to subtractions, and

4. signed based hard-decision extraction mechanism for single variable re-

gions, as is the case in the vast majority of detection problems.

Regarding the approximation of the logarithm of the addition, our approach

employs a maximum computation, as well as comparisons with a number of

offline computed constants. Therefore, the proposed LLR version of GBP

employs only fixed point addition based operations - addition, subtraction

and comparisons – that makes it suitable for hardware acceleration on FPGA

devices.
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CHAPTER 2

GBP-based TDMR Detector and Decoder

Two dimensional magnetic recording (TDMR) is a promising technology to

increase the areal densities beyond 800 Gb/in2 using sophisticated signal pro-

cessing algorithms on the currently available magnetic medium by reducing the

track width. The signal processing algorithms in TDMR have to handle the

2-D ISI and very high media noise arising due to irregularities in the medium.

The correlation and data dependent nature of the media noise can be

used to reduce the effect of media noise on the signal processing algorithms

in TDMR. Khatami and Vasić [29] have used constrained codes along with

GBP detector to avoid harmful patterns that contribute to high media noise.

Matcha and Srinivasa [30] have used pattern dependent noise prediction fil-

ters along with a 2-D soft-output Viterbi algorithm (2-D SOVA) to handle the

media noise.

We use the GBP algorithm for signal detection. The GBP algorithm a

graph based iterative algorithm where the messages are passed across regions

instead of between nodes as seen in the BP algorithm [1]. The performance

of the algorithm in relation to the MAP/ML criteria and the optimal choice

of regions is not well understood. In this chapter, we model the media noise

from a Voronoi based media model as a pattern dependent noise. We formulate

the GBP algorithm to handle the media noise and obtain soft-outputs useful

to decode a LDPC code. We also provide intuition into the nature of hard

decisions given by GBP by looking at the GBP as a convex optimization

problem.
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Figure 2.1: The block diagram of TDMR system includes constrained coding,
read channel and multi-track decoder. Prior to being written to the channel,
user data is first encoded by a constrained code in which occurrence of harmful
patterns is forbidden or suppressed (constrained coding).

The chapter is organized as follows: In Section 2.1, we describe the Voronoi

based TDMR channel model. In Section 2.2, we provide insights into the

nature of hard decisions from GBP algorithm and formulate the algorithm

to handle media noise. In Section 2.3, we use GBP algorithm to bound the

TDMR channel capacity for designing the LDPC code of appropriate rate. We

also discuss the numerical results where LDPC codes are decoded using soft

outputs from the GBP algorithm in Section 2.5.

2.1 TDMR System Model

The study of the effects of jitter noise on the signal processing algorithms in

TDMR systems requires sophisticated channel models that include the random

grain distribution on the recording medium. Fig. 2.1 provides a block diagram

of the TDMR system utilized in this chapter. We model the TDMR channel

using a Voronoi model [31] where each grain is specified by a Voronoi region.

2-D constrained sequences from the input alphabet X = {−1,+1} are written

on the magnetic medium. Without loss of generality −1 and +1 denote the

bits 0 and 1 respectively. A magnetic reader is utilized to read data written

on the Voronoi channel, and produces symbols from the alphabet Y = R. The

electronic noise is modeled by an Additive White Gaussian Noise (AWGN)

with variance σ2
e . The noisy output is equalized and detected using a multi-

track detector in order to retrieve the symbols written on the Voronoi channel.
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Figure 2.2: An example of the Voronoi channel model. The grains on the
medium are modeled as the Voronoi regions formed from the random grain
centers generated using Poisson disk process. The centers are separated by
at least CTC = 10 nm. The rectangular cells indicate the channel bits. All
grains whose centers are within a bit region are polarized according to the bit
value. The bit size is TW×BP=30 nm×15 nm. These parameters correspond
to arbitrary but realistic physical values

In this section, we introduce the details of the model used in this chapter.

TDMR channel models typically involve three components: a) media

model: models the distribution of grains on the medium b) write-head proce-

dure: models the magnetization process of grains while writing data on to the

Voronoi channel and c) read-head procedure: models the readback signal. For

the sake of completeness we give these models as described in [29].

2.1.1 Magnetic Medium

In TDMR systems, a grain is the smallest region that is uniformly magnetized.

A Voronoi model is utilized to simulate the non-ideal features of the magnetic

medium [31]. A Voronoi region S with a center c is the collection of points

on a 2-D (Euclidean) plane that are closer to the center c than to any other

grain center. The points on the boundary of a Voronoi region are equidistant

from their two closest centers. In this model, the medium is visualized as a

random tiling of Voronoi regions where each Voronoi region represents a grain

on the medium. There is more than one way to to generate a random Voronoi
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tiling of a plane. In this chapter, the grain centers are generated according

to the Poisson-disk distribution with boundary sampling introduced in [32].

The Poisson-disk distribution is characterized by the center-to-center (CTC)

distance, the minimum permissible distance between any two grain centers. In

this method, the grain centers are not allowed to be closer than the (CTC)

distance and there is at least one grain center at this distance. The (CTC)

distance determines the size and shape of grains. In the following, the Voronoi

channel parameters are introduced.

A rectangular grid is defined on the medium, where each rectangular cell

corresponds to a channel bit and is characterized by

• Bit Period (BP): the length of each bit in the down-track direction.

• Track-Width (TW): the length of each bit in the cross-track direction.

An example of the TDMR channel generated based on the Voronoi model

is given in Fig. 2.2.

2.1.2 Write Procedure

Constrained sequences are written on the Voronoi channel at this step. The

channel input signal x(t1, t2) is defined by

x(t1, t2) =
∑
i

∑
j

xi,jΠTW (t1 − i× TW )ΠBP (t2 − j ×BP ),

where xi,j ∈ X is the symbol which will be written on the (i, j)th bit area and

ΠT (t) =


1, 0 ≤ t < T,

0, otherwise.
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In TDMR systems, the write head procedure does not have any a-priori knowl-

edge of the grain shapes, sizes and positions on the magnetic medium. There-

fore, the bit areas are considered to be in the form of rectangles. The write

head induces a magnetization pattern on the track directly below its head at

the center of each rectangular cell such that all grains whose centers are within

the bit area are polarized according to the value of xi,j.

2.1.3 Read Procedure

We model the read-head response to be a 2-D Gaussian pulse with a span of

three bit areas in both directions. The 2-D Gaussian pulse is characterized

by the pulse widths PW50 and TW50 at half-amplitude in the down-track and

cross-track directions, respectively. We suppose that the read-head picks up

magnetization only from m×n cells. As a result, the read-head output sample

yi,j at the center of the (i, j)th cell depending only on the polarity of the grains

in the m× n neighborhood around the (i, j)th cell, denoted as Ci,j. The read-

head parameters are chosen such that the ISI span does not exceed 3 × 3 bit

areas throughout the simulations, i.e., m = n = 3.

Let si,j ∈ R be the read-back signal samples of the ideal magnetic medium,

where the bit areas considered to be rectangular, and yi,j ∈ R be the read-

back signal samples of the non-ideal medium for the bit cell (i, j). The read-

back signal of ideal medium, si,j, is obtained by convolving the magnetization

pattern of ideal medium with the read-head impulse response h(t1, t2) and

sampling at each center of bit area in the down-track direction. We consider

that the read-head impulse response of 3 × 3 span. Therefore, the read-back

signal of ideal medium can be written as
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si,j =
+1∑

k1=−1

+1∑
k2=−1

xi−k1,j−k2hk1,k2 , (2.1)

where hk1,k2 is the sampled output of impulse response of read-head,

hk1,k2 =
x

Ak1,k2

h(t1, t2) dt1 dt2, (2.2)

that Ak1,k2 is the rectangular area of bit (k1, k2). In order to model the effect

of irregular boundaries on the read-back signal of ideal magnetic medium, we

define the media noise ni,j as an additive noise which is dependent on each 3×3

span of input data, the coded signal which is written on the Voronoi channel.

Any change in the read-back signal due to the shift in the grain-boundaries

is considered as media noise. This depends not only on the regions of the

grains in Ci,j, but also on their polarities. Therefore, this noise is correlated in

both down-track and cross-track directions and is data-dependent. Thus, we

incorporate the effect of media noise to the read-back signal of ideal medium,

si,j, in the following form

yi,j = si,j + ni,j, (2.3)

where yi,j is the noisy read-back signal sample for the (i, j)th cell.

2.2 GBP-based 2-D ISI Detection

Generalized belief propagation (GBP) algorithm is a graph based decod-

ing/detection algorithm that can be formulated as a convex optimization prob-

lem that minimizes the Gibbs free energy [1]. The algorithm provides a method
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to approximate marginal distributions which makes it suitable for MAP de-

tection with soft outputs.

The GBP algorithm is known to give exact marginals if and only if the

region based graph has no loops [33]. Even though the region based graphs

always contain loops when used for 2-D ISI signal detection, the GBP algo-

rithm provides a method to approximate the marginals that are empirically

observed to be close to the actual marginals.

In this section, we provide insights into the nature of hard decisions from

the GBP algorithm and evaluate the performance of the GBP algorithm over

a chosen 2-D ISI channel for different choices of region. We next formulate the

GBP algorithm for the noise characteristics seen in the Voronoi based TDMR

channel model.

2.2.1 Gibbs Free Energy and Kikuchi Approximation

Assuming uniform distribution of the input bits and white noise samples in

the channel model, the a-posteriori probability of x given read-back samples

y is given by

p (x | y) = p (y | x) p (x) p (y)−1 ∝ p (y | x)

p (y | x) =
∏
i,j

fi,j (xi,j) (2.4)

where fi,j (xi,j) = p (yi,j | xi,j) is the distribution function of noise sample at

location (i, j). Therefore, we have

p (x | y) =
1

Z

∏
i,j

fi,j (xi,j) , (2.5)
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Figure 2.3: Factors fi,j (·) of a 3×3 page are shown. The corresponding region
graph with all regions and sub-regions is also shown. The arrows in the region
graph show the flow of messages in the GBP algorithm.

for some Z(y). Let b(x) represent the belief of the a-posterior probability

(APP). From the properties of KL-divergence, the belief b (x) = p (x | y) can

be achieved by minimizing the free energy given by

F = E −H = D (b (x) ‖ p (x | y))− lnZ(y), (2.6)

average energy E = −
∑
i,j

∑
xi,j

b(xi,j) ln fi,j(xi,j), (2.7)

entropy H =
∑
x

b (x) ln b(x). (2.8)

Let a region R ⊂ R2 be defined as a set of positions within a page. Let R

represent a collection of such regions such that each of xi,j is included in atleast

one region. For each R ∈ R, let xR be the vector of bits in the region R and

b (xR) and p (xR) be the corresponding marginal beliefs and probabilities. The

regions are partially ordered based on the containment of one region inside

another [1]. A region graph is formed using this partial ordering as shown in

Figure 2.3.
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The free energy is approximated using the entropy of individual regions as

F̂ = −
∑
i,j

∑
xi,j

b (xi,j) ln fi,j (xi,j)

+
∑
R∈R

cR
∑
xR

b (xR) ln b (xR) , (2.9)

where cR are overcounting numbers defined as cR =
∑

p∈PR 1− cp and PR are

parents of region R in the region graph. This approximation is called Kikuchi

approximation or region based approximation (RBA). The marginals b (xR)

are estimated by minimizing (2.9) under the constraints

∑
u∈xp\R

b (xp) = b (xR) ∀p ∈ PR,∀R ∈ R. (2.10)

These constraints ensure that the beliefs of sub-regions are obtained by

marginalizing the beliefs of their parents [33]. The message update rules of

GBP algorithm are obtained from the constrained optimization of F̂ using

Lagrange multipliers.

The regions and cR are chosen to 1) ensure unique solution to the for

GBP algorithm, 2) closely approximate the marginals 3) reduce computational

complexity.

2.2.2 Hard Decisions from GBP

The analysis on GBP in the literature is focused on closely approximating

the marginals (soft decisions). However, the nature of hard decisions is also of

interest while analyzing GBP as a signal detection/decoding algorithm. In this

subsection, we use the ideas of linear programming and convex optimization

to provide an insight into the behavior of GBP algorithm for hard decisions

decoding/detection.



29

Hard decision decoding is a signal classification problem where the received

signal is classified based on the decision regions with in a signal space. We

define the spaces of interest and the corresponding decision regions as follows.

Let {0, 1}N = {m0,m1, · · · ,m2N−1} represent the set of states taken by x,

where N = mn is the number of bits in a page, mk (i, j) is the value of xi,j

when x = mk. Let mi (R) be the vector of bits in mi restricted to the region

R ∈ R.

The RBA reduces the optimization problem in b (x) space to the optimiza-

tion in a lower dimensional space of marginals {b (xR)}R∈R. Let b be the

vector of beliefs b (x) , x = m0 · · ·m2N−1, and let bR represent the vector of

marginals b (xR) , xR = m0 (R) · · ·m2N−1 (R) , R ∈ R. We define the space of

probabilities and marginals as follows.

Definition 1 Probability space: We define ∆ as the space of probabili-

ties/beliefs b (x) with the constraints

0 ≤ b (x = mi) ≤ 1 and
2N−1∑
i=0

b (x = mi) = 1.

Let {v0,v1, · · · ,v2N−1} represent the vertices of the space where vi represents

b (x = mi) = 1, i = 0, · · · , 2N − 1. Let u be the uniform distribution.

Marginal space: Let ∆M be the space of marginals bR (x) for the regions in

R with the constraints 0 ≤ b (xR) ≤ 1 and
∑
xR

b (xR) = 1∀R ∈ R. We further

enforce following constraints such that the marginals of two overlapping regions

are consistent:

∑
xRi\Rj

b (xRi) =
∑

xRj\Ri

b
(
xRj
)
∀Ri, Rj ∈ R. (2.11)

Remark: We can define a linear map L : ∆ → ∆M using the marginal-
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ization operations b (xR) =
∑

xRc
b (x) , R ∈ R.

Let v̂i = L (vi) , i = 0, · · · , 2N − 1 and û = L (u).

Definition 2 Pseudo-marginal space: Let ∆P be a space of pseudo-marginals

bR (x) for regions in R with the constraints 0 ≤ b (xR) ≤ 1 and
∑
xR

b (xR) =

1∀R ∈ R. These are pseudo marginals as we ignored the constraints in (2.11).

Therefore, ∆M ⊂ ∆P .

Definition 3 Optimal hard decisions: The word mFER is said to be frame

error rate (FER) optimal hard decision if

p (x = mFER) > p (x = mj) , ∀mj 6= mFER. (2.12)

The word mBER is bit error rate (BER) optimal decision if

p (xi,j = mBER(i, j)) > 0.5, ∀xi,j. (2.13)

Let vFER, vBER (and v̂FER, v̂BER) be the vertices in ∆( and ∆M) corre-

sponding to b(mFER) = 1 and b(mBER) = 1. Since the inner product

〈vi,b〉 = b (x = mi), the FER decision region can be written using (2.12)

as

D(FER) = ∆ ∩
⋂

j:mj 6=mFER

{〈vFER − vj,b〉 ≥ 0} (2.14)

It is easy to see that all FER decision regions corresponding to each word

mi intersect at u. Proposition 1 identifies the FER decision region in ∆P

corresponding to (2.14).

Proposition 1 The optimal FER decision region in the pseudo marginal space

∆P is

D̂FER = ∆P ∩
⋂

j:v̂j 6=v̂FER

{〈v̂FER − v̂j,bR〉 ≥ 0} . (2.15)
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Let D̃FER = L (DFER) be the linear map ofDFER from ∆ to ∆M . Note that

D̃FER also has linear decision boundaries and hence the decision boundaries in

∆P are also linear. Notice that DFER and D̂FER are Voronoi regions in their

own spaces.

Each vertex of DFER is obtained as follows: Choose any subset set of points

V ⊆ {vi | i = 1, · · · , 2N−1}. Centroid of points V∪{vFER} is a vertex of DFER.

Similarly, the vertices of D̂FER in (2.15) are the centroids of a subset of

points from {v̂i 6= v̂FER} and v̂FER. Since the map from vi to v̂i is linear, the

same linear map maps the centriods in ∆ to centriods in ∆P . Therefore, the

vertices of D̂FER in (2.15) are a map of vertices of DFER. Therefore, D̂FER in

(2.15) is the optimal FER decision region in ∆P .

The following proposition proves a property of the average energy in ∆P

that helps us in understanding the nature of signal classification by GBP.

Proposition 2 In the pseudo marginal space ∆P , the average energy term

in the Kikuchi approximation of free energy has a constant gradient g = ∂E
∂bR

satisfying

〈v̂FER − v̂i,bR〉 ≤ 0 ∀v̂i 6= v̂FER, i = 0, · · · , 2N − 1. (2.16)

The gradient of E has the terms − log fi,j (xi,j) and hence is constant.

Since E = 0 when bR = 0, we can write E (bR) = 〈bR,g〉. From (2.7),

E is linear in ∆ and the minima of E occurs on the boundaries of ∆. We

can easily verify that E is minimized in ∆ when b (x = mFER) = 1 i.e., at

the point b = vFER. Consider the polytope in ∆P formed by the points

v̂i, i = 0, · · · , 2N − 1. Using the exactness of the average energy in RBA [1],

we can claim that the average energy is minimum at bR = v̂FER inside this

polytope i.e., E (v̂FER) ≤ E (v̂i) =⇒ 〈v̂FER − v̂i,bR〉 ∀v̂i 6= v̂FER.
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Nature of signal classification by GBP The approximated entropy Ĥ

has maximum value at uniform distribution û. Proposition 2 shows that the

gradient of −E has the largest component along the direction of v̂FER than

in the direction of any other v̂i. Therefore, in the optimization problem to

maximize −E+H, the component −E shifts the maxima of Ĥ closer to v̂FER

i.e., within the region D̂FER. This shows that the inherent nature of signal

classification achieved by GBP is towards optimizing FER. Due to this nature

of signal classification, the GBP algorithm is suitable for hard decision decod-

ing of error correcting codes (ECC) where FER has to be minimized. A good

approximation of entropy will provide a closer approximation of the marginals

resulting in optimal BER. Therefore, a good approximation of entropy is the

key for the problems where BER has to be minimized.

2.2.3 Choice of Regions

In this subsection, we focus on choosing regions suitable for 3 × 3 ISI span.

The optimal choice of regions is not trivial. Welling [34] has proposed a region

pursuit algorithm based on his observations on splitting and merging of regions.

However, the choice of regions larger than 3×3 is computationally prohibitive

for signal detection in TDMR.

Therefore, we restrict our search to regions of size 3 × 3 or smaller. Let

Rp×q denote the set of regions of size p× q within a frame. The valid sizes of

sub-regions are 2 × 3, 3 × 2, 1 × 3, 3 × 1, 2 × 1, 1 × 2, 2 × 2, 1 × 1. Let R′

denote the collection of all 3× 3 regions and sub-regions within a frame.

The choice R = R′ is shown in [33] to ensure several desirable properties

for the convex optimization problem:

1. The constraints in (2.10) ensure that the beliefs of regions are marginals

of a distribution if and only if R = R′.
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Figure 2.4: BER performance of the GBP algorithm for different choices of
regions. The best performance is seen when all sub-regions of sizes 2 × 3,
3× 2, 1× 3, 3× 1, 2× 1, 1× 2, 2× 2, 1× 1 are chosen. Omitting any of the
regions would not ensure that the beliefs marginalize to the same values in the
intersection of regions. Severe degradation in performance is seen if there are
large number of descendants for the omitted regions.

2. The choice achieves totally balanced condition that helps in removing

bias in the approximation of entropy.

3. The choice ensures unique solution.

Figure 2.4 shows the performance of the GBP algorithm for different choices

of regions over a 2-D-ISI AWGN channel given in [35]. The BER is estimated

by detecting pages of size 32 × 32 at a time. We notice that the best perfor-

mance is obtained when the R = R′. The performance is about 0.2 dB better

than JTED [35] for the same 2-D ISI channel operating on 64× 64 pages. We

also notice severe degradation in performance if the omitted set of regions has

a large number of descendants.

2.2.4 Soft Information from GBP

As discussed in Section 2.2.3, the GBP algorithm can be used to compute

the a-posteriori probabilities of the bits. In the following, we formulate the

problem of extracting soft information from the Voronoi based TDMR channel
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as an instance of 2-D ISI channels.

The APP ratios in the log domain, also called the log likelihood ratio for

each bit xi,j is approximated using the beliefs from GBP algorithm as

LLR (xi,j) = log

(
p (xi,j = 1 | y)

p (xi,j = 0 | y)

)
≈ log

(
b (xi,j = 1)

b (xi,j = 0)

)
.

The MAP detection minimizes the BER by maximizing the APP, p(xi,j|y), for

each xi,j in x.

In order to utilize the GBP algorithm for finding the LLRs, the first step is

to identify the local constraint functions fi,j (xi,j) given in (2.5). Since the 2-D

ISI in our model is limited to a 3× 3 span, the read-back sample yi,j and the

corresponding media noise sample depends only on xi,j, the 3 × 3 bit region

centered at (i, j). Therefore, the local constraint functions can be defined

using the pattern dependent noise distribution as fi,j(xi,j) = p(yi,j|xi,j).

We can incorporate the GBP algorithm to the probabilistic graphical model

of this problem that we introduced in [29] in order to obtain the APPs. In

order to obtain optimal performance, as seen in Section 2.2.3, we choose the

regions to include all 3×3 regions and all possible intersections of these regions.

2.3 Using Soft Information from GBP for Iterative Decoding of Coded TDMR

Channels

In our simulations, LDPC coded bits are written on and read from the Voronoi

based magnetic medium, resulting in read-back samples. The GBP algorithm

is used for signal detection and the LLRs from the GBP algorithm are used

for iterative LDPC decoding using the belief propagation (BP) algorithm. We

design the LDPC code rate by bounding the channel capacity of our TDMR

channel model using the GBP based TDMR SIR estimation algorithm de-
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Table 2.1: RSCT (RSDT) denotes the reader response span in cross-track (down-
track) dimension. All the parameters in the table are specified in nanometers.
? indicates that the parameter is varied in the simulations. CTC= 7nm.

TW BP RSCT RSDT PWCT
50 PWDT

50

TDMR ? 10 28 28 14 14

12 12.5 13 13.5 14 14.5 15
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S
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Figure 2.5: Lower and upper bounds on the SIR of Voronoi channel of TDMR
system with the parameters given in Table 2.1

scribed in our recent work [36]. The TDMR channel model parameters used

in the simulations are given in Table 2.1. The GBP algorithm detects a 32×32

page of data at a time. The read-head response is truncated to restrict the ISI

span to 3× 3 bit area.

2.4 Lower and Upper Bounds on the SIR of Voronoi Channel

In order to demonstrate the feasibility of implementation of our proposed GBP

based TDMR detector, we conducted experiments to recover the user bits from

the distorted coded TDMR channel.

The SIR between the input and output random processes X and Y of a

Voronoi channel is defined as the mutual information per symbol between X

and Y when the input distribution is uniform. For a n×m Voronoi channel,

we have SIR = 1
nm
I(X;Y ) when the input distribution is uniform where

I(X;Y ) = H(Y )−H(Y |X). The term, H(Y |X), is the conditional entropy of
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the media noise that can be computed analytically using the channel model.

We estimated the media noise distribution p(Y |xR) by an AWGN with the

noise variance σ2
xR

dependent on each 3 × 3 span of input data. Therefore,

H(Y |X = xR) = 1
2

log(2πeσ2
xR

). H(Y ) is obtained using the GBP based

TDMR SIR estimation algorithm [36].

The GBP-based capacity estimation algorithm provides a lower bound on

the 2-D partition function of a factor graph, and accordingly the SIR which

is obtained using the algorithm is only an estimate. In [24], GBP was used to

estimate the capacity of 2-D RLL codes and it was shown that GBP capacity

estimate for local constraints are accurate (up to 3rd decimal place). Moreover,

in [37], it was shown that SIR, computed for the 2-D Gaussian channels using

the GBP-based algorithm coincides with the lower and upper bounds of the

SIR given by Chen and Siegel [38]. In our recent work [36], we have shown

that the lower and upper bounds merge to the SIR of the Voronoi channel by

increasing the dimensions of the medium. The upper and lower bounds on

SIR are obtained as:

Lower Bound : No information about outside of boundaries of the 32× 32

page is available for the GBP based TDMR SIR estimator. In this case, we

compute the beliefs assuming that all states of the boundary regions are equi-

probable. This gives us a lower bound on the SIR of the TDMR channel.

Upper Bound : The boundary information of the magnetic medium is as-

sumed to be known to the SIR estimator. In this case, the bit values outside

the page boundary are known and treated as deterministic giving us an upper

bound on the SIR.

Figure 2.5 shows the SIR lower and upper bounds for the chosen TDMR

channel model. We use SIR as a lower bound on the capacity of the system.

Based on the observed lower and upper bounds of the SIR we choose LDPC
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Figure 2.6: The FER result of quasi-cyclic column weight four LDPC code
with N = 756, R = 0.66 with respect to the parameter TW for the Voronoi
channel. Also, the FER of BCH code (1023, 675) is plotted for reference.

code rate to be R = 0.66. The LDPC code of length N = 756, rate R = 0.66,

and a circulant size of L = 126 is constructed by methods described in [39],

and is free of small trapping sets.

2.5 Frame Error Rate Results

Figure 2.6 shows the frame error rate (FER) results with respect to TW for

the Voronoi channel with the parameters given in Table 2.1. At TW = 16.2

nm, the LDPC code gives more than two orders of magnitude gain in the FER

when compared with the BCH code of length 1023 bits, rate 0.66.
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CHAPTER 3

Investigation into Harmful Patterns over Two-Dimensional Magnetic

Recording

Many novel approaches have been recently proposed to increase the areal den-

sities for magnetic recording systems beyond 1 Tb/in2. These technologies

include heat assisted magnetic recording (HAMR) [40], bit patterned media

(BPM) [41] and two dimensional magnetic recording (TDMR) [42]. TDMR

is a purely systems driven approach centered around sophisticated signal pro-

cessing and coding algorithms [43], [44] to achieve high areal densities; and can

provide additive gains over HAMR and BPM technologies. In TDMR, the bits

are densely packed leading to 2-D inter-symbol interference (ISI) and media

noise that need to be mitigated via 2-D signal processing algorithms. Shingled

magnetic recording (SMR) is a first step towards TDMR, where, the exist-

ing wide read/write heads are used to write tracks in an overlapping/shingled

fashion. Since the TDMR technology is still emerging, several models for

the TDMR channels at various interfaces are being proposed to facilitate the

design of a viable read-channel architecture.

TDMR channel models for the media can be classified into a) discrete

grain models, b) Voronoi media models and c) micro magnetic media models.

Discrete grain models consider the recording medium as a tiling of grains of

various known shapes on a 2-D plane. Voronoi models treat the distribution

of grain centers as a point process. Micro magnetic models consider the sizes,

shapes and distribution of the grains closely resembling the actual magnetic

recording medium [31]. Recently, a communication theoretic framework [44]
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was proposed to model TDMR channels by considering 2-D ISI from physical

characteristics along with noise effects from the media and read electronics.

In [44], though the jitter noise is modeled using a first order approximation

and Gaussian statistics, the framework can be used to include the second order

noise statistics empirically computed from the Voronoi model.

Efficient coding and signal processing algorithms are central for realizing

areal density gains within TDMR systems. Several 2-D signal detection algo-

rithms have been proposed over the last few years with an eye towards getting

close to the maximum a posteriori (MAP)/maximum likelihood (ML) perfor-

mance1. Sullivan et al. [45] have proposed an iterative detection algorithm for

2-D ISI using 1D row-column detectors that iteratively exchange information

to make soft-decision on the bit. A low complexity version of the algorithm

optimized for separable 2-D ISI is proposed in [46]. Chen and Srinivasa [43]

have proposed a 2-D joint equalization and detection (JTED) algorithm that

combines a self iterating 2-D equalizer with multi-row-column detectors over

the full signal span to iteratively achieve near MAP performance with tractable

complexity. GBP algorithm is a different class of signal detection algorithms

that uses message passing between regions instead of the message passing

between nodes as seen in the traditional belief propagation algorithm. The

performance of the GBP algorithm in relation to the MAP/ML algorithm is

not known and requires a rigorous theoretical framework to study this. The

GBP algorithm was studied by Khatami and Vasić [47] for different TDMR

channel models.

Matcha et al. [48] have recently proposed a 2-D partial response ML for

2-D ISI channels using a 2-D soft-output Viterbi algorithm (SOVA) equivalent

algorithm. The proposed method is within 1.5 dB of the full JTED perfor-

12-D MAP detection is NP hard.
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mance with noise prediction [44]. While we have advanced methods for signal

processing towards a full blown TDMR system, it is of practical interest to

study shingled magnetic recording (SMR) systems using multi-track detection

to assess areal density gains for read channels of immediate timely interest.

In this chapter, we demonstrate that how avoiding harmful patterns dur-

ing the coding process leads to have a better detection performance in two

dimensional magnetic recording (TDMR) systems. By avoiding such patterns

at the source, we evaluate the performance of a multi-track detector and assess

areal density gains over various TDMR system parameters. Furthermore, we

explain the main idea of our method for generating 2-D constrained sequences

achieving the capacity of constraint based on the GBP algorithm. Applied to

a wide family of constraints, this method produces a convenient approach for

investigating the benefits of implementing 2-D constrained waveforms in data

storage systems.

This chapter is organized as follows. In Section 3.1, we describe the noise

characteristics based on empirical results from the Voronoi media model and

quantify the signal-to-noise ratio (SNR) using the peak power constraints.

In Section 3.2, we describe a procedure for creating 2D constrained patterns

satisfying the no isolated bit (n.i.b) constraint. We explain the main idea of

our method for generating 2D constrained sequences achieving the 2D noiseless

channel capacity for a wide family of constraints based on the GBP algorithm

in Subsection 3.2.1. Finally, we evaluate the performance of various TDMR

systems through simulations in Section 3.4.

3.1 Noise Characteristics of The TDMR Systems

In TDMR systems, the primary source of noise comes from irregular bound-

aries of grains and the random distribution of grain centers [31]. In addition,
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Figure 3.1: Observation of media noise variance for the Voronoi channel with
the parameters CTC = 7nm, BP = 7.5nm and TW = 16nm. In the 3 × 3
input patterns 0 and 1 are represented by white and black, respectively. It
is shown that the harmful patterns for the Voronoi channel with 2-D ISI are
ones eliminated by the no isolated bit constraint.

the noise distribution in TDMR is dependent on input information bits writ-

ten on the Voronoi channel as the polarity of grains effects on the read-back

signals. The Voronoi model with 2-D ISI [29] is considered as the magnetic

recording channel. We first consider an ideal magnetic medium, where bit

areas assumed to be rectangular, and then we apply the effect of irregular

boundaries as the “media noise” [31] by an additive noise which is added to

the read-back signal of ideal magnetic medium. We have analyzed the media

noise characteristics for a read-head response of 2-D truncated Gaussian pulse

with 3 × 3 span. Fig. 3.1 shows the media noise variance for different 3 × 3

input patterns. The media noise variance is greater for the input patterns with

more transitions in cross-track and down-track direction. The most harmful

input patterns are the ones with consecutive transitions in both cross-track

and down-track directions. We have also observed the same characteristics of

media noise studied with a more realistic channel model in [49]. In the sequel,
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we introduce three definitions of SNR corresponding to overall noise, media

noise and the electronic noise in TDMR systems.

Let hi,j(p, q) be the discrete-time response of (i, j)th bit. These response co-

efficients are random and dependent on the position and shape of grains within

the bit area. The average bit-response is obtained by taking the expectation

on these random response coefficients

h(p, q) = EPQ (hi,j(p, q)) , (3.1)

where P and Q are random variables indicating the distribution of the grain

positions in the down-track and cross-track directions, respectively. Therefore,

the above averaging is taking into account all possible grain positions. The

read-back signal sample without considering the electronic noise is given by

yi,j =
∑
p

∑
q

xi−p,j−qhi−p,j−q(p, q), (3.2)

where xi,j is the symbol written on the (i, j)th bit-cell. Furthermore, the ideal

read-head output, si,j, is obtained by considering the average discrete-time

output of (i, j)th bit area as

si,j =
∑
p

∑
q

xi−p,j−qh(p, q). (3.3)

The peak value of read-back signal, Vp, is defined by
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V 2
p =

∑
p

∑
q

|h(p, q)|2. (3.4)

The media noise comes from the random perturbations of hi,j(p, q) around the

average response h(p, q). Therefore, the variance, or, equivalently the energy

of media noise σ2
m is obtained by

σ2
m = EP,Q

(∑
p

∑
q

|hi,j(p, q)− h(p, q)|2
)
. (3.5)

Then, we can define three SNRs for a TDMR system according to the above

definitions as

SNR = 10 log10

(
V 2
p

σ2
m + σ2

e

)
,

SNRMedia = 10 log10

(
V 2
p

σ2
m

)
,

SNRElec = 10 log10

(
V 2
p

σ2
e

)
, (3.6)

where SNR is the overall SNR, and SNRMedia and SNRElec are the SNRs corre-

sponding to the media and electronic noise, respectively. A detailed description

of these SNRs can be found in [44].

3.2 Evaluation of Utilizing Constrained Coded Data in TDMR systems

In this section, we investigate the performance gain due to using the con-

strained input waveforms in TDMR systems based on the BER criterion. In

TDMR systems, decreasing the bit size to the limits comparable to the grain
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size leads to a reduction in the SNR due to augmentation of the media noise.

Since the media noise is caused by the polarity change in magnetization of

neighboring grains due to consecutive transitions in the input data, low-pass

constraints that restrict the consecutive transitions can be deployed to increase

the SNR. Therefore, the constrained sequences can be deployed to reduce the

harmful effects of the media noise. In addition to this, constrained coding

reduces the state space of the detector and hence reduces the computational

complexity of the detector.

3.2.1 Constrained Codes for Magnetic Recording Channels

The harmful data patterns contributing to high media noise are avoided using

constrained codes. In our method, constraints are imposed locally and are

given by a set of admissible input data patterns. Not all sequences of symbols

from the input alphabet may be stored. Let RC denote the rate of the code with

a given constraint C. To achieve the same storage density for a constrained

coded system and an uncoded system, the rate loss due to the constrained

input sequence is compensated by scaling the bit size of the coded system

by a factor of RC. This reduction in bit size is justifiable only if the gain in

performance due to constrained coding is high enough to compensate the effect

of increased ISI. Therefore, the choice of the constrained code is dependent to

the parameters of the TDMR system as well as the detector.

Let SX ⊂ {−1,+1}N×N be a set of admissible N × N patterns for the

constraint C. An indicator function is defined as

f(x) =


1, x ∈ SX ,

0, other,

(3.7)

where x is a random pattern. Consider a set of bit cells a in the neighborhood
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of the cell (i, j) on the medium. Let xa be a 2-D input pattern indexed by the

elements of a, and fa(xa) be the indicator function of xa. fa is referred to as

a local constraint. As an example, the elements of a may correspond to the

set of 3 × 3 bit cells with the center bit (i, j). The indicator function of the

N ×N pattern is the product of all local constraints

f(x) =
∏
a

fa(xa). (3.8)

Here, we introduce the 2-D no isolated bit constraint which is utilized in the

simulations of this chapter.

2-D No Isolated Bits (n.i.b.) Constraint : The input patterns which is a 1

surrounded by −1’s and a −1 surrounded by 1’s are forbidden. This constraint

is known as the no isolated bit constraint. The local constraint for the (i, j)th

cell of the code is given as

fa(xi−1,j, xi+1,j, xi,j, xi,j−1, xi,j+1) =


0, xi−1,j = xi+1,j = xi,j−1 = xi,j+1 6= xi,j,

1, other,

(3.9)

where xi,j is the symbol written on the (i, j)th bit area of magnetic medium. In

the following, we explain our method for generating 2-D constrained sequences

achieving the 2-D noiseless capacity in the Appendix.

3.2.2 2-D Constrained Sequence Generator

In this subsection, we explain the main idea of using the GBP algorithm

for generating 2-D constrained sequences achieving the maximum entropy of
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Figure 3.2: Factor graph of a 4× 4 variable nodes with local constraints.

constraints. The GBP algorithm was utilized to estimate the 2-D noiseless

capacity for a wide family of constraints in [29] and [24]. In order to obtain

the capacity achieving distribution over the set of admissible patterns, the

GBP as a capacity estimation algorithm is utilized. Then, we generate 2-

D constrained sequences to write on a storage medium using the capacity

achieving distribution. In order to utilize the GBP algorithm for generating

2-D constrained sequences, we need to introduce some preliminary definitions.

We start introducing a graphical representation for the procedure as the GBP

is a message passing algorithm.

• The factor graph corresponding to a local constraint is a bipartite graph

consisting of a set of variable nodes Vi,j (information bits) and a set

of factor nodes fCi,j (local constraints) in which a variable node Vi,j is

connected to a factor node fCi,j if and only if Vi,j is an argument of fCi,j .

Fig. 3.2 shows an example of a factor graph for a 4× 4 bit grid

• The region graph of the given graphical model is generated according to

the cluster variation method [1]. In order to obtain the region graph, each

parent region is specified by a set of variable nodes which are connected

to the same factor node, i.e. for the set Ci,j the parent region Ri is

equal to {VCi,j , fCi,j}, where VCi,j = {Vi,j|(i, j) ∈ Ci,j}. The other sub-

regions are established by taking the intersection, the intersections of the
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intersection, and so on of the parent regions. The region graph of the

4×4 cell square of variable nodes with 3×3 spans of the local constraints

is established in Fig. 3.3.

• Beliefs of each region Ri is the product of all the local factors in that

region multiplied by all messages coming into region Ri from outside

region [1]. For each basic region Ri, we have 2|Ri| beliefs of all possible

cases for | Ri | variable nodes, in the binary domain, participated in the

parent region which is denoted by bRi(xRi) where xRi ∈ {−1,+1}|Ri|.

The belief function is a good approximation of the marginal probability

distribution of variables in a region.

The 2-D-noiseless channel capacity of a N × N array of 2-D constrained se-

quence is defined by

C2−D = lim
N→∞

log2(Z(N,N))

N2
, (3.10)

where Z(N,N), the 2-D partition function, specifies the number of legitimate

patterns of the size N×N which satisfy the constraint. We can obtain the 2-D

partition function by applying the GBP to the factor graph of a N×N variable

nodes with local constraints. Since the Helmholtz free energy is FH = − lnZ,

computing Z can be done by obtaining the region-based free energy estimate.

If the GBP algorithm is used to estimate beliefs of each region b(xRi) (or

the marginal probability of each region), region-based free energy F̂H can be

written as

F̂H =
∑
Ri∈R

cRi
∑
xRi

bRi(xRi)

(
ln bRi(xRi)− ln

∏
a∈AR

fa(xa)

)
, (3.11)
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Figure 3.3: A region graph of a 4 × 4 variable nodes generated utilizing the
parent to child scheme [1]

where R is the set of all regions, cRi is the counting number defined as

cRi = 1−
∑
S∈SRi

cS, (3.12)

where SRi is the set of regions which are super-regions of Ri, xRi is the set of

variables in Ri, and finally ARi is the set of local kernels in region Ri.

The main point is that the GBP as a capacity estimation algorithm provides

the distribution over the admissible input patterns S which achieves the 2-D

noiseless channel capacity of constraint. According to the definition of 2-D

partition function (the number of admissible patterns), we have

Z =
∑
x∈S

f(x), (3.13)

where f(x) is the indicator function. Then according to the above definition

and the Z obtained from the GBP algorithm, we can write

p(x) =
f(x)

Z
. (3.14)

where p(x) is the distribution achieving the capacity of constraint. Therefore,
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the probability distribution achieving the 2-D noiseless channel capacity with

constraint coding is

p(x) =


1
|S| , x ∈ SX ,

0, other.

(3.15)

Therefore, if we want to generate 2-D constrained sequences with maximum

entropy, we need to obtain beliefs of regions (or the marginal probability of

each region) which establishes the distribution p(x) over the set of admissible

patterns S. Notice that the beliefs of forbidden patterns become 0, or, equiva-

lently, the probability of occurrence of such patterns are 0. Then according to

the obtained belief distribution achieving the 2-D noiseless channel capacity,

2-D constrained sequences are generated to write on a storage medium.

In this following, we provide a heuristic approach in order to generated

constrained input with uniform distribution using the marginal probabilities

estimated by the GBP algorithm. Inputs of algorithm are the given constraint

C, the region graph R of a N ×N variable nodes incorporated within local

constraints, and the number of parent regions P of the region graph. We obtain

the approximation of marginal probability distribution (beliefs) of the parent

regions which achieve the constrained input with the uniform distribution for

a given local constraint.

It should be noted that the beliefs of parent regions are previously com-

puted and stored. Therefore, we define the steps of algorithm over the number

of parent regions P . The first step in generating constrained sequences is as-

signing values to the variable nodes of first parent region using the beliefs of

first parent region bR1(xR1), i.e., X1 ∼ bR1(XR1). At the i-th step, the values

to the variables of i-th parent region are assigned. For this purpose, we define

two sets of variable nodes for the parent region at step i:
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• XA
i is the set of variable nodes in the i-th parent region which were

assigned in the previous steps.

• XNA
i is the set of variable nodes in the i-th parent region which needed

to be assigned at this step.

In addition, the contribution of variables which will be assigned in the next

steps and are in the same parent region with the variables of set XNA
i must

be taken into consideration. We denote this set of variables with XN
i . The

distribution of XNA
i to generate constrained sequences at the i-th step is given

as

p(XNA
i |XA

i = xAi ) =
∑
xNi

p(XNA
i , XN

i = xNi |XA
i = xAi ). (3.16)

These conditional distributions on the right hand side are obtained using

the parent regions beliefs from GBP. The algorithmic description of GBP-based

constrained sequence generator is given in Algorithm 1.

3.3 Detection Scheme

The read-back signal is detected using a multi-track MAP detector based on

the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. The BCJR algorithm pro-

vides the a-posteriori probability (APP) for each symbol given the detector

input samples. The BCJR algorithm operates on the trellis representing the

noiseless channel output sequences. It recursively computes the forward state

metrics and the backward state metrics, which are combined with the branch

metrics to produce the APP of each symbol. A detailed description of the

BCJR algorithm can be found in [50].

In this study, we extend the BCJR algorithm to operate on the symbols
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Algorithm 1: The GBP-Based Constrained Sequence Generation Algo-
rithm

Input : R the region graph,

P the number of parent regions,

C the given constraint.

Output : x the constrained sequence.

Initialization:
for i = 1 to P do

bRi(xRi) = GBP(R, C);

for p = 1 to P do

if p = 1 then

XR1 ∼ bR1(xR1);

else

foreach xNi do

XNA
i ∼

∑
xNi

p(XNA
i , XN

i = xNi |XA
i = xAi ) ;

denoted by xCi,j = {xk,l|(k, l) ∈ Ci,j} instead of operating on the bit xi,j. xCi,j

denotes the information bits contributing to the readback sample yi,j, i.e., the

bits at Ci,j where Ci,j denotes the 3 × 3 region with (i, j) as its center. In

order to compute the bit error rate (BER) by using the BCJR algorithm, each

trellis branch b at time k is assigned the metric

µ(bk) = p(yi,j|bk)p(bk|xCi,j), (3.17)

where xCi,j is the starting (left-hand) 3 × 3 input state of bk and yi,j is the

output of the Voronoi channel corresponding to the input state xCi,j . In fact,

p(yi,j|bk) indicates the noise distribution of Voronoi channel.

As we assume the read-head response to be a 2-D truncated Gaussian

pulse which spans 3 × 3 bit areas, the media noise is only dependent on a

3 × 3 span of input data. Based on extensive simulations, the media noise
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distribution is shown to be close to the Gaussian distribution for most cases of

the input states of a 3× 3 bit region. Thus, we approximated the media noise

distribution of each state of input xCi,j , i.e. each 3 × 3 bit region, with the

Gaussian distribution with mean and variance dependent on input information.

Therefore, we have

p(yi,j|bk) =
1√

2πσ2
xCi,j

exp

(
−(yi,j − si,j −mxCi,j

)2

2σ2
xCi,j

)
, (3.18)

where mxCi,j
and σ2

xCi,j
are the mean and variance of the media noise for the

case of 3×3 input state xCi,j . For the case of ideal medium where the bit areas

are in the form of rectangles, the discrete read-head output or “ideal values”,

si,j, is obtained by convolving the magnetization pattern of the ideal recording

medium with the read-head impulse response and sampling at the center of bit

area in the down-track direction. The second term p(bk|xCi,j) of the branch

metric denotes the a-priori probability by which constrained sequences are

generated. The a-priori probabilities for all the forbidden input patterns by

the constraint are zero. The BER is obtained by applying the BCJR to the

given trellis.

3.4 Evaluation of Performance of 2-D Constrained Codes in TDMR

We have simulated the TDMR system at different combinations of parameters

denoted by TDMR(i), 1 ≤ i ≤ 4, as given in the Table 3.1. The parameters

chosen are realistic physical values and the parameter combinations TDMR(i)

differ only in the size of each bit.

Fig. 3.4 compares the performances of the TDMR(1) and TDMR(2) con-

figurations as a function of track-width in the absence of the electronic noise.
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Table 3.1: RSCT (RSDT) denotes the reader response span in cross-track (down-
track) dimension. CTC is assumed to be 7 nanometers. All the parameters in
the table are specified in nanometers. ? indicates that the parameter is varied
in the simulations.

TW BP RSCT RSDT TW50 PW50

TDMR(1) ? 7.5 30 21 20 14
TDMR(2) ? 7 30 21 20 14
TDMR(3) 16 7.5 30 21 20 14
TDMR(4) 16 7 30 21 20 14

In this comparison, the TDMR(1) configuration is used with unconstrained

input while the TDMR(2) configuration is used with the n.i.b. constraint on

the input sequences. To compensate for the rate loss due to the constrained

coding, the BP in TDMR(2) in relation to the BP in TDMR(1) is chosen to

match the rate of the n.i.b. constraint 0.9238, i.e.,

BPTDMR(2)

BPTDMR(1)

' 0.9238.

As it is shown in Fig. 3.4, using 2-D constrained sequences in TDMR systems

improves the performance by about an order of magnitude. Not only the rate

loss of constrained coding is compensated, but also an overall performance

gain is obtained. Near the BER of 0.1, a 10% gain in the performance of a

TDMR system is observed with storing only 2-D constrained sequences based

on the BER criterion.

We add the electronic noise to the readhead’s output of both TDMR(3)

and TDMR(4) systems in order to find the SNR trade-off point where the

2-D n.i.b. constraint can compensate the effects of both media and electronic

noises. The TDMR(3) is a constraint free system, but the TDMR(4)’s input

sequences obey the n.i.b. constraint. Similar to the previous experiment,

the BP of TDMR(4) is altered based on the rate of n.i.b. constraint. Let
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Figure 3.4: BER comparison of un-coded (TDMR(1)) and coded (TDMR(2))
systems with different bit areas and the same storage density in absence of
electronic noise. Constrained coding improves the performance by avoiding
the data patterns that result in high media noise
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Figure 3.5: BER comparison of un-coded (TDMR(3)) and coded (TDMR(4))
systems with different bit areas and the same storage density in the presence
of electronic noise. The impact of constrained coding is higher at high SNRs
as the media noise dominates the electronic noise in this region. SNRElec=10
dB is a trade-off point where the performance gain due to constrained coding
compensates the effects of both media and electronic noise.
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σ2
e denotes the variance of electronic noise which is assumed to be Gaussian

N (0, σ2
e) and statistically independent of the media noise components in two-

dimensions. The signal to noise ration corresponding to the electronic noise

was defined in (3.6), where V 2
p is the peak value of read-back signal. It can be

seen from Fig. 3.5 that the SNRElec =10 dB is the trade-off point between the

performance gains of n.i.b. constrained coding and the effects of electronic and

media noise. Constrained coding is targeted to handle the media noise, and

hence is suitable to use at high SNRs where the media noise dominates the

electronic noise. Therefore, at high SNRs, higher gains in BER performance

is observed with the n.i.b. constraint giving an overall improvement over the

TDMR(3) system.
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CHAPTER 4

Constraint Gain for TDMR Channels

The constraint gain [51] is defined as the gap between the ultimate channel cod-

ing performance, in which a code is designed to satisfy both channel constraints

and error correction code (ECC) constraints, and the average performance of

the schemes where ECCs are designed separately without considering chan-

nel constraints. In TDMR systems, reducing track size for achieving higher

areal densities results in significant signal-to-noise ratio (SNR) degradation

and makes the media noise predominant [42]. The main source of media noise

is transitions in the values of input bits written over neighboring bit cells in the

magnetic medium (which comes from the irregularities of grains’ boundaries

over the magnetic medium). Two-Dimensional (2-D) transition limited con-

straints, which are typically low pass in nature, are imposed on input arrays in

TDMR systems to mitigate the harmful effects of media noise. The benefits of

using constrained codes come at the price of code rate penalty. However, this

trade-off is a part of TDMR system design, balancing the operating SNR at

a desired areal density point, as well as, facilitating reduced complexity signal

detection by not allowing certain transitions in input data. Therefore, it is

important to address the challenging problem of finding the trade-off between

the rate loss of constrained codes and the ultimate performance gain of using

them in TDMR systems. In principle, the ultimate coding approach for such

data-dependent channels is to design a set of sufficiently spread codewords

that also satisfy channel constraints [52, 53]. Furthermore, designing channel

codewords satisfying both ECC and channel constraints is important as doing
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this would achieve the noisy constrained-input channel capacity of channel and

this is the maximum for the rate of any code for error-free transmission over

a noisy constrained channel [51]. However, in practice this is difficult and we

rely on sub-optimal methods such as forward concatenation method (standard

concatenation), reverse concatenation method (modified concatenation) and

combinations of these approaches [54–57].

In this chapter, we consider a Voronoi based channel model for TDMR sys-

tems as it gives a good trade-off between implementation complexity and the

accuracy of modeling the media noise distribution. Furthermore, we consider

a magnetic read-head which has a Gaussian sensitivity function that picks up

magnetization from neighboring bit-cells over the magnetic medium. We in-

vestigate the performance gain of 2-D constraints using a lower bound estimate

of the constraint gain for Voronoi based TDMR channels with realistic grain,

bit, track and head dimensions. According to [51], a lower bound estimate

on the constraint gain of a 2-D channel is the difference between the noisy

max-entropic and uniform input capacities of the channel. We use schemes

that employ the Generalized Belief Propagation algorithm for computing in-

formation rate estimates for TDMR channels [36, 58].

The chapter is organized as follows. In Section 4.1, we introduce the notion

of constraint gain for 2D channels with memory. The GBP-based max-entropic

information rate estimator is presented in Section 4.2. Furthermore, we inves-

tigate the accuracy of the GBP-based TDMR detector and information rate

estimator in Section 4.3. Section 4.4 includes the simulation results of con-

straint gain for the 2D no-isolated-bit constraint over Voronoi based TDMR

channels with different read-head and track dimensions.



58

4.1 Constraint Gain

In most of recording systems, some combinations of error correction and con-

strained codes are used to improve the performance. The design of joint error

correction and constrained codes, i.e., designing the set of error correction

codewords satisfying a constraint is a hard procedure. Mostly concatenations

of linear block codes and constrained codes are used to impose both the error

correction and channel constraints before recording on channels [54, 55]. For

this, it is important to study and understand the performance gain of these

methods in terms of capacity. In the following, we present the definition of a

2-D constraint and explain the notion of constraint gain, and uniform input

and max-entropic information rates.

A 2-D binary constraint SC is the union
⋃
m,n∈N S

m×n
C where Sm×nC denotes

the set of all m× n arrays satisfying some predefined constraints. We can

define the capacity of a 2-D constraint as follows

C2-D = lim
m,n→∞

1

m× n
log2 Z(m,n), (4.1)

where Z(m,n) indicates the number of admissible m× n binary arrays.

A binary error correction encoder generates N -length codewords, c, be-

longing to the set SNECC ∈ {0, 1}N , where N = m× n. The codewords are

arranged into 2-D arrays of size m× n. We are only interested in codewords

satisfying the given 2-D constraint over m× n arrays, i.e., the codewords

c ∈ SNECC ∩ Sm×nC . The number of possible codewords satisfying both error

correction and constrained code constraints is

1

N
log |SNECC ∩ Sm×nC |, (4.2)
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which is called the intersection rate in [51]. The intersection rate corresponds

to the recording rate of N -length block code SNECC which satisfy the constraint

C and is designed for a chennel with a parameter θ. In [51], the rate of average

intersection is defined as

Ravg ECC(C, θ) = lim
ε→0

lim
m,n,N→∞

1

N
logE

{
|SNECC ∩ Sm×nC |

}
, (4.3)

where the expectation is taken over long enough (N, ε) codes and ε is defined

as

Cap(θ)−RECC ≤ ε. (4.4)

Furthermore, Cap(θ) is the capacity of channel with the parameter θ

Cap(θ) = max
X

I(X;Y ), (4.5)

in which maximum is taken over all stationary process X, Y is the correspond-

ing output process and RECC is given by

RECC =
1

N
log
∣∣SNECC

∣∣ . (4.6)

Furthermore, Fan et al. in [51] showed that this rate of average intersection

can be obtained from

Ravg ECC = Cap(θ) + C2-D − 1, (4.7)

where Cap(θ) is the noisy capacity of the channel with unconstrained inputs

as given in Eq. (4.5), and C2-D is the noiseless channel capacity of constraint

C as given in Eq. (4.1). In fact, Ravg ECC is the rate of average scheme over
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all the schemes which jointly design ECC and constrained code codewords for

the channel with the parameter θ. The lower bound on the rate of average

intersection which is denoted by Rlower ECC is given by

Rlower ECC = max {Cap(θ) + C2-D − 1, 0} . (4.8)

Rlower ECC is the average rate of ECC (not necessarily linear codes) in which

the ECC is designed without knowledge of constraint. Now, we need to find

the maximum possible intersection rate to see how we can improve the lower

bound of average intersection rate Rlower ECC for a given channel.

We know the maximum achievable rate for a channel with constrained

inputs is determined by the noisy constrained channel capacity as

Cap(C, θ) = max
X∈SC

I(X;Y ), (4.9)

where the maximum is taken over all the stationary processes supported on

the constraint Sm×nC . A process is supported on a set of constrained sequences

if any finite sequence of strictly positive probability satisfies the constraint.

The noisy constrained capacity

Cap(C, θ) ≤ min{Cap(θ), C2-D}, (4.10)

as it can not exceed the maximum entropy of input, or, the noiseless channel

capacity of the constraint C2-D, and the noisy constrained channel capacity

can not be higher than the capacity of channel with unconstrained inputs

as the maximum in (4.9) is taken only over the stationary processes which

supported on Sm×nC . Similar to the average intersection rate, the maximum
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rate intersection is defined as follows

Rmax ECC = lim
ε→0

lim
m,n,N→∞

sup
1

N
log max

{
|SNECC ∩ Sm×nC |

}
, (4.11)

where the maximum is taken over all possible (N, ε) good codes. Clearly,

the maximum intersection rate can not be higher than the noisy constrained

channel capacity, i.e.,

Rmax ECC ≤ Cap(C, θ). (4.12)

The gap between the lower bound on the rate of average scheme and the

noisy constrained channel capacity, or, equivalently, the upper bound on the

maximum of intersection rate, is called the Constraint Gain for a channel with

parameter θ and can be obtained from

Constraint Gain(C, θ) = |Cap(C, θ)− Rlower ECC|. (4.13)

In fact, the Constraint Gain is the gap between the theoretical performance, in

which the code is designed to satisfy the constrained code and ECC constraints

and simultaneously this knowledge is exploited in the decoder, and the average

performance of the schemes, where the ECC is designed separately without

considering the constraint.

As it is well-known that computing the noisy constrained channel capac-

ity is a hard problem for wide classes of channels, instead of computing the

exact Constraint Gap, [51] proposed using the max-entropic capacity instead

of Cap(C, θ) in (4.13). Similar to (4.9), the max-entropic constrained capacity



62

for the channel can be defined as

Capmax entropic(C, θ) = I(Xmax, Ymax), (4.14)

where Xmax is the input of channel which satisfies the constraint and is gen-

erated using the max-entropic distribution and Ymax is the observation from

the channel when input Xmax passing through the channel. The max entropic

distribution can be obtained for constraints using message passing algorithms

presented in [24, 37, 59]. By substituting Capmax(C, θ) instead of Cap(C, θ) in

(4.13), we obtain an estimate of Constrained Gain as follows

Constraint Gain(C, θ) ' |Capmax entropic(C, θ)− Rlower ECC|. (4.15)

Here, we focus on methods providing an estimate of max-entropic information

rate for Voronoi based TDMR channels using the GBP algorithm, as explained

in the following.

4.2 Max-Entropic Information Rate

The max-entropic information rate of a Voronoi based TDMR channel with the

pdf p(y|x) is defined as the mutual information rate between the max-entropic

input and output as follows

Capmax(C, θ) = I(Xmax, Ymax), (4.16)

where Xmax is the input of channel which satisfies the constraint and is gen-

erated using the max-entropic distribution and Ymax is the read-back samples

from the Voronoi channel when input Xmax is written over the medium. Then,
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we have

I(Xmax, Ymax) = H(Ymax)−H(Ymax|Xmax), (4.17)

where the input distribution is the max-entropic distribution, i.e., p(x) =

1
|Sm×nC | and | . | indicates the cardinality.

The conditional entropy H(Ymax|Xmax) can be obtained analytically using

the media noise distribution p(y|x) and can be formulated as

H(Ymax|Xmax)
(a)
=
∑
(i,j)

H
(
Yi,j|Xmax = xCi,j

) (b)
= EXmax

1

2
log
(

2πeσ2
xCi,j

)
,

(4.18)

and

p (y|x) =
∏
(i,j)

p
(
yi,j|xCi,j

)
, (4.19)

EXmax is the expectation over all possible max-entropic inputs, and (b) is ob-

tained as the pdf of Voronoi channel is a Gaussian distribution. Therefore,

the problem of estimating the max-entropic information rate reduces to com-

puting the entropy rate of the received output Ymax. For this purpose, we use

the empirical averaging in the form of

H(Ymax) = −EYmax log p(y) ≈ − 1

L

L∑
l=1

log p(y(l)). (4.20)

where L is the number of samples y drawn according to p(y). The constrained

inputs are generated according to the distribution p(x) = 1
|Sm×nC | and the pdf

of channel is fixed for obtaining these L samples. Therefore, p(y(l)) can be
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computed using

p(y(l)) =
∑
x

p(x)p(y(l)|x) =
1

| Sm×nC |
∑
x

p(y(l)|x), (4.21)

where the right hand side equality is concluded by max-entropic distribu-

tion. Therefore, the problem of estimating the mutual information rate

of a Voronoi based TDMR channel reduces to the problem of computing∑
x p(y

(l)|x), computing the marginal probabilities of a the probability dis-

tribution function p(y(l)|x). We use techniques that incorporate the GBP

algorithm for computing marginal probabilities of a probability distribution

function [1, 24, 37] by finding an estimate of partition function of the factor

graph representing the probability distribution function. We denote the parti-

tion function of the factor graph corresponding to p(y(l)|x) by Z(y(l)), which

is Z(y(l)) =
∑

x p(y
(l)|x). We refer the reader to the original paper of GBP

algorithm for further details [1]. The output entropy computation concludes

to

H(Ymax) = − 1

L

L∑
i=1

log
( 1

| Sm×nC |
Z(y(l))

)
,

= log(| Sm×nC |)− 1

L

L∑
i=1

log(Z(y(l))). (4.22)

4.3 On the Accuracy of The GBP-based TDMR Detector and Information

Rate Estimator

The GBP algorithm provides a method to approximate marginal probibilities.

The GBP algorithm is known to give exact marginals if and only if the region

based graph has no loops [33]. In the sequel, we show that the GBP algorithm

provides the marginals that are empirically close to the actual MAP marginals

for our channel. In [24], GBP was used to estimate the capacity of certain 2D
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Figure 4.1: Hard-decision detection performance of a GBP detector versus
optimal (MAP) detector error probability in terms of average BER per bits as
a function of TW for a TDMR system. It should be noted that the GBP curve
has no markers, but the MAP performance points, represented by markers
alone, fall exactly on top of the GBP lines. The standard deviation of the
results is small.

RLL codes and it was shown that GBP capacity estimate for local constraints

are accurate (up to 3rd decimal place). Moreover, in [37], it was shown that

SIR, computed for the 2D Gaussian channels using the GBP-based algorithm

coincides with the lower and upper bounds of the SIR given by Chen and

Siegel [38].

Here, we evaluate the performance of the proposed GBP-based TDMR de-

tector and information rate estimator. For this purpose, we simulate a 6 × 6

2D ISI Voronoi channel. The boundary information bits are assumed to have

value (−1). Fig. 4.1 compares the hard-decision detection performance of the

optimal (MAP) detector and GBP-based TDMR detector in terms of average

BER per bit as a function of TW . As can be seen, the GBP error decreases

with TW and its performance is extremely close to the performance of MAP

detection. Moreover, apart from providing the correct hard decisions, GBP

infers the marginal probabilities. We observe empirically in all our exper-
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Figure 4.2: The KL-distance D(b(x)||p(x)) between the beliefs b(x) computed
using GBP and marginals of optimal MAP p(x) versus TW for a TDMR-based
Voronoi channel.

iments that the marginal beliefs in GBP are accurately approximated. In

order to investigate the accuracy of GBP-based TDMR information rate esti-

mator, we show how well the marginal beliefs from the GBP approximate the

MAP marginals using the KL-distance criterion. The KL-distance between

two discrete distributions p(x) and q(x) is defined as

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
. (4.23)

Fig. 4.2 shows the KL-distance between the marginal beliefs b(x) inferred from

GBP and the MAP marginals p(x) for the 6× 6 Voronoi channel of TDMR9.

As expected, based on the BER results shown in Fig. 4.1, the KL-distance

between b(x) and marginals of MAP is very small.

4.4 TDMR 2-D Constraint Gain Results

In this section, we present the max-entropic information rate and Rlower ECC

results for Voronoi based TDMR channels with different parameters. Similar
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Figure 4.3: Estimating the constraint gain for the 2-D n.i.b. constraint over
the Voronoi based TDMR channel with the parameters given in Table 4.1.

Table 4.1: RSx (RSy) denotes the reader response span in x-axis and y-axis directions, re-
spectively. All the parameters in the table are in nanometers. ? indicates that the parameter
varies in simulations.

TW BL RSx RSy PW50x PW50y

? 7 30 21 20 14
10 ? 30 21 20 14

to [58], we choose a read-head which has a Gaussian sensitivity function and

spans 3× 3 neighboring bit-cells over the magnetic medium. The parameters

of the read-head and the Voronoi channel used in simulations are given in

Table 3.1. The number of bit-cells in the x-axis and y-axis directions over the

medium is 20× 20.

In Fig. 4.3, different information rate curves are given for the 2-D n.i.b.

constraint over Voronoi based TDMR channels as functions of TW and BL.

The RLower curve is obtained by the symmetric information rate curve shifted

down by 1−C2-D n.i.b., where C2-D n.i.b. ' 0.9234 is an estimate to the noiseless

channel capacity of the 2-D n.i.b. constraint [60]. For some rate R, the

constraint gain is estimated by the horizontal distance between the curves for

Capmax Entropic and RLower ECC.
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CHAPTER 5

Deliberate Bit Flipping Coding Scheme

Constrained codes have been used to overcome effects of harmful patterns in

1-D information storage systems. In [61], a systematic approach for designing

1-D constrained codes known as the state splitting algorithm is established.

Marcus et al. used the results of the state splitting algorithm to design an

encoder in the form of a finite state machine and a sliding window decoder

with limited error propagation [62]. The theory of 1-D constrained coding is

mature as well as practical aspects of 1-D code and decoder design. However,

for the 2-D case it remains a challenge to design efficient, fixed-rate encoding

and decoding algorithms (due to difficulty of certain problems that link to 2-D

constraints compared to to the 1-D case [63, 64]). A number of variable-rate

encoding methods have been proposed for 2-D constrained channels, including

bit-stuffing encoders [60, 65–67] and tiling based encoders [68, 69]. Further-

more, various row-by-row coding methods for specific 2-D constraints were

presented in [70, 71]. Most of such 2-D constrained coding schemes have

been proposed to achieve tighter bounds on the Shannon noiseless channel

capacity of constraints. However, these schemes are non-linear, and their en-

coder/decoder has a memory such that over noisy channels single channel bit

errors may cause a decoder to lose track of encoded bits and therefore propa-

gate errors indefinitely without recovering.

In order to address the issue of error propagation in conventional con-

strained coding methods, Vasić and Pedagani proposed an alternative ap-

proach in [72], known as deliberate bit flipping (DBF), for applying binary
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1-D (0, k)-RLL constraint to error correction codewords (when k is large e.g.,

k = 15) to overcome the non-linear effects of 1-D constrained codes. Using a

(0, k)-RLL constraint monitor, a deliberate bit error is introduced into an error

correction codeword whenever the number of consecutive zeros in the codeword

reaches k. The method only relies on the capability of the ECC to correct both

the deliberate errors and channel errors at the receiver. In [73–75], the prob-

lem of number of deliberate bit errors for imposing (0, k)-RLL constraint into

low-density parity-check (LDPC) codewords was partially addressed. Never-

theless, there is no attempt to minimize the number of bit flips for removing

the forbidden configurations by the 1-D (0, k)-RLL constraint from a given

binary codeword. Moreover, the main problem with the DBF method intro-

duced in [72] still is the number of deliberate bit errors that may overwhelm

the ECC decoder and affect the error-floor performance (which limits its ap-

plications). Therefore, the key role of the DBF module should be to keep the

number of flips small enough to not overburden the error correction decoder.

The problem is also much more difficult for the 2-D case, and it is a challenge

to design efficient algorithms for identifying harmful configurations in channel

input patterns, let alone the problem of minimizing the number of bit flips.

In this chapter, we reformulate the problem of minimizing the number of

bit flips in the DBF scheme for removing harmful configurations from 2-D

channel input patterns as a constrained combinatorial optimization problem.

Furthermore, we design a (GBP)-guided DBF algorithm for identifying 2-D

harmful configurations and removing them with minimal number of flips. In

order to use the GBP algorithm, we present a probabilistic graphical model

for the constrained combinatorial minimization problem using the factor graph

formulation in [1]. In this framework, patterns which do not contain harm-

ful configurations are assumed to be uniformly distributed, and each pattern
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containing a harmful configuration has zero probability. In this way, we re-

formulate the problem as a 2-D maximum a posteriori (MAP) problem, and

demonstrate that the GBP algorithm can approximately solve this 2-D MAP

problem. In order to study and analyze the performance of our proposed

method, we introduce a binary 2-D channel with memory which captures the

effect on an information bit from its surrounding patterns, i.e., the neighbor-

ing bits. These collections of adjoining bits are called polyominoes, objects

studied in combinatorial mathematics [76]. The channel is viewed by a binary

square tiling of a square lattice, where an information bit (0 or 1) is modeled

by a white or black tile on the square lattice. The channel is characterized

by rules defined by a set of configurations with a specific shape, which we call

the set of harmful configurations. At the channel output, the probability of

error for tiles contained in any of the harmful configurations are larger than for

the other tiles. We evaluate the performance of the GBP-guided DBF method

over the introduced channel where the 2-D isolated-bits configurations are con-

sidered as the channel harmful configurations. Furthermore, the performance

of the DBF method for 2-D no isolated-bits (n.i.b.) constraint on a memo-

ryless binary symmetric channel (BSC) is compared with the row-by-row and

bit-stuffing based 2-D n.i.b. encoders, presented in [60] and [77], respectively.

The rest of this chapter is organized as follows. Section 5.1 presents the

notations and definitions used throughout the paper. In Section 5.2, the data-

dependent channel model is introduced. In Section 5.3, the problem of min-

imizing the number of flipped bits in the DBF method is formulated. In

Section 5.4, we reformulate the minimization problem as a 2-D MAP problem,

and explain the ideas of using the GBP algorithm for solving this problem.

Numerical results are presented in Section 5.5.
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5.1 Tilings and Polyominoes

We denote a discrete random variable with an upper case letter (e.g., X) and

its realization by the lower case letter (e.g., x). We denote the probability

density function of X with p(x) and the conditional probability density func-

tion of Y given X by p (y|x). [n1 : k : n2] represents the set of real numbers

{n1, n1 + k, n1 + 2k . . . , n2}, and [n] denotes [1 : 1 : n]. We denote a random

array of size m× n by X = [Xi,j]i∈[m],j∈[n]. An array of binary symbols with

size m× n is denoted by x = [xi,j]i∈[m],j∈[n] where xi,j ∈ {0, 1} is the (i, j)th

component of array. Am,n = {(i, j) ∈ Z2 : i ∈ [m] and j ∈ [n]} denotes the

index set of an array of size m× n and is the subset of the 2-D lattice Z2. The

Hamming weight of an array x of binary symbols is determined by

wH(x) =
∑
xi,j∈x

1{xi,j = 1}, (5.1)

where 1{.} equals one (respectively, zero) when its argument is true (re-

spectively, false). The XOR operation between two binary arrays (x and y

of size m× n) is done component-wise, i.e., x ⊕ y = (zi,j)i∈[m],j∈[n] where

zi,j = xi,j ⊕ yi,j, and xi,j and yi,j are the (i, j)th component of x and y, respec-

tively. Furthermore, the Hamming distance between x and y is determined by

dH(x,y) = wH(x ⊕ y). A binary BCH code of length N with N −K parity

bits and minimum distance dmin is denoted by BCH-[N,K, dmin].

A tiling of the plane is a collection of plane figures that fills the plane

with no overlaps and no gaps. The plane figures used as building blocks for

tilings are called tiles. A polyomino of order k, called also a k-ominoe, is a

plane geometric figure formed by joining k neighboring square tiles. Among
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(a) (b)

Figure 5.1: Two examples of polyominoes: (a) a 2× 2 square and (b) a cross.

polyominoes are 2× 2 square-shaped polyominoes

Q�(i, j) = {(i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)} , (5.2)

and cross-shaped polyominoes

Q+(i, j) = {(i, j − 1), (i− 1, j), (i, j), (i, j + 1), (i+ 1, j)} , (5.3)

over the 2-D lattice Z2, which are shown in Fig. 5.1.

A tiling is said to be colored or labeled if each of its tiles is assigned a

color/symbol from a finite set of colors/symbols. A binary coloring or labeling

employs black and white tiles. A colored tiling is also referred as a pattern or

a configuration. A square binary tiling of an m× n rectangle (m× n binary

pattern) is denoted by x = [xi,j]i∈[m],j∈[n], where xi,j indicates the color of tile

in i-th row and j-th column, and xi,j = 0 represents a white tile and xi,j = 1 a

black tile. Consider a k-ominoe P and the set of all 2k binary configurations

of that shape XP . We refer to them as to P-shaped configurations and denote

them by xP .

Consider the tile (i, j) over an m× n rectangular pattern x, then the union

of all P-shaped polyominoes that intersect with this tile is denoted by Pi,j. The

configuration of Pi,j is denoted by xPi,j . For the cases of 2× 2 square-shaped

and cross-shaped polyominoes, we have



73

P�
i,j =

⋃
(i′,j′)∈Q�(i−1,j−1)

Q�(i′, j′), (5.4)

and

P+
i,j =

⋃
(i′,j′)∈Q+(i,j)

Q+(i′, j′), (5.5)

respectively. Fig. 5.2 shows Pi,j for these polyominoes.

(a) (b)

Figure 5.2: Figure demonstrates Pi,j over a rectangle when the polyomino is:
(a) a 2× 2 square and (b) a cross.

5.2 Channel Model

In this section, we introduce a communication channel transmitting binary

rectangular patterns and producing as an output a binary pattern. Passing

through the channel, a tile is in error if its color gets inverted. The channel is

data-dependent and characterized by rules defined by a set of binary configu-

rations of a P-shaped polyomino. We call this set of P-shaped configurations

the set of harmful configurations. At the channel output, the error probability

of binary tiles contained in configurations which belong to the set of harmful

configurations is larger than the other tiles. Therefore, the channel has states

and its error statistics depends on input binary patterns. In the following, we

formally present error and state characterizations.

The input and output alphabets X and Y are two sets of binary rectangular
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patterns of size m× n. An m× n binary pattern x = [xi,j]i∈[m],j∈[n] is chosen

randomly and uniformly from X as an input to the channel. The channel out-

put, y = [yi,j]i∈[m],j∈[n] ∈ Y , is also a binary pattern of size m× n. For the tile

(i, j), Pi,j denotes the union of P-shaped polyominoes that intersect with this

tile, and xPi,j is the configuration of Pi,j, as defined in Section 5.1. We assume

that the set of all possible configurations for Pi,j, denoted by XPi,j , can be

partitioned into two disjoint subsets XG
Pi,j and XB

Pi,j , i.e., XPi,j = XG
Pi,j
⋃
XB
Pi,j ,

where XB
Pi,j is the set of configurations containing P-shaped configurations

which are harmful for the channel. For example, XB
Pi,j can be the set of binary

configurations of Pi,j given in Fig. 5.2(b), which contains the 2-D isolated-bit

patterns.

For a binary tile xi,j contained in a harmful P-shaped configuration, the

channel is in the bad state, and the probability of error is αb. However, passing

though the channel, a binary tile that does not belong to a harmful configura-

tion is in error with a probability of αg, and the channel is in the good state.

We assume that αb � αg, or, in other words, the probability of error for tiles

contained in a harmful configuration is much larger than that of the other tiles.

The received binary pattern is y = x⊕ eCH, where eCH = [eCH
i,j ] is the channel

error array and denotes the locations of tiles whose colors are inverted passing

through the channel. Therefore, eCH
i,j has either Bernoulli(αg) or Bernoulli(αb)

distribution, depending on the pattern xPi,j . In fact, the channel is a binary

symmetric channel (BSC) with crossover probability αb when xPi,j ∈ XPBi,j and

a BSC with crossover probability αg when xPi,j 6∈ XPBi,j , respectively.

We define an indicator function for the channel fCH : XPi,j → {0, 1} over

every tile (i, j),

fCH

(
xPi,j

)
= 1

{
xPi,j ∈ XPBi,j

}
, (5.6)
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Figure 5.3: A schematic representation for the channel model is given. Passing
through the channel, the color of tile xi,j inverts with probability αb if the con-
figuration of Pi,j, xPi,j , belongs to the set of harmful patterns XB

Pi,j , otherwise
it inverts with a probability of αg.

to identify tiles which are contained in harmful configurations, where the

tile (i, j) belongs to at least one harmful configuration if fCH

(
xPi,j

)
= 1. Using

the above indicator function, we can determine the channel state for transmis-

sion of tile (i, j) as follows where “b” and “g” stand for the bad and the good

channel states, respectively. Let the probability distribution function of chan-

nel to be p(y|x). According to the aforementioned error characterization, the

probability distribution function of channel can be factored into

p(y | x) =
∏
(i,j)

p
(
yi,j|xPi,j

)
, (5.7)

since the configuration of output tile yi,j only depends on the configuration

of Pi,j in the input pattern x. Fig. 5.3 gives a schematic illustration for the

channel.

Remark 1 The theory of domino tilings of lattices are widely used in data

storage applications for capacity estimation and constrained coding, some no-

table examples are [69,78–80]. This is due to the fact that the theory of domino

tilings is well studied [81–84]. In this paper, we only focus on 4-ominoes and
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5-ominoes, as these reflect physical effects of 2-D ISI over the plane. For

this purpose, we defined the square and cross shaped polyominoes in (5.2) and

(5.3).

Remark 2 The channel is similar to the Gilbert-Elliot channel [85], as it

has two states, where in each state acts as a BSC with a different cross-over

probability. However, the state transitions in our channel model depend on

input patterns. For such channels, calculating the information rate, let alone

the capacity, is much more challenging than for discrete memoryless channels.

Except for very special cases, there are no simple expressions for information

rates available, and so, one needs to rely on upper and lower bounds and/or on

stochastic techniques for estimating the information rate, examples are [86–88].

Remark 3 The probability that the channel is in the bad state (or, in the good

state) depends on the input probability distribution. If we assume that input

bits are i.i.d., then there is no Markovian assumption on the channel states.

The probability that the channel is in the bad state for sending the tile (i, j) is

p (si,j = b) = p
(
fCH

(
xPi,j

)
= 1
)

=
|XB
Pi,j |
|XPi,j |

, (5.8)

as the patterns are chosen randomly and uniformly, and in the good state is

p (si,j = g) = 1− p (si,j = b). For different input probability distributions, this

probability can be computed accordingly. Throughout the paper, we do not

consider any Markovian properties on input tiles.

In the following, we present an example of an input binary pattern to the

channel, where the 2-D isolated-bits patterns are the harmful patterns for the

channel, to illustrate the effects of harmful patterns on input tiles passing

through the channel.
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Figure 5.4: A 7× 7 binary pattern x is transmitted through the channel with
the set of 2-D isolated-bits patterns as the set of harmful patterns. The tiles
(2, 6), (3, 5), (3, 6), (3, 7), (4, 6), (6, 7), (7, 6) and (7, 7) belong to the 2-D
isolated-bits patterns. Passing through the channel, the probability of error
for these tiles is αb, and for the rest of tiles is αg.

Example 1 Fig. 5.4 shows an example of a 7× 7 input binary pattern x trans-

mitted over the introduced channel. We assume that the set of harmful patterns

for the channel is the set of 2-D isolated-bits patterns. In order to determine

the channel state for all tiles over the pattern, we assume zero entries (white

tiles) outside of x, i.e., xi,j = 0, while i < 1, j < 1, i > 7, or j > 7. There

are two isolated-bits patterns in x, which are xQ+(3,6) and xQ+(7,7). Passing

through the channel, the tiles contained in these two harmful configurations

are in error with a probability of αb. These tiles are (2, 6), (3, 5), (3, 6), (3, 7),

(4, 6), (6, 7), (7, 6) and (7, 7). For instance, for the tile (2, 6),

P2,6 =
⋃

(i′,j′)∈Q+(2,6)

Q+(i′, j′). (5.9)

Since Q+(3, 6) ⊂ P2,6 and xQ+(3,6) is a 2-D isolated-bits pattern, we have

the fact that xP2,6 contains a 2-D isolated-bits pattern, and therefore, the tile

(2, 6) is in the bad state. Similarly, we can check this for the rest of tiles in x.
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5.3 Problem Formulation

The user uniformly and randomly selects a binary message m out of 2K mes-

sages denoted by M = {m1,m2, . . . ,m2K}, where each message is of length

K ∈ N. The user message m is first encoded by an error correction encoder

with rate R = K
N

. The error correction encoding function φECC :M→ SNECC

assigns a binary codeword c(m) of length N to the user data m such that

c(m) = φECC(m), (5.10)

where SNECC = {c(m1), c(m2), . . . , c(m2bNRc)} is the codebook (the set of bi-

nary codewords of length N) associated with the ECC being used. A code-

word c ∈ SNECC is represented by N binary symbols, c = (c1, c2, . . . , cN), and

N = m× n. Each codeword is arranged into an array x of size m× n, such

that x = [xi,j]i∈[m],j∈[n], and xi,j = c(i−1)m+j. The array x can be considered

as a binary rectangular pattern of size m× n. We want to send the pattern

x over the communication channel in Section 5.2, with the list of harmful

configurations XB
Pi,j . Assuming that αb � αg, then binary tiles contained in

configurations of list XB
Pi,j are more prone to error than the other tiles. To

overcome effects of harmful configurations, we use a deliberate error insertion

approach to remove the harmful configurations from the input pattern x before

transmission through the channel. Whenever there is a configuration from the

list XB
Pi,j in the input pattern x, the color of selected tiles in x are inverted

to remove the harmful configurations. We denote the set of m× n binary

patterns which do not contain the harmful configurations by S. For the 7× 7

pattern x in Example 1, we can remove the 2-D isolated-bits patterns from

the given 7× 7 binary pattern by inverting the colors of tiles (3, 6) and (7, 7).

This method of eliminating harmful configurations from binary patterns with
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inverting the color of tiles can be viewed as the mapping φ from the set of

m× n binary patterns X to a set of m× n binary patterns S that do not

contain the harmful configurations. The mapping function φ : X → S assigns

an m× n binary pattern x̂ to the input pattern x so that

x̂ = φ(x). (5.11)

Let θ : X → {0, 1}m×n be the function selecting tiles whose colors need to be

inverted for removing the harmful configurations from the pattern x. Using

the function θ, we define eDBF to identify the positions of tiles whose colors

are inverted,

eDBF = θ(x) = [eDBF
i,j ]i∈[m],j∈[n], (5.12)

where eDBF
i,j = 1 if the color of (i, j)-th tile is inverted, otherwise, eDBF

i,j = 0.

Therefore, x ⊕ eDBF does not contain any P-shaped harmful configurations

from the list XB
Pi,j . Furthermore, we have

φ(x) = x⊕ θ(x), (5.13)

and the number of tiles whose colors are inverted is equal to wH(eDBF). Now,

x̂ is transmitted over the channel instead of x, and the m× n binary pattern

y is received. We identify the locations of channel errors by the array eCH

which is x̂ ⊕ y. Then, if the chosen message is m, since y = x̂ ⊕ eCH and

x̂ = x(m)⊕ eDBF, we have

y = x⊕ eCH ⊕ eDBF. (5.14)

Naturally, such an encoder will have a corresponding decoder (let us denote

the decoder by ψ). The decoder ψ assigns an estimate of m̂ ∈M to each
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received pattern y from the channel such that

ψ : Y →M, (5.15)

where m̂ = ψ(y).The performance of this deliberate error insertion method is

measured by the probability that the estimate of the message m̂ is different

from the actual message m. Let λm = p(m̂ 6= m|m) be the probability of

error given that the actual message is m. Then, the average probability of

error is given by

p(N)
e = p(m̂ 6= m) =

∑
m∈M

λmp(m)
(a)
=

1

2bNRc

∑
m

λm, (5.16)

where (a) comes from the fact that m is chosen uniformly from the set M

and |M| = 1
2bNRc

. A rate R is said to be achievable if, given an ε > 0, there

exists an Nε such that p
(Nε)
e ≤ ε. The capacity of the method is defined as the

supremum over all achievable rates.

We assume that the decoder ψ is a bounded-distance decoder which should

ideally be able to retrieve the binary user data from the received pattern y for

every message m ∈M. This bounded-distance decoder can correct the error

patterns with Hamming weights lying within the error correction capability of

the code, i.e., if

dH (x(m),y) ≤ bdmin − 1

2
c, (5.17)

where dmin is the minimum distance of the code, the decoder should be able to

correct the errors. There are two types of errors in this communication system

with the deliberate error insertion method. The first type is the deliberate

errors for removing harmful configurations from the input pattern. The sec-

ond is the channel errors which may have or may not have overlaps with the
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deliberate errors. Since appearances of harmful patterns in the input pattern

dominate the channel errors, we can assume that wH
(
eCH

)
' 0 after remov-

ing harmful patterns from the input pattern. Under this assumption, we have

y ' x⊕ eDBF and

dH (x,y) ' dH
(
x,x⊕ eDBF

)
= wH(eDBF). (5.18)

Therefore, if wH(eDBF) ≤ bdmin−1
2
c, the decoder can correct the errors. For

this case, the probability of error for retrieving the message m and the average

probability of error are approximately

λm = p(m̂ 6= m |m) ' p

(
wH(eDBF) >

⌊dmin − 1

2

⌋∣∣m) , (5.19)

and

p(N)
e ' 1

2bNRc

∑
m

p

(
wH(eDBF) >

⌊dmin − 1

2

⌋∣∣m) , (5.20)

respectively. In the following remark, we discuss the channel noiseless assump-

tion after removing harmful configurations.

Remark 4 The theory of constrained coding began with Claude Shannon’s

classical 1948 paper [28], “A Mathematical Theory of Communications.” In

his setting, the channel “seen” by a constrained encoder/decoder is noiseless.

Strictly speaking, this is not a realistic assumption because constrained coding

is in practice used on noisy channels. In other words, even if the constraint is

satisfied, bits can be in error. The probability of error is thus data-dependent.

This assumption which is also used here is a generalization of the assumption

made in Shannon’s paper.

Now, the goal is to minimize the average probability of error in 5.20. There

may be different choices of deliberate errors eDBF that can remove the harmful
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configurations from the input pattern, but some of them may exceed error

correction capability of the code. The first challenge is to not overburden

the decoder with inverting tiles more than the number of errors that the de-

coder can correct. Ideally, the tile selection function needs only to search for

deliberate error patterns with Hamming weight lying within the error cor-

rection capability of the code being used. However, there may exist an input

pattern/patterns where the number of deliberate bit errors required for remov-

ing harmful configurations exceeds the error correction capability of the code.

Therefore, the coding method in this case might not be capacity achieving,

and the probability of error correspondingly might be non-zero for some input

patterns. The second challenge of using the deliberate error insertion method

is to find the error pattern which has the minimum Hamming weight among

the error patterns that can remove the harmful configurations, or, equivalently,

wH
(
eDBF

)
should be minimized for each message m ∈M. Therefore, the roles

of the tile-selection function θ are (i) to identify and remove the harmful con-

figurations XB
Pi,j from a given input pattern and (ii) to find the error pattern

which can remove the harmful configurations and has the minimum Hamming

weight. It is worth mentioning that the overall performance of system is a

function of dmin of the code being used and depends on the choice of ECC,

not the DBF method by itself. In the following, we characterize the role of

tile-selection function θ.

For the input pattern x, let Ex be the set of all error patterns that can

remove the P-shaped configurations from the input pattern x, i.e.,

Ex =
{
eDBF|x̂ = x⊕ eDBF ∈ S

}
. (5.21)

In order to minimize the average probability of error in 5.20, we need to find
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an error pattern e?DBF which has the minimum Hamming weight among the

error patterns in Ex, or another word,

e?DBF = arg min
eDBF∈Ex

{
wH(eDBF)

}
. (5.22)

This problem can be regarded as a combinatorial optimization problem in

which one needs to find an array eDBF minimizing wH(eDBF) subject to the

constraint that eDBF ∈ Ex.

In the following, we provide examples of BCH-[15, 5, 7] codewords that

are arranged into 3× 5 arrays, as they help to explain the concepts we have

introduced so far. We want to characterize the above constrained minimization

problem for removing forbidden configurations by 2-D n.i.b. constraint from

the 2-D arrays.

Example 2 We assume that the user messages are the following binary vec-

tors of length 5, m1 = (0, 1, 0, 0, 0), m2 = (1, 0, 0, 0, 0), m3 = (0, 1, 1, 1, 1) and

m4 = (0, 1, 1, 0, 1), and are encoded by the triple-error correcting BCH-[15, 5, 7]

code. We have the codewords

c1 = (0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0) ,

c2 = (1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1) ,

c3 = (0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0) ,

c4 = (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0) , (5.23)

of length 15 which are then arranged into 3× 5 arrays as four different pat-

terns. The patterns are shown in Fig. 5.5, where the first row of each pat-

tern is equipped with its corresponding user message. We only consider these

four patterns out of 32 possible patterns by BCH-[15, 5, 7] code as they cover
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all different tile colors inverting scenarios using the deliberate error insertion

method.

Figure 5.5: The input patterns for Example 2. We assume white tiles (zero
entries) outside of each input pattern.

We are interested in removing 2-D isolated-bits configurations entirely from

the above patterns with inverting colors of minimal number of tiles. In other

words, the goal is to find the error pattern eDBF for each input pattern x which

has the minimum Hamming weight and x⊕ eDBF does not contain any of the

2-D isolated-bits configurations. Therefore, we have

e?(a) =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , e?(b) =


0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

 ,

e?(c) =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

 , e?(d) =


0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

 . (5.24)

In Fig. 5.5(a), the pattern does not contain any of the 2-D isolated-

bits configurations, therefore there is no need to invert the tile colors, and

wH(e(a)) = 0. The pattern in Fig. 5.5(b) contains only one 2-D isolated-bits

pattern, which is xQ+(2,3). One can remove this 2-D isolated-bits pattern by in-

verting the color of any one of the tiles in Q+(2, 3), and therefore wH(e(b)) = 1.

For the pattern in Fig. 5.5(c), there are two overlapping 2-D isolated-bits pat-
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terns, which are xQ+(2,3) and xQ+(3,3). These two isolated-bits patterns can be

removed simultaneously by inverting either the color of tile (2, 3) or (3, 3), and

therefore for this case also wH(e(c)) = 1. In Fig. 5.5(d), the pattern contains

two non-overlapping 2-D isolated-bits patterns, which are xQ+(1,5) and xQ+(3,4).

One needs to invert at least colors of two tiles over this input pattern, and for

this case wH(e(d)) = 2. For the systematic BCH-[15, 5, 7] code (where the code-

words are arranged into 3× 5 arrays and the first row is equipped with the user

bits), in average it needs to flip 0.6563 bits/pattern to remove the forbidden

configurations by the 2-D n.i.b. constraint.

In the following, we provide remarks on the difficulty of the constrained

minimization problem in the DBF method, and the difference of this method

with conventional constrained coding methods.

Remark 5 Finding the error pattern which removes a given set of 2-D con-

figurations from a 2-D pattern and has the minimum Hamming weight via an

exhaustive search among all admissible error patterns can be computationally

prohibitive for large patterns. The above deliberate error insertion method can

be regarded as a procedure for finding the minimum number of inversion oper-

ations required for converting a binary pattern to another binary pattern which

does not contain any of channel forbidden configurations. This problem can be

considered as a sub-class of Levenshtine distance problem [89], which is known

as a hard combinatorial problem.

Remark 6 It is worth mentioning that problems related to 2-D constrained

coding are in general difficult, as mainly it is hard to enumerate the patterns

satisfying a 2-D constraint and having a uniform distribution, or, achieving

the Shannon’s noiseless channel capacity of the constraint. Let’s denote this

set of uniformly distributed patterns which satisfy the constraint by S. The
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probability distribution achieving the 2-D noiseless channel capacity (or the

maximum entropy of constraint) is

p(x̂) =


1
|S| , x̂ ∈ S,

0, other.

(5.25)

Therefore, the patterns in the set S are equiprobable. In our method, instead

of enumerating the patterns in S (the way of conventional constrained coding

methods), for a given input pattern x (which may or may not be in S), we try

to find an x̂ ∈ S which minimizes wH(x⊕ x̂).

In the following section, we reformulate this minimization problem with

a probabilistic graphical formulation to cater the possibility of using message

passing algorithms for finding approximate solutions.

5.4 A Probabilistic Graphical Formultion for Minimzing Bit Flips

In this section, we devise a probabilistic graphical formulation for the problem

of minimizing the number of bit flips in the DBF method. The probabilistic

graphical model of the problem defines a uniform distribution over S where

each pattern containing any of harmful configurations has zero probability.

In this framework, the Hamming distance metric is translated with Binomial

expression, and for a given input pattern x, the constrained minimization

problem becomes a 2-D maximum a posteriori problem. We use GBP, as a

MAP inference method, to find approximate solution for marginal probabilities

with minimizing the Bethe free energy (using the region based approximation

method), and therefore an approximate solution for the problem of minimizing

the number of flipped bits in the DBF scheme.

For a given binary pattern x ∈ X , the problem is to find an assignment,
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x̂ ∈ S, that has the minimum Hamming distance with x, or, equivalently,

minimizes wH(x̂⊕ x). Since wH(x⊕ x) = 0, if the pattern x ∈ S, the optimal

answer is x itself, i.e., there is no need to flip bits in x. For the case x 6∈ S,

we need to calculate the Hamming distance between each x̂ ∈ S and x, which

can be intractable for large pattern. As it can be verified for each tile (i, j)

locally over a finite neighborhood of tiles Pi,j whether the tile is contained in

a harmful pattern of the set XB
Pi,j , we define a local distortion function D for

each tile (i, j) over Pi,j to compute the Hamming distance between different

x̂ ∈ S and the given input x locally as follows. For every tile (i, j) ∈ Am,n,

the function D : {0, 1}|Pi,j | × {0, 1}|Pi,j | → N is defined over the tiles indexed

by Pi,j as follows

D
(
x̂Pi,j ,xPi,j

)
=


wH
(
x̂Pi,j ⊕ xPi,j

)
, x̂Pi,j 6∈ XB

Pi,j ,

∞, x̂Pi,j ∈ XB
Pi,j ,

(5.26)

where wH
(
x̂Pi,j ⊕ xPi,j

)
is the Hamming distance between x̂Pi,j and xPi,j , and

the patterns belonging to the set of harmful patterns are specified by ∞. We

should note that there can be different configurations of x̂Pi,j 6∈ XB
Pi,j which

have the same Hamming distance with xi,j. One may use the outputs of

D for the tiles (i, j) ∈ Am,n to find x? ∈ S which has the minimum Hamming

distance with x. This process can be intractable for large patterns as it needs to

compute the output of D for every tile (i, j) ∈ Am,n, which has 2|Pi,j | different

configurations, and take exponentially large memory just to store. In the

following, we present a probabilistic formulation using a graphical model to

find approximate solution for this problem using the GBP algorithm.

In order to present a probabilistic formulation for the distortion indica-

tor function defined in (5.26), we use the binomial expression to translate
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the Hamming distance metric into the probability domain. We assume that

the color of each tile contained in a harmful configuration is inverted with

the probability 0 < λ ≤ 1. For every tile (i, j) ∈ Am,n, we define a function

Dp : {0, 1}Pi,j × {0, 1}Pi,j → R[0,1] over the tiles indexed by Pi,j,

Dp(xPi,j , x̂Pi,j) =


λwH(ePi,j )(1− λ)|Pi,j |−wH(ePi,j ), x̂Pi,j 6∈ XB

Pi,j ,

0, x̂Pi,j ∈ XB
Pi,j ,

(5.27)

where ePi,j = x̂Pi,j ⊕ xPi,j and |Pi,j| indicates the number of tiles in Pi,j. This

function is called as the local probabilistic distortion function. For each tile

(i, j) ∈ Am,n, the distortion now is defined as the probability of having a dis-

torted pattern xPi,j which has the Hamming distance wH(x̂Pi,j ⊕ xPi,j) with

x̂Pi,j 6∈ XB
Pi,j . When x̂Pi,j ∈ XB

Pi,j , this probability is zero, as we are looking for

patterns which do not belong to the set of harmful patterns. For a given input

pattern x and a set of forbidden patterns XB
Pi,j , we are now interested in find-

ing x̂ ∈ S maximizing p (x̂|x), which is equivalent to finding x̂ that minimizes

wH (x̂⊕ x). In another word, we want to find

x̂ = arg max
x̂∈S
{p(x̂|x)} . (5.28)

The a-posteriori probability p (x̂|x) for a fixed λ is

p (x̂|x) =
p (x|x̂) p (x̂)

p (x)

(a)
∝ p (x|x̂)

(b)
=

∏
(i,j)∈Am,n

p
(
xi,j|x̂Pi,j

)
,

(c)
=

∏
(i,j)∈Am,n

λ
1{x̂Pi,j∈X

B
Pi,j
}
(1− λ)

1−1{x̂Pi,j∈X
B
Pi,j
}
,

(5.29)
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where (a) comes from this fact that the a-priori probability of choosing each

pattern x̂ ∈ S is equiprobable, (b) is established as for each tile (i, j) we can

determine locally over Pi,j that the tile is contained in a harmful pattern,

and (c) is obtained based on the definition of the local probabilistic distortion

function, given in (5.27). Therefore, we have

p (x̂|x) =
1

Z(x)

∏
(i,j)∈Am,n

λ
1{x̂Pi,j∈X

B
Pi,j
}
(1− λ)

1−1{x̂Pi,j∈X
B
Pi,j
}
, (5.30)

where the normalization constant Z(x), so called the partition function, is

given by

Z(x) =
∑

x̂∈{0,1}m×n

∏
(i,j)∈Am,n

λ
1{x̂Pi,j∈X

B
Pi,j
}
(1− λ)

1−1{x̂Pi,j∈X
B
Pi,j
}
. (5.31)

In order to compute the a-posteriori probability p (x̂|x) with the factoriza-

tion given in (5.30), we need to calculate the partition function given in the

equation (5.31). Providing either exact or approximate solutions for the par-

tition function in general is a NP-hard problem [7]. In [1] and [33], it is shown

that the region-based approximation (RBA) method provides an approximate

solution for the partition function by minimizing the region-based free energy

(as an approximation to the variational free energy). In Appendix A, we first

define a factor graph representation for the problem (maximizing p (x̂|x) in

(5.30) for a given input pattern x subject to the constraint that x̂ ∈ S) and

then formulate the RBA scheme for finding an approximate solution for this

constrained maximization problem.

The following remarks discuss the optimality of the GBP-guided DBF

method and the theoretical guarantee on the existence of solutions for the

maximization problem given in (5.28).
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Remark 7 For a given input pattern x, we should note that the zero proba-

bility in (5.27) ensures that an approximate solution x̂ does not contain any

harmful configurations, i.e., x̂ ∈ S. However, the approximate solution might

not necessarily be the optimal pattern which minimizes wH(x̂⊕ x).

Remark 8 The problem of minimizing the number of bit flips in the DBF

method can be considered as an instance of a constraint satisfaction problem

(CSP). Statistical physicists consider different geometries of the solution space

for a given CSP based on the density of constraint, which is defined as the

ratio of the number of constraints to the number of variables. This density of

constraint identifies satisfiability thresholds for the solution space of CSPs [11–

15]. For the minimization problem in the DBF method for removing channel

harmful configurations from an input pattern of a specific size, if the density

of constraint lies in the satisfiable regions, then we can assume that there exist

optimal solution/solutions for the problem.

5.5 Numerical Results

In this section, we present numerical analyses of the GBP-based DBF method

for removing harmful patterns. Without loss of generality, we focus on the 2-D

isolated-bits configurations in all our experiments. We first present the anal-

ysis on statistics of the number of flipped bits for removing 2-D isolated-bits

patterns from random 2-D patterns. Furthermore, we study the convergence of

the GBP algorithm as a function of the number of GBP iterations for different

values of λ, the probability of flipping a bit in xPi,j for (i, j) ∈ Am,n which is

defined in (5.27). To illustrate the usefulness of DBF method, we investigate

its performance over the data-dependent channel in Section 5.2 under differ-

ent scenarios in terms of the probability of uncorrectable bit errors, where the

harmful configurations for the channel are the 2-D isolated-bits patterns. Fi-
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nally, we compare the performance of the DBF method on a memoryless BSC

with the row-by-row and bit-stuffing constrained coding schemes for the 2-D

n.i.b. constraint, presented in [77] and [60] respectively.

Remark 9 It should be noted that the parent-to-child message passing steps

( [1]) in the GBP algorithm with considering all the regions for removing 2-D

isolated-bits configurations operates with reasonable speed and memory require-

ments on binary patterns with maximum size of 32× 32. Thus in practice, the

system would process these 32× 32 (or smaller) tiles in a sequential way. As

long as the scalability of method is concerned, the GBP algorithm can be im-

plemented in a parallel fashion to work on multiple 32 × 32 binary patterns

simultaneously.

5.5.1 Statistics of The Number of Bit Flips for Removing 2-D Isolated-Bits

Patterns

The performance of the DBF method relies on the error correction capabil-

ity of the code being used, and of course the number of deliberate bit errors.

Therefore, it is necessary to find how many bits in average are flipped within

a codeword, and how this number compares to the error correction capability

of the code. We have extracted the statistics of the number of bit flips for

removing 2-D isolated-bits patterns from random 2-D patterns by the DBF

method. In Fig. 5.6, we present an approximation of the occurrence prob-

ability of bit flipping, p(wH(eDBF)), as a function of the number of flipped

bits, wH(eDBF). The statistics of number of flipped bits is obtained by using

DBF for removing 2-D isolated-bits patterns from a sample set of 8000 random

binary patterns of size 32× 32. Throughout all the simulations, we assume

zero entries outside of random patterns. The average number of flipped bits

is obtained by taking the average over all observed numbers of flipped bits,
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Figure 5.6: An approximation of the occurrence probability of bit flipping for
removing the forbidden patterns by the 2-D n.i.b. constraint from random
32× 32 arrays are given over 8000 trials. For this experiment, λ = 0.1 in
(5.28).

which is wH(e) = 12.84. Therefore, approximately, it needs in average 12.84

bit flips in a random 32× 32 pattern to remove the 2-D isolated-bits patterns.

As long as the number of deliberate bit errors lies within the error correcting

capability of an ECC, the codeword is guaranteed to be corrected. Using the

occurrence probability of bit flipping, we can obtain the uncorrectable bit error

rate (UBER) for an ECC used to correct these deliberate errors on a noiseless

channel as follows

UBER =

 ∑
wH(eDBF)>b dmin−1

2
c

p
(
wH(eDBF)

) /NR, (5.32)

where dmin is the minimum distance of code, N = m× n is the size of the

pattern (length of the code), and R is the rate of the ECC. Using BCH codes

of length 1024 for correcting deliberate errors introduced in random 32× 32

binary patterns for removing the 2-D isolated-bits configurations, the UBER is
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Figure 5.7: BCH codes of length 1024 with different code rates are used to
correct the deliberate errors introduced in random 32× 32 patterns for remov-
ing 2-D isolated-bits patterns. Using the flipping probabilities in Fig. 5.6 and
(5.32), the UBER is calculated for BCH codes of length 1024 with different
rates (and consequently dmin).

given as a function of dmin in Fig. 5.7. This figure shows UBER corresponding

to different code rates (and consequently dmin) supported by the BCH code of

length 1024.

The choice of λ in the probabilistic formulation of problem, (5.28), depends

on the constraint and the underlying method for solving the minimization

problem. Note that λ is not a critical parameter in the DBF method. However,

it should be chosen to be in the convergence region of GBP. As an example,

we present the convergence of the GBP algorithm for finding the optimal

error pattern to remove 2-D isolated-bits patterns from random 32× 32 binary

arrays for different values of λ. Fig. 5.8 shows the average number of flipped

bits as a function of the number of iterations for different values of λ. It can be

seen that convergence behaviors of the GBP algorithm for λ ∈ {0.04, 0.1, 0.18}

are very similar, and it is only the matter of choosing a λ that lies within the

convergence region of the GBP algorithm. Throughout all our experiments in
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this paper λ = 0.1, and the number of iterations for the GBP algorithm is 50

for 2-D isolated-bits patterns.
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Figure 5.8: The average number of flipped bits for removing 2-
D isolated-bits patterns from a random 32× 32 array for different
λ ∈ {0.04, 0.1, 0.18, 0.22, 0.26} over 1000 trials versus the number of GBP it-
erations.

5.5.2 Performance Evaluation of The GBP-Guided DBF Method

In this section, we investigate the usefulness of DBF method for data-

dependent 2-D channels, where specific patterns in channel inputs are the

main cause of errors. We consider the introduced channel in Section 5.2 with

the 2-D isolated-bits patterns as the harmful patterns for channel. For differ-

ent values of αb and αg, we compare the average probability of error with and

without incorporating the DBF method.

The user message m of length K is encoded via an ECC with rate R = K
N

,

and the codeword c(m) of length N = m× n is arranged into a 2-D array x(m)

of size m× n. Prior to transmission over the channel, the 2-D isolated-bits

patterns are removed from the input pattern by flipping minimum number of

bits. The transmitted pattern over the channel is now x(m)⊕ eDBF, and the
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Figure 5.9: The average probability of error with and without incorprating for
the cases (a) αg = 0 and αb ∈ [0.1 : 0.1 : 1], and (b) αg ∈ [0.001 : 0.001 : 0.01]
and αb = 100× αg is presented. In both cases the BCH-[1024, 728, 62] code
is being used. The BER comparison results are obtained using the equations
(33) and (34), and executing the GBP-guided DBF algorithm over at least
50,000 random instances of user messages.

received pattern is x(m)⊕ eDBF ⊕ eCH. The transmitted pattern and channel

output without DBF are x(m) and x(m)⊕ êCH, respectively. Note that the

channel is data-dependent, and therefore channel errors with and without in-

corporating DBF method are different. Using the bounded-distance decoder

that can correct error patterns with Hamming weights lying within the error

correction capability of the code, the average probability of error with and

without incorporating the DBF method is simplified to

p(DBF)
e =

1

2bNRc

∑
m

p

(
wH(eDBF ⊕ eCH) >

⌊dmin − 1

2

⌋∣∣m) , (5.33)

and

p(w/o DBF)
e =

1

2bNRc

∑
m

p

(
wH(êCH) >

⌊dmin − 1

2

⌋∣∣m) , (5.34)

respectively, where dmin is the minimum distance of the ECC.

In Fig. 5.9(a), we assume that channel errors solely come from appearances

of 2-D isolated-bits configurations in input patterns, and αg = 0. Under this
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assumption, removing the 2-D isolated-bits configurations from channel input

patterns prior to transmission makes the channel noiseless. However without

incorporating the DBF method, the color of tiles contained in a 2-D isolated-

bits configuration invert with a probability of αb. Therefore, the average prob-

ability of error with incorporating the DBF method for different values of αg

is constant. Fig. 5.9(a) shows the BER results with and without incorporating

DBF for different values of αb, when the BCH-[1024, 728, 62] code is used. It

can be seen that for 0.3 ≤ αb ≤ 1 we obtain approximately four orders of mag-

nitude gain in the average BER with the GBP-guided DBF method. However,

this gain is lower for smaller αb’s as the number of deliberate bit errors in-

troduced for removing 2-D isolated-bits configurations dominates the random

channel bit errors. Fig. 5.9(b) shows the BER results with and without incor-

porating the GBP-guided DBF method, when αg ∈ [0.001 : 0.001 : 0.01] and

αb = 100× αg. This figure shows a reasonable gain in the BER performance

with incorporating the GBP-guided DBF method.

5.5.3 Comparison Results on BSC

In this section, we compare the proposed scheme of imposing the 2-D n.i.b.

constraint by deliberate errors against the row-by-row and the bit-stuffing

coding schemes on a BSC. This can be interpreted as the case that 2-D isolated-

bits configurations are the problematic patterns for the channel, and they must

be removed before transmission, but removing these patterns does not make

the channel noiseless. In our channel model, it is the case that αb = 1 and

αg 6= 0. In the following, we first review the row-by-row and bit-stuffing

methods for 2-D n.i.b. constraint and then present the comparison results.
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Row-by-Row Coding Scheme for 2-D n.i.b. Constraint [77]

The encoder is a finite-state machine with 4 states, which maps each 3 infor-

mation bits into a 2× 2 binary pattern. For encoding information bits into an

m× n array, strips of size 2× n are constructed using the encoded 2× 2 bi-

nary patterns. Then, these strips are arranged in such a way to satisfy the 2-D

n.i.b. constraint over the m× n array. The decoder is sliding-block decoder,

where the decoding window size of the encoder is 3 bits.

Bit-Stuffing Scheme for 2-D n.i.b. Constraint [60]

The bit-stuffing method for mapping binary random sequences into a 2-D

rectangular array satisfying the 2-D n.i.b. constraint is a variable rate cod-

ing scheme. First, the boundaries of the 2-D arrays are initialized with some

fixed probability distribution. The encoding process has two steps. The en-

coder first generates two sequences with different statistics, Bernoulli(1/2)

and Bernoulli(1/3), from the sequence of information bits using a probability

transformer. Then, it encodes the unbiased and biased sequences into a 2-D

array by inserting additional bits in such a way to ensure that the constraint is

satisfied. At the decoder, the two sequences are recovered by doing the reverse

process of inserting additional bits, and the binary sequence is recovered using

an inverse probability transformer.

Raw BER Comparison Results

We compare the performance of the DBF method for imposing 2-D n.i.b.

constraint into 2-D arrays of size 32× 32 with the bit-stuffing and row-by-row

constrained coding methods in terms of BER. It should be noted that the

probability transformer in the bit-stuffing method is implemented in a one-to-

one manner. Hence we can apply the reverse transformation to recover the
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Figure 5.10: Figure shows the BER comparison results of the DBF, bit-stuffing
and row-by-row coding methods on the BSC with the cross-over probability
(α). The effect of error propagation can be observed in the BER curve of
bit-stuffing which shows that this method is vulnerable to channel errors. The
coding rate of DBF with BCH-[1024, 923, 22] code is close to the bit-stuffing
method, and the rate of DBF with BCH-[1024, 768, 54] is close to the rate of
row-by-row coding method.

original information bits. Fig. 5.10 shows the BER comparison results of the

DBF, row-by-row and bit-stuffing methods over the BSC with the cross-over

probability (α). It can be seen that the effect of error propagation in the

row-by-row method is less severe than bit-stuffing as the row-by-row method

uses a sliding-block decoder with error propagation window of 3 bits and the

effective rate of 0.75. The average rate of bit-stuffing method for imposing 2-D

n.i.b. constraint on a 32× 32 array is ' 0.91. The bit-stuffing achieves a fairly

high encoding rate for the 2-D n.i.b. constraint, but it suffers from the error

propagation over noisy channels. The redundancy for imposing the constraint

is now used in our scheme to strengthen the ECC (BCH code), resulting in a

gain over the other schemes. For this purpose, we use the BCH-[1024, 923, 22]

along with the DBF method for comparison with bit-stuffing method, and

the DBF with BCH-[1024, 768, 54] for comparison with the row-by-row coding
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method. We should note that we did not employ any forms of error correction

in the row-by-row and bit-stuffing methods. Nevertheless, all the methods

(including the DBF method with the BCH code) are designed to have the

same overall coding rate.
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CHAPTER 6

A Log-Likelihood Ratio based GBP for 2-D Channels

In order to improve throughput and energy consumption characteristics, as

well as to obtain real time capabilities, hardware acceleration using dedicated

architectures is employed for BP algorithms [90]. However, developing hard-

ware architectures for GBP presents several challenges, due to the fact that

the messages propagated among regions are conditional probabilities. These

include: (i) divisions in message update equations, (ii) multiplication in both

message and belief update equations, and (iii) requirements for very large

precision, usually in floating point formats. In this paper, we propose a log-

likelihood ratio (LLR) based GBP algorithm to address the hardware im-

plementation issues by relying on only addition based operations (additions,

subtractions and comparisons) with messages and beliefs represented in fixed

point formats. This is achieved by introducing LLR based representations

for messages and beliefs. The LLR representations allow us to devise arith-

metic operations in log-likelihood domain for both message and belief update

equations. The log-likelihood messages represent the standard approach in a

wide range of iterative message-passing algorithms, including Turbo decod-

ing [91], LDPC decoding - both binary [92] and non-binary [93], but far from

trivial in inference algorithms such as GBP where messages express complex

dependencies among variables. The proposed approach presents the following

advantages: (i) divisions and multiplications are reduced in logarithm-domain

to subtractions and additions; (ii) arithmetic operations are performed using

fixed point formats, that has reduced complexity with respect to floating point
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representations; (iii) the usage of ratios for decoding and detection problems

lead to simple sign based hard decision mechanisms.

Several approaches to improve the computational parameters - processing

time and memory requirements - of GBP have been proposed in [94–96]. These

optimization techniques rely on two approaches: (i) reducing the number of

arithmetic operations, by employing techniques such as result caching, conver-

sion of a grid search into a linear search problem, or hierarchical state-space

reduction [94, 95], and (ii) reducing the complexity of arithmetic operations

for message and belief update equations, by performing them in logarithm-

domain [96]. The latter targets elimination of divisions and multiplications,

using only addition based operations. The proposed optimization target com-

plexity reduction in the message and belief updates, targeted mainly for decod-

ing and detection problems, performing the operations in logarithm-domain.

With respect to [96], our main contributions are: (i) development of a ratio

based version, and (ii) utilization of fixed point formats, instead of the more

computationally complex floating point format.

We apply the proposed LLR-GBP for an image reconstruction application,

denoising of images affected by a binary-input two-dimensional (2-D) Gaussian

channel and additive white Gaussian noise (AWGN). Simulation results show

that LLR-GBP with messages and beliefs represented in a 24-bit fixed point

format, has similar performance to the floating point implementation. GBP

as an image denoising algorithm works on probabilistic graphical model of the

2-D Gaussian channel with AWGN. There are many cycles in the factor graph

representation of a 2-D Gaussian channel [37], which invalidates the tree-like

assumption used in BP and leads to poor performance. In order to show that

GBP can address the issues of short cycles in BP related methods, we also com-

pare the performance of our LLR-GBP with JTED [35], that uses fixed point
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formats, for detection of binary arrays passed through a 2-D intersymbol inter-

ference (ISI) channel. JTED can be considered as a sequential tree-reweighted

sum-product algorithm [7], where for 2-D detection uses BCJR for computing

exact marginals over row and column directions, and incorporates a message

passing paradigm along both dimensions in an iterative manner for exchanging

extrinsic information. However, this scheme still suffers from the cycles in the

underlying graphical model of 2-D ISI channel for passing extrinsic informa-

tion between row and column detectors. Our simulation results indicate that

the reduced complexity LLR-GBP (with 24 bits, 8 bits fractional and 16 bits

offset intervals) outperforms JETD with around 2 dB in terms of bit-error rate

performance.

The chapter is organized as follows. We first present a detailed description

of a constraint satisfiability problem (CSP). Section 6.2 is dedicated to the log

likelihood GBP version. The experiment setup for image denoising over 2-D

ISI Gaussian channel is explained in Section 6.3. Finally, simulation results

and discussions are presented in 6.4.

Throughout this chapter, we denote the set of integers {n1, n1 + 1, . . . , n2}

by [n1 : n2] and the set of real numbers between n1 and n2 by (n1, n2).

6.1 Constraint Satisfiability Problem

A CSP is defined by a set of N variables X = {X1, X2, . . . , XN} and a set

of M constraints C = {C1, C2, . . . , CM}. Each variable Xi takes values xi

from a discrete and finite alphabet X so that an assignment to the variables

x = (x1, x2, . . . , xN) ∈ XN . Let us assume that each constraint contains K

variables. We denote the set of variables involving in the constraint Ci by XCi

and realizations of these variables by xCi . The constraint Ci is characterized

by the function fCi : XK → {0, 1} which specifies allowable combinations of
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the values for the subset of variables participating in the constraint Ci such

that the constraint Ci is satisfied if fCi(xCi) = 1. A solution to a CSP is an

assignment to all variables x = (x1, x2, . . . , xN) that satisfies all M constraints.

The set of assignments to variables satisfying a CSP is identified by

SC =

{
x ∈ XN :

∏
Ci

fCi(xCi) = 1

}
. (6.1)

We define a probability measure over this set of SAT assignments as follows

p (x) =
1

Z

∏
Ci∈C

fCi(xCi), (6.2)

where the normalization constraint Z, so called the partition function, is given

by

Z =
∑
x∈XN

∏
Ci∈C

fCi(xCi). (6.3)

In fact, p(x) is the uniform probability distribution over the set SC. The uni-

form distribution given in Eq. (6.2) is expressed in a sum-product form. Such

factorization is known to satisfy certain properties called Markovian properties

and the corresponding graphical model is a Markov random field.

Many of inference problems in computer vision, error-correction coding

and artificial intelligence can be reformulated as the computation of marginal

probabilities of a joint probability distribution over the set of SAT assign-

ments [5, 6, 97]. This is equivalent to finding the fraction of satisfying as-

signments in which a variable is assigned a particular value. Given a joint

distribution p(x) = p (x1, x2, . . . , xN), the marginal distribution of a subset

of variables xS, where S ⊂ [1 : N ], is the probability distribution of variables

xS averaging over all information about x \ xS. This can be calculated by
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summing p (x1, x2, . . . , xN) over x \ xS, i.e,

p(xS) =
∑
x\xS

p (x1, x2, . . . , xN) . (6.4)

This process of computing marginal probability distributions can be in-

tractable for large n as it needs to take summation over exponential number

of values of variables.

Figure 6.1: The factor graph for the joint probability distribution in the
Eq. (6.5) is given. The set of variable nodes X = {X1, X2, . . . , X7} repre-
sents the error patterns and the set of factor nodes C = {C1, C2, C3} verify
the syndrome constraints.

Graphical models provide an intuitive framework for representing interact-

ing sets of variables and constraints. Using the factor graph formalism [6], a

CSP can be described by a bipartite graph G = (X ∪C,E) with two types

of nodes, namely variable nodes V and factor nodes F, and a set of edges E.

Variables Xi ∈ X are symbolized by variable nodes; constraints Cj ∈ C are

symbolized by factor nodes; and the dependence of a constraint on a variable

is symbolized by an edge joining the two. We denote the variable nodes by

circle nodes and the constraints by square nodes, where the edge (Xi, Cj) be-

tween the factor node Cj and the variable node Xi included in E if and only

if Xi ∈ XCj . The set of variable nodes connected to the factor node Cj is

denoted by NCj and similarly the set of factor nodes connected to the variable

node Xi is denoted by NXi . As an example, a factor graph corresponding to
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the following joint distribution

p (x1, x2, x3, . . . , x7) =
1

Z
fA (x1, x2, x3, x5) fB (x1, x2, x4, x6) fC (x1, x3, x4, x7) ,

(6.5)

is given in Figure 6.1, where Z is some normalization constraint. Traditional

low-complexity approximate algorithms for solving these problems are based

on BP [8, 9] which operate on factor graphs. BP, as an algorithm to compute

marginals of functions on a factor graph, has its roots in the broad class of

Bayesian inference problems [10]. It is well known that the BP algorithm gives

exact inference only on cycle-free graphs (trees). It has been also observed

that in some applications the BP can provide close approximations to exact

marginals on loopy graphs. However, an understanding of the behavior of BP

in the latter case is far from complete. Moreover, it is known that BP does

not perform well on graphs which contain a large number of short cycles. In

the following section, we introduce a LLR-based GBP algorithm as a reduced

complexity method for solving problems involving probabilistic inference.

6.2 Log-Likelihood Ratio based GBP Algorithm

Similar to the log-likelihood versions of BP [91, 92], as a first step to reduce

the complexity of GBP, we define ratios for messages and beliefs. The ratio of

beliefs for the region R ∈ R at iteration k is defined by

β
(k)
R (xR) =

b
(k)
R (xR)

b
(k)
R (xref

R )
, (6.6)

where xref
R represents the reference state for the ratio-domain, and b

(k)
R (xref

R ) is

the belief corresponding to this event. Similarly, the ratio of messages coming
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to the region R from its parent regions P ∈ PR at iteration k is determined by

λ
(k)
P→R(xR) =

m
(k)
P→R(xR)

m
(k)
P→R(xrefR )

, (6.7)

wherem
(k)
P→R(xrefR ) is the probability that the parent region P ∈ PR, at iteration

k, sends a message to the region R that the state of its variables is the reference

state. We have considered the all-one state (the state that all variables have

value 1) as the reference state in our implementation.

Using the ratio of messages, the message update equation at iteration k

becomes

λ
(k)
P→R(xR) =

∑
xP\R

∏
FCj∈FP\R

φCj(xCj)
∏

(I,J)∈N(P,R)

λ
(k−1)
I→J (xJ)( ∏

(I,J)∈D(P,R)

λ
(k−1)
I→J (xJ)

)
c
(k)
P→R

, (6.8)

where φCj(xCj) is the ratio of constraint and c
(k)
P→R is the correction factor

which ensures λ
(k)
P→R(xref

R ) = 1. The ratio of constraint is defined by

φCj(xCj) =
fCj(xCj)

fCj(x
ref
Cj

)
, (6.9)

where fCj(x
ref
Cj

) is value of function at the constraint Cj when the state of their

variables, xCj , is the reference state. The correction factor for messages from

a parent region P to the region R is given by

c
(k)
P→R =

∑
xP\R

∏
FCj∈FP\R

φCj (x
ref
Cj )

∏
(I,J)∈N(P,R)

λ
(k−1)
I→J (xref

J ). (6.10)
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Furthermore, we have

λ
(k)
P→R(xR) =λ

(k)
P→R(xR)× 1

1 + 1−ω(k)

ω(k) × σ(k)

σ(k−1)

+

λ
(k−1)
P→R(xR)× 1

1 + ω(k)

1−ω(k) × σ(k−1)

σ(k)

, (6.11)

where σ(k) =
∑

xR
λ
(k)
P→R(xR). The update of σ(k) is performed as follows

σ(k) = ω(k)σ(k) + (1− ω(k))σ(k−1). (6.12)

Applying the logarithm, the multiplications in both belief and message

update equations are reduced to additions, while the division in the mes-

sage update equation becomes a subtraction. The message update equation

(Eq. (6.8)) turns into

Λ
(k)
P→R(xR) = �

xP\R
(

∑
FCj∈FP\R

ΦCj (xCj )
∑

(I,J)∈N(P,R)

Λ
(k−1)
I→J (xJ))

−
∑

(I,J)∈D(P,R)

Λ
(k−1)
I→J (xJ)− C(k)

P→R, (6.13)

where Λ
(k)
P→R, ΦCj and C

(k)
P→R, respectively, defined as the logarithm of λ

(k)
P→R,

φCj and c
(k)
P→R, �(.) indicates the approximation used for computing the loga-

rithm of the sum, (log(
∑

)) which is explained in the following.

Considering two positive real numbers λ1, λ2 ∈ R, we have

�(λ1, λ2) = log (λ1 + λ2) = log (max (λ1, λ2) + min (λ1, λ2)) ,

= log (max (λ1, λ2)) + log

(
1 +

min (λ1, λ2)

max (λ1, λ2)

)
.

We denote the term min(λ1,λ2)
max(λ1,λ2)

by η. According to the above equation, com-
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putation of log(
∑

) is reduced to a maximum and computation of log(1 + η).

As λ1, λ2 > 0, 0 < η ≤ 1, and therefore 0 < log(1 + η) ≤ log(2), we use the

following method for approximating the term log(1 + η). We first split the

(0, 1) interval into k equal intervals as follows (0, l1), [l1, l2), ..., [lk−1, 1), where

li = 1
i×k and i ≤ k. η is approximated with li, if li ≤ η < li+1. In this method,

we only need to perform k comparisons among η and li’s. In the logarithm-

domain, the terms log(li) and log(1 + li) are constant and can be computed

offline for a fixed number of intervals, k. A larger k allows better approxima-

tion at the expense of higher complexity.

6.3 Image Denoising over 2-D Gaussian Channels

In order to compare the performance of the proposed LLR based approach

for GBP with the probability-domain floating point version, we use GBP for

an image denoising application for reconstruction of images affected by 2-D

Gaussian channels and independent noise, such as AWGN.

We assume that in all our experiments the size of Gaussian kernel is 3× 3.

Let us denote the binary representation of an input image by an array x =

[xi,j], the kernel of Gaussian filters by H, and the distorted version of input

image by an array y = [yi,j]. We are interested in finding the most likely input

samples x̂i,j from y. The (i, j)-th output sample, yi,j, is the binary input

affected by the 2-D Gaussian channel and is given by

yi,j = Hx [i, j] + n [i, j] , (6.14)
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where

x [i, j] =


xi−1,j−1 xi−1,j xi−1,j+1

xi,j−1 xi,j xi,j+1

xi+1,j−1 xi+1,j xi+1,j+1

 (6.15)

and H is represented the considered 3 × 3 Gaussian kernel, and n [i, j] is a

sample from a zero-mean and σ2-variance Gaussian distribution. The variance

σ2 is defined as a function of signal-to-noise ratio (SNR) so that

σ = ||H|| × 10−SNR/20, (6.16)

where SNR is given in db and ||.|| denotes the l2-norm.

The problem is to find the most likely input bits {xi,j} from y that max-

imizes p (xi,j|y), for a fixed SNR value. The problem of maximizing these

probabilities is reduced to computing

p(xi,j|y) ∝
∑
x\xi,j

∏
i,j

exp

(
(yi,j −Hx [i, j])2

2σ2

)
. (6.17)

The probabilities {p(xi,j|y)} are called a posteriori probabilities (APPs).

Computing APPs is a hard problem as it requires to taking sum over ex-

ponential number of variables. We use the logarithmic likelihood ratio version

of GBP for estimating APPs. The performane loss shows that the algorithm

suffers from dependencies of messages and existense of cycles in the underlying

graphical model for exchanging extrinsic information between row and column

BCJR detector.
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Figure 6.2: Detection performance curves of GBP for 64-bit double precision
format, 24-bit fixed point LLR.

6.4 Simulation Results

We have applied GBP in both probability-domain, with messages and beliefs

represented using 64-bits IEEE754 double precision floating point format, and

in logarithm-domain using 24-bit fixed point format, with 4 and 8 bits for frac-

tional part and with 4 and 16 offset constants in the approximation of log(
∑

),

for a SNR range of the AWGN noise from 0 to 5 db. The considered Gaus-

sian kernel corresponds to a zero mean and a Results are plotted in Fig. 6.2.

Fig. 6.2 indicates that the proposed LLR version has similar performance with

respect to the floating point implementation, with a slight decrease in perfor-

mance for low SNR regions (0-3 dB), and a slight increase in performance for

higher SNR (5 dB). Reducing the number of bits associated with the fractional

part will lead to a performance decrease. Furthermore, reducing the number

of offset intervals in log(
∑

) approximation will also impact the performance

of the GBP. It is worth noted that reducing the number of bits associated to

the fractional part does not lead to reduced computational complexity, while
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Figure 6.3: Comparison results between the proposed LLR-GBP (24-bit: 8
bits fractional and 16 bits offset intervals) and JTED.

reducing the number of offset intervals in the log(
∑

) approximation will lead

to reduced number of performed arithmetic operations (reduced number of

comparisons with constants).

6.5 Comparison Results with JTED

In this subsection, we present the comparision results between the 24-bit fixed

point LLR-GBP, with 8 bits for fractional and 16 offset intervals, and JTED

proposed in [35] for detection of 2-D binary arrays passed through a 2-D ISI

channel. The JTED method uses BCJR detectors [50], which give exact APPs

for 1-D case, in row and column directions allowing the message passing along

both dimensions in an iterative manner. The considered ISI channel has been
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defined by

H =


0.0625 0.25 0.0625

0.25 1 0.25

0.0625 0.25 0.0625

. (6.18)

We should note that, due to the computational complexity of the considered

formulation of the GBP algorithm for detection, the maximum size of an input

binary array can be 32× 32. For this, we have performed simulations on

random 2-D binary arrays of size 32× 32 for LLR-GBP, with respect to 64× 64

random binary arrays for JTED [35]. Simulation results, presented in Fig. 6.3,

indicate that the proposed LLR-GBP provides an almost 2 dB improvement

in bit-error rate performance comparing with JTED.
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CHAPTER 7

Conclusions

Recent advances in emerging data storage technologies like magnetic record-

ing systems, optical recording devices and flash memory drives necessitate to

study 2-D coding techniques for reliable storage of information. In these sys-

tems, user information bits are arranged into 2-D arrays for storing over the

recording channel, and occurrences of specific patterns in input arrays are the

significant cause of errors during read-back process. These systems require the

use of some form of error-correction coding in addition to constrained coding

of the input data or symbol sequences. It is therefore natural to investigate the

interplay between these two forms of coding and the possibilities for efficiently

combining their functions into a single coding operation. In this disserta-

tion, we have focused on the problem of transmission of binary messages over

data-dependent 2-D channels. Specifically, as on the prominent examples of

data-dependent 2-D channels, we consider Two-Dimensional Magnetic Record-

ing (TDMR) channels which is an emerging storage technology and achieves

beyond 4 Tb/in2. In TDMR, bit size and bit spacing are extremely small

which leads to severe 2-D inter-symbol interference (ISI). TDMR uses only a

small number of grains to store a bit of information. This reduction in the

number of magnetic grains per bit leads to variations of bit boundaries, and

consequently data dependent jitter noise. Neighboring bit transitions lead to

an increased media noise which results in degradation of the detector perfor-

mance. We have considered the following challenges in regard to the problem

of reliable storage of binary messages over TDMR systems.
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In Chapter 2, we have introduced a method to handle the media noise

seen in a TDMR channel using a GBP based detector. We have used the

GBP algorithm for signal detection in conjunction with teh BP algorithm for

LDPC decoding. In Chapter 3, we have identified the most harmful patterns

in Voronoi based TDMR channels. In that work, we have concluded that the

use of constrained codes can reduce the complexity of 2-D ISI signal detection

since lesser 2-D ISI span can be accommodated at the cost of a nominal code

rate loss. However, a system must be designed carefully so that the rate loss

incurred by a 2D constraint does not offset the detector performance gain due

to more distinguishable read-back signals. In Chapter 5, we have presented

a deliberate bit flipping coding scheme for data-dependent 2-D channels. For

this method, we have shown that the main obstacle is the number of deliberate

errors which are introduced for removing harmful configurations before trans-

mission through the channel. We have devised a combinatorial optimization

formulation for minimizing the number of bit flips, and have explained how this

problem can be related to a binary constraint satisfaction problem. Finally,

through an example, we have presented uncorrectable bit-error rate results of

incorporating DBF for removing 2-D isolated-bit configurations from 2-D pat-

terns of certain size. We have evaluated the performance gain of our proposed

approach on a data-dependent 2-D channel, where 2-D isolated-bits patterns

are the harmful patterns for the channel. Furthermore, the performance of the

DBF method is compared with classical 2-D constrained coding schemes for

the 2-D no isolated-bits constraint on a memoryless binary symmetric channel.

In Chapter 6, we have proposed a log-likihood ratio based GBP algorithm

in order to reduce both the computational complexity and the storage re-

quirements for GBP. We have demonstrated the validity of LLR-GBP on re-

construction of images passed through binary-input two-dimensional Gaussian
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channels with memory and affected by additive white Gaussian noise. Simu-

lation results performed for an image reconstruction application indicate that

for 24-bit fixed point formats, a slight degradation in performance in low SNR

regions (SNR 0 to 3) is obtained with respect to the 64-bit floating point

probabilistic GBP. However, this slight degradation will come with improved

storage requirements for the LLR version, with more than 2.5x reduction is

storage for LLR based version. Reducing the number of fractional bits, as well

as the number of offset constants used in the approximation of log(
∑

), will

reduce the detection performance in the low SNR regions.

Future Work

As a future work, the DBF method can be reformulated for 2-D semicon-

strained coding. In some applications, we rather prefer not to remove entirely

the harmful configurations, and we only want to limit the number of occur-

rences of specific configurations in a 2-D pattern. As in the case when the

number of bit flips for imposing strong constraints is large and may overwhelm

the ECC decoder, there is a need to allow some of the harmful configurations

patterns to appear, yet not very often. For this purpose, the function Dp in

(5.27) can be reformulated as a probability transformer function, which maps

random binary patterns to binary patterns satisfying a desired empirical dis-

tribution for appearances of harmful configurations. The GBP algorithm still

can be used to minimize the number of flipped bits for this mapping.

Quantum low-density parity check (QLDPC) codes are promising in real-

ization of scalable, fault tolerant quantum memory for computation. Many of

the QLDPC codes constructions suffer from unavoidable short cycles in their

Tanner graph which degrade the decoding performance of the BP algorithm.

As a future work, a syndrome based GBP algorithm for decoding of quantum
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LDPC codes can be devised to escape from short cycle trapping sets compared

to the BP algorithm. As another future work, GBP algorithm can be reformu-

lated to find the most likely error coset to make use of degeneracy of quantum

codes. Also, it would be interesting to find new trapping sets that adversely

affect beliefs computed by GBP algorithm. Analyzing the complexity and also

finding suitable trade-offs are also considered as our future work.
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den, “2-D magnetic recording: Read channel modeling and detection,”
IEEE Trans. Magn., vol. 45, no. 10, pp. 3830 –3836, Oct. 2009.

[32] D. Dunbar and G. Humphreys, “A spatial data structure
for fast poisson-disk sample generation,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 503–508, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1141911.1141915

[33] P. Pakzad and V. Anantharam, “Estimation and marginalization using
Kikuchi approximation methods,” Neural Computation, vol. 17, pp. 1836–
1873, 2003.

[34] M. Welling, “On the choice of regions for generalized belief propagation,”
in UAI ’04. Arlington, Virginia, United States: AUAI Press, 2004, pp.
585–592.

[35] Y. Chen and S. G. Srinivasa, “Joint self-iterating equalization and detec-
tion for two-dimensional intersymbol-interference channels,” IEEE Trans.
Comm, vol. 61, no. 8, pp. 3219–3230, Aug. 2013.

[36] M. Khatami, , M. Bahrami, and B. Vasić, “Symmetric information rate
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