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Presentations of Constrained Systems with
Unconstrained Positions

Marie-Pierre Béal, Maxime Crochemore and Gabriele Fici

Abstract— We give a polynomial-time construction of the set
of sequences that satisfy a finite-memory constraint definedby
a finite list of forbidden blocks, with a specified set of bit
positions unconstrained. Such a construction can be used tobuild
modulation/error-correction codes (ECC codes) like the ones
defined by the Immink-Wijngaarden scheme in which certain
bit positions are reserved for ECC parity. We give a linear-
time construction of a finite-state presentation of a constrained
system defined by a periodic list of forbidden blocks. These
systems, called periodic-finite-type systems, were introduced by
Moision and Siegel. Finally, we present a linear-time algorithm
for constructing the minimal periodic forbidden blocks of a finite
sequence for a given period.

Index Terms— Directed acyclic word graph (DAWG), finite-
memory systems, finite-state encoders, forbidden blocks, maxi-
mum transition run (MTR) codes, modulation codes, periodic-
finite-type (PFT) systems, run-length limited (RLL) codes.

I. I NTRODUCTION

Recording systems often use combined modulation/error-
correction codes (ECC codes). While error-correction codes
enable the correction of a certain number of channel errors,
modulation codes encode the sequences into a constrained
channel that is supposed to reduce the likelihood of errors.
Well known examples of such channels are the maximum
transition run systems MTR(j) [1], where the maximum run
of consecutive 1’s isj, or the run length limited systems RLL
(d, k), where the maximum run of consecutive 0’s isk and
the minimum run of consecutive 0’s isd. Among various
schemes proposed to construct both error-correction codes
and modulation codes, one of them, called the Wijngaarden-
Immink scheme [2] (see also [3]), proposes to encode an
unconstrained sequence of bits into a constrained sequencein
which certain bit positions are reserved for ECC parity. The
bit values in these positions can be flipped (or not flipped)
independently without violating the constraint. These positions
are called unconstrained positions. Therefore, ECC parity
information can be inserted into the unconstrained positions
of the modulation-encoded sequences without making them
out of the constrained channel.

In [3], the authors study different approaches to build such
codes, one of them being based on the construction of the
unique maximal subsystem of a constrained systemS such
that any position moduloT in U is unconstrained, where
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U is a given subset of integers modulo some integerT .
We call this system the(U, T )-unconstrained subsystem of
S. The knowledge of this maximal subsystem enables the
computation of the maximal possible rate of a code that both
satisfies a given constraint and is unconstrained in a specified
set of positions. Indeed, this maximal rate is the Shannon
capacity of the maximal subsystem. It also enables to apply
standard modulation code constructions to this subchannel
[4]. Since these code constructions work on a presentation
of the subchannel, it is worth to efficiently compute a small
presentation of this subchannel.

In this correspondence, we focus on the construction of
this maximal subsystem for a finite-state constrained system
with finite memory. Our goal is to reduce the time and space
complexities of the general solution proposed in [3]. We
consider a finite-memory constrained systemS defined by a
finite list of forbidden blocks. Given such a system and a
subsetU of integers modulo some integerT , we construct
in a polynomial amount of time and space a finite-state
graph that presents the(U, T )-unconstrained subsystem ofS.
The maximal subsystem appears to be a natural example of
periodic-finite-type systems(PFT) introduced by Moision and
Siegel in [5]. This was already noticed in [3, pp. 869].

In our process, we start with the construction of a periodic
list of forbidden blocks that defines the maximal subsystem
from a finite list of forbidden blocks of the finite-memory
system. More precisely, if the input data is a trieT represent-
ing a finite prefix-free list of forbidden blocks, the algorithm
works in space and timeO(T × |A| × |T | × log |T |), where
|T | is the size (the number of states) of the trie andA is
the alphabet. In a second step, we construct in linear time
and space a finite-state presentation of a periodic-finite-type
shift defined by a periodic list of forbidden blocks. The whole
two-step process computes a finite-state presentation of the
maximal unconstrained subsystem. Moreover, our algorithm
becomes linear if the input trie has itself a linear structure.
For instance, it runs inO(j) time for the MTR(j) constraint,
and inO(k) time for the RLL(d, k) constraint with the input
datad, k(d ≤ k), if the periodT of the unconstrained positions
is naturally assumed to be constant. We restrict ourselves to
binary systems, but the results carry over easily to constrained
finite-memory systems over any finite set of symbols.

While our algorithm is polynomial and the algorithm given
in [3] is exponential in the general case, they cannot be
compared directly for the following reasons. The algorithm
described in [3] works in an exponential amount of space
and time for all finite-state systems given by a finite-state
presentation, and in quadratic space and time for finite-
memory systems with an additional condition called the gap
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condition. The gap condition limits the number of uncon-
strained positions relatively to the memory of the system. An
efficient algorithm is also proposed in [3] for the special case
of MTR systems. We point out that, although our algorithm
has a better complexity for finite-memory systems, and no
restriction similar to the gap condition, it works with different
input data. Indeed, it is possible to compute in polynomial
time an automaton accepting a list of forbidden blocks of
a finite-memory system given by a deterministic automaton
with a single initial state [6]. But it is not possible to do it
in polynomial time from a presentation where all states are
initial ones. Thus our algorithm runs faster if the input data
are a list of forbidden blocks while the one presented in [3] is
more efficient if both the input data are a presentation of the
constraint and the gap condition is satisfied.

Our correspondence is organized as follows. In Section II,
we recall some background regarding constrained systems
with unconstrained positions, which are introduced in [3].
In Section III we give a linear construction of a finite-state
presentation of a periodic-finite-type shift defined by a periodic
list of forbidden blocks. In Section IV, we combine the
algorithm given in Section III to a preliminary treatment of
the input trie presenting a list of forbidden blocks of the
constrained channel. Although it is not directly related to
modulation/error-correction codes construction, we added a fi-
nal section which provides a linear space and time computation
of minimal periodic forbidden blocks of a finite sequence fora
given period. This algorithm extends a known algorithm from
[7] for computing the minimal forbidden blocks of a finite
word, which is used in a lossless data compression scheme [8].
We also believe that the notion of periodic list of forbidden
blocks introduced by Moision and Siegel can be used in many
areas other than modulation/error-correction codes.

II. BACKGROUND AND BASIC DEFINITIONS

We recall definitions that can be found in [9]. LetA =
{0, 1, . . . , k} be a finite alphabet, withk ≥ 1. We denote by
A∗ the set of finite words onA, by AZ the set of bi-infinite
sequencesx = · · ·x−3x−2x−1x0x1x2x3 · · · drawn fromA,
and by AN the set of right-infinite ones. The shift mapσ
transforms a sequence(xi)i∈Z into the sequence(xi+1)i∈Z.
If i ≤ j are integers, we denote byx[i . . j] the factor or
subblockxi . . . xj of a finite or infinite wordx. A finite word
w is a subblock of a finite or infinite wordx at position i
if w = x[i . . i + |w| − 1], where |w| is the length ofw. We
denote this fact byw ≺i x. Note thatw = w[0 . . |w| − 1].

An automaton is a finite labelled multigraph (or simply a
graph). It is a tuple(Q, A, E), whereQ is a finite set of states,
A is the labeling alphabet, andE is a finite set of edges la-
belled with elements in the alphabetA. An automatonaccepts
a set of finite words when initial and final states are specified.
A finite word is then accepted if it is the label of a finite path
from an initial state to a final one. The set of bi-infinite labels
of paths in an automaton is called aconstrained system, or
also asofic shiftin the symbolic dynamics terminology. The
automaton is then called apresentationof the shift. In that
case, the initial and final states may not be specified since all
states are supposed to be both initial and final.

0 1

0

0

1

Fig. 1. An automaton presenting a periodic-finite-type shift X. The shiftX
admits the following list of periodic forbidden words, forT = 2, F(0) =
{1},F(1) = ∅.

An automaton isdeterministic if for any given state and
any given symbol, there is at most one outgoing edge labelled
by a given symbol. A sofic shift isirreducible if it has a
presentation with a strongly connected graph. In anessential
presentationall states have at least one outgoing edge and one
incoming edge. An automaton hasfinite memoryM (or also
is M -local or M -definite) if whenever any two paths of the
automaton of lengthM have the same label sequence, they
end at the same state.Finite-memory systemsor finite-type
systemsor shifts of finite type(SFT) have a finite-memory
presentation. Examples of such systems include the RLL and
MTR constraints.

Finite-type shifts are characterized by a finite collectionof
forbidden blocks. If F is a finite subset ofA∗, we denote by
XF the shift of finite type defined by the set of forbidden words
F . A bi-infinite word x belongs toXF if and only if w ≺i

x, for some indexi, implies w /∈ F . Any irreducible sofic
shift has a unique minimal deterministic presentation called
the right Shannon coverof the shift.

Periodic-finite-type shifts are constrained systems with a
time-varying constraint. They have been introduced by Moi-
sion and Siegel in [5]. They provide suitable representations
of constrained systems that forbid the appearance of certain
patterns in a periodic manner.

Let T be a positive integer, called the period. LetF be
a finite collection of finite words overA, where eachwi ∈
F is associated with an integerni in the set{0, 1 . . . T −
1}, called the set ofphases. The collectionF is denoted by
F = {(w1, n1), . . . , (w|F|, n|F|)} and called a collection of
periodic forbidden words. For 0 ≤ k < T , F (k) denotes the
subset ofF associated with the phasek. We denote byX{F ,T}

the shift defined as the set of bi-infinite sequences having a
shifted sequence that does not contain a word(wj , nj) ∈ F
starting at any indexi = nj mod T . More precisely, a bi-
infinite word x belongs toX{F ,T} if and only if there is an
integerk such thatσk(x) = y and, for each integeri, one has
w ≺i y ⇒ w /∈ F (i mod T ). A periodic-finite-type shift for a
periodT (PFT(T )) is a constrained systemS such that there is
a collection of periodic forbidden wordsF with S = X{F ,T}.
A periodic-finite-type shift(PFT) is a PFT(T ) for some period
T . An example is given in Figure 1.

Note that a shift of finite type is of periodic-finite-type for
any period.

Constrained systems with unconstrained positionsare de-
fined in [3] as follows. LetS be a constrained system,T a
positive period, andU ⊆ {0, . . . , T − 1}, called the set of
unconstrained positions. For any finite (resp. right-infinite, bi-
infinite) word x, a U -flip of x is a finite (resp. right-infinite,
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bi-infinite) word y such thatyi = xi wheneveri mod T /∈ U .
If A is the two-letter alphabet{0, 1}, a U -flip is obtained by
flipping (or not) the bit values in the unconstrained positions.
The set of allU -flips of words of a setX is called theU -
closureof X .

We denote bySU,T the set of all infinite (right-infinite or
bi-infinite according to the context) sequencesx of S such
that

• all U -flips of x belong toS,
• xi = 1 for all positionsi such thati mod T ∈ U .

The unconstrained positions are forced to be 1 in order to fix a
leader in eachU -flip class of a word. The important fact is that
one can independently change the values in the unconstrained
positions without violating the constraint defined byS. Note
that the shifted sequence of a sequence inSU,T may not be
in SU,T (i.e. SU,T is not a shift). We denote the set of all
these shifted sequences bySσ

U,T . We also denote bySU,T
σ

the set of all bi-infinite shifted sequences ofSσ
U,T . Note that

Sσ
U,T ⊆ SU,T

σ
.

An algorithm to compute a presentation ofSU,T from a
presentation ofS is given in [3]. The result is a deterministic
automatonGU,T whose graph has a period that is a multiple
of T with the following properties:

• states ofGU,T are partitioned according toT phases
{0, . . . , T − 1} in such a way that if a state has phasek,
its successors have phasek + 1 mod T .

• the transitions beginning in a state of a phase inU are
labelled by1.

• SU,T is the set of right-infinite sequences ofGU,T that
are labels of a path starting in a state of phase0.

The link between constrained systems with unconstrained
positions and periodic-finite-type shifts is given in the propo-
sition below which is stated in [3, p. 869] without proof. We
use the following notation: ifU is a subset of{0, . . . , T −1},
andk is an integer, we denote byU +k the set{u+k mod T |
u ∈ U}.

Proposition 1: Let S be a finite-type shift,T a period and
U a set of unconstrained positions. The shiftsSU,T

σ
andSσ

U,T

are PFT(T ) shifts.
Proof: Let F be a finite collection of finite forbidden

words such thatS = XF . We define two collections of periodic
forbidden wordsG andG′ as follows. Ifk ∈ {0, . . . , T − 1},
thenG′(k) is the(U−k)-closure ofF andSU,T

σ
= X{G′,T−1}.

If k ∈ U , thenG(k) = {0}∪G′(k). If k ∈ {0, . . . , T − 1} \U ,
thenG(k) = G′(k) andSσ

U,T = X{G,T}.

Let us detail for instance the equalitySU,T
σ

= X{G′,T}.
Let x be a bi-infinite word ofSU,T

σ
. Thus, there is an integer

i with σi(x) = y, and y belongs to theU -closure ofSU,T .
Thus y has aU -flip z in S. Let w be a finite block with
w ≺k y. There is a(U −k)-flip of w that is not inF . Thusw
does not belong to the(U − k)-closure ofF . This proves that
SU,T

σ
⊆ X{G′,T}. Conversely, letx be a bi-infinite word of

X{G′,T}. There is an integeri with σi(x) = y, and, for each
integerk, one hasw ≺k y ⇒ w /∈ G′(k mod T ). Let z be a
U -flip of y. Let w′ be the block obtained fromw with the
sameU -flip. Then w′ ≺k z. Sincew does not belong to the

(U − k)-closure ofF , w′ does not belong either. It follows
that w′ /∈ F . Thus anyU -flip of y belongs toS. Hencey
belongs to theU -closure ofSU,T , andX{G′,T} ⊆ SU,T

σ
.

Note that the result of the previous proposition extends as
follows if S is a periodic-finite-type system for a period that
is a multiple ofT .

Proposition 2: Let S be a PFT(T ) shift, andU a set of
unconstrained positions. The shiftsSU,T

σ
andSσ

U,T are unions
of PFT(T ) shifts.

Proof: SupposeS = X{F ,T}. We first fix k0 ∈
{0, 1, . . . , T − 1}, and define the two collections of periodic
forbidden wordsGk0

andG′
k0

as follows. Ifk ∈ {0, . . . , T −

1}, thenG′(k)
k0

is the(U −k)-closure ofF (k+k0 mod T ). Hence
SU,T

σ
=

⋃
k0∈{0,1,...,T−1} X{G′

k0
,T}.

If k ∈ U , thenG(k)
k0

= {0}∪G′(k)
k0

. If k ∈ {0, . . . , T−1}\U ,

thenG(k)
k0

= G′(k)
k0

. HenceSσ
U,T =

⋃
k0∈{0,1,...,T−1} X{Gk0

,T}.

Let F be a list of periodic forbidden words of a shiftX
for a given positive periodT . We say thatF is periodic anti-
factorial if for any 0 ≤ i ≤ T − 1, w ∈ F (i) implies that, for
any proper factoru of w with u ≺j w, u /∈ F (i+j mod T ). The
notion of periodic anti-factorial list generalizes the notion of
anti-factorial language (see for instance [7]). In the aperiodic
case, an anti-factorial language means a language where no
word is the factor of another one, while a factorial language
is a language where each factor of a word of the language also
belongs to the language (see [7]). In particular, the setsF (i) of
an anti-factorial listF of periodic forbidden words are prefix-
free codes,i.e. sets of words where no word is a proper prefix
of another word of the set. The empty word never belongs to
anyF (i).

Example 1 The listF (0) = {00, 11},F (1) = {00, 11, 010}
with T = 2 is periodic anti-factorial while the listF (0) =
{00, 11, 010},F (1) = {00, 10} with T = 2 is not. Indeed, in
the latter list,10 ∈ F (1), 010 ∈ F (0), and10 ≺1 010.

Proposition 3: Let F be a list of periodic forbidden words
of a PFT(T ) shift X . Then there is an anti-factorial list of
periodic forbidden wordsF ′ of X with the same period, such
thatF ′(i) ⊆ F (i) for any 0 ≤ i ≤ T − 1.

Proof: We define the listF ′ by

F ′(i) = F (i) −F (i)A+ − (AT )+F (i)A∗

−

T−1⋃

j=1

(AT )∗AjF (i+j mod T )A∗,

whereA∗ denotes the set of all finite words overA andA+

the set of all non-empty ones. Note thatF ′(i) is obtained
from F (i) by removing all words that contain a strict factor
in positionk belonging toF (k+i mod T ). By constructionF ′

is periodic and anti-factorial, andX = X{F ′,T}.
The notion of anti-factorial list is weaker than the notion of

minimal list of periodic forbidden words (see [5] for a notion
of minimality, where minimal periodic forbidden words are
called periodic first offenders). This notion is however a key
point in the algorithms described in Section III.
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III. COMPUTATION OF THE SHIFT DEFINED BY PERIODIC

FORBIDDEN WORDS

In this section, we describe an algorithm that computes the
shift X{F ,T} from a finite list of periodic forbidden wordsF
with periodT . This algorithm extends to the periodic case an
algorithm of Crochemoreet al. [7] that computes the language
avoiding the blocks defined by an anti-factorial language. We
first assume that the periodic forbidden list is anti-factorial,
and show later how to remove this restriction.

We denote byB0(F , T ) the set of finite blocksw such
that, for any integer0 ≤ i ≤ |w|, u ≺i w ⇒ u /∈ F (i mod T ).
The set of finite blocks or factors ofX{F ,T} is denoted by
B(X{F ,T}). Note thatB0(F , T ) ⊆ B(X{F ,T}). The inclusion
is strict in general. For instance, ifF (0) = {010}, F (1) =
{101} and T = 2, 010 /∈ B0(F , T ) since010 ∈ F (0), and
010 ∈ B(X{F ,T}).

Moreover, ifw ∈ B(X{F ,T}), there is a finite blocku such
that uw ∈ B0(F , T ). HenceB(X{F ,T}) is included in the set
of factors ofB0(F , T ).

Let F be an anti-factorial list of periodic forbidden words
with period T . We associate withF the finite deterministic
automatonD(F) described below. A finite word is accepted
by this automaton if it is the label of a path from an initial state
to a final one. As shown in Proposition 4,D(F) accepts the
setB0(F , T ) of finite blocks ofX{F ,T} appearing in phase0.
An essential presentation of the PFT shiftX{F ,T} is obtained
fromD(F) by removing the states that have no outgoing edges
or no incoming edges.

The automatonD(F) is defined by the tuple(Q, A, i, F, δ)
as follows:

• the set Q of states is
⋃

0≤k≤T−1 Qk, where Qk =

{(w, k) | w is a prefix of a word inF (k)},
• A is the current alphabet,
• the initial statei corresponds to the empty word(ǫ, 0),
• the setF of final states isQ\

⋃
0≤k≤T−1 Fk, whereFk =

{(w, k) | w ∈ F (k)}.

The states of
⋃

0≤k≤T−1 Fk are calledsink states. The set of
transitionsT is defined as follows:

• T = {((u, k), a, (v, k + r mod T )) | (u, k) ∈ Qk \
Fk, a ∈ A, andv is the longest suffix(ua)[r . . |ua| − 1]
of ua such that(v, k + r mod T ) ∈ Q}, (transitions
((u, k), a, (ua, k)) such that(ua, k) ∈ Qk are called
forward edges while the others are called backward
edges).

The partial transition function defined by transitions is denoted
by δ. If w is a finite word andq a state,δ(q, w) is defined if
and only if there is a path starting atq with label w. In that
case, this path is unique andδ(q, w) is its ending state. Note
that there is no transition going out of a sink state, butδ(q, a)
is defined for any lettera and any stateq that is not a sink
state.

Remarks One can easily prove from the definitions that

• If q ∈ Q \ (F ∪
⋃

0≤k≤T−1(ε, k)), all transitions arriving
on stateq have the same label.

• If q ∈ Q, there is a path fromq to a sink state in the
automaton.

Lemma 1:Let w be a finite word. If δ(i, w) is defined,
then δ(i, w) = (v, r mod T ), where v is the longest suffix
w[r . . |w| − 1] of w such that(v, r mod T ) is a state ofQ.

Proof: We prove the lemma by induction on the length
of w. If w is the empty word, the claim is trivially satisfied.
Otherwisew = ua, where a is a letter. Hence,δ(i, w) =
δ(δ(i, u), a). By inductive hypothesis,δ(i, u) = (u′, k mod
T ), whereu′ is the longest suffixu[k . . |u|−1] of u such that
(u′, k mod T ) is a state ofQ. Sinceδ(i, ua) is defined,δ(i, u)
is not a sink state and(δ(i, u), a, δ(i, ua)) is a transition ofT.

If δ(i, u) = (u′, k mod T ), δ(i, ua) = (v, k + r mod T ),
wherev is the longest suffix(u′a)[r . . |u′a| − 1] of u′a such
that (v, k + r mod T ) is a state ofQ. Let v′ be a nonempty
suffix (ua)[r′ . . |ua| − 1] of ua such that(v′, r′ mod T ) is a
state ofQ. Thenv′ = w′a, andw′ is a suffixu[r′ . . |u|−1] of
u such that(w′, r′ mod T ) is a state ofQ. From the inductive
hypothesis, we get thatw′ is a suffix ofu′, and thusv′ = w′a
is a suffix ofu′a. Thenv is the longest suffix(ua)[r . . |ua|−1]
of ua such that(v, r mod T ) is a state ofQ.

Proposition 4: Let F be a finite anti-factorial list of peri-
odic forbidden words with periodT . The automatonD(F)
acceptsB0(F , T ). It is also a presentation ofX{F ,T} after
removing the sink states.

Proof: We first prove thatB0(F , T ) is included in
the language accepted byD(F). Let w be a finite block of
B0(F , T ). If w is not accepted byD(F), δ(i, w) is not defined.
Thus there is a prefixu of w such thatδ(i, u) = (v, k) is
a sink state. Hencev is a suffix u[n . . |u| − 1] of u, with
k = n mod T , which belongs toF (k). This implies that
v ≺n w, andw /∈ B0(F , T ).

Conversely, let us assume thatw /∈ B0(F , T ). There is an
integerk with 0 ≤ k ≤ |w|, and a finite blocku ∈ F (k mod T ),
such thatu ≺k w. We denote byz the word w[0 . . k − 1].
Hencezu is a prefix ofw. If w is accepted byD(F), δ(i, zu) is
defined. By Lemma 1,δ(i, zu) = (v, r mod T ), wherev is the
longest suffix(zu)[r . . |zu|− 1] of zu such that(v, r mod T )
is a state ofQ. Since(u, k mod T ) is a state ofQ, |v| ≥ |u|.
Sinceu, v are suffixes ofzu, u ∈ F (k mod T ) is a suffix ofv
that is a prefix of a word inF (r mod T ). The anti-factoriality
of F implies thatk = r mod T , andu = v. Thusδ(i, zu) is
a sink state, and thereforew is not accepted byD(F), which
is a contradiction.

The above definition of the automatonD(F) turns into the
algorithm below called PERIODIC–AUTOMATON that produces
it. We first consider the code of this algorithm without the
lines 3.a, 3.b, 3.c and the lines 11.a, 11.b, 11.c. It builds
the automatonD(F) from a finite anti-factorial collection of
finite words. With all lines included, it builds the automaton
from any finite collection of finite words. The input is thus a
collection of T finite sets of finite words. Each finite set of
words is represented by a tree-like deterministic automaton,
called atrie, defined as follows.

Let L be a finite language of finite words, atrie represent-
ing L is a finite deterministic automaton acceptingL, where

• the set of states is the set of prefixes of words inL,
• the initial state is the empty wordε,
• the set of final states isF ,
• the set of transitions is{(u, a, ua) | a ∈ A}.



5

The sizeof a trie T is defined as its number of states and it
is denoted by|T |.

The input of our algorithm is the set of triesTk =
(Qk, A, ik, Fk, δk) that accept the finite setsF (k), for 0 ≤ k ≤
T−1 (see Figure 2). The output is the deterministic automaton
acceptingD(F). It is denoted by(Q, A, i, T, δ). An essential
representation ofX{F ,T} is obtained from it by removing the
states that have no outgoing edges or no incoming edges, and
by setting all states both initial and final.

The key point for the final efficiency is the use of a function
f called afailure functionand defined on the setQ, the union
of the setsQk of states of the triesTk, as follows. A state
of the trie Tk is identified with a pair(u, k), whereu is a
prefix of a word inF (k). For a state(au, k) ∈ Q, f(au, k) is
δ(ik+1 mod T , u). Note thatf(ik) is undefined for anyk such
that0 ≤ k ≤ T − 1, which justifies a specific treatment of the
initial states in the algorithm. The failure function guarantees
a good time complexity of the algorithm.

PERIODIC–AUTOMATON (tries Tk = (Qk, A, ik, Fk, δk)

acceptingF(k), integerT )
1. setQ =

S

k
Qk, F =

S

k
Fk, i = i0.

2. for eacha ∈ A and eachk, 0 ≤ k ≤ T − 1
3.a if ik ∈ F , remove transitionδk(ik, a) in Tk

3.b if δk(ik, a) is definedand ik+1 mod T ∈ F
3.c remove transitionδk(ik, a) in Tk

4. if δk(ik, a) is defined
5. setδ(ik, a) = δk(ik, a)
6. setf(δ(ik, a)) = ik+1 mod T

7. else
8. setδ(ik, a) = ik+1 mod T

9. for eachk, eachp ∈ Qk \ {ik} in width-first search
from

S

k
ik

10. and for eacha ∈ A
11.a if p ∈ F , remove transitionδk(p, a) in Tk

11.b if δk(p, a) is definedand δ(f(p), a) ∈ F
11.c remove transitionδk(p, a) in Tk

12. if δk(p, a) is defined
13. setδ(p, a) = δk(p, a)
14. setf(δ(p, a)) = δ(f(p), a)
15. else if p 6∈

S

k
Fk

16. setδ(p, a) = δ(f(p), a)
17. else
18. setδ(p, a) is undefined (or equal top)
19. return automatonA = (Q,A, i, Q \ F, δ)

0 1 2 3

4 5 6 7

0 1 0

1 0 1

Fig. 2. Example of the two input tries for the collectionF defined by
F(0) = {010},F(1) = {101} andT = 2. Final states are doubled circled.

The shift X{F ,T}, given in Figure 2, is presented by the
deterministic automaton of Figure 3. The doubled circled states

can be removed. For each statep, the value of the failure
function is represented as the target of the dashed edge starting
at p. States can be divided into two subsets, the set of states
in phase0 (in white) and the set of states in phase1 (in gray).
Note that all transitions go from a state in phase0 to a state
in phase1 or conversely.

0 1 2 3

4 5 6 7

0 1 0

1 0 1

10

0

1

1

0

Fig. 3. Presentation of the shiftX{F,T}, where {F , T} is defined by
F(0) = {010}, F(1) = {101} andT = 2.

Proposition 5: Let (Tk)0≤k≤T−1 be the tries of a finite anti-
factorial listF of periodic forbidden words for the periodT .
Algorithm PERIODIC-AUTOMATON builds the deterministic
automatonD(F).

Proof: Since we assume thatF is anti-factorial, we skip
the lines 3 and 11 of the code of the algorithm. The automaton
computed by the algorithm has a set of statesQ which is the
union of the set of states of the input tries. The automaton is
deterministic by construction.

Let p = (u, k) be a state ofQk. We prove by induction on
the length ofu that:

1) if u 6= ε, f(p) = (v, k + r mod T ), where v is the
longest suffixu[r . . |u| − 1] of u, distinct fromu, such
that (v, k + r mod T ) ∈ Q,

2) if a is a letter ofA, and δ(p, a) is defined,δ(p, a) =
(w, k + s mod T ), where w is the longest suffix
(ua)[s . . |ua|−1] of ua such that(w, k+s mod T ) ∈ Q.

Property 1 is trivially satisfied whenu is a letter. Property 2
is trivially satisfied whenu is the empty word.

Let u be a nonempty finite word,p = (u, k) ∈ Q. Hence
u = u′a, wherea is a letter, and we denote byp′ the state
(u′, k) of Qk.

By the inductive hypothesis of 1, since|u′| < |u|, either
u′ = ε and Property 1 is satisfied for the statep, or u′ 6=
ε, and f(p′) = (v′, k + r′ mod T ), wherev′ is the longest
suffix u′[r′ . . |u′|−1] of u′, distinct fromu′, such that(v′, k+
r′ mod T ) ∈ Q. By the inductive hypothesis of 2, since|v′| <
|u′| < |u|, δ(f(p′), a) = (w′, k + r′ + s′ mod T ), wherew′ is
the longest suffix(v′a)[s′ . . |v′a|−1] of v′a such that(w′, k+
r′ + s′ mod T ) ∈ Q. Thenf(p) = δ(f(p′), a) = (w′, k+ r′ +
s′ mod T ). Thus, the blockw′ is a proper suffix ofu′a = u.
Let z be a proper suffix(u′a)[t . . |u′a| − 1] of u′a such that
(z, k + t mod T ) ∈ Q. Then z = z′a and z′ is a suffix
u′[t′ . . |u′|−1] of u′ distinct fromu′, with (z′, k+t mod T ) ∈
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Q. This implies thatz′ is a suffix ofv′, and thatz = z′a is a
suffix of w′. Then Property 1 is satisfied for the statep.

We now consider two cases to prove property 2. Leta
be a letter of the alphabet. Let us assume first that there is
a transitionδk(p, a). Then δ(p, a) is defined asδk(p, a) =
(ua, k) and Property 2 is satisfied. Otherwise,δ(p, a) is
defined asδ(f(p), a). Since Property 1 is satisfied for the
statep, f(p) is the state(v, k + r mod T ), wherev is the
longest suffixu[r . . |u| − 1] of u distinct from u such that
(v, k + r mod T ) ∈ Q. Hence|v| < |u|. Then, by inductive
hypothesis of 2,δ(f(p), a) = (x, k + r + s mod T ), where
x is the longest suffix(va)[s . . |va| − 1] of va such that
(x, k + r + s mod T ) ∈ Q. Thusx is a suffix ofua. If y is a
suffix (ua)[t . . |ua|−1] of ua such that(y, k+t mod T ) ∈ Q,
then y = y′a and y′ is a suffix u[t . . |u| − 1] of u such
that (y′, k + t mod T ) ∈ Q. Thus eithery′ = u or y′ is
a suffix of v. The former case impliest = 0 and δk(p, a)
exists, which is excluded. The latter case implies thaty = y′a
is a suffix of va, and thus a suffix ofx. It follows that
δ(p, a) = (x, k + t mod T ), where x is the longest suffix
(ua)[t . . |ua| − 1] of ua such that(x, k + t mod T ) ∈ Q.
Sinceδ(p, a) is defined asδ(f(p), a), Property 2 is satisfied
for the statep.

Therefore, assuming thatF is anti-factorial, it remains to
check that the instructions implement the definition ofD(F).

Corollary 1: Let (Tk)0≤k≤T−1 be the tries of a finite list
F of periodic forbidden words for the periodT . Algorithm
PERIODIC-AUTOMATON builds a deterministic automaton ac-
ceptingB0(F , T ). It is also a presentation ofX{F ,T} after
removing the sink states.

Proof: Now F is no longer anti-factorial. We keep the
lines 3 and 11 of the code of the algorithm. The algorithm
detects in lines 3.a, 3.b, 3.c and 11.a, 11.b, 11.c, a violation of
the anti-factorial property of the collectionF . Moreover, when
F is not anti-factorial, it builds a new anti-factorial collection
F ′ with B0(F , T ) = B0(F ′, T ), by eliminating the wordsw
in a setF (i) that have strict factorsu ≺j w in F (i+j mod T ).

Proposition 6: If transition functions are implemented by
transition matrices, algorithm PERIODIC–AUTOMATON runs in
time O((

∑
k |Qk|) × |A|) on inputTk = (Qk, A, ik, Fk, δk),

for 0 ≤ k ≤ T − 1.
Proof: If transition functionsδk andδ are implemented

by transition matrices, access to or definition ofδk(p, a) or
δ(p, a) (p state,a ∈ A) are realized in constant amount of
time. The result follows immediately.

IV. PRESENTATION OF FINITE-MEMORY SYSTEMS WITH

UNCONSTRAINED POSITIONS

In this section, we use results from Sections II and III to
derive an algorithm for constructing presentation of a finite-
memory system with unconstrained positions from a finite
list of forbidden words characterizing the constraint. This
construction is an alternative to the construction given in[3].

Let S be a finite-memory system (or finite type shift),
T a period andU a set of unconstrained positions. LetF

be a set of forbidden blocks such thatS = XF . We know
from Proposition 1 that the shiftSσ

U,T is a periodic-finite-
type system defined by the collectionG as follows. Fork ∈
{0, . . . , T − 1},

• if k ∈ U , G(k) is the(U −k)-closure ofF plus the word
0,

• if k /∈ U , G(k) is the(U − k)-closure ofF .

We assume that the input data of our construction are
the periodT and the trieT accepting a prefix-free set of
forbidden blocksF of S. The construction of a presentation
of Sσ

U,T is composed of two steps. In the first step, we build
T tries Tk, 0 ≤ k ≤ T − 1, accepting finite setsG(k)

such thatX{G,T} = Sσ
U,T . In the second step, we compute

a presentation ofSσ
U,T from the tries Tk acceptingG(k).

Algorithm PERIODIC–AUTOMATON of Section III performs
this second step.

We describe the first step for a two-letter alphabetA =
{0, 1}, but the results carry over easily to larger alphabets. In
order to reduce the complexity of the construction, we slightly
change the setsG(k) defined in Proposition 1 to avoid the
generation of allU -flips of words inF .

If L is a set of finite words, we callprefix part of L the
subsetL−LA+ of L, whereA+ is the set of nonempty words
over A. Hence, the prefix part ofL is obtained fromL by
removing the words that have a strict prefix inL itself.

If k /∈ U , we defineG(k) as the set of words obtained by
setting all symbols at positionsi, with i + k mod T ∈ U , to
1 in the words ofF , and by keeping the prefix part of this
set. If k ∈ U , G(k) is obtained by adding the word0 to the
above defined set, and by keeping again only its prefix part. It
is easy to verify thatSσ

U,T = X{G,T}. The result is a collection
of prefix-free sets but it may not be an anti-factorial collection.

Example 2 The RLL (2,7)-constraint is defined by the set
of forbidden blocksF = {11, 101, 00000000}. ForT = 3 and
U = {1} we have to construct three setsG(k), for k = 0, 1
and2.

First, for every word ofF , we flip the symbols0 in positions
i such that i + k mod T ∈ U . Hence, fork = 0, we
get the words{11, 111, 01001001}, for k = 1 the words
{11, 101, 10010010}, and for k = 2 the words {11, 101,
00100100}. The setsG(k) are obtained by taking the prefix
part of the sets above, and by adding the word0 to thoseG(k)

such thatk mod T ∈ U . We obtain

G(0) = {11, 01001001},

G(1) = {0, 11, 101, 10010010},

G(2) = {11, 101, 00100100}.

Example 3 The constrained system MTR(3) is defined by
the set of forbidden blocksF = {1111}. ForT = 3, U = {1},
we obtain

G(0) = {1111},

G(1) = {0, 1111},

G(2) = {1111}.
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We will use the following operation on tries accepting prefix-
free sets of words. IfT and T ′ are two tries accepting
prefix-free sets of wordsL and L′ respectively, we denote
by PREFIX-FREE-UNION(T , T ′) a procedure that computes a
trie accepting the prefix part ofL ∪ L′.

PREFIX-FREE-UNION ( tries T = (Q, A, i, F, δ),
T ′ = (Q′, A, i′, F ′, δ′))

1. if one of the tries is emptyreturn the other trie
2. if one of the tries is reduced to a final statereturn this trie
3. let l(T ), (resp.l(T ′)) be the subtrie rooted atδ(i, 0)

(respectivelyδ(i, 0))
4. let r(T ), (resp.r(T ′)) be the subtrie rooted atδ(i, 1)

(respectivelyδ(i′, 1))
5. (such a subtrie is empty if the transition does not exist)
6. setδ(i, 0) = PREFIX-FREE-UNION(l(T ), l(T ′))
7. setδ(i, 1) = PREFIX-FREE-UNION(r(T ), r(T ′))
8. return the trieT .

The construction of the triesTk acceptingG(k) is then
performed through Algorithm PERIODIC–TRIES below.

PERIODIC–TRIES(trie T = (Q,A, i, F, δ), integerT )
1. makeT copiesTk = (Qk, A, ik, Fk, δk) of T
2. for eachk ∈ {0, . . . , T − 1}
3. for each statep of Tk at distanced from ik
4. (for instance in a bottom-up order)
5. if (k + d mod T ∈ U) and p /∈ Fk

6. let l(Tk), (resp.r(Tk)) be the subtrie rooted
by δk(p, 0) (resp.δk(p, 1)), eventually empty
if the transition does not exist

7. removeδk(p, 0), if it exists
8. setδk(p, 1) = PREFIX-FREE-UNION(l(Tk), r(Tk))
9. if k ∈ U , setδk(ik, 0) = new sink state.

10. return the triesTk

Proposition 7: Algorithm PERIODIC–TRIES runs in time
O(|Q| log |Q| × T × |A|) on the input trieT = (Q, A, i, F, δ)
and the input periodT .

Proof: The procedure PREFIX-FREE-UNION(T =
(Q, A, i, F, δ), T ′ = (Q′, A, i′, F ′, δ′)) runs in time
O(min(|Q|, |Q′|)). If p is a state of the trieT , we de-
note by l(p) the (eventually empty) left subtrie ofp, i.e.
the subtrie rooted byδ(p, 0). Similarly, we denote byr(p)
the (eventually empty) right subtrie ofp. Thus Algorithm
PERIODIC–TRIES(T = (Q, A, i, F, δ)) runs in timeO(T ×
|A| ×

∑
p∈Q min(|l(p)|, |r(p)|). We now evaluate the sum

s =
∑

p∈Q min(|l(p)|, |r(p)|). We say that a subtrie of a state
p is small if it has the smallest size among the two subtries
children of p. Then each state belongs to at mostlog2 |Q|
small subtries. It follows thats ≤ |Q| log2 |Q|.
We mention that other simplifications may be added in the
procedure PERIODIC–TRIES. For instance, if we are interested
in computing bi-infinite words or right-infinite words, any two
words u0 and u1 accepted by a trie may be removed and
replaced byu. Indeed, in the case of infinite words, ifu0
andu1 are forbidden in a positioni, thenu is also forbidden.
Nevertheless, this simplification does not reduce the overall
asymptotic complexity of the process.

Note that, if one considers|A| and T as constants, the
|Q| log |Q| time-complexity obtained in Proposition 7 becomes
linear in|Q| when the input trieT is linear,i.e.accepts a single
word. Note also that each output periodic trie has a size not

larger than the size of the input trie.
The second step of the construction uses

Algorithm PERIODIC–AUTOMATON of Section III for
computing a presentation ofSσ

U,T from triesTk accepting sets
G(k) such thatX{G,T} = Sσ

U,T . The output is an automaton
A = (Q, A, i, Q \ F, δ) acceptingSU,T . If the sink states (i.e.
states ofF ) are removed, one gets a presentation of the shift
Sσ

U,T .
We now evaluate the overall time-complexity of the process

and compare it with the time-complexity of the construction
given in [3]. Algorithm PERIODIC–AUTOMATON runs on tries
Tk in time O((

∑
k |Tk|)× |A|). Since|Tk| ≤ |T |, it is O(T ×

|T |×|A|). Then the overall time-complexity for the input data
T and a trieT accepting a prefix-free set of forbidden blocks
of S, is O(T × |A| × |T | log |T |). It becomes linear for linear
tries. The evaluation of the space complexity is similar and
givesO(T × |A| × |T |).

The construction of [3] enables the computation of a presen-
tation of Sσ

U,T from a presentation of finite-state constrained
systemS in an exponential amount of time in general, and
in quadratic time with a particular condition, called the gap
condition (see [3, pp. 875]). Although our algorithm is poly-
nomial and that given in [3] is exponential, the two algorithms
compute similar presentations. But the input data are different.
In particular, the minimal set of forbidden words of a finite-
memory system can be computed in quadratic-time (see [6])
from a deterministic presentation of the system when this
presentation has a unique initial state. If the system is given by
a deterministic presentation where all states are initial,with Q
states and memoryM , it can take in the worst caseO(|A|M )
amount of time to compute a deterministic presentation that
has a unique initial state. Thus the complexities of the two
algorithms cannot be compared directly and one can choose
one or the other depending on the way the constraint is defined.

Some constraints may be naturally defined by a list of
forbidden blocks. For instance, an MTR constraint is defined
by a single forbidden block. The RLL(d, k)-constraint is
defined byd forbidden blocks of length at mostd + 1 and
one block of lengthk + 1. With (d, k) = (2, 7) one gets the
forbidden blocks{11, 101, 00000000}. A trie accepting a finite
set is built in time linear in the sum of the lengths of the
words of the set. In the particular case of the set of forbidden
blocks of the(d, k)-constraint, the trie is built in time linear
in d + k, i.e. sinced ≤ k, in time O(k) from the inputsd and
k. Moreover the trie has a size that is alsoO(k). Indeed, the
trie has the particular linear structure described in Figure 4.
It follows that Algorithm PERIODIC–AUTOMATON runs in
time O(k) on this input trie. Indeed, in the analysis of the
complexity in the proof of Proposition 7,s = O(|Q|) = O(k).
Thus our algorithm works linearly on the MTR constraints, and
on the RLL constraints. An efficient algorithm for the MTR
constraints is also given in [3]. Figure 5 displays an example
for the constraint MTR(3). The presentation can be minimized
with standard methods [9]. It leads to the minimal presentation
displayed in Figure 6.

A condition similar to the gap condition of [3, pp. 875]
can be stated as follows. We assume that there is at most one
unconstrained position in{0, . . . , M − 1}, where M is the
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Fig. 4. The trie of the RLL(d, k)-constraint.

maximal length of a minimal forbidden word of the system.
If this condition is satisfied, the complexity of our algorithm
becomes linear,i.e. , O(T × |A| × |T |).

0 1 2 3 4

5 6
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10 11 12 13 14

1 1 1 1

1 1 1 1

1 1 1 1

0

0
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0

0

00
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Fig. 5. A presentation ofSσ
U,T

for S = MTR(3), T = 3, U = {1}. It is
obtained by Algorithm PERIODIC–AUTOMATON on the input tries accepting
the setsG(0) = {1111}, G(1) = {0, 1111}, G(2) = {1111}. States in phase
0, 1, and2 are colored in white, light gray, and gray respectively.

V. PERIODIC FORBIDDEN WORDS OF A SINGLE FINITE

WORD

Repetitions, and especially consecutive repetitions, play an
important role in the analysis of molecular biology sequences.
Some of them are even related to known deseases. From this
point of view it is interesting to consider periodic forbidden
words according to a single word. This may be used to
discover combinatorial properties of the sequence and identify
subsequence motifs either in coding regions and in ”junk
DNA”, and then to derive statistical features on them.

In this section, we study the problem of computing the
minimal periodic forbidden words of a given finite word. The
problem of computing the minimal (non periodic) forbidden
words of a single word has been solved in linear time
in [7], see also [10, section 6.5 pp. 212]. We extend here
the algorithm presented in [7] to the periodic case. The set
of minimal forbidden words in a phasek of a word y, with
0 ≤ k ≤ T−1, is the set of finite blocksw that never appear at
a positionk mod T of y, and such that there is no strict factor
w′ of w with w′ ≺i w appearing at a positionk + i mod T
of y.

0

1, 5 2, 6 3, 7

0, 1

1 1

0

0

Fig. 6. The Shannon cover ofSσ
U,T

for S = MTR(3), T = 3, U = {1}. It
is the minimal presentation of that of Figure 5.

In the sequel, we fix a positive integerT as period. Ify is
a finite word we denote bySuff(k)(y), for 0 ≤ k ≤ T − 1,
the set of suffixes ofy beginning at a position ofy equal to
k moduloT . Thus,

Suff(k)(y) = {y[i . . |y| − 1] | i = k mod T }.

We denote byFact(k)(y) the set of prefixes ofSuff(k)(y), that
is, the set of factors ofy that occur iny at positionsk modulo
T . In this section, we also denote byF (k)(y) the set of finite
blocks that are not factors ofy at a positionk moduloT . Thus
F (k)(y) = A∗ − Fact(k)(y).

The collection of minimal periodic forbidden words ofy for
a periodT is defined as the finite collection of setsMF(k)(y),
with 0 ≤ k ≤ T − 1, where

MF (k)(y) = F (k)(y) −F (k)(y)A+ − (AT )+F (k)(y)A∗

−

T−1⋃

i=1

(AT )∗AiF (k+i mod T )(y)A∗.

Thus, the above collectionMF(k)(y) is periodic and anti-
factorial. It is minimal in the following sense: ifu ∈ F (k)(y),
then u has a factor at some positioni that belongs to
MF(k+i mod T )(y), and any other collection of finite sets of
blocks G(k) satisfying this condition verifiesMF(k)(y) ⊆
G(k). Although this notion of minimality refers to a finite word
y, it is similar to the notion of periodic first offenders defined
in [5] for constrained systems.

We now give a simpler expression of the setF (k)(y) used
to derive the next algorithm.

Proposition 8: The setMF (k)(y) of minimal periodic for-
bidden words ofy for a periodT satisfies

MF (k)(y) = (AFact(k+1 mod T )(y))

∩ (Fact(k)(y)A) ∩ (A∗ − Fact(k)(y)).
(1)

Proof: Let u be a block of(AFact(k+1 mod T )(y)) ∩
(Fact(k)(y)A) ∩ (A∗ − Fact(k)(y)). Then u ∈ F (k)(y).
Since u ∈ Fact(k)(y)A, then u /∈ F (k)(y)A+. Since u ∈
AFact(k+1 mod T )(y), then u ∈ Ai Fact(k+i mod T )(y) for
1 ≤ i ≤ |u|. Henceu /∈ (AT )+F (k)(y)A∗, and u does not
belong to

⋃T−1
i=1 (AT )∗AiF (k+i mod T )(y)A∗ either.

Conversely, letu be a block ofMF (k)(y). Then u ∈
F (k)(y). If u /∈ Fact(k)(y)A, thenu = va, with a ∈ A, and
v ∈ F (k)(y). Henceu ∈ Fact(k)(y)A. Let us now assume
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that u /∈ AFact(k+1 mod T )(y). Then u = av, with a ∈ A
and v ∈ F (k+1 mod T )(y). Then v has a factor at positioni
belonging toMF(k+1+i mod T )(y). This contradicts the fact
thatu does not belong to

⋃T−1
i=1 (AT )∗AiF (k+i mod T )(y)A∗∪

(AT )+F (k)(y)A∗. HenceMF(k)(y) satisfies (1).
We now describe an algorithm for computing the collection
MF (k)(y). The design of the algorithm is based on (1). A
preliminary step of the algorithm consists in computing, for
any 0 ≤ k ≤ T − 1, a minimal deterministic automaton
acceptingSuff(k)(y). This operation can be performed in time
O(T × |y| × log |A|).

First, the computation of a minimal deterministic automaton
acceptingSuff(k)(y) is reduced to the computation of a mini-
mal deterministic automaton acceptingSuff(0)(y[k . . |y|−1]).
Hence, we will assume, without loss of generality, thatk =
0. The computation of a minimal deterministic automaton
acceptingSuff(0)(y) is an extension of the known computation
of the minimal automaton of the suffixes of a word, also called
the directed acyclic word graph (DAWG) of a word (see for
instance [11], [12] or [10, section 5.4 pp. 179-192]).

The states of this automaton are the equivalence classes
of the syntactic congruence associated with the language
Suff(0)(y) defined as follows: ifu ∈ Fact(y), we denote by
Fy(u) thefutureof u relative toSuff(0)(y). ThusFy(u) = {v |

uv ∈ Suff(0)(y)}. Note thatFy(y) is reduced to the empty
word, and thatFy(u) is the empty set ifu /∈ Fact(0)(y). The
wordsu andv are equivalent if and onlyFy(u) = Fy(v).

Moreover, the automaton has a transition labelled bya from
the class of a wordu to the class ofua. If u ∈ Fact(y), we
define its images(u) by the suffix functions as the longest
suffix v of u in Suff(0)(u) such thatFy(v) 6= Fy(u). In this
case,Fy(u) ⊆ Fy(v).

It can be shown that ifp is a state representing a class of
congruent factors ofy, and if u belongs to this class, alls(u)
belong to the same class of the congruence. Thus, one can
define thesuffix link of the statep, denoted bys(p), as the
class ofs(u).

In the description below, deterministic automata are denoted
by (Q, A, i, F, δ), whereQ is the set of states,A the alphabet,
i the initial state,δ the partial transition function, andF the set
of final states. A transition labelled bya from p to q is also
denoted by the edge(p, a, q). The algorithm generating the
minimal automaton acceptingSuff(0)(y) is described in Pro-
cedure PERIODIC-SUFFIX-AUTOMATON. It is an incremental
algorithm that computes successively a minimal automaton
acceptingSuff(0)(y[0 . . i]), for i going from0 to |y|− 1. This
procedure calls procedures EXTENSION and SPLIT. Procedure
EXTENSION performs the transformations needed to get a
minimal automaton acceptingSuff(0)(y[0 . . i]) from a minimal
automaton acceptingSuff(0)(y[0 . . i−1]). Some dummy states
are added during the construction. The suffix link is not defined
for these dummy states. The transitions belonging to some
longest path from the initial state to some other state are called
solid while the others are calledweak. If p is a state of the
automaton, the sequence of statesp, s(p), s(s(p)), . . . is finite
and ends with a dummy state. This sequence is called thesuffix
path of p. If p is the class ofy, the non-dummy states of its

suffix path are the final states of the automaton.

PERIODIC-SUFFIX-AUTOMATON (word y, periodT )
1. createT dummy states−1,−2, . . . − T
2. create an initial state0
3. sets(0) = −T
4. let p = 0
5. for i from 0 to |y| − 1 do
6. p = EXTENSION(p, yi)
7. let f = p
8. while f ≥ 0 do
9. setf final

10. setf = s(f)
11. return automaton(Q, A, 0, E, {final})

EXTENSION (statep, lettera)
1. create a new stateq
2. create a new solid transition(p, a, q)
3. let r = s(p)
4. while r ≥ 0 and there is no transitiona going out ofr do
5. create a weak transition(r, a, q)
6. setr = s(r)
7. if r < 0
8. sets(q) = r + 1
9. else

10. let s = δ(r, a)
11. if the transition(r, a, s) is solid
12. sets(q) = s
13. else
14. sets(q) = SPLIT(r, a, s)
15. return q

SPLIT (statep, letter a, stateq)
1. create a new stateq′

2. for each transition(q, a, r)
create a weak transition(q′, a, r)

3. change the (weak) transition(p, a, q) into a solid
transition(p, a, q′)

4. sets(q′) = s(q)
5. sets(q) = q′

6. let t = s(p)
7. while t ≥ 0 and the transition(t, a, q) is weakdo
8. change(t, a, q) into (t, a, q′)
9. sett = s(t)

10. return q′

Proposition 9: Algorithm PERIODIC-SUFFIX-
AUTOMATON computes the minimal deterministic automaton
acceptingSuff(0)(y) for a given periodT .

Proof: The proof is an extension to the periodic case
of the correctness proof of the computation of the minimal
deterministic automaton accepting the set of all suffixes ofy
(see [10, section 5.4 pp. 179-192]). We omit the proof but we
mention below the main differences needed to take the period
into account. Ifp is a state such thatl(p) < T , the suffix
link s(p) is the dummy state−T + l(p). Let us assume that
we are at stepi, lines 5-6 of Procedure PERIODIC-SUFFIX-
AUTOMATON(y, T ). Let us denotey[0 . . i − 1] by w. Let r
be the state obtained at the end of the loop in lines 4-6 of
Procedure EXTENSION(p, a). If r is a dummy state, for any
word u in Suff(0)(w), eitherFw(u) = Fw(w) = {ε} or ua /∈
Fact(0)(w).

Proposition 10: The size of the minimal automaton accept-
ing Suff(0)(y) for a given periodT is linear in the size of
y. Algorithm PERIODIC-SUFFIX-AUTOMATON runs in time
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linear in the size ofy.
Proof: The proof is similar to the proof in the aperiodic

case [10, section 5.4 pp. 192].
Making all states final in the minimal deterministic au-

tomaton acceptingSuff(k)(y) gives a deterministic automaton
acceptingFact(k)(y). Note that this new automaton may not
be the minimal one. An example is given in Figure 7.

We now describe the second step of the algorithm. We
denote byAk = (Qk, A, ik, Qk, δk) a deterministic automaton
acceptingFact(k)(y), that is the set of blocks, factors of
y, beginning at a position equal tok modulo T . From the
automataAk, the algorithm outputs the triesTk accepting the
setsMF (k)(y). An example of this computation is described
in Figure 8.

PERIODIC-MF-TRIES ( factor automata
Ak = (Qk, A, ik, Fk, δk))0≤k≤T−1, integerT )

1. for eacha ∈ A
2. if δk(ik, a) defined
3. setδ(ik, a) = δk(ik, a)
4. setf(δ(ik, a)) = ik+1 mod T

5. else
6. setδ(ik, a) = new sink
7. for each statep ∈ Qk in width-first search from∪k{ik}

and eacha ∈ A
8. if δk(p, a) undefinedand δk+1 mod T (f(p), a) defined
9. setδ(p, a) = new sink

10. else if δk(p, a) = q and q not already reached
11. setδ(p, a) = q
12. setf(δ(p, a)) = δ(f(p), a)
13. return (Tk = (Qk, A, ik, {sinks}, δ))0≤k≤T−1;

Proposition 11: Algorithm PERIODIC-MF-TRIES

computes from the automataAk accepting Fact(k)(y)
the set of tries accepting the minimal periodic forbidden
words ofy.

Proof: Again, the proof is an extension of the correctness
proof of the computation of the minimal forbidden words of
a word from the factor automaton ofy (see [10, section 6.5
pp. 182] or [7]).

Proposition 12: Algorithm PERIODIC-SUFFIX-
AUTOMATON followed by algorithm PERIODIC-MF-TRIES

runs in timeO(|y| × T × log |A|).
Proof: The complexity is straightforward.
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