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Summary 

 

 

Because of the potential of perpendicular magnetic recording to achieve much higher 

recording densities than longitudinal recording, the recent years have witnessed a surge in 

research activities in perpendicular recording. Whereas most of the techniques developed 

for longitudinal recording are also applicable to perpendicular recording, they need to be 

reinvestigated to ensure optimum performance for perpendicular recording. The 

combination of a partial response (PR) equalizer followed by the Viterbi algorithm based 

maximum likelihood (ML) type sequence detection (PRML) is currently the most 

commonly used signal detection technique at high recording densities. To further increase 

the performance, distance-enhancing modulation codes are used. These codes, at the cost 

of efficiency, help to gain performance by eliminating the data patterns that support 

dominant error mechanisms in the detector. To minimize the loss in efficiency, especially 

at high densities, an approach that is widely being adopted is to use weaker distance-

enhancing codes in combination with parity-check error correcting codes. The approach 

of parity-based post-processing to detect and correct errors is now widely being adopted 

since it offers a good compromise between performance and complexity. Therefore, the 

research work undertaken in this thesis is aimed at developing efficient constrained 

parity-check codes and optimum post-processing approaches for perpendicular recording. 

Analysis of the error events at the Viterbi detector (VD) output shows that most of 

the dominant error events have a certain common structure. This motivates the design of 

a suitable and efficient distance-enhancing code. This code is then combined with a 
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parity-check code. Moreover, the special structure of the parity-check code results in a 

post-processor that is computationally much simpler than conventional post-processors. 

Simulated for a perfectly equalized PR channel, the novel constrained parity-check code 

provides significant improvement in bit error rate (BER) performance. 

 Parity-based post-processors are based on the principle of optimum receiver for 

multiple signals detection in communication theory. Because most post-processors in 

current systems are based on ML criterion, it is proposed in this thesis to investigate the 

performance of post-processors based on maximum a posteriori (MAP) criterion. We 

have derived analytical expressions for the comparison of MAP and ML post-processors. 

However, because the novel constrained parity-check code results in error events that 

have comparable prior probabilities, the performance of MAP and ML post-processors 

for this code turn out to be similar. 

Weakly constrained modulation codes in combination with parity-check codes 

have received much interest because of the good trade-off they offer between coding gain 

and rate loss. Runlength constraints characterized with a list of forbidden data strings, 

known as forbidden list (FL) constraints, represent an effective way of generating high-

rate constrained codes. Because of the flexibility offered by weak FL constraints, it is 

proposed in this thesis to search for the FL constraints that simultaneously lead to 

acceptable BER performance and separate the prior probabilities for the MAP post-

processor. After identifying eligible FL constraints, we generate the constrained data with 

a suitably designed maxentropic Markov source. Simulations on real channels show 

attractive performance gain with this new code. 
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Nomenclature 

 

ε   error string associated with an error event e  

( )nη  noise component of the signal at the output of the equalizer 

L   list of forbidden strings js   

( )eπ   probability of the data patterns which support the error event e  

( )mυ   channel noise 

( )c n   input data bits in NRZ{-1,1} format 

( )ĉ n   channel bits detected by Viterbi detector 

D   one channel bit delay operator 

uD   user density  

ed   Euclidean distance associated with the error event e  

e   error event 

kg   taps of the partial-response target 

( )h t , ih  bit response of the recording channel 

( )sh t   step response of the recording channel 

L   oversampling factor 

gN   length of the partial response target  

bP   bit error rate 

R   code rate 
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js   forbidden string which constrain the channel data bits ( )c n  

T   duration of one channel bit 

( )w e   Hamming weight of the error event e  

iw   equalizer taps 

( )x n   output of the equalized recording channel 

AWGN additive white Gaussian noise 

BER  bit error rate 

FL  forbidden list 

GPR  generalized partial response 

ISI  intersymbol interference 

MAP  maximum a posterior 

ML  maximum likelihood 

MLSD  maximum likelihood sequence detection 

MTR  maximum transition run 

NRZI  non-return-to-zero inverse 

NRZ  non-return-to-zero 

PC  parity-check 

PPP  parity-based post-processor 

PR  partial response 

PRML  partial response maximum likelihood 

RLL  runlength limited 

SNR  signal-to-noise ratio 

VD  Viterbi detector 
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Chapter 1  

Introduction 

 

 

In this chapter, we present a very brief overview of magnetic data storage systems from a 

signal processing perspective. After introducing perpendicular magnetic recording and 

the different signal detection techniques, we focus on constrained codes and parity-check 

codes which are used for improving the detection performance in recording systems. This 

review is aimed at motivating the research work reported in this thesis. The chapter 

concludes with a summary of the main contributions and the organization of the thesis. 

 

 

1.1 Magnetic Data Storage 

The advent of the information age has triggered a tremendous demand for mass data 

storage. Demand for storage capacity is doubling every 18 months, which accounts for 

the importance of data storage as the central component of information technology 

infrastructure. There is great economic as well as technological interest in data storage. 

The current data storage industry is comprised of three technologies: magnetic storage, 

optical storage, and semiconductor memory. Storage media for magnetic recording can 

be hard disks, tapes, floppy disks and cards. Currently, magnetic storage has a clear 
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leading edge over the other two technologies in providing high storage capacity devices 

at low costs and high flexibility. To maintain this edge and meet the increasing demand 

for data storage capacity posed by the information technology era, the currently used 

longitudinal magnetic recording technology has shown phenomenal growth rate in 

storage capacity in the last two decades. Even though longitudinal technology has well 

exceeded 2100 Gbits/in , it is well understood that the growth rate cannot be maintained 

further due to the so-called ‘super paramagnetic effect’ which arises from the inability of 

the magnetic medium to hold the magnetization pattern at very high densities [1]. As a 

result, there has been intense research in perpendicular recording because of its potential 

to achieve much higher recording densities than longitudinal recording by pushing the 

threshold up for the occurrence of super paramagnetic effect [2]. The perpendicular 

recording has already achieved about 2150 Gbits/in . Although the explosive growth in 

recording density has been mainly due to the technological improvements made in the 

design of head-media system, sophisticated coding and signal processing techniques are 

very essential to support and enhance high density recording [50]. The scope of this 

thesis is limited to the coding and signal processing aspects of perpendicular magnetic 

recording systems. In particular, the objective is to develop efficient constrained parity-

check codes for improving the detection performance. 

 

 

1.2 Perpendicular Magnetic Recording 

Figure 1.1 shows the block schematic of a digital magnetic recording system. The ECC 

(error control coding) encoder incorporates error detection and error correction 
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capabilities into the input data [25,39]. The purpose of modulation encoder is to match 

the data to the recording channel characteristics, improve detection performance and 

ensure proper working of the control loops (e.g. timing/gain recovery) at the receiver 

[26,53,51]. The write circuits convert the coded data sequence into a write-current which 

in turn drives the write-head, to magnetize the storage medium to record the coded data. 

The front-end circuits condition the replay signal generated by the read head, i.e. limit the 

noise bandwidth, regulate dynamic range, compensate for nonlinearities etc [41]. The 

equalizer shapes the signal according to certain criteria so that the detector is able to 

recover the stored data with as few errors as possible [13,27]. The data detector recovers 

the stored encoded data and passes it to the modulation and ECC decoders for recovering 

the original user data. Not shown explicitly in Figure 1.1 are the control loops required 

for doing timing recovery [44], gain control [41], DC offset cancellation and adaptive 

equalization [27]. 

 

 

 

 

 

 

Figure 1.1: Block schematic of a digital magnetic recording system. 

 

The main features expected from a recording system are high storage density, 

high data rate, good reliability and low power requirement. However, the noise power 

increases with data rate. Further, as density increases, the signal-to-noise ratio (SNR) of 
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the read-back signal decreases and channel distortions increase. These effects reduce 

significantly the reliability and the achievable recording density of the system [42].  

Several strategies have been developed to improve recording density in magnetic 

recording systems. Because of the potential for supporting high density recording, there 

has been intense research in perpendicular recording. As shown in Figure 1.2, the 

magnetization direction on the storage medium is perpendicular to the plane of the 

medium in perpendicular recording systems. It is expected that the perpendicular 

recording technology will replace the longitudinal technology in the coming few years. 

Wood [3] shows that double-layer perpendicular magnetic recording systems are capable 

of achieving recording densities as high as 
21 Tbits/in . While the increase in density has 

been mainly due to the technological improvements in the recording medium and 

read/write heads, the coding and signal processing techniques have become very crucial 

to ensure reliable data recovery despite the serious degradation in channel quality (e.g. 

noise, distortions, SNR) under aggressive recording conditions [42]. 

 

 

 

 

Figure 1.2: Magnetization pattern of the storage medium for perpendicular and longitudinal magnetic 
recording. 

 

Regardless of the direction of the medium magnetization (see Figure 1.2), 

recording systems need to tackle similar set of issues, i.e. intersymbol interference (ISI), 

media noise, head and electronics noise, and various nonlinear distortions. Therefore, the 

Perpendicular media Longitudinal media 

Direction of the 
read/write head 

Direction of the 
read/write head 
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coding and signal processing techniques developed for longitudinal recording systems 

should also be suitable for perpendicular recording systems. However, detailed 

characteristics, such as the spectrum of the channel response and the nature of 

nonlinearities, of longitudinal and perpendicular systems differ greatly [43]. Unlike in 

longitudinal recording systems, the read-back signal has a DC component, and this 

affects the characteristic of the detector. In view of these differences, it becomes 

necessary to re-investigate the coding and signal processing techniques so as to achieve 

the best performance from perpendicular recording systems. 

In view of the scope of the research work undertaken in this thesis, the brief 

reviews given in Sections 1.3 and 1.4 are restricted to equalization, detection and coding 

techniques used in magnetic recording system. 

 

 

1.3 Detection Techniques for Magnetic Recording 

There are a number of techniques developed for data detection on magnetic recording 

channels. The most widely used detection method in commercial products till late 1980’s 

was the peak detection method [48]. At low recording densities, in longitudinal recording, 

transitions in the polarity of the input data sequence result in reasonably distinct peaks in 

the read-back signal. Therefore, the principle of peak detector is to detect the presence of 

transitions in the input data by detecting the peaks in the read-back signal. The peaks are 

located by differentiating the read-back signal and passing it through a ‘zero-crossing 

detector’. To minimize detection errors, a threshold test is also done on the signal to 
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eliminate spurious zero-crossings caused by noise. Clearly, this detector is very simple to 

implement. 

The peak detector works best at low recording densities. However, as the density 

increases, the peak detector is not suitable anymore. In 1990, IBM developed a new 

detection technique, known as PRML, based on the principles of partial response (PR) 

signaling and maximum likelihood (ML) detection [13]. PRML detectors, depicted in 

Figure 1.3, are able to support much higher recording densities than peak detectors and 

they have become the most widely used detection technique in current commercial hard-

disk drives. PRML detectors include a PR equalizer to shape the recording channel to a 

suitably chosen target response [45], called the PR target, and a maximum likelihood 

sequence detector (MLSD) [11] to recover the recorded bit sequence. PR equalization 

serves to reduce the complexity of the MLSD which is implemented using the Viterbi 

algorithm [46]. The acronym ‘PRML’ may lead to confusion. Indeed, the Viterbi detector 

is not the optimal detector for this system since the noise at its input is colored due to the 

equalizer. However, the industry as well as the recording literature have been using this 

acronym despite its inaccuracy [5,13]. Therefore, for the sake of tradition, we will also 

use this acronym in this thesis and remember that the underlying Viterbi detector is not 

optimal.  

Partial response linear
equalizer

Viterbi detector tuned to
the PR target

Filtered and sampled read-
back signal Detected recorded bits

 

Figure 1.3: Partial-response maximum likelihood (PRML) detection technique. 
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Noise enhancement and noise correlation degrade the performance of PRML 

schemes [5]. The performance of PRML detectors can be improved if the noise at the 

input of the Viterbi detector is whitened. Chevillat et al. [4] and Coker et al. [5] have 

showed that the performance of the Viterbi detector can be enhanced by attaching a 

noise-whitening filter at the output of the PR equalizer. The combination of the PR 

equalizer, the noise whitening filter and the modified Viterbi detector, shown in Figure 

1.4, is called noise-predictive maximum-likelihood (NPML) detector [5]. 

 

PR
equalizer

Whitening
filter Viterbi detector

Filtered and sampled
read-back signal Detected bits

 

Figure 1.4: Block diagram of noise-predictive maximum-likelihood (NPML) detector. 

 

The use of whitening filter results in increasing the length (i.e. the number of 

coefficients) of the effective PR target. Since the complexity of the Viterbi detector 

grows exponentially with the PR target length, it becomes necessary to use some 

complexity reduction approaches while implementing the NPML. The approach used in 

NPML is to reduce the number of states in the Viterbi trellis by using bits from the 

survivor paths in the trellis [5,47]. 

The issue of noise enhancement can also be dealt with a detector based on the 

principle of decision feedback equalization (DFE) [49]. DFE detection schemes, shown 

in Figure 1.5, were developed in parallel with PRML schemes. The joint action of the 

forward and feedback equalizers results in complete cancellation of intersymbol 

interference (ISI) at the slicer input, while not causing noise enhancement. On the other 
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hand, complete cancellation of ISI results in loss in achievable performance compared to 

the PRML approach. Another disadvantage of DFE is the phenomenon of error 

propagation, which arises because the feedback equalizer uses the already detected bits to 

cancel part of the ISI. Error propagation is caused by incorrect past decisions. As 

compared to PRML schemes, DFE detectors are simple in structure, have low 

implementation cost and processing requirement, and require no decision delay. 

 

Forward
equalizer Slicer

Feedback
equalizer

+

-

Filtered and sampled read-
back signal Detected bits

 

Figure 1.5: Block diagram of a detector based on feedback equalization (DFE). 

 

 

1.4 Constrained Codes 

In recording systems, ‘constrained codes’ is another name for ‘modulation codes’. As 

mentioned in Section 1.2, constrained codes play a key role in ensuring reliable data 

recovery. Further, a close examination of the detectors described in Section 1.3 will show 

the need for code constraints to be imposed on the input data. Before explaining these 

constraints in detail, let us give the conventions that are usually used to map an input 

binary sequence to the magnetization pattern along the track [51].  In non-return to zero 

(NRZ) convention, one direction of magnetization corresponds to a ‘1’ and the other 
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direction corresponds to a ‘0’. In non-return to zero inverse (NRZI) convention, a change 

in the direction of magnetization corresponds to a recorded ‘1’, whereas no change 

corresponds to a recorded ‘0’. Usually, the input sequence is first encoded using NRZI 

format and then transformed to the NRZ format before being fed to the write circuits. 

This transformation is known as ‘NRZI-NRZ precoding’ and its transfer function is given 

by 1/(1 )D⊕  where ‘ ⊕ ’ is the Boolean XOR operator and ‘ D ’ is the 1-bit delay operator. 

Figure 1.6 illustrates a write-current waveform and the associated binary input data in 

NRZ and NRZI formats. 

 

Figure 1.6: Input binary data in NRZI and NRZ formats corresponding to the given write-current waveform. 
 

As the recording density increases, the linear as well as nonlinear ISI in the 

recording channel tend to increase. An immediate consequence is the degradation of the 

performance of simple threshold detectors such as the peak detector due to the shift in 

peaks and reduction in noise margin. In addition, the linearity assumption on the channel 

tends to fail. A class of modulation codes, called runlength-limited (RLL) codes, is 

particularly useful for tackling these issues [6,51]. In order to reduce the ISI 

(linear/nonlinear), the input data sequence in NRZI format should have a certain 

minimum number d  of consecutive ‘0’s between two consecutive ‘1’s. This constraint is 

known as the ‘ d  constraint’. Similarly, in order to prevent the loss of clock 

binary input in 
NRZI format  1            0            1            1            0           0            0            1           0            1           0 

binary input in 
NRZI format  1            1            0            1            1           1            1            0           0            1           1 

write 
current 

waveform 
1 

-1 

T 
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synchronization, the timing and gain control loops at the receiver should be updated 

frequently enough. This is enabled by limiting the number of consecutive ‘0’s between 

two consecutive ‘1’s to a given maximum k . This is known as the ‘ k  constraint’. The 

RLL constraints are also called ( , )d k  constraints. 

In PRML detectors, the k -constraint has the additional role of reducing the path 

memory requirement as well as avoiding certain catastrophic error events [13,46]. In fact, 

the runlength constraints in PRML detectors are specified by a more general form 

(0, / )G I  [13,51]. Here, ‘0’ refers to the 0d =  constraint and G  refers to the k -

constraint. The I -parameter specifies an additional constraint on the maximum runlength 

of zeros in the odd and even interleaved sequences. The I -constraint has proven to 

eliminate the troublesome channel input sequences that would otherwise degrade the 

performance of the Viterbi detector [13]. 

The benefits provided by the above described code constraints come at a cost that 

is specified by a parameter called the ‘code rate’.  The rate of a code is defined as 

/R p q= , 0 1R< < , specifying that groups of p  bits at the encoder input are coded into 

groups of q  bits at its output. Clearly, the code rate decreases with increase in d  or 

decrease in ,  or k G I . Two main disadvantages of coding are decrease in SNR and 

increase in channel data rate, with decrease in code rate [12]. Therefore, it becomes very 

important to design codes with the maximum code rate possible, while satisfying the 

required code constraints. 

Yet another class of constrained codes is called ‘distance-enhancing codes’ [7]. 

These codes, in addition to imposing the necessary runlength constraints, also impose 

special constraints for the sole purpose of enhancing the detection performance of Viterbi 
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detector. These constraints may be formulated and implemented using time-domain or 

frequency-domain approaches. An example of the time-domain approach is the maximum 

transition run (MTR) code proposed by Brickner and Moon [8]. This code removes the 

dominant error patterns by eliminating input data patterns that support three or more 

consecutive transitions. Whereas a ( )1,d k=  RLL constrained code can also eliminate 

these data patterns, the advantage of the MTR code is that it can accomplish this with a 

high code rate of 4/5 compared to the ( )1,d k=  code whose code rate is only about 2/3. 

An example of the frequency-domain approach is the class of matched spectral null 

(MSN) codes which improve the detection performance by matching the spectra of data 

and channel especially at the channel nulls [26]. This has the effect of eliminating the 

dominant error patterns. 

Because of the performance gain achieved with high-rate modulation codes, there 

has been intense research for designing such codes. Fitzpatrick and Modlin [9] designed 

high-rate distance-enhancing codes that are based on time-varying MTR constraints. 

Cideciyan et al. [52] have presented the design of high rate MTR codes for generalized 

PR channels. Karabed et al. [54] have introduced high-rate distance-enhancing codes 

which are defined by a list of forbidden data strings. 

 

 

1.5 Parity-Check Codes and Post-Processing Techniques 

In the previous section, we saw that the distance-enhancing codes (e.g. MTR) help to 

gain performance by eliminating the data patterns that support the dominant error 

mechanisms in the detector. The price paid to achieve this gain is the coding efficiency. 
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In our efforts to attain very high recording densities, it is of utmost importance to make 

the coding efficiency (e.g. code rate) as high as possible. For example, a code rate of even 

8/9 is considered low according to current trends [53]. In order to minimize the loss in 

efficiency (in code rate), especially at high densities, an approach that is widely being 

adopted is to use weaker constrained codes in combination with parity-check codes 

[22,37,40]. Weak constrained codes do not completely prohibit the dominant error 

mechanisms in the detector. Instead, they restrict the number of such mechanisms and 

reduce their probabilities. A parity-based post-processor unit helps to detect and correct 

the dominant errors that remain at the detector output. Compared to the approach of joint 

data detection and parity decoding using the Viterbi detector, the post-processing 

approach of error detection and correction is very cost-effective, from the point of 

complexity, while not sacrificing performance. As compared to powerful ECC schemes 

such as turbo-codes, the parity-based post-processors represent a practically attractive 

trade-off between implementation complexity and performance gain. When used 

separately, constrained codes and parity-check codes require two distinct encoders. In 

order to improve the overall efficiency, it has been proposed to combine both encoders 

[31,34,38]. The design of the parity-check code is based on the analysis of the dominant 

error mechanisms in the detector. Because of their powerful error correction and error 

detection capability, systematic polynomial block codes have received particular interest 

[36,38,40]. But, these codes cannot be combined with constrained codes. Therefore, for 

the sake of efficiency, researchers have resorted to other approaches for developing 

combined constrained parity-check coding schemes [31,38]. The post-processing unit 
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makes use of either Euclidean distance computations [32,37,40] or a bank of matched 

filters [35,38,53]. 

 

 

1.6 Motivation, Contribution and Organization of the 

Thesis 

The brief overview presented in Sections 1.3 to 1.5 shows that the design of efficient and 

powerful codes is key to designing a high-performance PRML system. Therefore, our 

focus in this thesis is to design efficient constrained parity-check codes and effective 

post-processing techniques to improve the performance of PRML schemes for 

perpendicular recording systems. Two points are worth mentioning here. Firstly, as 

compared to longitudinal recording channels, perpendicular recording channels are 

characterized by different dominant error mechanisms at the output of the Viterbi 

detector. Therefore, the distance-enhancing constraints as well as the parity-check 

constraints needed to improve the performance in perpendicular systems may be quite 

different from that in the longitudinal case. Therefore, we investigate the design of new 

and efficient distance-enhancing codes and parity-check codes. Secondly, the post-

processor design is based on the principle of the optimum receiver for multiple signal 

detection in communication theory. While existing parity-based post-processors are based 

on ML decision rule, it is expected that post-processors based on maximum a posteriori 

(MAP) decision rule should be superior. Therefore, we investigate MAP based post-

processors and corresponding parity-check code design. 
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The thesis is organized as follows. Chapter 2 gives detailed description of the 

perpendicular recording system based on PRML detection scheme. Chapter 3 presents a 

brief survey of constrained modulation codes for PRML detection schemes. In particular, 

we review design techniques of codes that combine runlength and parity constraints. In 

Chapter 4, we present parity-check codes and parity-based post-processing techniques. A 

detailed analysis, not available in the literature, of the parity-based post-processors is also 

presented. Chapter 5 presents a novel constrained parity-check code with post-processing. 

This code, which combines of MTR runlength constraints and parity constraints, 

improves the bit-error rate (BER) performance of the Viterbi detector. In Chapter 6, we 

examine distance-enhancing constraints that are specifically matched to MAP-based post-

processors. We propose a method for identifying constraints that optimize the 

performance of MAP-based post-processor. Eventually, Chapter 7 concludes the thesis 

and presents possible directions for further work. 
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Chapter 2  

Perpendicular Magnetic Recording System 

 

 

In this chapter, we set up the perpendicular magnetic recording system model which will 

be used throughout this thesis. In Section 2.1, we introduce a mathematical model for the 

perpendicular recording channel. In Section 2.2, we briefly review the principle of PRML 

detection starting from fundamentals. In Section 2.3, the principle of partial response 

(PR) equalization and the design of PR equalizer and target are presented. In Section 2.4, 

we describe the Viterbi algorithm starting from the principle of maximum likelihood 

sequence detection (MLSD). The performance analysis of Viterbi algorithm is also 

presented in this section. 

 

 

2.1 Perpendicular Magnetic Recording Channel Model 

In this section, starting from the block schematic given in Figure 1.1 of Chapter 1, we 

present the development of the discrete-time model of the perpendicular recording 

channel. 

 

Figure 2.1: Block schematic of the recording channel of a digital magnetic recording system. 

Write 
circuits 

Read head Storage 
medium 

Write  
head 

( )c n  ( )w t  ( )z t
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Shown in Figure 2.1 is part of Figure 1.1 from the input of the write circuits to the 

output of the read-head. By the term ‘recording channel’, we mean the cascade of the 

write circuits, write head, storage medium and read head. 

The input ( )c n  denotes the coded user data in NRZ format with ( ) { }1,1c n ∈ − . 

Here, ‘-1’ and ‘+1’ are equivalent to the NRZ bits ‘0’ and ‘1’, respectively. In other 

words, ( )c n  denotes the polarity of the write current pulse for the thn  bit. The write 

circuits convert the coded bits sequence into write current pulses. If ( )p t  denotes the 

write current pulse for a single bit, then the write current waveform can be written as 

 ( ) ( ) ( ),
n

w t c n p t nT= −∑  (2.1) 

where T  is the bit duration at the encoder output. The ideal ( )p t  is a unit-amplitude 

rectangular pulse of duration T . That is, ( ) 1p t =  if [ ]0,t T∈  and ( ) 0p t =  if [ ]0,t T∉ . 

The write head converts the write-current waveform into magnetic flux that magnetizes 

the storage medium to store every bit as a small magnetized region on the disk. The read-

head converts the magnetization on the disk into an electric signal. Let ( )f t  denote the 

impulse response of the combination of the write-head, storage medium and read-head. 

Then, the reproduced voltage waveform at the read-head output can be written as [12] 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
n

z t w t f t t c n h t nT tη η′ ′= ⊗ + = − +∑ , (2.2) 

where ( )tη′  represents the electronics noise picked up by the read-head, 

( ) ( ) ( )h t p t w t= ⊗ , and ‘ ⊗ ’ denotes the convolution operator. The electronics noise is 

modeled as white Gaussian with power spectral density 0

2
N  Watts/Hz. Eq. (2.2) shows 
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that the magnetic recording channel can be considered as a pulse-amplitude modulated 

system with input bits ( ) { 1,1}c n ∈ − , bit response (or, symbol response) ( )h t , and 

additive channel noise ( )tη′ . Since ( )h t  is the output of the system for a single-bit input 

to the write circuits, it can be viewed as the output corresponding to the single pulse 

( )p t  input to the write-head. For this reason, ( )h t  is also called the ‘pulse response’ of 

the recording channel. Noting that ( )p t  can be expressed as ( ) ( ) ( )p t u t u t T= − −  

where ( )u t  is the unit step function, we can express ( )h t  as 

 ( ) ( ) ( )( ) ( ) ( ) ( )s sh t u t u t T f t h t h t T= − − ⊗ = − −  (2.3) 

where ( ) ( ) ( )sh t u t f t= ⊗  is the step response of the recording channel. Therefore, ( )h t  

is also called the ‘dibit response’ of the recording channel since ( )p t  contains two 

transitions spaced at T . If the input bits define an isolated transition, i.e. 

.... 1 1 1 1 1 1....− − − + + + , then the output will be ( )2 sh t . For this reason, 2 ( )sh t  is called 

the ‘transition response’ of the recording channel. 

Based on experimental data, a pulse defined with a “tanh” hyperbolic function has 

been found to be a suitable model for the step response of perpendicular magnetic 

recording channels. This pulse is given by [55] 

 ( ) ( )
50

log 3
tanh

2s
Ah t t

T
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (2.4) 

where A  is the pulse amplitude, and 50T  is the time that ( )sh t  takes to rise from / 4A−  

to / 4A+  (see Figure 2.2). For a given head/medium combination, 50T  is an indicator of 

the extent of intersymbol interference (ISI) in the recording channel. It is also a measure 
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of the density with which bits are written. Denoting the bit duration of user input data by 

uT , the parameter defined by 50 /u uD T T=  is called the user density, which is a measure 

of the recording density from the user’s point of view. Traditionally, the data before 

encoding by ECC and modulation encoders (or, channel encoders) is called ‘user data’  
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Figure 2.2: Step response of perpendicular magnetic recording channel 
model using ‘tanh’ pulse ( 2.5uD = , 1R = ). 

 

and the data after channel encoding is called ‘channel data’. If R denotes the combined 

code rate of all the channel encoders, then the channel bit duration is given by uT RT= . 

In our studies, the channel bit interval T  is normalized to 1. Hence, 50T  is given by 

50 / /u u u uT D T D T R D R= = = . We note here that the channel density 50 / /c uD T T D R= =  

increases as the code rate decreases. Figure 2.3 shows the bit response, 

( ) ( ) ( )s sh t h t h t T= − − , and the corresponding frequency response of ‘tanh’ 

perpendicular recording channels for linear recording densities 2.0uD =  and 3.0uD = . 
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Figure 2.3(a) shows that when the density uD  increases, the peak amplitude of the bit 

response decreases and its width increases. In other words, ISI increases and the energy 

of ( )h t  decreases as the density increases. It is important to note that the bit response at 

user density 3.0uD =  could be obtained from that at 2.0uD =  by selecting a code rate 

2 / 3R = . The observed degradation (i.e. increase in ISI and decrease in signal energy) is 

the manifestation of the code rate penalty, or the rate loss. Further, uT RT=   
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Figure 2.3: Channel responses for ‘tanh’ perpendicular channel with user densities Du=2.0 and Du=3.0. (a) 
Bit response, ( )h t . (b) Frequency response, ( )H f . 

 

implies that the channel data rate is higher than the user data rate. In other words, noise 

power in the signal bandwidth 1 T  increases with decrease in code rate. Consequently, 

we see a faster reduction in the SNR of the read-back signal with decreasing code rate. 

This is the reason why high-rate codes are highly desirable. Further, Figure 2.3(b) shows 

that the channel bandwidth decreases as the density increases, thereby necessitating the 

use of partial response equalization with controlled ISI instead of full-response 

equalization with zero ISI. 
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 To develop a discrete-time model of the recording channel for our studies, we 

proceed as follows. Let B Hz be the bandwidth of the bit response ( )h t . That is, the 

energy in the Fourier transform ( )H f  of ( )h t  for f B>  is negligible. Or, ( ) 2
0H f ≈  

for f B> . Consequently, we can sample the channel output at any rate exceeding 

2B samples/second after limiting the noise bandwidth accordingly. Figure 2.3(b) shows 

that the channel bandwidth is between 1
2T

 and 1
T

 for typical recording densities. So, for 

convenience, we choose the low-pass filter bandwidth as 1
T

 and the sampling rate as 2
T

. 

Figure 2.4 shows the resulting sampling process. Here, L  is an integer denoting the 

oversampling factor. In our case, 2L = . 

 

 

 

 

 

 

From Figure 2.4, the sampled output of the channel can be given by 

 

( ) ( ) ( ) ( ) ( )

( ) ( )                         

mTt mTL n t
L

n

z m z t c n h t nT t

T mTc n h m nL
L L

υ

υ

=
=

= − +

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑
 

 ( ) ( )                 m nL
n

c n h mυ−= +∑  (2.5) 

Figure 2.4: Sampling of the channel output. 
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where ( ) iTi t
L

h h t
=

  and ( ) ( ) mTt
L

m tυ υ
=

 with ( )tυ  denoting the low-pass filtered 

version of ( )tη′ . Because the low-pass filter is ideal with its bandwidth exceeding the 

bandwidth of ( )h t , the low-pass filter does not affect the signal part of the sampled 

output. Further, it also follows that ( )mυ  is a discrete-time white Gaussian noise process 

with variance 0

2
N L

T
. Thus, Eq. (2.5) represents the sampled output of the recording 

channel and the resulting discrete-time model of the recording channel is shown in Figure 

2.5. 

 

  

 

 

 

We will be using this discrete-time model throughout this thesis.  

 

 

2.2 PRML Principle 

Forney [11] showed that the optimal ML receiver for a linear channel corrupted with ISI 

and additive white Gaussian noise (AWGN) includes a whitening matched filter (WMF) 

followed by a symbol-rate sampler (i.e. at rate 1 T ) and a maximum likelihood sequence 

detector. The symbol-rate sampled output of the whitening matched filter provides a set 

of sufficient statistics for optimal ML estimation of the input sequence. The ML sequence 

Figure 2.5: Discrete-time model of the recording channel. 

ih  ( )c n  
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detector is implemented with a nonlinear recursive algorithm, called the Viterbi algorithm 

[46]. Even though the Viterbi-based implementation is computationally very efficient 

compared to brute-force search for the optimal sequence using a binary tree, the long 

channel memory of magnetic recording channels makes even the direct Viterbi-based 

approach extremely complex. The long channel memory arises from the fact that 

recording channels are highly frequency selective and band-limited with little energy near 

the band edge 1
2T (see Figure 2.3(b)). Further, the complexity of the Viterbi detector is 

exponential in the memory length of the channel. More details about Viterbi detection are 

available in Section 2.3. Some sub-optimal detection schemes, such as the fixed-delay 

tree search detection scheme, have been suggested to reduce the complexity of the 

detector without much loss in performance [12].  

 The principle of partial response (PR) equalization is an effective approach for 

shortening the channel memory of band-limited channels [56,12]. The idea is to find a PR 

signal that is spectrally similar to the recording channel ( )h t  while the memory of the PR 

signal after sampling (at rate 1 T ) is much shorter than that of ( )h t . Typical examples of 

PR signals (or, PR targets) used in magnetic recording are 21 D−  and 2 31 D D D+ − −  for 

longitudinal and 2 31 2 2D D D+ + +  and 2 3 41 2 3 2D D D D+ + + +  for perpendicular 

recording [12,45,48,14]. When an equalizer is used to shape the channel response into 

such short PR target responses, it is easily seen that the resulting complexity of the 

Viterbi detector is much reduced. Figure 2.6 illustrates a channel with PR equalizer. The 

equalizer iw , which is a finite-impulse response filter, is designed to make the effective 
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channel from ( )c n  to ( )x n  to be the selected PR target. Section 2.3 gives details on the  

 

 

Figure 2.6: PR equalization of the recording channel. 
 

design of the equalizer. Since it is seldom possible to find a short PR target that is 

perfectly identical to ( )h t , the PR equalization process results in noise enhancement in 

certain frequency regions. Consequently, the Viterbi detector is no more optimum in the 

sense of MLSD. Therefore, choice of the PR target is key to good detection performance. 

While the PR target must be spectrally similar to the channel ( )h t  so as to decrease noise 

enhancement, the length of the target must be small enough to decrease the complexity of 

the Viterbi detector. 

The idea of applying PRML detection method, i.e. PR equalization followed by 

Viterbi detector, to magnetic recording channels dates back to the early 1970’s [13]. With 

the announcement by IBM on 21Gbits/in  demonstration in 1990, the PRML scheme 

rapidly became very popular. Currently, it is the most widely used detection technique in 

commercial disk drives. 
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2.3 Partial-Response Equalization 

The perpetual push for higher user bit rates and higher storage densities results in a 

steady increase of linear ISI and noise disturbances in storage channels. Equalization, 

performed on the read-back signals, is used to compensate for ISI and noise distortions 

introduced by the recording channel on the data. Full-response equalization aims at 

canceling the ISI completely. However, this causes the noise to be enhanced seriously in 

the frequency regions where the magnitude of the channel frequency response is very 

small. Therefore, full-response equalization is not advisable for magnetic recording 

channels, since these are bandlimited channels. Consequently, as mentioned in Section 

2.2, PR equalization is the approach used for shortening magnetic recording channels. 

 

2.3.1 Design of PR Equalizer 

We use a finite impulse response (FIR) PR equalizer to equalize the recording channel to 

a chosen PR target. If we choose the tap-spacing of the equalizer to be T , then its 

performance may depend heavily on the sampling phase of the channel output if the 

channel (i.e. ( )h t ) is not bandlimited to 1
2T

. Since the channel bandwidth depends on the 

recording density (see Figure 2.3(b)), we use the oversampled model of the recording 

channel shown in Figure 2.5 for our studies. Consequently, we need to design a 

fractionally-spaced equalizer (i.e. tap-spacing is T L ) as implied in Figure 2.6. Clearly, 

the fractional spacing allows the equalizer to be robust against variations in the sampling 

phase [57]. In order to design the equalizer tap weights, we consider the minimum mean-

squared error (MMSE) approach. The MMSE approach aims to minimize both residual 
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ISI (i.e. mismatch of the equalized channel with the PR target) and additive noise in the 

channel. Because MMSE design considers the noise characteristics, MMSE equalizer 

minimizes noise enhancement and it exists even if channel response has spectral nulls 

[12].  

 Figure 2.7 shows the block schematic used for designing a T L -spaced PR 

equalizer to equalize the recording channel ih  to the PR target kg . The time indices n  

and m  are associated with sequences which are at rates 1
T

 and L
T

, respectively. 

 

Figure 2.7: Block schematic for designing a T L -spaced equalizer for equalizing the channel ih  to the PR 

target kg . 

  

 Here, { }( )c n  represents the channel coded data sequence in NRZ 1±  format, ih  is 

the sampled bit response of the recording channel, and iw  is the impulse response of the 

PR equalizer. The taps of ih  and iw  are at the spacing /T L  where L  is the oversampling 
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factor. Further, i i Lih h h −= −  where ih  is the channel step response given by (see Eq. 

(2.4)) 

 ( )log 3
tanh

2i
u

iRAh
LD

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (2.6) 

where R  is the code rate of the channel encoder. The channel noise ( )mυ  is assumed to 

be white Gaussian and its variance, 2
υσ , is determined from the channel SNR defined as 

 
2 2

2
10 2( ) 10log ,       op u

u

V LSNR dB
Rυ

σσ
σ

= = , (2.7) 

where 2 0

2u
N R

T
σ =  is the variance of the noise in the user bandwidth 1

uT
 and opV  is the 

base-to-peak value of the isolated transition response 2 ( )sh t . 

The PR equalizer is designed using the MMSE criterion. The equalizer output, 

after down-sampling, is given by 

 0( ) ( )Tx n w z nL m= + , (2.8) 

where 0 1,...,
w

T

Nw w w −⎡ ⎤= ⎣ ⎦ is the vector of the equalizer coefficients, wN  is the number of 

equalizer taps, ( ) ( ) ( ),..., 1
T

wz m z m z m N= − +⎡ ⎤⎣ ⎦ is the noisy channel output, 0m  is the 

sampling phase (i.e. the total delay from channel input to equalizer output), and the 

superscript ‘T’ denotes matrix transposition. Let the PR target be 0 1[ ,..., ]
g

T
Ng g g −= , 

whose coefficients are T -spaced. Then, the desired signal at the output of the equalizer 

for instant n  is given by 

 
1

0
( ) ( )

gN

k
k

d n g c n k
−

=

= −∑ . (2.9) 
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Therefore, the mean squared error at the equalizer output is given by 

 ( ) ( )2( ) ( )J w E x n d n⎡ ⎤= −⎣ ⎦ , (2.10) 

which is equal to the sum of variances of the channel noise and residual ISI at the 

equalizer output. The optimum equalizer is obtained by minimizing ( )J w  with respect to 

w  and the solution is given by the Wiener-Hopf equation 

 zz opt zcR w R g= , (2.11) 

where 0 0[ ( ) ( )]T
zzR E z nL m z nL m= + +  and 0[ ( ) ( )]T

zcR E z nL m c n= + , with E[.] denoting 

the statistical expectation operator. 

 

2.3.2 Design of PR Target 

To optimize the performance of PRML systems, the PR target should be well designed to 

reduce mis-equalization and noise enhancement. Conventional PRML schemes employ 

standard targets with integer coefficients, which are chosen by examining their match to 

the actual channel response ( )h t . The well-known example of standard targets for 

longitudinal recording is the Class 4 targets given by ( )( )1 1 nD D− +  where n  is a 

positive integer [13,58]. Similarly, [ ]1, 2, 2,1 and [ ]1, 2,3, 2,1 are commonly used PR 

targets for perpendicular recording [14]. To examine which of these two perpendicular 

recording targets is more effective, we designed the equalizer for both cases, for an 

uncoded perpendicular recording channel (i.e. code rate 1R = ) with user density 2uD =  

and 32SNR = , and performed a spectral analysis. The results are shown in Figure 2.8. 

Observe that the magnitude responses of the equalizers show that noise enhancement is 
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present in both cases. Moreover, in the case of the [ ]1, 2,3, 2,1  PR target, the shape of the 

magnitude response of the equalizer is flatter at low frequencies, compared to that for 

[ ]1, 2, 2,1 . This reveals that, compared to [ ]1, 2, 2,1  PR target, [ ]1, 2,3, 2,1  PR target is 

spectrally more similar to the channel response. Consequently, the noise spectrum at the 

Viterbi detector (VD) input can be expected to be flatter for [ ]1, 2,3, 2,1  as compared to  
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Figure 2.8: Magnitude responses of the equalizer, PR target and equalized channel for (a) PR target 
[ ]1,2, 2,1  and (b) PR target [ ]1, 2,3, 2,1 . 
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Figure 2.9: Normalized power spectral density of equalized noise at  
VD input for the PR targets [ ]1, 2,2,1  and [ ]1, 2,3, 2,1 . 

(a) [1, 2, 2,1]T  target (b) [1, 2,3, 2,1]T  target 
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[ ]1, 2, 2,1 , as can be seen from Figure 2.9. Since optimality of VD requires the noise to be 

white and Gaussian, we can expect that VD is more optimal with [ ]1, 2,3, 2,1  as compared 

to [ ]1, 2, 2,1 . For this reason, in our studies with integer-valued PR targets, we choose 

[ ]1, 2,3, 2,1  as our target. 

 Due to the integer constraint, the standard targets do not provide close spectral 

match to the natural channel responses especially at high densities, and thus result in 

substantial noise enhancement. Instead, the generalized PR (GPR) targets with real-

valued coefficients can provide better match, and consequently, achieve significant 

performance gain. The most widely used method for GPR target design is to jointly 

design the equalizer and target with the MMSE criterion (see Eq. (2.10)) [15,59,60,61]. 

These are constrained optimization approaches. Another approach to design GPR targets 

is by minimizing the dominant error event probability in the Viterbi detector [32,36,15]. 

But, this approach is computationally very costly since numerical searches are required to 

find the solution as analytical solutions are not available. However, as reported in 

[15,61,62], the MMSE approach with monic constraint (i.e. first coefficient of the GPR 

target is constrained to be unity) has been found to result in solutions that are near-

optimal in the sense of minimizing the dominant error event probability. Therefore, in 

this thesis, we use the monic-constrained MMSE approach for designing GPR targets. 

Finally, we may remark that the decision feedback equalization (DFE) system [16] and 

noise-predictive maximum-likelihood (NPML) system [5] can be viewed as special cases 

of PRML with GPR target. 
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2.4 Sequence detection 

The Viterbi algorithm is a computationally efficient implementation of MLSD if the 

channel noise is white Gaussian at the detector input. In this section, we briefly review 

the Viterbi algorithm and its performance analysis. 

 

2.4.1 Viterbi Algorithm 

From Figure 2.6, the equalizer output (or, detector input) can be written as 

 ( ) ( )
1

0
( )

Ng

k
k

x n g c n k nη
−

=

= − +∑  (2.12) 

where ( )nη  represents the sum of the residual ISI and the equalized channel noise. For 

simplicity, the noise ( )nη  at the detector input is assumed in this section to be white and 

Gaussian with variance 2
ησ . The MLSD obtains the detected bits sequence 

( ) ( )ˆ ˆ ˆ0 ,..., 1
T

c c c N= −⎡ ⎤⎣ ⎦  by maximizing the joint probability density function (pdf) of the 

received samples ( ) ( )0 ,..., 2
T

gx x x N N⎡ ⎤= + −⎣ ⎦  conditioned on the input bits sequence 

( ) ( )0 ,..., 1
T

c c c N= −⎡ ⎤⎣ ⎦  [11]. In other words, the decision rule of the MLSD is 

 ( )ˆ arg max
i

x ic
c p x c=  (2.13) 

where ‘arg’ refers to the maximizer of the joint pdf ( ).xp  and ic , 1,.., 2Ni = , is one of 

the 2N  possible input bit sequence c .  

For a given input sequence c , each sample ( )x n  is a random variable which 

depends only on the noise sample ( )nη . Since the noise sequence is assumed to be white 
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Gaussian, the sequence ( ) ( ) ( ){ }0 , 1 ,..., 2gx x x x N N= + −  comprises uncorrelated 

Gaussian random variables. The pdf of x  conditioned on c  is then given by 

 ( ) ( )( ) ( ) ( ) 22 2

2
0 0

1 exp
22

g gN N N N
c

x
n n

x n x n
p x c p x n cη

ηη σπσ

+ − + −

= =

⎛ ⎞−⎡ ⎤⎣ ⎦⎜ ⎟= = −
⎜ ⎟
⎝ ⎠

∏ ∏  (2.14) 

where ( )
2

2

1 exp
22
vp vη

ηη σπσ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 is the pdf of ( )nη , and ( )

1

0
( )

Ng

c k
k

x n g c n k
−

=

= −∑  is the 

reconstruction of the signal part of ( )x n  based on the assumed input data c . Since 2
ησ  is 

a constant, maximizing ( )xp x c  is equivalent to minimizing the Euclidean distance 

 ( ) ( ) ( )
2

2 2

0

gN N

c c
n

J c x n x n x x
+ −

=

= − = −⎡ ⎤⎣ ⎦∑  (2.15) 

Thus, the MLSD aims at selecting the vector c  that minimizes the Euclidean distance 

( )J c . However, to implement the MLSD, 2N  Euclidean distances ( )iJ c  need to be 

computed. The underlying computational requirement grows exponentially with N  and 

becomes huge for reasonably large values of N . Direct implementation of the MLSD is 

consequently impossible for reasonable N .  

The Viterbi algorithm (VA) is a clever implementation of the MLSD with 

emphasis on reducing the computational complexity [46]. A concise and convenient 

structure for representing the input data is the trellis shown in Figure 2.10, where the ‘+’ 

and ‘-’ along any branch of the trellis represents the bit 1+  or 1−  associated with the path 

that passes through that branch. To represent the 2N  possible input sequences c , the 

trellis requires only N  stages. As n  increases, each stage of the trellis shows the 

progress of all the input data paths under consideration.  
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 At each stage n  of the trellis and for each state ( )kS n , the Viterbi detector 

remembers the data path, called the survivor path, that has minimum Euclidean distance, 

called the survivor the path metric, among the paths ending at state ( )kS n . In other words, 

half of the paths over which we need to compute the path metric are dropped at each 

stage of the trellis. After all stages are completed, the survivor path that has the minimum 

survivor 

 

Figure 2.10: Trellis structure for channel with memory 1 2gN − = . 

 

path metric is selected as the detected path. In practice, the survivor paths corresponding 

to the states ( )kS n , 11,..., 2 gNk −= , would have converged to a single path for time 

instants less than or equal to ( 1)gn K N− −  for a sufficiently large positive integer K . 
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decisions on the bits is thus ( 1)gK N −  and is called the detection delay. This helps to 

reduce the memory requirements of the Viterbi detector. 

2.4.2 Performance Analysis of Viterbi Detector 

The bit error rate (BER) performance of VD can be estimated using simulations as 

 ( ) ( )
1

0

number of erroneous bits 1 ˆlim
number of recorded bits 2

N

b N i

P c n c n
N

−

→∞
=

= = −∑ . (2.16) 

In order to simulate scenarios with BER of 610−  or less, we will need to run the 

simulations over hundreds and thousands of millions of bits and it can be very time-

consuming to do this. An alternative way of estimating the performance stems from the 

concept of error events. For a pair of input data vectors c  and c′ , let us define the error 

sequence ˆc c− . This error sequence defines an error event if there exists two integers 

1 2k k≤  such that ( ) ( ) ( )ˆ 0e k c k c k= − =  for 1k k<  and 2k k> , 1( ) 0e k ≠ , 2( ) 0e k ≠  and 

any run of zeros in the subsequence 1 2[ ( 1),..., ( 1)]e k e k+ −  is smaller than the channel 

memory1 1gN − . Then, ( ) ( ) ( )1 1 2, 1 ,...,
T

e e k e k e k= +⎡ ⎤⎣ ⎦  defines an error event of length 

2 1 1k k− + . In the trellis, the error events are seen as distinct separations between the 

actual state sequence and the detected state sequence. The Viterbi detector then produces 

an error when the detected trellis path differs from the correct path by a sequence of error 

events. The union bound2 provides an upper bound to the probability that an error event 

starts at some time 1k  [57,12] 

                                                 
1  When the noise at the VD input is correlated, the maximum run of zeros in the subsequence 

1 2[ ( 1),..., ( 1)]e k e k+ −  can be bigger than 1gN − . 
2 Appendix C provides a detailed analysis on the performance of Viterbi detector. 
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 Pevent e
e E

P
∈

≤ ∑  (2.17) 

where E  is the set of error events at the detector output, [ ] [ ]ˆP Pr / Pr
e

e
c C

c c c
∈

= ∑  is the 

probability that the error event e  starts at some time 1k , and eC  is the set of data patterns 

c  which support the error event e  starting at time 1k . By taking into account the noise 

correlation at the VD input and the residual ISI, the probability [ ]ˆPr /c c  of detecting ĉ  

instead of c  is given by [63] 

 [ ] ( )2
2

ˆPr /
2

T
g g

T
g g

e e x c g
c c Q

e R eηη

⎛ ⎞+ − ⊗⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (2.18) 

where 
2 / 21( )

2
t

x

Q x e dt
π

∞
−= ∫ , ge e g= ⊗  , and Rηη  is the autocorrelation matrix of the 

equalized channel noise at the detector input. Note that the conditional probability given 

in Eq. (2.18) depends on the actual data pattern c . Using the union bound, the error event 

probability is given by 

 
( ) [ ]

2
2

Pr
2e

T
g g

event T
e E c C g g

e e x c g
P Q c

e R eηη∈ ∈

⎛ ⎞+ − ⊗⎜ ⎟≤
⎜ ⎟
⎝ ⎠

∑ ∑ , (2.19) 

where [ ]Pr c  is the probability of the data pattern c . Therefore, the BER can be upper-

bounded as 

 
( ) [ ] ( )

2
2

Pr
2e

T
g g

b T
e E c C g g

e e x c g
P Q c w e

e R eηη∈ ∈

⎛ ⎞+ − ⊗⎜ ⎟≤
⎜ ⎟
⎝ ⎠

∑ ∑ , (2.20) 

where ( )w e  is the Hamming weight of the error event e .  
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A measure of practical interest is known as the effective detection SNR [63] and 

is given by 

 
( )

22

ˆ,

2
min

2

T
g g

eff Tc c
g g

e e x c g
SNR

e R eηη

⎛ ⎞+ − ⊗⎜ ⎟=
⎜ ⎟
⎝ ⎠

. (2.21) 

At moderate to high SNR, the performance of the system is dominated by the error events 

associated with effSNR . Therefore, the BER can be approximated as 

 ( ) ( ) ( )
min

b eff
e E

P Q SNR e w eπ
∈

≈ ∑ , (2.22) 

where minE  is the set of error events associated with  effSNR  and ( )eπ  is the sum of the 

probabilities [ ]Pr c  of all data patterns c  that support the error events in minE . There is, 

in practice, a unique error event that is associated with effSNR . 

For a more accurate analysis of the BER performance of the VD, the effective 

distances associated with error events is defined : 

 ( ) ( )2
2

min
2e

T
g g

eff Tc C
g g

e e x c g
d e

e R eηη
∈

⎛ ⎞+ − ⊗⎜ ⎟
⎜ ⎟
⎝ ⎠

. (2.23) 

Obviously, the error events with minimum effective detection SNR correspond to the 

error events associated with minimum effective distance. The effective distances ( )effd e  

helps to identify the dominant error events and to estimate their respective probabilities. 

Under some channel conditions (e.g. high densities), there may be more than one set of 

dominant error events with their corresponding effective distances being very close to 

each other [86]. 
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2.5 Summary 

This chapter has reviewed the principle of PRML detection and its application to 

perpendicular recording channels. We have shown that the Viterbi detection in PRML is 

not optimal in the ML sense, because of the correlation of the noise at its input. Based on 

the analysis of the correlation of the noise at the VD input, we have also shown that 

[ ]1, 2,3, 2,1  is a suitable PR target that minimizes the noise correlation and results in a VD 

with acceptable computational complexity. Finally, we have given expressions for 

estimating the BER performance of the VD under various channel conditions. 
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Chapter 3  

Constrained Codes for PRML Receivers 

 

 

In this chapter, we elaborate on the topic of constrained modulation codes and their 

application to improve detection performance in PRML receivers. Our focus, in particular, 

is to review the different approaches to design efficient constrained codes that result in 

performance gain by prohibiting certain specified differences between constrained 

sequences. Since different distance-enhancing constraints with different capacity may 

eliminate the same dominant error event, finding high capacity constraints is very 

important in the design of distance-enhancing codes [17]. Distance-enhancing codes, 

which use strong constraints to eliminate certain data sequences, are presented in Section 

3.1. Use of relaxed (weak) constraints supports the design of higher rate codes. Hence, in 

some cases, the weakly constrained codes may outperform strongly constrained codes 

[18]. A survey of high rate modulation codes, including weakly constrained codes, is 

presented in Section 3.2. Since high code rates and low decoding complexity are highly 

attractive, there have also been investigations to combine parity-check constraints and 

modulation constraints. Various techniques for equipping the modulation code with error 

control capabilities are presented in Section 3.3.  

Since high code rates are far too important in current recording systems, we will 

not be discussing in this chapter on conventional ( ),d k  codes, which were used in the 
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early days of recording systems, since these codes usually have low code rates (e.g. rate 

2 3  (1,7)  code, rate 1 2  (1,3)  code). References [51] and [26] provide good reviews on 

these codes. 

 The original contributions in this chapter are as follows. We give an analytical 

investigation of the effect of code rate in perpendicular recording channels. 

 

 

3.1 Distance-Enhancing Codes 

In this section, we discuss the various aspects related to the design of efficient distance-

enhancing codes. 

 

3.1.1 Constraint Design Strategy 

As mentioned already, the purpose of distance-enhancing codes is to improve detection 

performance by prohibiting the data patterns that support the dominant error mechanisms 

in the detector. Consequently, the first step in the design of distance-enhancing codes is 

identification of the dominant error mechanisms. Error event characterization of the 

detector, i.e. examining the probabilities of the various error events at the detector output, 

provides this information. Recall from Chapter 2 (Section 2.4.2) that associated with each 

error event e  is an effective distance ( )effd e  (see Eq. (2.23), Chapter 2) and the 

probability of the error event can be decreased by increasing this distance. Further, 

according to Eq. (2.22), the bit error rate (BER) can be reduced by enhancing the 

effective detection SNR, denoted effSNR , which is the minimum of all the squared 
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effective distances associated with all the error events. However, the distance gain is 

achieved at the cost of decrease in coding efficiency, i.e. loss in code rate. To see this, we 

recall the expression for effSNR  from Chapter 2. Neglecting the effect of mis-equalization, 

we get (from Eq. (2.21)) 

 
4

min
4

g
eff Te E

g g

e
SNR

e R eηη
∈

= , (3.1) 

where E  denotes the set of all error events e , ge e g= ⊗ , Rηη  is the autocorrelation 

matrix of the noise at the detector input, and g  is the PR target. Recall also from Section 

2.1 of Chapter 2 that the use of a code with rate R  causes i) increase in the variance of 

the channel noise by a factor 1 R  and ii) decrease in the signal energy (i.e. ( )2h t dt∫  or 

2
i

i
h∑ ) due to increase in channel density. Clearly, these effects reflect in decreasing the  

effSNR  given in (3.1) [22, 35]. This is why high rate distance-enhancing codes are 

particularly desirable. The overall performance gain is known as the coding gain, which 

is generally expressed as the saving in the SNR provided by the coded scheme as 

compared to the uncoded scheme, to achieve a specified BER performance. 

The design of distance-enhancing constrained codes involves the following steps: 

(a) Error event characterization for the given channel and identification of the 

dominant error events. 

(b) Determination of a list of error strings that will prevent the occurrence of 

error events identified in Step (a). 
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(c) Identification of constraints which will prevent the error strings in Step (b) 

from occurring, and tuning of the Viterbi detector to the identified 

constraints. 

(d) Construction of an efficient code. 

Step (a) can be performed using simulations by collecting error events at the output of the 

Viterbi detector over a long sequence of data bits. This can be quite time consuming. 

Another approach is to use error event characterization algorithms such as those 

presented in [19, 64]. Yet another approach is to do a search by computing the effective 

distance for a reasonably comprehensive list of error events. Step (b) is usually straight-

forward, when the number of error events in consideration is small. For Step (c), an 

enumeration search is used to find suitable constraints. It is highly desired that the 

selected constraints produce a good and practical distance-enhancing code, i.e. a code 

with good coding gain, high rate, simple encoder and decoder, and low-complexity 

detector. The problem of finding such interesting constraints is still an open problem. 

Bounds on the Shannon capacity of such constraints (i.e. a measure of the maximum 

efficiency with which a code can implement a constraint) are presented in [17]. The 

capacity, denoted ,Cap  of distance-enhancing constraints usually satisfies 0.9Cap < . 

For this range of capacities, a powerful tool for designing the constrained code in Step (d) 

is given by the ‘Adler Coppersmith Hassner’ (ACH) algorithm [20], which is also known 

as the ‘state-splitting algorithm’. Alternatively, constrained block codes can be designed 

through computer search [8]. However, this method may result in codes with lower code 

rates. 
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3.1.2 Identification of High Capacity Distance-Enhancing Constraints 

The maximum transition run (MTR) codes represent a class of distance-enhancing codes 

that are designed according to the above described design strategy. These codes were 

initially developed for high-density PRML channels with dominant error event 

{ 2, 2, 2}+ − +  [7,8,9,21]. This error event corresponds to the error sequence 

[0...0 2 -2 2 0...0] , where the number of zeros preceding and following [2 -2 2]  is at least 

equal to the channel memory.  

 For the sake of convenience, we call the sequence obtained by prefixing and/or 

postfixing the error event by one or two zeros as an ‘error string’ (e.g. [ ]0 2 2 2+ − , 

[ ]2 2 2 0+ − , [ ]0 2 2 2 0+ − , etc.). If any of the error string is eliminated by a code 

constraint, it would prevent the occurrence of the underlying error event. For example, 

the pairs of data patterns supporting the error string [0 2 -2 2]  of the error event 

{ 2, 2, 2}+ − +  are given in Table 3.1. In each of the two pairs, at least one of the sequences 

Table 3.1: Data patterns in NRZ {-1,1} format supporting [0 2 -2 2] error string. 

-1 1 -1 1 3 consecutive transitions  
CASE 1 -1 -1 1 -1 2 consecutive transitions 

1 1 -1 1 2 consecutive transitions  
CASE 2 1 -1 1 -1 3 consecutive transitions 

 

contains 3 or more consecutive transitions. Therefore, the error event { 2, 2, 2}+ − +  can be 

eliminated by allowing at most 2 consecutive transitions in the write current sequences, 

or equivalently at most 2 consecutive ‘1’s in the input data sequence in NRZI 

{ }0,1 format. Such constraints are known as MTR constraints and are denoted ( )MTR j  

to emphasize the number of allowed consecutive transitions. The set of constrained 
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sequences satisfying the ( )2MTR j =  constraint, which is required to eliminate the 

{ }2, 2, 2+ − +  error event, are obtained by reading off the labels of any path from the state 

transition diagram shown in Figure 3.1. The construction of similar transition diagrams 

representing general runlength constraints will be presented in Section 6.2.1. The labels 

on the branches of the state transition diagram give the NRZI { }0,1  bits.  

1 2 3

0

0

1 1
0

 

Figure 3.1: State transition diagram for ( )2MTR j = constraint. 

  

The capacity of the ( 2)MTR j =  constraint is the highest achievable code rate and 

is defined by [9] 

 2 maxlog ( )Cap λ=  (3.2) 

where maxλ  is the largest real eigenvalue of the state transition matrix  

1   1   0
1   0   1
1   0   0

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

where for , 1,2,3i j = , ( , ) 1A i j =  if there is an edge from state i  to state j  and 

( , ) 0A i j =  otherwise. For the ( 2)MTR j =  constraint, with capacity 0.8791, a rate 6/7 

state-dependent code [65] and a rate 16/19 block-code [8] have been designed. These 

codes include the k -constraint also, in addition to the ( 2)MTR j =  constraint. Since k -

constraint is important in recording systems, MTR codes are usually denoted 
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‘ ( , )MTR j k ’, thereby indicating the MTR and k  constraints. As mentioned earlier, the 

d -constraint in such codes is zero. 

In order to generate higher rate distance-enhancing codes, Bliss [21] and 

Fitzpatrick and Modlin [9] proposed time-varying MTR constraints. To identify the time-

varying constraint for the error event { 2, 2, 2}+ − + , the error string [0 2 -2 2 0]  and the 4 

data patterns supporting this error string are considered, as shown in Table 3.2. Any code 

Table 3.2: Data patterns in NRZ {-1,1} format supporting [0 2 -2 2 0] error string. 

-1 1 -1 1 -1 4 consecutive transitions  
CASE 1 -1 -1 1 -1 -1 2 consecutive transitions 

-1 1 -1 1 1 3 transitions end at time j   
CASE 2 -1 -1 1 -1 1 3 transitions end at time 1j +  

1 1 -1 1 -1 3 transitions end at time 1j +   
CASE 3 1 -1 1 -1 -1 3 transitions end at time j  

1 1 -1 1 1 2 consecutive transitions  
CASE 4 1 -1 1 -1 1 4 consecutive transitions 

 

that allows 3 consecutive transitions to end at only on odd numbered bits or only on even 

numbered bits eliminates the { 2, 2, 2}+ − +  error event. This constraint is referred as a 

‘modulo 2 time-varying MTR constraint’. The transition diagram for this constraint is 

shown in Figure 3.2, where “square” and “circle” states correspond to even and odd time 

indices. 

1 3

2

0,1

0

0
1

4

0

1  

Figure 3.2: State transition diagram for the modulo 2 time-varying MTR constraint. 
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The transition matrix associated with this diagram is  

0   0   1   1
0   0   1   0
2   0   0   0
1   1   0   0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

Therefore, the Shannon capacity for the modulo 2 time-varying MTR constraint is 0.9163. 

The construction of rate 8/9 block codes which satisfy this constraint are presented in [9, 

21]. Later, Nikolic et al. [66] proposed a rate 8/9 time-invariant ( 2)MTR j =  code, 

thereby making detector implementation simpler. 

An effective method of generating even higher rate distance-enhancing codes, 

referred to as forbidden list codes, was introduced by Karabed et al. [54]. These codes are 

designed so that if two sequences are separated by a dominant error event, then one or 

both of the sequences are forbidden. The error strings used in this design will have more 

preceding and/or following zeros [9]. For { 2, 2, 2}+ − +  error event, the error string 

[0 0 2 -2 2 0 0]  was considered. Similar to the previous tables, we can give the data 

patterns that support [0 0 2 -2 2 0 0]  error string. Among the resulting 16 pairs of data 

patterns, only two pairs do not contain at least one pattern with 4 consecutive transitions, 

as shown in Table 3.3. The forbidden list constraint { }1111,001110
NRZI

=F  which forbids 

Table 3.3: Pair of data patterns that support the error string [0 0 2 -2 2 0 0] 
while containing not more than 3 consecutive transitions. 

Patterns in NRZ 
format 

Patterns in NRZI 
format 

-1 -1 1 -1 1 1 1 0 1 1 1 0 0   
CASE 4 

-1 -1 -1 1 -1 1 1 0 0 1 1 1 0  
1 1 1 -1 1 -1 -1 0 0 1 1 1 0   

CASE 5 1 1 -1 1 -1 -1 -1 0 1 1 1 0 0  
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NRZI strings ‘ 1111 ’ and ‘ 001110 ’ eliminates the error event { 2, 2, 2}+ − + . This 

constraint has capacity 0.9132. A detailed treatment of forbidden list codes given in 

Chapter 6 shows how this capacity can be computed.  By considering more zero symbols 

preceding and following the error event [9], one can show that the forbidden list 

constraint { }1111,100(00)1110
NRZI

=F , where the notation (00)  means that  00  can be 

repeated any number of times, eliminates the error event { 2, 2, 2}+ − + . This constraint has 

capacity 0.925 and supports codes with rate as high as 12/13. A rate 9/10 block code was 

presented in [9]. 

 

 

3.1.3 Encoder/Decoder Design 

As mentioned in the previous section, there is no explicit rule for designing a code once a 

constraint is given. The rate of distance-enhancing codes usually advises code designers 

to opt for block codes. When the block length is not too large, the encoder and decoder 

can be practically implemented with look-up tables. Block codes can be viewed as state-

dependent codes with a single state. Because block codes represent a subclass of state-

dependent codes, it is clear that they are less efficient than state-dependent codes with 

multiple states. The efficiency is measured by the ratio between the code rate R  and the 

capacity Cap  of the constraint, /R Capη = . As an example, the rate 9/10 block code 

presented in [9] is 97.30% efficient. The efficiency can be improved by designing codes 

with the help of finite-state coding theory [10], which proves the existence of a state-

dependent code with code rate R , as long as R Cap< . As a result, the constraint of the 
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9/10 block code [9], with capacity 0.925, makes it possible to design a 99.79% efficient 

rate 12/13 state-dependent code. 

The design of block codes can be done by using computer search to generate all 

possible sequences of a given length q  which can be freely concatenated without 

violating the specified constraints [8,22,23]. A few methods have been proposed for 

selecting the best codewords among the eligible sequences of length q  and for mapping 

the source words to the selected codewords [24,25].  There is no general method, 

however. In every design, special attention should be given to the leading and trailing bits 

of eligible sequences and to the required k-constraint. In order to get a freely 

concatenable set of codewords, constraints are imposed on the leading and trailing bits. 

For instance, concatenated NRZI sequences of a given length that do not start or end with 

NRZI ‘ 11 ’ string satisfy the ( 2)MTR j =  constraint at the boundary [8]. The k -

constraint is superimposed on the given constraints to ease the timing recovery process.  

 

Encoder
Logic

(states)

p bits q bits

 

Figure 3.3: Finite-state encoder. 

 

The existence of finite-state codes, pictured in Figure 3.3, with code rate less than 

the constraint capacity is guaranteed by the finite-state coding theorem [26]. The ACH 

algorithm (also called state-splitting algorithm) is a powerful algorithm for designing 

such codes [20]. In Appendix A, the state-splitting algorithm is presented and applied to a 
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relevant example for this thesis. Finite-state codes usually require much more complex 

encoder and decoder than block codes. Capacity approaching finite-state codes with few 

states for simple implementation and simple decoders that avoid or minimize error 

propagation are highly desirable. Research in the design of efficient finite-state codes has 

mainly focused on finding codes with relatively simple decoders. The finite-state codes 

obtained by applying the state-splitting algorithm are sliding-block decodable [10, 67]. In 

other words, decoders for such codes need to look at the preceding and following 

codewords in order to decode the current codeword, as shown in Figure 3.4. Sliding-

block decoders limit the error propagation to a finite number of codewords.  

Decoder
Logic

q bits

p bits  

Figure 3.4: Sliding-block decoder. 

 

A popular subclass of sliding-block decoders are block decoders which can make 

decision on a received source word with the use of a single codeword. Encoders 

associated with such decoders are called block-decodable encoders [26]. Recently, 

Chaichanavong and Marcus [71] presented methods for designing optimum block-

decodable encoders with maximum code rate. The methods presented in [71], for instance, 
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as well as much of the current research on finite-state coding are contributing to the 

results of the pioneering work done by Franaszek [72]. 

 

 

3.2 High-Rate Modulation Codes 

In order to motivate the need for the development of codes with very high code rates, we 

shall first examine how code rate affects the SNR at the channel output. Thereafter, we 

shall discuss high rate weakly constrained codes.  

 

3.2.1 Effect of Code Rate3 

As compared to uncoded systems, coded systems suffer from the increased difficulty to 

equalize the read-back signal to the PR target at higher channel densities. As the channel 

density increases, the channel frequency response becomes less similar to the frequency 

response of the PR target, unless we are willing to increase the length of the target. This 

results in noise enhancement at the equalizer output.  

In order to illustrate the effect of code rate, we shall evaluate the SNR at the 

output of the magnetic recording channel, shown in Figure 4  3.5. For the sake of 

convenience, we assume 1L =  in this section. 

 

 

                                                 
3 Moon [70] has analytically investigated the effect of code rate on SNR in longitudinal recording channels. 
However, such an analysis is not available in the literature for perpendicular recording channels. Further, 
the ‘tanh’ model of the perpendicular recording channel makes the analysis rather difficult, as compared to 
the Lorentzian model used in the longitudinal case. 
4 This figure is the same as Figure 2.5 and is repeated for the sake of convenience. 
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Figure 3.5: Magnetic recording channel. 

 

The channel output ( )z m  is given by (see Eq. (2.5), Chapter 2), for 1L = , 

 ( ) ( ) ( )m n
n

z m c n h mυ−= +∑ . (3.3) 

Then, we define the output SNR as 

 
( )

( )

2

2

m n
n

out

E c n h

SNR
E mυ

−

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎣ ⎦

∑
, (3.4) 

where the noise power is given by  ( )
2

2 uE m
R

συ⎡ ⎤ =⎣ ⎦ . Ignoring correlation in the data 

( ){ }c n , we get the power of the signal component as ( )
2

b
m n

n u

EE c n h
RT−

⎡ ⎤⎛ ⎞ ≈⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦
∑ , where 

( )2
bE h t dt= ∫  is the energy of the bit response. In Appendix B, the energy of the bit 

response is proven to be 

 ( )2
2log 3

3
u

b
u

A T
E R

D
≈ , (3.5) 

which shows that bE  decreases quadratically with code rate. Therefore, the channel 

output SNR becomes 

 ( )2
2

2

log 3
3out

u u

A
SNR R

Dσ
= . (3.6) 

ih  ( )c n  

( )mυ

( )z m

oversampler 

L↑
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Because the output SNR varies in proportion to 2R , it is very clear that high rate codes 

are extremely important in recording systems. Otherwise, it is quite possible that the SNR 

loss due to the lower code rates may overwhelm the SNR gain provided by the code. 

Figure 3.6 illustrates the effect of code rate on the channel output SNR. In this plot, we 

have chosen the pulse amplitude to be 1A = , and 2
uσ  is chosen for 30SNR dB=  (see Eq. 

(2.7), Chapter 2). Figure 3.6 shows that the SNR at the channel output degrades 

significantly as the code rate decreases. For instance, at user density 2.0uD = , the SNR is 

halved at the code rate 0.75R =  as compared to that at the code rate 1R = . 
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Figure 3.6: The effect of code rate on the channel output SNR for various densities. 
 

 

3.2.2 Constrained Codes with Weak Constraints 

In contrast to most distance-enhancing codes with limited code rate, high rate codes 

received special attention because they reduce the noise enhancement that results from 

the difficulty to equalize the read-back signal to the PR target at higher channel densities. 

The achievable code rate or capacity of the distance-enhancing codes discussed in 
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Section 3.1 are limited since these codes are expected to completely eliminate all the data 

patterns that support the identified dominant error events. In other words, these codes 

force the probability of data patterns that support the error event to be zero, i.e. ( ) 0eπ =  

in Eq. (2.22) (see Section 2.4.2). On the other hand, higher capacity codes can become 

possible if we insist only on partial elimination of the data patterns instead of complete 

elimination. For this type of codes, the effective minimum distance remains the same (see 

Eq. (2.23), Chapter 2). However, the probability ( )eπ  of the data patterns supporting the 

dominant error event is reduced. There are a number of types of high rate codes that serve 

different purposes, which are constructed based on this principle. 

A class of MTR codes that do not completely eliminate the pairs of data patterns 

that support the dominant error event is called quasi-MTR or soft MTR codes. As an 

example, let us recall the identification of the modulo 2 time-varying MTR constraint in 

Section 3.1.2. To identify this constraint, the pairs of data patterns supporting the error 

string  [0 0 2 -2 2 0 0]  were required. We noted that all the pairs except two contained at 

least one pattern with 4 consecutive transitions. The constraint ( 3)MTR j = , which 

forbids 4 consecutive transitions in the input sequence, does not eliminate the dominant 

error event {2, 2,2}− . Instead, the probability of the data patterns supporting the error 

event is decreased by a factor of 8, as only 2 pairs out of 16 contain data patterns which 

do not violate ( 3)MTR j =  constraint. This constraint has capacity 0.9468 and supports 

codes with rate as high as 16/17. Several rate 16/17 ( 3)MTR j =  codes have been 

proposed [22,30,18]. Weak constraints for forbidden list codes are identified in the same 

manner as weak constraints for MTR codes [68]. 
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3.2.3 Survey of Encoder/Decoder Design Techniques 

The construction of high-rate constrained codes is far from obvious, as table look-up 

approach for encoding and decoding such codes are impractical. Fortunately, a code with 

block encoder/decoder architecture can always be designed using the well known 

enumerative techniques [28]. The enumerative coding techniques make it possible to 

translate source words into codewords and vice versa by invoking an algorithmic 

procedure rather than performing the translation with a look-up table. Code rates very 

close to capacity can be achieved with the use of long codewords. However, severe error 

propagation results from the use of long codewords. This issue can be avoided by 

reversing the conventional order of the outer error correcting code and the inner 

constrained code [29,69]. 

Recently, Wijngaarden and Soljanin [30] presented advanced combinatorial 

techniques to design high-rate MTR block codes. With symmetry considerations, the set 

of source words and the set of candidate codewords are partitioned. The encoder/decoder 

mapping is then derived from the defined partitions. This methodology makes it possible 

to identify the best MTR and RLL constraints for a given code rate [30]. Furthermore, the 

constrained codes designed with that technique can serve as basic codes for the 

construction of even higher rate constrained codes [30]. 

 

 

3.3 Constrained Codes with Error Control Capabilities 

In recording systems, until recently, there has been a strict separation between error 

control coding and modulation coding. In order to improve the overall efficiency, it has 



CHAPTER 3. CONSTRAINED CODES FOR PRML RECEIVERS 

 53

been proposed to combine parity-check code and modulation code [35,37,53]. Besides, 

for a given constrained code and error control requirement, it is usually not practical to 

design a specific error control code. In most combined schemes, parity bits are appended 

to the constrained codewords [31,32]. With the help of an error-control code, the parity 

bits are judiciously chosen such that the runlength constraints remain satisfied, as shown 

in Figure 3.7. 

 

SOURCE WORD

CONSTRAINED CODEWORD

CONSTRAINED CODEWORD

PARITY

CONSTRAINED
PARITY

ENCODING TECHNIQUE

ECC

 

Figure 3.7: Conventional technique for inserting parity bits into a constrained sequence. 

 

Wijngaarden and Immink [33] present special techniques for efficiently adding 

error control information without violating the imposed constraints. Coding algorithms 

based on enumeration techniques are applied to translate the user words into constrained 

codewords. The constrained codewords contain bits that can be flipped such that the 

resulting word still satisfies the runlength constraints. The positions of these bits are 

called ‘unconstrained positions’. Therefore, ECC parity bits can be inserted into the 

constrained words at the unconstrained positions. Wijngaarden and Immink [33] also 

present techniques to construct constrained codes which have a given number of 

unconstrained positions. The proposed techniques are based on enumerative coding 

algorithms or combinatorial circuitry. Campelo de Souza et al. [73] have presented 
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design techniques for more general finite-state codes with unconstrained positions. Their 

work focuses on the design of MTR constrained finite-state codes. In particular, they 

propose construction techniques for MTR codes, with short block length, that improve on 

the techniques presented in [33]. Béal et al. [74] have presented time-efficient 

constructions of codes defined with a list of forbidden blocks and a set of unconstrained 

positions. These codes can be equipped with error control capabilities by simply 

reserving the unconstrained positions for the parity bits. The modulation encoder is 

followed by a precoder which performs NRZI to NRZ conversion. The methods 

developed in the above mentioned schemes [33, 73, 74] aim at adding error control 

capabilities to the constrained codewords before precoding. Cideciyan and Eleftheriou 

[34] have recently proposed a novel approach to combine modulation constraints with 

parity-check constraints at the output of the precoder. Because the motivation is the 

correction of short error events at the detector output, the authors identified the required 

set of parity-check equations at the precoder output, and translated them into a set of 

parity-check equations at the precoder input.  

 

 

3.4 Conclusions 

In this chapter, we reviewed techniques related to constrained modulation codes for 

PRML receivers. At the cost of efficiency, strongly constrained distance-enhancing codes 

completely eliminate the dominant error events at the output of the Viterbi detector. For 

improving the efficiency (i.e. code rate) of strongly constrained distance-enhancing codes, 

a strategy based on the identification of the error string to eliminate the error event is 
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adopted. Distance-enhancing codes usually have low code rates. For this reason, they can 

be easily implemented via the state-splitting algorithm. The detection performance of 

PRML receiver is very sensitive to the code rate of the constrained code. This is shown in 

this chapter by examining the SNR at the output of the perpendicular recording channel, 

based on the ‘tanh’ model. Because of the importance of the code rate, methods based on 

relaxed runlength constraints allow the design of higher rate constrained codes. 

Techniques based on enumeration [28] or combinatorial circuitry [30] for designing 

encoder and decoder for high-rate weakly constrained codes require usually more effort, 

as compared to low-rate constrained codes. Implementing separately the ECC code 

(parity-check) and the constrained code may result in loss in efficiency. Whereas the 

conventional technique for equipping constrained code with error control capabilities is 

done by appending parity-check for each codeword, more efficient combination 

techniques based on the identification of unconstrained positions have been proposed 

recently in the literature.  
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Chapter 4  

Parity-Check Codes and Post-Processing 

Techniques 

 

 

As discussed in Chapter 3, the approach of using distance-enhancing constrained codes to 

achieve improved detection performance suffers from the problem of code rate loss. This 

arises because these codes use strong constraints to eliminate the dominant error events. 

The approach of using parity-check codes in combination with post-processing has been 

proposed [35] as an attractive ECC method for eliminating the dominant error events 

without suffering much rate loss. Moreover, as compared to powerful ECC schemes such 

as the turbo-codes which are known for their high complexity and latency [83], the 

approach of parity-check codes with post-processing offers an attractive trade-off 

between performance gain and implementation complexity. The basic idea is to use a 

parity-check code to detect the occurrence of an error event, from among a preselected 

list of dominant error events, at the detector output and to use a post-processor to locate 

and correct the errors. The basic principles of parity-based post-processing are explained 

in Section 4.1. Various parity-check codes are described in Section 4.2. In Section 4.3, 

we present two kinds of implementations of the post-processor, which are used widely. In 

this section, we also examine the optimality of these post-processors, and derive the 
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optimum post-processor by formulating the problem of error event location as a multiple 

signals detection problem. 

 The original contributions in this chapter are as follows. Firstly, we derive the 

optimum MAP post-processor by considering the post-processor as a multiple signals 

detector. The analysis results in analytical expressions for the reliability information and, 

most importantly, for some normalization constants. Secondly, we show that the post-

processor based on the computation of Euclidean distances is based on the ML criterion. 

 

 

4.1 Principle of Parity-Based Post-Processing  

 

4.1.1 Overview 

Parity-based post-processing uses the error detection capability of a code in conjunction 

with the error location capability of a post-processor to detect and correct erroneous bits 

in the Viterbi detected sequence. Figure 4.1 is a block representation of the detector 

structure including the parity-based post-processor (PPP). The Viterbi detector (VD) does 

the preliminary detection of stored data bits by taking into account the runlength 

constraints of the constrained modulation code and the bit response of the partial 

response (PR) equalized recording channel. Here, Δ  is the detection delay introduced by 

the Viterbi detector, and ′Δ  is the detection delay introduced by the overall detector. The 

PPP acts to correct the errors in the preliminary decisions. Details of how PPP does the 

detection and correction of errors are explained below. 
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The parity-based post-processor (PPP) has 3 main functions: parity check, error 

event detection and error correction, as shown in Figure 4.2. The PPP tries to locate and 

correct bit errors only if the parity constraints imposed by the parity-check code are 

violated. The parity constraint violation is highlighted by the ‘parity check’ block. In the 

‘error event detection’ block, the post-processor attempts to identify the type as well as 

the location of the error event that has occurred. This error event search is limited to the 

set of dominant error events that satisfy the modulation constraints. For example, if the 

constrained code is a time-varying MTR code, then the error event type and location 

detected by the PPP must be such that the corrected sequence ( ){ }ˆ̂c n  of decisions must 

obey the time-varying MTR constraints. Obviously, the set of possible error events is also 

limited by the type of parity constraints violation in the parity codeword. The error event  

 

 

Figure 4.2: Structure of the parity-based post-processor (PPP). 

Figure 4.1: Structure of the overall detector for parity-coded channels. 
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detection part is based on either Euclidean distances computation or matched filtering 

(see Figures 4.4 and 4.5). The details of the blocks in Figure 4.2 will be explained in 

Sections 4.2 and 4.3. 

 

 

4.1.2 Post-processing algorithm 

For clarification purpose, Figure 4.3 shows a flow chart that illustrates how the post-

processor works on each codeword ĉ  at the VD output for error detection and correction. 

There is parity violation if the syndrome of the detected codeword ĉ  is different from 0. 

Section 4.2 explains how the syndrome is computed. If the syndrome is 0, the post-

processor does not attempt to correct the current codeword ĉ . On the other hand, a parity 

violation may lead to correcting the parity codeword.  

The post-processor optimizes some reliability information terms ,i jR  with respect 

to the types of error events i A∈  and the location indices j B∈ , where A  is the set of all 

the valid error events, and B  is the set of location indices in the codeword at which a 

valid error event may start. The set of valid error events and set of location indices are 

constrained by the runlength and parity constraints of the constrained parity-check code. 

Indeed, the reliability information ,i jR  for given i  and j  will be computed only if the 

codeword ˆ̂c  that results from the correction of the detected codeword ĉ  with the error 

event of type i  starting at time j , satisfies both the runlength and parity constraints. For 

a given ĉ , if a valid error event type and location are detected, then correction is 

performed. Otherwise, the erroneous parity codeword is left unchanged. 
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Figure 4.3: The parity-based post-processor algorithm. 
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4.2 Parity-Check (PC) Codes 

 
A parity-check (PC) code is said to be a ‘good’ code if it results in minimum rate loss and 

maximum coding gain. In addition, the parity codeword must satisfy the modulation 

constraints used in the channel. Consequently, the problem of minimizing the rate loss 

while maintaining reasonable coding gain and the need to obey the modulation 

constraints are the major concerns in the design of parity-check codes for recording 

channels. Linear cyclic codes have been the most widely used PC codes [36] [37] [40] . 

Recently, methods have been proposed to insert PC information in constrained codes [33] 

[34] [38]. 

Linear cyclic codes represent a subset of the class of block codes which satisfy 

linear and cyclic properties [39]. The encoding operation performed by the PC code can 

be represented by the matrix equation5 

 b aG= , (4.1) 

where [ ](1),..., ( )a a a p=  is the source word (e.g. modulation constrained codeword), 

[ ](1),..., ( )b b b q=  is the codeword and G  is a p q×  matrix, called the generator matrix. 

The code is cyclic if the codewords satisfy the cyclic shift property: if  [ ](1),..., ( )b b b q=  

is a codeword, then the vectors obtained by cyclic shifts of the elements of b  are also 

codewords. The key to the underlying structure of cyclic codes lies in the association of a 

polynomial with every source word and codeword.  

The source word can be expressed as a ( 1)thp −  order source polynomial 

                                                 
5 In this section, addition and multiplication operations are defined modulo 2. 



CHAPTER 4.  PARITY-CHECK CODES AND POST-PROCESSING TECHNIQUES 

 62

 ( ) ( ) 11 (2) ... ( ) pa z a a z a p z −= + + + . (4.2) 

Similarly, the codewords can be expressed as ( 1)thq −  order code polynomials. Then, 

there exists a unique polynomial ( )g z  with minimal degree such that every code 

polynomial can be expressed as ( ) ( ) ( )b z a z g z=  [39]. In practice, the generator 

polynomials are found by searching over all the irreducible factors of 1qz +  in (2)[ ]GF z . 

Several interesting cyclic codes have been found, including the Hamming codes, Golay 

code, and BCH codes. 

 Let ( ) ( ) ( )b̂ z b z e z= +  be the polynomial associated with the detected codeword, 

where ( )e z  is the error polynomial. The decoder for linear cyclic codes computes the 

syndrome for the detected codeword. The syndrome polynomial, ( )s z , is the remainder 

resulting from the division of ( )b̂ z  by ( )g z . If the syndrome is the zero-polynomial, 

then no error is detected. Otherwise, an error is detected, and the detected codeword is 

corrected with the most likely error pattern that makes the corrected codeword to have 

zero syndrome and satisfy the code constraints.  

In PRML systems, the decoder for linear cyclic codes is simplified. Instead of 

considering a large number of error patterns, attention is focused on a few dominant error 

events. For a given order, the generator polynomial characterizes a linear cyclic code 

with given error detection capabilities. The higher the order of the generator polynomial 

is, the more error events which can be detected. But, the number of parity bits (i.e. q p− ) 

is equal to the order of the generator polynomial. Therefore, use of more parity bits will 

increase the rate loss, unless the size of the source word (i.e. p ) is also increased. Clearly, 
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what is important is to find an optimum trade-off between rate loss and error detection 

capability. In practice, rate loss is minimized by using a few parity bits (e.g. 1 to 3) for 

the detection of a few dominant error events and long codewords [40] (e.g. 30-80 bits per 

parity bit). 

Linear cyclic codes have proved to be very powerful. However, conventional linear 

cyclic codes do not introduce modulation constraints in the codewords. As discussed in 

Section 3.3, there is an increasing interest in combining the constrained modulation code 

and the PC code. The design techniques presented in Section 3.3 are extremely efficient. 

While the technique presented by Wijngaarden and Immink [33] takes advantage of the 

unconstrained positions in the constrained codewords, the constrained PC code presented 

by Cideciyan and Eleftheriou [34] inserts a few parity bits at selected positions to limit 

the degradation of the runlength constraints. 

 

 

 

4.3 Parity-Based Post-Processing 

We shall first describe the two implementations of parity-based post-processor (PPP) 

currently used in practice. Thereafter, we investigate the optimum post-processing 

approach and comment on the currently used implementations. 
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4.3.1 Current Implementations 

Two implementations of PPP are currently used. One is based on the computation of 

Euclidean distances [40,32] and the other is based on a bank of matched filters [35,13,37]. 

The Euclidean distance based PPP scheme, shown in Figure 4.4, detects the error 

events such that the reconstructed signal based on the corrected codeword ˆ̂c  is the 

“closest” to the received signal at the detector input. This amounts to computing the 

following reliability information values: 

 ( ) ( ) ( )( ) 2

, ( ) ˆi j Euc i k
n

R x n c n e n j g⎡ ⎤= − + − ⊗⎣ ⎦∑  (4.3) 

where kg  represents the PR target, ( )ĉ n  is the detected sequence, ( )x n  is the detector 

input, and ( )ie n j−  denotes the error event of type i  starting at time j . The computation 

of ,,
min i ji j

R  gives the most probable type of error event and its location. The sets of valid 

error events and starting indices are determined by the syndrome result and modulation 

constraints. 

 

Figure 4.4: Post-processor based on Euclidean distances. 

 

The second PPP scheme, shown in Figure 4.5, uses a set of matched filters for 

detecting the type and location of the error event. These matched filters are called error 
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event matched filters since each filter is matched to the cascade of the PR target and one 

of the possible error events. In effect, the error event is detected by examining the  error 

event matched filter (EEMF) that results in maximum SNR at its output compared to the 

rest. This amounts to computing the following reliability information values: 

 ( ) ( )( ) ( ), ( ) ,0
ˆi j MF k i i jn

R x n c n g n jα θ
=

= − ⊗ ⊗ − − + , (4.4) 

where ,i jθ  is a normalization constant, and ( ) ( )i i kn e n gα = ⊗ . The details of ,i jθ  will be 

clarified in the next subsection. 

The performance of both post-processors depends much on the number of parity 

bits and the design of the PC code. If an error event happens to occur on the boundary 

between two consecutive parity codewords, then the post-processor is likely to perform 

miscorrection6. Also, the usual assumption based on which these post-processors operate 

is that there is no more than one error event per detected codeword. Therefore, 

occurrence of multiple error events will also disturb the detection process. 

 

 

 

 

 

 

 

 

 

Figure 4.5: Post-processor based on error event matched filtering. 
                                                 
6  This issue is tackled, in Chapter 5 and 6, by adjusting the post-processing algorithm presented in 
Subsection 4.1.2 to the joint detection of error event(s) in consecutive detected codewords ĉ . 
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4.3.2 Optimum Post-Processor: Multiple Signals Detection Problem 

The principle of the post-processor is to detect the error event that has occurred, from 

among a set of possible error events. As seen from Figure 4.1, the post-processor has two 

inputs: the detected sequence ĉ  and the equalizer output x . The detected sequence 

provides information on the syndrome of the received parity codeword. The equalizer 

output can be used to construct an error signal (see Eqns. (4.3) and (4.4)) as 

 ( ) ( ) ( )
1

0

ˆ
gN

x k
k

e n x n g c n k
−

=

= − −∑ , (4.5) 

where gN  is the length of the PR target. Substituting for ( )x n  from Eq. (2.12), we get 

(Note: ( ) ( ) ( )k
k

x n g c n k nη= − +∑ ) 

 ( ) ( ) ( )
1

0

gN

x k
k

e n g e n k nη
−

=

= − +∑ , (4.6) 

where ( ) ( ) ( )ˆe n c n c n= −  and ( )nη  is the total noise at the detector input. Observe from 

Eq. (4.6) that the error signal can be considered as the output of a communication channel 

with channel bit response kg  and noise ( ).nη  This is illustrated in Figure 4.6.  

 

 

 

Figure 4.6: Communication channel formulation for the error signal ( )xe n  in Eq. (4.6). 

 
Therefore, the task of the post-processor is to decide which error event is present in the 

signal ( )xe n , having been told that an error event has occurred. This can be done 

optimally using the maximum a posteriori (MAP) criterion.  

kg  
( )e n  

( )nη

( )xe n
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 Let ( ) ( )0 ,..., 1c c c N= −⎡ ⎤⎣ ⎦  represent the transmitted codeword. The error 

sequence ( ) ( )ˆ 0 ,..., 1e c c e e N= − = −⎡ ⎤⎣ ⎦  contains one of the possible error events ,i je  

defined by  

 ( ) ( )
,

   if   1

0                     otherwise,
ii e

i j

e n j j n j L
e n

− ≤ ≤ + −⎧⎪= ⎨
⎪⎩

 (4.7) 

where 
ieL  is the length of the error event ie . Thus, the MAP decision rule can be 

expressed as 

 ( )
0 0

,
, ,ˆ arg max p

i j
i j i j xe

e e e= , (4.8) 

where ( ),p i j xe e  is the probability density function (pdf) of  ,i je  conditioned on xe . Eq. 

(4.8) is equivalent to  

 
0 0

,
, ,ˆ arg max

i j
i j i je

e I= , (4.9) 

 
where ( )( ) ( ), , ,log p log Pri j x i j i jI e e e⎡ ⎤+ ⎣ ⎦  and ,Pr i je⎡ ⎤⎣ ⎦  is the probability that the error 

event ie  occurs and starts at time index j . The error signal xe  in Eq. (4.6) is given by  

 ( ) ( ) ( ), , ,       0 2,x x i j c ge n e n n n N Nη= + ≤ ≤ + −  (4.10) 

where ( ) ( )
1

, , ,
0

gN

x i j m i j
m

e n g e n m
−

=

= −∑ . The noise ( )nη  comprises the residual ISI and the 

equalized channel noise. Even if the residual ISI is assumed to be zero, the derivation of 

the optimum receiver leads to a complex detector [57]. Even though it is possible to use 
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suboptimum schemes7, we derive the optimum receiver for the case where the noise 

( )nη  is white Gaussian with variance 2
ησ . The pdf of  ( )nη  is given by  

 ( )
2

2

1p exp
22
xxη

ηη σπσ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. (4.11) 

Combining Eqns. (4.10) and (4.11), we get 

 ( ) ( ) ( ) ( ) ( )( )2
11 , ,

, 2
1

p 2 exp
2

g
g

N NN N x x i j
x i j

n

e n e n
e e η

η

πσ
σ

+ −− + −

=

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑ . (4.12) 

Therefore, the expression of ,i jI  can be simplified as 

( ) ( ) ( ) ( )( )2
2

, ,
, ,2

0

1 log 2 log Pr
2

gN N
x x i j

i j g i j
n

e n e n
I N N eη

η

πσ
σ

+ −

=

−
⎡ ⎤= − + − − + ⎣ ⎦∑ . (4.13) 

Let us define ,i jJ  as the part of ,i jI  which depends on i  and j . Then, we get 

( ) ( ) ( )
2

2 2
, ,

0

11 log 2
2

gN N

i j i j g x
n

J I N N e nη ησ πσ
+ −

=

⎡ ⎤+ + − +⎣ ⎦ ∑  

 ( ) ( ) ( )
2 2 2

2 2
, , , , ,

0 0 0

1    log Pr
2

g g gN N N N N N

x x i j x i j i j
n m n

e n e m e n eησ
+ − + − + −

= = =

⎡ ⎤= − + ⎣ ⎦∑ ∑ ∑ . (4.14) 

Eq. (4.9) is therefore equivalent to  

 ( ) ( )
0 0

,

2 2

, , , , ( )
0 0

ˆ arg max
g g

i j

N N N N

i j x x i j i j MAPe n m

e e n e m θ
+ − + −

= =

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ∑ , (4.15) 

where ( )
2

2 2 2
, ( ) , , , ,

0

1 1log Pr log Pr
2 2

gN N

i j MAP x i j i j i i j
n

e n e E eη ηθ σ σ
+ −

=

⎡ ⎤ ⎡ ⎤− + = − +⎣ ⎦ ⎣ ⎦∑ , and iE  is 

the energy of the error signal ( ), ,x i je n . Thus, Eq. (4.15) can be rewritten as  

                                                 
7 Suboptimum schemes can make the use of noise predictor filter to whiten the noise ( )nη . However, by 

appropriately choosing the PR target, we can ensure that the noise ( )nη  is close to white. We use the latter 
approach in Chapter 6. 
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 ( ) ( )
0 0

,
, , ( )0

ˆ arg max
i j

i j x i i j MAPne
e e n n jα θ

=
⎡ ⎤= ⊗ − − +⎣ ⎦ , (4.16) 

where ( ) ( )i i kn e n gα = ⊗ . Eq. (4.16) shows that the optimum post-processor is formed 

with a bank of matched filters ( )i n jα − − . The number of such filters is given by the 

number eN  of error events ie  to be detected. For each possible location j , the post-

processor correlates the error signal ( )xe n  with the eN  matched filters ( )i n jα − − .  

 

Figure 4.7: Optimum receiver structure of MAP post-processor. 

 

Figure 4.7 shows the structure of the optimum MAP post-processor. Note that the post-

processor based on matched filtering given in Figure 4.5 is the optimum MAP post-

processor when the normalization constant ,i jθ  in Eq. (4.4) is chosen to be , ( )i j MAPθ  given 

in Eq. (4.15). We will analyze, in the next subsection, the optimality of the post-processor 

based on Euclidean distances (see Figure 4.4).  

 The normalization constant , ( )i j MAPθ  depends on the probability ,Pr i je⎡ ⎤⎣ ⎦ , which is 

given by 

[ ], ˆPr Pr ,i je c c⎡ ⎤ =⎣ ⎦  

( )1 n jα − −  

( )2 n jα − −  

( )
eN n jα − −
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where ĉ  is the detected data at the Viterbi detector output (or post-processor input) and  

,ˆ i jc c e= +  is the data sequence that supports the error sequence ,i je . Since the detected 

data ĉ  is known to the post-processor, we may express ,Pr i je⎡ ⎤⎣ ⎦  as 

 [ ] [ ], ˆ ˆPr Pr Pri je c c c⎡ ⎤ =⎣ ⎦ , (4.17) 

where [ ]ˆPr c c  is given in Eq. (C.14) (Appendix C), where c  and ĉ  are interchanged. In 

other words, [ ]ˆPr c c  can be viewed as the probability of ‘detecting c  instead of ĉ ’. 

Consequently, we have 

 [ ]
2 2ˆPr
2

e Y

Y

d mc c Q
σ

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, (4.18) 

 where Ym  and Yσ  (see Eq. (C.14), Appendix C) represent the mean and the variance, 

respectively, of the Gaussian random variable ( ) ( )
1

,
0

gN

k i j
n k

Y g e n k nη
−

=

= −∑ ∑ . Thus, an 

accurate expression of the normalization constant , ( )i j MAPθ  is given by 

 [ ]
2

2 2
, ( )

21 ˆlog log Pr
2 2

e Y
i j MAP i

Y

d mE Q cη ηθ σ σ
σ

⎛ ⎞+
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
. (4.19) 

Note that the third term [ ]2 ˆlog Pr cησ  can be dropped, since it neither depends on i  nor 

on j . 

 Instead of the MAP criterion, if we use the ML criterion for the detection of the 

error event, we will get 

 ( )
0 0

, ,
, , ,ˆ arg max arg max

i j i j
i j x i j i je e

e p e e I ′= = , (4.20) 

where ( )( ), ,log pi j x i jI e e′ . Then, as in Eq. (4.15), we can show that  
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 ( ) ( )
0 0

,

2 2

, , , , ( )
0 0

ˆ arg max
g g

i j

N N N N

i j x x i j i j MLe n m
e e n e m θ

+ − + −

= =

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ∑ , (4.21) 

where , ( )
1
2i j ML iEθ − . 

 

4.3.3 Relationship between Post-Processors 

In this subsection, we examine the relationship between post-processor PPP1 based on 

Euclidean distances and post-processor PPP2 based on error event matched filters, given 

in Figures 4.4 and 4.5, respectively. We just showed in Section 4.3.2 that the post-

processor PPP2 is a MAP multiple signals detector when the normalization constants are 

selected according to Eq. (4.19). In order to examine the optimality of PPP1, we expand 

Eq. (4.3) to obtain 

( ) ( )( ) ( ) ( )( ) ( )( )2 22
, ( ) ˆ 2i j Euc k k i k

n n n n
R x n c n g x n c n g e n j g= + ⊗ − ⊗ + − ⊗∑ ∑ ∑ ∑  

( )( ) ( )( ) ( ) ( )( )ˆ2 2k i k i k
n n

c n g e n j g x n e n j g+ ⊗ − ⊗ − − ⊗∑ ∑  

( ) ( ) ( ) ( )2 22x x i i
n n n

e n e n n j n jα α= − − + −∑ ∑ ∑ . (4.22) 

Since ( )2
x

n
e n∑  is the same for all i  and j , this term can be dropped from Eq. (4.22). 

Further, noting that ( )2
i i

n
E n jα= −∑ , we can express (4.22) as 

 ( ) ( ), ( ) , ( )i j Euc x i i j ML
n

R e n n jα θ= − − −∑ . (4.23) 
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Thus, PPP1 detects the error signal 
0 0,î je  by maximizing ( ) ( ) , ( )x i i j ML

n
e n n jα θ− +∑ . 

Therefore, the post-processor based on Euclidean distances is a ML multiple signals 

detector. Furthermore, we note from Eq. (4.19) that  

 [ ]
2

2 2
, ( ) , ( )

2 ˆlog log Pr
2

e Y
i j MAP i j ML

Y

d mQ cη ηθ θ σ σ
σ

⎛ ⎞+
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
. (4.24) 

 

4.4 Conclusions 

In this chapter, the principles behind parity-based post-processors have been explained in 

detail. The post-processors use the error detection capability of a parity-check code to 

identify and locate error events at the Viterbi detector output and correct the detected 

sequence.  Because of their strong error detection capability, linear cyclic codes are the 

most commonly used parity-check codes. However, these codes are not suitable when it 

comes to combining, for better efficiency, runlength constraints and parity-check 

constraints into one encoder. The performance of the overall detector is very sensitive to 

the code rate of the parity-check code. High-rate parity-check codes minimize the rate 

loss at the Viterbi detector. However, high-rate parity-check codes require to use very 

few parity bits, which limits the error event detection performance of the post-processor.  

 Post-processors are usually implemented with either computation of Euclidean 

distances or error event matched filtering. By formulating the error event location as a 

multiple signals detection problem, we have shown that the optimum post-processor, 

based on MAP criterion, constitutes of bank of matched filters whose outputs are 

precisely normalized. The normalization constant takes into account the data pattern that 

supports the type and the location of the error event to be detected. When the 
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normalization constant of the post-processor based on error event matched filtering is 

chosen to be the optimum MAP normalization constant, the post-processor becomes 

optimum. On the other hand, the post-processor based on the computation of Euclidean 

distances is proven to be based on ML criterion. 
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Chapter 5  

Novel Constrained Parity-Check Code 

 

 

This chapter presents the design of a novel parity-check code combined with a strong 

distance-enhancing modulation code for perpendicular recording channels. For the sake 

of convenience, it is assumed in this chapter that the recording channel is perfectly 

equalized to the chosen PR target and that the noise at the detector input is white 

Gaussian. The design of the distance enhancing code is described in Section 5.1. The 

design and details of the new parity-check code are presented in Section 5.2. In Section 

5.3, the performance of the novel constrained parity-check code in combination with a 

post-processor unit is examined. For the sake of completion, we also present some results 

on non-ideal equalized recording channels with colored noise. 

 The original contributions in this chapter are as follows. First, we have designed a 

novel constrained parity-check code and post-processor for improving the bit error rate 

performance on perpendicular recording channels. Second, we have derived an analytical 

upper-bound of the bit error rate for the block-coded ideal channel which will be 

described in Section 5.1. For the sake of convenience, the derivation is available in 

Appendix D. 
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5.1 Modulation Code Design 

The design of distance-enhancing code follows the method outlined in Section 3.1.1. 

5.1.1 Identification of Distance-Enhancing Runlength Constraint 

First, error event characterization at the Viterbi detector output is performed for the ideal 

recording channel presented in Figure 5.1. Following the study given in Section 2.3.2, the 

PR target is selected as [ ]1,2,3,2,1 Tg =  to model the perpendicular recording channel 

(ideal). Further, as mentioned above, the noise at the detector input is assumed to be 

additive white Gaussian (AWGN) with variance 2
ησ  which is determined by the SNR 

defined as 

 ( )
2

10 210log
g

SNR dB
R ησ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (5.1) 

where 
2

g  is the energy of the PR target g  and R  is the code rate.  

 

Figure 5.1: Schematic of a constrained parity-check coded ideal recording channel with Viterbi detector 
and parity-based post-processor. 

 

Table 5.1 shows the distribution of the error events for the uncoded PR channel. 

This is based on a simulation collecting about 10000 error events. By examining the error 

events distribution, we note that 98% percent of the error events are of the type{ }2, 2+ − , 

1
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{ }2, 2,*, 2, 2+ − + − , { }2, 2,*, 2, 2,**, 2, 2+ − + − + − … where *  and ** denote strings formed 

by zero to 1gN −  (with 5gN =  here) consecutive 0’s. Also shown in the table (in the last 

column) is the squared Euclidean distance 2
ed  associated with each of the error events. 

Recall from Section 2.4.2 and Appendix C that these distances play a significant role in 

the BER performance of the Viterbi detector. In Section 5.1.3, we will use these distances 

for predicting the BER performance, coding gain, etc. 

The dominant error events have a common structure, which is the presence of the 

error string [ ]0 +2 2 0−  in almost all the error events. Therefore, removing this common 

 

Table 5.1: Error events distribution for uncoded ideal PR channel. 

 
No Error Events 

Number of 
occurences 

Sq. Euclidean 
distance 2

ed  
1 +2 -2          8243 24 
2 +2 -2 0 0 +2 -2      854 32 
3 +2 -2 0 +2 -2       296 24 
4 +2 -2 0 +2 -2 0 +2 -2    101 24 
5 +2 -2 0 0 +2 -2 0 0 +2 -2  95 40 
6 +2 -2 0 0 +2 -2 0 +2 -2   85 32 
7 +2 -2 0 +2 -2 0 0 +2 -2   80 32 
8 +2 -2 0 0 0 +2 -2     62 40 
9 +2 -2 0 0 0 +2 -2 0 +2 -2  8 40 

10 +2 -2 0 +2 -2 0 0 0 +2 -2  3 40 
11 +2 -2 0 0 +2 -2 0 0 0 +2 -2 3 48 
12 +2 -2 0 +2 -2 +2 -2     2 40 
13 +2 -2 +2 -2 0 +2 -2     1 40 
14 +2 -2 0 0 0 +2 -2 0 0 +2 -2 1 48 
15 +2 -2 0 0 +2 -2 +2 -2    1 56 
16 +2 -2 0 0 0 +2 -2 +2 -2   1 64 
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characteristic with a modulation code would eliminate a large number of error events. In 

fact, if we can prevent the error string [ ]0 2 2 0+ −  from occurring, then all the error 

events listed in Table 5.1 can be eliminated. Before starting the analysis of the data 

patterns supporting this error string, we give in Figure 5.2 the schematic of the encoding 

scheme for the purpose of clarification. 

 

Figure 5.2: Schematic of the encoding shceme. 

 

We now investigate the pairs of data patterns which support the error string 

[ ]0 2 2 0+ − . These pairs are shown below in Figure 5.3 in terms of the NRZ data 

( ){ }c n  as well as the NRZI data ( ){ }b n . By looking at the pairs of NRZI sequences  

 

 

 

 

 

( )ˆ,b b , we can easily infer that the error string [ ]0 2 2 0+ −  is eliminated if a code does 

not allow strings of two or more consecutive 1’s in the NRZI sequence b . This code is 

the ( )1MTR j =  code that is equivalent to the ( 1, )d k= = ∞  RLL code. The maximum 

Figure 5.3: Pairs of data patterns that support the error string [ ]0 2 2 0−  in 
NRZ and NRZI formats. 

Encoder ( )2* . 1−  ( )1 1 D⊕( )a n  

NRZI {0,1} 

( )b n

NRZI {0,1} 

( )b n′

NRZ {0,1} 

( )c n  

NRZ {-1,1}

user 
data 

 0  2 -2   0  0  2 -2  0 0  2 -2  0 0  2 -2  0 
 

c  -1  1 -1 -1 -1  1 -1 1 1  1 -1 -1 1  1 -1  1 
ĉ  -1 -1  1 -1 -1 -1  1 1 1 -1  1 -1 1 -1  1  1 

 
b        1  1  0      1  1  1      0  1  0     0  1  1 
b̂        0  1  1     0  1  0    1  1  1    1  1  0 
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achievable code rate of this encoder is ( )( )2log 1 5 / 2 0.6942+ ≈ . With short word 

lengths, there is not much difficulty in designing such a code by invoking the state-

splitting algorithm. Practical codes with rate 2/3 are available [84]. But, a code rate of 2/3 

is too low for current magnetic recording systems. However, careful study of the data 

patterns (NRZI) in Figure 5.3 reveals that the error string [ ]0 2 2 0− can occur only if at 

least one of the following conditions is satisfied: 

i) 2 consecutive transitions are allowed at even and odd time instants, 

ii) 3 consecutive transitions are allowed at even or odd time instants. 

Therefore, we can see that codes of higher rate may be obtained when time-varying 

constraints are considered. The MTR code with parameters 2oddj =  and 1evenj = , denoted 

(1/ 2),MTR  eliminates the error string [ ]0 2 2 0− . The constraint 2oddj =  means that 

the encoder disallows 3 or more consecutive transitions starting at an odd time index, and 

1evenj =  means that the encoder disallows 2 or more consecutive transitions starting at an 

even time index in the NRZI sequence b . In other words, these constraints permit 

transition runs of only one and two at even and odd time indices, respectively. A 

transition diagram for the (1/ 2)MTR  constraints is given in Figure 5.4, where “square” 

and “circle” states correspond to even and odd time indices, respectively. 

 

Figure 5.4: Graph representation of the (1/ 2)MTR  constraint. 

1 2 3

0 0

0,11
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Table 5.2 gives the encoding scheme of a rate 3/4 (1/ 2)MTR  self-concatenable 

block code obtained from [7,31]. This code also satisfies the RLL constraint 6k = , which 

is why the code is also denoted  as (1/ 2;6)MTR . Given by the logarithm of the largest 

eigenvalue of the transition matrix corresponding to the transition diagram, the capacity 

of the (1/ 2)MTR  constraint is 0.7925. Therefore, the rate 3/4 (1/ 2;6)MTR  block code 

given in Table 5.2 is 94.6% efficient. 

 

Table 5.2: Look-up table for rate 3/4 MTR(1/2;6) code. 
 

User bits 
{ }(3 ), (3 1), (3 2)a n a n a n+ +  

Channel bits 
{ }(4 ), (4 1), (4 2), (4 3)b n b n b n b n+ + +  

000 0001 
001 0010 
010 0100 
011 0101 
100 0110 
101 1000 
110 1001 
111 1010 

 

 

5.1.2 Time-Varying Trellis 

Because the runlength constraints in the ( )1/ 2;6MTR  code are time-varying, the detector 

trellis also needs to be time-varying. In order to draw the time-varying trellis, we need to 

highlight the NRZ c  patterns that are forbidden by the time-varying constraints. Because 

of the constraints 1evenj =  and 2,oddj =  the NRZI patterns 

[ ] [ ](2 1), (2 ), (2 1) 0,1,1b n b n b n− + =  and [ ] [ ](2 ), (2 1), (2 2), (2 3) 0,1,1,1 ,b n b n b n b n+ + + =  
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respectively, are not allowed. These sequences correspond to 

( )(2 2), (2 1), (2 ), (2 1) ( 1, 1,1, 1)c n c n c n c n− − + = − − −  or (1,1, 1,1)−  for 1,evenj =  and 

( )(2 1), (2 ), (2 1), (2 2), (2 3) ( 1, 1,1, 1,1)c n c n c n c n c n− + + + = − − − or (1,1, 1,1, 1)− −  for 2oddj = , 

in NRZ format. The detector trellis is designed to remove these 4 NRZ patterns. Since the  
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- - - +

- - + -

+ + - -

+ + - +

+ + + -

+ - + +

+ - + -

+ - - +
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( ) ( ){ }2 ,..., 2 3c n c n− ( ) ( ){ }2 1 ,..., 2 2c n c n+ − ( ) ( ){ }2 2 ,..., 2 1c n c n+ −

1(2 )S n

14(2 )S n

13(2 )S n

15(2 )S n

16(2 )S n

12(2 )S n

11(2 )S n

10(2 )S n

9(2 )S n

8(2 )S n

7(2 )S n

6(2 )S n

5(2 )S n

4(2 )S n

2(2 )S n

3(2 )S n

 

Figure 5.5: Structure of the time-varying detector trellis matched to the ( )1/ 2MTR  constraints. 

 
memory length of the PR target [1, 2,3,2,1]g =  is 4gN = , the states in the trellis are 

defined as follows: ( ) ( ) ( ) ( ) ( )( ), 1 , 2 , 3iS n c n c n c n c n= − − − , where n  is the time index 

and i  is the state index. The first two forbidden sequences ( 1, 1,1, 1)c = − − −  and 
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(1,1, 1,1)c = −  correspond to the states, 5 (2 1)S n +  and 12 (2 1)S n + , which can be 

eliminated by removing the incoming branches and the outgoing branches to and from 

these states. In the simulations, this is accomplished by assigning infinite metrics for 

these branches. The other two forbidden sequences, ( 1, 1,1, 1,1)c = − − − and 

(1,1, 1,1, 1)c = − − , are of length 5 and these correspond to the state transitions 

5 11(2 2) (2 3)S n S n+ → +  and 12 6(2 2) (2 3),S n S n+ → +  respectively. By removing these 

two branches, the detector is now matched to the MTR code. This means that no detected 

sequence can violate the MTR constraints. We do not account for the 6k =  constraint 

since the effect of this constraint on the detection performance is very weak (as k  is 

large). 

 

5.1.3 Coding Gain 

To assess the gain in detection performance provided by the use of the ( )1/ 2;6MTR  

code, compared to the uncoded case, we now investigate the BER performance of the 

Viterbi detector. Noting that noise at the detector input is AWGN and the residual ISI is 

zero, recall from Section 2.4.2 and Appendix C that the BER at the Viterbi detector 

output can be evaluated as (i.e. a tight upper-bound) 

 ( ) ( )
2

e
b

e

dP Q w e e
η

π
σ∈Ε

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ , (5.2) 

where ed e g= ⊗  denotes the Euclidean distance associated with the error event e , 2

ησ  

is the variance of the AWGN, ( )eπ  is the probability of data patterns supporting the 
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error event, ( )w e  is the Hamming weight of the error event e , and E  is the set of all 

possible error events.  

Table 5.1 shows that the BER performance of the uncoded PR channel is 

dominated by {+2,-2} error event. Further, with PR target [ ]1,2,3,2,1 Tg = , the Euclidean 

distance associated with the error event { }2, 2+ −  is 2
min 24d = . The detection SNR 

corresponding to this event is 2

24

ησ
. The rate 3/4 ( )1/ 2;6MTR  eliminates the { }2, 2+ −  

error event. Table 5.3 shows the set of dominant error events and their Euclidean 

distances for the MTR coded channel. Observe that the ( )1/ 2;6MTR  code has eliminated 

all the events in Table 5.1 containing the error string [ ]0 2 2 0− . Further, the new 

dominant error event is { }2,0, 2+ −  with an associated squared Euclidean distance 

2
min 72d ′ = .The detection SNR corresponding to this event is 

( )2

72
Rησ

 taking into account 

the code rate 3 4R = . Therefore, the resulting SNR gain (i.e. coding gain) is 

min
10

min

20 log 3.52dBRd
d

⎛ ⎞′
=⎜ ⎟⎜ ⎟

⎝ ⎠
, which is quite significant. We will use this MTR code while 

designing a parity-check code to correct the new dominant error events at the detector 

output. 
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5.2 Design of Parity-Check Code and Post-Processor 

The parity-check code is meant to facilitate detection and correction of the dominant 

error events that remain at the detector output. Because the MTR(1/2;6) block code is self 

concatenable, we choose to design a code having combined runlength and parity 

constraints by concatenating freely a certain number MTRN  of MTR codewords from 

Table 5.2 and appending a few parity bits. In Section 5.2.1, we present the structure of 

the MTR encoded sequence that defines the parity-check assignment. In Section 5.2.2, we 

show how to select the parity-check bits such that the ( )1/ 2MTR  constraints are satisfied. 

 

5.2.1 Data Structure for Parity Assignment 

Our approach is based on the analysis of the data patterns supporting the dominant error 

events at the detector output. After removing all the error events containing the basic 

string { 2, 2}+ −  (see Table 5.1) using the ( )1/ 2;6MTR  code, almost all the remaining 

dominant error events are found to contain another basic string { 2,0, 2}+ −  (see Table 5.3). 

Table 5.3 shows the dominant error events at the detector output for the ( )1/ 2;6MTR  

encoded PR channel. 

Table 5.3: Squared Euclidean distances associated with the remaining 
dominant error events of the ( )1/ 2;6MTR  coded channel. 

Error event Euclidean distance 

{ }1 2,0, 2e = + −  72 

{ }2 2e = +  76 

{ }3 2,0, 2,0, 2e = + − +  76 

{ }4 2,0, 2,0, 2,0, 2e = + − + −  80 

{ }5 2,0, 2,0, 2,0, 2,0, 2e = + − + − +  84 
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For the construction of the parity-check code, we start by considering a single 

( )1/ 2MTR  codeword. Also, for the sake of clarity and convenience, we consider the 

pattern ( ) ( ) ( ) ( ) ( )( )1 , , 1 , 2 , 3b b n b n b n b n b n′ ′ ′ ′ ′ ′= − + + +  in NRZ{0,1} format instead 

of ( ( 1), ( ), ( 1), ( 2), ( 3))c c n c n c n c n c n= − + + +  in NRZ{-1,1} format (see Figure 5.2). 

Note that ( ) ( )2 1.c n b n′= −  Table 5.4 presents the data patterns b′  and 

( ( ), ( 1), ( 2), ( 3))b b n b n b n b n= + + +  that support the error event { 2,0, 2}+ − . This listing 

shows that if n is even, then in six out of eight pairs of ( )ˆ,b b , one of the two patterns 

violates the MTR constraint 1evenj = . However, when n  is odd, no pattern b  violates the 

MTR(1/2) constraints. This means that the ( )1/ 2;6MTR  code already reduces the 

probability of the error event { }2,0, 2+ − . The design of the parity-check code is based on 

analysis of the data patterns which support this error event, as shown in Table 5.4. 

 

 

 
 

 

 

 

 

The single parity parity-check code, for which the parity bit is defined as 

Table 5.4: Data patterns, in NRZ{0,1} format, supporting the dominant error event 
{ }2,0, 2+ − . 

               0  2  0  -2  0    0  2  0 -2  0   0  2  0 -2  0    0  2  0 -2  0
  
b′    0  1  0   0  0     0  1  0  0  1   0  1  1  0  0    0  1  1  0  1 

b̂′    0  0  0   1  0     0  0  0  1  1   0  0  1  1  0    0  0  1  1  1 
b        1  1   0  0        1  1  0  1       1  0  1  0       1  0  1  1 

b̂        0  0   1  1        0  0  1  0       0  1  0  1       0  1  0  0 
 
b′    1  1  0   0  0     1  1  0  0  1   1  1  1  0  0    1  1  1  0  1 

b̂′    1  0  0   1  0     1  0  0  1  1   1  0  1  1  0    1  0  1  1  1 
b        0  1  0  0        0  1  0  1       0  0  1  0        0  0  1  1 

b̂        1  0  1  1        1  0  1  0       1  1  0  1        1  1  0  0 
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 ( )
4 1

0
mod  2

MTRN

j
m b j

−

=

⎛ ⎞
′= ⎜ ⎟

⎝ ⎠
∑ , (5.3) 

with MTRN  denoting the number of concatenated ( )1/ 2;6MTR  codewords, cannot detect 

the occurrence of  { 2,0, 2}+ −  error event.  Indeed, the parity bit remains unchanged, 

because an even number of ( )b j′ are flipped due to errors, as shown by Table 5.4. 

Therefore, we consider a dual-parity parity-check code which computes 2 parity bits for 

the even and odd subsequences. Unfortunately, such a parity-check code fails at detecting 

{ 2,0, 2}+ −  error event because the flipped bits, ( )b j′  and ( )2b j′ +  are in the same 

subsequence. Therefore, we propose to divide the MTR encoded sequence 

( ){ }, 0,..., 4 1MTRb n n N′ = −  into M  subsequences (with 2M ≥ ) in order to detect the 

occurrence of the dominant error event. Let us consider the set of indices 

[ ]0,..., 4 1MTRI N= − . The indices corresponding to each subsequence are defined 

according to 
1

M

i
i

I I
=

=∪ , with { } 20,..., 1
2( 1), 2( 1) 1 MTRNi k

M
I Mk i Mk i

= −
= + − + − +  for 1,..., .i M=  

In other words, the set iI  defines the indices corresponding to the thi  subsequence. Each 

subsequence is assigned a parity obtained as 

 ( ) mod  2,   1,... .
i

i
j I

m b j i M
∈

⎛ ⎞
′ ′= =⎜ ⎟

⎝ ⎠
∑  (5.4) 

Clearly, the parity bits ( )1,..., Mm m′ ′  associated with ( ){ }, 0,..., 4 1MTRb n n N′ = −  are 

modified in two positions when the dominant error event { }2,0, 2+ −  occurs. Clearly, 

2M =  will suffice to detect { }2,0, 2+ − . Therefore, the above described interleaving 
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method and the definition of parity bit for each subsequence according to Eq. (5.4) can be 

used to successfully detect the error event { }2,0, 2+ − . 

 

5.2.2 Selection of the Parity Bits 

For the sake of convenience, we choose to append the parity bits to the MTR encoded 

sequence ( ){ }, 0,..., 4 1MTRb n n N= −  in NRZI format 8 . Note that the parity bits are 

designed based on the NRZ {0,1} data as given by Eq. (5.4). According to the 

subsequences defined in the previous section, at least 2 parity bits are required (i.e. 

2M ≥ ) for the parity-check code to detect the error event { }2,0, 2+ − . We first investigate 

whether the parity bits ( )1 2,m m′ ′  obtained from Eq. (5.4) can be freely appended to the 

MTR encoded  

{ }(4 ),.., (4 3)b n b n + { }' '(4 1),.., (4 3)b n b n− + ' '
1 2( , )m m

0 0 0 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 0

0 0 0 0 1

0 1 1 1 0
1 0 0 0 0
0 1 1 1 1
1 1 0 1 1
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
1 1 0 0 0
0 0 1 1 1

0 1

0 0 0 1 1
1 1 1 1 0

1 0 0 1 1
0 1 1 0 0
1 0 0 0 1

1 1 1 0 0

0 0

0 1

0 0

1 0

1 1

1 0

0 0

 

                                                 
8 In NRZI format, the set of ( )1/ 2;6MTR  codewords makes it easier to design the parity bits. However, 
the design of parity bits in NRZ format may or may not be more efficient. We have not investigated this. 

Table 5.5: Parity bits ( )1 2,m m′ ′  associated with the 

( )1/ 2;6MTR  codewords. 
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sequence ( ){ }, 0,..., 4 1b n n p= − . For this, we give in Table 5.5 the values of ( )1 2,m m′ ′  

when the number of concatenated codewords is 1MTRN = . Note that the parity bits 1m′  

and 2m′  are computed using ( ) ( ){ }0 , 1b b′ ′  and ( ) ( ){ }2 , 3b b′ ′ , respectively. The attempt 

to append ( )1 2,m m′ ′  to ( ) ( ){ }2 , 3b b′ ′  fails to satisfy the ( )1/ 2MTR  constraints. Indeed, 

Table 5.5 shows that ( ) ( ) ( ) ( ){ }1 20 , 1 , 2 , 3 , ,b b b b m m′ ′ ′ ′ ′ ′  takes the value 010111  for the 

fourth ( )1/ 2MTR  codeword. This sequence violates the ( )1/ 2MTR  constraints since it 

contains a run of 3 consecutive ‘1’. In order to avoid this issue, we choose to design more 

parity-check bits.  By choosing to append ( )1 2,0,m m′ ′  to the MTR encoded sequence 

( ){ }, 0,..., 4 1MTRb n n N= − , the possibility of occurrence of 3 consecutive ‘1’ can be 

avoided. However, such a design leads to a periodic inversion of the MTR constraints. 

This will require a more complex detector. With 4 parity bits, the design is 

straightforward. But, it is preferable (in view of rate loss) if we can manage with 3 parity 

bits instead of 4. 

We consider 3M =  subsequences instead of 2M = . That is, we will have 3 

parity bits. The ( )1/ 2;6MTR  codewords help to select the parity bits. The resulting 3-

tuple parity ( )1 2 3, ,m m m′ ′ ′  can be made to satisfy the ( )1/ 2MTR  constraints by encoding 

these 3-tuples using the ( )1/ 2;6MTR  encoding table given by Table 5.2. We append the 

resulting ( )1/ 2MTR  complying encoded parity bits to the NRZI data as 

( ) ( )4 ,..., 4 3MTR MTRb N b N +⎡ ⎤⎣ ⎦ . 

In the post-processor given in Section 4.1.1, the parity-check block checks for 

violation in the parity constraints. This is done as follows. Let  
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( ) ( )ˆ ˆ4 ,..., 4 3MTR MTRb N b N⎡ ⎤+⎣ ⎦  represent the last 4 bits in NRZI{0,1} format resulting 

from the detected sequence ( ){ }b̂ n′ . That is, 

( ) ( ) ( )( )ˆ ˆ ˆ4 4 4 1  mod  2,MTR MTR MTRb N i b N i b N i′ ′+ = + + + −  for 0,...,3i = . Then, the 

received version ( )1 2 3ˆ ˆ ˆ, ,m m m′′ ′′ ′′  of ( )1 2 3, ,m m m′ ′ ′  is obtained from Table 5.2 by applying the 

inverse mapping on channel bits ( ){ }ˆ 4 , 0,1,2,3 .MTRb N i i+ =  Let ˆ im′  be the parity of the 

thi  subsequence in ( ){ }b̂ n′ , for 1,2,3i = . Then, the syndrome is computed as 

( )ˆ ˆ ˆ  mod  2i i im m m′ ′′= + , for 1,2,3i = . Then, the parity-check block returns violation if the 

syndrome is  ( )1 2 3ˆ ˆ ˆ, , 000m m m ≠ . 

It is easy to see that the occurrence of any error event in Table 5.3 leads to parity 

violation. This parity-check encoder combining time-varying MTR constraints and parity 

constraints can detect all the 5 error events listed in Table 5.3. The rate of this newly 

formed constrained parity-check code (i.e. including MTR and parity-check encoding) is 

( )3 4 4MTR MTRR N N= + . A reasonable value for MTRN  is 30. For large MTRN , the error 

detection capability becomes degraded by the occurrence of multiple error events within 

a codeword. For small MTRN , the rate loss becomes significant. Thus, the selection of the 

value of MTRN  defines the trade-off between rate loss and error detection capability. 
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5.2.3 Post-Processor Design 

We shall now look at how to setup the post-processor to facilitate efficient and accurate 

detection and correction of the dominant error events for the ( )1/ 2;6MTR  coded channel. 

We use the post-processors described in Section 4.2 for our study. 

Let us first analyze how the dominant error events affect the parity bits. At 

moderate to high SNR, we can assume that at most one error event occurs in each parity 

codeword. 

Table 5.6 gives the parity-check bits (i.e. syndrome bits) that result when the 

detected parity codeword contains any of the dominant error event listed in Table 5.3 

starting at a time index which is in 1I , 2I  or 3I . If the parity-check bits are one of the 7 3-

tuples 1 2 3ˆ ˆ ˆm m m  in Table 5.6, then the post-processor will search only among those error 

events which generate this 3-tuple. For example, if the parity-check is 010, then the post-

processor tries to detect the error event { }2+  starting at a time index in 2I , or the error  

 

Table 5.6: Parity-check (syndrome) 1 2 3ˆ ˆ ˆm m m  according to the 
starting index of the error event. 

 Parity-check 
Error event 1I  2I  3I  

{ }1 2,0, 2e = + −  110 011 101 

{ }2 2e = +  100 010 001 

{ }3 2,0, 2,0, 2e = + − +  111 111 111 

{ }4 2,0, 2,0, 2,0, 2e = + − + −  011 101 110 

{ }5 2,0, 2,0, 2,0, 2,0, 2e = + − + − +  001 100 010 

 

event { }2,0, 2,0, 2,0, 2,0, 2+ − + − +  starting at a time index in 3I . The complexity of the 

post-processor is thus considerably reduced. The number of types of error events to be 
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detected is always at most two and the number of location indices to be detected is less 

than 4 3.MTRN  In terms of computational complexity, the proposed post-processor is 

approximately 6 times less complex compared to a post-processor that has to search 

through all the dominant events and locations. 

 Recall from Chapter 4 (Sections 4.2 and 4.3), we need to know the values of the 

normalization constants ,i jθ  to implement the MAP-based error event matched filtering 

post-processor. The values of these normalization constants depend on the probabilities 

of the respective error events and associated data patterns (see Eq. (4.15)). The theoretical 

analysis required for deriving the expressions of these probabilities are given in Appendix 

D. In particular, note that the ( )1/ 2;6MTR  coded data ( ){ }c n , ( ){ }b n′  or ( ){ }b n  is not 

wide-sense stationary. Instead, it turns out to be a cyclostationary process. This makes the 

theoretical analyses very involved and tedious. The details are given in Appendix D. 

 

5.2.4 Coding Gain 

We shall now evaluate the coding gain resulting from the use of the parity-check code 

designed above. 

The parity-check code and post-processor is expected to detect and correct the 

five dominant error events listed in Table 5.3. This makes the new dominant error event 

at the post-processor output to be { }2,0, 2,0, 2,0, 2,0, 2,0, 2+ − + − + −  with squared 

Euclidean distance 2
min 88d ′′ = . In our simulation studies, the number of MTR codewords 

used per parity-check codeword is 30MTRN = . This makes the code rate of the 

constrained parity-check code to be ( )3 4 4 0.7258MTR MTRR N N′′ = + = . Since the squared 
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minimum distance is 2
min 72d ′ =  when only the MTR code with rate 0.75R′ =  is used, we 

get the coding gain due to parity-check code alone as  

 min
10

min

20 log 0.729dBR d
R d

⎛ ⎞′′ ′′
=⎜ ⎟⎜ ⎟′ ′⎝ ⎠

. 

Thus, the total coding gain due to the constrained parity-check code is 

3.52+0.729=4.25dB. 

 

 

5.3 Simulation Results 

In this section, we provide some simulation results to illustrate the effectiveness of the 

constrained parity-check code and post-processor developed in the previous sections. The 

user data ( ){ }a n  are chosen to be independent and identically distributed with 

( ) ( )Pr 0 Pr 1a n a n= = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . The variance of the AWGN noise is chosen according to 

the SNR defined in Section 5.1.1. In our simulations, we do generate and transmit the 

parity bits explicitly unlike some of the earlier publications which assume that the correct 

parity bits are available to the receiver [85,86]. To tackle the issue of boundary error 

events, the parity-based post-processor algorithm given in Section 4.1.2 is slightly 

modified, by looking for boundary error events in case the syndromes of two consecutive 

parity codewords are both non zero. 

Figure 5.6 shows the BER performance estimated at different points at the 

receiver under various conditions. The plot ‘uncoded’ means that neither the MTR code 

nor the parity-check code is used to encode the user data (i.e. code rate equal to 1), and 
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the BER is estimated at the Viterbi detector output. This case serves as a reference to 

 

 

Figure 5.6: BER performance comparison with and without the 
constrained parity-check code. 

 

measure the coding gains achieved from the channel codes used. The plot ‘MTR(1/2;6)’ 

implies that the channel code consists only of the rate 3/4 MTR(1/2;6) code, and the BER 

is estimated at the Viterbi detector output. As predicted in Section 5.1.3, the simulation 

results show a coding gain of 3.52dB with the MTR code compared to the uncoded case. 

The plot ‘ML post-proc’ shows the BER performance obtained with the 

constrained parity-check code and ML post-processor (see Section 4.3 , Chapter 4). As 

expected, we obtain about 0.7dB gain in SNR with respect to the performance with MTR 

code only. Thus, we have a net coding gain of 4.2dB with the proposed constrained 

parity-check code. 

Also shown in Figure 5.6 is the BER performance with the MAP post-processor 

(see plot ‘MAP post-proc’). Even though we expected the MAP to perform better than 
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ML, the results show that these post-processors result almost in identical performance. 

The reason for this can be understood by examining Table 5.7 which gives the 

probabilities of error events ( ), ,Pr
2

i

i

e
e j i j j i

d
P e Q e

η

π
σ

⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
 computed at SNR=12dB, 

where ( )j ieπ  is the probability of the data patterns supporting the error event ie  starting 

at a time index in the thj  interleave. Note from Eqns. (4.15) and (4.24) in Chapter 4 that 

this is the term that distinguishes between ML and MAP post-processors. Table 5.7 

shows that these probabilities are comparable for the different error events. 

Consequently, the MAP and ML post-processor perform comparably. 

 

Table 5.7: Probabilities ,ie jP  of the dominant error events starting at 

a time index in the thj  interleave. 
 1e  2e  3e  4e  5e  

0j =  2.47e-5 5.33e-5 6.62e-6 1.58e-6 4.24e-7 
1j =  2.47e-5 1.77e-5 1.77e-5 6.32e-6 4.52e-6 
2j =  2.78e-5 5.33e-5 6.62e-6 1.78e-6 4.24e-7 
3j =  2.47e-5 1.77e-5 8.83e-6 6.32e-6 2.26e-6 

 

 

5.4 Performance Evaluation on Non-Ideal Channel 

In the above sections, we modeled the perpendicular recording channel using an ideal PR 

target with [ ]1,2,3,2,1 Tg = , zero residual ISI, and AWGN noise at the detector input. But 

in practice, we use an equalizer to equalize the recording channel to the PR target g . The 

resulting residual ISI will not be zero and the noise at the detector input will be a mixture 

of correlated Gaussian noise and residual ISI. In this section, we will do some 
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performance evaluations to assess how the constrained parity-check code designed above 

will perform on such practical channels. 
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Figure 5.7: Required SNR for 510BER −=  versus user density for uncoded, ( )1/ 2;6MTR  coded, and 
constrained parity-check coded channels. 

 

In order to check if the ( )1/ 2;6MTR  code brings about any improvement in the 

detection performance, the BER has been estimated for different user recording densities 

uD  using simulations. For the user densities 1,  1.5, 2 and 2.5,uD =  the SNR required to 

achieve a BER of 510−  is plotted in Figure 5.7, considering the uncoded, ( )1/ 2;6MTR  

coded, and constrained parity-check coded channels. Several conclusions can be drawn 

from Figure 5.7. Firstly, Figure 5.7 shows that the BER performance of the ( )1/ 2;6MTR  

coded channel is better than that of the uncoded channel for densities 1.8uD ≤ . This 

means that the distance gain of the ( )1/ 2;6MTR  code is larger than the rate loss for 

1.8uD ≤ . Note that, at user density 1.0uD = , the ( )1/ 2;6MTR  code brings about 3dB 

SNR improvement as compared to the uncoded case. For larger densities 1.8uD ≥ , the 
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rate loss overwhelms the distance gain of the ( )1/ 2;6MTR  code. For instance, at 

2.0uD = , the ( )1/ 2;6MTR  coded channel results in 0.8dB SNR loss as compared to the 

uncoded channel. Secondly, it can be seen from Figure 5.7 that the MAP-based post-

processor results in better performance as compared to the ( )1/ 2;6MTR code, for user 

densities 1.5uD ≤ . For larger densities, the performance of the MAP-based post-

processor is significantly degraded by rate loss and noise correlation. More precisely, 

even though the code rate of the constrained parity-check code (i.e. 0.7258R′′ = ) is close 

to that of the ( )1/ 2;6MTR  code (i.e. 0.75R′ = ), the effect of code rate becomes more 

and more serious as density increases, as shown in Section 3.2.1 (Chapter 3). The 

optimality of the post-processors is based on the assumption that the noise at the Viterbi 

detector input is white Gaussian. However, in practice, the noise at Viterbi detector 

output is correlated and non-Gaussian (see Appendix C), and as density increases, the 

noise correlation becomes more serious. As a result, the post-processor is not optimal and 

its error event detection capability is reduced as density increases. 

 

 

5.5 Conclusions 

In this chapter, we have designed an original ( )1/ 2;6MTR  constrained parity-check code 

for perpendicular recording channels equalized to [ ]1,2,3,2,1 Tg =  PR target. The design 

of the parity-check code is based on the self-concatenable time-varying ( )1/ 2;6MTR  

code [7, 31] which provides by itself a coding gain of 3.52dB as compared to the uncoded 
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channel. Parity information is assigned to a certain number (e.g. 30) of concatenated 

( )1/ 2;6MTR  codewords by judiciously dividing the MTR encoded sequence and 

appending 4 parity bits. The performance of the constrained parity-check code combined 

with the post-processor described in Chapter 4 has been evaluated analytically and by 

using simulations. The proposed constrained parity-check code and post-processor 

provide 4.2dB SNR gain over the ideal uncoded PR channel. For a non-ideal channel, the 

proposed scheme shows a performance gain only for low densities. This is mainly due to 

the rate loss resulting from the constrained parity-check code. 



 

97 

Chapter 6  

High-rate Constrained Codes and Post-

Processing 

 

 

 

As mentioned in Chapter 3, the performance of distance-enhancing constrained codes is 

significantly degraded by rate loss. Therefore, high-rate constrained codes receive 

particular interest. It is proposed in this Chapter to focus on a particular class of high-rate 

constrained codes, known as forbidden list (FL) constrained codes [54]. Generally 

speaking, the constraint strings, which constitute the forbidden list, eliminate specific 

data patterns which support a given error string. Since the set of data patterns supporting 

a given error string can be large, there is usually a wide range of choice in selecting high-

capacity FL constraints. Such flexibility makes FL constraints very attractive. This 

flexibility will be used to match the FL constraints to the MAP post-processor. The 

identification of FL constraints may require a search that can be extremely complex. In 

Section 6.1, we propose a method for reducing the search range of the FL constraints. 

The design of FL constrained codes that have error control capabilities is not considered 

in this Chapter. Instead, we shall generate the constrained sequences from a suitably 

chosen information source, as explained in Section 6.2. In Section 6.3, we select specific 
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parity-check codes and we simulate the performance of MAP and ML-based post-

processors, in a data-aided mode. 

 The original contributions in this thesis are as follows. First, we present a method 

for designing very high-capacity FL constraints targeted at error events which are 

matched to MAP-based post-processors, i.e. wider separation between the probabilities of 

the different dominant error events. Second, we propose a method for building an 

information source that translates the designed FL constraints. Third, we show how to 

build the Viterbi trellis matched to the FL constraints without much increase in 

computational complexity. 

 

 

6.1 Forbidden List Constraints 

In this section, we present the methodology adopted for identifying high-capacity FL 

constraints. Based on an error event characterization for the PRML receiver studied in 

Chapter 2, we identify the set of eligible strings that will form the FL constraints. 

Thereafter, we propose a method for reducing the complexity of the search of FL 

constraints. 

 

6.1.1 Design Methodology 

In order to enhance the performance of PRML receivers, constrained codes aim at 

reducing the probability of dominant error events eP  (see Eq. (2.17)). FL constrained 

codes can be viewed as a general class of distance-enhancing codes (i.e. weakly or 
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strongly constrained). While strong distance-enhancing constrained codes enhance the 

minimum effective detection SNR, effSNR  (see Eq. (2.21)), by completely eliminating all 

the data patterns that support the dominant error events, weakly constrained codes do not 

enhance effSNR . The effective distance ( )effd e (see Eq. (2.23)) of the dominant error 

events is not increased. Instead, the probability ( )eπ  of the data patterns supporting the 

dominant error events is reduced. The design of high-rate FL constrained codes follows 

similar steps as the design of strong distance-enhancing codes presented in Section 3.1. 

More precisely, the design of high-rate FL constrained codes involves the following 

steps: 

(a) Error event characterization for the given channel and identification of the 

dominant error events { }1,..., Ne e . 

(b) Determination of a list of error strings { }1,..., Nε ε=E  that will prevent the 

occurrence of the error events in Step (a). 

(c) Identification of a list of forbidden data strings  { }1,..., Ms s=L  of given length 

that maximize the number of data patterns that support the error strings in 

Step (b), and tuning the Viterbi detector (VD) to the identified FL constraint. 

(d) Construction of an efficient code. 

Step (a) is the same as the first step of the design of strong distance-enhancing codes (see 

Section 3.1). In Step (b), the error strings iε  are obtained by prefixing and postfixing the 

error events ie  with a sufficiently large number of zeros. This is crucial for not 

excessively restraining the set of eligible FL constraints in Step (c). In general, FL 

constraints are time-varying. As mentioned in Chapter 3, time-varying constraints can 
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offer better performance as compared to time-invariant constraints, because of their 

higher capacity. Immink [78] shows that runlength constraints expressed in NRZ format 

are in general more attractive than NRZI runlength constraints. However, for a certain 

class of codes, Chaichanavong and Marcus [71] show that the choice between NRZ and 

NRZI formats depends on the case at hand. We choose to express the constraints in NRZI 

format. Therefore, the list of forbidden data strings will be denoted { }1,...,
NRZIMs s=L . For 

Step (c), computer search is performed to identify the eligible list of forbidden strings 

which minimize the BER and separate the probabilities of the two first dominant error 

events. The search may be prohibitively complex. For this reason, one should judiciously 

reduce the search range. A simple method for tuning the VD to the identified FL 

constraint is to choose the number of trellis states as max 12L − , where maxL  is the length of 

the longest string js , 1,...,j M= , and eliminate the branches that contain any of the data 

strings js , 1,...,j M= . If maxL  is much greater than the memory of the partial response 

(PR) target, this method is extremely demanding in terms of computational complexity. 

We will show in Section 6.1.2 how this can be avoided with the help of a special state-

tagging. For Step (d), high-rate code design has been reviewed in Section 3.2.3 (Chapter 

3). Most importantly for the work done in this thesis, Béal [74] shows efficient 

algorithms to help the design of time-varying FL constrained codes that have error 

control capabilities. However, we limit the work in this thesis to time-invariant FL 

constraints. Because of time limitation, we do not design an explicit encoder. Instead, we 

shall generate the FL constrained sequences with a suitably chosen information source, as 

it will be explained in Section 6.2.  
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6.1.2 Identification of FL Constraints 

The system which we simulate is shown in Figure 2.6. As mentioned in Sections 2.3 and 

4.3, monic-constrained generalized partial response (GPR) target are interesting for two 

reasons. First, they result in near optimal performance, in the sense of minimizing the 

dominant error event probability. Secondly, they result in close-to-white noise at the VD 

input, which helps to enhance the performance of MAP and ML-based post-processors. 

For illustration purpose, we plot in Figure 6.1 the power spectral density of the noise at 

the VD input, when the recording channel is equalized to the [ ]1,2,3,2,1 Tg =  PR target 

and to the monic constrained GPR target of length 5. The SNR (see Eq. (2.7)) is chosen 

to be 33dB and the user density 2.0. Clearly, the noise correlation is much less when the 

monic-constrained GPR 
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Figure 6.1: Normalized power spectral density of equalized 
noise at VD input for [ ]1,2,3, 2,1 T  PR target and the monic-

constrained GPR target of length 5. 
 

target is used. Because of the reduction in noise correlation and the BER performance 

enhancement, we choose to use GPR targets in this chapter. We also choose to fix the 
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user density to 2.0uD =  throughout this chapter. In order to identify the dominant error 

events at the VD output, error event characterization is performed by analytically 

computing the probability eP  of any possible error event. Since long error events are less 

likely to occur, we restrain our search to error events whose length is less than 11. The 

SNR chosen is such that the BER is in the order of 510− . We choose 33dBSNR = . Table 

6.1 lists the dominant error events and their probabilities of occurrence.  Table 6.1 also 

displays the effective distance and the probability of the data patterns supporting the 

dominant error events.  

 

Table 6.1: Dominant error events at the Viterbi detector output for uncoded GPR equalized channel. 

Dominant error events ie    Effective 
distance 

( )eff id e  

Probability ( )ieπ  
of data patterns 
supporting ie  

Probability 
ieP  

( )( ) ( )2
eff i iQ d e eπ  

{ }1 2, 2e = + −  3.001 ½ 5.47e-6 

{ }2 2, 2,0,0, 2, 2e = + − + −  3.319 1/8 1.68e-7 

{ }3 2, 2,0, 2, 2e = + − + −  3.474 1/8 5.59e-8 

{ }4 2, 2,0,0,0, 2, 2e = + − + −  3.463 1/8 1.52e-8 

{ }5 2, 2,0, 2, 2,0, 2, 2e = + − + − + −  3.666 1/32 1.35e-8 

{ }6 2, 2,0, 2, 2,0,0, 2, 2e = + − + − + −  3.586 1/32 6.18e-9 

{ }7 2, 2,0,0, 2, 2,0, 2, 2e = + − + − + −  3.586 1/32 6.18e-9 

{ }8 2, 2,0,0, 2, 2,0,0, 2, 2e = + − + − + −  3.616 1/32 4.95e-9 

{ }9 2, 2,0, 2, 2,0, 2, 2,0, 2, 2e = + − + − + − + −  3.505 1/128 2.80e-9 

{ }10 2, 2,0,0, 2, 2,0,0,0, 2, 2e = + − + − + −  3.945 1/32 3.78e-10 

{ }11 2, 2,0,0,0, 2, 2,0,0, 2, 2e = + − + − + −  3.944 1/32 3.80e-10 

{ }12 2, 2,0, 2, 2,0,0,0, 2, 2e = + − + − + −  3.976 1/32 2.93e-10 

{ }13 2, 2,0,0,0, 2, 2,0, 2, 2e = + − + − + −  3.977 1/32 2.92e-10 
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Table 6.1 shows that the dominant error events are { }1 2, 2 ,e = + −  

{ }2 2, 2,0,0, 2, 2e = + − + − , and { }3 2, 2,0, 2, 2e = + − + − . We notice that the error events have 

a common structure formed with the basic string [ ]2, 2− . Because of this special feature, 

the set of forbidden data strings corresponding to the different dominant error events will 

show similarities. As a result, it will be possible to reduce the search range of the 

forbidden data strings. Nevertheless, this feature does not favor the search of FL 

constraints which increase the separation between the probabilities of the dominant error 

events. The maximal length of the forbidden strings js  to be identified is limited by the 

maximal length of the error strings iε . The main advantage is the flexibility that longer 

strings offer. More precisely, eliminating a given set of data patterns may result in higher 

capacity FL constraints when longer FL strings js  are considered. Obviously, this 

flexibility can be exploited at the cost of larger complexity, i.e. with a larger number of 

FL strings js . An error string corresponding to the first dominant error event is 

[ ]1 0 0 0 2 2 0 0 0ε = + −  of length 
1

8.Lε =  There are ( )112 64L wε ε− =  different pairs 

( ),c c  of data patterns that support the error string 1ε , where c  and c  are data patterns 

in NRZ {-1,1} of the same length as 1ε , that satisfy 1c c ε− = , and ( )1w ε  represents the 

Hamming weight of the error string 1ε . The pairs of data patterns ( ),c c  are translated 

into pairs ( ),b b  in NRZI {0,1} format. For clarity, Table 6.2 displays 8 of the 64 pairs of 

data patterns ( ),b b  that support the error string 1ε . For the purpose of illustration, Table 

6.2 highlights the string [ ]1 1 0 1  that eliminates one data pattern in 4 of the 8 pairs of 
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data patterns. It can be shown this string is contained in 43 out of the 64 pairs ( ),b b . 

Equivalently, only 21 pairs out of 64 do not contain the string [ ]1 1 0 1 . Therefore, if we 

forbid the string [ ]1 1 0 1 , the probability of the data patterns that support the error string 

1ε  is reduced by a factor of 64/21. 

 

Table 6.2: 8 pairs of data patterns in NRZI format which support the error string 
[ ]0 0 0 2 2 0 0 0+ − . 

0 0 1 1 0 0 0 
0 0 0 1 1 0 0 
0 0 1 1 0 0 1 
0 0 0 1 1 0 1 
0 0 1 1 0 1 1 
0 0 0 1 1 1 1 
0 0 1 1 0 1 0 
0 0 0 1 1 1 0 
0 0 1 1 1 1 0 
0 0 0 1 0 1 0 
0 0 1 1 1 1 1 
0 0 0 1 0 1 1 
0 0 1 1 1 0 1 
0 0 0 1 0 0 1 
0 0 1 1 1 0 0 
0 0 0 1 0 0 0 

 

Table 6.3 lists the forbidden strings ( ) ( ) ( ){ }1

1 1 1
1 ,..., Ms s=L  for the error string 1ε . The 

strings ( )1
js  are selected in the same manner as for the string [ ]1 1 0 1  in Table 6.2. 

Obviously, longer strings are contained in fewer pairs ( ),b b , as compared to shorter 

strings. As we will see in Section 6.2, short strings result in FL constraints that have 

capacities satisfying 0.9Cap < . Such capacities are considered low capacities. Therefore, 

we select the strings whose length is larger than 4. However, it is possible that some 

strings of length 4 have low capacities. For instance, the FL constraint { }1110
NRZI

=L  has 
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capacity 0.8791. For verification of this result, one may apply one of the methods 

described in Section 6.2. Let ( ) ( ){ } ( )1

1 1

1,...,j j N
S s

=
=  represent the set of eligible strings of 

length between 4 and 8. Table 6.3 shows that the subset of ( )1S  comprising the strings 

( )1
js  of length 4 and 5 is relatively large. With a similar procedure applied to error strings 

  

Table 6.3: List of eligible strings of length 4 and 5 which partially eliminate the pairs of data patterns  
supporting [ ]0 0 0 2 2 0 0 0+ −  error string. 

 
String ( )1

js  
Ratio of 

elimination of 
pairs ( ),b b  

 
Capacity 

 
String ( )1

js  
Ratio of 

elimination 
of pairs 

( ),b b  

 
Capacity 

[ ]1 11 0  50/64 0.8791 [ ]1 0 11 0  23/64 0.9543 

[ ]0 111  45/64 0.8791 [ ]1 1 0 1 0  23/64 0.9468 

[ ]1 0 11  44/64 0.9005 [ ]0 1 11 0  22/64 0.9510 

[ ]1 1 0 1  43/64 0.9005 [ ]1 1 1 0 1  22/64 0.9510 

[ ]1 111  38/64 0.9468 [ ]1 01 11  21/64 0.9510 

[ ]1 0 0 1  34/64 0.9005 [ ]1 1 0 1 1  21/64 0.9573 

[ ]1 0 1 0  34/64 0.9132 [ ]111 11  20/64 0.9752 

[ ]1 1 0 0  32/64 0.8791 [ ]0 0 11 1  16/64 0.9468 

[ ]0 1 0 1  31/64 0.9132 [ ]0 1 0 1 1  16/64 0.9468 

[ ]0 11 0  30/64 0.9005 [ ]0 11 0 1  16/64 0.9543 

[ ]0 0 11  29/64 0.8791 [ ]1 01 0 0  16/64 0.9468 

[ ]0 1 0 0  24/64 0.9005 [ ]1 1 0 0 1  16/64 0.9510 

[ ]0 0 0 1  22/64 0.8791 [ ]1 0 0 1 0  15/64 0.9543 

[ ]0 0 1 0  22/64 0.9005 [ ]1 0 0 1 1  15/64 0.9510 

[ ]1 0 0 0  16/64 0.8791 [ ]0 1 0 1 0  14/64 0.9619 

[ ]0 0 0 0  8/64 0.9468 [ ]1 0 1 0 1  14/64 0.9619 

[ ]1 1 11 0  31/64 0.9468 [ ]0 011 0  12/64 0.9510 

[ ]0 1 1 11  24/64 0.9468 [ ]0 11 0 0  12/64 0.9510 

[ ]1 1 1 0 0  24/64 0.9468 [ ]1 1 0 0 0  12/64 0.9468 
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[ ]2 0 0 2 2 0 0 2 2 0 0ε = − − and [ ]3 0 0 2 2 0 2 2 0 0ε = − − ,  we identify the sets 

( ) ( ){ } ( )2

2 2

1,...,j j N
S s

=
=  and ( ) ( ){ } ( )3

3 3

1,...,j j N
S s

=
= . The set of all possible forbidden data strings 

associated with the error strings 1ε , 2ε  and 3ε  is given by 

 ( )
3

1

i

i

S S
=
∪ . (6.1) 

The FL constraints are formed by taking any possible -tuplen of different string js  in S . 

More precisely, the set of FL constraints is given by  

 { }{ }1,...,
, 1,...,j jj n

s s S n S
=

∈ =L . (6.2) 

The total number of FL constraints ∈L L  is 2 1S
LN = = −L , where L  and S  denote 

the cardinalities of the sets L  and S , respectively. Unfortunately, the number LN  is 

extremely large. For instance, when S  contains only 30 strings, the BER and the error 

event probabilities need to be evaluated about 910  times. Fortunately, some 

simplifications are possible. 

 

 

6.1.3 Reduction of the Search Range 

The identification of FL constraints in Step (c) of the code design procedure given in 

Section 6.1.1 is limited by the prohibitively large number of possibilities. Since the main 

objective of FL constraints is to minimize the BER, we assess the strength of the different 

FL constraints by evaluating the BER at the VD output, for the system shown in Figure 

6.2. The constrained source generates input data sequences that satisfy the given FL 
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constraint. Details of the design of the constrained source are given in Section 6.2. The 

precoder translates the data sequence ( ){ }b n  in NRZI{0,1} format to the data sequence 

( ){ }c n  in NRZ{-1,1} format. Since the number of different FL constraints is very large, 

estimating the BER using simulations would require phenomenal computation time. For 

this reason, we estimate the BER analytically. The details of the computation are given in 

Appendix C and Section 6.3. 

Simulations show that9 the BER becomes large when the input data is constrained, 

as compared to the uncoded case. This is expected since the FL constraints do not 

enhance the effective distance. For minimizing the rate loss, we consider  

Constrained
source Precoder Viterbi

detectorL↑ L↓iw

( )mυ

( )b n ( )c n ( )x n ( )ĉ n − Δ
ih

 

Figure 6.2: Schematic of a constrained perpendicular recording channel with Viterbi detector. 
 

FL constraints L  with capacity ( ) 0.97Cap ≥L . For lower capacity constraints, the post-

processor will not be able to provide satisfactory gain to compensate for the rate loss. We 

do the search for the ‘optimal’ FL constraint in two steps. In the first step, we reduce the 

search area by focusing on FL constraints that minimize the BER. In the second step, we 

identify in the reduced search area the FL constraints that separate the dominant error 

event probabilities. Obviously, the FL constraints which minimize the BER are 

constituted of strings with rather large lengths. The resulting BER performance becomes 

close to that of the uncoded channel. For avoiding this issue, we shall consider FL 

constraints L  that contain strings of equal length sL . With smaller length sL (e.g. 4  or 5), 

                                                 
9 These simulation results are not shown here. 
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the capacity of the resulting constraints L  will be less than 0.97. Note that, for a given 

length sL , the capacity of a FL constraint ( )Cap L  decreases as the number of strings 

js ∈L  increases. This is the reason why we choose 8sL = . With larger lengths sL , the 

number of constraints becomes impractically large. 

For clarity, we summarize in detail the identification of FL constraints in Step (c) 

of the code design given in Section 6.1.1:  

(c.1) Choose a fixed length sL  for the strings js ∈L . 

(c.2) For the error strings iε  which correspond to the three most dominant error 

events ie , identify the strings js  of length sL  which reduce significantly the 

number of supporting data patterns. 

(c.3) Estimate the BER associated with each string { }js=L . Let S  denote the set 

of 15 strings js  which result in smallest BER. 

(c.4) Form all possible FL constraints { }1,..., ks s=L , where 5k ≤  and js S∈ . 

(c.5) Estimate the BER associated with each FL constraint and compute the ratio 

between the probabilities of the two most dominant error events. 

(c.6) Select the FL constraints which maximize the probability ratio computed in 

Step (c.5) and result in acceptable BER. 

For Step (c.1), the length sL  is chosen to be 8. In Step (c.2), note that the error strings iε  

chosen in Step (b) should be long enough to support the search of strings js  of length sL . 

Special consideration must be taken into account when identifying the strings js . It is 

possible that two FL constraints { }1j
s=1L  and { }1j

s=2L , where 
1j

s  and 
2j

s  have 
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different lengths, constrain the data sequence in exactly the same way. For instance, 

[ ]{ }1 1 1 1 1 1 1 0=1L  and [ ]{ }1 1 1 1 1 1 1=2L  are equivalent FL constraints. This 

situation arises because the Shannon cover [75] of  1L  has more than one irreducible 

component [75], whereas the Shannon cover of 2L  is irreducible. More details about 

irreducibility are available in Appendix A and [75]. Therefore, strings js  of length sL  

which are equivalent to strings of length 1sL −  or less are not selected. In Step (c.3), we 

select only the 12 strings js  which result in smallest BER. Considering more than 12 will 

result in prohibitively large number of combination of strings for Step (c.4). In Step (c.4), 

we reduce the search range by considering only those FL constraints that contain at most 

5 strings. The reason for this is that we consider only FL constraints L  with 

( ) 0.97Cap ≥L , and in practice, FL constraints with more than 6 strings will not satisfy 

this inequality. In Step (c.5), the error event probabilities and the BER are estimated 

analytically. In Step (c.6), we choose the FL which maximize the separation between the 

probabilities 
1e

P , 
2eP  and 

3eP  of the dominant error events 1e , 2e  and 3e , respectively. 

Table 6.4 lists the strings js S∈  which are obtained in Step (c.3) of the above 

presented identification procedure. There is no specific rule for selecting the constraints 

that maximize the separation between error event probabilities. For this reason, we select 

the FL constraints which separately maximize the ratios 
1 2i ie eP P  and 

2 3i ie eP P , where 
1i

e , 

2i
e  and 

3i
e  are the ordered dominant error events. The simulations performed for Step 

(c.5) show that the order of dominance of error events 1e , 2e  and 3e  remains unchanged  
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Table 6.4: Set of strings js  of length 8 whose associated FL constraint { }js=L  result in smallest BER. 

Constraint { }js=L  Capacity 
( )Cap L  

BER Constraint { }js=L  Capacity 
( )Cap L  

BER 

[ ]1 1 1 1 1 1 1 1 1s =  0.9971 1.282e-5 [ ]7 1 0 0 1 1 1 1 1s =  0.9942 1.428e-5 

[ ]2 1 1 0 1 1 0 1 1s =  0.9950 1.400e-5 [ ]8 1 1 1 1 1 0 0 1s =  0.9942 1.428e-5 

[ ]3 1 1 1 0 0 1 1 1s =  0.9945 1.402e-5 [ ]9 1 1 0 1 1 1 0 1s =  0.9946 1.435e-5 

[ ]4 1 1 0 0 1 1 1 1s =  0.9943 1.414e-5 [ ]10 1 0 1 1 1 0 1 1s =  0.9946 1.435e-5 

[ ]5 1 1 1 1 0 0 1 1s =  0.9943 1.414e-5 [ ]11 1 1 1 1 1 1 0 0s =  0.9942 1.438e-5 

[ ]6 1 0 1 1 0 1 1 0s =  0.9949 1.415e-5 [ ]12 0 0 1 1 1 1 1 1s =  0.9942 1.438e-5 

 

for almost  all the FL constraints. The main reason for this is that most strings js  which 

eliminate some data patterns which support an error string 
1i

ε  also contribute to eliminate 

data patterns which support another error string 
2i

ε . Unfortunately, this property restrains 

the search for FL constraints which maximize the probability ratios mentioned above. 

Table 6.5 shows the FL constraints obtained which have maximum ratios 
1 2i ie eP P  or 

2 3i ie eP P . Also shown in Table 6.5 is the capacity and the BER associated with the 

respective FL constraint, whose strings js  are listed in Table 6.4. 

 

Table 6.5: FL constraints which result in maximum separation between the probabilities of 
dominant error events. 

FL constraint L  Capacity 
( )Cap L  

BER 
1 2i ie eP P  

2 3i ie eP P  

{ }1 5 7 11, , ,s s s s=1L  0.9847 1.91e-5 46.32 1.92 

{ }2 6 9 10, , ,s s s s=2L  0.9856 1.95e-5 25.09 5.80 

uncoded × 1.19e-5 32.56 3.00 

 

As compared to the uncoded case, the ratios 
1 2i ie eP P  and 

2 3i ie eP P obtained for the FL 

constraints in Table 6.5 have not varied much. The similarities between the set of 
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forbidden strings for the different dominant error event can account for this result. When 

strings are chosen to be slightly shorter (i.e. 7sL = ), the separation between the 

probabilities is better. However, this is done at the cost of rate loss, as shown in Tables 

6.6 and 6.7. 

 

Table 6.6: Set of strings js  of length 7 whose associated FL constraint { }js=L  result in smallest BER. 

Constraint { }js=L  Capacity 
( )Cap L  

BER Constraint { }js=L  Capacity 
( )Cap L  

BER 

[ ]13 1 1 1 1 1 1 1s =  0.9941 1.392e-5 [ ]19 1 1 1 1 0 0 1s =  0.9883 1.722e-5 

[ ]14 1 1 0 1 1 0 1s =  0.9897 1.665e-5 [ ]20 0 1 1 1 0 1 1s =  0.9889 1.758e-5 

[ ]15 1 0 1 1 0 1 1s =  0.9897 1.665e-5 [ ]21 1 1 1 1 1 0 0s =  0.9881 1.759e-5 

[ ]16 1 1 0 0 1 1 1s =  0.9887 1.711e-5 [ ]22 0 0 1 1 1 1 1s =  0.9881 1.759e-5 

[ ]17 1 1 1 0 0 1 1s =  0.9887 1.711e-5 [ ]23 1 0 1 1 1 1 1s =  0.9883 1.797e-5 

[ ]18 1 0 0 1 1 1 1s =  0.9883 1.722e-5 [ ]24 1 1 1 1 1 0 1s =  0.9883 1.797e-5 

 

Table 6.7: FL constraints which result in maximum separation between the probabilities of 
dominant error events. 

FL constraint L  Capacity 
( )Cap L  

BER 
1 2i ie eP P  

2 3i ie eP P  

{ }13 16 17 22, , ,s s s s=3L  0.97063 2.91e-5 67.22 1.20 

{ }14 15 20, ,s s s=4L  0.9764 2.60e-5 20.29 9.85 

 

 

 

6.2 Information Source 

The design of high-rate constrained codes is found to be complicated. Instead of encoding 

the user bit sequences into channel bit sequences that satisfy the desired runlength 

constraints, we choose to generate the channel data via a suitably built information source. 

A highly efficient code will have similar statistics. We present a method for constructing 
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such a source for a given list of forbidden constraints. First, we determine a deterministic 

transition diagram for the given FL constraints. Thereafter, we detail the characteristics of 

the information source. 

 

6.2.1 Transition Diagram 

FL constraints are conveniently represented with finite-state transition diagrams. We 

shall build such a representation in two steps. First, we build a trellis type transition 

diagram to represent the given FL constraint. Based on the finite-state form of this trellis 

diagram, an algorithm, called the ‘Moore algorithm’ [75], is applied to minimize the 

number of states of the finite-state diagram. 

Let { }, 1,...,
NRZIjs j M= =L  be the set of forbidden strings. Let 

0j
s  be a string 

with maximal length maxL . Then, we define the max 12L −  states10 ( ) ( )( )max 2 ,...,b n L b n− +  

where the bits ( )b n  represent the constrained coded binary input data to the channel in 

NRZI format. From the fully unconstrained trellis, we remove the branches that have 

labels equal to the forbidden strings with length maxL . Then, we eliminate the states 

whose labels contain the strings is  with length strictly less than maxL . Thus, the 

unconstrained trellis diagram is transformed into a constrained trellis diagram which is 

matched to the FL constraint L . The finite-state transition diagram is induced from the 

constrained trellis. The finite-state diagram may be reducible, in which case the diagram 

is reduced to one of its irreducible components [75]. It is important to note that the 

                                                 
10 Note that the trellis states are defined in reverse time order as compared to the definition given in Section 
2.4 (Chapter 2). This definition results in a property which is convenient for identifying spectral properties 
of the information source designed in Section 6.2.2. 



CHAPTER 6.  HIGH-RATE CONSTRAINED CODES AND POST-PROCESSING 

 113

definition of the trellis states implies that the trellis diagram, and consequently the 

resulting finite-state diagram, are in Moore-type form, i.e. the labels of the branches 

entering a given a state are all identical. 

  When maxL  is large, the finite-state transition diagram built according to the 

above presented method has a large number of states. Therefore, a finite-state 

representation of the FL constraints with a minimum number of states is preferable. 

While minimizing the computational complexity of the resulting information source, the 

finite-state diagram with minimum number of states minimizes also the complexity of the 

design of finite-state encoders with the state-splitting algorithm. Such a representation, 

called the Shannon cover, can be obtained with the help of the Moore algorithm [79,75].  

We illustrate the above presented methods for designing a trellis diagram and a 

Shannon cover which are matched to a given FL constraint. Table 6.3 shows that 

{ }1101
NRZI

=L  is an eligible FL constraint. The constrained trellis  
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            Figure 6.3: Trellis transition diagram for { }1101
NRZI

=L  FL constraint. 
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associated with { }1101
NRZI

=L  is shown in Figure 6.3. The application of Moore’s 

algorithm to the finite-state diagram associated with the trellis diagram in Figure 6.3 

results in a Shannon cover with four states, as shown in Figure 6.4. Note that both the 

trellis diagram and the Shannon cover, presented in Figure 6.3 and Figure 6.4 

respectively, are in Moore-type form. 

 

1

4

1

0

10

0
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1

0

 

Figure 6.4: Shannon cover for { }1101
NRZI

=L  FL constraint. 

 

The trellis of the Viterbi detector, called VD trellis11, must be tuned according to 

the runlength constraints. A straightforward method for matching the VD trellis to the 

given FL constraint { }1,..., M NRZI
s s=L  is to consider 12 VDM −  states where 

( )maxmax 1, 1VD gM N L= − + , and gN  is the length of the GPR target g . Since the VD 

trellis is used to detect bits ( )ĉ n  in NRZ{-1,1} format,  the VD trellis state transitions 

must be constrained according to the NRZ version { }1,..., M NRZ
s s ′′ ′ ′=L  of the FL constraint 

L . Note that the maximal length of the strings js ′ , 1,...,j M ′=  , is now max max 1L L′ = + . 

The branches whose labels contain any of the strings js ′ , 1,...,j M ′= , where js ′  denotes 

                                                 
11 Not to be confused with the trellis transition diagram introduced in Section 6.2.1. 



CHAPTER 6.  HIGH-RATE CONSTRAINED CODES AND POST-PROCESSING 

 115

the time reversed string associated with js ′ , are removed. Such a VD trellis may be 

relatively computationally complex when maxL′  is much larger than 1gN − . Therefore, we 

shall design a more efficient VD trellis. We choose not to increase the size of the VD 

trellis, as compared to the uncoded case (i.e. 1VD gM N= − ). At each VD trellis section, 

the Viterbi algorithm computes survivor branch metrics and updates the survivor path 

metrics. The VD trellis states are denoted ( ) ( ) ( ){ },..., 2k gS n c n c n N= − + . For n  

sufficiently large, the tail of the survivor path at state ( )kS n  contains the string 

( ) ( )max 1 ,...,s c n L c n′ ′= − +⎡ ⎤⎣ ⎦ . If s′ ′∈L , then the survivor metric is set to ∞ , so that the 

survivor path cannot be selected for detecting the data bits. This rule, which can be easily 

implemented, avoids increasing the number of states to build a constrained VD trellis. 

 

 

6.2.2 Maxentropic Markov Source 

Constrained sequences ( ){ }b n  in NRZI{0,1} format can be generated with the help of a 

suitably designed information source. The information source should maximize the 

information content of the generated constrained sequence ( ){ }b n . Such class of 

information sources are said to be maxentropic. Very efficient codes that can be designed 

for a given FL constraint [74] will have similar statistics as compared to a maxentropic 

information source for the same FL constraint. For this reason, we generate the 

constrained sequences with a maxentropic information source. 
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 An information source can be represented by a labeled graph whose labeled edges 

are assigned transition probabilities. The constrained sequences are generated by reading 

off the labels in the graph. A Shannon cover for a given FL constraint (see Section 6.2.1) 

is used as the underlying graph of the information source. Let { }1,..., NS SΣ =  represent 

the N  states of the Shannon cover. The state transition probabilities are defined by the 

transition probability matrix , , 1,...,i j i j N
Q q

=
⎡ ⎤= ⎣ ⎦ , where ,i jq  is the transition probability 

from state iS  to state jS . Let { }nZ  represent the discrete-time stochastic process which 

describes the state sequence. This random process is a Markov chain (of order 1) [78] 

since the transition probabilities can be written as 

 , 1Pr ,     1 ,i j n i n jq Z S Z S i j N−⎡ ⎤= = = ≤ ≤⎣ ⎦ . (6.3) 

Note that the transition probabilities ,i jq , , 1,...,i j N= , are independent of the time index 

n . The information source is called a Markov source, since the random process { }nZ  is 

Markovian.  

 When the transition probabilities are suitably designed, the Markov source 

maximizes the information content of the constrained sequences ( ){ }b n . We describe 

now how the information content, or entropy, is measured. Let { }nX  represent the 

discrete-time stochastic process which describes the constrained sequences ( ){ }b n .  Let 

ζ  represent the function which associates a given state kS ∈Σ  to the label (in alphabet 

{ }0,1 ) of the incoming edges. This function is well defined since the labeled graph is in 

Moore-type form. Thus, the sequence { }nX  is given by ( )n nX Zζ= , and is called the 
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output of the Markov source. The entropy { }H X  of the Markov source is computed in 

two steps. First, we define the state entropies, and then we average the state entropies 

according to the steady state probabilities. Let { }1
,...,

nkk kS S  represent the one-step 

successors of state kS , with 1 or 2kn = , and 1,...,k N= . The Markov source is said to be 

‘unifilar’ if the labels of the state transitions ( ),
ik kS S  are different, with 1,..., ki n= . In the 

context of constrained coding theory, the Markov source is said to be unifilar if its 

associated directed labeled graph is deterministic. A measure of the information 

contained in the bits generated from state kS , called the entropy of state kS , was 

proposed by Shannon [77] 

 ( )1, , , ,
1

,..., log
k

n i ik

n

k k k k k k k k k
i

H H q q q q
=

= −∑ . (6.4) 

Markov sources of practical interest are ergodic. Roughly speaking, a Markov 

source is said to be ergodic if from any state, any other state can be reached. In other 

words, the Markov source is ergodic if its underlying labeled graph is irreducible. Let 

[ ]( ) Prn
k n kP Z S= =  denote the probability of being at state kS  at time n . It can be easily 

shown that, the distribution of the state probabilities ( )n
kP  of the ergodic source reaches an 

equilibrium as n → ∞ , defined with the steady-state probabilities 

 ( )lim n
k kn

P P
→∞

= . (6.5) 

Shannon defined the entropy of the unifilar ergodic Markov source as the average of the 

state entropies kH , 1,...,k N= , weighed in accordance with the steady-state probabilities 

kP , 1,...,k N=  
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 { }
1

N

k k
k

H X P H
=

= ∑ . (6.6) 

We wish to choose the transition probabilities ,k jq  in such a way that the entropy { }H X  

is maximized. A Markov source with such transition probabilities is called maxentropic, 

and sequences generated by such a maxentropic unifilar source are called maxentropic 

sequences. Proved by Shannon, the maximum entropy of a unifilar Markov information 

source is given by 

 { }
,

2 maxmax log
k jq

H X λ= =C , (6.7) 

where maxλ  is the largest real eigenvalue of the adjacency (or connection) matrix D . The 

existence of a positive eigenvalue and associate eigenvector with positive elements is 

guaranteed by the Perron-Frobenius theorem [76]. The state transition probabilities that 

maximize the entropy of the Markov source are 

 1
, max , ,     1 ,j

k j k j
k

p
q d k j N

p
λ −= ≤ ≤ , (6.8) 

where [ ]1,..., T
Np p  is the eigenvector associated with the eigenvalue maxλ . 

 

 

 

6.3 Performance and Simulation Results 

In this section, we first present an accurate expression for estimating the BER at the VD 

output. Thereafter, we investigate polynomial parity-check codes for simulating the post-

processors. 
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6.3.1 BER Estimation 

In order to identify the best FL constraints, the BER performance of the maxentropic 

coded PR channel is estimated. As proven in Appendix C, at medium to high SNR, a 

tight approximation of the BER is given by 

 ( ) ( )
2 2
2

e Y
b

e E Y

d mP Q e w eπ
σ∈ ′

⎛ ⎞+
≈ ⎜ ⎟

⎝ ⎠
∑ , (6.9) 

where ( )w e  is the Hamming weight of the error event e , ( )eπ  is the probability of the 

data patterns supporting the error event e , 2
ed  is the Euclidean distance of the filtered 

error event ge e g= ⊗  with g  representing the PR target, and Ym  and Yσ ′  are defined in 

Appendix C. In Eq. (6.9), Yσ ′  and ( )eπ  depend on the statistics of the FL constrained 

sequences. For accuracy, we shall derive exact expressions for the variables Yσ ′  and 

( )eΠ  to the statistics of the maxentropic sequence ( ){ }c n . 

 As explained in Appendix C, 2
Yσ ′  depends on the autocorrelation 

( ) ( ) ( ),cc n k E c n c n kφ = −⎡ ⎤⎣ ⎦  of the constrained data sequence ( ){ }c n . For identifying 

FL constraints, we have used NRZI format. However, for computing the autocorrelation 

( ),cc n kφ , it is more convenient to generate constrained sequences in NRZ format. 

Therefore, the FL constraint  { }1,..., M NRZI
s s=L  is translated to its NRZ version 

{ }1,..., M NRZ
s s ′′ ′ ′=L . By applying the methods described in Section 6.2, a maxentropic 

Markov source for ′L  FL constraint can be built. When the source is chosen to be 

stationary, the sequence ( ){ }c n  is stationary and the autocorrelation is given by [78] 

 ( ) ( ), kT
cc ccn k k Qφ φ ζ ζ= = Π , (6.10) 
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where ( ) ( )1 ,...,
T

NS Sζ ζ ζ= ⎡ ⎤⎣ ⎦ , ( )iSζ  represents the generated bit ( )c n  when the state 

iS  is visited, ( )1,..., Ndiag P PΠ = , iP , 1,...,i N= , are the steady-state probabilities, and 

Q  is the transition probability matrix. 

 The input data sequence ( ){ }c n  is stationary. As a result, the probability ( )eπ  of 

the constrained data patterns which support the error event e , can be viewed as the 

probability of the constrained data patterns which support an error string ε  associated 

with the error event e . Further, the probability of the constrained data patterns which 

support ε−  is equal to the probability of the constrained data patterns which support ε . 

For this reason, we consider only the error string ε  for which the first error element is +2. 

To build the error string, we choose to prefix and postfix 1gN −  zeros to the error event 

e . For instance, the error string associated with the error event { }2, 2e = + −  is 

[ ]0 0 0 0 2 2 0 0 0 0ε = −  of length 2 2e gL L Nε = + − . Consequently, the probability 

( )eπ  can be expressed as 

 ( ) [ ]2 Pr
c C

e c
ε

π
∈

= ∑ , 

where Cε  is the set of all constrained data patterns ( ) ( )1 ,...,c c c Lε= ⎡ ⎤⎣ ⎦  that support the 

error string ε . The probability [ ]Pr c  can be viewed as the probability [ ]Pr S  of the state 

sequences LS ε∈Σ  such that ( )S cζ = . Therefore, another formulation of  ( )eπ  is given 

by 

( ) [ ]
( ): 

2 Pr
S S C

e S
εζ

π
∈

= ∑  
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( )

1
: 

2 Pr ,...,
Li i

S S C
S S

ε
εζ ∈

⎡ ⎤= ⎣ ⎦∑  

                                    
( )

1 1

1

: 1

2 Pr
j ji i i

S S C j L

S S P
ε εζ

+
∈ = −

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∏ . (6.11) 

 When the variables  Yσ ′  and ( )eπ  are matched to the statistics of the FL 

constrained sequences, using Eqns. (6.10) and (6.11), the BER approximation given in 

Eq.(6.9) is still valid, as shown in Figure 6.5. Similarly, Table 6.8 shows that the 

analytically estimated error event probabilities quite closely match the values obtained by 

simulations. Thus, we can confidently use the analytical means for estimating the 

probabilities needed for further design such as of the parity-based post-processor. 
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Figure 6.5: BER obtained by simulations and analytical expression for the 
{ }1111111

NRZI
=L  maxentropic coded channel. 

 

Table 6.8: Analytical and simulated error event probabilities for the maxentropic coded channel. 

 { }1 2, 2e = + −  { }2 2, 2,0,0, 2, 2e = + − + −  { }3 2, 2,0, 2, 2e = + − + −  
Analytical 4.14e-5 1.87e-6 9.54e-7 
Simulated 4.30e-5 1.85e-6 8.61e-7 
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6.3.2 Parity-Check Code 

The insertion of parity bits can be done using one of the techniques mentioned in Section 

3.3. Among these techniques, one makes the use of the unconstrained positions of the 

codewords [7433]. However, in this chapter, we do not insert explicitly the parity bits 

into the constrained sequence. Instead, parity bits are assigned to the maxentropic 

generated sequences and remembered at the receiver side12. We generate the parity bits 

using a polynomial cyclic code described in Section 4.2. For a given number of parity 

bits, the generator polynomial with minimum degree is easily obtained using simple 

computer programs and Matlab functions (e.g. cyclpoly()). We consider the polynomial 

codes which are able to detect the dominant error events. Obviously, we want as few 

parity bits as possible. Therefore, we start by considering single-parity codes. A single-

parity linear cyclic code with generator polynomial ( ) 1g z z= +  cannot detect any of the 

error events listed in Table 6.9. Also, a dual-parity linear cyclic code with generator 

polynomial ( ) 21g z z z= + +  cannot detect the error event 3e . Therefore, we consider a 

linear cyclic code with 3 and 4 parity bits, for which suitable generator polynomials are 

2 31 z z+ +  and 3 41 z z+ + , respectively. 

 Selecting a suitable code rate is not straightforward. We choose the code rate R  

as follows. We first identify two integers p  and q  large enough which satisfy 

( )p q Cap≤ L .  In order to take into account the decrease in code rate due to the use of a 

parity-check code, we choose the code rate as ( )R p q M= + , where M  is the number 

of parity bits. 
                                                 
12 That is, we assume that the parity bits are always correctly received at the receiver. Because of the 
relatively large codeword lengths which are considered, incorrectly receiving the parity bits should have 
negligible effect on the BER performance of the overall detector.   
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Table 6.9: Error event detection capability of two linear cyclic codes. 
Dominant error events ie    ( ) 2 31g z z z= + +

 
( ) 3 41g z z z= + +  

{ }1 2, 2e = + −  √ √ 

{ }2 2, 2,0,0, 2, 2e = + − + −  √ √ 

{ }3 2, 2,0, 2, 2e = + − + −  √ √ 

{ }4 2, 2,0,0,0, 2, 2e = + − + −  √ √ 

{ }5 2, 2,0, 2, 2,0, 2, 2e = + − + − + −  √ √ 

{ }6 2, 2,0, 2, 2,0,0, 2, 2e = + − + − + −  √ √ 

{ }7 2, 2,0,0, 2, 2,0, 2, 2e = + − + − + −  √ √ 

{ }8 2, 2,0,0, 2, 2,0,0, 2, 2e = + − + − + −  √ √ 

{ }9 2, 2,0, 2, 2,0, 2, 2,0, 2, 2e = + − + − + − + −  √ √ 

{ }10 2, 2,0,0, 2, 2,0,0,0, 2, 2e = + − + − + −  √ √ 

{ }11 2, 2,0,0,0, 2, 2,0,0, 2, 2e = + − + − + −  √ √ 

{ }12 2, 2,0, 2, 2,0,0,0, 2, 2e = + − + − + −  √ √ 

{ }13 2, 2,0,0,0, 2, 2,0, 2, 2e = + − + − + −  × √ 

 

 

6.3.3 Simulation of MAP-based Post-Processor 

In this subsection, we provide some simulation results for the MAP-based post-processor. 

The system under consideration is shown in Figure 6.6. The input data ( ){ }b n  is 

constrained by one of the FL constraints iL , 1,..., 4i = , given in Tables 6.5 and 6.7, and 

parity encoded with a linear cyclic code with a polynomial given in Table 6.9.  

Parity-check
constrained

source
Precoder Viterbi

detector
Parity-based

post-
processor

L↑ L↓ih iw

( )mυ

( )b n ( )c n ( )x n ( )ĉ n − Δ ( )ˆ̂c n ′− Δ

 

Figure 6.6: Schematic of a constrained parity-check coded perpendicular recording channel with Viterbi 
detector and parity-based post-processor. 
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Figure 6.7 shows the BER performance of constrained parity-check coded 

channels with MAP and ML post-processors, maxentropic constrained coded channel, 

and uncoded channel. The FL constraint is chosen to be 3L , since it results in maximum 

separation between the two dominant error events. We choose to use the parity-check 

code with 4 parity bits (i.e. with generator polynomial 3 41 z z+ + ), since it supports the 

use of long parity codewords. Associated with the constraint 3L  with capacity 0.9759, 
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Figure 6.7: BER comparison of uncoded channel, 3L  maxentropic 
coded channel, and constrained parity-check coded channels with 

MAP and ML-based post-processors. 
 

the parity-check code can have the code rate ( )288 296 4 0.96R = + = , which is 98.37% 

efficient. Figure 6.7 shows that, despite its high capacity, the FL constraint 3L  brings a 

SNR loss of about 0.5dB at high SNR, as compared to the uncoded channel. The post-

processors manage to gain about 1dB as compared to the uncoded channel. Despite our 

efforts to separate the probabilities between the dominant error events, the MAP-based 

and ML-based post-processors perform similar. Two reasons can account for this. First, 
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since the noise at the detector input is not white, the post-processor is not optimal. The 

second reason may lie in the intrinsic structure of the dominant error events. Because of 

their similarities, the search range for FL constraints which increase the separation 

between dominant error event probabilities is narrowed. We believe that when the 

dominant error events do not show similarities, it is possible to separate significantly the 

probabilities without suffering from rate loss. Nevertheless, the fact that MAP and ML 

post-processors perform similar in recording channels is a blessing in disguise. This is 

because, implementation of MAP post-processor requires us to pre-compute the 

normalization constants. To do this computation, we need to have good knowledge of the 

channel and lot of theoretical work to obtain the required analytical expressions. On the 

other hand, such requirements are minimal in the ML-based post-processor. 
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Figure 6.8: Required SNR for 510BER −=  versus user density 
for uncoded, maxentropic coded, and FL constrained parity-

check coded channels. 
 

 Figure 6.8 shows the effect of density on the BER performance of Viterbi detector 

for different channel codes, by plotting the SNR required to achieve a BER of 510−  
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versus the user density. The plot ‘uncoded’ shows the detection performance for the 

uncoded channel. The plot ‘maxentropic FL constrained’ shows the detection 

performance for the channel whose input data is generated with a maxentropic source 

associated with a FL constraint. Obviously, as the density varies, the FL constraints that 

separate the probabilities of the dominant error event must be redesigned. At user 

densities 1.0,  1.5  and  2.5,uD =  a suitable constraint is { }1111101=L  with capacity 

( ) 0.9883Cap =L . At 2.0uD = , the chosen FL constraint is the FL constraint 3L  given in 

Table 6.5. The simulations for the maxentropic constrained coded channel show little 

performance loss as compared to the uncoded channel. The plot ‘FL constrained parity-

check’ shows the detection performance of the FL constrained source combined with a 

data-aided post processor. The parity-check code in use is the linear cyclic code with 

polynomial 2 31 z z+ + . The BER simulations for the FL constrained parity-check coded 

channel show a SNR gain of about 1dB for a wide range of densities, as compared to the 

uncoded channel. The results obtained from Figure 6.8 are in contrast with those obtained 

from Figure 5.7 (Section 5.4), where the detection performance of the ( )1/ 2;6MTR  

block code and the parity-based post-processor suffer much from rate loss. In Figure 6.8, 

we can see clearly, that the effect of rate loss is minimized by considering high-capacity 

constraints. 
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6.4 Conclusions 

In this chapter, we presented a method for designing very high capacity FL constraints 

which are matched to MAP-based post-processor by targeting dominant error events. The 

FL constraints separate the probabilities of dominant error events at the cost of rate loss. 

The number of possible FL constraints can be phenomenal. By constraining the search to 

forbidden strings with large fixed length, the search complexity is greatly reduced. As 

compared to integer-valued PR targets, monic-constrained GPR targets result in close-to-

white noise at Viterbi detector input. Since this is in favor of the optimality of the post-

processors, monic-constrained GPR targets are used. For simulating the BER 

performance of post-processors, maxentropic Markov source combined with linear cyclic 

codes are used. The overall system results in 1dB coding gain as compared to the 

uncoded case. However, the MAP-based and ML-based post-processors perform similar. 
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Chapter 7  

Conclusions 

 

 

In this thesis, we investigated the design of efficient constrained codes and parity-check 

codes for perpendicular recording channels. 

 

 

7.1 Summary 

Chapter 1 presented a very brief overview of magnetic data storage systems. Chapter 2 

sets up the perpendicular magnetic recording channel which is used throughout this thesis. 

Chapter 3 elaborates on the topic of constrained codes and their application to improve 

detection performance in PRML receivers. Chapter 4 gives a detailed analysis (novel) of 

parity-based post-processing schemes. Chapter 5 presents the design of a novel parity-

check code combined with a strong distance-enhancing modulation code for 

perpendicular recording channels. Chapter 6 elaborates on the original design of 

runlength constraints, for targeted error events, which are matched to MAP-based post-

processors. 

 In this thesis, we have tackled three problems. The first and main problem is to 

derive the optimum receiver for post-processors based on MAP criterion. The second 

problem is to assess the effect of code rate on the performance of Viterbi detector and 
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parity-based post-processor. The third problem is the design of general runlength 

constraints matched to MAP-based post-processors. 

Firstly, most post-processors described in the literature can be viewed as multiple 

signals detector whose optimality is based on ML criterion. The work reported in this 

thesis (Chapter 4) shows that MAP-based post-processors may outperform ML-based 

post-processors when the error event probabilities are distinct. This has motivated the 

design of a novel parity-check code (Chapter 5) which brings 4.2dB coding gain in ideal 

recording channel. 

Secondly, the performance of constrained codes is very sensitive to the code rate. 

With low code rates, distance-enhancing codes can result in large distance gain. However, 

the rate loss may overwhelm the distance gain. Therefore, for minimizing the rate loss, 

we have chosen to combine the constrained code and the parity-check code into one 

(Chapter 5). The use of low code rates tends to increase the correlation of the noise at VD 

input, which in turn makes the post-processor less optimal. With high rate, the 

performance of constrained codes suffers smaller rate loss. The post-processors also 

suffer less from noise colorization. But, the distance gain is smaller too. 

Thirdly, the identification of general FL constraints which maximize the separation 

of the dominant error event probabilities is a problem with prohibitive complexity. We 

reduce the domain of search by considering deterministic FL constraints with a set of 

fixed-length forbidden strings. The proposed method shows that for high-capacity FL 

constraints, the separation between the dominant error event probabilities remains quite 

unchanged as compared to the uncoded case. At the cost of rate loss, the separation can 

be increased. For assessing the strength of the designed constraints, maxentropic 
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information generate the required constrained sequences. Combined with a post-

processor based on a linear cyclic code, the parity-check constrained system result in 1dB 

SNR gain as compared to the uncoded case. However, the use of the FL constraints is not 

effective in enhancing the performance of MAP-based post-processor as compared to 

ML-based post-processor. The main reason which accounts for this result may lie in the 

special structure of the set of dominant error events. 

 

 

7.2 Directions for Further Work  

There are several possible extensions which can be followed to make this research more 

complete. 

 First, one may study the effect of more practical noise, which includes jitter noise 

and transition noise, on the performance of constrained codes and parity-based post-

processors. 

 Second, one may investigate analytically the failure rate of post-processors. 

 Third, one may extend the study of FL constraints to the general design of FL 

constraints for any given set of targeted error events with any given structure. 
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Appendix A  

Elements of the Theory of Constrained 

Codes and State-Splitting Algorithm 

 

 

In this appendix, we first review some terminology, fundamental concepts and results 

from the theory of constrained codes. Then, we present the state-splitting algorithm and 

apply it to an example that is relevant to the work reported in this thesis. Most of the 

material given in this appendix on theory and algorithms are taken from [75]. Please see 

[75] for a more complete treatment. 

 

A.1  Fundamental Concepts 

When specifying code design algorithms, it is very useful and convenient to refer to 

directed labeled graph of constrained sequences. More precisely, a directed labeled graph 

( ), ,G V E L=  consists of a finite set of states ( )V V G= , a finite set of directed edges 

( )E E G=  and an edge labeling ( )  : L L G E= →A  that assigns to each edge e E∈  a 

symbol in a finite alphabet A . In our study, we consider { }0,1=A , since the input data 
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(i.e. ( ){ }b n  in NRZI format) to the recording channel are binary. Each edge13 e E∈  has 

an initial state ( )eσ  and a final state ( )eτ . A path in G  is a finite sequence of edges e  

in G  in which the initial state of an edge having a predecessor corresponds to the final 

state of that predecessor. A constrained system S  is the set of all symbol strings 

generated by the labeling of paths in G . This system, sometimes denoted ( )S G , is said 

to be ‘presented by’ G . When there is no ambiguity, a directed labeled graph may be 

called simply a ‘graph’. The connections in the graph G  are conveniently described by a 

( ) ( )V G V G×  matrix GA , called adjacency matrix, whose entry ( ) ,G u v
A  is the number 

of edges from state u  to state v  in G . A parameter of particular importance in the 

application of the state-splitting algorithm is the ‘minimum out-degree’ of a graph. The 

‘out-degree’ of a state u  in a graph G  is the number of outgoing edges from that state. 

The minimum out-degree of a graph G  is the smallest of all out-degrees of the states in 

that graph. For the design of rate p q  finite-state encoder, it is very useful to describe 

explicitly the set of distinct words in S  of length q . The thq  power of G , denoted qG , is 

the directed labeled graph with the same states as G . Each edge in qG  is associated with 

one path of length q  in G , and is labeled by the q -block generated by that path. The 

adjacency matrix qG
A  of qG  satisfies ( )q

q
GG

A A= .  

 For the purpose of encoder construction, it is important to consider directed 

labeled graphs with special properties. The most fundamental property is defined as 

follows. A graph is ‘deterministic’ if the labels of outgoing edges from each state are 

                                                 
13 In this appendix, the edges and the set of edges are denoted by e  and E , respectively. These variables 
should not be confused with error events and set of error events, denoted with the same symbols in the 
chapters. 
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distinct. It is important that any constrained system can be presented by some 

deterministic labeled graph [75]. The weaker version of the deterministic property is 

referred to as ‘finite anticipation’. A graph is said to have finite anticipation if there is an 

integer N  such that any two paths of length 1N +  with the same initial state and labeling 

must have the same initial edge. The anticipation of G  refers to the smallest N  for 

which this condition holds. Note that a deterministic graph is equivalent to a graph with 

zero anticipation. Weaker than the ‘finite anticipation’ property is the ‘lossless’ property. 

A graph is said to be lossless if any two distinct paths with the same initial state and final 

state have different labelings. Another useful property of directed labeled graphs is 

‘irreducibility’. A graph G  is said to be irreducible if there is a path in G  from any 

specified starting state ( )u V G∈ to any specified destination state ( )v V G∈ . 

After giving some useful notation and terminology, we present the finite-state 

coding theorem (binary case). An encoder usually takes the form of a synchronous finite-

state machine (as shown in Figure 3.3, Chapter 3). More accurately, for a given 

constrained system S  and a positive integer n , a ( ), -encoderS n is a labeled graph G  for 

which i) each state has out-degree n , ii) ( )S G S⊆  ( )S G , and iii) G  is lossless. The 

finite-state coding theorem is stated as follows. 

Finite-state Coding Theorem: 

Let S  be a constrained system. If ( )p q Cap S≤ , where p  and q  are positive 

integers, then there exists a rate p q  finite-state ( ), 2 pS -encoder with finite 

anticipation. 
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A.2 State-Splitting Algorithm 

The state-splitting algorithm (or ACH algorithm), introduced by Adler, Coppersmith, and 

Hassner [20], is a powerful method for designing efficient finite-state encoders. The 

algorithm implements a constructive proof of the above mentioned finite-state coding 

theorem by providing a recipe for designing finite-state encoders. The algorithm steps are 

given in Figure A.1. For a complete understanding of the state-splitting algorithm, we  

 

 
(1) Select a labeled graph and integers as follows: 

(a) Find a deterministic labeled graph G  (or more generally, a graph with finite anticipation) 
which presents the given constrained system S . 

(b) Find the adjacency matrix GA  of G . 
(c) Compute the capacity ( ) ( )2log GCap S Aλ= . 
(d) Select a desired code rate p q  satisfying 

( ) pCap S
q

≥ . 

 
(It is desirable to keep p  and q  relatively small for complexity reasons). 

(2) Construct qG . 
(3) Use the Franaszek algorithm for finding an ( ), 2q p

GA -approximate eigenvector x . 

(4) Eliminate all states u  with 0ux =  from qG , and restrict to an irreducible sink H  of the resulting 
graph. Restrict x  to be indexed by the states of H . 

(5) Iterate Steps (5a)-(5c) below until the labeled graph has minimum out-degree at least 2 p : 
(a) Find a non-trivial x -consistent partition of the edges in H . 
(b) Find the x -consistent splitting corresponding to this partition, creating a labeled graph 

H ′  and an approximate eigenvector x′ . 
(c) Let H H ′←  and x x′← . 

(6)  At each state of H , delete all but 2 p  outgoing edges and tag the remaining edges with binary p -

blocks, one for each outgoing edge. This gives a rate p q  finite-state ( ), 2 pS -encoder for the 
constraint system S . 

 

Figure A.1: State-splitting algorithm. 
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give detailed explanations for each step.  

Given a deterministic presentation G  of the given constraint system S , Steps 

(1a)-(1d) are trivial.  In Step (2), a recursive approach is adopted for determining the thq  

power of graph G . In other words, the graph 1iG +  is constructed with the help of iG , for 

1,..., 1i q= − . In Step (3), a nonnegative vector ( )1,...,
T

V Gx x x⎡ ⎤= ⎣ ⎦ , which satisfies 

2q p
GA x x≥  component-wise and 0x ≠ , is identified. Such a vector is called a ( ), 2q p

GA -

approximate eigenvector.  The existence of eigenvectors is guaranteed by the Perron-

Frobenius theory [76]. In practice, an effective method for identifying an ( ), 2q p
GA -

approximate eigenvector is provided by the Franaszek algorithm [75] for computing an 

( ),A n -approximate eigenvector, where A  is a non-negative integer square matrix and n  

a positive integer. In Step (4), states u  corresponding to 0ux =  are eliminated by 

deleting all the incoming edges and outgoing edges. At this stage, the resulting graph may 

not be irreducible because of possible isolated states.  

Because the state-splitting transformation performed in Steps (5a)-(5c) require the 

graph to be irreducible, we need to restrict the graph in Step (4) to one of its irreducible 

sink, defined as an irreducible subgraph H  for which any edge which originates in H  

must also terminate in H . A proof for the existence of at least one irreducible sink for 

any graph is given in [75]. In Steps (5a)-(5c), the graph H  and the approximate 

eigenvector x  are iteratively updated by applying a state-splitting transformation. More 

precisely, in Step (5a), we start with identifying a state ( )u V H∈  that defines a basic x -

consistent splitting. It is proven in [75] that x  is not the all-1 vector because H  is 
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irreducible. It is also shown that the states u  such that 
( )1,...,

maxu vv V G
x x

=
=  define a ‘basic x -

consistent splitting’. Let uE  denote the set of outgoing edges from such a state u  in H . 

A basic out-splitting at state u  is determined by a partition ( ) ( )1 2
u u uE E E= ∪  of uE  into 

two disjoint sets. For Step (5b), this partition is said to be x -consistent if  

 ( )
( )

( )
( )

( )

( )

1 2

1 22       and      2
u u

p p
e e

e E e E

x y x yτ τ
∈ ∈

≥ ≥∑ ∑ , (A.1) 

where ( )1y  and ( )2y  are positive integers such that ( ) ( )1 2
uy y x+ = . The out-splitting 

defined by this partition is called a basic  x -consistent splitting. The current graph H  is 

transformed to a graph H ′  by replacing state u  with 2 descendant states ( )1u  and ( )2u . 

The assignment of edges to the states ( )1u  and ( )2u  is done according to the partition 

( ) ( )1 2
u u uE E E= ∪ . Detailed explanations of the rules for assigning edges to the states  ( )1u  

and ( )2u  are available in [75]. The ( ), 2 p
HA -approximate eigenvector x  needs also to 

account for the out-splitting performed at state u . The vector x′ defined by  

 ( ) ( )

( ) ( )

1 1

2 2

  if  

  if  

  if  

v

v

x v u

x y v u

y v u

≠⎧
⎪

′ = =⎨
⎪ =⎩

, (A.2) 

is clearly an ( ), 2 p
HA ′ -approximate eigenvector. In Step (5c), the graph H  and the 

( ), 2q p
GA -approximate eigenvector x  are updated.  

Finally (Step (6)), when the minimum out-degree of the graph H  is at least 2 p , a 

finite-state ( ), 2 pS -encoder can be easily constructed by deleting excess outgoing edges 
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and tagging the remaining outgoing edges with binary p -blocks, for each state. Note that 

the finite-state encoder can be simplified using state-merging procedures [75]. 

For illustration purpose, we shall apply the state-splitting algorithm for the design 

of a finite-state encoder which corresponds to a constrained system relevant to this thesis. 

In Chapter 6, we have considered forbidden list (FL) constraints that reduce the 

probabilities of the dominant error events. We have focused on high capacity constraints. 

Since the use of large integers p  and q , which are required for high rates, make the 

finite-state encoder extremely complex (i.e. large number of states and large number of 

edges for each state), we choose to illustrate the state-splitting algorithm on constrained 

systems with lower capacities. Even though high-rate finite-state encoders are impractical, 

some results concerning their design will be given. Specifically, we design a finite-state 

encoder for the { }111
NRZI

=F  FL constraint, also known as ( )2MTR j =  constraint. This 

constraint, which was initially designed for eliminating { }2, 2, 2+ − +  error event, reduces 

the probabilities of the error events { }2, 2+ − , { }2, 2,0,0, 2, 2+ − + −  and { }2, 2,0, 2, 2+ − + −  

by a factor of 16, 32 and 16, respectively. Thus, this constraint can be an eligible 

constraint for the work done in Chapter 6. A deterministic graph G  for this constraint is 

given in Figure14 A.2. 

1 2 3

0

0

1 1
0

 

Figure A.2: Graph presenting the { }111
NRZI

=F  constrained system. 

 

                                                 
14 This figure is the same as Figure 3.1 and is repeated here for convenience. 
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The capacity of the corresponding constrained system is 0.8791 (see Eq. (3.2)) obtained 

from the adjacency matrix  

1 1 0
1 0 1
1 0 0

GA
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

According to the finite-state coding theorem, this capacity enables the design of a rate 

7 8  finite-state ( )7, 2S -encoder, which will be 99.5% efficient. The adjacency matrix of 

the graph 8G  is given by  

8

81 44 24
68 37 20
44 24 13

G
A

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

The Franaszek algorithm gives the ( )8 7, 2GA -approximate eigenvector as 

[ ]6,5,3 Tx = . There is no state { }1, 2,3u ∈  such that 0ux =  and 8G  is already irreducible 

(no element of 8G
A  is zero). Let us detail the Steps (5a)-(5c) in the first iteration. State 

1u =  defines a non-trivial x -consistent partition ( ) ( )1 2
1 1 1E E E= ∪ , where ( )1

1E  contains 64 

edges, and ( )2
1E  contains 17 edges. Also, the ( )8 7, 2GA -approximate eigenvector x  

satisfies 

 ( )
( )

( )
( )

( )

( )

1 2

1 27 72 y     and   2
u u

e e
e E e E

x x yτ τ
∈ ∈

≥ ≥∑ ∑ , (A.3) 

where ( )1 3y = , ( )2 3y = , and ( ) ( )1 2
16y y x+ = = . The adjacency matrix of the graph H ′  

resulting from the x -consistent splitting at state 1u =  is given by 
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64 64 0 0
  

17 17 44 24
68 68 37 20

  
44 44 24 13

HA ′

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

The descendants states, usually denoted ( )11  and ( )21 , correspond to the states 1 and 2, 

respectively, of the graph H ′ . The corresponding ( )7, 2HA ′ -approximated eigenvector is 

[ ]3,3,5,3 Tx′ = . The graph H  and the corresponding ( )7, 2HA -approximated eigenvector 

x  are updated. The out-degrees of states 1, 2, 3 and 4 are 128, 102, 193 and 125, 

respectively. Therefore, the minimum out-degree of the graph H  is 7102 2< . Steps (5a)-

(5c) are reiterated until the minimum out-degree of H  is at least 72 . After 11 iterations, 

the graph H  had 14 states and minimum out-degree equal to 72 , which was reached at 

11 states. Only three states (i.e. states 6, 11 and 14) had excess edges. Deleting 

judiciously the excess edges and tagging the edges with words of length 7 provides a rate 

7 8  ( )7, 2S -encoder.  

 Other finite-state encoders are also designed. We show in Table A.1 their basic 

characteristics. It is important to note that the initial ( ), 2q p
GA -approximate eigenvector x  

characterizes the range of the number of states of the designed finite-state encoder. It is 

shown in [75] that the number of states sN  of the finite-state encoder satisfies 

 
( )

( )

1,..., 1
max

V G

v s vv V G v
x N x

= =

≤ ≤ ∑ . (A.4) 

The results presented in Table A.1 show finite-state encoders for which the number of 

states reach the upper-bound. It is possible, through state-merging procedures [75], to 

reduce the number of states. However, the methods available cannot be applied to high-
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rate finite-state encoders, since they would require phenomenal computational 

complexity. It is clearly seen that finite-state encoders with extremely high efficiency 

require a very large number of states. The ( )3MTR j =  constraint is an appropriate 

constraint for recording channels with dominant error event { 2, 2, 2}+ − +  (see Section 

3.2.2). No code with code rate strictly larger than 16/17 has been designed. Several rate 

16/17 ( )3MTR j =  codes have been presented [22, 30, 18]. None of them has been 

designed with the ACH algorithm, because of complexity reasons. Even though it is 

impractical, we have designed here a rate 17/18 finite-state encoder for the ( )3MTR j =  

constraint. This example illustrates clearly the need for choosing p  and q  relatively 

small for designing codes with the state-splitting algorithm. 

 

  

Constraint Capacity Code rate 
(p/q) 

Efficiency 
(%) 

Initial approximate 
eigenvector 

Number of 
states 

( )2; 8MTR j k= =  0.8760 7 8  99.89 [ ]44, 43, 43, 42, 40, 37, 31, 20, 37, 24 T  361 

{ }1101
NRZI

=F  0.90054 9 10  99.94 [ ]60,52,37,32 T  181 

{ }1101
NRZI

=F  0.90054 8 9  98.71 [ ]5,4,3,2 T  14 

( )3MTR j =  0.94678 17 18  99.75 [ ]8,7,6,4 T  25 

( )3MTR j =  0.94678 16 17  99.41 [ ]4,4,3, 2 T  12 

( )3MTR j =  0.94678 15 16  99.02 [ ]2,2,1,1 T  6 

Table A.1: Features of finite-state encoders designed for various runlength constraints.
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Appendix B  

Energy of the Channel Bit Response 

 

 

We evaluate in this appendix the energy of the perpendicular magnetic recording channel 

bit response. This computation is motivated by the analysis to examine the effect of code 

rate on the SNR at the output the recording channel (see Section 3.2.1). 

 The bit response of the recording channel is given by ( ) ( ) ( )s sh t h t h t T= − − , 

where ( )sh t  is the channel step-response given in Eq. (2.4) which is recalled here for 

convenience 

 ( ) ( )
50

log 3
tanh

2s
Ah t t

T
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (B.1) 

The energy bE  of the bit response is given by 

 ( ) ( ) ( )
2

2
2

50 50

log 3 log 3
( ) tanh tanh

4b
AE h t dt t t T dt

T T

∞ ∞

−∞ −∞

⎡ ⎤⎛ ⎞ ⎛ ⎞
= = − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ . (B.2) 

With the change of variable ( )
50

log 3
x t

T
=

 
, Eq. (B.2) becomes 

 
( ) ( ) ( )

2
2

50

50

log 3
tanh tanh

4 log 3b
TAE x x T dx

T

∞

−∞

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫ . (B.3) 
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Let us define ( )
50

log 3
T

T
α = , ( )( ) tanh tanhx x xαφ α= − −  and ( )2( )I x dxαα φ

∞

−∞

= ∫ . Then, 

the energy bE  is given by 

 
2

( )
4b
A TE I α

α
= . (B.4) 

In order to compute ( )I α , we simplify ( )xαφ as 

2 2 2 2

2 2 2 2 2 2

1 1 2 ( )( )
1 1 ( 1)( 1)

x x x

x x x x

e e e e ex
e e e e

α α α α

α α αφ
− − −

− −

− − −
= − =

+ + + +
 

 ( ) ( )
( )

sinh 2sinh
                      

cosh( ) cosh( ) cosh(2 ) coshx x x
α α

α α α
= =

− − +
. (B.5) 

 

With the change of variable 
2

u x α
= − , the function ( )I α  in Eq. (B.4) is given by 

 ( )
( )

( )
( )

2 2

0

2sinh 2sinh
( ) 2

cosh(2 ) cosh cosh(2 ) cosh
I du du

u u
α α

α
α α

∞ ∞

−∞

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∫ ∫  

                                  ( )
( )( )
4

2
24 2

0

48sinh
2cosh 1

u

u u

e du
e e

α
α

∞

=
+ +

∫ . (B.6) 

With the change of variable defined as ( )2 coshuv e α= + , we get 

( ) ( )
( )( ) ( )( )( )

2
2

22 2
1 cosh

4( cosh )
( ) 8sinh

2 cosh1 cosh

v dvI
vvα

α
α α

αα

∞

+

−
=

−+ −
∫  

             ( )
( )( )( )

2
22 2

1 cosh

2     8sinh
1 cosh

v dv
vα

α
α

∞

+

=
+ −

∫  

         ( ) ( )
( )( )( )

2
22 2

1 cosh

116sinh cosh
1 cosh

dv
vα

α α
α

∞

+

−
+ −

∫ . (B.7) 
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Let us evaluate the two integrals on the right hand side (RHS) of Eq. (B.7) 

separately. The first integral is simplified as 

 
( )( )( ) ( ) ( ) ( )( )2 2 22 2

1 cosh 1 cosh

2 1 1
1 cosh 2 1 cosh1 cosh

v dv
vvα α

α αα

∞∞

+ +

⎡ ⎤−
= =⎢ ⎥+ − ++ − ⎣ ⎦

∫ .  (B.8) 

For the second integral, we use the following result [81]: 

For the function 
( )2

1( ) nf x
ax c

=
+

, we have 

 ( ) 2 1 2 1

2 3 2
2 ( 1)( ) 2 ( 1) ( )n n

x n dxf x dx if n
c n ax c c n ax c− −

−
= +  ,      ≥

− + − +∫ ∫  (B.9) 

 ( ) 1or     ln if  1, 0, 0
2

x a cf x dx n a c
ac x a c

− −
=  ,             =  >  <

− + −∫ . (B.10) 

 

Comparing the ( )f x  given above with the second integral in (B.7), we find that 

1 0a = > , x v= , ( )21 cosh 0c α= − <  and 2n = . Therefore, using (B.9), we can evaluate 

the second integral in (B.7) as 

( )( )( ) ( ) ( )( )
( )

( )( ) ( )
( )
( )

( )

2 2 2 22 2
1 cosh 1 cosh

2

2 2 2

1 cosh

1
2(1 cosh ) 1 cosh1 cosh

cosh 11 1                                             ln
2 1 cosh 2 cosh 1 cosh 1

vdv
vv

v

v

α α

α

α αα

α

α α α

∞
∞

+
+

∞

+

⎡ ⎤
⎢ ⎥=

− + −⎢ ⎥+ − ⎣ ⎦

⎡ ⎤− −
⎢ ⎥+

−⎢ ⎥− + −⎣ ⎦

∫

 

                                     
( ) ( )

( ) ( )
( ) ( )2

1 cosh sinh1 11 log
4sinh sinh 1 cosh sinh

α α
α α α α

⎡ ⎤+ −
= +⎢ ⎥+ +⎣ ⎦

 

                                   
( ) ( )2

1 1 .
4sinh sinh

α
α α

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (B.11) 
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Substituting Eqns. (B.8) and (B.11) in (B.7), we get the function ( )I α  as 

( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 2
2

1 1( ) 8sinh 16sinh cosh 1
4sinh sinh2 1 cosh

       4 cosh 1 4 cosh
tanh

I αα α α α
α αα

αα α
α

⎛ ⎞
= − −⎜ ⎟⎜ ⎟+ ⎝ ⎠

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠

 

( )
 4 1 .

tanh
α

α
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

  (B.12) 

Substituting Eq. (B.12) in (B.4), we get the energy of the bit response as 

 
( )

2 1 1
tanhb uE A RT

α α
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

. (B.13) 

By using the third-order approximation 
3

tanh
3

αα α≈ − , the energy of the bit 

response becomes 

 ( ) 2
2 2log 3

3 3
u

b u
u

A TE A RT R
D

α
≈ = . (B.14) 

Observe from Eq. (B.14) that the energy of the bit response is quadratically related to the 

code rate R . In other words, the signal to noise ratio at the channel output decreases in 

proportion to the square of the code rate. 
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Appendix C  

Performance Analysis of Viterbi Detector 

 

 

 

In the partial-response maximum-likelihood (PRML) receiver described in Chapter 2, the 

Viterbi detector (VD) is not an optimal implementation of maximum-likelihood sequence 

detection (MLSD), since the noise at its input is correlated due to the PR equalization 

process. Further, this noise also contains some amount of residual ISI. Therefore, in this 

appendix, we present a detailed performance analysis of the VD by taking into account 

the effects of noise correlation and mis-equalization. In this thesis, we need such a 

detailed and accurate analysis for two reasons. Firstly, accurate expression of the 

normalization constant is required for enhancing the performance of the post-processor 

based on maximum a posteriori (MAP) decision rule, which is implemented using a bank 

of error event matched filters. This post-processor is used in the simulations of Chapters 

5 and 6. Secondly, in Chapter 6, accurate estimation of bit error rate (BER) and error 

event probabilities is required for determining the required runlength constraints. While 

the upper-bound given in Eq. (2.20) is the most accurate possible, its computation is 

extremely time-consuming because of the data-dependence of the argument of the ( ).Q  

function. This data-dependence is clearly seen in Eq. (2.23). Under some assumptions, 
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which we will analyze in this appendix, the above mentioned data-dependence can be 

removed.  

 

 

 

Figure C.1 shows the structure of the PRML receiver under study in this thesis. 

The input data ( )c n  denotes the user data in NRZ format with ( ) { }1,1c n ∈ − . The 

oversampled version ( ){ }c m  of ( ){ }c n  is defined by 

 ( ) ( )   if  
0        if  ,
c n m nL

c m
m nL

=⎧⎪= ⎨
≠⎪⎩

 (C.1) 

where L  is the oversampling factor. The channel noise ( ) ,mυ  which models the 

electronics noise picked up by the read-head, is assumed to be white Gaussian with 

variance 2
υσ  chosen according to Eq. (2.7). The read-back signal (i.e. the VD input) 

( ){ }x n  is defined by ( ) ( )0x n y nL m+ , where 0m  is the delay from channel input 

( )c m  to equalizer output ( )y m . The equalizer input is given by  

 ( ) ( ) ( )Tz m h c m mυ= + , (C.2) 

where 0 1,...,
h

T

Nh h h −⎡ ⎤= ⎣ ⎦  is the -spacedT
L  channel bit response with hN  taps, and 

( ) ( ) ( ),..., 1
T

hc m c m c m N= − +⎡ ⎤⎣ ⎦ . Thus, the VD input can be expressed as 

 ( ) ( ) ( ) ( )0 0 0
T T Tx n w z nL m w C nL m h w nL mυ= + = + + + , (C.3) 

Figure C.1: Discrete-time model of the recording channel with PRML receiver. 

L↑
 

ih  iw  L↓ Viterbi 
Detector 

( )c n  ( )y m
( )mυ

( )z m( )c m  ( )x n  ( )ĉ n
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where 0 1,...,
w

T

Nw w w −⎡ ⎤= ⎣ ⎦  is the -spacedT
L  equalizer response with wN  taps, 

( ) ( ) ( )0 0 0,..., 1
T

wC nL m c nL m c nL m N+ = + + − +⎡ ⎤⎣ ⎦  is a w hN N×  matrix, and 

( ) ( ) ( )0 0 0,..., 1
T

wnL m nL m nL m Nυ υ υ+ = + + − +⎡ ⎤⎣ ⎦ .  Eq. (C.3) can also be espressed as  

 ( ) ( ) ( )
1

0
0

fN

i
i

x n f c nL m i nυη
−

=

= + − +∑  (C.4) 

where i i if h w= ⊗  is the -spacedT
L  equalized channel response of length 

1h wfN N N= + −  and ( ) ( )0
Tn w nL mυη υ= +  is the channel noise at the equalizer output 

(or, detector input). Using the definition of ( )c m , we can rewrite (C.4) as 

 ( ) ( ) ( ) ( ) ( )
2 2

0

1 1

j j j

m jL j
j j j j

x n f c nL jL n f c n j nυ υη η
=

+
=− =−

= − + = − +∑ ∑ , (C.5) 

where 
0j m jLf f += , 0

1
mj
L

⎢ ⎥= ⎢ ⎥⎣ ⎦
 and 0

2

1fN m
j

L
− −⎢ ⎥

= ⎢ ⎥
⎣ ⎦

. Since the equalizer is expected to 

equalize the channel to the PR target 0 1,...,
g

T

Ng g g −
⎡ ⎤= ⎣ ⎦ , we can express (C.5) as 

( ) ( ) ( ) ( )
2

1

1

0

gN j j

i i
i i j

x n g c n i f c n i nυη
− =

= =−

′= − + − +∑ ∑  

 ( ) ( ) ( ) T Tg c n f c n nυη′ ′= + + , (C.6) 

where ( ) ( ) ( ),..., 1
T

gc n c n c n N⎡ ⎤= − +⎣ ⎦ , 
1 1 2 21 1, ,..., ,

T

j j j jf f f f f− − + −⎡ ⎤′ ′ ′ ′ ′= ⎣ ⎦  is the residual ISI 

channel due to misequalization and ( ) ( ) ( ) ( )1 1 2, 1 ,...,
T

c n c n j c n j c n j′ = + + − −⎡ ⎤⎣ ⎦  with 

{ }
{ }

           if    0,1,..., 1

    if    0,1,..., 1 .

i g

i

i i g

f i N
f

f g i N

⎧ ∉ −⎪′= ⎨
− ∈ −⎪⎩
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Eq. (C.5) can be rewritten as 

 ( ) ( ) ( )cx n x n nη= +  (C.7) 

where ( ) ( )
1

0

gN

c i
i

x n g c n i
−

=

= −∑  is the signal component that the VD attempts to reconstruct, 

and ( ) ( ) ( )cn n nυη η η= +  is the total noise component of ( )x n  comprising a 

misequalization component ( ) ( )T
c n f c nη ′ ′=  and a channel noise component ( )nυη . 

Note that the noise component ( )nυη  may be correlated because of the equalizer. Further, 

the residual ISI component ( )c nη  is non-Gaussian distributed. Thus, the total noise ( )nη  

at the VD input is actually non-Gaussian and correlated, unlike the most commonly used 

white noise assumption.  

 Let ( ) ( )0 ,..., 1
T

c c c N= −⎡ ⎤⎣ ⎦  represent the actual input data sequence. The VD 

detects a sequence ( ) ( )ˆ ˆ ˆ0 ,..., 1
T

c c c N= −⎡ ⎤⎣ ⎦  according to the detection rule given by 

 2ˆ arg min cc
c x x ′′

= − , (C.8) 

where ( ) ( )0 ,..., 2
T

gx x x N N⎡ ⎤= + −⎣ ⎦ and ( ) ( ) ( )0 , 1 ,..., 2
T

c c c c gx x x x N N′ ′ ′ ′⎡ ⎤= + −⎣ ⎦  with 

( ) ( )
1

0

gN

c i
i

x n g c n i
−

′
=

′= −∑ . An incorrect bit sequence ĉ c≠  is detected if  

2 2
ĉ cx x x x− < −  

 or 
2 2

ˆc cx xη η+ − < , (C.9) 

where cx  and ĉx  are defined similar to cx ′ . Eq. (C.9) can be expanded as 
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 ( ) ( ) ( )
21 1

0 0
2 0

g gN N

i c i c
n i n i

g e n i g e n i nη
− −

= =

⎛ ⎞
− + − <⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑  (C.10) 

where ( ) ( ) ( )ˆce n c n c n= −  represents the error sequence. The probability of detecting 

ĉ c≠  instead of c  is given by  

 [ ] ( ) ( ) ( )21ˆPr Pr 0
2 g g

n

c c e n e n nη⎡ ⎤= + <⎢ ⎥⎣ ⎦
∑  (C.11) 

where ( ) ( )
1

0

gN

g i c
i

e n g e n i
−

=

= −∑ .  

Errors usually occur in the form of error events. If the error sequence ( ){ }ce n  

contains only a single error event e , then Eq. (C.11) becomes the conditional probability 

of occurrence of error event e  conditioned on the actual data sequence c . From Eq. 

(C.11), we can derive the probability of error events and subsequently an easily 

computable upper-bound of the BER which is needed in Chapter 6. Further, Eq. (C.11) 

also serves for the derivation of the normalization constants for the post-processors under 

study in Chapter 4.  

The probability eP  of an error event e  starting at some time 1k  is given by [57] 

 [ ] [ ] [ ] [ ] [ ]ˆPr , Pr Pr Pr Pr
e e e

e
c C c C c C

P e c e c c c c c
∈ ∈ ∈

= = =∑ ∑ ∑ , (C.12) 

where [ ]ˆPr c c  is given in Eq. (C.11), [ ]Pr c  is the probability of the data sequence c , 

and eC  is the set of all data sequences that support the error event e  starting at time 1k . 

Note that the error event probability eP  depends on the starting time of the error event. 

The BER bP  is upper-bounded by 
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 ( ) [ ] [ ]ˆPr Pr
e

b
e E c C

P w e c c c
∈ ∈

≤ ∑ ∑  (C.13) 

where E  is the set of all possible error events, and ( )w e  is the Hamming weight of the 

error event e . At medium to high signal to noise ratio (SNR), the upper-bound in Eq. 

(C.13) becomes a good approximation of the BER. 

Let ( ) ( ) ( ) ( ) ( ) ( ) ( )
221

2 2
e

g g g c g
n n n

dX e n e n n e n n e n nυη η η= + = + +∑ ∑ ∑  where 

22
e gd e= . For a given error event e , we find that X is a random variable with a 

deterministic component, 
2 21 ,

2 2
e

g
d e=  and a random component 

( ) ( ) ( ) ( ) ( ) ( )g g c g
n n n

Y e n n e n n e n nυη η η= = +∑ ∑ ∑ . Thus, the randomness in Y  is due 

to the actual data sequence ( ){ }c n  and the channel noise sequence ( ){ }mυ . 

Consequently, the evaluation of the probability [ ]ˆPr c c  given by Eq. (C.11) depends on 

the different assumptions we make on the random component Y . Strictly speaking, Eq. 

(C.11) is being evaluated for a given data sequence c . Therefore, Y  has a mean given by 

( ) ( )Y g c
n

m e n nη= ∑ . Since ( ) ( )g
n

Y e n nυη= ∑  is Gaussian distributed with zero mean, 

we get 

                 [ ]
2 2

ˆPr Pr 0 Pr 0
2 2
e e

Y
d dc c Y m Y

⎡ ⎤ ⎡ ⎤
= + < = + + <⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 
2 2 2Pr

2 2
e e Y

Y
Y

d d mY m Q
σ

⎛ ⎞⎡ ⎤ +
= > + = ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

, (C.14) 

where ( ) 2 21
2

t

x

Q x e dt
π

∞
−= ∫ , and 2

Yσ  is the variance of Y  (or Y ) given by  
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 ( ) ( ) ( ) ( )22 2
Y g gY

n k
E Y m E Y e n e k n k

υ υη ησ φ⎡ ⎤ ⎡ ⎤= − = = −⎣ ⎦⎣ ⎦ ∑∑  

with ( ) ( ) ( )n k E n n k
υ υη η υ υφ η η− = −⎡ ⎤⎣ ⎦  being the autocorrelation of  ( )nυη . Substituting 

Eq. (C.14) in Eq. (C.13), we get 

 ( ) [ ]
2

Pr
2

e

e Y
b

e E c C Y

d mP w e Q c
σ∈ ∈

⎛ ⎞+
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ . (C.15) 

 Because the mean Ym  is a function of the data c , evaluation of the bound using 

Eq. (C.15) becomes cumbersome as we need to examine all possible data patterns for 

each error event. To simplify computations, a very commonly used assumption is to also 

treat the residual ISI ( )c nη  as Gaussian distributed with zero mean [80]. This is 

equivalent to considering the situation where the total noise ( ) ( ) ( )cn n nυη η η= +  at the 

VD input is Gaussian with zero mean and variance ( ) ( )2 2
cE n E nυη η⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦ , and the 

residual ISI is zero. As a result, the random variable ( ) ( )g
n

Y e n nη= ∑  becomes zero 

mean Gaussian with variance 

 ( ) ( ) ( )2
Y g g

n k
e n e k n kηησ φ= −∑∑ , 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )c cn k E n n k E n n k E n n kηη υ υφ η η η η η η− = − = − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  is the 

autocorrelation of ( )nη . Therefore, we get 

 [ ]
2 2

ˆPr Pr 0 Pr
2 2
e ed dc c Y Y

⎡ ⎤ ⎡ ⎤
= + < = >⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 
2

2
e

Y

dQ
σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (C.16) 
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Consequently, the BER bP  is upper-bounded by 

 ( ) [ ] ( ) ( )
2 2

Pr
2 2

e

e e
b

e E c C e EY Y

d dP w e Q c Q e w eπ
σ σ∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
≤ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ , (C.17) 

where ( ) [ ]Pr
ec C

e cπ
∈

= ∑ . Clearly, the Gaussian assumption on residual ISI results in a 

bound (C.17) that is much easier to evaluate compared to that in Eq. (C.15). But, it turns 

out that the upper-bound (C.17) is not tight enough at high SNR, as shown later in Figure 

C.2. Below, we present an approach [87] to circumvent this problem. 

 Let us rewrite the residual ISI as  

 ( ) ( ) ( ) ( )
2

1

1
2

e e

j

c i i c i
i j i S i S

n f c n i f e n i f c n iη
=− ∈ ∉

′ ′ ′= − = − + −∑ ∑ ∑ , (C.18) 

where eS  is the set of all indices i  from the set { }1 1 2, 1,...,j j j− − +  such that ( ) 0ce n i− ≠ . 

Clearly, for a given error event, the first term on the RHS of Eq. (C.18) depends only on 

the error sequence ( ){ }ce n  and is deterministic, whereas the second term is random with 

zero mean. If we assume that the second term in Eq. (C.18) is Gaussian, then the total 

noise ( )nη  can now be looked upon (for a given error event) as Gaussian with mean 

( )1
2

e

i c
i S

f e n i
∈

′ −∑ . As a result, ( ) ( )g
n

Y e n nη= ∑  becomes Gaussian with mean em  and 

variance 2
Yσ ′  given by  

 ( ) ( )1
2

e

e g i c
n i S

m e n f e n i
∈

′= −∑ ∑  

 ( ) ( ) ( ) ( )2

e e

Y g g i j cc
n k i S j S

e n e k n k f f i j
υ υη ησ φ φ′

∉ ∉

⎡ ⎤
′ ′= − + −⎢ ⎥

⎣ ⎦
∑∑ ∑ ∑  

where ( ) ( ) ( )cc k E c n c n kφ = −⎡ ⎤⎣ ⎦  is the input data autocorrelation. Using these, we get 
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 [ ]
2 2ˆPr e e

Y

d mc c Q
σ ′

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
. (C.19) 

The resulting upper-bound of the BER can be expressed as 

 ( ) ( )
2 2
2

e e
b

e E Y

d mP Q e w eπ
σ∈ ′

⎛ ⎞+
≤ ⎜ ⎟

⎝ ⎠
∑ . (C.20) 

In order to examine the accuracies of the upper-bounds derived above, we did 

BER simulations for the perpendicular recording channel at user density Du=2.0, 

equalized to the monic constrained generalized partial response (GPR) target (designed 

for SNR=30dB). The input data is chosen to be uncoded. The results are shown in Figure 

C.2. The plots ‘UB1’ and ‘UB2’ correspond to the BER upper-bounds obtained according 

to Eq. (C.20) and Eq. (C.17), respectively, and the plot ‘simulation’ corresponds to the 

BER obtained by collecting at least 500 error bits for each SNR. Clearly, the upper-bound 
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Figure C.2: BER obtained by simulation and two analytical upper-bounds. 
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given by Eq. (C.20) represents a very good approximation of the BER. On the other hand, 

the bound given in Eq. (C.17) is quite loose even though a large number of error events 

have been considered. Eq. (C.17) cannot provide an accurate upper-bound since the 

channel mis-equalization is significant and modeling it as Gaussian is highly 

inappropriate. 

 In order to verify whether the error event probabilities can be estimated accurately, 

simulations have been performed under the same conditions as mentioned above. We 

 

{ }2, 2+ −  { }2, 2,0,0, 2, 2+ − + −  { }2, 2,0, 2, 2+ − + −  

Probabilities from 
simulation 

6.2661e-4 4.4558e-5 2.5367e-5 

Analytical probabilities 6.6392.e-4 5.5676e-5 3.1508e-5 
 

choose SNR=30dB. Table C.1 shows the error event probabilities obtained by collecting 

10000 error events using simulations. The analytically computed probabilities are also 

shown in the table. The analytical approach used corresponds to that used for deriving Eq. 

(C.20). Observe that the analytical predictions match the simulations quite accurately. 

 

Table C.1: Error event probabilities obtained by simulation and analysis. 
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Appendix D  

BER Upper-Bound for the MTR(1/2;6) 

Block-Coded Channel 

 

 

 

In this appendix, we present an analytical derivation of an upper-bound of the bit error 

rate (BER) for the block coded ideal channel described in Section 5.1. The commonly 

used upperbound (see Eq. (5.2)) assumes that the input data ( )c n  is stationary. However, 

in Chapter 5, the input data is block coded. As a result, the data ( )c n  is cyclostationary 

[82], with period equal to the length of the codewords. More precisely, the 

autocorrelation ( ) ( ) ( ),cc n k E c n c n kφ −⎡ ⎤⎣ ⎦  of the data ( )c n  satisfies 

( ) ( ), 4,cc ccn k n kφ φ= −  for any n  and k . The expression for the BER upper-bound needs 

to take into account the statistics of the input data. For our derivation of the BER upper-

bound, we follow the method presented in [57].  

  

Figure D.1 shows the ideal channel with ( )1/ 2;6MTR  block code and 

constrained Viterbi detector. The input of the detector is the summation of the encoded 
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sequence c  convolved with the target g  and the colored noise υ  . The Viterbi detector is 

matched to the constraints of the block code.  

 

 

 

Let E  denote the set of all error events e . Each error event causes one or more 

detection errors, where a detection error at time n  means that the bit ( )c n  at stage n  of 

the trellis is incorrect. Let us define  

1;  
( )

0;  m

if  e has a detection error in position m (from the start)
e

otherwise  .
γ

⎧
⎨
⎩

 

This function characterizes the instants corresponding to detection errors in error event e . 

The probability of a particular error event e  starting at time i  and causing a detection 

error at time n  is 

( ) Pr[ , ]n i e e iγ − . 

Since the error events in E  are disjoint (if one occurs no other can occur) 

[ ]Pr  ( ) Pr[ , ]
n

n i
i e E

detection error at time n e e iγ −
=−∞ ∈

= ∑ ∑ . 

Since the autocorrelation ( , )cc n kφ  is cyclostationary with period 4, we can write 

,Pr[ , ] Pe je i =  where mod( ,4)j i= . Also, the probability of detection error at time n  is a 

periodic function of n  with period 4. Consequently, we have 

MTR kg  Viterbi 
detector 

( )c n ( )x n  
( )nυ

( )ĉ n1
1 D⊕

( )a n  

Figure D.1: Schematic of ( )1/ 2;6MTR  constrained ideal recording channel with Viterbi detector. 
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[ ]
3

,
0      

mod( ,4)

Pr  ( ) P
n

n i e j
j i e E

i j

detection error at time n eγ −
= =−∞ ∈

=

= ∑ ∑ ∑ . 

Exchanging the order of summation, we get 

[ ]
3

,
0      

mod( ,4)

Pr  ( )
n

e j n i
j e E i

i j

detection error at time n P eγ −
= ∈ =−∞

=

= ∑∑ ∑ . 

Let us define ,
: mod( ,4)

( ) ( )n j n i
i i j

w e eγ −
=

∑ , then  

 [ ]
3

, ,
0

Pr  ( )e j n j
j e E

detection error at time n P w e
= ∈

= ∑∑ . (D.1) 

 
Below, we shall derive an upper-bound for Eq. (D.1).  

The probability that the error event e  starts at time i  such that mod( ,4)i j=  is 

[ ] [ ]
,

, ˆP Pr Pr
e j

e j
c C

c c c
∈

= ∑ , 

where [ ]ˆPr c c  is the probability of detecting ( ) ( )ˆ ˆ ˆ0 ,..., 4 1c c c p= −⎡ ⎤⎣ ⎦  when the 

transmitted sequence is ( ) ( )0 ,..., 4 1c c c p= −⎡ ⎤⎣ ⎦ , p is the number of MTR codewords, 

and ,e jC  is the set of sequences c  supporting the error event e  starting at a given time 

index in the thj  interleave. Since the noise sequence υ  is assumed white Gaussian, with 

variance 2σ , [ ]ˆPr c c  can be upper-bounded by 
2

edQ
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where ed e g⊗ . Thus, the 

probability that the error event e  starts at time i  such that ( )mod , 4i j=  satisfies  

 ( ),P
2

e
e j j

dQ eπ
σ

⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

, (D.2) 
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where ( ) [ ]
,

Pr
e j

j
c C

e cπ
∈
∑  represents the probability of the data patterns c supporting the 

error event e starting at time i  in the thj  interleave. Consequently, the upper bound for 

the probability of detection error at time n  is given by 

 [ ] ( )
3

,
0

Pr  ( )
2

e
j n j

e E j

ddetection error at time n Q e w eπ
σ∈ =

⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

∑ ∑ . (D.3) 

One detection error may cause more than one bit error. Thus,  

[ ] [ ]Pr  Pr  bit error detection error at time n≤ . 

Pr[  ]detection error at time n   is a periodic function of the time index k  with period 4. 

Consequently by averaging this probability over the 4 possible periods, we derive the 

probability of detection error: 

[ ] [ ]
3

0

1Pr  Pr  4
4 i

detection error detection error at time k m i
=

= = +∑ . 

Under the pessimistic assumption Pr[  ] Pr[  ]bP bit error detection error= ≈ , we can write 

 ( )
3 3

4 ,
0 0

1 ( )
4 2

e
b j m i j

i e E j

dP Q e w eπ
σ +

= ∈ =

⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

∑∑ ∑  

 ( )
3 3

4 ,
0 0

1    ( )
2 4

e
j m i j

e E i j

dQ e w eπ
σ +

∈ = =

⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

∑ ∑∑ . (D.4) 

Let us define ( ) ( )4 , 0 , 3
W m i j i j

e w e+ ≤ ≤
⎡ ⎤⎣ ⎦ a 4 4×  matrix, ( ) ( ) ( )0 3,...,

T
e e eπ π π⎡ ⎤⎣ ⎦ , and 

( ) ( ) ( )Wt e e eπ . Thus, we get  

 ( ) ( )
3 3 3

4 ,
0 0 0

( )j m i j i
i j i

e w e t eπ +
= = =

=∑∑ ∑ . (D.5) 

It can be easily shown that ( )W e  is a symmetric matrix. As a result, we get 
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 ( ) ( ) ( ) ( ) ( )
3 3 3 3

4 ,
0 0 0 0

j j m i j j
j j i j

t e e w e e w eπ π+
= = = =

= =∑ ∑ ∑ ∑ , (D.6) 

where ( )w e  is the Hamming weight of error event e . Substituting Eqns. (D.5) and (D.6) 

in Eq. (D.4), we get 

 ( ) ( )
3

0

1
4 2

e
b j

e E j

dP Q e w eπ
σ∈ =

⎛ ⎞⎛ ⎞≤ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ . (D.7) 

Note that the upper-bound (D.7) suggests that the probability ,e jP  that a given error event 

e  starts at time index in the thj  interleave is upper-bounded by 

 ( ),
1
4 2

e
e j j

dP Q eπ
σ

⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

. (D.8) 

Note also that the upper-bound (D.8) is more accurate than the upper-bound (D.2). This 

result will be verified with simulation results. 

 

Dominant error events ie  Squared Euclidean distances 
2
ied  

{ }1 2,0, 2e = + −  72 

{ }2 2e = +  76 

{ }3 2,0, 2,0, 2e = + − +  76 

{ }4 2,0, 2,0, 2,0, 2e = + − + −  80 

{ }5 2,0, 2,0, 2,0, 2,0, 2e = + − + − +  84 

{ }6 2,0, 2,0, 2,0, 2,0, 2,0, 2e = + − + − + −  88 

{ }7 2,0, 2,0, 2,0, 2,0, 2,0, 2,0, 2e = + − + − + − +  92 

{ }8 2,0, 2,0, 2,0, 2,0, 2,0, 2,0, 2,0, 2e = + − + − + − + −  96 

{ }9 2,0, 2,0, 2,0, 2,0, 2,0, 2,0, 2,0, 2,0, 2e = + − + − + − + − +  100 

 

In order to check the accuracy of this upper bound, we need a set of dominant 

error events and the corresponding probabilities ( )j eπ .  The dominant error events and 

Table D.1: Dominant error events for the ( )1/ 2;6MTR  coded ideal PR channel. 
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their associated squared Euclidean distances 2
ed  are given in Table D.1. Let us simplify 

the expression for the probability ( )j eπ . With ( ) ( )0 ,..., 4 1b b b p′ ′ ′= −⎡ ⎤⎣ ⎦ , the probability 

of the sequence c  is [ ] [ ]Pr Prc b′= , where ( ) ( )2 1c n b n′= − . There is one-to-one 

relationship between the set of sequences ( ) ( )0 ,..., 4 1b b b p= −⎡ ⎤⎣ ⎦  and the set of 

sequences b′ , when the choice of the first bit is deterministic. Consequently, 

[ ] [ ]Pr Prb b′ = . Note that ( ) ( ) ( ) ( ) 3Pr 4 ,..., 4 3 Pr 3 ,..., 3 2 2 ,b m b m a m a m −+ = + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

0 1m p≤ ≤ − , where ( )a n  denotes the uncoded user data. Further, using the 

independence of the MTR codewords, we can write  

[ ] ( ) ( )
1

3

0

Pr Pr 4 ,..., 4 3 2
p

p

m

b b m b m
−

−

=

= + =⎡ ⎤⎣ ⎦∏ . 

And hence, the probability ( )j eπ  is given by 

 ( ) ( ) 32 p
j je N eπ −= , (D.9) 

where ( )jN e  is the number of sequences b  such that the corresponding sequences c   

satisfy ,e jc C∈ . The number ( )jN e  is evaluated using simple computer programs. The 

resulting probabilities ( )j eπ  are given in Table D.2. Figure D.2 shows the simulation 

results. Figure D.2 gives the comparison of the BER obtained by simulations against the 

upper-bound given in Eq. (D.7). 
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Error events 0j =  1j =  2j =  3j =  

1e  1/4 ¼ 9/32 1/4 

2e  3/4 ¼ 3/4 1/4 

3e  3/32 ¼ 3/32 1/8 

4e  1/32 1/8 9/256 1/8 

5e  3/256 1/8 3/256 1/16 

6e  1/128 3/32 33/4096 3/32 

7e  13/4096 9/128 13/4096 1/16 

8e  1/2048 1/16 9/16384 1/32 

9e  3/16384 1/32 3/16384 1/32 

 

 

  

 
 

Table D.2: Probabilities of the data patterns supporting the dominant error events 
starting at time 1k  such that ( )1mod ,4k j= . 
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Figure D.2: Comparison of the analytical BER upper-bound and the simulated 
BER for the ( )1/ 2;6MTR  coded ideal channel. 
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 In order to verify whether the error event probabilities can be accurately estimated, 

we collected 30000 error events by simulations at SNR=12dB. Table D.3 shows the 

probabilities of the three dominant error events 1e , 2e  and 3e , which are estimated using 

simulations as well as analytical computations according to Eq. (D.8). 

 

 

 Analytical error event probabilities Simulated error event probabilities 
 0j =  1j =  2j =  3j =  0j =  1j =  2j =  3j =  

1e  2.47e-5 2.47e-5 2.78e-5 2.47e-5 2.29e-5 3.02e-5 2.61e-5 2.96e-5

2e  5.3e-5 1.77e-5 5.3e-5 1.77e-5 5.11e-5 2.53e-5 5.01e-5 2.63e-5

3e  6.62e-6 1.77e-5 6.62e-6 8.83e-6 5.88e-6 1.54e-5 6.19e-6 1.27e-5

 

 Figure D.2 and Table D.2 show that the upper-bounds derived in this appendix for 

BER and error event probability are quite accurate and tight. 

Table D.3: Analytical and simulated error event probabilities for 3 dominant error events 
and for different starting time index.  


