498 research outputs found

    A robust MPC/ISM hierarchical multi-loop control scheme for robot manipulators

    Get PDF
    In this paper, we propose a robust hierarchical multi-loop control scheme aimed at solving motion control problems for robot manipulators. The kernel of the proposed control scheme is the inverse dynamics-based feedback linearized robotic MIMO system. A first loop is closed relying on an Integral Sliding Mode (ISM) controller, so that matched disturbances and uncertain terms due to unmodelled dynamics, which are not rejected by the inverse dynamics approach, are suitably compensated. An external loop based on Model Predictive Control (MPC) optimizes the evolution of the controlled system in the respect of state and input constraints. The motivation for using ISM, apart from its property of providing robustness to the scheme in front of a significant class of uncertainties, is also given by its capability of enforcing sliding modes of the controlled system since the initial time instant, which is a clear advantage in the considered case, allowing one to solve the model predictive control optimization problem relying on a set of linearized decoupled SISO systems which are not affected by uncertain terms. As a consequence, a standard MPC can be used and the resulting control scheme is characterized by a low computational load with respect to conventional nonlinear robust solutions. The verification and the validation of our proposal have been carried out with satisfactory results in simulation, relying on a model of an industrial robot manipulator with injected noise, to better emulate a realistic set up. Both the model and the noise have been identified on the basis of real data. ©2013 IEEE

    MPC for Robot Manipulators with Integral Sliding Modes Generation

    Get PDF
    This paper deals with the design of a robust hierarchical multiloop control scheme to solve motion control problems for robot manipulators. The key elements of the proposed control approach are the inverse dynamics-based feedback linearized robotic multi-input-multi-output (MIMO) system and the combination of a model predictive control (MPC) module with an integral sliding mode (ISM) controller. The ISM internal control loop has the role to compensate the matched uncertainties due to unmodeled dynamics, which are not rejected by the inverse dynamics approach. The external loop is closed relying on the MPC, which guarantees an optimal evolution of the controlled system while fulfiling state and input constraints. The motivation for using ISM, apart from its property of providing robustness to the scheme with respect to a wide class of uncertainties, is also given by its capability of enforcing sliding modes of the controlled system since the initial time instant, allowing one to solve the MPC optimization problem relying on a set of linearized decoupled single-input-single-output (SISO) systems that are not affected by uncertain terms. The proposal has been verified and validated in simulation, relying on a model of a COMAU Smart3-S2 industrial robot manipulator, identified on the basis of real data

    Performance comparison of structured H∞ based looptune and LQR for a 4-DOF robotic manipulator

    Get PDF
    We explore looptune, a MATLAB-based structured H1 synthesis technique in the context of robotics. Position control of a 4 Degree of Freedom (DOF) serial robotic manipulator developed using Simulink is the problem under consideration. Three full state feedback control systems were developed, analyzed and compared for both steady-state and transient performance using the Linear Quadratic Regulator (LQR) and looptune. Initially, a single gain feedback controller was synthesized using LQR. This system was then modified by augmenting the state feedback controller with Proportional Integral (PI) and Integral regulators, thereby creating a second and third control system respectively. In both the second and third control systems, the LQR synthesized gain and additional gains were further tuned using looptune to achieve improvement in performance. The second and third systems were also compared in terms of tracking a time-dependent trajectory. Finally, the LQR and looptune synthesized controllers were tested for robustness by simultaneously increasing the mass of each manipulator link. In comparison to LQR, the second system consisting of Single Input Single Output (SISO) PI controllers and the state feedback matrix succeeded in meeting the control objectives in terms of performance, optimality, trajectory tracking, and robustness. The third system did not improve performance in contrast to LQR, but still showed robustness under mass variation. In conclusion, our results have shown looptune to have a comparatively better performance over LQR thereby highlighting its promising potential for future emerging control system applications

    RBFNN based adaptive control of uncertain robot manipulators in discrete time

    Get PDF

    An improved adaptive online neural control for robot manipulator systems using integral Barrier Lyapunov functions

    Get PDF
    Conventional Neural Network (NN) control for robots uses radial basis function (RBF) and for n-link robot with online control, the number of nodes and weighting matrix increases exponentially, which requires a number of calculations to be performed within a very short duration of time. This consumes a large amount of computational memory and may subsequently result in system failure. To avoid this problem, this paper proposes an innovative NN robot control using a dimension compressed RBF (DCRBF) for a class of n-degree of freedom (DOF) robot with full-state constraints. The proposed DCRBF NN control scheme can compress the nodes and weighting matrix greatly and provide an output that meets the prescribed tracking performance. Additionally, adaption laws are designed to compensate for the internal and external uncertainties. Finally, the effectiveness of the proposed method has been verified by simulations. The results indicate that the proposed method, integral Barrier Lyapunov Functions (iBLF), avoids the existing defects of Barrier Lyapunov Functions (BLF) and prevents the constraint violations

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Restricted structure non-linear generalized minimum variance control

    Get PDF
    This research presents the Restricted Structure Non-linear Generalized Minimum Variance (RS-NGMV) algorithm for Linear Parameter-Varying (LPV) systems. The LPV systems are defined as linear plant subsystems within the control diagram and may include Non-linear (NL) input subsystems. The RS-NGMV control solution for the latter will be slightly different than the first one and have the capability of dealing with NL characteristics such as saturation, discontinuities and black-box terms. The controller is built in a low-order Restricted Structure (RS) in the form of a general z-transfer function. This brings forward two major advantages. First, it offers a high-order advanced control solution inside low-order control structures which are known for their natural robustness. Secondly, it is easier to operate and re-tune for the classically trained staff in the industry as it can be given the structures they are rather familiar with such as the PID. Another advantage of the RS-NGMV is its model-based design that enables a faster adaptation to implement different systems. Features of the RS-NGMV are investigated throughout the thesis with case studies from trends in engineering like robotics, autonomous and electric vehicles. The results show that the RS-NGMV is highly capable of adapting to set-point changes, parameter variations with its ability to update the control gains rapidly by using optimizations. Some extensions of algorithms have also been studied following recent directions in optimal/predictive control resulting in a new preview control approach and Scheduled RS-NGMV control.This research presents the Restricted Structure Non-linear Generalized Minimum Variance (RS-NGMV) algorithm for Linear Parameter-Varying (LPV) systems. The LPV systems are defined as linear plant subsystems within the control diagram and may include Non-linear (NL) input subsystems. The RS-NGMV control solution for the latter will be slightly different than the first one and have the capability of dealing with NL characteristics such as saturation, discontinuities and black-box terms. The controller is built in a low-order Restricted Structure (RS) in the form of a general z-transfer function. This brings forward two major advantages. First, it offers a high-order advanced control solution inside low-order control structures which are known for their natural robustness. Secondly, it is easier to operate and re-tune for the classically trained staff in the industry as it can be given the structures they are rather familiar with such as the PID. Another advantage of the RS-NGMV is its model-based design that enables a faster adaptation to implement different systems. Features of the RS-NGMV are investigated throughout the thesis with case studies from trends in engineering like robotics, autonomous and electric vehicles. The results show that the RS-NGMV is highly capable of adapting to set-point changes, parameter variations with its ability to update the control gains rapidly by using optimizations. Some extensions of algorithms have also been studied following recent directions in optimal/predictive control resulting in a new preview control approach and Scheduled RS-NGMV control

    Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback

    Get PDF
    In this paper, an adaptive neural bounded control scheme is proposed for an n-link rigid robotic manipulator with unknown dynamics. With the combination of the neural approximation and backstepping technique, an adaptive neural network control policy is developed to guarantee the tracking performance of the robot. Different from the existing results, the bounds of the designed controller are known a priori, and they are determined by controller gains, making them applicable within actuator limitations. Furthermore, the designed controller is also able to compensate the effect of unknown robotic dynamics. Via the Lyapunov stability theory, it can be proved that all the signals are uniformly ultimately bounded. Simulations are carried out to verify the effectiveness of the proposed scheme

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR
    corecore