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Abstract

This research presents the Restricted Structure Non-linear Generalized Mini-

mum Variance (RS-NGMV) algorithm for Linear Parameter-Varying (LPV) sys-

tems. The LPV systems are defined as linear plant subsystems within the control

diagram and may include Non-linear (NL) input subsystems. The RS-NGMV

control solution for the latter will be slightly different than the first one and

have the capability of dealing with NL characteristics such as saturation, discon-

tinuities and black-box terms. The controller is built in a low-order Restricted

Structure (RS) in the form of a general z-transfer function. This brings forward

two major advantages. First, it offers a high-order advanced control solution in-

side low-order control structures which are known for their natural robustness.

Secondly, it is easier to operate and re-tune for the classically trained staff in

the industry as it can be given the structures they are rather familiar with such

as the PID. Another advantage of the RS-NGMV is its model-based design that

enables a faster adaptation to implement different systems.

Features of the RS-NGMV are investigated throughout the thesis with case

studies from trends in engineering like robotics, autonomous and electric vehicles.

The results show that the RS-NGMV is highly capable of adapting to set-point

changes, parameter variations with its ability to update the control gains rapidly

by using optimizations. Some extensions of algorithms have also been studied fol-

lowing recent directions in optimal/predictive control resulting in a new preview

control approach and Scheduled RS-NGMV control.
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Chapter 1

Introduction

The RS-NGMV control can trace its roots back to several decades ago. In 1969,

Åström [1] introduced the Minimum Variance (MV) control method, followed

by some process control applications. The MV strategy is to minimize a cost

function that is the expected value of the output variance of a stochastic system,

the solution of which is derived by using k-steps ahead predictions and then

cancelling out the stochastic terms that cannot be influenced by the control signal.

The method showed success in paper machine applications where it was used to

minimize the variance of the moisture content of the paper, improving its quality.

The MV controller design was based on the assumption that the plant is of

the minimum-phase. As a result, the output can grow unbounded when dealing

with non-minimum phase systems. The Generalized Minimum Variance (GMV)

control [2] was proposed as a solution to this problem by simply extending the

MV control cost function with the introduction of a weighted control variance

term. GMV controllers have shown success in process control applications as well.

In addition, they have been used in a number of power, automotive and robotics

implementations [3−5] in later studies. Some versions of GMV controllers are able

to deal with unknown system parameters by using methods like Recursive Least

Squares (RLS) estimations [6]. They are recognized as self-tuning controllers [7, 8]
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in the literature. The original GMV method was also studied by Grimble [9], by

introducing a modified cost function of weighted error and control terms whose

solution returns the control law.

The techniques mentioned so far considered solutions only for linear systems.

The Non-linear Generalized Minimum Variance (NGMV) control algorithm was

introduced for discrete-time non-linear, multi-variable, possibly time-varying sys-

tems [11, 12]. The NGMV uses a closed-loop feedback control system structure

very similar to that of the GMV in [9]. However, the plant model is allowed to be

non-linear and if linear, the controller has the ability to revert to the GMV. The

systems and the control law in the initial version of the NGMV were represented

by polynomial expressions like the standard or early MV and GMV controllers.

The NGMV control structure can also be related to the Smith predictor [10], a

well-known process control strategy. However, it does not share the same prob-

lem of stability for open-loop unstable systems. Moreover, it does not have the

robustness problem since in its natural form it does not try to cancel out the

plant dynamics.

Later, the State-Space (SS) version with continuous-time design was proposed

[13] (for discrete-time adaptations see [16]) followed by the State-Dependent (SD)

version State-Dependent NGMV (SD-NGMV), shortly after [14]. In [15], hybrid

system implementations were considered. These state-space based designs have

enabled the utilization of the Kalman Filter (KF) techniques for the NGMV,

providing the benefit of estimating states that cannot be measured and exploiting

the system information even more efficiently. The Linear Parameter-Varying

Kalman Filter (LPVKF) has given possibility to consider solutions for the LPV

systems as well.

As a branch of state-space techniques, LPV and SD models are increasingly

used to represent or approximate non-linear systems, including the control prob-

lems in this thesis. Traditionally, the State-Dependent Riccati Equation (SDRE)

2
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approach [17, 18] has been used for the optimal control of such non-linear systems

owing to its well-defined formulation and good stability characteristics. Basically,

its principle is to encapsulate a non-linear system in a linear structure and then

employ the well-known Linear Quadratic (LQ) optimal control solution. The

technique has inspired the controller [19] that will be explored in a later chap-

ter. In fact, the LQ type controllers are not too far-off compared to the MV

type (refers to all MV, GMV and NGMV) controllers. They have similar cost-

functions leading to different solutions. There is already an approach within the

NGMV family of controllers called Non-linear Quadratic Generalized Minimum

Variance (NQGMV) related to the Linear Quadratic Gaussian (LQG) controller

[16]. For instance, the NQGMV can reduce to LQG in its limiting case. It could

be summarized that while the LQ methods have the advantage of being able to

offer guaranteed stability, the MV methods remain simpler and are easier to im-

plement. Regarding the scope of this thesis, we are not concerned with further

theoretical comparison between the two methods.

The stability of the NGMV methods has been briefly discussed in some earlier

studies by explaining the conditions ensuring it. First of all, the inverse of the

non-linear operator term (PCWk − Fck), a combination of cost-function weights

and delay free plant model, must exist and it must be stable. It has been shown

that the stability of the inverse non-linear operator term is directly related to

the stability of the NGMV feedback loop. With the correct choice of weights,

it is possible to make sure these requirements are met. However, the type of

the NGMV controller also needs to be considered carefully. According to the

NGMV control solution and the plant models used, the stability conditions and

the assumptions may slightly differ. For example, the SD-NGMV designs in

[14, 15] were capable of stabilizing open-loop unstable processes with both input

and output non-linearities unlike the previous NGMV designs which were based

on the assumption that the non-linear subsystem had to the stable.
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An NGMV controller is predictive in the sense that it uses k-step ahead predic-

tions, however the method does not use the full future tracking error and control

signal information like the Model Predictive Control (MPC) methods. Thus we

cannot define it as a purely predictive control method. The problem has created

the motivation for extensions such as the Non-linear Predictive Generalized Min-

imum Variance (NPGMV) controller [20−23] derived by modifying the standard

Generalized Predictive Control (GPC) cost function for the NGMV form to gain

some of the advantages of the predictive control. The NPGMV theory was first

based on general polynomial and state-space formulations. Later, LPV adapta-

tions were formulated and verified with non-linear industrial control applications

such as robotics, ship steering and wind turbine control in [24− 26].

Another attempt to enhance the predictive capabilities of the NGMV was to

consider the use of future set-point information. This was first realized with the

Extended Non-linear Generalized Minimum Variance (ENGMV) control method

[27]. The future reference information was incorporated using a Two-Degree-

of-Freedom (DOF) structure that improved the predictive capabilities but came

at the expense of some complexity. The ENGMV method also used the future

reference information for k-steps only.

The use of future set-point information, can be referred to as the “preview”

or “look-ahead” in the control systems literature. The concept is that the future

reference information could be incorporated in the system model and if the con-

trol solution is derived properly by utilizing the information, then the controller

has the preview feature or is called a preview controller. To clarify the last bit,

the type of optimal control that is not necessarily predictive but uses the future

reference information is called as the preview control in the literature. On the

other hand, if a predictive method like the MPC has the preview feature it may

or may not be defined MPC with preview based on the authors’ choice. The

standard preview controller, proposed by Tomizuka [28], uses the LQ framework
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and the cost function to obtain the control solution. Thus, the technique is some-

times defined as the LQ-Preview control. The State-Dependent Riccati Equation

and Linear Parameter-Varying Riccati Equation (LPV-RE) Preview controllers

of Chapter 4 are related to this method.

These optimal and/or predictive control methods are classified as advanced

control methods. They are usually of high-order and come with a higher level of

computational burden due to the optimizations performed. On the other hand,

the control methods like the classical PID are of low-order thus simpler to design

and tune, with little computational complexity. A demonstration of the industrial

control hierarchy is shown in Fig. 1.1 in four layers: Operational management,

local optimizations and advanced control, PID controllers and the process.

To this day, there have been countless PID designs and applications. In the

process control industry, the overwhelming majority of the controllers are still

PID [16]. They are dominantly used for the flow, pressure, temperature and level

controls. However, the latest breakthroughs in technology and the computing

power available today extend the range of advanced control applications. For

example, in the 1980s the MPC controllers were only used in process control

industry where dynamics tend to be slow but recently they are becoming very

popular for even high-speed applications like robotics and automotive. Unfor-

tunately, these advancements do not simply outweigh some disadvantages of the

advanced controllers. The fact itself is a call for research, that is, if an advanced

controller can offer its superior performance while being presented in a low-order

structure that is easier to maintain and tune like the classical PID. The so-called

RS approach including the RS-NGMV control of this thesis, is an effort to answer

the question. The core concept of the approach lies within the use of a pre-defined

controller structure (like PID) whose gains are determined with optimizations.

These milestones summarize the time-line of the evolution of the NGMV

method until the start of this thesis which aims to carry the torch forward. The
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Plant-Wide Optimization

Local Optimization

    Advanced Control
MPC, NGMV, and etc.

      PID Control

                    Actuators
         Valves, Motors, and etc.

FC PC LCTC

DAYS

HOURS

MINUTES

SECONDS

Low-level/Regulatory 
(Flow, Temp., Pressure, Liquid)

High-level and Long-term Planning 
(max. production, min. costs,...)

            Process
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Short-term Planning

Plant

Figure 1.1: Industrial control hierarchy.
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RS-NGMV control is introduced for LPV systems (including quasi-LPV) and its

properties along with possible enhancements have been investigated. The results

of the latter are presented as the SDRE/LPV-RE Preview controllers, the Sched-

uled RS-NGMV method and the proposal for RS-NPGMV. The designs have

been verified with modern engineering applications in tune with today’s trends

including a Robotic Manipulator, Autonomous Car and Electric Vehicle (EV).

1.1 Research Objectives and Motivations

Although simpler to implement compared to most other advanced control algo-

rithms, the Non-linear Generalized Minimum Variance, is also of high-order and

come with a level of complexity. When these methods are used in the industry,

despite they offer superior results, it might be an overwhelming task to operate

them for the plant engineers. In most cases, the staff are more familiar with

classical methods such as the PID and their tuning to adjust the controllers de-

pending on their needs. This is where the idea of the Restricted Structure NGMV

flourishes, to provide the efficiency of an advanced control algorithm but within

a low-order restricted structure instead of the full-order optimal control solution.

The restricted structure is of the general transfer function form. For instance, it

can be chosen as the PID controller which will allow much easier tuning of the

optimal controller for the classically trained staff eliminating the disadvantage

of the complexity to operate. Motivated by these ideas, the objectives of this

research are summarized as:

� Develop scalar and multi-variable Restricted Structure NGMV control so-

lutions for state-space represented LPV systems and the LPV systems that

contain non-linear black-box input subsystem by using real-time optimiza-

tions based on Kalman filter estimations,

� Investigate the introduction of the algorithm with additional features,
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� Verify the methods by software implementation where different categories

of Linear Parameter-Varying systems are considered, paired with suitable

control applications. Explore the features and advantages of the Restricted-

Structure NGMV algorithm under variable circumstances in these case stud-

ies and discuss the simulation results.

1.2 Thesis Contributions

The contributions of the research are composed of the outputs listed below:

� Scalar and multi-variable Restricted Structure NGMV controllers for LPV

systems and LPV systems with non-linear black-box input subsystem. The

control solutions are introduced in chapter 3.

� Use of Linear Parameter-Varying Kalman filter for exploiting the informa-

tion available to the system continuously thus enabling adaptability of the

RS-NGMV controller. The Kalman filter information is used for calculating

the RS-NGMV solutions introduced in chapter 3.

� The use of State-Dependent Riccati Equation and Linear Parameter-Varying

Riccati Equation approaches for the first time in the preview control of LPV

or State-Dependent systems. The approaches are introduced in chapter 4.

The second time in the literature, a LPV system being considered for the

preview control problem shown in chapter 6.

� Proposal to a simplification to the RS-NGMV algorithm by using a fixed

gains approach considering processes with limited processing capabilities

(e.g. the microcontrollers with limited computational power). This ap-

proach is called the Scheduled RS-NGMV control and is introduced in chap-

ter 8. It stores selected gains from the previous simulation runs and use
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them for the designated conditions instead of performing real-time opti-

mization all the time.

� Software verification of the controllers were made using simulations in the

Matlab/Simulink environment. To realize this, four different application

examples three of which being based on Linear Parameter-Varying models

were studied. The results have been analysed to understand the properties

of the control algorithms. Chapters 5− 8 presents these examples.

� Ideas for future work have emerged:

– The Restricted Structure Non-linear Predictive GMV (RS-NPGMV)

controller with the preview feature is the first of these. The controller

uses an additional degree-of-freedom to utilize the future information

of the reference inputs. The concept and some preliminary work are

discussed in the Appendix A.

– Secondly, automating the Scheduled RS-NGMV gains in a smart way

to give the best results in different operating conditions. Machine

learning methods like classification or clustering to pick up the best

conditions will also be considered for this technique. The steps are

being taken for these objectives and progress will be made.

1.3 Thesis Organization

The thesis is organized as below. For an illustration of the conceptual thesis

flow, refer to the Fig. 1.2 where the coloured areas that are titled methods and

applications represent the contributions of the thesis.

� Chapter 1: Sets the scene for the research area and describes the place

where the topic of the thesis stands. It summarizes the research objectives,

motivations and the contributions that have been made.

9



Chapter 1. Introduction

Chapter 1: Introduction

Theoretical Foundations & Literature

Methods 

Applications

Chapter 2: Theoretical BackgroundsLiterature Review 
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Appendix A: RS-NPGMV

Figure 1.2: Conceptual flow of the thesis.
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� Chapter 2: Discusses the theoretical backgrounds of the thesis. The

methods behind the development of the NGMV control algorithm have

been explained. The state-space system representations, which will be used

throughout the thesis, have been introduced.

� Chapter 3: The Restricted Structure NGMV controller is derived in this

chapter. The fundamental Restricted Structure control structure is formu-

lated for both Single Input Single Output (SISO) and Multi Input Multi

Output (MIMO) cases. Next, the RS-NGMV optimization problem is pre-

sented and solved for first LPV systems and then systems that include input

non-linearities. The control structure is illustrated and a design procedure

is suggested.

� Chapter 4: Presents a new approach to the preview control. As an intro-

duction to the preview control theory, a literature review is made. Then, the

SDRE approach has been introduced for the problem and the SDRE/LPV-

RE Preview controllers are derived.

� Chapter 5: Covers the two-link robotic manipulator case study. The

manipulator model dynamics are described using the quasi-LPV form (a

special class in LPV systems). Then the RS-NGMV controller is designed

with the PID structure. Simulation results discuss the performance of the

controller for the reference tracking problem of the robot link positions.

� Chapter 6: Presents the LPV-RE Preview control implementation for a

LPV-modelled autonomous car performing lane-change manoeuvres under

varying longitudinal speeds. The controller uses the future reference input

for calculating the optimal signals. Its performance is demonstrated with

the simulation results and compared to the LQ-Preview control.

� Chapter 7: Takes on the longitudinal speed tracking problem for an EV
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and implements the RS-NGMV control method for handling known dis-

turbances to the system such as the road grade and aerodynamic drag

forces. The simulation results show the RS-NGMV’s performance under

well-known driving cycles and constant speed cruise-control. Compared to

the chapter 5, the state-space quasi-LPV model in chapter 7 contains input

disturbances in addition. This is therefore an extra feature for the controller

to handle, as the impact of input disturbances are significant especially if

they are time-varying.

� Chapter 8: Proposes the Scheduled RS-NGMV controller and its case

study on a linearised Spark-Ignition engine model.

� Chapter 9: Finalizes the thesis findings with a summary of the key results

and the discussion of future works.

� Appendix A: Proposes the RS-NPGMV control structure.

� Appendix B-F: Provides the Matlab/SIMULINK codes and tips devel-

oped for the application case studies in Chapter 5-8.

1.4 List of Publications

The list below presents the contributions of this thesis that are published and

submitted. The remaining contributions are currently in preparation and will be

submitted for publication.

� C. Cebeci, M.J. Grimble, R. Katebi and L.F. Recalde, “Restricted Struc-

ture Non-Linear Generalized Minimum Variance Control of a 2-Link Robot

Arm,” UKACC 12th International Conference on Control, pages 367–372,

Sheffield, UK, 2018.
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� C. Cebeci, M.J. Grimble, L. Recalde-Camacho and R. Katebi, “SDRE Pre-

view Control for a LPV Modelled Autonomous Vehicle,” 3rd IFAC Work-

shop on Linear Parameter-Varying Systems, Eindhoven, The Netherlands,

2019.

� C. Cebeci, M.J. Grimble, “Longitudinal Speed Tracking of an Electric Vehi-

cle Using Restricted Structure NGMV Control Method,” European Control

Conference, London, UK, 2022. Submitted.
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Chapter 2

Theoretical Backgrounds

“The ancients stole all our great ideas from us.”

Mark Twain, Autobiography of Mark Twain.

In this chapter, the methods and concepts that make the foundations of this

thesis will be analysed from a general perspective. Firstly, the basic MV, GMV

and NGMV structures will be summarized briefly. Since the algorithms developed

in this thesis aim to deal with the control of non-linear systems classified as the

LPV and SD systems, an introduction to these systems will then follow.

Next, these two paths will merge under the final NGMV formulation which

also contains the augmented state-space model that is used throughout the entire

thesis to represent the systems that are controlled.

2.1 MV Control

MV control systems are represented by polynomial models. The scalar system

representation for this example is the Contemporaneous Auto-Regressive Moving-

Average (CARMA) polynomial model in (2.1), a combination of the plant model
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(minimum-phase/invertible) and noise terms,

y(t) =
B

A
u(t− k) +

C

A
ξ(t), (2.1)

where CARMA polynomial terms A,B,C and G are functions of z−1. However,

the indication will not be used including the polynomial terms of sections 2.2

and 2.3 to avoid notational complexity and because these are the only polyno-

mial examples used in this thesis. The white noise term ξ(t) contains the past

information of the signals up until the current time instant t.

The optimal k-steps ahead output is expressed by,

y(t+ k) =
B

A
u(t) +

C

A
ξ(t+ k),

note that the future noise terms ξ(t+ k) are random and cannot be estimated so

their correlation with other terms will be considered zero. The output y(t + k)

can be rewritten using the Diophantine equation C = AF + z−kG,

y(t+ k) = Fξ(t+ k) +
B

A
u(t) +

G

A
ξ(t).

Extracting the ξ(t) from the output in (2.1),

ξ(t) =
B

A
y(t)− B

C
u(t− k),

and eliminating it from the expanded y(t+ k) above,

y(t+ k) = Fξ(t+ k) + (
B

A
− z−kBG

AC
)u(t) +

G

C
y(t),

and finally by applying the Diophantine equation the k-steps ahead output is

given as,

y(t+ k) = Fξ(t+ k) +
BF

C
u(t) +

G

C
y(t). (2.2)
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System

PlantMV regulator

u(t) y(t)

ξ(t)

Figure 2.1: MV controller.

The MV cost function is then arranged and simplified in the steps below,

J = E{y2(t+ k)}

= E{Fξ(t+ k) +
BF

C
u(t) +

G

C
y(t)}2,

because the future noise terms are independent of control and outputs, their cross

products vanish and the cost function becomes,

J = E{BF
C
u(t) +

G

C
y(t)}2 + E{Fξ(t+ k)}2

= E{BF
C
u(t) +

G

C
y(t)}2 + (1 + f1

2 + . . .+ fk−1
2)σ2

e .

It is seen that the best way of minimizing J is to set the output terms
BF

C
u(t)+

G

C
y(t) = 0 which is possible by the control strategy,

u(t) = − G

BF
y(t), (2.3)

leaving only the minimum possible output variance Jmin = (1+f1
2+. . .+fk−1

2)σ2
e ,

thus giving the method its name as Minimum Variance control. The control block

diagram for the MV control is shown in Fig. 2.1.
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2.2 GMV Control

The MV control theory became more prominent with the introduction of the

GMV control. The original GMV control method [2] was offered as an extension of

the MV controller [1] by means of modifying its cost function to include weighted

control terms as shown in,

J = E{y2(t+ k) + λu2(t)}, (2.4)

minimization of which provides the GMV control law. The main motivation was

to enhance the robustness characteristics of the MV method, as it was unable

to handle the non-minimum phase plants. Therefore, the increased performance

and the simplicity to implement made popular with industrial process control

applications.

Majority of the GMV type controllers use polynomial models including this

example. The GMV cost function in (2.4) may be modified to include weighted

reference signals or can be formulated based on the variance of weighted error

and control terms.

For example, Grimble [9] revisits the GMV problem by proposing the cost

function J = E{ϕ2(t + k)} that is the variance of the pseudo output signal

defined as in,

ϕ(t) = Pce(t) + Fcu(t), (2.5)

demonstrated in Fig. 2.2. The weighting terms Pc and Fc are polynomial transfer

functions that are given for the scalar case,

Pc =
Pcn

Pcd

, Fc = z−kFcn

Fcd

, (2.6)

where subscripts cn and cd stand for the numerator and denominator respectively,

and let Fc = z−kFck.
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Pseudo output signal

+ +

y(t)

ξ(t)

+
-

+
+

d(t)

r(t)

e(t) u(t)

w(t)

Figure 2.2: GMV controller.

The output in (2.5) can be expanded in a similar form to that of the MV

system output in (2.1),

ϕ(t) = Pc

(
− z−kWku(t) + Yfξ(t)

)
+ Fcu(t)

= z−k
(
Fck − PcWk

)
u(t) + PcYfξ(t) (2.7)

consisting of input and white-noise terms, where z−k
(
Fck − PcWk

)
is the gener-

alized plant model and Wk is the delay free plant model. Then, using the delay

operator z−k and the Diophantine equation, reformulated as PcYf = F + z−kR,

the (2.7) becomes,

ϕ(t) =
(
PcWk − Fck

)
u(t− k) + PcYfξ(t)

= Fξ(t) +
(
PcWk − Fck

)
u(t− k) +Rξ(t− k). (2.8)

It is known that future noise terms are statistically independent of the rest. When

minimizing the cost function J = E{ϕ2(t + k)}, the product of the statistically

independent terms can be cancelled out hence the control signal for obtaining the
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minimum variance can be derived in a very similar strategy to the MV control

solution.

Consider the future output signal,

ϕ(t+ k) = Fξ(t+ k) +
(
PcWk − Fck

)
u(t) +Rξ(t),

and extract the noise term ξ(t) from (2.7),

ξ(t) =
ϕ(t)−

(
PcWk − Fck

)
u(t− k)

PcYf
.

When the ξ(t) term above is substituted in the output ϕ(t+ k) it becomes,

ϕ(t+ k) = Fξ(t+ k) +
PcYf

(
PcWk − Fck

)
− z−k

(
PcWk − Fck

)
R

PcYf
u(t) +

Rϕ(t)

PcYf
,

Then, using the Diophantine equation as well, it is clear that the GMV control

solution to minimize the J = E{ϕ2(t+ k)} is given by,

u(t) = − R(
PcWk − Fck

)
F
ϕ(t). (2.9)

When the term ϕ(t) is substituted and using the polynomials G,H and the cost

function weights defined before, the solution can be further simplified as,

u(t) = − R(
Fck −FYf−1Wk

)
Yf
e(t). (2.10)

The end result is the GMV controller whose structure is very similar to its pre-

decessor the MV controller. Note that this section only aims to explain the

control philosophy, thus some of the formulation have been skipped for the sake

of simplicity. For a detailed derivation, references [7, 9] are suggested. The GMV

controller can be implemented as illustrated in the control diagram in Fig. 2.3

with the inner loop that contains the delay free plant model Wk. Although there

19



Chapter 2. Theoretical Backgrounds

y(t)
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-

+
+

d(t)
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e(t) u(t)
+
-

GMV controller

Figure 2.3: GMV controller implementation.

has been many years since the original approach, the GMV still attracts attention

from the researchers. There have been rather recent attempts such as the GMV

control approach in [29] which offers state-space solutions using a Kalman filter

for the output predictions or the data-driven MV approach in [30].

2.3 NGMV Control

The initial versions of the NGMV used the same closed-loop feedback control

system structure as that of the GMV in [9] described in the previous section.

The NGMV controllers have the ability to revert to the GMV if the plant is

linear.

The systems and the control law in the initial version were represented by

polynomial expressions as well. However, main difference was that the plant

model was allowed to be non-linear. The non-linear plant model is given by the

statement below in which k denotes the delays,

Wu(t) = z−kWku(t). (2.11)

The objective of the NGMV algorithm is to minimize the cost function J =

E{ϕ2(t + k)} that is the variance of the signal ϕ(t) = Pce(t) + Fcu(t), same as
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the GMV but there are a couple more differences.

Firstly, the control weighting term Fc could be non-linear to compensate for

plant or actuator non-linearities,

Fcu(t) = z−kFcku(t). (2.12)

Second, the non-linear operator
(
PcWk −Fck

)
is restricted to be stably invertible

to ensure the closed-loop stability. The solution procedure is also quite similar

to the GMV. The variance term ϕ(t) is split into statistically independent terms

like in (2.7) and (2.8) . Then the control signal that cancels out the terms it can

affect is chosen as the NGMV controller,

u(t) =
−R

Fck − PcWk

ϕ(t), (2.13)

which can be implemented using the same loop structure of Fig. 2.3 with,

u(t) = −
RY −1

f

Fck − FY −1
f Wk

e(t). (2.14)

An interesting implementation issue with the type of the diagram used, is that

the closed-loop feedback control system faces the algebraic loop problem because

of the inner-loop. Algebraic loops can become computational burdens and may

prove difficult to solve but there are remedies to fix them. The control solu-

tion can be implemented in a different structure or the problem may be avoided

much easily by introducing a unit-step delay before the inner feedback loop. In

some cases, The Matlab/Simulink can solve it without an intervention. For the

implementations in this thesis, the unit-step delay has worked.

This section summarizes the control philosophy of the classical NGMV solu-

tion. The modern NGMV technique will be revisited in much more detail.
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2.4 LPV and State-Dependent Systems

Most physical systems are non-linear in nature thus the design of controllers

that can handle complex models is important. The traditional approach to deal

with non-linearities is applying linearisation procedures at designated operating

points. Depending on the application, there can be various operating points and

corresponding controllers designed for each of them. The controllers are then

scheduled with respect to operating conditions. This technique is called the gain

scheduled control [31] and has been popular especially in the aerospace industry.

Although the method has shown success in many applications, there are cer-

tain drawbacks to using it. For example, scheduling multi-variable feedback con-

trollers can be daunting and time-consuming. Stability also can not be guaranteed

other than at the design points. These facts had set the stage to address LPV

techniques as a remedy [32, 33]. According to [34], the need for a framework that

can handle both non-linearities and time-varying dynamical aspects mixed with

gain-scheduling ideas has led actually to the rise of LPV systems.

Over the years, LPV systems have proven useful in many application areas

including wind turbine control, automotive and aerospace industries [35− 37]. A

survey study [38] provides a wide overview of LPV controllers grouped by appli-

cation areas. The results have been validated by experiments and simulations.

The study claims that LPV control has evolved into an effective tool to address

non-linear control problems and has been attracting an increasing attention from

researchers.

However, LPV control has its own limitations in dealing with non-linear sys-

tems. It does not come with a standardized methodological approach for assuring

stability. The derivation of LPV controllers do not go through sophisticated sta-

bility analysis tools like the Lyapunov theory, for example. Therefore, stability

cannot always be guaranteed and mostly remain local or application specific.

Mathematically, LPV systems are defined as linear dynamical systems that
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consist of parameters whose values change over time. The following examples are

used to explain the notion.

The state-space representation of a Linear Time-Invariant (LTI) system is

given by the model below,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

with state matrices A,B,C and D that are constant. The x(t) is the state vector

and u(t) is the control input. On the other hand, a Linear Time-Varying (LTV)

system differ from the LTI by depending on time. The state-space representation

of a LTV system is as,

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t).

The formulation of LPV systems is distinguished from LTI and LTV systems as,

ẋ(t) = A
(
ρ(t)

)
x(t) +B

(
ρ(t)

)
u(t),

y(t) = C
(
ρ(t)

)
x(t) +D

(
ρ(t)

)
u(t),

where ρ(t) is the time-varying parameter vector that is external and unknown

a-priori but can either be measured or estimated. It is also referred to as the

scheduling variable vector in some cases.

The varying parameters are categorized formally as exogenous and endoge-

nous. The parameter ρ(t) is called exogenous if it is an external variable to the

system (like in LPV case) and called endogenous if it is a function of the states.

The latter is a special case and it is referred to as a Quasi Linear Parameter-

Varying (qLPV) system. It is a useful technique to approximate non-linear sys-
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Figure 2.4: LPV, qLPV and SD system structures.

tems. A well-known academic example from [39] is provided below to explain the

qLPV systems:

ẋ(t) = −x(t)2, (2.15)

is a non-linear system and can be re-arranged in this fashion,

ẋ(t) = −ρ(t)x(t), (2.16)

where ρ(t) = x(t) ∈ R. This equation describes the original non-linear system

indeed but has a linear form matching the general LPV system representation.

While the statement is true it is not entirely precise because a qLPV system may

also be function of inputs u(t) and scheduling parameters p(t) that are chosen by

the designer. If the parameter ρ(t) only depends on the states, it might be more

accurate to classify it as state-dependent.

Before going any further, let us also clarify that unless a specific system mod-

elling is being mentioned, this thesis treats both the LPV and qLPV under the

joint term LPV since the control solution applies to both and also to be in accord

with the LPV research literature terminology.

Fig. 2.4 demonstrates the LPV, qLPV and SD systems graphically. It is

illustrated that the LPV system includes only the external variables
(
ρ(t) =

ρexternal(t)
)
. Whereas in the qLPV case, ρ(t) may also include a set of selected
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system states, inputs and the time-varying known parameter vector p(t). For the

SD case, its the states in other words, ρ(t) = x(t). It is worth mentioning that

because they overlap on the states, qLPV systems are sometimes expressed as

SD in the literature. To clarify let us present their formulation as well. A qLPV

system is represented using,

ẋ(t) = A
(
x(t), u(t), p(t)

)
x(t) +B

(
x(t), u(t), p(t)

)
u(t), (2.17)

y(t) = C
(
x(t), u(t), p(t)

)
x(t) +D

(
x(t), u(t), p(t)

)
u(t). (2.18)

and a SD system is presented with the model,

ẋ(t) = A
(
x(t)

)
x(t) +B

(
x(t)

)
u(t), (2.19)

y(t) = C
(
x(t)

)
x(t) +D

(
x(t)

)
u(t). (2.20)

LPV system representations mentioned so far are in their most generalized

form. In fact, LPV system parametrisation is not unique and there are several

modelling approaches such as polytope, affine parameter-dependent, polynomial

parameter-dependent, rational parameter-dependent or Linear-Fractional Trans-

formation (LFT). It is also common to extract LPV system models via Jacobian

linearisation as in [40]. However, concerning the scope of this work the informa-

tion provided here is sufficient.

2.5 NGMV Control for State-Space Systems

Having summarized the core concepts of MV strategies, the LPV and SD systems,

it is time to introduce the modern NGMV control approach which is a descendant

of the original NGMV controller described previously. The method diversifies to

provide the optimal NGMV control solution for the multi-variable state-space

systems including LPV systems. It also serves as the backbone of the novel RS-
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Figure 2.5: The LPV plant and signal models.

NGMV approach, thus will be studied in detail under this section. From here

on, the term NGMV will be used to represent this approach only instead of the

original polynomial version.

2.5.1 State-Space Plant Models and Signals

Consider the system in Fig. 2.5, it is composed of a set of individual subsystems

that are described as plant, input, error weighting and disturbance models using

matrices and signals. Note that the plant model that is mentioned is of the linear

form as also highlighted in the figure. The model-based design of the NGMV

algorithm does not only allow access to a wider range of non-linear systems but

also serves well for general design processes by being modification-friendly. The

linear plant subsystem is denoted by W0(z
−1) and may be LPV, qLPV, SD, LTV

or even LTI. The NGMV control law will remain the same except the matrices.

For notational simplicity, the index t will be used to denote the state-space

matrices At,Bt,Ct or similarly Dt. To reference the corresponding subsystem,

following subscripts are used.

� r: Reference subsystem,
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� 0: Linear or LPV/SD subsystem,

� u: Input subsystem,

� d: Disturbance subsystem or deterministic disturbance signal index,

� p: Error weighting Pc subsystem,

� m: Measurement index,

� w: Deterministic component index of some signals.

The vectors that represent the signals used in the overall system are defined

as,

� x(t): Vector of augmented system states,

� u0(t): Vector of control signals applied to the linear state subsystem,

� u(t): Vector of control signals applied to the input subsystem,

� dm(t): Vector of known output-disturbance signals to be measured,

� dp(t): Vector of known output-disturbance signals to be controlled,

� dd(t): Vector of known input-disturbance signals,

� ξ(t): Zero-mean white noise as stochastic piece of the input-disturbance

driven by the process noise signal ζ(t),

� rw(t): Vector of deterministic reference signals,

� r(t): Vector of deterministic reference model output.

The individual subsystems mentioned here will be presented in detail in 2.5.2.

These subsystems make up for the entire NGMV system and they can be incor-

porated into the augmented state-space model,

x(t+ 1) = Atx(t) +Btu0(t− k) +Dtξ(t) + dd(t). (2.21)
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The system’s controlled output y(t) is defined as in the equation,

y(t) = Ctx(t) + Etu0(t− k) + d(t). (2.22)

The augmented system’s measured output ym(t) is expressed by the equation,

ym(t) = Cmtx(t) + Emtu0(t− k) + dm(t), (2.23)

The terms controlled and measured separate the outputs as measurable and not

measurable but controlled. In some cases, they can be the same y(t) = ym(t).

The measured outputs ym(t) are combined with the sensor or measurement

noise vm(t) to obtain the observation signal zm(t),

zm(t) = Cmtx(t) + Emtu0(t− k) + dm(t) + vm(t). (2.24)

The reference signal r(t) is assumed to be deterministic and defined as,

r(t) = Wwrw(t), (2.25)

where Ww is a linear ideal response model and is also a function of the unit-delay

operator z−1 but from this point on, the models W will be simply used without

this notation.

The system’s output tracking error e(t) is given by the definition,

e(t) = r(t)− y(t). (2.26)

The weighted error signal ep(t) = Pce(t) is denoted as in the model below,

ep(t) = Cptx(t) + Eptu0(t− k) + dp(t). (2.27)
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The terms Cpt and Ept are derived from the model of error weight Pc and in section

2.5.2, it will be explained how to. The input subsystem may be non-linear, and

formulated by,

u0(t) = W1u(t) = z−kW1ku(t). (2.28)

which contains the unstructured plant model W1k. This is an important feature

also shared with the previous NGMV algorithms. The fact that the input sub-

system model is generalized as unstructured provides a major advantage to the

NGMV algorithms as it gives them the capability to deal with black box terms.

The term black box could include any system from devices to algorithms, even

biological systems like human brain whose inputs and outputs are observable but

inner characteristics are completely unknown.

For example, a system model could be considered as black box if it is defined

off-limits to the designer (closed source like firmware, due to copyrights). In that

case, a controller that can deal with the unknown physical structure without

having a need to go through major modifications, might be useful. All that

is needed for the controller is the input and output information. This is a great

benefit of the NGMV, since most industrial applications enforce legal restrictions,

and modelling of a system from scratch may prove difficult or time-consuming

for the control design engineers.

2.5.2 Augmented State-Space System Model

The total state-space model used by the Kalman filter and the NGMV control

solutions is presented in this section. The RS-NGMV that will be introduced in

chapter 3 also uses it as its state-space model. It is called the augmented state-

space model because the information from the different subsystems are stacked in

it. It uses the set of equations in (2.21− 2.24) and (2.27) which will be expanded
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in detail now starting with the state vector x(t) in,

x(t) = (x0(t), xd(t), xp(t), xu(t))
T , (2.29)

combining the LPV plant states x0(t), disturbance states xd(t), error states xp(t)

and control input weighting states xu(t), respectively. Using x0(t), the LPV plant

model, the measure output and observation signals are represented by the set of

equations,

x0(t+ 1) = A0tx0(t) +B0tu0(t− k) +D0tζ0(t) +G0td0d(t), (2.30)

y(t) = C0tx0(t) + E0tu0(t− k) + d0(t), (2.31)

ym(t) = C0mtx0(t) + E0mtu0(t− k) + d0m(t), (2.32)

zm(t) = ymt + vm(t), (2.33)

where the controlled and the measured output disturbances are,

d0(t) = d(t) + yd(t), (2.34)

d0m(t) = dm(t) + ydm(t), (2.35)

respectively. Both disturbance signals are composed of deterministic (d(t), dm(t)),

and stochastic (yd(t), ydm(t)) components.

The deterministic output disturbance component d(t) is obtained by using

the zero-mean white noise signal w(t),

d(t) = Wdw(t), (2.36)

where the component Wd is defined as the output disturbance model,

Wd = Cdt(zI − Adt)
−1Ddt. (2.37)
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Having described the LPV plant model, the disturbance state xd(t) driven by the

stochastic signal w(t), is used to define the disturbance model,

xd(t+ 1) = Adtxd(t) +Ddtw(t), (2.38)

yd(t) = Cdtxd(t), (2.39)

ydm(t) = Cdmtxd(t). (2.40)

Then, the weighted error state model is implemented as in,

xp(t+ 1) = Aptxp(t) +Bpt(r(t)− y(t)), (2.41)

yp(t) = Cptxp(t) + Ept(r(t)− y(t)), (2.42)

whose matrices for example, can be obtained from the NGMV cost-function error

weighting term Pc(z
−1) by defining it in discrete-time transfer function form and

performing proper conversions (e.g. using Matlab’s ssdata(sys) commands). The

same procedure applies for the NGMV cost-function control weighting term Fc

to derive control input weighting state-space model as in below,

xu(t+ 1) = Autxu(t) +Butu0(t− k), (2.43)

yu(t) = Cutxu(t) + Eutu0(t− k), (2.44)

on the condition that (PcWk − Fck) is stably invertible [16]. If desired, an extra

weighting can also be introduced on some state variables using,

yx(t) = Cp0tx0(t) + Epdtxd(t). (2.45)

However, this leads to the modification of NGMV cost function by re-defining it

as the SD-NGMV cost function which is not needed for the work in this thesis

(for details see [14]). Similar to the state-weighting, xu(t) related control input
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state-space models can be avoided from using in the augmented state-space model

especially when the NGMV solutions do not consider the unstructured non-linear

subsystems. Revisiting (2.41) and substitute the y(t) with (2.31),

xp(t+ 1) = Aptxp(t) +Bpt

(
r(t)−

(
C0tx0(t) + E0tu0(t− k) + d0(t)

))
, (2.46)

and then using d0(t) = d(t) + yd(t) along with (2.39) for (2.46), the result will

return as (2.47). Then, similarly re-arranging the (2.42) to the output in (2.48)is

obtained. The total weighted error model will be updated as,

xp(t+ 1) = Aptxp(t) +Bpt

(
r(t)− C0tx0(t)− E0tu0(t− k)− Cdtxd(t)− d(t)

)
,

(2.47)

yp(t) = Cptxp(t) + Ept

(
r(t)− C0tx0(t)− E0tu0(t− k)− Cdtxd(t)− d(t)

)
,

(2.48)

Now, it can be shown how models above combine into the augmented state

x(t) and subsequently into the augmented state-space model,


x0(t+ 1)

xd(t+ 1)

xp(t+ 1)

xu(t+ 1)

 =


A0t 0 0 0

0 Adt 0 0

−BptC0t −BptC0t Apt 0

0 0 0 Aut




x0(t)

xd(t)

xp(t)

xu(t)

+


B0t

0

−BptE0t

But

u0(t− k)

+


D0t 0

0 Ddt

0 0

0 0


ζ(t)

ω(t)

+


G0t 0

0 0

0 Bpt

0 0


 d0d(t)

(r(t)− d(t))

 . (2.49)

With the information from the SS disturbance models, the controlled and mea-
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sured output signals defined in (2.31) and (2.32) of the LPV plant are expanded,

y(t) = C0tx0(t) + E0tu0(t− k) + Cdtxd(t) + d(t), (2.50)

ym(t) = C0mtx0(t) + E0mtu0(t− k) + Cdmtxd(t) + dm(t). (2.51)

Gathering the output equations for the weighted error signals we have,


yp(t)

yu(t)

yx(t)

 =


−EptC0t EptCdt Cpt 0

0 0 0 Cut

Cp0t Cpdt 0 0



x0(t)

xd(t)

xp(t)

xu(t)

 (2.52)

+


−EptE0t

Eut

0

u0(t− k) +


Ept(r(t)− d(t))

0

0


Finally, by denoting the matrices through (2.49−2.52) as below, the derivation of

the augmented SS system model in (2.21−2.23) and (2.27) is revealed completely.

At =


A0t 0 0 0

0 Adt 0 0

−BptC0t −BptC0t Apt 0

0 0 0 Aut

 , Bt =


B0t

0

−BptE0t

But

 ,

Dt =


D0t 0

0 Ddt

0 0

0 0

 , Gt =


G0t 0

0 0

0 Bpt

0 0

 ,

Ct =
(
C0t Cdt 0 0

)
, Et = E0t,

Cmt =
(
C0mt Cdmt 0 0

)
, Emt = E0mt
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Cpt =


−EptC0t EptCdt Cpt 0

0 0 0 Cut

Cp0t Cpdt 0 0

 , Ept =


−EptE0t

Eut

0

 ,

dd(t) = Gt

 d0d(t)

(r(t)− d(t))

 , dp(t) =


Ept(r(t)− d(t))

0

0

 , ξ(t) =

ζ(t)

w(t)

 .

2.5.3 Prediction Model and LPV Kalman Filter

The NGMV controller utilizes a LPV Kalman filter for both k−steps ahead pre-

dictions of the output signals (characteristics of MV based optimization) and the

estimation of states that cannot be measured.

The Kalman filter aforementioned is of the predictor-corrector form which

was originally proposed in [41]. In previous NGMV related research such as the

[25], the Extended Kalman Filter (EKF) was utilized for a NPGMV wind turbine

control problem. In this case, the LPV model was extracted from the Jacobian

linearisation of the non-linear plant thus it suited the use of EKF which involved

Jacobian linearisation. In our case, the LPV Kalman filter is used because the

models are assumed to be in LPV or SD form. Moreover, the use of the EKF

that requires more intense computations is unnecessary if the model is in LPV

or SD form. The Kalman filter’s algorithm is presented in the Fig. 2.6 where the

state prediction equation is expressed by,

x̂(t+ 1|t) = Atx̂(t|t) +Btu0(t− k) + dd(t). (2.53)

The notation x̂(t|j) refers to the time t value of x̂(t) (the estimate of x(t)) that

contains the information up to and including the time j. The corrector is given
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Figure 2.6: The Kalman filter algorithm.

by the following equation,

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +Kf,t+1(z(t+ 1)− ẑ(t+ 1|t)), (2.54)

where ẑ(t+1|t) = Ct+1x̂(t+1|t)+Et+1u0(t+1−k)+dd(t+1). The Kalman filter

corrector term Kf,t+1 is referred to as the Kalman filter gain and it is expanded

in,

Kf,t+1 = P (t+ 1|t)CT
t+1(Ct+1P (t+ 1|t)CT

t+1 +Rt+1)
−1. (2.55)

The gain consists of process and measurement noises along with a-priori (between

observations) and a-posteriori (post observations) covariance matrices detailed as:

� Process noise: Qt = E{wtw
T
t } where wt defines the noise term dd(t) of

(2.53),

� Measurement noise: Rt = E{vkvTk },

� A-priori covariance: P (t+ 1|t) = AtP (t|t)AT
t +DtQtD

T
t ,

� A-posteriori covariance: P (t+ 1|t+ 1) = P (t+ 1|t)−Kf,t+1Ct+1P (t+ 1|t),

� Initial covariance: P (0|0) = E{(x(0)− x̂(0))(x(0)− x̂(0))T}.
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The Kalman filtering procedure starts with the initial estimates of the states

and covariances, then the algorithm is implemented in a recursive fashion.

The predictions of time t, are compared to the observations in the next time

step t + 1 and the state estimates are updated (i.e. they are corrected). Using

the Kalman filter estimations, the k−steps ahead state prediction models can

be constructed. First, the state model (2.21) is generalized for i-steps into the

future,

x(t+ i) = At+i−1At+i−2 . . . Atx(t) +
i∑

j=1

At+i−1At+i−2 . . .

. . . At+j(Bt+j−1u0(t+ j − 1− k) +Dt+j−1ξ(t+ j − 1) + dd(t+ j − 1)),

which is simplified in,

x(t+ i) = Ai
tx(t) +

i∑
j=1

Ai−j
t+j(Bt+j−1u0(t+ j − 1− k) +Dt+j−1ξ(t+ j − 1))

+ ddd(t+ i− 1), (2.56)

by defining the set of state-matrices as,

� Ai
t = At+i−1At+i−2 . . . At, if i > 0,

� A0
t = I, if i = 0,

� Ai−m
t+m = At+i−1At+i−2 . . . At+m, if i > m,

� A0
t+m = I, if i = m,

and known disturbances,

� ddd(t+ i− 1) =
i∑

j=1

Ai−j
t+jdd(t+ j − 1), if i > 0,

� ddd(t− 1) = 0, if i = 0.
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Then, through (2.56) and definitions following it, the state predictor is introduced,

x̂(t+ k|t) = Ak
t x̂(t|t) +

k∑
j=1

Ak−j
t+j Bt+j−1u0(t+ j − 1− k) + ddd(t+ k − 1). (2.57)

Secondly, the prediction error model is constructed starting with the weighted

errors generalized in a similar fashion for (2.27),

ep(t+ i) = Cpt+ix(t+ i) + Ept+iu0(t+ i− k) + dp(t+ i). (2.58)

Substituting from (2.56) and the above equation becomes,

ep(t+ i) = Cpt+iA
i
tx(t) + Cpt+i

i∑
j=1

Ai−j
t+jBt+j−1u0(t+ j − 1− k)+

Cpt+i

i∑
j=1

Ai−j
t+jDt+j−1ξ(t+ j − 1) + Ept+iu0(t+ i− k) + dpd(t+ i), (2.59)

where the deterministic disturbance components of state and error models are

combined,

dpd(t+ i) = dp(t+ i) + Cpt+iddd(t+ i− 1). (2.60)

The prediction error model is finalized in,

êp(t+ k|t) = Cpt+kx̂(t+ k|t) + Ept+ku0(t) + dp(t+ k), (2.61)

which can be simplified by defining d0pd(t+ k) = dpd(t+ k) + Cpt+kx̂(t+ k|t),

êp(t+ k|t) = Ept+ku0(t) + d0pd(t+ k). (2.62)

The estimation of the weighted error at k-steps ahead has the relation,

ep(t+ k) = êp(t+ k|t) + ẽp(t+ k), (2.63)
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Figure 2.7: Basic NGMV control diagram.

where the estimation error satisfies.

ẽp(t+ k) = Cpt+k(x(t+ k)− x̂(t+ k|t)) = Cpt+k(x̃(t+ k)), (2.64)

2.5.4 Optimization and the NGMV Control Law

With the LPVKF and prediction models set up, the NGMV cost function and

its solution can now be discussed. Recall the GMV cost function of (2.5) which

was also used as the NGMV cost function of the original example. The modern

NGMV takes the same approach but in our example, the pseudo-output signal

will be demonstrated with the simplified error terms thus becoming,

ϕ(t) = ep(t) + Fcu(t).

The control solution results from the minimization of this signal’s variance,

J = E{ϕT (t+ k)ϕ(t+ k)|t}, (2.65)

The basic control diagram of the NGMV shown in Fig. 2.7 contains the non-linear
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plant model Wk which may be separated into a delay-free linear plant subsystem

W0 and a non-linear input subsystem W1k (W1 = z−kW1k),

Wu(t) = z−kW0kW1ku(t), (2.66)

Thus, the control inputs u(t) and u0(t) are related by the expression,

u0(t) = W1ku(t), (2.67)

Substituting the weighted error term ep(t) with (2.27) the signal ϕ(t) becomes,

ϕ(t) = Cptx(t) + Eptu0(t− k) + dp(t) + Fcu(t). (2.68)

Recall that Fcu(t) = z−kFcku(t) and using (2.67), the signal is now,

ϕ(t) = Cptx(t) + (EptW1k + Fck)u(t− k) + dp(t), (2.69)

whose future values are represented as,

ϕ(t+ k) = Cpt+kx(t) + (Ept+kW1k + Fck)u(t) + dp(t+ k). (2.70)

The signal ϕ(t) is predicted by the model,

ϕ̂(t+ k|t) = Cpt+kx̂(t+ k|t) + (Ept+kW1k + Fck)u(t) + dp(t+ k), (2.71)

and the condition for optimality is ϕ̂(t + k|t) = 0 since the goal is to minimize

the variances. Rewriting the cost function in (2.65) with regards to predictions

and errors,

J = E{ϕ̂(t+ k)T ϕ̂(t+ k)|t}+ E{ϕ̃(t+ k)T ϕ̃(t+ k)|t}, (2.72)
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Figure 2.8: NGMV controller implementation.

The prediction errors ϕ̃(t + k) are independent of the control action, however,

it is possible for the controller to influence the prediction values represented by

ϕ̂(t+k|t). Therefore, the minimum variance can be achieved by setting ϕ̂(t+k|t) =

0 whose solution returns the NGMV the controller in,

u(t) = (Ept+kW1k + Fck)
−1(−Cpt+kx̂(t+ k|t)− dp(t+ k)). (2.73)

This is re-arranged below into a form more suitable for implementations,

u(t) = F−1
ck

(
− Cpt+kx̂(t+ k|t)− dp(t+ k)− Ept+kW1ku(t)

)
. (2.74)

Alternative to (2.74), the control signal can be calculated in terms of the current

state estimation value x̂(t|t) as in,

u(t) = F−1
ck

(
− Cpt+kA

k
t x̂(t|t)− dpd(t+ k)− (Ept+k + Cpt+kT0)W1ku(t)

)
, (2.75)

where dpd(t+ i) = dp(t+ i)+Cpt+iddd(t+ i−1) and the operator T0 of the LPVKF

prediction equations is T0 =
i∑

j=1

Ai−j
t+jBt+j−1z

j−1−k. Finally, the NGMV controller

in (2.75) is implemented as in the Fig. 2.8.
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2.6 Closing Remarks

This sums up the NGMV method that is the basis of the RS-NGMV to be intro-

duced. There are other implementation strategies for the approach with different

benefits to each other [16]. The designer’s background and understanding of the

method can have a huge impact. Some NGMV control diagrams presented in

the literature are only conceptual and are good for understanding the intuitions.

However, the designer might have to resort to other structures when it comes to

the implementation. Another important aspect is the choice of weightings. It is a

highly crucial part of the design procedure, as it is related to the stability of the

controller. More emphasis to design procedures will be given in the next chapter.
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RS-NGMV Control

“Nothing great is created suddenly, any more than a bunch of grapes

or a fig. If you tell me that you desire a fig, I answer you that there

must be time. Let it first blossom, then bear fruit, then ripen.”

Epictetus, Discourses.

This chapter is organized as follows: In the first section the so-called RS

controller is introduced by presenting the SISO and MIMO designs. Then, the

parallel form of the RS controller is introduced as a special case by discussing the

absolute and deviating controller gain concepts. The section 3.2 brings up the

RS-NGMV controller for LPV systems followed by an investigation of the control

solution for unstructured non-linear input subsystem model in section 3.3. The

section 3.4 introduces the weighting strategy and stability discussion. The section

3.5 presents the design procedure for the RS-NGMV controllers and section 3.6

summarizes the chapter and mentions its connections with the other chapters.

3.1 Restricted Structure Controller

The very basic idea behind the RS approach is to characterize a controller with a

pre-defined order and structure chosen by the designer. The order and structure
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of the RS controller are independent of the plant order which provides important

advantages. Generally, RS controllers are designed to be of a lower order than the

plant taking the form of phase-lead, phase-lag, phase lead-lag or industrial PID

controllers as described in detail by Chapter 12 of [42]. They enable flexibility

by being low-order approximations to high-order controllers. In fact, a great deal

of optimal/predictive control designs are of high order which in return creates

difficulties on the implementation side. Hence comes the motivation to restrict

such advanced control strategies to structures of lower order with simpler designs

and wider range of applications. As a result, there has been research [43− 57] to

offer optimal/predictive control methods that comes with restricted structures.

Among these studies, [54] considered a multi-variable Predictive PID (PPID)

algorithm having gains minimizing the GPC cost index. In [44], the LQG cost

index was used for the RS-optimizations in the tuning of control gains. The [47]

and [56] involve benchmarking of the multi-variable Restricted Structure Linear

Quadratic Gaussian (RS-LQG) controllers for determining the best RS structure

by defining a controller performance index evaluated for each loop.

RS-NGMV control algorithm has been presented in [58]. The algorithm con-

siders the NGMV method within a novel reduced-order restricted structure of

a general z-transfer function or PID. The cost function to be minimized is very

similar to the NGMV cost function. The optimization procedure results in the

optimal feedback controller gains. The approach enables the advantages of the

NGMV with a low-order structure such as the PID, that engineers in the industry

who have classical controls training tend to be familiar with. Based on the results

of this chapter, a RS-NGMV controller has been designed for a qLPV two-link

robotic manipulator system [59]. The results verify the RS-NGMV algorithm and

are further discussed in Chapter 5. The RS approach utilized in the RS-NGMV

has also been adapted for the so-called Restricted Structure Generalized Predic-

tive Control (RS-GPC) in [60]. The RS algorithms of [58 − 60] have all 1-DOF
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structures suited for reference tracking problem. The work in [61] provides the

2-DOF and 3-DOF versions of the RS-GPC to use the feedforward reference and

measured output disturbance signals.

3.1.1 SISO Case

The RS controller is obtained from the multiplication of user pre-specified func-

tions by some optimized feedback gains. It can be formulated as in:

u(t) =

Ne∑
j=1

fj(z
−1, kj(t))e(t) (3.1)

= f1(z
−1, k1(t))e(t) + f2(z

−1, k2(t))e(t) + · · ·+ fNe(z
−1, kNe(t))e(t),

where fj(z
−1, kj(t)) denotes the pre-specified functions, kj(t) represents the op-

timized feedback gains and e(t) = r(t) − z(t) the feedback errors. The above

expression generalizes the SISO case. The notation j stands for the index num-

ber assigned to the restricted structure elements.

The scalar restricted structure could be designed for any low-order controller

of the general z-transfer function form,

C0(z
−1) =

C0,num + C1,numz
−1 + · · ·+ Cn,numz

−n

1 + C1,denz−1 + · · ·+ Cm,denz−m
.

To demonstrate how the controller is utilized more clearly, PID will be incor-

porated in the RS fashion in the example below. The Restricted Structure PID

(RS-PID) controller has Ne = 3 pre-specified functions that can be broken down

into the terms,

f1(z
−1) = 1, f2(z

−1) =
1

1− z−1
, f3(z

−1) =
1− z−1

1− αz−1
,

which represents the discretized proportional, integral and the filtered derivative
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Plant
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+
-

OutputReference
+
+

RS-PID controller

=

Figure 3.1: RS-PID controller.

operators respectively. Using the feedback gains kPID and the feedback error e(t)

the RS-PID control signal is obtained,

u(t) = f1(z
−1)kP e(t) + f2(z

−1)kITse(t) + f3(z
−1)kDe(t), (3.2)

which is illustrated in the Fig. 3.1. Beyond this point, it is up to the designer

to decide how the PID gains are chosen and optimized. This thesis considers

the NGMV optimization solution to tune the gains within the RS-PID structure

(or RS-PI structure where the derivative term is not included). In an upcoming

subsection, this is further explained under the parallel RS form where the designer

can either chose to let RS optimizations to fully adjust the feedback gains kc(t)

or define fixed gains first (for example PID) and then allow the RS optimizations

to adjust these gains by deviations.

For software implementations, it is always useful to consider vectorizations.

The scalar RS controller in (3.1) may be vectorized by,

u(t) = Fe(t)kc(t). (3.3)
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+
-

+
-

+
-

Outputs

MIMO RS controller MIMO plant Observations

InputsErrorsRerefence signals

Figure 3.2: MIMO RS controller.

The term Fe(t) is a vector of,

Fe(t) =
(
ef1(t) ef2(t) . . . efNe(t)

)
1×Ne

, (3.4)

which are the products of the terms fj(z
−1) extracted from the pre-specified

functions and the feedback error e(t), that is,

efi(t) = fi(z
−1)e(t), (3.5)

for i = {1, 2, . . . , Ne}. The kc(t) is a Ne × 1 size vector of gains,

kc(t) =


k1

k2
...

kNe


Ne×1

(3.6)

3.1.2 MIMO Case

It involves a little more tedious procedure to derive the RS controller for multi-

variable systems. Consider a multi-variable system demonstrated in Fig. 3.2 with

the dimension m × r. We have r channels of error signals given by the vector
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below,

e(t) =
(
eT1 (t) eT2 (t) . . . eTr (t)

)T

(3.7)

The functions fj(z
−1, kj(t)) and gains kj(t) introduced in the SISO case now

expands considering the size of the MIMO system, that is,

fj(z
−1, kj(t)) =


f j11(z

−1)kj11(t) f j12(z
−1)kj12(t) . . . f j1r(z

−1)kj1r(t)

f j21(z
−1)kj21(t) f j22(z

−1)kj22(t) . . . f j2r(z
−1)kj2r(t)

...
...

. . .
...

f jm1(z
−1)kjm1(t) f jm2(z

−1)kjm2(t) . . . f jmr(z−1)kjmr(t)

 . (3.8)

Multiplying the error signals in (3.7) with (3.8), the fj(z
−1, kj(t))e(t) equals to,

f j11(z
−1)kj11(t)e1(t) + f j12(z

−1)kj12(t)e2(t) + . . .+ f j1r(z
−1)kj1r(t)er(t)

f j21(z
−1)kj21(t)e1(t) + f j22(z

−1)kj22(t)e2(t) + . . .+ f j2r(z
−1)kj2r(t)er(t)

...
...

...
...

f jm1(z
−1)kjm1(t)e1(t) + f jm2(z

−1)kjm2(t)e2(t) + . . .+ f jmr(z−1)kjmr(t)er(t)

 . (3.9)

The controller form in equation (3.1) is summarized into its MIMO form,

u(t) =



Ne∑
j=1

r∑
l=1

{f j
11(z

−1)kj1lel(t)}
Ne∑
j=1

r∑
l=1

{f j
21(z

−1)kj2lel(t)}
...

Ne∑
j=1

r∑
l=1

{f j
m1(z

−1)kjmlel(t)}


,

m×1

(3.10)

It is possible to parametrize the MIMO RS controller as u(t) = Fe(t)kc(t) too, by

introducing the pre-specified functions and gains in the matrix form.

While it is possible to get away without parametrisation in the SISO case,

the approach is undeniably advantageous when dealing with large multi-variable

systems because it allows the software implementation of the RS controller to

be much less complex. Firstly, the user pre-specified functions from (3.4) are
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expanded starting from the first row as in,
f 11
e

f 12
e

...

f 1r
e

 =


f 1
11(z

−1)e1(t) f 2
11(z

−1)e1(t) . . . fNe
11 (z

−1)e1(t)

f 1
12(z

−1)e2(t) f 2
12(z

−1)e2(t) . . . fNe
12 (z

−1)e2(t)
...

...
. . .

...

f 1
1r(z

−1)er(t) f 2
1r(z

−1)er(t) . . . fNe
1r (z

−1)er(t)

 ,

r×Ne

(3.11)

and then the second row expands,
f 21
e

f 22
e

...

f 2r
e

 =


f 1
21(z

−1)e1(t) f 2
21(z

−1)e1(t) . . . fNe
21 (z

−1)e1(t)

f 1
22(z

−1)e2(t) f 2
22(z

−1)e2(t) . . . fNe
22 (z

−1)e2(t)
...

...
. . .

...

f 1
2r(z

−1)er(t) f 2
2r(z

−1)er(t) . . . fNe
2r (z

−1)er(t)

 ,

r×Ne

(3.12)

and rest of the rows expand similarly, until the mth row,
fm1
e

fm2
e

...

fmr
e

 =


f 1
m1(z

−1)e1(t) f 2
m1(z

−1)e1(t) . . . fNe
m1(z

−1)e1(t)

f 1
m2(z

−1)e2(t) f 2
m2(z

−1)e2(t) . . . fNe
m2(z

−1)e2(t)
...

...
. . .

...

f 1
mr(z

−1)er(t) f 2
mr(z

−1)er(t) . . . fNe
mr(z

−1)er(t)

 .

r×Ne

(3.13)

These terms are gathered within the matrix below,
ef1(t)

ef2(t)
...

efm(t)

 =


f 11
e f 12

e . . . f 1r
e

f 21
e f 22

e . . . f 2r
e

...
...

. . .
...

fm1
e fm2

e . . . fmr
e

 ,

m×r

(3.14)

which is used to define the diagonal matrix Fe(t) that contain the pre-specified
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functions (size m× (m× r ×Ne) matrix when fully expanded),

Fe(t) = diag{ef1(t), ef2(t), · · · , efm(t)}. (3.15)

Now, the similar approach is taken for parametrising the feedback gains. First,

define the (m× r ×Ne)× 1 size total gain vector kc(t),

kc(t) =
(
kTc1(t) kTc2(t) · · · kTcm(t)

)T

, (3.16)

where feedback gains belonging to each multi-variable loop are embedded in chan-

nels indexed by i = {1, 2, . . . ,m},

kci(t) =
(
ki1c (t) ki2c (t) . . . kirc (t)

)
. (3.17)

The individual elements of the first channel is expanded with the fashion,

kc1(t) =
(
k11c (t) k12c (t) . . . k1rc (t)

)

=


k111(t) k112(t) . . . k11r(t)

k211(t) k212(t) . . . k21r(t)
...

...
. . .

...

kNe
11 kNe

12 (t) . . . kNe
1r (t)


r×Ne

, (3.18)

The second channel expands similarly,

kc2(t) =
(
k21c (t) k22c (t) . . . k2rc (t)

)

=


k121(t) k122(t) . . . k12r(t)

k221(t) k222(t) . . . k22r(t)
...

...
. . .

...

kNe
21 kNe

22 (t) . . . kNe
2r (t)


r×Ne

, (3.19)
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and so on until the mth channel,

kcm(t) =
(
km1
c (t) km2

c (t) . . . kmr
c (t)

)

=


k1m1(t) k1m2(t) . . . k1mr(t)

k2m1(t) k2m2(t) . . . k2mr(t)
...

...
. . .

...

kNe
m1 kNe

m2(t) . . . kNe
mr(t)


r×Ne

, (3.20)

Finally, as a combination of the parametrised function terms and the gains, the

RS control input for the multi-variable system is calculated,

u(t) = Fe(t)kc(t) =


ef1(t)k

T
c1(t)

ef2(t)k
T
c2(t)

...

efm(t)k
T
cm(t)

 .

m×1

(3.21)

3.1.3 Parallel Form of the Controller

Parallel form allows the expression of two special cases at the same time, by

splitting the feedback gains of the RS controller.

The feedback gain term kc(t) may be expressed as the combination of a con-

stant component kc and a time-varying component k̃c(t). In this case, the RS

control input may be re-formulated by,

u(t) = Fe(t)kc(t) = Fe(t)kc + Fe(t)k̃c(t) (3.22)

=
Ne∑
j=1

fj(z
−1)kje(t) +

Ne∑
j=1

fj(z
−1)k̃j(t)e(t),

that is if kc = 0, it refers to the absolute gain case and kc(t) = k̃c(t). If kc ̸= 0,

then kc(t) = kc + k̃c(t) and this refers to the gain deviation case. To explain the

concept of parallel form easier, Fig. 3.3 can be referred to. The gain deviation
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Figure 3.3: Parallel form of the RS controller.

case is similar to having two RS controllers in parallel with one having constant

gains, the other time-varying gains that are combined for the final feedback gain.

Splitting the controller gains can be very practical if a fixed gain controller

is already available (like PID for example). Then, the task is to compute the

deviations from the constant gains through optimizations. This can be especially

useful when considering processes with limited computing power (like small mi-

crocontrollers). In that case, the controller only computes the gain deviations

component unlike absolute gain case where it deals with the minimization of the

entire controller gains.

From the stability point of view, if used for fixed gains kc, the PID controller

that is chosen must be stabilizing the system, already. The gain deviations k̃c(t)

that are calculated from the optimizations and will be combined with PID gains,

determine the stability thus the RS-NGMV must be weighted properly. How-

ever, this does not guarantee stability. The weighting and stability concepts are

discussed in 3.4 in more detail.
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3.2 RS-NGMV Solution for LPV Systems

RS-NGMV control algorithm takes the same state-space modelling approach with

the NGMV introduced in the section 2.5 of the second chapter. It is designed for

the state-space system (represented by (2.19− 2.22) and (2.25)) with subsystems

depicted in Fig. 2.5. The method also uses the prediction models (2.55) and (2.59)

for its LPVKF (predictor-corrector type). Therefore, it is avoided to replicate the

system and LPVKF definitions here. The objective of this section is to present

how the NGMV optimization is utilized to calculate the feedback gains kc(t)

of the RS controller u(t) = Fe(t)kc(t), thus becoming the so-called RS-NGMV

controller.

Compared to the traditional versions, the optimization procedure recruits

some additional weightings that need to be provided prior to the analysis,

� Constant weighting placed on the tracking error’s dynamic weighting:

Λ2
p = diag

(
λ2p1, λ2p2, · · · , λ2pnp

)
.

� Constant weighting on the control signal u0:

Λ2
u = diag

(
λ2u1, λ2u2, · · · , λ2un

)
.

� Constant weighting to penalize the deviations in controller gains:

Λ2
k = diag

(
λ2k1, λ2k2, · · · , λ2kn

)
.

� Constant weighting on increments on the gain deviations:

Λ2
d = diag

(
λ2d1, λ2d2, · · · , λ2dn

)
.

These terms help tune the controller with higher precision than before. For exam-

ple, depending on the control problem, large gain deviations might be undesired,

the rate of change of controller gains might be too fast or too slow.

The optimization analysis in this section considers the plant to be purely of

the LPV form thus the unstructured subsystem (NL input subsystem in Fig. 2.5)

needs to be by-passed for now. In other words, it is set toW1k = I and the control
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signal u0(t) = u(t). The results will be further generalized for the unstructured

subsystem in the optimization analysis of the section 3.3.

Define the RS-NGMV cost function J ,

J = E{epT (t+ k)Λ2
pep(t+ k) + u0

T (t)Λ2
uu0(t) + k̃Tc (t)Λ

2
kk̃c(t) + ∆k̃Tc (t)Λ

2
d∆k̃c(t)|t}, (3.23)

where ∆k̃c(t) represents the incremental gain change,

∆k̃c(t) = k̃c(t)− k̃c(t− 1) = kc(t)− kc(t− 1), (3.24)

Then with the help of LPV Kalman filter estimations, it follows from (3.23) that,

J = E{(êp(t+ k) + ẽp(t+ k))TΛ2
p(êp(t+ k) + ẽp(t+ k)) + u0

T (t)Λ2
uu0(t) + k̃Tc (t)Λ

2
kk̃c(t)

+ ∆k̃Tc (t)Λ
2
d∆k̃c(t)|t},

which can be simplified further as in below due to the fact that state estimates

and estimation errors are orthogonal and using (2.61) from chapter 2,

J = ep
T (t+ k)Λ2

pep(t+ k) + u0
T (t)Λ2

uu0(t) + k̃Tc (t)Λ
2
kk̃c(t) + ∆k̃Tc (t)Λ

2
d∆k̃c(t) + J0(t),

where J0(t) = E{ẽTp (t+k)Λ2
pẽp(t+k)|t}. Using (2.60) from chapter 2 as well, the

following is obtained,

J = (d0pd(t+ k) + Ept+ku0(t))
T
Λ2

p(d
0
pd(t+ k) + Ept+ku0(t)) + u0

T (t)Λ2
uu0(t) + k̃Tc (t)Λ

2
kk̃c(t)

+ ∆k̃Tc (t)Λ
2
d∆k̃c(t) + J0(t),

expanding the terms above, it becomes,

J = d0pd(t+ k)Λ2
pd

0
pd(t+ k) + d0pd(t+ k)Λ2

pEpt+ku0(t) + u0
T (t)Ept+k

TΛ2
pd

0
pd(t+ k)

+ u0
T (t)(Ept+k

TΛ2
pEpt+k + Λ2

u)u0(t) + k̃Tc (t)Λ
2
kk̃c(t) + ∆k̃Tc (t)Λ

2
d∆k̃c(t) + J0(t),

recall that the gain kc(t) can be split into constant and deviating terms thus there
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is the relation k̃c(t) = kc(t) − kc, and using (3.24) in addition to substitute the

term ∆k̃c(t),

J = d0pd(t+ k)Λ2
pd

0
pd(t+ k) + d0pd

T
(t+ k)Λ2

pEpt+ku0(t) + u0(t)
TEpt+k

TΛ2
pd

0
pd(t+ k)

+ u0(t)
T (Ept+k

TΛ2
pEpt+k + Λ2

u)u0(t) + (kc(t)− kc)
TΛ2

k(kc(t)− kc) + J0(t)

+ (kc(t)− kc(t− 1))TΛ2
d(kc(t)− kc(t− 1)).

The controller has the restricted structure defined as u(t) = Fe(t)kc(t) previously,

and it was also stated that u(t) = u0(t) since the unstructured plant model was

by-passed. Thus, expanding some more terms and substituting the u0(t) as in,

J = d0pd
T
(t+ k)Λ2

pd
0
pd(t+ k) + d0pd

T
(t+ k)Λ2

pEpt+kFe(t)kc(t) + kc
T (t)Fe

T (t)Ept+k
TΛ2

pd
0
pd(t+ k)

+ kc
T (t)(Fe

T (t)(Ept+k
TΛ2

pEpt+k + Λ2
u)Fe(t) + Λ2

k)kc(t)− kc
T (t)Λ2

kkc − kc
T
Λ2

kkc(t) + J0(t)

+ kc
T
Λ2

kkc + kc
T (t)Λ2

dkc(t)− kc
T (t)Λ2

dkc(t− 1)− kc
T (t− 1)Λ2

dkc(t) + kc
T (t− 1)Λ2

dkc(t− 1).

The expression above is crowded but might become more compact by defining

the following matrices,

X0(t) = Fe
T (t)(Ept+k

TΛ2
pEpt+k + Λ2

u)Fe(t) + Λ2
k + Λ2

d, (3.25)

Pp(t) = Fe
T (t)Ept+k

TΛ2
p, (3.26)

ψk(t) = −Λ2
kkc − Λ2

dkc(t− 1), (3.27)

J0(t) = (kc
T
Λ2

kkc + kc
T (t− 1)Λ2

dkc(t− 1) + J0(t). (3.28)

Substituting each term above the cost function J returns in the compact form,

J = d0pd
T
(t+ k)Λ2

pd
0
pd(t+ k) + (ψk

T (t) + d0pd
T
(t+ k)Pp

T (t))kc(t)

+ kc
T (Pp(t)d

0
pd(t+ k) + ψk(t)) + kc

T (t)X0(t)kc(t) + J0(t).

The cost function J is minimized by calculating its gradient ∂J/∂kc(t) = 0 to

obtain the optimal value of kc(t). Note that J0(t) is independent of kc(t) and
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X0(t) is symmetric. Taking the gradient of J and getting rid of the noise terms

independent of control action results in the statement below,

(ψk
T (t) + d0pd

T
(t+ k)Pp

T (t)) + (Pp(t)d
0
pd(t+ k) + ψk(t)) + 2X0(t)kc(t) = 0,

Since the first two terms are equal, the equation becomes,

2(Pp(t)d
0
pd(t+ k) + ψk(t)) + 2X0(t)kc(t) = 0, (3.29)

assuming that X0(t) is also invertible, the solution for the optimal gains is,

kc(t) = −X0(t)
−1(Pp(t)d

0
pd(t+ k)) + ψk(t)). (3.30)

The solution depends on the inverse of X0(t) clearly. This matrix is guaranteed

to be full rank and symmetric with the choice of weightings Λ2
k > 0 and Λ2

d ≥ 0.

Recalling d0pd(t + k) = dpd(t + k) + Cpt+kx̂(t + k|t) and re-arranging gains to be

more suitable for software implementation,

kc(t) = −X0(t)
−1(Pp(t)(dpd(t+ k) + Cpt+kx̂(t+ k|t)) + ψk(t)). (3.31)

The optimal gains kc(t) is continuously updated until the optimizations becoming

constant in the steady-state.

The RS-NGMV controller derived, has the generalized 1-DOF feedback con-

troller structure as shown in Fig. 3.4. Gains kc(t) are computed in the background

using LPVKF observations and RS-NGMV optimizations. The feedback calcu-

lates the tracking errors which are utilized in the user specified functions Fe(t).

Gains and functions are updated in real-time and return the control signal u(t)

that is applied on the LPV plant with delay (W0 = W0kz
−k).

The RS-NGMV implementation may also encounter algebraic loop problem.
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Functions
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RS-NGMV controller 

+
+

RS-PID controller Plant

Figure 3.4: RS-NGMV controller implementation.

In the cases studies in this thesis, the problem was overcome easily by using a

unit-step delay block.

3.3 RS-NGMV Solution with NL Subsystem

The results follow from the previous section’s optimal RS-NGMV control law.

This time the plant involves a non-linear input subsystem (the unstructured sub-

system) thus, u0(t) = W1ku(t) as was shown in Fig. 2.5. The control weighting

operator Fck is assumed to be of full rank (invertible) and is allowed to be non-

linear (Fcu(t) = z−kFcku(t)).

The optimization problem requires the minimization of a new cost function

that is the variance of the signal ϕp(t+ k),

J = E{ϕp
T (t+ k)ϕp(t+ k)}, (3.32)
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Figure 3.5: RS-NGMV controller implementation for plants with NL subsystem.

which is a re-arranged version of the pseudo-output signal presented earlier,

ϕp(t+ k) = Pp(t)ep(t+ k) + Fc0u0(t) + Fc1k̃c(t) + Fc2∆k̃c(t) + Fe
T (t)Fcku(t). (3.33)

The signal ϕp(t + k) is composed of control and error weightings that are re-

defined, Pp(t) = Fe
T (t)ET

pt+kΛp
2, Fc0 = Fe

T (t)Λu
2, Fc1 = Λk

2, Fc2 = Λd
2, and Fck

in addition.

Using (2.61) from chapter 2 on (3.33), the signal ϕp(t+ k) becomes,

ϕp(t+ k) = Pp(t)êp(t+ k) + Fc0u0(t) + Fc1k̃c(t) + Fc2∆k̃c(t) + Pp(t)ẽp(t+ k)

+ Fe
T (t)Fcku(t).

Similar to the weighted error ep(t+ k), the signal ϕp(t+ k) is also separated into

prediction and estimation error terms, ϕp(t+ k) = ϕ̂p(t+ k) + ϕ̃p(t+ k) where,

� ϕ̂p(t+ k) = Pp(t)êp(t+ k) + Fc0u0(t) + Fc1k̃c(t) + Fc2∆k̃c(t) + Fe
T (t)Fcku(t),

� ϕ̃p(t+ k) = Pp(t)ẽp(t+ k).
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Re-writing the cost function (3.32) after the separation of ϕp(t+ k),

J̃ = E{(ϕ̂p(t+ k) + ϕ̃p(t+ k))T (ϕ̂p(t+ k) + ϕ̃p(t+ k))|t}, (3.34)

which can be simplified due to the fact that estimation error and estimation terms

are orthogonal,

J̃ = E{ϕ̂T
p (t+ k)ϕ̂p(t+ k) + ϕ̃T

p (t+ k)ϕ̃p(t+ k)|t}, (3.35)

The equation is further simplified by,

J̃ = ϕ̂T
p (t+ k)ϕ̂p(t+ k) + J̃1. (3.36)

where J̃1 is defined as J̃ = E{ϕ̃T
p (t+ k)ϕ̃p(t+ k)|t}.

Substituting êp(t+ k) from (2.61) in ϕ̂p(t+ k), it gives,

ϕ̂p(t+ k) = Pp(t)d
0
pd(t+ k) + Pp(t)Ept+ku0(t) + Fc0u0(t) + Fc1k̃c(t) + Fc2∆k̃c(t)

+ Fe
TFcku(t).

Then substituting the Pp(t) term associated with the control input u0(t), the

terms k̃c(t),∆k̃c(t), Fc0, Fc1 and Fc2,

ϕ̂p(t+ k) = Pp(t)d
0
pd(t+ k) + Fe

T (t)ET
pt+kΛp

2Ept+ku0(t) + Fe
T (t)Λu

2u0(t) + Λp
2(kc(t)− kc)

+ Λd
2(kc(t)− kc(t− 1)) + Fe

TFcku(t).

Since u0(t) = (W1ku)(t) and u(t) = Fe(t)kc(t), the signal can be re-arranged as,

ϕ̂p(t+ k) = Pp(t)d
0
pd(t+ k) + Λk

2kc(t) + Λd
2kc(t) + Fe

T (t)(ET
pt+kΛp

2Ept+k + Λu
2)W1kFe(t)kc(t)

+ Fe
T (t)FckFe(t)kc(t)− Λk

2kc(t)− Λd
2(kc(t− 1).

Then substituting the term ϕk(t) from (3.27), the term ϕ̂p(t+k) above is updated
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as in,

ϕ̂p(t+ k) = Pp(t)d
0
pd(t+ k) + Λk

2kc(t) + Λd
2kc(t) + Fe

T (t)(ET
pt+kΛp

2Ept+k + Λu
2)W1kFe(t)kc(t)+

+ Fe
T (t)FckFe(t)kc(t)− ψk(t).

The solution for the optimal gain kc(t) results from the minimization of the cost

function J̃ in (3.36). Due to the cost-function term J̃1 being independent of the

control action, the condition for optimality becomes ϕ̂p(t+k) = 0 (recall that for

minimum variance controllers the variance term must be minimized). Therefore,

setting ϕ̂p(t+k) of above to zero and solving for kc(t) yields the definition below,

kc(t) = (Λk
2 + Λd

2 + Fe
T (t)FckFe(t))

−1(−Pp(t)d
0
pd(t+ k)− ψk(t)

− Fe
T (t)(ET

pt+kΛp
2Ept+k + Λu

2)W1kFe(t)kc(t)).

For implementations the solution is better organized as,

kc(t) = −(Λk
2 + Λd

2)−1(Pp(t)(dpd(t+ k) + Cpt+kx̂(t+ k|t)) + ψk(t)

+ Fe
T (t)(Fck + ET

pt+kΛp
2Ept+k + Λu

2)W1kFe(t)kc(t)).

Then the optimal RS-NGMV controller can be implemented as in Fig. 3.5. The

feedback control structure is similar to Fig. 3.4 except that the plant model is

now W0W1k as the case involves the non-linear input subsystem. It is important

to mention that there is a corollary that follows the new result, that is, if Fck → 0

& W1k = I then, the condition for optimality becomes ϕ̂p(t+ k) = 0,

ϕ̂p(t+ k) = Pp(t)d
0
pd(t+ k) + Λk

2kc(t) + Λd
2kc(t) + Fe

T (t)(ET
pt+kΛp

2Ept+k + Λu
2)Fe(t)kc(t)

− ψk(t) = 0,

the solution of which is non-other than (3.31), the optimal gain kc(t) from the

initial analysis in section 3.3.
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Figure 3.6: Control and error terms weighting.

3.4 Weighting Strategy and Stability Discussion

To describe the notion of weighting, first consider the frequency responses for

two different sets of dynamic control and error weights as displayed in Fig. 3.6.

Part (a) results from the weightings chosen for the robotic manipulator case study

simulations of the chapter 5. Part (b) demonstrates the response when the weights

in (a) are re-adjusted only to highlight their frequency characteristics. The control

weight Fck(z
−1) has high-pass dynamics and is designed as a lead-compensator

term to make sure the controller rolls off at high frequencies. The error weight

Pc(z
−1) demonstrates low-pass filter characteristics and is in the lag-compensator

form for the realistic roll-off of error dynamics. Both weightings could be adjusted

to work within desired frequency ranges depending on the type of applications.

For instance, the intersection between the control and error weights could be used

to define the bandwidth of the system.

To consider the stability of the RS-NGMV solution first recall that the NGMV

full order controller can ensure stability if the weightings are chosen based on an

existing stabilizing controller and the following assumptions are made:

� Fck(z
−1) must be full rank and invertible,

� The non-linear subsystem W1k is finite gain stable (has stable inverse),

� The linear subsystem W0 is allowed to contain unstable models,
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� The operator (PcWk − Fck) has a finite gain stable causal inverse.

With a suitable choice of weightings it can be ensured that the (PcWk − Fck)

is minimum-phase and the closed-loop stability is achievable.

In more detail, consider a linear and negative Fck = −Fk. Then the operator

can be expressed by Fk(F
−1
k PcWk + I). The term (I + (F−1

k PcWk) is of the form

(1 + KGH) known as the return-difference operator [62] where the terms K,G

and H represent the control, plant and feedback models. The return-difference

operator is related to the closed-loop stability of feedback control systems. There

is a link between the operators as the term (I + (F−1
k PcWk) can be used to

represent a system with the plant model Wk and the feedback controller Kc =

F−1
k Pc. The connection thus hints a strategy for cost-function weighting selection.

As an example, suppose a PID controller Kc which already stabilizes the closed-

loop system exists. In this case, Kc = F−1
k Pc can inspire the initial choice of

control and error weightings. Assume that Fk = −I, then the Pc = −Kc which

will be minimum phase if the PID parameters are non-negative.

The example approach is referred to as the PID motivated NGMV weighting

technique [63]. It can be used as a simple and effective starting point to design

the controller.

Now, going back to the RS-NGMV case the stability can be established in a

special case that is nevertheless useful. The argument is as follows:

� Recall that the NGMV weightings can be selected equal to the stabilizing

classical controller to guarantee stability,

� Assume a full-order observer (Kalman filter) is used in the RS-NGMV state-

space controller,

� If the two cases above apply, then the optimal RS-NGMV solution must be

the same as for the full order case (i.e. reduced order RS not used) that

can be guaranteed stable.
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Clearly, moving away from this case by using a progressively lower order ob-

server will result in sub-optimality and increase cost and reduce stability margins

even leading to instability. However, this is a problem when any parametrised

controller is used where the coefficients are found by a meta-heuristic or global

optimization method.

3.5 Design Procedure

A suggested design procedure for the RS-NGMV control algorithm blended with

software implementations tips can be summarized in the steps below:

� Step 1: Parametrise the system including the weights in a Matlab script,

Assign the variables to a struct object to be called by the functions and

scripts as this approach makes it easier to manage huge numbers of param-

eters.

The weights can be assigned arbitrarily or intuitively at this stage, what

matters at this step is to allocate memory space for them as vectors and ma-

trices. The step 1 is encountered as the “main.m” in the Matlab/Simulink

documentation.

� Step 2: Design and implement the linear plant model,

x0(t+ 1) = A0tx0(t) +B0tu0(t− k) +D0tζ0(t) +G0td0d(t),

y(t) = C0tx0(t) + E0tu0(t− k) + d0(t),

ym(t) = C0mtx0(t) + E0mtu0(t− k) + d0m(t),

that represents the LPV models. The physical equations of the plant are

entered and discretized in an internal Matlab script named as the “sys.m”,

or similarly. This is not strictly the plant to be controlled. It is the model
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of the plant used to calculate the control signals and estimate states. They

could be slightly different. However, caution must be paid for potential

model mismatch issues.

� Step 3: At this stage model the physical system to be controlled by using

Simulink or if desired use a Matlab Fcn or S-function. Consider open-loop

control to investigate stability of the system.

� Step 4: Separate the linear plant model W0k and the non-linear subsys-

tem W1k (W1k = I if the system does not include the unstructured NL

subsystem).

For example, the NL subsystems may be at the input level and act as hard

limits on the controller applied by the saturation blocks.

� Step 5: Design a PID controller that stabilizes the closed-loop system (keep

the gains kc for parallel form approach or PID motivated weighting),

� Step 6: If the results are satisfying, design the error terms and combine

them with the tracking errors to obtain functions Fe(t),

� Step 7: Calculate the RS-PID input as Fe(t)kc either with Matlab s-

functions or Simulink blocks (like the implementations in this thesis),

� Step 8: Use LPVKF to observe the system states. Tune the covariance

matrices if necessary.

It is good practice to make sure the LPVKF operates well before proceeding

with implementing the RS-NGMV controller as the success of the optimiza-

tion depends on utilizing the estimations.

The LPVKF is implemented by a level-1 s-function in which the LPV plant

model script “sys.m” is called and the augmented system model is con-
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structed,

x(t+ 1) = Atx(t) +Btu0(t− k) +Dtξ(t) + dd(t),

y(t) = Ctx(t) + Etu0(t− k) + d(t),

ym(t) = Cmtx(t) + Emtu0(t− k) + dm(t),

zm(t) = Cmtx(t) + Emtu0(t− k) + dm(t) + vm(t).

Then the state and error predictor models are used following the predictor-

corrector logic (shown in Fig. 2.6),

x̂(t+ k|t) = Ak
t x̂(t|t) +

k∑
j=1

Ak−j
t+jBt+j−1u0(t+ j − 1− k) + ddd(t+ k − 1),

ep(t+ i) = Cpt+ix(t+ i) + Ept+iu0(t+ i− k) + dp(t+ i).

� Step 9: Implement a state-space block for the dynamic control weighting

Fck. The dynamic control weighting matrices should already be extracted

in step 1’s “main.m”, using ssdata(sys) approach explained in chapter 2,

� Step 10: The Fe(t) terms, dynamic Fck and LPVKF observations z(t) car-

rying the estimations x̂(t), are fed to another level-1 s-function to calculate

the total gains kc(t). Then the RS-NGMV optimization is performed and

the kc(t) is calculated (as shown in Figures Fig. 3.4 and Fig. 3.5),

� if W1(k) = I, use:

kc(t) = −X0(t)
−1(Pp(t)(dpd(t+ k) + Cpt+kx̂(t+ k|t)) + ψk(t)).

� Otherwise:

kc(t) = −(Λk
2 + Λd

2)−1(Pp(t)(dpd(t+ k) + Cpt+kx̂(t+ k|t)) + ψk(t)

+ Fe
T (t)(Fck + ET

pt+kΛp
2Ept+k + Λu

2)W1k)Fe(t)kc(t)).
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� Step 11: If parallel form of the RS controller is used, separate the gain

kc(t) = kc + k̃c(t). Let RS-NGMV calculate the deviations and combine

with the fixed PID gains (Fig. 3.3 style),

� Step 12: Extract the final Fe(t)kc(t) signal and apply to the physical model

of the plant,

� Step 13: Follow the weighting guidelines recommended in section 3.4 or

other techniques and choose/tune the weights.

� Step 14: The previous step completes the implementation of the RS-

NGMV. For simulations, the “main.m” script must be run first to initialize

the parameter sets. The script calls the main Simulink file when it is fin-

ished. Then the Simulink model is run and results can be viewed. The rest

is debugging if needed or fine-tuning the controller weightings.

For details on how the implementation is performed, refer to Matlab/Simulink

codes and diagrams in Appendix B-F.

3.6 Closing Remarks

In this possibly the most important chapter, we have derived the RS-NGMV

controller for a more general state-space structure and novel solution. The SISO

and MIMO RS controllers have been introduced whose gains are optimized using

NGMV algorithm.

In chapter 5, the RS-NGMV algorithm is verified with a two-link robotic

manipulator case study. The controller uses PID as the restricted structure and

the reference tracking performance is investigated. Through simulations some

important features of the RS-NGMV are shown and discussed.

An EV case study is presented in the Chapter 7. The RS-NGMV is used

for achieving longitudinal speed tracking within well-known driving cycles under
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road grade disturbances. The disturbance rejection of RS-NGMV is observed.

Chapter 8 concludes the thesis while looking at future work. Some initial

results from an attempt to use RS-NGMV in a method of storing controller gains

to be used later will be shown. This is the so-called Scheduled RS-NGMV.

RS-NGMV has a lot of potential for future work and it has features yet to

explore. For example, a more detailed stability analysis would surely be interest-

ing and useful. Additional degrees of freedom structures or polynomial versions

could also be considered.
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Preview Control

“We can only see a short distance ahead, but we can see

plenty there that needs to be done.”

Alan Turing, Computing Machinery and Intelligence.

The traditional definition of the preview control technique may be described

as the method of deriving optimal control solutions by using future reference

information (or future disturbance in some cases). The preview control is different

than the predictive control mainly in the method of solution. The preview control

solution is related to LQ or LQG type solutions whereas the predictive control

solution is more related to the minimum variance type solution of Åström’s [1].

The method emerged in 1966 with the work of Sheridan [64] who introduced

the idea in three models. The motivation was to characterize the ability of a hu-

man (drivers, pilots and etc.) or artificially intelligent operator to look-ahead or

preview an input course to adjust their actions. The third model could be consid-

ered as the first optimal control strategy that considers the previewing feature. In

1968, Bender proposed an optimum linear preview control strategy [65] applied to

a vehicle suspension system. Among the early works, perhaps the biggest impact

was made by Tomizuka and Whitney presenting a discrete-time optimal preview
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controller for tracking problems by solving an LQ type cost function [66]. To date,

several preview control approaches have been proposed and a significant number

of them still use the LQ framework. As an example, the preview controller of

[67] takes the H∞ approach on a servomechanism. The controller in [68], is

an adaptation of Tomizuka’s standard LQ-Preview controller for optimal vehicle

steering. There are also rather different preview control solutions like the fuzzy

logic approach in [69] and the use of Artificial Neural Network (ANN) techniques

as in [70]. The preview control subject has been trending among the control

researchers more than before since the 2000s. The development of the technique

over the years including an analysis of the notable approaches, applications and

the directions are covered in a broad literature survey [71].

Automotive industry has shown a keen interest on the preview control since it

was introduced. Many of the research papers and real-world application examples

appear to be in this area. For example, Nissan and Toyota are among the big

companies investing in the preview control research. They have made studies on

path tracking and active suspension systems using preview control [72, 73]. The

automotive applications mostly focus on suspension systems and vehicle guidance.

The two branches include providing comfortable driving, improving security by

increased vehicle stability, trajectory following, lane keeping or changing since

they are all closely related to utilizing the information of the road ahead. An-

other automotive focused preview research interest is on the Advanced Driver

Assistance Systems (ADAS) [74]. However, the research is not constrained to

the automotive industry because any control application where there is access to

the future reference information is open to preview control solutions. In [75] re-

searchers used preview control with Zero-Moment Point approach for a humanoid

robot problem in which the walking pattern was known. The work in [76] con-

siders an application for a robotic manipulator which is an example where future

reference trajectories are often pre-determined. Another example is on the wind
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turbines where wind profile is estimated [77].

The amount of work done is substantial but the topic has not matured yet.

There is a lack of straightforwardness to offer the preview feature meaning there is

a need to generalize the preview control solutions under a theoretical framework.

The development of simulation tools like the Preview Control Toolbox in [78] is

also needed. The toolbox provides a H2/H∞ solution to tackle the computational

burden of solving Algebraic Riccati Equation (ARE) or shortly Riccati Equation

(RE) [79]. However, the results are only for LTI systems like the majority of

other preview controllers in the literature.

There exists only a very small number of papers with LPV modelling focus.

The work in [72] is an example of such where a robust preview controller has

been derived using H∞ and Linear Matrix Inequality (LMI) techniques. To our

knowledge, it was the only study with LPV modelling for the preview control

of autonomous vehicle steering problem before the results from the case study

in Chapter 6 of this thesis were published [19]. The SDRE control approach to

preview control has been proposed motivated by these findings with the aim to

provide a straightforward LPV or SD adaptations for the standard LQ-Preview

controller.

4.1 Preview Control Concept

The preview control can be classified as an optimization problem as the controller

is derived from the solution of some cost functions. The preview action is often

added as an extra degree of freedom to the design, in the format of feed-forward

control conceptualized as in Fig. 4.1. The control input that refers to this scheme

can be generalized by the following equation,

u(t) = Kfbx(t) +

Np∑
i=0

Kffp(t+ i), (4.1)
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Delay operator
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 Plant
G(z-1)

+
-

Previewed signal

e(t)

x(t)u(t)

r(t)

p(t) = r(t+Np+i)

p(t)

Figure 4.1: Conceptual preview control scheme.

where Kfb, x(t), Np, p(t), Kff refers to the feedback gain, states, preview length,

previewed signal and preview gain (feedforward) respectively. Information of the

reference signal r(t) is available for Np steps, and provided to the controller in

a shift-register like mechanism. The objective is then to calculate the feedback

gains control gains and feedforward preview gains to derive the control input of

(4.1) for the tracking of desired reference trajectories. Note that, the preview

controller of (4.1) is assumed to have state feedback but different preview control

structures may include error feedback terms as well [67].

As one would expect, the preview control has its similarities with the predic-

tive control as both methods look into the future when generating the control

signals. Despite the similarities, they differ from each other particularly for the

cost functions. For example, the standard preview control is based on the LQ

framework and demands the solutions of algebraic Riccati equations. Therefore,

their control solutions might seem more computationally expensive. However,

they do not require real-time prediction at each time step like the predictive con-

trollers. Being based on the well-structured LQ theory, the preview controllers

are also expected to hold good robustness characteristics. There are studies that

compare these methods in detail. The study in [80] presents theDynamic Perfor-

mance Preview-Predictive Control (DPPC) index which provides links between

the LQ-Preview and the GPC controllers. Depending on the choice, the index

provides either of the controllers or their combination. Another study with in-
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teresting results show that for long preview lengths and long control horizons,

predictive and LQ based preview approaches give identical results [81].

4.2 LQ Preview Control

In this entire section, we proceed with deriving the LQ-Preview controller [80] or

the so-called standard preview controller since it is the most commonly used one.

The results follow from the preview control principles of section 4.1 but the

LQ-Preview control is implemented differently. Its gain vector K =
(
Kfb, Kff

)
also includes both the state feedback and preview gains but it has the control

structure of a LQ state feedback controller with future information utilized in its

solution. The first task is to formulate the state-space system to incorporate the

previewed reference and the second task is to calculate the preview control gains

through LQ optimization solutions and thus derive the control input.

4.2.1 Augmented State-Space System

Consider the discrete-time LTI state-space system to be controlled,

x(t+ 1) = Ax(t) +Bu(t), (4.2)

y(t) = Cx(t), (4.3)

where x(t) is an n× 1 state vector and u(t) ∈ Rm, y(t) ∈ Rr.

The reference signal yr is deterministic within the preview horizon Np, beyond

which there is no more information (for example limited sensor vision),

yr(t+Np + i) = yr(t+Np), (4.4)

where i > 0, and the reference model becomes uncertain i.e. a random process.
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The state-space reference model is given by the expressions below,

xr(t+ 1) = Arxr(t) +Brwr(t), (4.5)

yr(t) = Crxr(t), (4.6)

where wr(t) is a stochastic white noise signal, and Ar, Br and Cr are state ma-

trices. The reference models (4.5) and (4.6) are synthesized in the fashion below,



yr(t+ 1)

yr(t+ 2)
...

yr(t+Np)

xr(t+Np + 1)


=



0 1 0 . . . 0

0 0 1 . . .
...

...
...

...
. . . 0

0 . . . 0 0 Cr

0 . . . 0 0 Ar





yr(t)

yr(t+ 1)
...

yr(t+Np − 1)

xr(t+Np)


+



0

0
...

0

Br


wr(t+Np), (4.7)

and then (4.7) is compressed (or redefined) within a single equation as,

Yr(t+ 1) = ArYr(t) +Brwr(t). (4.8)

The new reference model of (4.8) above is now combined with the plant model

(4.2) and become the augmented system model,

 x(t+ 1)

Yr(t+ 1)

 =

A 0

0 Ar

 x(t)

Yr(t)

+

B
0

u(t) +

 0

Br

wr(t). (4.9)

The (4.9) can be expressed as the summarized model below,

X (t+ 1) = AX (t) + Bu(t) + Brwr(t). (4.10)

meaning (4.9) and (4.10) are the same. The output of the state-space system in

(4.10) is defined by Y (t),

Y (t) = y(t+ i)− yr(t+ i), (4.11)
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which by using (4.3) and (4.8) becomes,

Y (t) = Cx(t+ i)−
(
1, 0, . . . , 0

)
Yr(t+ i), (4.12)

and is finalized following the augmented system formulation,

Y (t) =
(
C, −1, 0, . . . , 0

)
X (t+ i) (4.13)

= CX (t+ i). (4.14)

The models of (4.10) and (4.14) represent the augmented the state-space system

which will be used for the control solutions from here on.

4.2.2 Control Solution

Define the LQ cost function at time t,

Jt =
1

N + 1
E{Y (t+N)TSY (t+N) +

N−1∑
i=1

[Y (t+ i)TQY (t+ i) (4.15)

+ u(t+ i)TRu(t+ i)]},

with the expectations taken with respect to wr(t+Np), wr(t+Np+1), . . . ,wr(t+

N − 1) where N is the control horizon.

For the augmented system with previewed reference in (4.10), the cost function

above is re-defined in,

Jt =
1

N + 1
E{X (t+N)TCTSCX (t+N) (4.16)

+
N−1∑
i=1

[X (t+ i)TCTQCX (t+ i) + u(t+ i)TRu(t+ i)]}.

The solution of (4.16) is equivalent to the general LQ control solution and returns
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the preview controller in,

u(t) = −KX (t) = −(BTP (t+ 1)B +R)−1BTP (t+ 1)AX (t), (4.17)

where P matrix satisfies the solution of the Riccati Equation,

P (t) = ATP (t+ 1)B(BTP (t+ 1)B +R)−1BTP (t+ 1)A+ATP (t+ 1)A+ CTQC,

(4.18)

summarizing the LQ-Preview controller.

This thesis considers the preview control for the autonomous vehicle steering

problems. A noteworthy approach that uses the LQ-Preview control technique

of this section for such problem is Sharp’s Linear Quadratic Regulator (LQR)

Preview controller [68]. However, Sharp’s approach tailors the LQ-Preview con-

troller for the car steering problem with the road and vehicle dynamics taken into

account. Therefore, it is slightly different. Firstly, the solution is derived over

infinite horizon and secondly the augmented output matrix C includes vehicle

dynamic transformation elements as the output matrix of LQ-Preview approach

will not work straightforward for the problem. However, Sharp’s approach is for

LTI systems, thus the preview controller of section 4.3.3 of this chapter aims to

extend his solution to a larger class of systems including LPV.

4.3 SDRE Approach to Preview Control

The SDRE control approach was proposed in [17] for the non-linear dynamic

systems encapsulated in the linear structures called as the State-Dependent Co-

efficient (SDC) forms. It is an optimal control technique derived by using similar

procedures to LQ based algorithms.

The SDRE control technique has performed well for many applications includ-

ing robotic manipulators [84]. It has received a growing interest from researchers
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and is well-established. In fact, a comprehensive survey study [18] clearly shows

that there have been so many successful applications of the method even surpass-

ing the theoretical results.

4.3.1 SDRE Control

This section will revise the results of [17] and derive the standard SDRE controller.

The SDRE control [17] uses the LQR cost function re-arranged as in,

J(x(t), u(t)) =
1

2

∫ ∞

t0

(
x(t)TQ(x)x(t) + u(t)TR(x)u(t)

)
dt, (4.19)

where weightings Q(x) and R(x) are allowed to be functions of states. To indicate

that a system element is state-dependent the simplified notation x is used instead

of x(t) to reduce crowded terms due to the RE. A non-linear system can be

represented by the general formula,

ẋ(t) = f(x) + g(x)u(t), (4.20)

which can also be expressed in linear structure using the SDC form,

ẋ(t) = A(x)x(t) +B(x)u(t). (4.21)

The SDRE equation for the (4.22) is defined in,

AT (x)P (x) + P (x)A(x)− P (x)B(x)R−1(x)BT (x)P (x) +Q(x) = 0.

that is solved for P (x) ≥ 0. Using the solution, the SDRE control signal is

calculated,

u(t) = −K(x)x(t) = −R−1(x)BT (x)P (x)x(t). (4.22)

The SDRE algorithm is demonstrated by the flowchart in Fig. 4.2, The measure-
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Sensor measurements

Compute the state-dependent gain

Compute state matrices

Solve the SDRE

Compute the feeback control signal

Compute weights

Figure 4.2: SDRE flowchart.

ments x(t) convey the system information and the state matrices along with the

weightings are calculated. These are used in the SDRE equation which is solved

for P (x) ≥ 0 and compute the controller gain K(x). Lastly, the control signal

u(t) is calculated and sent to the plant. The methods used in this thesis are in

discrete-time.

While having introduced the SDRE technique in its original way, it is impor-

tant to note that the solution for the discretized (4.21) will be,

u(t) = −K(x)x(t) = −(R(x) +BT (x)P (x)B(x))−1BT (x)P (x)A(x)x(t), (4.23)

where P (x) ≥ 0 satisfies the discrete SDRE solution,

P (x) = A(x)T (P (x)−P (x)B(x)T (R(x)+B(x)TP (x)B(x))−1B(x)P (x))A(x)+Q(x).

This summarizes the background information for the SDRE Preview and LPV-RE

Preview controllers that follow.
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OutputSD plant model

SDRE Preview controller

Measurements

Previewed reference

+
-

Reference

Gain computations

Measurements

WSD(z-1)

Figure 4.3: SDRE Preview control diagram.

4.3.2 SDRE Preview Control Solution

Transforming the LTI augmented system model with preview information intro-

duced in (4.10) by using the linear SDC form,

X (t+ 1) = A(x)X (t) + B(x)u(t) + Brwr(t), (4.24)

with the output given by,

Y = C(x)X (t). (4.25)

Define the discrete SDRE cost function for the SD system in (4.25),

J(X (t), x, u(t)) = lim
N→∞

N∑
t=0

(
X (t)TQ(x)X (t) + uT (t)R(x)u(t)

)
, (4.26)

where Q(x) = C(x)TQ(x)C(x). As the control horizon N → ∞, the minimization

of the cost function J in (4.26) returns the SDRE Preview control law,

u(t) = −K(x)X (t) = −(R(x) + B(x)TP (x)B(x))−1B(x)TP (x)A(x)X (t), (4.27)

where P satisfies the discrete Riccati Equation,

P (x) = A(x)T (P (x)− P (x)B(x)T (R(x) + B(x)TP (x)B(x))−1B(x)P (x))A(x) +Q(x).
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Output
Linear plant
    model

LPV-RE Preview controller

Measurements

Previewed reference

External parameters 

+
-

Reference

Gain computations

Measurements

ρ

W0(z-1)

ρ

ρ

Figure 4.4: LPV-RE Preview control diagram.

The basic SDRE Preview control diagram is shown in Fig. 4.3. The plant

WSD(z
−1) presents the model (4.24) with its output (4.25). The controller gain

K(x), is a combination of state feedback and preview gains such that K(x) =(
Kfb(x), Kff (x)

)
.

4.3.3 LPV-RE Preview Control Solution

The basic LPV-RE Preview control diagram is shown in Fig. 4.4. The linear

plant model W0(z
−1) is similar to the linear plant subsystem of the RS-NGMV

formulations and is allowed to be LPV, LTI or LTV. With this, the algorithm

can also accommodate the external parameters ρ(t) within the augmented system

model and the solution will remain the same. Similar to the SDRE preview control

notation, we use ρ instead of ρ(t). For a LPV system we can re-consider (4.24)

within the LPV formulation such as,

X (t+ 1) = A(ρ)X (t) + B(ρ)u(t) + Brwr(t), (4.28)

and the output would then be given by,

Y = C(ρ)X (t). (4.29)
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Define the LPV-RE cost function for the LPV system in (4.28),

J(X (t), ρ, u(t)) = lim
N→∞

N∑
t=0

(
X (t)TQ(ρ)X (t) + uT (t)R(ρ)u(t)

)
, (4.30)

where Q(ρ) = C(ρ)TQ(ρ)C(ρ). When control horizon N approaches infinity,

the minimization of (4.30) returns the LPV-RE Preview control law u(t) =

−K(ρ)X (t) expanded as in,

u(t) = −(R(ρ) + B(ρ)TP (ρ)B(ρ))−1B(ρ))TP (ρ)A(ρ)X (t), (4.31)

where P satisfies the LPV Riccati equation,

P (ρ) = A(ρ)T (P (ρ)− P (ρ)B(ρ)T (R(ρ) + B(ρ)TP (ρ)B(ρ))−1B(ρ)P (ρ))A(ρ) +Q(ρ).

The controller gain K(ρ), is also combination of state feedback and preview gains

such that K(ρ) =
(
Kfb(ρ), Kff (ρ)

)
.

4.4 Design Procedure

A suggested design procedure for the preview control algorithm including software

implementations tips are summarized in the steps of this part:

� Step 1: System parametrisation including the assignment of weight matri-

ces Q,R and the preview steps Np with trial and error approach. The step

1 is encountered as the “main.m” in the codes as usual.

� Step 2: Design and implement the plant model. If SD use,

X (t+ 1) = A(x)X (t) + B(x)u(t) + Brwr(t),

Y = C(x)X (t).

79



Chapter 4. Preview Control

If the plant is LPV use,

X (t+ 1) = A(ρ)X (t) + B(ρ)u(t) + Brwr(t),

Y = C(ρ)X (t).

� Step 3: At this stage model the physical system to be controlled by using

Simulink or if desired use a Matlab Fcn or S-function. Consider open-loop

control to investigate stability of the system.

� Step 4: Implement the preview controller following the SDRE flowchart of

Fig.4.2. If the plant is SD the solution is the SDRE Preview controller,

u(t) = −K(x)X (t) = −(R(x) + B(x)TP (x)B(x))−1B(x)TP (x)A(x)X (t).

If the plant is LPV the solution is the LPV-RE Preview controller,

u(t) = −K(ρ)X (t) = −(R(ρ) + B(ρ)TP (ρ)B(ρ))−1B(ρ))TP (ρ)A(ρ)X (t),

� Step 5: Both systems are implemented using the dlsim command of Matlab

and the Riccati Equations are solved using dlqr function. As long the

systems matrices are entered properly the dlqr command solves for the P

matrix and calculates the preview gains.

4.5 Closing Remarks

This chapter has introduced the SDRE approach to the preview control for the

first time in the literature and derived the SDRE and LPV-RE Preview con-

trollers. Our motivation in using the SDRE technique for the preview problem is

that the technique has some theoretical stability theory available and numerous
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useful results as a practical method for controlling non-linear systems. There are

not many simple and straightforward methods available but the SDRE.

In chapter 6, the LPV-RE Preview controller will be implemented on an LPV

autonomous vehicle model with the varying parameter as the velocity. The initial

results from this analysis was presented in [19]. The paper was titled as the

“SDRE Preview Control for a LPV Modelled Autonomous Vehicle” to point out

the SDRE approach was used for the preview controller. To be more precise

the controller in that paper is re-named for this thesis as the LPV-RE Preview

controller.

The main conclusion of this chapter is that the preview control is valuable

and more work can be done including the preview action for Restricted Struc-

ture controllers. For example, since the cost-functions are closely related to a

Restricted-Structure version of the Non-linear LQG controller may be consid-

ered. The work in the thesis has already considered the use of preview action

for the RS-NGMV and as a result proposes the RS-NPGMV controller for the

solution. However, this is an entirely different controller and outside the scope of

this PhD project. See Appendix A for further details.

The stability of analysis of the SDRE/LPV-RE Preview controllers can be

studied using methods like the satisficing [110]. As an example, the theorems in

[111] prove that using a satisficing set, the state-dependent feedback gain K(x) is

stabilizable for parameters that are bounded on a convex plane which looks like

the case for the varying parameter Vx in our example. It is possible to use the

method for proving a stabilizable K(ρ) gain as well. These could be considered

for future works.
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Two-Link Robotic Manipulator

Control

“...We were born to work together like feet, hands and

eyes, like the two rows of teeth, upper and lower...”

Marcus Aurelius, Meditations.

Robot manipulators are devices that are used to perform tasks like manip-

ulating or moving materials, tools, parts without direct human contact. They

are widely used in the industry for welding, assembly, painting, packaging and

testing applications. Their range of applications also extend to space and surgical

operation systems. Due to these factors, they have emerged as a popular subject

of research. The control of robotic arms can be a difficult job considering that

their dynamics are highly non-linear by nature. The challenge of non-linearity

can be addressed by different modelling approaches. There has been an increas-

ing demand for LPV modelling solutions in the non-linear control area including

robotic applications. The qLPV representation of robotic manipulators have been

verified with research results like [85− 88].

The qLPV approach enables the expression of the non-linear robotic system in
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the so-called LPV framework. As expressed earlier, the idea is to simply contain

the non-linear characteristics inside a structure that appears to be a linear model.

In this section, the qLPV approach has been employed to represent the dynamics

of a 2-link robotic arm. A multi-variable RS-NGMV controller will be designed

for the model to complete the task of link position control via reference tracking.

The RS takes the form of a classical digital PID controller with filtered derivative

term. Transient and stochastic performances of the controller are investigated

considering set-point changes.

5.1 Robotic Manipulator Dynamics

The robot manipulators are basically composed of joints, links and end-effectors.

Links are rigid or flexible body elements that are connected via joints which can

be revolute, cylindrical, prismatic, spherical or planar depending on the design

of the manipulator system. End-effectors are mounted on the tip of the links for

handling of the objects, carrying tools, interacting with surfaces and etc. Grippers

are the simplest type of end-effectors designed only for the actions of opening and

closing to grasp objects [89].

The manipulator in this study is an elbow-type, two-link, revolute-joint robot.

Each joint has a single degree-of-freedom thus the manipulator has two-degrees-

of-freedom. As illustrated in the Fig. 5.1, the robot operates horizontally on a

two dimensional coordinate system for which the base of robot is considered the

origin.

Note that, the mechanical design and kinematics are not within the scope of

this example. The control problem deals with the forces producing the desired

motion. Therefore, the emphasis is placed upon the aspects of dynamic equations

which relates the forces and motion.

Euler-Lagrange method have been used for modelling of the robot dynamics
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Joint-1
Base

Joint-2

Link-1

Link-2

Gripper

Figure 5.1: Two-link robot arm.

as shown in detail in [90 − 93]. The Lagrangian equations are derived from

the difference between the system’s kinetic and potential energies. They are

represented by the matrix form,

M(q)q̈ +H(q, q̇)q̇ + F (q̇) +G(q) = τ, (5.1)

where M(q) represents the inertia matrix and H(q, q̇), F (q̇), G(q) represent the

Coriolis matrix, friction and gravity vectors, respectively. Torque is given by the

vector τ while q denotes the joint angle vector.

The forces of friction are neglected and since the robot is assumed to operate

horizontally, the affect of gravitational forces can be omitted as well. Hence,

expanding the dynamic equations given in the matrix form in (5.1) returns the

expression below,M11 M12

M21 M22

q̈1
q̈2

+

hq̇2 hq̇1 + hq̇2

hq̇1 0

q̇1
q̇2

 =

τ1
τ2

 . (5.2)

The equation indicates the non-linear characteristics of the robot manipulator.

The non-linearity becomes even clearer when the elements of the inertia matrix
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Figure 5.2: Two-link robot arm with unknown load.

M and the Coriolis matrix H are broken down,

M11 = I1 +m1lc1
2 +m2(l1

2 + lc2
2 + 2l1lc2cosq2) + I2,

M12 =M21 = m2l1lc2cosq2 +m2lc2
2 + I2,

M22 = m2lc2
2 + I2,

h = m2l1lc2sinq2.

The simulation studies of this chapter adopts the robot model and parameters

from Example 9.1 in [94]. The example considers the same model above with

an unknown load held by the robot’s gripper as seen in the Fig. 5.2 for which

a table tennis racket is used merely for illustrative purposes. The referenced

study introduces the unknown load for estimation of unknown parameters and

develop an adaptive control strategy. In our example, we consider these system

parameters to be known and keep the rest of the approach nevertheless, since it

represents a realistic application scenario with the manipulator holding an object.
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As it can be expected the load impacts the manipulator dynamics thus the

inertia and Coriolis elements need to be re-arranged in the following fashion,

M11 = p1 + 2p3cosq2 + 2p4sinq2,

M12 =M21 = p2 + p3cosq2 + p4sinq2,

M22 = p2,

with the set of parameters, p = (p1, p2, p3, p4), chosen to be,

p1 = I1 +m1lc1
2 + Ie +melce

2 +mel
2
1,

p2 = Ie +melce
2,

p3 = mel1lcecosδe,

p4 = mel1lcesinδe,

and finally h = p3sinq2−p4cosq2. The inertia matrixM is invertible, thus through

re-arranging of the equations it is possible to represent the system in the form

below,

ẋ =

q̇
q̈

 =

02×2 I2×2

02×2 M−1(q)H(q̇)

q
q̇

+

 02×2

M−1(q)

 τ. (5.3)

y = q =
(
I2×2 02×2

)q
q̇

 . (5.4)

where q = (q1, q2)
T and τ = (τ1, τ2)

T . The robotic system in (5.3) and (5.4) is of

the form,

ẋ(t) = A
(
x(t), p(t)

)
x(t) +B

(
x(t), p(t)

)
u(t),

y(t) = C
(
x(t), p(t)

)
x(t) +D

(
x(t), p(t)

)
u(t).

and is a qLPV system indeed (depending on the physical model, matrices could
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also be functions of the control input).

For the controller design and Matlab/Simulink implementations the system

is discretized by taking the Euler approximation technique. The procedure is

realized by Ad = 1+TsA, Bd = TsB, Cd = C, Dd = D, with the sample time, Ts.

5.2 Simulation Studies

System parameters used within the simulation studies are given by, m1 = 1,

I1 = 0.12, l1 = 1, lc1 = 0.5, me = 2, Ie = 0.25, lce = 0.6, δe = 30◦. The control

objective is to have the robot follow a desired position trajectory qd = (q1d, q2d)
T .

The trajectory consists of set-point changes which are specified with detail in,

qd =


(60◦, 90◦)T , for t ≤ 50

(45◦, 45◦)T , for 50 < t ≤ 100

(60◦, 90◦)T . for t > 100

Control inputs are transmitted as torque signals to the joints. A saturation limit

of ±2Nm is forced on the torque inputs. Torque inputs are subjected to a torque

load of Td = 0.4Nm. The sampling time for the simulation studies is set to

Ts = 0.005s.

For the RS-NGMV control strategy, the parallel form expressed in (3.22) is a

suitable design approach because a PID controller with gains kPID already exists,

kPID =


kp

kI

kD

 =


3

0.5

7

 .

Likewise, the PD control is also a quite common for robotic manipulator control.

However, to demonstrate the properties of RS-NGMV more clearly the full PID
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Figure 5.3: RS-NGMV control of the robot.

has been preferred for its RS in this case study. During the simulation runs,

the time-varying gain deviations k̃c(t) will be calculated and added to the con-

stant gains kc(t), defining the final controller gain kc(t). See Fig. 5.3 for the

implementation of the controller.

kc =


kPID

06×1

kPID


12×1

.

Next, the error and dynamic control cost weightings are specified by the following,

Pc(z
−1) =

87.5
1− 0.97z−1

1− z−1
0

0 87.5
1− 0.97z−1

1− z−1

 ,

Fck(z
−1) =

0.016
1− 0.9z−1

1− 0.4z−1
0

0 0.16
1− 0.9z−1

1− 0.4z−1

 ,

using the weighting strategies described in chapter 3. The compensator transfer

functions were preferred for realistic roll-off of signals.

88



Chapter 5. Two-Link Robotic Manipulator Control

The weighting to penalize the deviations in controller gains is assigned as,

λk =


3× 10−6 0 0

0 0.5× 10−6 0

0 0 7× 10−6

 ,

which forms the diagonal weight matrix, Λ2
k = diag

(
λk, λk, λk, λk

)
∈ R12×12.

The weighting on increments on the deviations in control gains is chosen by,

λd =


40 0 0

0 40 0

0 0 40

 ,

that makes up the weight matrix, Λ2
d = diag

(
λd, λd, λd, λd

)
∈ R12×12.

The constant weighting on the control inputs and weighting on tracking errors

are expressed by the matrices below, respectively,

Λ2
p =

10−4 0

0 10−4

 ,Λ2
u =

0.05 0

0 0.05

 .

5.2.1 Transient Performance

The first set of results consider the reference angle tracking problem along with

set-point changes. The results are grouped in Fig. 5.4 starting with the positions

of robot links. It is shown in Fig. 5.4(a) and 5.4(b) that the robot link angles

follow the desired position trajectory qd.

The PID controller has been chosen as the baseline control method. Firstly,

a set of constant PID gains denoted by kc has been selected by testing through

trial and error. Using the parallel form, the RS-NGMV controller gains are

produced as a combination of the fixed PID gains and the gain deviation terms,
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k̃c(t), which result from the feedback optimization and Kalman filter observations.

The optimized gain terms are demonstrated Fig. 5.4(c) and 5.4(d). It is shown

that the deviation terms are constantly updated in the background. It becomes

more noticeable when the reference signal is generated at t = 0s for the first

time and set-point changes occur at t = 50s and t = 100s. Calculation efforts

increase during the transitions. The RS-NGMV controller attempts to adapt to

the changes by re-adjusting its gains. The gain deviations rise and then slow

down as the link angles q1(t) and q2(t) approach the steady-state and once it is

reached they remain constant unless demanded otherwise. This is an important

feature of the RS-NGMV control method. The controller is able to adapt to

the changes within the system. From this perspective, although it may not be

theoretically classified as one, the RS-NGMV philosophy is very close to the

adaptive controllers. For instance, PID based Model Reference Adaptive Control

uses optimization and learning rates to modify its PID control input [95].

5.2.2 Baseline PID Controller

The Fig. 5.4 also compares the position tracking performances of RS-NGMV

and PID. As illustrated in parts (a) and (b), both controllers are successful in

realizing the control objective. The RS-NGMV inherits the advantages of the

NGMV optimal control thus it shows better performance compared to that of

the PID. It shows smaller overshoots and the control signals shown in 5.4 (e) and

(f) are smoother. However, it is important to clarify that they are both different

controllers and RS-NGMV does not lay a claim to being a PID alternative or a

better controller in general sense. It utilizes the PID as its controller structure

(e.g. Restricted Structure) and uses the fixed PID gains to calculate its controller

gains. As expressed earlier, the motivation of RS-NGMV is to provide optimal

NGMV solutions through the PID structure for classically trained staff who are

more familiar with it.
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Figure 5.4: Reference angle tracking with set-point changes.
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Figure 5.5: Output signals and estimates.

5.2.3 Kalman Filter Estimates

As the RS-NGMV uses state estimates to calculate kc(t), it is essential that the

filter works properly. The estimates are shown in Fig. 5.5, where part (a) and

(b) compare the measured values of robot link angles to their estimated values.

Estimate errors are presented in part (c) and (d) where it is seen that they are

minimal. It is shown that the LPVKF converges to steady-state. The diagonal

covariance matrices P,Q andR are tuned manually through trial and error. Initial

conditions of the state estimate vector x̂(0) are set to zero.

5.2.4 Stochastic Performance

The simulations so far have considered only the transient performance of the

controller. The results in Fig. 5.6 analyse the stochastic behaviour when a ficti-

92



Chapter 5. Two-Link Robotic Manipulator Control

tious output disturbance signal has been introduced to the system. The output

disturbance signal for each link consists of an arbitrarily chosen vector of step

signals combined with Gaussian white noise. In addition, the stochastic white

noise has been low-pass filtered to attenuate high-frequency content. The total

noise signal is given in part (g) of Fig. 5.6 which is scaled down by a factor of 10

for illustrative purposes. The results in part (a) through part (f) show that, the

RS-NGMV maintains its response by adapting to the changes and achieves the

control objective. In addition, gain deviations and the control input character-

istics have remained similar to the non-disturbance case. RS-NGMV has again

shown better performance compared to the PID.

Note that for the stochastic case, the constant weighting on increments on the

deviations in control gains has been re-adjusted to,

λd =


80 0 0

0 80 0

0 0 80

 ,

for the diagonal weight matrix, Λ2
d = diag

(
λd, λd, λd, λd

)
∈ R12×12. The

output results with the previous value of λd were identical to part (a) and (b).

However, the RS-NGMV control inputs demonstrated slightly sharper responses

than expected. By investigating the gain plots, it was understood that an in-

creased cost on their increments could result in control inputs that are less ag-

gressive. This shows that the additional weightings work to the advantage of the

RS-NGMV algorithm.

5.3 Closing Remarks

The robotic manipulator example in this chapter is the first implementation of the

RS-NGMV control method in the literature. The most important output from the
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Figure 5.6: Reference angle tracking under disturbance.
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results of this case study is the adaptability of the controller. With the LPVKF

providing information from the system to the controller, the optimizations can

update the control gains to respond to the parameter changes. This makes RS-

NGMV highly suitable for the control of LPV systems.

In this chapter, the models and the RS-NGMV design do not consider the

input non-linearity. Therefore, it has been assumed that W1k = 1 and the control

solution in (3.31) has been implemented. The input non-linearity is only applied

at the simulation layer. It is introduced by the saturation block imposing the

hard limits (umin, umax) = ±2Nm on the control signal. The model mismatch

did not have an effect on the performance. The solution for the RS-NGMV with

input non-linearity has already been provided should an alternative be needed

for another application case.

This case study has considered disturbances for a more realistic approach.

Torque load with constant value of Td = 0.4Nm, has been applied on the inputs.

It is easily handled by the controller and has not impacted the performance at all.

The stochastic performance has also been investigated with the noise enforced on

the output. For different applications, however, the disturbance may be a function

of system parameters or states. As a result, the disturbance modelling becomes

more crucial. This is encountered in the EV application example in chapter 7.
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Chapter 6

Autonomous Vehicle Steering

Control

“The vehicles will be fully self-driving. So you have your

own personal space where you can sit back and relax.”

John Krafcik, CEO of Waymo.

This chapter brings on the autonomous vehicle steering control as a case study

for the LPV-RE Preview control of chapter 4. The vehicle dynamics will be

modelled with the LPV approach first, followed by the LPV-RE Preview control

design. The simulation studies will investigate the controller performance under

parameter variations and use LQ-Preview control as the baseline technique [68].

The remainder of this introduction represents my understanding of the current

autonomous vehicles scene by following the online course [121].

The current era of automobiles is considered to be the dawn of the driverless

car by many enthusiasts, researchers and pioneers in this field.

Darpa Urban Challenge in 2005 was surely a very important milestone for

the self-driving car. University of Stanford’s autonomous car Stanley [96] came

the winner of a 132 miles autonomous off-road race by completing the track the
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fastest. The control algorithm used is named Stanley controller in the literature

and is based on the kinematic car model. Although the method works very

well, Stanley does not reflect many characteristics of a fully self-driving car. It

neglected some aspects of the vehicle dynamics and forces. Noisy environments,

traffic and severe weather conditions were also not considered.

A fully self-driving car takes on the full-time driving task under all road and

environmental conditions equally to what a human driver handles. Such system

is classified as level 5 according to the Society of Automotive Engineers (SAE)’s

taxonomy for self-driving cars which is introduced under the standard J3016 [97].

Pioneers from many universities and companies have made impressive progress

recently but the field faces challenges coming from all directions especially from

safety considerations or the substantial amount of time needed for the testing

processes. It can be understood that the transition to the driverless cars does

and will demand solutions for many control problems [121].

6.1 Lateral Autonomous Vehicle Model

The lane changing is one of the most interesting questions to tackle for the au-

tonomous vehicles. Researchers have applied various control methods in case

studies and real-world implementations to address the issues [98, 99]. Accord-

ing to the report [100] of National Highway Traffic Safety Administration in the

US, transportation researchers estimate that up to 10% of all crashes are lane-

changing related. The introduction of the autonomous cars could impact the

statistics so effective controllers are crucial to mitigate the risks.

From the controls perspective, to perform lane-changing manoeuvres success-

fully the algorithm must deal with the lateral vehicle dynamics. An important

element of the lane changing is to handle the effect of external parameters like

longitudinal velocity on the lateral vehicle dynamics. For this reason, the LPV
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modelling approach has been taken for the case study here.

Consider the illustrated lateral vehicle model in Fig. 6.1 known as the bicycle

model in the literature [101], derived by transforming the front and rear wheels

into singles. In the bicycle model, the Vx stands for the longitudinal velocity that

moves the vehicle, the ψ being the yaw angle that decides the heading of the

vehicle while the δ acts as the steering angle (control signal) and β is the side

slip angle. The center of gravity is denoted by the cg, and the distances from

the cg to the tires are given by lr and lf for the front and rear, respectively. The

state-space model of the lateral vehicle dynamics is summarized by,

ẋ(t) = Atx(t) +Btu(t),

y(t) = Ctx(t) +Dtu(t). (6.1)

Expanding the model, the state matrices At and Bt are given by,

At =


0 1 0 0

0 −Cf+Cr

mVx(t)

Cf+Cr

m
−Cf lf−Crlr

mVx(t)

0 0 0 1

0 −Cf lf−Crlr
IzVx(t)

Cf lf−Crlr
Iz

Cf lf
IzG

, Bt =


0

Cf

mG

0

Cf lf
IzG

 , (6.2)

where Vx(t) is an external parameter and may be time-varying, i.e. it is the

scheduling parameter ρ(t) = Vx(t) allowing the state-space model classify as

LPV. The remaining parameters G is ratio of steering wheel to road wheel angle

with, m is the vehicle mass, Iz is the yaw moment of inertia and the Cf and Cr

express the front and rear cornering stiffness coefficients. The state vector x(t)

contains the lateral position y(t), the ψ(t) and their derivatives,

x(t) =
(
y(t) ẏ(t) ψ(t) ψ̇(t)

)
(6.3)
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Figure 6.1: Bicycle model (CAD drawing [108] modified).

and the control input u(t) = δ(t). The output model expands below,

y(t) =

y(t)

ψ(t)

 , Ct =

1 0 0 0

0 0 1 0

 , Dt =

0

0

 . (6.4)

The models are discretized explicitly for the controller using forward Euler ap-

proximation approach which leaves Adt = (1 + TsAt), Bdt = TsBt, Cdt = Ct and

Ddt = Dt with Ts being the sample time.

In section 6.2, the LPV-RE Preview controller is designed whose solution has

been introduced in chapter 4 earlier. The original idea is that the controller

has access to the road information ahead which will be incorporated in the final

augmented state-space model before deriving the control solutions like Sharp

introduced with his LQ-Preview controller [68]. However, if the plant dynamics

are facing changes or i.e. parameter variations, it could prove a challenge for

these controllers. The intuition is that the LPV-RE Preview controller can be a

suitable control solution for the problem due to the fact that it uses optimized

feedback gains which can respond to the changes imposed on the lateral dynamics

by the varying external parameter ρ(t) = Vx(t).
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Figure 6.2: The previewed road [68].

6.2 LPV-RE Preview Control Design

In this section, the state-space representation of the reference road model is given

and then used in constructing the augmented state-space model for the controller.

The augmented state-space model is the LPV adaptation of the [68] and the

controller will be the LPV-RE Preview algorithm introduced in this thesis. After

the mentioned state-space models are presented, the LPV-RE Preview control

solution will be derived and control parameters will be given.

6.2.1 Previewed Road Model

The road is previewed for Np steps to be used as future reference information by

the controller as shown in Fig. 6.2. The state-space road model is given below,

yr(t+ 1) = Aryr(t) +BryrNp(t). (6.5)

The vector yr(t) with size Np × 1 denotes the previewed road states while the

yrNp represents the scalar input vector. The state matrices Ar and Bt are,

Ar =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0


,Br =



0

0

0
...

1


(6.6)
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6.2.2 Augmented System Model

Next, the previewed road model in (6.5) is combined with the LPV vehicle plant

model in (6.1) that has been discretized,

x(t+ 1)

yr(t+ 1)

 =

Adt 0

0 Ar

x(t)

yr(t)

+

Bdt

0

 δ(t) +

 0

Br

 yrNp(t), (6.7)

which is summarized as the model below,

X (t+ 1) = AtX (t) + Btδ(t) + BryrNp(t). (6.8)

To complete the augmented system model, the dynamics approach in [68] was fol-

lowed which has already been illustrated in the Fig. 6.2. The approach considers

the distance between two preview points as Vx(t)Ts and using this information

to calculate the heading angle ψ(t) which interprets the road information to the

vehicle dynamics model through the new measurements matrix C,

Y(t+ 1) = CtX (t) =

1 0 0 0 −1 0 0 . . . 0

0 0 1 0
1

Vx(t)Ts

−1

Vx(t)Ts
0 . . . 0

X (t). (6.9)

6.2.3 LPV-RE Preview Controller

Let the LPV-RE Preview control cost function J(X (t), δ(t)) be as in,

J(X (t), ρ, δ(t)) = lim
N→∞

N∑
t=0

(
X (t)TQ(ρ)X (t) + δT (t)Rδ(t)

)
, (6.10)

for the augmented system in (6.8) and define the weighting on the states,

Q(ρ) = CT
t QCt. (6.11)
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Figure 6.3: LPV-RE Preview control diagram.

where Q matrix’s values are chosen as,

Q =

1 0

0 0

 ,

and the control weighting term R = 1. Note that for notational simplicity, the

algorithm’s elements are not indicated as state-dependent this time. The solution

of (6.10) returns the LPV-RE Preview control law,

δ(t) = −K(ρ)X (t), (6.12)

implemented as in control diagram of Fig. 6.3. The gain vector K has the struc-

ture of K(ρ) =
(
Kfb(ρ), Kff (ρ)

)
including the state feedback and preview gains

which are feed-forward. The gain vector K is,

K(ρ) = (R + BT
t P (ρ)Bt)

−1BT
t P (ρ)AtX (t), (6.13)

with the P (ρ) matrix from the solution of the discrete LPV-RE,

P (ρ) = AT
t P (ρ)At +AT

t P (ρ)Bt

(
R + BT

t P (ρ)Bt

)−1

BT
t P (ρ)At +Q(ρ). (6.14)
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Figure 6.4: Lane changing manoeuvre.

6.3 Simulation Studies

The reference trajectory for the autonomous vehicle is demonstrated in Fig. 6.4

using Matlab’s Driving Scenario toolbox. The lane-changing path is generated by

having a series of adjacent way points connected. This is implemented using the

linspace function and visualized using the toolbox. A common and a simpler way

to generate reference paths for the autonomous vehicles, is to use line segments

and join them or advanced mathematical techniques such as the clothoids also

exist. However, the approach taken has been sufficient for the purposes of this

study. The parameters chosen for the autonomous vehicle lateral model are given

by the Table 6.1. The simulation results of this chapter are demonstrated in

Table 6.1: Autonomous vehicle lateral model parameters

Parameter Symbol Value
Gravity g 9.81m/s2

Vehicle Mass m 1573kgs
Yaw Moment of Inertia Iz 2550kgm2

Cornering Stiffness Coefficient (front) Cf 2 ∗ 88310N/rad
Cornering Stiffness Coefficient (rear) Cr 2 ∗ 64076N/rad

Tire Distance to CG (front) lf 0.913m
Tire Distance to CG (rear) lr 1.73m
Steering Wheel to Tire Ratio G 16

Sampling Time Ts 0.02s
Preview Steps Np 250

the Fig. 6.5 where a single lane-change is performed under 10 simulation seconds
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which are scaled in the graphs. There are two longitudinal speed profiles for the

given set of results which are the constant velocity Vx(t) = 20m/s and the varying

Vx(t) which initially starts at 20m/s with an acceleration rate of 2m/s2 and ending

up at 40m/s, shown in parts (e) and (f), respectively. When the longitudinal

speed is constant, it is seen in part (a) that both the LQR and LPV-RE Preview

controllers are successful in tracking the reference signal. However, the LPV-RE

Preview controller is faster due to the use of future reference information. In real

traffic conditions, considering a take-over might be needed or on-coming traffic is

present, the task of lane-changing might require acceleration thus the parameter

variations for the controller. The longitudinal velocity would vary in such case.

The results in part (b) shows that while LPV-RE Preview approach can adapt to

the changes, the LQR struggles to keep up as would expected since it is expected

to need re-tuning. This is also observed in the state-feedback portion of the

controller gains which takes the initial values given below,

Kfb(0) ≈
(
0.3095, 0.076, 4.602, 0.4120

)
.

The gains remain constant for the LQR while they are updated continuously

when the LPV-RE approach is taken. Because the variation is not very noticeable

on the plots, steady-state values are presented to show that the gains are updated,

Kfb(∞) ≈
(
0.3056, 0.1128, 4.4504, 0.6497

)
.

The results in part (c) and (d) compare the steering angle signals used by both

controllers for the two velocity cases. The LPV-RE Preview requests the steering

action earlier compared to the LQR due to the future reference information which

helps the fast transient response for the lateral position of the vehicle. The

control signals might seem different at first, but the steering principle is the

same. In other words, both controllers perform sort of an S-shape steering action,
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Figure 6.5: Reference lateral position tracking for lane-changing.
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Np steps

Kff(x) 

Figure 6.6: Preview gains vs. preview steps

only tweaked very differently. The preview controller gives quicker responses

while waiting less in between the two main steering actions of the lane change

manoeuvre.

6.4 Closing Remarks

For this study, the preview steps are chosen Np = 250. The value was chosen with

intuition, trial and error mixed together. Researchers state that the preview steps

would reach a threshold beyond which no further benefits are possible [83]. There

is not an algorithm or any studies in literature so far that deals with the problem

of calculating an optimal preview length yet. This is also confirmed in the largest

preview control literature review paper [71]. However, using the approach of this

thesis which is demonstrated in Fig. 6.6, it may be possible to at least guess which

numbers would be sufficient. In this figure, the feedforward preview gains are plot

vs. the preview length Np. We observe that much variations occur for the small

number of steps which seem to saturate after some point. This approach remains

intuitive though and without a formulation cannot be methodical. It is surely an

interesting research question for the preview control area.

The case study of this chapter is the first implementation of the SDRE motived
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preview controllers in chapter 4. It is also the second time in the literature, a

LPV system was considered for the preview control. The results have verified the

advantage and effectiveness of the preview controller for the autonomous vehicle

lane change problem for both constant and varying speed profiles.
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Electric Vehicle Control

“I have actually made a prediction that within 30 years a majority of

new cars made in the United States will be electric. And I don’t mean

hybrid. I mean fully electric.”

Elon Musk, PBS Interview, 2008.

This case study takes the RS-NGMV approach to the longitudinal speed track-

ing control problem for a battery electric vehicle also known as pure/full electric

vehicle, for which the sole source of energy are batteries. For convenience though,

the notation EV has been used throughout the thesis to refer to this type of ve-

hicle. The standard EV driving cycle scenarios and constant speed cruise control

have been considered as the reference speed profiles. The EV has been modelled

as a scalar qLPV system and the RS-NGMV algorithm with PI structure has

been used as the control approach. The results illustrate the tracking behaviour

under the impact of road and environmental disturbances.

The increasing concerns over the climate change combined with the success of

the electric vehicles in the recent years are encouraging many countries into taking

further environmental measures. Last year, the UK government announced the

ban on the sales of new petrol and diesel engines by 2030 [102]. Automotive

companies like GM has also announced their commitments to phase-out of fossil
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fuel vehicles [103]. Several other mega brands are committing to full EV models.

It has been thus a motivating factor for this thesis as well, to consider the RS-

NGMV performance for an EV control problem.

The longitudinal speed tracking problem is not a new topic for conventional

vehicles where PI controllers have been the dominant solution for several appli-

cations such as [104]. The PI control approach appears to be the consensus for

the EV implementations as well. However, with the new advances in electron-

ics, external information from the vehicle environment such as the weather, road

conditions and etc. could be utilized much more for performance or fuel econ-

omy improvements. Therefore, this research addresses the question of how an

advanced control method, e.g. RS-NGMV, can contribute to the problem when

considering the impact of external parameters.

The remainder of this chapter is organized as follows: Section 1 shows the

longitudinal vehicle dynamics equations and derives the qLPV model for the

controller and also presents the EV battery equations. Section 2 explains the

derivation of the RS-NGMV controller and Section 3 demonstrates the analysis

of the simulation results. Finally, some further comments are discussed under the

closing remarks section.

7.1 EV Model

This section introduces the equations used to derive the EV model. First the

longitudinal dynamics and second the battery equations are presented. The dy-

namics are represented within a qLPV model.

7.1.1 Longitudinal Dynamics and qLPV Model

Consider a Forward Wheel Drive (FWD) car driven on a road with inclination θ

depicted in Fig. 7.1. The vehicle’s traction, forward in our example, depends on
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Figure 7.1: Longitudinal car dynamics (CAD drawing [108] modified).

the combination of several forces. The forces mentioned include: Aerodynamic

drag, gravitational, tractive and rolling resistance forces.

The longitudinal dynamics express the relation of these forces. The mathemat-

ical principles of the models derived in this chapter are adapted from [105, 106].

The total force on longitudinal motion is summarized as in,

Ftotal = ma = Fx − Faero − Fgrade − Froll, (7.1)

where m denotes the mass of the vehicle and a denotes the acceleration, following

Newton’s second law of motion. The Fx represents the tractive force acting on

the tires to move the vehicle in the desired trajectory. The opposing forces are

external and act as disturbances. The first is the aerodynamic drag force,

Faero =
ρACd

2
(Vx + Vwind)

2. (7.2)

It consists of the pieces: ρ, the mass density of air, A the vehicle frontal area,

Cd aerodynamic drag coefficient, Vx the longitudinal velocity and Vwind the wind

speed. The study in this chapter assumes Vwind = 0, and thus Faero = (1/2)ρACdV
2
x .

The gravitational force, Fgrade, results from the product of m and the accel-

eration of gravity g. When the road grade (inclination) factor is considered, it
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becomes,

Fgrade = mgsinθ. (7.3)

The rolling resistance or rolling friction force is expressed by,

Froll = mgCr, (7.4)

where Cr stands for the rolling resistance coefficient, a factor depending on tire

pressure and other conditions.

The longitudinal dynamics can now be expressed by the state-space model,

V̇x = −ρACdVx
2m

Vx +
1

m
Fx − gθ − gCr, (7.5)

y = Vx +Wd, (7.6)

where V̇x = a. The longitudinal speed Vx is the controlled output subjected to

Wd, the output disturbance which also may contain stochastic noise. Note that

since the roads are constructed to have relatively small inclinations, the road

grade force can been linearised at θ = 0 and thus mgsinθ = mgθ. The non-linear

system has been derived the way in (7.5) and (7.6) deliberately, to provide a

qLPV model for the RS-NGMV control solution. It matches the representation,

ẋ = A
(
x(t), p(t)

)
x+B

(
x(t), p(t)

)
u,

y = C
(
x(t), p(t)

)
x+D

(
x(t), p(t)

)
u,

with x = Vx and selected scheduling parameters p = (p1, p2) defined by,

p1 = −ρACd

2m
,

p2 =
1

m
,
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Figure 7.2: EV powertrain components (CAD drawing [108] modified)

As stated in chapter 2 section 4, a qLPV system may be function of states x(t),

inputs u(t) and scheduling parameters p(t). The p(t) is a known parameter vector

that may be time-varying and is chosen by the designer. For this example, it is

a combination of constant parameters of the longitudinal vehicle dynamics.

To further clarify, the EV components are not individually represented in

the state-space model. However, all EV components impact and determine the

tractive force Fx.

The model is discretized by the explicit forward Euler approximations in the

Matlab implementations at sampling time, Ts = 1s. The position of the vehicle

is related to the velocity by q =
∫
Vxdt discretized as well. This is later used for

EV range calculations.

7.1.2 EV Powertrain

The main components of the EV powertrain are the battery, electric motor and

the driveline as shown in Fig. 7.2. The battery provides the energy needed for

the tractive force of the vehicle. The control signals send the acceleration and de-

celeration commands to the electric motor. The deceleration signals are received

by the brakes with energy recovery (regeneration) property and transferred to

the electric motor as torque requests. The electric motor receives all torque com-

mands and provide the demand. Through the driveline the wheels receive the
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traction force Fx.

Battery

The battery model used in this study is rather simplified. It is assumed that

the battery is always able to supply the power demanded by the load unless it is

completely discharged of course. The assumption means that parameters of the

battery remain constant which is not the case for long term vehicle usage. These

factors are considered by Battery Management Systems (BMS) using sophisti-

cated methods like Kalman filtering, Least Squares and etc. [109]. However,

BMS strategies are not within the scope of this analysis.

To define the battery model, the Equivalent Circuit Model (ECM) shown in

Fig. 7.3 is used. The ECM represents the operation of a Li-ion cell model. The

battery current of the cell is calculated below,

I =
Voc −

√
V 2
oc − 4RiPmotor

2Ri

, (7.7)

where Voc is the Open-Circuit Voltage (OCV) and Ri is the internal resistance

of the battery. Pmotor is the motor power combined with the accessory load (AC,

multi-media, etc.). The battery power is calculated with losses taken into account,

Pbattery = IVoc − I2Ri. (7.8)

In more complicated ECM models, the open-circuit voltage is a function of the
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Battery State-of-Charge (SOC) denoted by z(t). SOC is the concept of indicating

the available amount of charge level in the battery in percentage at a time instant

(see Fig. 7.3).

A very crude analogy would be the fuel gauge in the conventional vehicles.

However, unlike fossil fuels it is unfortunately not possible to measure the battery

SOC. Therefore, estimation methods are used to tackle the problem. Once again,

this is a topic for the BMS and not a concern of this thesis but studies as future

work is already in progress.

In this chapter, it is assumed that the battery SOC at the start is always

known and thus there is only the task of updating it which is given by,

z(t) = z(t− 1)− ITs
Q
, (7.9)

at time t, with Q being the energy capacity.

Electric Motor

The output power provided by the electric motor [107] is given by,

Pmotor = Pi − Ploss, (7.10)

where the input power Pi is subjected to the motor losses Ploss. To break down

these terms, we first present,

Pmotor = τmotorωmotor, (7.11)

showing that the motor power output is the product of net motor torque τmotor

and the rotational speed ωmotor of the shaft. The input power is given by,

Pi = τω, (7.12)
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Figure 7.4: Motor torque vs. speed characteristics

and the motor loss model is expanded by,

Ploss = C + kcτ
2 + kiω + kwω

3, (7.13)

with the parameters: Motor loss constants C, kc, ki, kw, maximum torque τ and

rated speed ω, related to the design of the motor whose characteristics are shown

in Fig. 7.4.

By defining the motor input-output efficiency factor η = Pmotor/Pi as below,

a dual operation mode is enabled, that is, the traction and the regeneration,

respectively.

To represent the motor operation modes, define the factors,

If V̇x ≥ 0 → ηtraction =
Pmotor

Pmotor + Ploss

, (7.14)

where the motor acts as a propeller, and,

If V̇x < 0 → ηregen. =
Pmotor + Ploss

Pmotor

, (7.15)

where the motor acts like a generator during braking. The torque generated is

delivered to the driveline which is the final component before the wheels.
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Driveline

The driveline provides the tractive force Fx to move the tires while providing

motor speed as feedback to the electric motor,

Fx = (τmotor − τloss)
G

rw
− Fbr. (7.16)

The torque is subjected to losses τloss associated with the driveline and the net

torque goes through the gear ratio G while being divided by the tire radius rw.

If there is any braking, this is subtracted as the brake force Fbr.

7.2 RS-NGMV Control Design

This section starts with the introduction of the PI controller and then provides

the RS-NGMV controller design.

7.2.1 Baseline PI Controller

The PI controller is used as the baseline control method for this chapter,

u(t) = kpe(t) +
1

1− z−1
kITse(t), (7.17)

with gains kp and kI with the feedback error e(t). To express the PI controller in

the RS terms, we first formulate it as,

u(t) = f1(z
−1)kP e(t) + f2(z

−1)kITse(t), (7.18)

where the functions f(z−1) are given by,

f1(z
−1) = 1, f2(z

−1) =
1

1− z−1
,
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Figure 7.5: RS-NGMV control diagram.

and the feedback gains are denoted by the kc,

kc = kPI =

kp
kI

 =

 15

0.25

 ,

are fixed and will be combined with the NGMV optimized gains. The restricted

structure controller results from the product of user pre-specified functions and

the feedback gains, thus the RS-PI is defined by,

u(t) = Fe(t)kc. (7.19)

7.2.2 RS-NGMV Controller

The parallel structure of the RS-NGMV is used as a PI controller with satisfactory

results were available. The control strategy is implemented as in the Fig. 7.5 with

the RS-NGMV control signal generalized as,

u(t) = Fe(t)kc(t), (7.20)
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meaning kc(t) = kc + k̃c(t). The fixed PI gains kc, shown previously, are

combined with the gain deviations k̃c(t) suggested by the NGMV optimization,

k̃c(t) = −X0(t)
−1(Pp(t)(dpd(t+ k) + Cpt+kx̂(t+ k|t)) + ψk(t)). (7.21)

The RS-NGMV control parameters are given in Table 7.1 chosen by the

weighting strategies in chapter 3, followed by trial-and-error modifications.

The objective of the controller is to track the reference speed profile suggested

as a drive cycle or constant speed commmand for cruise control. Limitations on

acceleration and braking is introduced with saturation blocks and the input non-

linearity is considered W1k = I.

The output disturbance is filtered by,

Wd(z
−1) =

0.1z−1

1− 0.98z−1
, (7.22)

Table 7.1: Controller parameters

Parameter Symbol Value
Dynamic Error Weighting λp 1

Cost-Function Error Weighting Pc 10001−0.97z−1

1−z−1

Cost-Function Control Weighting Fck 0.001 1−z−1

1−0.1z−1

Control Input Weighting λu 0.0001
Gain Deviation Weighting λk diag(1, 0.1, 0.01)

Deviation Increments Weighting λd diag(100, 50, 0)

from which the state-space disturbance model is obtained and incorporated

into the augmented system. This was not needed in previous case studies because

the disturbances did not seem to interfere with the performance, however, for this

case study it has been a crucial step. This is another advantage of the RS-NGMV

approach in utilizing information which is the known disturbance in this case.
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7.3 Simulation Results

The simulation results will be demonstrated after specifying the EV parameters.

7.3.1 The EV Parameters

The parameters used for the vehicle model is a blend of [104] and [109] which uses

the speculated specifications of Chevy Volt, a passenger EV. They are shown in

Table 7.2. The sampling time is chosen as Ts = 1s for the simulations.

Table 7.2: EV parameters

Parameter Symbol Value
Battery OCV Voc 340V

Internal Resistance Ri 0.1Ω
Initial Battery SOC z0 0.95
Accessory Load Paux 600W
Energy Capacity Q 12.6kWh

Gravity g 9.81m/s2

Vehicle Mass m 2200kgs
Wheel Radius rw 0.34m

Rolling Resistance Coefficient Cr 0.01
EV Frontal Area A 1.84m2

Aerodynamic Drag Coefficient Cd 0.22
Air Density ρ 1.225kg/m3

Gear Ratio G 3.55
Max. Motor Torque Tmax 500Nm
Rated Motor Torque Trated 300Nm
Max. Motor Speed ωmax 524rad/s
Rated Motor Speed ωrated 834rad/s
Motor Constant c 1.0472
Motor Constant ki 0.01
Motor Constant kc 0.12
Motor Constant kw 1.2e− 05
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7.3.2 Cruise-Control Results

In this scenario, the reference speed is constant as in cruise-control applications.

The reference signal is modelled as 1st-order transfer function to represent a

smooth acceleration from Vx(t) = 0 to Vx(t) = 30mph by imitating the accel-

eration characteristics of market EVs. The Fig. 7.6 shows that the RS-NGMV

can handle the disturbance resulting from the road grade and that it reaches

steady-state faster than the PI in all cases. For these cases, we consider two road

inclination profiles denoted by θ1(t) and θ2(t). θ1(t) is displayed in part (e) of the

figure and is applied on the tracking results for parts (a), (b) and (c).

In every simulation, noises are also considered hence results also display the

stochastic control performance. For example in part (a), the road is flat (θ1(t) =

0) and it seen that even in this case the stochastic noises have a negative impact

on the PI controller whereas their effect on the RS-NGMV is not significant.

In part (b) the road grade is constant at θ1(t) = 0.1 radians which refers to a

10% inclination and the impact on both controllers are visible. The RS-NGMV

manages to keep the traction and reach the steady-state quickly. For the part

(c) the inclination starts from zero and increases to 0.05 radians. This can be

considered as the vehicle ascending and results are similar to before for the RS-

NGMV. However, it is seen that the variations degrade the performance of PI

into a more oscillatory response. To demonstrate this more clearly, the θ2(t)

in part (f) is implemented as a time-varying road grade profile θ ≃ 0.1sin(2ft)

where f = 0.005Hz. The 0.1 radians refers to a 10% inclination and the sine

wave enables a hilly route for the EV. The time horizon is extended as well. It is

applied for the tracking case in part (d) and highlights the impact of variations.

Assessing the overall control performance in the simulations, it may appear

as the advanced RS-NGMV control does not improve too much against the PI

control. The PI controller in this application does perform very well indeed

on its own unless there are disturbances involved. However, when there are
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(a) Tracking for θ1(t) = 0 (b) Tracking for constant θ1(t) = 0.1

(c) Tracking for θ1(t) ramp (d) Tracking for θ2(t)

(e) θ1(t) road grades (f) θ2(t) road grade

Figure 7.6: EV cruise-control tracking results.
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(a) SOC for θ1(t) = 0 (b) SOC for constant θ1(t) = 0.1

(c) SOC for varying θ1(t) (d) SOC for θ2(t)

Figure 7.7: EV cruise-control battery SOC results.

disturbances, the PI’s performance reduces and the advantage of using the RS-

NGMV gets stronger. In the real-world applications, it is also expected that

even the small speed variations could impact the passenger comfort quite badly

thus keeping the drive as smooth as possible still would improve the quality

greatly. Furthermore, the purpose of RS-NGMV is to provide advanced NGMV

control in low-order structures (such as PI, PID, PD or general z-transfer function

forms) that classically trained staff are more familiar with. They are two different

controllers and the RS-NGMV does not claim to be better or an alternative.

Battery SOC Results

Here are the battery SOC results from the previous runs are given in Fig. 7.7.
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The initial SOC value is always set to z(0) = 95%. The immediate observation

is that the SOC values are higher for both controllers in the first three plots as

these cases where only run for 100 seconds. It is also seen that the acceleration in

the beginning consumes from the battery more compared to the constant speed as

one would expect a similar case for conventional vehicles and fuel consumption.

When the road grade θ(t) is zero the RS-NGMV keeps a higher SOC level in

the end. However, for the last three plots in (b),(c) and (d) it is seen that

the superior tracking performance of the RS-NGMV comes with a cost at the

SOC. The difference is very minimal though being only approximately zRS(∞)−

zPI(∞) ≤ 0.05. This is because of the control efforts of RS-NGMV increasing due

to the disturbance factor from the road grade. For part (d), it is also shown that

the regenerative braking manages to charge the vehicle during the decelerations

or descends.

7.3.3 Drive-Cycle Results

Having concluded the cruise-control case, the well-known EV drive-cycles will

now be implemented as the reference speed profile. The first set of simulation

results use the Urban Dynamometer Driving Schedule (UDDS) for the reference

speed profile to study the EV in city driving conditions. The second set of results

use the Highway Fuel Economy Test (HWFET) for the speed profile for highway

driving where accelerations and decelerations are less aggressive.

For HWFET results the road grade θ2(t) was used whereas in UDDS runs it

was altered as θ3(t) for the stops the EV comes at unlike the HWFET or cruise-

control case where stops were not included. These signals are demonstrated in

Fig. 7.8. The UDDS runs for 1369 seconds and the HWFET for 765 seconds.

The tracking results for the two drive-cycles are plot in Fig. 7.9. It is observed

that both controller show overall success in the tracking of many different veloc-

ities demanded by the drive-cycle. When looked closely, it is noticed that their
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(a) UDDS drive-cycle.

(b) HWFET drive-cycle.

(c) θ3(t) road grade

Figure 7.8: EV drive-cycles and θ(t) profiles.
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performances differ. Except rare overshoots, the RS-NGMV shows better track-

ing performance for the UDDS drive-cycle. It tracks the reference very closely.

The PI shows overshooting for many occasions and is unable to reach steady-state

at vehicle stops and for some even go below the zero. For the HWFET in part

(b), the PI in the first half is undershooting and mostly overshoot for the second

half. The RS-NGMV has higher accuracy one more time.

Since, the drive-cycles are run for a very long simulation time, the controller

performances might be difficult to notice without zooming in. Therefore, the

tracking results that have just been presented are repeated in Fig. 7.10 and

Fig. 7.11 by being split into halves with certain time windows zoomed-in and

included in the main figures. They present the UDDS and HWFET tracking

results, respectively.

To further support the hypothesis and for the sake of clarity, the RMS values

of the tracking errors are also evaluated using,

RMS(e(t)) =

√
1

T

∫ t

t−T

e(τ)2dτ (7.23)

where T is 1/f . The RMS values are given for UDDS and HWFET in Fig. 7.12.

The RMS analysis verifies the controller tracking performance results.

Battery SOC Results

Finally, Fig. 7.13 demonstrates the battery SOC levels for the drive-cycle runs.

For both cases, the SOC level for the RS-NGMV ends up slightly lower but

it is almost negligible. It is hard to notice for the HWFET but a bit more visible

for the UDDS. This is kind of expected, since the UDDS drive-cycle includes so

many abrupt accelerations and decelerations. It also lasts longer there the road

grade profile θ(t) that represents a hilly route is driven even further. It means

more ascending and descending events are happening. Therefore, the control
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(a) UDDS drive-cycle.

(b) HWFET drive-cycle.

Figure 7.9: UDDS and HWFET tracking results.
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(a) UDDS drive-cycle first half.

(b) UDDS drive-cycle second half.

Figure 7.10: UDDS drive-cycle split into half.
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(a) HWFET drive-cycle first half.

(b) HWFET drive-cycle second half.

Figure 7.11: HWFET drive-cycle split into half.
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(a) UDDS tracking error RMS.

(b) HWFET tracking error RMS.

Figure 7.12: UDDS and HWFET tracking error RMS value plots.
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(a) UDDS drive-cycle.

(b) HWFET drive-cycle.

Figure 7.13: UDDS and HWFET Tracking Results.
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effort increases in response to these variations.

Range Estimations

The EV range estimation means roughly the number of miles the vehicle is es-

timated to keep travelling and is calculated at the beginning of a journey for

this study. Recall, that the position of the vehicle is related to the velocity by

q =
∫
Vxdt. In discrete-time, the position is calculated/updated using,

∆q = q(t)− q(t− 1) = VxTs, (7.24)

where ∆q denotes the change in position between the time instants t and t − 1.

The estimated EV range is extrapolated from the driving cycle information, that

is, the total distance travelled and the depletion of the battery SOC [122]. With

the battery SOC limits also taken into account, the range is calculated by,

q̂ = qtotal
zmax − zmin

z(0)− z(∞)
. (7.25)

where zmax = z0 = 0.95. The lower SOC limit is chosen as zmin = 0.05. On the

lower limit, the value is entirely up to the manufacturer set up at the factory.

For example, the Chevrolet Volt’s lower limit is given as zmin = 0.3 according to

[120]. When long-term use is taken into account, this is a safe number and will

protect the battery pack from ageing rapidly. On the other hand, for the study

in this thesis, EV tracking performance is the main focus. The following results

are based on the UDDS and HWFET cycles introduced earlier.

The EV range estimations for the UDDS drive-cycle with are given by,

(
q̂RS−NGMV , q̂PI

)
=

(
40.09mi, 41.79mi

)
.

for zero road grade θ(t) = 0. When the varying road grade profile θ2(t) is selected,
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the EV range estimation values fall drastically from the previous case,

(
q̂RS−NGMV , q̂PI

)
=

(
13.43mi, 13.61mi

)
.

As for the HWFET drive-cycle, the estimations for the two controllers are,

(
q̂RS−NGMV , q̂PI

)
=

(
47.28mi, 47.94mi

)
.

with θ(t) = 0. For θ2(t) road grade profile, the EV range estimations are,

(
q̂RS−NGMV , q̂PI

)
=

(
14.67mi, 14.75mi

)
.

Note that, the battery pack chosen for this study has a very small energy

capacity of Q = 12.6kWh. Most of the EV parameters chosen in this thesis

are based on the speculated values of the Chevrolet Volt as our reference work

[109] used them prior to the vehicle’s release. The first generation models of this

vehicle equipped battery packs with approximately 30% higher energy capacity

[120]. However, the results here are still similar to those of the actual vehicle’s.

The EV range estimations of this section are related and support the battery

SOC results introduced earlier. The reason RS-NGMV shows a very small dif-

ference in the above results is because its final SOC value z(∞) is slightly lower

than that of the PI which is caused by the control efforts in keeping up the vehicle

performance.

These results show that the impact of the road grade is significant on the

vehicle range and highlight the importance of the battery SOC information in

calculating it which is a critical factor in planning a journey for the driver.
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7.4 Closing Remarks

The results have shown the affect of the disturbances on the tracking performance.

It is seen that the impact is even stronger when the disturbances are time-varying.

This highlights the importance of using advanced control strategies to deal with

harsh real-world conditions that are often changing dynamically. In this case

study, it is verified that the RS-NGMV controller can sustain the desired response

with minimal losses at the presence of heavy disturbances as well.

It was assumed that the initial battery SOC starts at 95%. However, in

practical scenarios it cannot be expected for the SOC to be at this level every

single time a journey begins. The user might stop for the day or take a break

to start another without charging the battery [122]. Thus, it is very important

to estimate the initial value of the SOC to approximate the driving range prop-

erly which is crucial when planning a journey [115]. Future work will consider

the SOC estimation and a more advanced lithium-ion battery ECM model in-

cluding using RS-NGMV for its charging. Recent studies have also investigated

the performance of MPC [116 − 117] in charging of EV batteries. However, it

is noticed that in these studies the control horizon does not impact the perfor-

mance much. Therefore, RS-NGMV could be studied as an alternative being a

less computationally expensive solution.

Of course, instead of advanced ECM approaches, the physics based modelling

of EV batteries could also be considered for these future works. When battery

ageing aspects are taken into account, the physics based modelling approach looks

quite promising when designing controllers for long-term use. In addition, the

SOC results hint a link between the speed tracking performance and the battery

response which is another topic to investigate for the future research. A modified

RS-NGMV cost function for a compromise between tracking and battery which

considers different operating conditions might be a good idea. The last bit could

also be linked to the Scheduled RS-NGMV approach in the next chapter.
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In this chapter, another case study has been completed to verify the useful-

ness of the RS-NGMV method. To achieve this, the longitudinal speed tracking

problem for which the PI technique has been the most common control solution,

has been chosen. This has enabled the implementation of the restricted struc-

ture approach and provided a baseline controller to start building on. The speed

tracking control problem has been applied on an electric vehicle which belongs to

one of the most demanded research topics today. In addition to the RS-NGMV

implementation of chapter 5, the state-space qLPV model has also included input

disturbances but it has been shown that the RS-NGMV is capable of handling

them.
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Scheduled RS-NGMV Control

“The true art of memory is the art of attention.”

Samuel Johnson, Selected Essays.

This chapter introduces the Scheduled RS-NGMV controller. The approach

takes on the RS-NGMV algorithm presented in chapter 3 for its basis. The

objective is to create an efficient methodology to find out the best possible RS-

NGMV gains for different operating conditions or set-points without too much

manual effort and store these gains. Then have the controller assign the stored

values rapidly, next time the same conditions are encountered hence becoming

the Scheduled RS-NGMV controller.

The amount of time for controller calibration covers a substantial part of

design and verification process. A typical example is in the automotive industry

where engine controls are required to cover a wide range of non-linear operating

conditions and must be tuned accordingly. Therefore, it is high-cost task for the

companies and only gets higher if more resources such as man hours of testing and

tuning become necessary. If successful, the Scheduled RS-NGMV methodology

is expected to save an important amount of time since the engineers will not be

needed to test the engine at every operating point having the recommended gains
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obtained from the simulations. Some results are already available for this idea

and will be presented in the following section.

8.1 SI Engine Application Example

The results from the initial analysis on the Scheduled RS-NGMV idea will be

given here. The Scheduled RS-NGMV studies consider an SI engine model for

which the control problem is reference engine speed tracking. The equations of

the SI engine and its model are explained next.

8.1.1 SI Engine Model

The reference engine model we use is obtained from a built-in Matlab/Simulink

demo “sldemo enginewc” that results from the original theoretical work in [112].

The linearised plant model and its output are given by,

ẋ(t) =

0.8967 −0.00036333

8.4576 1.0053

Pim(t)

N(t)

+

0.0096241

0.043672

 θ(t). (8.1)

y(t) =
(
0 9.5493

)Pim(t)

N(t)

 . (8.2)

where states Pim(bar) and N(rad/s) denotes the intake manifold pressure and the

engine speed, respectively. The output N is in RPM units and the θ represents

the throttle angle which is the input signal.

For the model above, the engine model is linearised at the operating points

specified at x0 =

0.543bar

209rad/s

 and u0 = 8.98◦ for the nominal engine speed

N = 2000RPM. Similarly, the other operating conditions are specified using

Matlab’s findop function. The model is discretized similarly to the previous

implementations with the sampling-time Ts = 0.0150s.
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8.1.2 Simulation Studies

The simulation studies first consider the design of a RS-NGMV controller follow-

ing similar steps to the case studies before and later implement the Scheduled

RS-NGMV steps.

Reference Engine Speed Control

The traditional PI control law used widely for this problem is given in,

u(t) = C0(z
−1)e(t) = kP e(t) + kITs

z

z − 1
e(t), (8.3)

and the reference engine speed tracking error is defined by,

e(t) = Nref (t)−N(t). (8.4)

The PI control law in 8.3 is parametrized using the expression below and will serve

as the fixed gain component of the parallel form restricted structure controller,

u(t) = Fe(t)kc, (8.5)

where the function terms Fe(t) have,f1(z−1)

f2(z
−1)

 =

 1

1/(1− z−1)

 , (8.6)

and the parallel structure uses the fixed PI gains chosen as,

kc = kPI =

kp
kI

 =

0.045

0.145

 . (8.7)
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(a) Engine speed (b) Engine torque vs. load torque

(c) Control input (d) RS-NGMV gains kc(t)

Figure 8.1: RS-NGMV reference engine speed tracking.

For the gain deviation component of the restricted structure controller, the opti-

mized feedback gains are calculated with,

k̃c(t) = −X0(t)
−1(Pp(t)(dpd(t+ k) + Cpt+kx̂(t+ k|t)) + ψk(t)). (8.8)

The engine speed tracking results of the RS-NGMV controller are shown in

Fig. 8.1 for Nref = 2000RPM.

The plot (a) shows that the controller is able to track the reference engine

speed and the plot (b) shows that the engine torque is kept constant. The part

(c) visualizes the throttle angle as the control input applied to reach the desired

engine speed. In the part (d), the RS-NGMV gains kc(t) as a combination of
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Figure 8.2: RS-NGMV reference engine speed profile tracking.

fixed and deviating components are plotted illustrating how they are updated

until the steady-state has been reached.

Storage of Calculated RS-NGMV Gains

The next step is to extend the case above to an engine speed profile stated as,

Nref =
(
2000, 3000, 4000 5000

)
,

for which the set-points change at time steps below,

Tstep =
(
0, 10, 20 30

)
,

where it is assumed that the engine is speeding up. The tracking results for this

case is shown in Fig. 8.2. Note that the time steps are not entirely exact, this is

because buffers are used within the reference generator.
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Figure 8.3: RS-NGMV reference engine speed profile gains.

The next task is collecting the gains kc(t) for the reference speeds and match-

ing them in 1-D look-up tables. The RS-NGMV optimized feedback gains kc(t)

are shown in Fig. 8.3. It is seen from the figure that the gains are updated during

the set-point changes. The gains are collected around these update events,

Tcollect =
(
0.3, 11.5, 21.5 31.5

)
.

as visualized in the zoomed out portion of the figure. It is not yet discovered

how to calculate which time-instant the gains should be collected. However, we

do know that values chosen at transitions work a lot better than values chosen at

steady-state which are often unstable. A transient analysis using classical control

techniques is in order. For now, values from the transition area are used in trial

and error fashion.

After the gains are recorded in the look-up table, they are ready for the

Scheduled RS-NGMV controller.

140



Chapter 8. Scheduled RS-NGMV Control

Figure 8.4: Scheduled RS reference engine speed profile tracking.

Real-time Use of Stored RS-NGMV Gains

In the Simulink model the original RS-NGMV block used for capturing the gain

values is switched with the scheduled RS control block. The controller will not

need to calculate anything but simply will use the recorded gains from the previ-

ous run. The results from running the scheduled RS controller are presented in

Fig. 8.4.

Firstly, the scheduled RS simulation run was much faster due to not needing

optimizations. This can be an advantage for this type of controller in the actual

applications. Secondly, when compared to the RS-NGMV results in Fig. 8.2, it is

visible that the reference tracking is successful and the engine speed reaches the

steady-state value for the same amounts of time. However, there are slightly larger

overshoots for the last three set-points. On the contrary to it, the overshoot per-

formance looks better than the first run for the first set-point Nref = 2000RPM.
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8.2 Closing Remarks

In this chapter a Spark Ignition (SI) has been used as the application for the

initial results from the Scheduled RS-NGMV research. The Scheduled RS-NGMV

is promising to solve a substantial engineering problem where several operating

conditions must be considered and the calibration task is demanding countless

man hours. If generalized as a method, it could be used in other applications

including EVs as well (recall the battery SOC vs. tracking performance remark

of chapter 7).

The results has shown that the approach of choosing the gains around the

set-point change events can get close or even better but definitely needs be sys-

tematized with either some transient analysis or another technique. Classical

control techniques can be considered for the transient analysis and/or machine

learning techniques could be used after gathering a lot of data by using drive cy-

cles or trimming a large set of operating points instead of having a few set-points.

The analysis of the data with machine learning techniques can find out the best

possible values.

In summary, this chapter has shown the potential of the Scheduled RS-NGMV.

Even in its simplest way, the principle of storing the RS-NGMV gains and apply-

ing them later without the need to calculate complex control computations each

time, has improved the speed of the application.
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Conclusions and Future Work

This thesis has presented the RS-NGMV algorithm with special focus on the

control of LPV or SD systems. For these systems, theoretical results were found

and verified with cases studies. Features of the RS-NGMV algorithm were in-

vestigated which has mostly evolved around the question of how the RS-NGMV

controller can deal with parameter-variations, set-point changes, disturbances

and external information. It was shown how the method is capable of adapting

to these factors. The low order restricted structure were shown to be naturally

robust as well.

With the parallel form for the restricted structure, it was also demonstrated

how methods like PI/PID can be used in the RS-NGMV design and highlighting

the benefit of reaching the majority of the classically trained engineers in the

industry. While the systems focus was set on LPV or SD systems, a special

solution of the RS-NGMV capable of handling systems with input non-linearities

or black terms were also derived.

Towards the goals of this thesis, the introduction chapter has set the scene

for the developments in non-linear, optimal and predictive control field. Next,

background theory and literature was presented to explain the foundations of the

RS-NGMV technique. The LPVKF was formulated as well as the augmented
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state-space system RS-NGMV uses. In chapter 3, the RS-NGMV solutions that

are mentioned above were formulated. The preview extension for RS-NGMV

algorithm was considered in chapter 4 and resulted in the SDRE approach to the

preview control problem. SDRE and LPV-RE control laws were derived. Another

extension idea which is the Scheduled RS-NGMV has been proposed in chapter

8 with case study results on a linearised SI engine model. Regarding the preview

extension, the RS-NPGMV is proposed in the Appendix A. Matlab/Simulink

codes, diagrams and implementation tips are given in Appendix B through F.

The algorithmic extensions that this thesis has considered, contribute to the

latest directions in the optimal/predictive theory and not yet fully researched

questions such as the preview control. Meanwhile today’s engineering problems

have also been at the center of these attempts. In chapters 5, 6 and 7, cases studies

use a robotic manipulator, autonomous vehicle and electric vehicle respectively.

Especially, the autonomous and electric vehicles are recently very popular topics

researchers work on.

Some research questions were mentioned in the closing remarks of some chap-

ters. For instance, chapter 4 suggests designing RS-NLQG or RS-NPGMV meth-

ods for the preview control problem and stability analysis using satisficing, chap-

ter 6 suggests an investigation on the optimum preview length and chapter 7

leads the path to BMS algorithm designs and using RS-NGMV for EV battery

charging case. Chapter 8 is a great case for involving machine learning and/or

AI for the RS-NGMV control. Steps are already being taken to realize the last

two ideas above.

There is still much to discover regarding the features of the RS-NGMV con-

troller. The RS is a general z-transfer function, thus different types of low-order

controllers could be the basis of a new RS-NGMV example. The control solution

for the systems with non-linear input subsystems or black-box terms is also worth

looking into. The compensation problem for a non-linear actuator can be studied
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by defining its non-linearity in the input subsystem and developing a RS-NGMV

solution which has the low-order structure of a compensator.

There is also much to explore in the area of robustness. As a start, the Monte-

Carlo simulation runs could be tried for the case studies in this thesis. In an earlier

study, a robust NGMV controller was designed to be used in fault-monitoring

[113]. The controller was designed to be less sensitive when uncertainties were

present in the models. Similar study may be done on the RS-NGMV as well.

Another work [114] also considers the robustness problem for the NGMV but

from a totally different perspective. The paper presents a modified Kalman filter

and resilient NGMV controller against a cyber attack.

The cyber security of industrial controllers became part of a huge debate in

2010 when a malicious computer worm called the Stuxnet was used to target

SCADA and PLC systems at an Iranian plant. A decade after the incident,

on the path of industry 4.0, motivations to develop networked smart machines

integrated with the IoT have been creating a far greater demand for the security of

systems. It would be interesting to consider the RS-NGMV problems from the IT

and communications perspective as well, since the strength of the methods shown

in our case studies indicate one thing in common and that is the importance of

utilizing information to improve the controller performance and features.
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Appendix A

RS-NPGMV Control

This chapter follows from the research made in chapter 4 and its case study in

chapter 6. For this study, previewing is considered as an enhancement for the RS-

NGMV controller. It will be concluded that the improvement would require a the

design of a different RS controller, that is the RS-NPGMV. The RS-NGMV we

have presented in chapter 3 of this thesis, is a single degree-of-freedom controller

and direct approaches to including future reference information in the augmented

model like the Tomizuka’s original study would not solve the problem.

This chapter is organized in two sections. In the first section, the motivations

for a preview enhancement to the RS-NGMV are explained by comparing to the

MPC using simulations. In the second section, the attempts that had been taken

to realize the objective of adding preview action will be explained. Conclusions

will be made and the RS-NPGMV will be proposed.

The roadmap ahead for the investigation includes modifying the RS-NGMV

cost-function for the RS-NPGMV problem first. The solution for the new cost-

function will return the RS-NPGMV optimal control law. Once the controller is

derived, preview procedures similar to those in previous chapters, will be taken

and simulations will be made to verify.
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A.1 Preview Extension of RS-NGMV Control

Recall the preview control concept introduced in section 4.1, which hints that it

is possible to consider preview as an action for a feedback controller if the future

reference information is available. As was stated, the NGMV is not a predictive

controller (and so is not the RS-NGMV) and despite its several other advantages,

it cannot utilize future information. Therefore, we have considered the preview

action for the RS-NGMV controller by following the same intuition as that of the

LQ-Preview control, in incorporating the future reference signal in the system

model and then following with optimal control solutions. The result would be

the RS-NGMV preview controller.

It was shown in chapter 6 that a good application example for the preview

control can be given as the lane-changing of autonomous vehicles where the fu-

ture reference trajectory is the lane-changing manoeuvre and is ideally known. A

simulation demo from Mathworks [82] has impressive results for this control prob-

lem using MPC and Adaptive MPC. Thus, as an initial attempt an RS-NGMV

controller was designed and applied on the systems in the demo for comparative

purposes. The results of the attempt are shown in the section below.

A.1.1 Verifying Motivations with Comparisons to MPC

Model-Based control design is becoming very popular in the industry [83] owing

to its great advantage in enabling fast product testing and verification. Similar to

using building blocks, its possible to apply a method for different system models

rapidly. Model-Based control methodology has been the approach of this thesis

as well with the Restricted Structure NGMV.

Among the Model-Based approaches, the MPC control solutions are the most

demanded. Although, it is not the main target of this thesis the predictive control

techniques like the MPC have also been studied for understanding key concepts,
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investigating connections with the NGMV techniques and as in this section states

the possible extension for the RS-NGMV control.

For providing a brief summary of the MPC technique used in this study,

consider the standard quadratic MPC cost function below,

J
(
e(t),∆u(t)

)
=

Hp∑
i=0

We

(
et+i(t)

)2
+

Hc∑
i=0

W∆u

(
∆ut+i(t)

)2
, (A.1)

s.t. δmin ≤ ui(t) ≤ δmax,

∆umin ≤ ∆ui(t) ≤ ∆umax,

ymin ≤ y(t) ≤ ymax,

minimization of which over the prediction horizon Hp and control horizon Hc

returns the MPC controller. The error signals are denoted by,

ei(t) = yi(t)− yref (t), i = {t, . . . , t+Hp}.

and the control input increments are denoted by,

∆ui(t) = ui(t)− ui(t− 1), i = {t, . . . , t+Hc}.

The error and control signals are penalized by weights We and W∆u respectively.

The lane change simulations provided by the Mathworks demo uses the MPC

formulation given above within the MPC and the Adaptive MPC blocks (uses a

Kalman filter in addition) for the reference tracking of the lateral position and

yaw angle parameters. For the simulations of this section the Adaptive MPC

was chosen since it is a closer equivalent to the RS-NGMV and would make

comparisons fair. PID was also chosen as the other baseline technique. The

results are shown in Fig. A.1. In part (a) it is seen that although they have

similar tracking performances, the Adaptive MPC is faster than the RS-NGMV
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(a) Tracking of lateral position y(t). (b) Tracking of yaw angle ψ(t).

Figure A.1: MPC vs. RS-NGMV

due to using predictions. In part (b) the RS-NGMV shows more robust tracking

characteristics for the yaw angle ψ(t) which is also anticipated owing to its natural

robustness features. However, it has shown slower transient characteristics.

A.1.2 Results

Motivated by these findings, the second phase included incorporating the future

reference signals within the augmented RS-NGMV state-space models and apply

the RS-NGMV optimizations. The attempts to enable preview action did not

show any improvement for the RS-NGMV. First, the LQ-Preview approach pro-

vided earlier was taken. Later, Sharp’s vehicle modelling (different to Mathworks)

and modified LQ-Preview approach were used [68, 118] .

After several attempts, we came to the conclusion that the problem with

the RS-NGMV had been fundamental and structural. RS-NGMV is a 1-DOF

controller using feedback errors only. Therefore, even when the future reference

information are included in the models, it does not make a difference on the

control action. The desired restricted structure preview controller needs to in-

clude the previewed reference signals in another degree of freedom which means

a different controller than the RS-NGMV. However, due to the fact that NGMV

algorithms are constructed to use k-steps ahead predictions only, it is question-
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RS-NPGMV controller

Figure A.2: RS-NPGMV controller.

able how useful previewing would be in this case. The preview horizon may not

be fully covered in k-steps (i.e. k ≤ Np). Hence, the RS-NPGMV is proposed.

A.2 RS-NPGMV Controller

The proposed RS-NPGMV is given in Fig. A.2. 1-DOF feedback controllers use,

e(t) = r(t)− z(t), (A.2)

and since we seek to include future reference information, a 2-DOF strategy

should be considered,

e(t) =

 −z(t)

r(t+Np),

 (A.3)

with Np considering the preview steps and would cancel the action if set to zero.

Recall the restricted structure in general z-transfer function form,

C0(z
−1) =

C0,num(z
−1)

C0,den(z−1)
=
C0,num + C1,numz

−1 + · · ·+ Cn,numz
−n

1 + C1,denz−1 + · · ·+ Cm,denz−m
, (A.4)
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and express a controller using (A.4),

u(t) = C0(z
−1)e(t), (A.5)

for which the cross product with numerator and denumerator terms yields,

u(t) = C0,num(z
−1)e(t)− (C0,den(z

−1)− 1)u(t). (A.6)

Recall the SISO RS-NGMV controller from (3.1),

u(t) =
Ne∑
j=1

fj(z
−1, kj(t))e(t), (A.7)

and expressing it in the new terms described above,

u(t) =
Ne∑
j=1

fj(z
−1, kj(t))C0(t), (A.8)

where the term C0(t) =

 e(t)

−u(t)

 and hence the RS-NPGMV input. Once again

the control input can be parametrised as u(t) = Fe(t)kc(t) like before but for

now it is not necessary to demonstrate the algebraic parametrisation process.

However, attention must be paid that the controller (A.8) will be computed for

the full horizon and therefore a vector of future control inputs will be used,

Ut,N =


u(t)

u(t+ 1)
...

u(t+N)

 =


Fe(t)

Fe(t+ 1)
...

Fe(t+N)

 kc(t), (A.9)
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where kc(t) are the feedback gains calculated by the optimizations. The aug-

mented state-space model is expected to remain the same as the RS-NGMV,

x(t+ 1) = Atx(t) +Btu0(t− k) +Dtξ(t) + dd(t),

z(t) = Ctx(t) + Etu0(t− k) + d(t) + v(t).

The state and error predictor models for the LPVKF,

x̂(t+ k|t) = Ak
t x̂(t|t) +

k∑
j=1

Ak−j
t+jBt+j−1u0(t+ j − 1− k) + ddd(t+ k − 1),

ep(t+ i) = Cpt+ix(t+ i) + Ept+iu0(t+ i− k) + dp(t+ i),

also apply but these results should be collected in larger matrices for the future

predicted values along the prediction horizon N for the RS-NPGMV controller.

Since the error and control signals are in 2-DOF format, plus a prediction

horizon N is taken into account, the biggest difference will appear in RS-NPGMV

cost-function.
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General Matlab/Simulink Codes

The scripts and code snippets demonstrated here are used in general through-

out the Matlab/Simulink documentation of this thesis. The case study specific

simulation files will start in the following Appendix.

B.1 Generating Subsystem Models & Matrices

This code snippet shows how the Wd and disturbance model matrices and deter-

ministic linear reference model Wr are created. They are used in main.m mostly

or in Simulink as LTI model blocks. The Wd may receive outputs from random

number blocks as white-noise and Wr receives reference signals.

1 %Disturbance and Reference Models and Matr ices

2 nxd = 1 ; %s i z e o f d i s turbance s t a t e s

3 nxr = 1 ; %s i z e o f r e f e r e n c e s t a t e s

4 Wd = .1* eye (nxd ) * f i l t ( [ 0 1 ] , [ 1 =0.98] ,Ts ) ;

5 [Ad,Bd ,Cd,Ed ] = ssdata (Wd) ;

6 Wr = eye ( nxr ) * f i l t ( [ 0 1 ] , [ 1 =0.9999] ,Ts ) ;

The dynamic control weighting Fck and the error weighting Pc are created and

their subsystem matrices are extracted similarly to above. The Pc matrices are

directly used in controllers but Fck matrices are used in a state-space block on
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Simulink and sent to RS-NGMV s-functions. Like the reference and disturbance

models they are also defined in main.m mostly.

1 %Control and Error Weight Models and Matr ices

2 Fck = .0001* zpk ( 1 , . 1 , 1 0 , Ts ) ;

3 % Dynamic con t r o l we ight ings

4 [ Af , Bf , Cf , Df ] = ssdata (Fck ) ;

5 Pc = 100* zpk ( . 9 7 , 1 , 1 0 , Ts ) ;

6 % Dynamic e r r o r we ight ings

7 [Ap,Bp ,Cp,Ep ] = ssdata (Pc) ;

The input weighting on u0(t) if needed, would be created using the code chunk

below and then applied on the Simulink model using LTI block.

1 % Input weight ing on u0 ( t )

2 au1 = 0 . 9 3 ; b1 = 0 . 9 5 ;

3 Wu = 1*(1=au1 ) /(1=b1 ) * f i l t ( [ 1 =b1 ] , [ 1 =au1 ] , Ts ) ;

4 [ zWu,kWu] = zero (Wu) ; pWu = pole (Wu) ;

5 % [Au,Bu ,Cu,Eu ] = ssdata (Wu) ;

6 [Au,Bu ,Cu,Eu ] = zp2ss (zWu,pWu,kWu) ;

7 nxu = s i z e (Au, 1 ) ;

8 Wux = ss (Au,Bu , eye (nxu ) , z e r o s (nxu , nu) ,Ts ) ;

9 xu 0 = ze ro s (nxu , 1 ) ;

Most parameters that are defined in main files are stored in Matlab structs to be

called by functions as well as s-functions in Simulink models. Below is a sample.

1 %parameter s t r u c t f o r RS=NGMV cos t func t i ons , f i x ed PID gains , s i z e s and

c o n t r o l l e r l im i t s .

2 p0 = s t r u c t ( ’ kp ’ , kp , ’ kI ’ , kI , ’ kd ’ , kd , ’ lambdap ’ , lambdap , . . .

3 ’ lambdau ’ , lambdau , ’ lambdak ’ , lambdak , ’ lambdad ’ , lambdad , . . .

4 ’ nyc ’ , nyc , ’nym ’ ,nym, ’nu ’ ,nu , ’ nx0 ’ , nx0 , ’ nd ’ ,nd , ’ Fck ’ ,Fck , ’Pc ’ ,Pc , . . .

5 ’ u max ’ , u max , ’ u min ’ , u min , ’ c 2 d f l a g ’ , c 2 d f l a g ) ;

6 %Subsystem matr i ce s .

7 p1 = s t r u c t ( ’Name ’ , ’ par ’ , . . .

8 ’Ap ’ ,Ap, ’Bp ’ ,Bp , ’Cp ’ ,Cp, ’Ep ’ ,Ep , . . .

9 ’Au ’ ,Ap, ’Bu ’ ,Bp , ’Cu ’ ,Cp, ’Eu ’ ,Ep , . . .

10 ’ Af ’ ,Ap, ’ Bf ’ ,Bp , ’ Cf ’ ,Cp , ’Df ’ ,Df , . . .

11 ’Ad ’ ,Ap, ’Bd ’ ,Bp , ’Cd ’ ,Cp, ’Cm’ ,Df , . . .

12 ’ nxp ’ , nxp , ’ nxi ’ , nxi , ’ nxr ’ , nxr , . . .

13 ’QN’ ,QN, ’QN2 ’ ,QN2, ’RN’ ,RN, . . .

14 ’A ’ ,A, ’B ’ ,B, ’C ’ ,C, ’D ’ ,D, ’Ts ’ ,Ts ) ;

15 p1 = ca t s t r u c t (p1 , p0 ) ; %merging two s t r u c t s .
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B.2 Discretizations

It is shown here how the discretizations of the models are performed. The param-

eter cd2 flag is simply an indicator for the code to perform the desired discretiza-

tion technique. In this thesis, this option was coded but only Euler technique

was used for the discretizations.

1 % Model d i s c r e t i z a t i o n

2 i f ( p1 . c 2d f l a g==0)

3 A0 = eye ( p1 . nx0 ) + Ts*A;

4 B0 = Ts*B;

5 D0 = Ts*D;

6 e l s e i f ( p1 . c 2d f l a g==1)

7 XX = [A B D; z e ro s ( p1 . nxu+nxd , p1 . nx0+p1 . nxu+nxd ) ] ;

8 YY = expm(XX*Ts) ;

9 A0 = YY(1 : p1 . nx0 , 1 : p1 . nx0 ) ;

10 B0 = YY(1 : p1 . nx0 , p1 . nx0+1:p1 . nx0+p1 . nxu ) ;

11 D0 = YY(1 : p1 . nx0 , p1 . nx0+p1 . nxu+1:end ) ;

B.3 Figure Plotting

The script “plotmyfigure.m” has been used for plots. Each case study has it in

its directory. This one is a sample. Each example contains modified versions to

extract the results wanted. To workspace blocks were placed in Simulink usually

named in the format “out.myResult” where data was collected during the run

and then plot by running this script manually.

1 wid th f i gu r e = 8 . 5 9 ;

2 h e i g h t f i g u r e = w id th f i gu r e /1 . 6 18 ;

3 width = 7 . 3 ;

4 he ight = width /1 . 6 18 ;

5 marginw = . 7 ;

6

7 FolderName = ’D: \ . . . \ ngmv contro l so f tware v1 \ cagatay examples \EV\RS=NGMV

con t r o l o f EV ( s c a l a r ) \ r e s u l t s ’ ;

8 t i n i t = 0 ; %

9 t i n i t = Ts ; %sampling time Ts
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10 tend = TimeUDDS;

11 %co l o r pa l e t e

12 co lo r1cyan = [102 204 2 0 4 ] . / 2 5 5 ;

13 co lo r2o range = [255 153 8 1 ] . / 2 5 5 ;

14 co l o r 3pu rp l e = [204 51 1 5 3 ] . / 2 5 5 ;

15 co l o r 4g r e en = [102 204 5 1 ] . / 2 5 5 ;

16 color5maroon = [204 51 5 1 ] . / 2 5 5 ;

17 co lor6navy = [0 0 2 0 4 ] . / 2 5 5 ;

18 c o l o r 7 g r e en e r = [ 0 204 0 ] . / 2 5 5 ;

19 co l o r 8 r ed = [204 0 0 ] . / 2 5 5 ;

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 % plo t f i g u r e 1

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 f i g LL1 = f i g u r e ( ’Name ’ , ’RS=NGMV vs PI ’ , ’ NumberTitle ’ , ’ o f f ’ ) ;

24 %xlim ( [ 0 tend=t i n i t ] ) ;

25 xlim ( [ t i n i t tend ] ) ;

26 s e t ( f ig LL1 , ’ un i t s ’ , ’ c en t imete r s ’ ) ;

27 s e t ( f ig LL1 , ’ p o s i t i o n ’ , [ 5 20 w id th f i gu r e h e i g h t f i g u r e ] ) ;

28 s e t ( f ig LL1 , ’ paperun i t s ’ , ’ c en t imete r s ’ ) ;

29 s e t ( f ig LL1 , ’ pape r s i z e ’ , [ width he ight ] )

30 s e t ( f ig LL1 , ’ paperpos it ionmode ’ , ’ auto ’ ) ;

31

32 hold on ; g r id on

33 p lo t ( setun i formt ime ( getsampleus ingt ime ( out . SOCPI , t i n i t , tend ) , ’ I n t e r v a l ’ ,Ts ) , ’= ’

, ’ Color ’ , co lor6navy ) ;

34 p lo t ( setun i formt ime ( getsampleus ingt ime ( out .SOCRS, t i n i t , tend ) , ’ I n t e r v a l ’ ,Ts ) , ’= ’

, ’ Color ’ , co l o r2o range ) ;

35 t i t l e ( ’UDDS drive=cy c l e ’ )

36 hold o f f

37

38 xlim ( [ 0 tend=t i n i t ] ) ;

39 s e t ( gca , ’ f o n t s i z e ’ , 8 ) ;

40 s e t ( gca , ’FontName ’ , ’ Times New Roman ’ )

41 s e t ( gcf , ’ Renderer ’ , ’ Pa in te r s ’ )

42 % ylim ( [ 0 0 . 4 ] )

43 x l ab e l ( ’Time( sec ) ’ , ’ I n t e r p r e t e r ’ , ’Tex ’ , ’ un i t s ’ , ’ c en t imete r s ’ ) ;

44 y l ab e l ( ’%SOC ’ , ’ I n t e r p r e t e r ’ , ’Tex ’ , ’ un i t s ’ , ’ c en t imete r s ’ ) ;

45 l egend ( ’ PI ’ , ’RS=NGMV’ , ’ Locat ion ’ , ’ bes t ’ )

46 % yt i c k s ( ’ auto ’ )

47 % xt i c k s ( [ 0 : ( tend=t i n i t ) / 4 : ( tend=t i n i t ) ] )

48 pr in t ( ’=dsvg ’ , s t r c a t ( FolderName , ’ \ ’ , ’ socUDDS ’ ) )

49 pr in t ( gcf , ’=dpng ’ , ’=r300 ’ , s t r c a t ( FolderName , ’ \ ’ , ’ socUDDS ’ ) )
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Open Simulink file
open_system(model_name)

S-function parameters: 
initial state or input values x0, u0 
and/or structs p

Run main.m

Store parameters in workspace or 
in structs: p = struct('name','par')

System Parameterization
main.m

Run Simulink file .slx or .mdl

Level-1 S-function
rsngmv.m

Linear plant matrices
sys.m 

Discretize in 
sysd.m

Linear Plant Model

KF Estimations 

Level-1 S-function
kf.m

states
inputs

disturbance
reference

Tracking Error e(t) Functions Fe(t)

Dynamic Fck(t)

Figure B.1: Matlab/Simulink files summarized implementation strategy.

B.4 Implementation Steps and Structure

In Fig. B.1 the overall methodology of using Matlab/Simulink files is given. The

results can be observed through scopes or by extracting plots using plotmyfig-

ure.m in only 2 steps, that are:

� Run main.m (opens Simulink model)

� Run model name.slx or model name.mdl

The outputs of the RS-NGMV s-function are gains and the control signal that is

used by the physical model to be controlled (e.g. robot, car and etc.).
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2-link Robotic Manipulator

The main.m for parametrisation is given below.

1 Ts = . 0 0 5 ; %Sampling Time

2 %% Robot params and i n i t i a l cond .

3 damp1 = 0 ; damp2 = 0 ; % damping o f the model ( p lant )

4 damp1 m = damp1 ; damp2 m = damp2 ; % damping o f the model ( c o n t r o l l e r )

5 q1 0=0; q2 0=0; q1dot 0=0; q2dot 0=0;

6 q0=[ q1 0 ; q2 0 ] ; qdot0=[ q1dot 0 ; q2dot 0 ] ;

7 l 1 =1; l c 1 =0.5 ;m1=1; I1 =0.12; l c 2 =0.6 ;m2=2; I2 =0.25; d e l t a e=30*pi /180 ; g=0;

8 a1 = I1 + m1* l c 1 ˆ2 + I2 + m2* l c 2 ˆ2 + m2* l 1 ˆ2 ;

9 a2 = I2 + m2* l c 2 ˆ2 ;

10 a3 = m2* l 1 * l c 2 * cos ( d e l t a e ) ;

11 a4 = m2* l 1 * l c 2 * s i n ( d e l t a e ) ;

12 param = { l1 , l c1 ,m1, I1 , l c2 ,m2, I2 , d e l t a e , damp1 , damp2 , a1 , a2 , a3 , a4 } ;

13 %% Reference and Disturbance Models .

14 s top t ime = 300 ; %t = 150

15 q1 d = [0 ,60* pi /180 ; 50 ,30* pi /180 ; 100 ,60* pi / 1 8 0 ] ; q1 dt = q1 d ’ ;

16 q2 d = [0 ,90* pi /180 ; 50 ,45* pi /180 ; 100 , 90* pi / 1 8 0 ] ; q2 dt = q2 d ’ ;

17 r e f e r e n c e r ob o t = s iggen ( stop t ime ,{ ’ s t ep s ’ , q1 dt ( : ) , ’ s t ep s ’ , q2 dt ( : ) } ,Ts ) ;

18 Td1 = [ 1 5 , 0 . 0 1 ; 1 2 , 0 . 0 1 ; 1 7 , 0 . 0 1 ; 1 8 , 0 . 0 2 ; 1 9 , 0 . 0 1 ; 2 0 , 0 . 0 2 ; 2 1 , 0 . 0 3 ] ’ ;

19 Td2 = [ 6 , = 0 . 0 3 ; 7 , = 0 . 0 1 ; 8 , 0 . 0 1 ; 9 , 0 . 0 2 ; 1 0 , 0 . 0 5 ; 1 5 , 0 . 0 3 ; 2 0 , 0 . 0 0 9 ] ’ ;

20 l o ad d i s tu rbance =s iggen ( stop t ime ,{ ’ s t ep s ’ ,Td1 ( : ) , ’ s t ep s ’ ,Td2 ( : ) } ,Ts ) ;

21 %% System Informat ion

22 nx0 = 4 ;% s t a t e s

23 nu = 2 ; % inputs

24 nyc = 2 ;% con t r o l l e d outputs

25 nym = 2 ;% measured outputs

26 %% Create Reference and Disturbance models / s i g n a l s
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27 Wr = eye ( nyc ) * f i l t ( [ 0 1 ] , [ 1 =0.9999] ,Ts ) ;

28 nxr = order (Wr) ; %r e f e r e n c e s

29 Wd = 0.001* eye ( nyc ) * f i l t ( [ 0 1 ] , [ 1 =0.001] ,Ts ) ;

30 nd = order (Wd) ; % d i s tu rbance s

31 [Ad,Bd ,Cd,Ed ] = ssdata (Wd)

32 Cdm = Cd;

33 xd 0 = ze ro s (nd , 1 ) ;

34 %% er r o r we ight ings

35 lambdap = [1 e=4 0 ;0 1e=4] ; Pc = [ zpk ( . 9 7 , 1 , 8 7 . 5 , Ts ) 0 ; 0 zpk ( . 9 7 , 1 , 8 7 . 5 , Ts ) ] ;

36 % Dynamic e r r o r weight ing

37 [Ap,Bp ,Cp,Ep ] = ssdata (Pc) ;

38 nxp = s i z e (Ap, 1 ) ;

39 Pcx = ss (Ap,Bp , eye (nxp ) , z e r o s (nxp , nyc ) ,Ts ) ;

40 xp 0 = ze ro s (nxp , 1 ) ;

41 %% con t r o l we ight ings

42 lambdau = [ 0 . 0 5 0 ;0 0 . 0 5 ] ;

43 lambdak = (10ˆ=6)*diag ( [ 3 . 5 7 , 3 . 5 7 , 3 . 5 7 , 3 . 5 7 ] ) ;

44 Fck = [ zpk ( . 9 , . 4 , 0 . 0 1 6 , Ts ) 0 ; 0 zpk ( . 9 , . 4 , 0 . 1 6 , Ts ) ] ;

45 % Dynamic con t r o l we ight ing

46 [ Af , Bf , Cf , Df ] = ssdata (Fck ) ;

47 lambdad = 80* diag ( [ 1 1 1 , 1 1 1 , 1 1 1 , 1 1 1 ] ) ;

48 % Total number o f s t a t e s

49 nx = nx0 + nd + nxp ;

50 %% Covar iances f o r the Kalman F i l t e r

51 qn x1 = 0 . 1 ;% x1 s t a t e unce r ta in ty

52 qn x2 = 0 . 1 ;% x2 s t a t e unce r ta in ty

53 qn x3 = 0 . 1 ;% x3 s t a t e unce r ta in ty

54 qn x4 = 0 . 1 ;% x4 s t a t e unce r ta in ty

55 qn ymd1 = 0 . 1 ;% ym1

56 qn ymd2 = 0 . 1 ;% ym2

57 rn ym1 = 10 ;% ym senso r var i ance

58 rn ym2 = 10 ;% ym senso r var i ance

59 QN = diag ( [ qn x1 qn x2 qn x3 qn x4 qn ymd1 qn ymd2 ] ) ; %4= s t a t e model

60 QN2 = diag ( [ qn x1 qn x2 qn x3 qn x4 ] ) ; %4= s t a t e model

61 RN = diag ( [ rn ym1 rn ym2 ] ) ;

62 %% I n i t i l i z a t i o n

63 x0 0 = [ 0 ; 0 ; 0 ; 0 ] ;

64 x 0 = [ x0 0 xd 0 xp 0 ] ;

65 u0 0 = [0 0 ] ;

66 %Fixed PID ga ins

67 kp = 3 ;

68 kI = 0 . 5 ;

69 kd = 7 ;
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70 alpha = k3 *10 ;

71 % Def in ing kc bar f o r p a r a l l e l RS form

72 kc bar1 = [ 0 ; kp ] ’ ;

73 kc bar2 = [ 0 ; kI ] ’ ;

74 kc bar3 = [ 0 ; kd ] ’ ;

75 p1 = s t r u c t ( ’ l 1 ’ , l1 , ’ l c 1 ’ , l c1 , ’m1 ’ ,m1, ’ I1 ’ , I1 , . . .

76 ’ l c 2 ’ , l c2 , ’m2 ’ ,m2, ’ I2 ’ , I2 , ’ d e l t a e ’ , d e l t a e , . . .

77 ’damp1 ’ ,damp1 , ’damp2 ’ ,damp2 , ’ a1 ’ , a1 , ’ a2 ’ , a2 , ’ a3 ’ , a3 , ’ a4 ’ , a4 , . . .

78 ’ x0 0 ’ , x0 0 , ’ xd 0 ’ , xd , ’ xp 0 ’ , xp 0 , ’ x 0 ’ , x 0 , ’ u0 0 ’ , u0 0 , . . .

79 ’ nx0 ’ , nx0 , ’ nu ’ ,nu , ’ nyc ’ , nyc , ’nym ’ ,nym, ’ nx ’ , nx , ’ nd ’ ,nd , . . .

80 ’ nd ’ , nd , ’ nxr ’ , nxr , ’ nxp ’ , nxp , ’ c 2 d f l a g ’ , c 2d f l ag , ’Ts ’ ,Ts , . . .

81 ’QN’ ,QN, ’QN2 ’ ,QN2, ’RN’ ,RN, . . .

82 ’Ap ’ ,Ap, ’Bp ’ ,Bp , ’Cp ’ ,Cp, ’Ep ’ ,Ep , ’Af ’ ,Af , ’ Bf ’ , Bf , ’ Cf ’ ,Cf , . . .

83 ’Df ’ ,Df , ’Ad ’ ,Ad, ’Bd ’ ,Bd , ’Cd ’ ,Cd , . . .

84 ’ kp ’ , kp , ’ kI ’ , kI , ’ kd ’ , kd , ’ alpha ’ , alpha , ’ t s im ’ , t s im , . . .

85 ’ Fck ’ ,Fck , ’Pc ’ ,Pc , ’ lambdap ’ , lambdap , ’ lambdak ’ , lambdak , . . .

86 ’ lambdad ’ , lambdad , ’ lambdau ’ , lambdau ) ;

The robot manipulator equations are entered in the script given here. They are

used within the interpreted Matlab function shown in Fig. C.1. Its parameters

were loaded in the array param from running the main.m. It is also possible to

build plant to be controlled using Simulink blocks.

1 f unc t i on [ out ] = r ob o t l i n k s ( in , param)

2 [ l1 , l c1 ,m1, I1 , l c2 ,m2, I2 , d e l t a e , damp1 , damp2 , a1 , a2 , a3 , a4 ] = param { : } ;

3 tau1 = in (1 ) ;

4 tau2 = in (2 ) ;

5 q1 = in (3 ) ;

6 q2 = in (4 ) ;

7 q1dot = in (5 ) ;

8 q2dot = in (6 ) ;

9 H(1 ,1 ) = a1 + 2*a3* cos ( q2 ) + 2*a4* s i n ( q2 ) ;

10 H(1 ,2 ) = a2 + a3* cos ( q2 ) + a4* s i n ( q2 ) ;

11 H(2 ,1 ) = H(1 , 2 ) ;

12 H(2 ,2 ) = a2 ;

13 h = a3* s i n ( q2 ) = a4* cos ( q2 ) ;

14 inv H = 1/(H(1 , 1 ) *H(2 ,2 )=H(1 ,2 ) *H(2 ,1 ) ) * [H(2 , 2 ) =H(1 ,2 ) ; =H(2 ,1 ) H(1 , 1 ) ] ;

15 C = [=h*q2dot+damp1 =h*( q1dot+q2dot ) ;

16 h*q1dot damp2 ] ;

17 out = inv H * ( [ tau1 ; tau2 ] = C* [ q1dot ; q2dot ] ) ; %qddot = y = Hˆ=1*(T = C. qdot )

18 end
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The Fig. C.2 shows the RS-NGMV control diagram for the 2-link robot ma-

nipulator study.

C.1 Reference and Torque Load Generation

These signals were created using siggen function for this application, the code

chunk is in the main.m but annotated below for demonstration.

1 s top t ime = 300 ; %Simulat ion time

2 %Reference s i g n a l gene ra t i on .

3 q1 d = [0 ,60* pi /180 ; 50 ,30* pi /180 ; 100 ,60* pi / 1 8 0 ] ; %format i s [ time ins tant ,

va lue ]

4 q1 dt = q1 d ’ ;

5 q2 d = [0 ,90* pi /180 ; 50 ,45* pi /180 ; 100 , 90* pi / 1 8 0 ] ;

6 q2 dt = q2 d ’ ;

7 r e f e r e n c e = s iggen ( s top t ime { ’ s t ep s ’ , q1 dt ( : ) , ’ s t ep s ’ , q2 dt ( : ) } ,Ts ) ;

8 %Torque load s i g n a l gene ra t i on f o r both l i n k s .

9 l o ad d i s tu rbance =s iggen ( stop t ime ,{ ’ s t ep s ’ , [ 1 5 , 0 . 0 1 , 1 6 , 0 . 0 1 ] , ’ s t ep s ’

, [6 , =0 .03 ,7 , =0 .01 ,35 , =0 .01 ]} ,Ts ) ; %format i s [ time ins tant , va lue ]

C.2 q-LPV Plant Model and Discretization

The following codes sys.m and sysd.m represent the linear plant model W0 for

the LPVKF and the RS-NGMV. Note that they are the same as the Simulink

plant (the physical plant) but in other cases iy may be different. These are the

plant models that the LPVKF and the RS-NGMV knows. The latter case could

mean model mismatch if the internal models are not realistic enough.

1 f unc t i on [A0 ,B0 ,G0,Cc , Ec ,Hc ,Cm,Em,Hm] = sys (p , p1 )

2 %qLPV robot model

3 s t r u c t 2va r s ( p1 ) % s t ru c t 2va r s c op i e s s t r u c tu r e f i e l d s to l o c a l workspace

4 [ q1 , q2 , q1dot , q2dot ] = v s p l i t (p) ; %s p l i t s the vec to r i n to components . To modify

l ength a l t e r n a t i v e use v s p l i t (p ,DIMS) .

5 H(1 ,1 ) = a1 + 2*a3* cos ( q2 ) + 2*a4* s i n ( q2 ) ;

6 H(1 ,2 ) = a2 + a3* cos ( q2 ) + a4* s i n ( q2 ) ;

7 H(2 ,1 ) = H(1 , 2 ) ;
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8 H(2 ,2 ) = a2 ;

9 h = a3* s i n ( q2 ) = a4* cos ( q2 ) ;

10 inv H = 1/(H(1 , 1 ) *H(2 ,2 )=H(1 ,2 ) *H(2 ,1 ) ) * [H(2 , 2 ) =H(1 ,2 ) ; =H(2 ,1 ) H(1 , 1 ) ] ;

11 K = [=h*q2dot+damp1 =h*( q1dot+q2dot ) ;

12 h*q1dot damp2 ] ; %c o r i o l i s

13 A = [ ze ro s (2 ) eye (2 ) ;

14 z e ro s (2 ) =inv H*K] ;

15 B = [ ze ro s (2 ) ; inv H ] ;

16 %x1 x2 x3 x4

17 G0 = [ 0 ; 0 ; 0 ; 0 ] ;

18 % Construct c on t r o l l e d output matr i ce s

19 %x1 x2 x3 x4

20 Cc = [ z e ro s (2 ) =inv H*K] ; %yc

21 Ec = inv H ; Hc = 0 ;

22 % Construct measured output matr i ce s

23 %x1 x2 x3 x4

24 Cm = [ ze ro s (2 ) =inv H*K] ;%ym

25 Em = inv H ; Hm = 0 ;

The sysd.m calls sys.m to extract the information and discretize the linear plant

model.

1 f unc t i on [A0 ,B0 , Cc ,G0, Ec ,Hc ,Cm,Em,Hm] = sysd (p , p1 , Ts )

2 %qLPV d i s c r e t e=time robot model

3 % x(n+1) = A0(x ) *x (n) + B0(x ) *u(n=k ) + G0(x ) *d(n)

4 % yc (n+1) = Cc(x ) *x (n) + Ec(x ) *u(n=k ) + Hc(x ) *d(n) == c on t r o l l e d outputs

5 % ym(n+1) = Cm(x ) *x (n) + Em(x ) *u(n=k ) + Hm(x ) *d(n) == measured outputs

6 % x = [ q1 , q1dot , q2 , q2dot ] , u = u0 , d = Wd, y = yc = ym.

7 [A0 ,B0 , Cc ,G0, Ec ,Hc ,Cm,Em,Hm] = sdsys (p , p1 ) ;

8 Ts = 0 . 0 5 ;

9 % Model d i s c r e t i z a t i o n

10 i f ( p1 . c 2d f l a g==0)

11 A0 = eye ( pr1 . nx0 robot ) + Ts*A0 ;

12 B0 = Ts*B0 ;

13 G0 = Ts*G0;

14 e l s e i f ( p1 . c 2d f l a g==1)

15 XX = [A0 B0 G0 ; z e r o s ( pr1 . nu+nd , pr1 . nx0+pr1 . nu+nd) ] ;

16 YY = expm(XX*Ts) ;

17 A0 = YY(1 : pr1 . nx0 , 1 : pr1 . nx0 ) ;

18 B0 = YY(1 : pr1 . nx0 , pr1 . nx0+1: pr1 . nx0+pr1 . nu) ;

19 G0 = YY(1 : pr1 . nx0 , pr1 . nx0+pr1 . nu+1:end ) ;

20 end
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C.3 LPVKF

The LPVKF block contains the s-function lpvkf.m given below. It calls the

sdysd.m to access the linear plant model and then through the s-function pa-

rameters (p1 struct loaded after main.m), it builds the augmented state-space

model to carry forward with the estimation equations.

1 f unc t i on [ sys , x0 , s t r , t s ] = lpvk f ( t , x , u , f l a g , p1 )

2 %LPV Kalman F i l t e r in s=f unc t i on form

3 % State : x ( t | t=1)

4 % Output : x ( t | t )

5 % Input : [ u ( t=k ) , ym( t ) , d ( t ) , r ( t ) ]

6 % u = u0 , d = Wd, y = yc = ym

7 p e r s i s t e n t P xtt QN2 RN

8 p e r s i s t e n t nx0 nd nxp nu

9 p e r s i s t e n t Ts t s im

10 p e r s i s t e n t Ad Bd Cd Ap Bp Cp Ep

11

12 switch f l a g

13 case 3

14 [ u01 , u02 , ym1 , ym2 , ym1 dot , ym2 dot , r1 , r2 ,Wd1, Wd2] = v s p l i t (u) ;

15 ut = [ u01 u02 ] ’ ;

16 r t = [ r1 r2 ] ’ ;

17 ymt = [ym1 ym2 ] ’ ;

18 ymt dot = [ ym1 dot ym2 dot ] ’ ;

19 [ q1 , q2 ] = v s p l i t (ymt ( 1 : 2 ) ) ;

20 [ q1dot , q2dot ] = v s p l i t ( ymt dot ( 1 : 2 ) ) ;

21 p = [ q1 ; q2 ; q1dot ; q2dot ] ;

22 [A0 ,B0 ,G0,Cc , Ec ,Hc ,Cm,Em,Hm] = sdsysd (p , p1 , Ts ) ;

23 %AUGMENTED MODEL

24 A = [A0 , z e r o s ( nx0 , nd ) , z e r o s ( nx0 , nxp ) ;

25 z e ro s (nd , nx0 ) , Ad, z e r o s (nd , nxp ) ;

26 =Bp*C0 , =Bp*Cd, Ap ] ;

27 B = [B0 ; z e r o s (nd , nu) ;=Bp*Ec ] ;

28 C = [=Ep*Cc , =Ep*Cd, Cp ] ;

29 E = =Ep*Ec ;

30 D0 = eye ( nx0 robot ) ;

31 D = [D0 , z e r o s ( nx0 , nd) ; z e r o s (nd , nx0 ) , Bd ; z e r o s (nxp , nx0+nxp ) ] ;

32 dxt = [ 0 ; 0 ; 0 ; 0 ] ;

33 dyt = [0 0 ] ’ ; % measurable d i s t .

34
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35 % sta t e update

36 x1 = A* xtt + B*ut + [ dxt ; z e r o s (nd , 1 ) ; Bp*( r t = dyt ) ] ;

37 P = A*P*A’ + D*QN2*D’ ; % P co r r e c t i o n

38 % Measurement update

39 ytpred = C*x1 + E*ut + dyt ;

40 Kf = P*C’ / (C*P*C’+RN) ;

41 % State es t imate update

42 % x( t | t ) = x( t | t=1) + Kf t *( y ( t ) = y ( t | t=1) )

43 e r r = ymt = ytpred ;

44 xtt = x1 + Kf* e r r ;

45 xErr = ( xtt=x1 ) *( xtt=x1 ) ’ ;

46 P = cov ( xErr ) ;

47 P = P = Kf*C*P; % P pr ed i c t i o n

48 P = 0 .5* (P+P’ ) ; % make sure P matrix i s symmetric

49 sys = [ xt t ; p ; ytpred ] ;

50

51 case 2

52 sys = [ ] ;

53 case 0

54 s t r u c t 2va r s ( p1 )

55 s = s ims i z e s ;

56 s . NumContStates = 0 ;

57 s . NumDiscStates = 8 ;

58 s . NumOutputs = 14 ;

59 s . NumInputs = 10 ;

60 s . DirFeedthrough = 10 ;

61 s . NumSampleTimes = 1 ;

62 sys = s ims i z e s ( s ) ;

63 x0 = [0 0 0 0 0 0 0 0 ] ’ ;

64 s t r = [ ] ;

65 t s = [ Ts Ts * . 5 ] ;

66 P = 1e1*diag ( [ 1 1 1 1 , 1 1 , 1 1 ] ) ;% s i z e x0

67 xtt = x0 ;

68 QN2 = 0.05* eye (6 ) ;

69 RN = eye (2 ) ;

70

71 otherw i se

72 sys = [ ] ;

73 x0 = [ ] ;

74 end
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C.4 RS-NGMV

The RS-NGMV block contains the s-function rsngmv.m given below. It calls the

sdysd.m as well to access some model matrices. The s-function parameters (p1

struct loaded after main.m). It takes LPVKF estimations, RS terms Fe(t) and

dynamic weighting Fck for inputs and return the gains and the control signals for

the links.

1 f unc t i on [ sys1 , x01 , s t r1 , t s ] = rsngmv ( t , x , u , f l a g , p1 )

2 p e r s i s t e n t Ap Bp Cp Ep Cd Ed Ts kc a kp kI kd

3 p e r s i s t e n t lambdap lambdad lambdau lambdak nd

4 switch f l a g

5 case 3

6 [ xtt1 , xtt2 , xtt3 , xtt4 , xtt5 , xtt6 , xtt7 , xtt8 , ym1 , ym2 , ym1 dot , ym2 dot ,

7 r1 , r2 ,Wd1,Wd2, f e11 1 , f e11 2 , f e11 3 , f e22 1 , f e22 2 , f e22 3 ,

8 Fck1 , Fck2 ] = v s p l i t (u) ;

9 d = [Wd1 Wd2] ’ ;

10 ymt = [ym1 ym2 ] ’ ;

11 ymt dot = [ ym1 dot ym2 dot ] ’ ;

12 [ q1 , q2 ] = v s p l i t (ymt ( 1 : 2 ) ) ;

13 [ q1dot , q2dot ] = v s p l i t ( ymt dot ( 1 : 2 ) ) ;

14 p = [ q1 ; q2 ; q1dot ; q2dot ] ;

15 xhat = [ xtt1 , xtt2 , xtt3 , xtt4 , xtt5 , xtt6 , xtt7 , xtt8 ] ’ ;

16 r t = [ r1 r2 ] ’ ;

17

18 f e 1 1 = [ f e11 1 , f e11 2 , f e 11 3 ] ;

19 f e 2 2 = [ f e22 1 , f e22 2 , f e 22 3 ] ;

20 e f 1 = [ f e 1 1 z e ro s (1 , 9 ) ] ;

21 e f 2 = [ z e r o s (1 , 9 ) f e 2 2 ] ;

22 Fe = [ e f 1 ; e f 2 ] ;

23 %a l l o c a t i n g space f o r RS ga ins .

24 i f t < 0 .1

25 kc 11 = ze ro s (3 , 1 ) ;

26 kc 12 = ze ro s (3 , 1 ) ;

27 kc 21 = ze ro s (3 , 1 ) ;

28 kc 22 = ze ro s (3 , 1 ) ;

29 kc 1 = [ kc 11 ; kc 12 ] ;

30 kc 2 = [ kc 21 ; kc 22 ] ;

31 kc = [ kc 1 ; kc 2 ] ;

32 e l s e

33 [A0 ,B0 ,G0,C0 , E0 ,H0 ,Cm,Em,Hm] = sysd (p , p1 , Ts ) ;
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34 C = [=Ep*C0 , =Ep*Cd, Cp ] ;

35 dp = Ep*( rt=d) ;

36 dxt = [ 0 ; 0 ; 0 ; 0 ] ;

37 % measurable d i s t .

38 dd = [ dxt ; z e r o s (nd , 1 ) ; Bp*( r t = d) ] ;

39 dpd = dp + C*dd ;

40 kc bar = [ kp ; kI ; kd ; z e r o s (6 , 1 ) ; kp ; kI ; kdt ] ;

41 Pp = Fe ’*Ep’* lambdap ;

42 phi k = =lambdak* kc bar = lambdad*kc ;

43 W1k = eye (2 ) ;

44 Fck = diag ( [ Fck1 Fck2 ] ) ;

45 Fck = Fck ;

46 % a l t e r n a t i v e kc from eq . 54

47 X0 = lambdak + lambdad + Fe ’ * ( Fck + (Ep’* lambdap*Ep + lambdau ) *W1k) *

Fe ;

48 kc= =inv (X0) *(Pp*(dpd + C*xhat ) + phi k ) ;

49 u r s = Fe*kc ;

50 sys = [ kc ; u r s ] ;

51 end

52 case 2

53 sys1 = [ ] ;

54 case 0

55 s t r u c t 2va r s ( p1 )

56 s = s ims i z e s ;

57 s . NumContStates = 0 ;

58 s . NumDiscStates = 0 ;

59 s . NumOutputs = 14 ;

60 s . NumInputs = 24 ;

61 s . DirFeedthrough =24;

62 s . NumSampleTimes = 1 ;

63 sys1 = s ims i z e s ( s ) ;

64 x01 = [ ] ;

65 kc 11= [ k1 k2 k3 ] ’ ;

66 kc 12= [ k1 k2 k3 ] ’ ;

67 kc 21= [ k1 k2 k3 ] ’ ;

68 kc 22= [ k1 k2 k3 ] ’ ;

69 s t r = [ ] ;

70 t s = [ Ts Ts * . 5 ] ;

71 otherw i se

72 sys = [ ] ;

73 x0 = [ ] ;

74 end
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1 f unc t i on xdot = fcn (Vx, x , u)

2 % Model parameters f o r the LPV plant

3 m = 1575 ;

4 I z = 2875 ;

5 l f = 1 . 2 ;

6 l r = 1 . 6 ;

7 Cf = 19000 ;

8 Cr = 33000 ;

9 % Continuous=time model

10 A = [=(2*Cf+2*Cr) /m/Vx, 0 , =Vx=(2*Cf* l f =2*Cr* l r ) /m/Vx, 0 ;

11 0 , 0 , 1 , 0 ;

12 =(2*Cf* l f =2*Cr* l r ) / I z /Vx, 0 , =(2*Cf* l f ˆ2+2*Cr* l r ˆ2) / I z /Vx, 0 ;

13 1 , Vx, 0 , 0 ] ;

14 B = [2*Cf/m 0 2*Cf* l f / I z 0 ] ’ ;

15 C = [0 0 0 1 ; 0 1 0 0 ] ;

16 D = ze ro s (2 , 1 ) ;

17 xdot = A*x + B*u ;

18 %y = C*x + D*u ;

The LPV model used by the Mathworks MPC demos and the RS-NGMV compar-

isons in chapter 4 is presented in the script below. For RS-NGMV it is modified

under sys.m/sysd.m scripts with the standard linear plant modelling style pre-

sented earlier. The Adaptive MPC and RS-NGMV control diagrams are shown

in Fig. D.1 and Fig. D.2, respectively. The RS-NGMV files have been created

following the methodologies introduced in Appendix B and C.
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D.1 LPV-RE Preview Control

The LPV-RE Preview control diagram for the case study in chapter 6 is found

in Fig. D.3. The implementation methodology is a bit different than that of

the standard RS-NGMV’s. The study uses code pieces from the Sharp’s Pre-

view controller implemented in [118], modified for the RS-NGMV implementa-

tion methodology of this thesis. Unique scripts and code chunks are presented

starting with the reference generation.

The road reference for the lane changing were modelled using linspace function

and lagged for Np for the preview controller.

1 Ref = [ z e ro s (1 ,2/Ts ) l i n s p a c e (0 ,3 ,4/Ts ) 3* ones (1 ,10/Ts ) ] ;

2 % save ( ’ r e f . mat ’ , ’ Ref ’ ) ;

3 %lag the r e f e r e n c e vec to r f o r preview

4 Ref lagged = [ Ref (1 ) * ones (1 ,Np) Ref ( 1 : end=Np) ] ;

The lane changing was visualized using maneuver.m and Automated Driving

System Toolbox of Mathworks. A common way of creating road reference is by

using line segments or defining linearly placed way points like in maneuver.m and

store the data as .mat files for the actual simulations. The script was modified by

following the approaches of Mathworks demo files such as the Stanley controller

and the MPC demo shown previously. When the script is run, it visualizes the

lane change maneuver for the study in this thesis. However, it can be observed

that it is a bit cumbersome how the way points are defined. For this reason, the

maneuver.m was only used for visualizations and linspace approach was preferred

for simulations. As mentioned earlier in the thesis, clothoids are promising and

mathematically accurate methods for modelling of roads or tracks. An example

is the clothoids toolbox available in [119]. It was considered for the thesis as

well but was not continued further due its complexity and the fact that linspace

approach was sufficient.

1 f unc t i on [ a l lData , s cenar i o , s en so r ] = maneuver ( )

2 %maneuver = Returns s enso r d e t e c t i on s
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3 % al lData = maneuver r e tu rn s s enso r d e t e c t i on s in a s t r u c tu r e

4 % with time f o r an i n t e r n a l l y de f ined s c ena r i o and senso r s u i t e .

5 % [ al lData , s cenar io , s en s o r s ] = maneuver op t i o na l l y r e tu rn s

6 % the d r i v i ngSc ena r i o and de t e c t i on genera to r ob j e c t s .

7 % Generated by MATLAB(R) 9 .5 and Automated Driv ing System Toolbox 1 . 3 .

8 % Generated on : 26=Feb=2019 13 : 40 : 37

9 % Create the d r i v i ngSc ena r i o ob j e c t and ego car

10 [ s c enar i o , egoCar ] = c r ea t eDr i v ingScena r i o ;

11 % Create a l l the s en so r s

12 s enso r = crea t eSenso r ( s c ena r i o ) ;

13 a l lData = s t r u c t ( ’Time ’ , {} , ’ ActorPoses ’ , {} , ’ ObjectDetect ions ’ , {} , ’

LaneDetect ions ’ , {}) ;

14 running = true ;

15 whi le running

16 % Generate the t a r g e t poses o f a l l a c t o r s r e l a t i v e to the ego car

17 poses = targe tPose s ( egoCar ) ;

18 time = sc ena r i o . SimulationTime ;

19 % Generate d e t e c t i on s f o r the s enso r

20 l aneDete c t i on s = [ ] ;

21 [ ob j e c tDetec t i ons , numObjects , i sVal idTime ] = senso r ( poses , time ) ;

22 ob j e c tDe t e c t i on s = ob j e c tDe t e c t i on s ( 1 : numObjects ) ;

23 % Aggregate a l l d e t e c t i on s in to a s t r u c tu r e f o r l a t e r use

24 i f i sVal idTime

25 a l lData ( end + 1) = s t r u c t ( . . .

26 ’Time ’ , s c ena r i o . SimulationTime , . . .

27 ’ ActorPoses ’ , ac torPoses ( s c ena r i o ) , . . .

28 ’ ObjectDetect ions ’ , { ob j e c tDe t e c t i on s } , . . .

29 ’ LaneDetect ions ’ , { l aneDete c t i on s }) ; %#ok<AGROW>

30 end

31 % Advance the s c ena r i o one time step and ex i t the loop i f the s c ena r i o i s

complete

32 running = advance ( s c ena r i o ) ;

33 end

34 % Restart the d r i v i ng s c ena r i o to re turn the a c t o r s to t h e i r i n i t i a l p o s i t i o n s .

35 r e s t a r t ( s c ena r i o ) ;

36 % Release the s enso r ob j e c t so i t can be used again .

37 r e l e a s e ( s enso r ) ;

38 %%%%%%%%%%%%%%%%%%%%

39 % Helper f unc t i on s %

40 %%%%%%%%%%%%%%%%%%%%

41 % Units used in c r ea t eSen so r s and c r ea t eDr i v ingScena r i o

42 % Distance / Pos i t i on = meters

43 % Speed = meters / second
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44 % Angles = degree s

45 % RCS Pattern = dBsm

46 f unc t i on senso r = crea t eSenso r ( s c ena r i o )

47 % crea t eSen so r s Returns a l l s en so r ob j e c t s to generate d e t e c t i on s

48 % Assign in to each senso r the phy s i c a l and radar p r o f i l e s f o r a l l a c t o r s

49 p r o f i l e s = a c t o rP r o f i l e s ( s c ena r i o ) ;

50 s enso r = v i s i onDetec t i onGenera to r ( ’ SensorIndex ’ , 1 , . . .

51 ’ SensorLocat ion ’ , [ 3 . 7 0 ] , . . .

52 ’MaxRange ’ , 100 , . . .

53 ’ DetectorOutput ’ , ’ Objects only ’ , . . .

54 ’ I n t r i n s i c s ’ , c ame ra In t r i n s i c s ( [1814 .81018227767 1814 .81018227767 ] , [ 320

240 ] , [ 4 80 640 ] ) , . . .

55 ’ A c t o rP r o f i l e s ’ , p r o f i l e s ) ;

56 f unc t i on [ s cenar i o , egoCar ] = c r ea t eDr i v ingScena r i o

57 % crea t eDr i v ingScena r i o Returns the d r i v i ngSc ena r i o de f ined in the Des igner

58 % Construct a d r i v i ngSc ena r i o ob j e c t .

59 s c ena r i o = dr i v i ngSc ena r i o ;

60 % Add a l l road segments

61 roadCenters = [=15 =0.1 0 ;

62 125 .6 0 .2 0 ] ;

63 marking = [ laneMarking ( ’ So l i d ’ )

64 laneMarking ( ’Dashed ’ , ’ Color ’ , [ 1 1 0 ] )

65 laneMarking ( ’ So l i d ’ ) ] ;

66 l a n e S p e c i f i c a t i o n = lanespec (2 , ’Width ’ , 4 , ’Marking ’ , marking ) ;

67 road ( scenar io , roadCenters , ’ Lanes ’ , l a n e S p e c i f i c a t i o n ) ;

68 % Add the ego car

69 egoCar = v eh i c l e ( s cenar i o , . . .

70 ’ ClassID ’ , 1 , . . .

71 ’ Po s i t i on ’ , [=10 0 0 ] ) ;

72 waypoints = [=10.0000 =2 0 ;

73 =8.5000 =0.0003=2 0 ;

74 =7.0000 0.0001=2 0 ;

75 =5.5000 0.0020=2 0 ;

76 =4.0000 0.0059=2 0 ;

77 =2.5000 0.0127=2 0 ;

78 =1.0001 0.0230=2 0 ;

79 0 .4999 0.0375=2 0 ;

80 1 .9997 0.0566=2 0 ;

81 3 .4996 0.0808=2 0 ;

82 4 .9993 0.1107=2 0 ;

83 6 .4988 0.1471=2 0 ;

84 7 .9982 0.1908=2 0 ;

85 9 .4973 0.2424=2 0 ;
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86 10.9961 0.3027=2 0 ;

87 12.4944 0.3725=2 0 ;

88 13.9923 0.4524=2 0 ;

89 15.4896 0.5432=2 0 ;

90 16.9861 0.6448=2 0 ;

91 18.4820 0.7558=2 0 ;

92 19.9773 0.8746=2 0 ;

93 21.4721 0.9996=2 0 ;

94 22.9664 1.1295=2 0 ;

95 24.4605 1.2626=2 0 ;

96 25.9544 1.3974=2 0 ;

97 27.4483 1.5325=2 0 ;

98 28.9424 1.6663=2 0 ;

99 30.4365 1.7984=2 0 ;

100 31.9309 1.9288=2 0 ;

101 33.4253 2.0572=2 0 ;

102 34.9200 2.1836=2 0 ;

103 36.4149 2.3076=2 0 ;

104 37.9099 2.4291=2 0 ;

105 39.4052 2.5481=2 0 ;

106 40.9007 2.6642=2 0 ;

107 42.3964 2.7774=2 0 ;

108 43.8924 2.8874=2 0 ;

109 45.3886 2.9940=2 0 ;

110 46.8851 3.0966=2 0 ;

111 48.3819 3.1949=2 0 ;

112 49.8790 3.2885=2 0 ;

113 51.3763 3.3769=2 0 ;

114 52.8740 3.4599=2 0 ;

115 54.3721 3.5369=2 0 ;

116 55.8704 3.6075=2 0 ;

117 57.3690 3.6714=2 0 ;

118 58.8680 3.7282=2 0 ;

119 60.3671 3.7778=2 0 ;

120 61.8665 3.8208=2 0 ;

121 63.3661 3.8576=2 0 ;

122 64.8657 3.8890=2 0 ;

123 66.3655 3.9153=2 0 ;

124 67.8653 3.9372=2 0 ;

125 69.3652 3.9551=2 0 ;

126 70.8652 3.9696=2 0 ;

127 72.3651 3.9812=2 0 ;

128 73.8651 3.9905=2 0 ;
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129 75.3651 3.9981=2 0 ;

130 76.8651 4.0042=2 0 ;

131 78.3651 4.0090=2 0 ;

132 79.8651 4.0124=2 0 ;

133 81.3651 4.0147=2 0 ;

134 82.8651 4.0159=2 0 ;

135 84.3651 4.0163=2 0 ;

136 85.8651 4.0159=2 0 ;

137 87.3651 4.0148=2 0 ;

138 88.8650 4.0132=2 0 ;

139 90.3650 4.0113=2 0 ;

140 91.8650 4.0090=2 0 ;

141 93.3650 4.0067=2 0 ;

142 94.8650 4.0044=2 0 ;

143 96.3650 4.0022=2 0 ;

144 97.8650 4.0003=2 0 ;

145 99.3650 3.9988=2 0 ;

146 100.8650 3.9977=2 0 ;

147 102.3650 3.9971=2 0 ;

148 103.8650 3.9968=2 0 ;

149 105.3650 3.9969=2 0 ;

150 106.8650 3.9971=2 0 ;

151 108.3650 3.9976=2 0 ;

152 109.8650 3.9982=2 0 ;

153 111.3650 3.9988=2 0 ;

154 112.8650 3.9995=2 0 ] ;

155 speed = 15 ; %Might be changed but heading ang le remains the same .

156 t r a j e c t o r y ( egoCar , waypoints , speed ) ;

157 p lo t ( s c ena r i o )

The gains of the preview controller is calculated in s-function preview.m.

1 f unc t i on [ sys , x0 , s t r , t s ] = preview ( t , x , u , f l a g , p1 )

2 p e r s i s t e n t Ts Vx

3 p e r s i s t e n t Np Ref

4 switch f l a g

5 case 3

6 Vx = u ;

7 p = Vx ;

8 [ Aaug , Baug , B2aug , X0 ,Ad,Bd , C, G,Cc , Ec ,Hc ,Cm,Em,Hm] = sysd (p , p1 , Ts ) ;

9 Caug = ze ro s (2 ,Np+4) ;

10 Caug ( : , 1 : 6 ) = [ 1 0 0 0 =1 0 ;0 0 1 0 1/(Vx*Ts) =1/(Vx*Ts) ] ;

11 Q = [ . 1 0 ; 0 0 ] ;
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12 R1 = Caug ’*Q*Caug ;

13 R2 = 1 ;

14 [ Kf , Sf , Ef ] = d lq r (Aaug , Baug , Caug ’*Q*Caug , 1 ) ;

15 sys1 = Kf ;

16 case 2

17 sys1 = [ ] ;

18 case 0

19 s t r u c t 2va r s ( p1 )

20 s = s ims i z e s ;

21 s . NumContStates = 0 ;

22 s . NumDiscStates = 0 ;

23 s . NumOutputs = 4+Np;

24 s . NumInputs = 1 ;

25 s . DirFeedthrough = 4+Np;

26 s . NumSampleTimes = 1 ;

27 sys1 = s ims i z e s ( s ) ;

28 x0 = [ ] ;

29 s t r = [ ] ;

30 t s = [ Ts Ts * . 5 ] ;

31 otherw i se

32 sys = [ ] ;

33 x0 = [ ] ;

34 end

The plant and the road model is given in sys.m.

1 f unc t i on [A, B, C, D, Ar , Br , G, Cc , Ec , Hc , Cm, Em, Hm] = sys (p , p1 )

2 s t r u c t 2va r s ( p1 )

3 Vx = p ;

4 %veh i c l e s t a t e vec to r i s [ y ydot p s i p s ido t ] ’

5 A = [0 1 0 0 ; . . .

6 0 =(Cf+Cr) /(m*Vx) (Cf+Cr) /m (b*Cr=a*Cf ) /(m*Vx) ; . . .

7 0 0 0 1 ; . . .

8 0 (b*Cr=a*Cf ) /( I z *Vx) ( a*Cf=b*Cr) / I z =(aˆ2*Cf+bˆ2*Cr) /( I z *Vx) ] ;

9 B = [0 Cf /(G*m) 0 a*Cf /(G* I z ) ] ’ ;

10 C = [1 0 0 0 ; 0 0 0 0 ] ;

11 D = [0 0 ] ’ ;

12 Ar = ze ro s (Np) ;%a l l o c a t e space

13 Ar ( 1 : end=1 ,2: end ) = eye (Np=1) ;%s e t up the s h i f t r e g i s t e r

14 Br = ze ro s (Np, 1 ) ;%input vec to r f o r s h i f t r e g i s t e r

15 Br( end ) = 1 ;

16 G = [ 0 ; 0 ; 0 ; 0 ] ;

17 % Construct c on t r o l l e d outputs
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18 Cc = [0 0 0 1 ;0 1 0 0 ] ;

19 Ec = [0 0 ] ’ ;

20 Hc = 0 ;

21 % Construct measured outputs

22 Cm = [0 0 0 1 ;0 1 0 0 ] ;

23 Em = [0 0 ] ’ ;

24 Hm = 0 ;

The model in sys.m is discretized and used to build the augmented form in
sysd.m.

1 f unc t i on [ Aaug , Baug , B2aug , X0 , Ad, Bd , C, G, Cc , Ec , Hc , Cm, Em, Hm] = sysd (p ,

p1 , Ts )

2 % st ru c t 2va r s ( p1 )

3 nd = 1 ;

4 [A,B, C, D, Ar , Br , G, Cc , Ec , Hc , Cm, Em, Hm] = sys (p , p1 ) ;

5 % Model d i s c r e t i z a t i o n

6 i f ( pr1 . c 2d f l a g==0)

7 sysd = c2d ( s s (A,B,C,D) ,Ts ) ; %d i s c r e t e time s t a t e space d e s c r i p t i o n .

8 Ad = sysd . a ;

9 Bd = sysd . b ;

10 Aaug = blkd iag (Ad, Ar) ;%automat i ca l l y c r e a t e s the big a matrix

11 Baug = [ Bd sdre ; z e r o s ( s i z e (Br ) ) ] ;%input vec to r f o r s t e e r i n g ang le

12 B2aug = [ z e r o s ( s i z e (Bd) ) ; Br ] ;%input vec to r f o r road

13 X0 = ze ro s ( s i z e (Baug) ) ;%s e t i n i t i a l c ond i t i on s to zero

14 e l s e i f ( pr1 . c 2d f l a g==1)

15 XX = [A B G; z e ro s ( p1 . nu+nd , p1 . nx0+p1 . nu+nd) ] ;

16 YY = expm(XX*Ts) ;

17 A0 = YY(1 : p1 . nx0 , 1 : p1 . nx0 ) ;

18 B0 = YY(1 : p1 . nx0 , p1 . nx0+1:p1 . nx0+p1 . nu) ;

19 G0 = YY(1 : p1 . nx0 , p1 . nx0+p1 . nu+1:end ) ;

20 end

The closed-loop discrete-time state-space system was simulated using the dl-

sim(A,B,C,D,U,X0) function of Matlab used within the dlsim.m s-function. The

function accepts the state matrices, reference and initial states in the given order.

1 f unc t i on [ sys , x0 , s t r , t s ] = dls im ( t , x , u , f l a g , p1 )

2 p e r s i s t e n t Ts Vx Ts t

3 p e r s i s t e n t Np Vx Kf

4 switch f l a g

5 case 3

6 Kf = u(1:4+Np) ’ ;
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7 U sdre = u(1+4+Np) ;

8 p = Vx ;

9 C sim= Kf ;

10 [ Aaug , Baug , B2aug , X0 , Ad, Bd , C, G, Cc , Ec , Hc , Cm, Em, Hm] = sysd (p ,

p1 , Ts ) ;

11 [ y , x ] = dls im (Aaug=Baug*Kf , B2aug , C sim , 0 , r ,X0) ;

12 sys1 = y ( : , 1 ) ;

13 case 2

14 sys = [ ] ;

15 case 0

16 s t r u c t 2va r s ( p1 )

17 s = s ims i z e s ;

18 s . NumContStates = 0 ;

19 s . NumDiscStates = 0 ;

20 s . NumOutputs = 800 ;

21 s . NumInputs = 2+4+Np;

22 s . DirFeedthrough =2+4+Np;

23 s . NumSampleTimes = 1 ;

24 sys1 = s ims i z e s ( s ) ;

25 x01 = [ ] ;

26 s t r 1 = [ ] ;

27 t s = [ Ts Ts * . 5 ] ;

28 otherw i se

29 sys = [ ] ;

30 x0 = [ ] ;

31 end
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The RS-NGMV control diagram for the EV control is given in Fig. E.1. The

expanded EV powertrain and the longitudinal vehicle plant is given in Fig. E.2.

The EV dynamics, components and the baseline PI controller have been adapted

from [104] and modified for this study. The road grade profile for UDDS is created

in the main.m where parameters are assigned in the vehicle struct.

1 i n c l i n a t i onAng l e = 0 . 1 ;

2 f r e q = 0 . 0 0 1 ;

3 [ h i l l ] = genH i l l ( i n c l i na t i onAng l e , f r eq ,TimeUDDS) ;

4 t imeH i l l = ( 0 :TimeUDDS) ’ ;

5 waveHi l l . time = t imeH i l l ;

6 waveHi l l . s i g n a l s . va lue s = h i l l ’ ;

The RS-NGMV coding approach follows from the principles introduced earlier.

The lpvkf.m and rsngmv.m files have some important differences for the EV

application due to the disturbance factor characteristic to the case.

1 f unc t i on [ sys , x0 , s t r , t s ] = lpvk f ( t , x , u , f l a g , v e h i c l e )

2 p e r s i s t e n t P x0tt xt t QN RN

3 p e r s i s t e n t Ts

4 p e r s i s t e n t A0 B0 D0 G0 C0 E0 H0 C0m E0m H0m Ap Bp Cp Ep Ad Bd Cd Ed A B C Ar

5 Ts = 1 ;

6 switch f l a g

7 case 3

8 [ u , actualSpeed , roadGrade , r ] = v s p l i t (u) ;
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9 theta = roadGrade ;

10 x0tt = actualSpeed ;

11 y0t = actualSpeed ;

12 ut = u ; %feedback input

13 desSpeed = r ; %r e f e r e n c e

14 p = x0tt ;

15 [A0 ,B0 ,D0 ,G0,C0 , E0 ,H0 ,C0m,E0m,H0m] = sys (p , v eh i c l e , Ts ) ;

16 %Augmented system notes

17 % s t a t e s x0 , xd , xp , xr

18 % di s tu rbance s dd = [ d0d rd = d ] ’ rd d e t e rm i n i s t i c r e f . r e c a l l d

19 % i s the d e t e rm i n i s t i c part o f d0 output d i s turbance .

20 % r e c a l l a l s o augmented e r r o r model ’ s dp = Ep( rd=d)

21 % s t o c h a s t i c x i = [ x i0 Wd Wr] ’

22 %Consider p r e d i c t i o n s now f o r the KF,

23 %pred i c t ed known d i s turbance ddd ( d e t e rm i n i s t i c )

24 nxp = 1 ; %f o r e r r o r weight on s t a t e s

25 nxr = 1 ; %f o r t h i s example we do not con s i d e r r e f e r e n c e model ( matr i ce s

f u l l z e r o s )

26 nxd = 1 ; %f o r t h i s example we do not con s i d e r s t o c h a s t i c output d i s t . (

matr i ce s f u l l z e ro )

27 nx0 = 1 ; %number o f s t a t e s

28 Ar = ze ro s ( nxr , nxr ) ; Br = ze ro s ( nxr , 1 ) ; Cr = ze ro s ( nxr , nxr ) ; Er = ze ro s (

nxr , 1 ) ;

29 %ass i gned in s t r u c t ’ v eh i c l e ’ i n s i d e main .m a f t e r

30 %using ssdata (Pck ) . .

31 Ap = veh i c l e . driveControlParams . Ap long i tud ina l ;

32 Bp = veh i c l e . driveControlParams . Bp long i tud ina l ;

33 Cp = veh i c l e . driveControlParams . Cp long i tud ina l ;

34 Ep = veh i c l e . driveControlParams . Ep long i tud ina l ;

35 %ass i gned in s t r u c t ’ v eh i c l e ’ i n s i d e main .m a f t e r

36 %using Wd = .1* eye ( nyc ) * f i l t ( [ 0 1 ] , [ 1 =0.98] ,Ts ) ;

37 %ssdata (Wd) . . .

38 Ad = veh i c l e . driveControlParams . Ad long i tud ina l ;

39 Bd = veh i c l e . driveControlParams . Bd long i tud ina l ;

40 Cd = veh i c l e . driveControlParams . Cd long i tud ina l ;

41 Ed = veh i c l e . driveControlParams . Ed long i tud ina l ;

42 A = [A0 , 0 , 0 , 0 ;

43 0 , Ad, 0 , 0 ;

44 =Bp*C0 , =Bp*Cd, Ap, 0 ;

45 0 , 0 , 0 , Ar ] ;

46 B = [B0 ; 0 ; =Bp*E0 ; 0 ] ;

47 C = [C0 , Cd, 0 , 0 ] ; % [C0 Cd 0 0 ]

48 rd = desSpeed ;
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49 d = 0 ; %in t h i s case we do not measure the output d i s turbance so can

a s s i gn 0

50 g = 9 . 8 1 ;

51 d0d = =g* theta ; %input d i s t .

52 ddt = [G0*d0d ; 0 ; Bp*( rd = d) ; 0 ] ; % [G0 0 ; 0 0 ; 0 Bp ; 0 0 ] * [ d0d ( rd=d)

] ’

53 %State update

54 xtt = [ x0tt ; 0 ; 0 ; 0 ] ; %x0 xd xp xr

55 x1 = A* xtt + B*ut +ddt ;

56 P = A*P*A’ + QN* eye (4 ) ;

57 % Measurement update

58 ytpred = C*x1 + E0m*ut ;

59 Kf = P*C’ / (C*P*C’+RN) ;

60 % State es t imate update

61 % x( t | t ) = x( t | t=1) + Kf t *( y ( t ) = y ( t | t=1) )

62 e r r = y0t = ytpred ;

63 xtt = x1 + Kf* e r r ;

64 P = P = Kf*C*P;

65 P = 0 .5* (P+P’ ) ;

66 sys = [ xt t ] ;

67 case 2

68 sys = [ ] ;

69 case 0

70 s t r u c t 2va r s ( v e h i c l e )

71 s = s ims i z e s ;

72 s . NumContStates = 0 ;

73 s . NumDiscStates = 4 ;

74 s . NumOutputs = 4 ;

75 s . NumInputs = 4 ;

76 s . DirFeedthrough = 4 ;

77 s . NumSampleTimes = 1 ;

78 sys = s ims i z e s ( s ) ;

79 x0 = [0 0 0 0 ] ’ ;

80 s t r = [ ] ;

81 t s = Ts ;

82 P = 1* diag ( [ 1 1 , 1 1 ] ) ;

83 xtt = x0 ;

84 QN = 1* eye (4 ) ;

85 RN = .5* eye (1 ) ;

86 otherw i se

87 sys = [ ] ;

88 x0 = [ ] ;

89 end
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The RS-NGMV s-function is then given in the script below.

1 f unc t i on [ sys , x0 , s t r , t s ] = rsngmv ( t , x , u , f l ag , v e h i c l e )

2 p e r s i s t e n t Ts kc k1 bar k2 bar k3 bar

3 Ts = 1 ;

4 switch f l a g

5 case 3

6 [ f e11 1 , f e11 2 , f e11 3 , u , x1 , x2 , x3 , x4 , r , Fck ] = v s p l i t (u) ;

7 xhat = x1 ;

8 p = xhat ;

9 xtt = [ xhat ; x2 ; x3 ; x4 ] ; % add in xd and xp ( d i s t . and e r r o r s t a t e s )

10 Fe = [ fe11 1 , f e11 2 , f e 11 3 ] ;

11 i f t < 0 .1

12 kc= ze ro s (3 , 1 ) ;

13 e l s e

14 [A0 ,B0 ,D0 ,G0,C0 , E0 ,H0 ,C0m,E0m,H0m] = sys (p , v eh i c l e , Ts ) ;

15 Ap = veh i c l e . driveControlParams . Ap long i tud ina l ;

16 Bp = veh i c l e . driveControlParams . Bp long i tud ina l ;

17 Cp = veh i c l e . driveControlParams . Cp long i tud ina l ;

18 Ep = veh i c l e . driveControlParams . Ep long i tud ina l ;

19 Cd = veh i c l e . driveControlParams . Cd long i tud ina l ;

20 Cr = 0 ;

21 Er = 0 ;

22 Cpt = [=Ep*C0 , =Ep*Cd, Cp, Cr ] ;

23 Ept = =Ep*E0 ;

24

25 k1 bar = v eh i c l e . driveControlParams . k1 bar ;

26 k2 bar = v eh i c l e . driveControlParams . k2 bar ;

27 k3 bar = v eh i c l e . driveControlParams . k3 bar ;

28 kc bar = [ k1 bar ; k2 bar ; k3 bar ] ;

29

30 lambdap = veh i c l e . dr iveControlParams . l ambdap long i tud ina l ;

31 lambdad = veh i c l e . dr iveControlParams . l ambdad long i tud ina l ;

32 lambdak = veh i c l e . dr iveControlParams . l ambdak long i tud ina l ;

33 lambdau = veh i c l e . dr iveControlParams . l ambdau long i tud ina l ;

34

35 Pp = Fe ’*Ept ’* lambdap ˆ2 ;

36 phi k = =lambdakˆ2* kc bar = lambdadˆ2*kc ;

37 W1k = 1 ;

38 rd = r ; %the r e f e r e n c e i s whol ly d e t e rm i n i s t i c and s i n c e the r e f .

model i s 2x2 0 i s added f o r symmetry .

39 d = 0 ;
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40 g = 9 . 8 1 ;

41 d0d = veh i c l e . equivMass*g ;

42 ddt = [G0*d0d ; 0 ; Bp*( rd = d) ; 0 ] ; % [G0 0 ; 0 0 ; 0 Bp ; 0 0 ] * [

d0d ( rd=d) ] ’

43 dp = Ept*( rd=d) ; %cons id e r f eed forward terms f o r d , blank f o r now .

44 dpd = dp + Cpt*ddt ;

45 X0 = lambdakˆ2 + lambdadˆ2+ Fe ’ * ( Fck + . . .

46 (Ept ’* lambdapˆ2*Ept + lambdauˆ2) *W1k) *Fe ;

47 kc = =inv (X0) *(Pp*(dpd + Cpt* xtt ) + phi k ) ;

48 kc out = [ kc (1 ) kc (2 ) kc (3 ) ] ’ ;

49 u r s = Fe*kc ;

50 sys1 = [ kc out ; u r s ] ;

51 end

52 case 2

53 sys1 = [ ] ;

54 case 0

55 s t r u c t 2va r s ( v e h i c l e )

56 s = s ims i z e s ;

57 s . NumContStates = 0 ;

58 s . NumDiscStates = 0 ;

59 s . NumOutputs = 4 ;

60 s . NumInputs = 10 ;

61 s . DirFeedthrough = 10 ;

62 s . NumSampleTimes = 1 ;

63 sys1 = s ims i z e s ( s ) ;

64 x01 = [ ] ;

65 s t r 1 = [ ] ;

66 t s = [=1 0 ] ;

67 otherw i se

68 sys = [ ] ;

69 x0 = [ ] ;

70 end
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Scheduled RS-NGMV

F.1 Collecting Controller Gains

Before using the Scheduled RS-NGMV, the script “collectgains.m” must collect

the RS-NGMV gains of the previous run from the desired time instants “ctimes”

and store in 1-D look-up tables.

1 %% Co l l e c t ga ins from a Scenar io and save in to LUTs

2 % PID s t ru c tu r e : kp , ki , kd , k2

3 scen = 1 ;

4 switch scen

5 case 1

6 ct imes = [ 0 . 3 , 7 . 1 ] ’ ;

7 [ ntimes1 , ntimes2 , kp lut , k i l u t , kd lut , k2 lut , N lut ] = dea l ( z e r o s

( s i z e ( ct imes ) ) ) ;

8 f o r i =1: l ength ( ct imes )

9 ntimes1 ( i ) = f i nd ( ScopeK . time >= ct imes ( i ) , 1 , ’ f i r s t ’ ) ;

10 ntimes2 ( i ) = f i nd (ScopeOUT . time >= ct imes ( i ) , 1 , ’ f i r s t ’ ) ;

11 N lut ( i ) = ScopeOUT . s i g n a l s (1 ) . va lue s ( ntimes2 ( i ) , 1 ) ;

12 kp lu t ( i ) = ScopeK . s i g n a l s (1 ) . va lue s ( ntimes1 ( i ) ) ;

13 k i l u t ( i ) = ScopeK . s i g n a l s (2 ) . va lue s ( ntimes1 ( i ) ) ;

14 kd lu t ( i ) = ScopeK . s i g n a l s (3 ) . va lue s ( ntimes1 ( i ) ) ;

15 k2 lu t ( i ) = ScopeK . s i g n a l s (4 ) . va lue s ( ntimes1 ( i ) ) ;

16 end

17 save RSdata N lut kp lu t k i l u t kd lu t k2 l u t

18 end
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This is just the initial approach to generate the data. The script could be

modified to collect from many more time instants and store the data. If there are

already enough data collected from previous RS-NGMV runs, the .mat files can

be used directly on the Scheduled RS-NGMV without having a need to run the

RS-NGMV first. It could be advantageous for comparisons to figure out the best

values.

The variable names ScopeK and ScopeOUT are defined from the actual scopes

in the Simulink model by choosing logging tab from configuration properties. This

way, the data is logged from the desired parameter during Simulink runs.

The SI engine Simulink model is found in Fig. F.1. The RS-NGMV control

diagram for chapter 8 using the SI engine is found in Fig. F.2 adapted from

“sldemo enginewc”. The scheduled RS control diagram and the controller are

given in Fig. F.3 and Fig. F.4. Note that Fig. F.4 is the portion starts from input

ports 4 and 5, this is because the main Scheduled RS block also has LPVKF in

it but was not used in the Scheduled RS controller. It was included for work

in progress. The Matlab/Simulink design style is pretty much the same apart

from the details given here or in chapter 8. The main.m parametrises the system,

the linearisation is made by modifying the Mathworks SI engine demo files, the

linearised plant model is coded in sys.m and called by s-functions of kalman filter

and RS-NGMV, lpvkf.m and rsngmv.m.
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