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Abstract—The trajectory tracking control problem for a class
of n-degree-of-freedom (n-DOF) rigid robot manipulators is
studied in this paper. A novel adaptive radial basis function
neural network (RBFNN) control is proposed in discrete time
for multiple-input multiple-output (MIMO) robot manipulators
with nonlinearity and time-varying uncertainty. The high order
discrete-time robot model is transformed to facilitate digital
implementation of controller, and the output-feedback form is
derived to avoid potential noncausal problem in discrete time.
Furthermore, the desired controller based on RBFNN is designed
to compensate for effect of uncertainties, and the RBFNN is
trained using tracking error, such that the stability of closed-
loop robot system has been well guaranteed, the high-quality
control performance has been well satisfied. The RBFNN weight
adaptive law is designed and the semi-global uniformly ultimate
boundedness (SGUUB) is achieved by Lyapunov based on control
synthesis. Comparative simulation studies show the proposed
control scheme results in supreme performance than conventional
control methods.

I. INTRODUCTION

W ITH advances of technologies, robot applications in
industry and our daily life become increasingly popu-

lar, the relevant research works have been an attractive topic.
However, most robot manipulators are usually subject to un-
modelled dynamics and various uncertainties in practice [2]–
[4], an ideal control design for a class of robot manipulators
is challenging.
Various approaches for trajectory tracking control of robot ma-
nipulators have been proposed. Feedback linearization meth-
ods [5], [6], sliding mode and other robust control methods
[1], [7]–[9] have all been extensively investigated for robot
control, and global tracking error convergence are able to
be guaranteed. Furthermore, the advanced intelligent meth-
ods and relevant research results have been well applied
to robot control, e.g., adaptive control [10], [11], adaptive-
fuzzy control [12], adaptive-sliding control [13], and complex
adaptive control based on fuzzy and sliding-mode theories
for robot manipulators [14], function approximators have also
been utilized. In order to compensate for uncertainties of
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robot manipulators, adaptive neural network (ANN) techniques
have been popular in recent years [15]–[17], ANNs have
universal approximation capability for nonlinear functions. An
adaptive RBFNN algorithm guaranteeing closed-loop stability
has been proposed for robot manipulator systems in [18]. A
novel RBFNN estimator has been designed to compensate
for uncertainties in [19], [20]. These approaches are able to
guarantee UUB of closed-loop system of robot manipulators.
But the digital implementation of robot controllers and net-
work communication of high-speed computers are becoming
increasingly popular and powerful. Thus, the increasing re-
search works for robot manipulators have now been carried
out in discrete time.
Discrete-time robot manipulator models and discrete-time
control methods are used in [18], [21], the discrete-time
controllers applied to on-line robot control provides conve-
nience for implementation. In [22], a ANN controller has been
proposed based on combining one-step-ahead control with
ANN control for a class of MIMO discrete-time systems with
nonaffine nonlinearity. In [28], a class of MIMO nonlinears
systems with block triangular structure can be decomposed in
discrete time, by applying pure-feedback method, an ANN
control has been presented based on all subsystems with
couplings and unknown directions. These discrete-time ap-
proaches perform well to guarantee robust stability of non-
linear robot systems. However, these research works only
guarantee stability of closed-loop robot manipulator systems,
while realizing trajectory tracking control is seldom in discrete
time. Thus, a novel control scheme proposed for a class of
robot manipulators with uncertainty in discrete time is the
main research objectives of this paper.
Aiming to address satisfied trajectory tracking performance
based on stable closed-loop robot system, we develop a
discrete-time novel RBFNN based adaptive control for uncer-
tain robot manipulators.
The following notations are employed in this paper.

• ‖·‖ represents the Euclidean norm of vectors and induced
norm of matrices.

• b := a denotes b is defined as a.
• [ ]T represents the transpose of a vector or a matrix.
• [ ]−1 represents the inverse of a n-order reversible matrix.



• 0[p] denotes the dimension of zero vector is p-dimension.
• I[m] stands for m-dimension unit matrix.
• W ∗ represents the idea neural net weight matrix.
• Ŵ k represents the estimate value matrix of neural net

idea weight W ∗ at the k-th step.
• W̃ k = Ŵ k −W ∗ denotes the weight estimate error.

II. DISCRETIZING FOR ROBOT MODEL

The dynamic model of general n-DOF nonlinear rigid
robot manipulators can be described using ordinary differential
equation as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τd (1)

where q ∈ �n is the joint position, and q̇ ∈ �n is the joint
velocity, q̈ ∈ �n is the joint acceleration, M(q) ∈ �n×n is the
symmetric and positive definite inertia matrix, C(q, q̇) ∈ �n×n

is the Coriolis-Centrifugal torque matrix, G(q) ∈ �n denotes
the gravity torque vector, τ ∈ �n is the control input torque
vector, τd ∈ �n is the external force torque vector.
According to [2], the following properties hold for rigid robot
manipulators in (1):

Property 1: M(q) is uniformly bounded, and satisfies the
following inequality

m ≤ ||M(q)|| ≤ m̄ (2)

Property 2: The matrix C(q, q̇) and the vector G(q) are
bounded by ||C(q, q̇)|| ≤ kc||q̇||, and ||G(q)|| ≤ kg, respec-
tively, where kc and kg are positive constants.
It is very important and meaningful to design robot controller
in discrete time. For a class of n-DOF rigid nonlinear robot
manipulators with uncertainty in (1), which can be discretized
by using discretization theory with a small sampling time
interval T . The sampled joint angle is qk = qtk , the sampled
joint angle velocity is q̇k = q̇tk , the control torque is τk = τ tk

and the external disturbance torque is τkd = τ tkd at the sampling
time instant tk = kT , respectively.
Define pk = qk ∈ �n and vk = q̇k ∈ �n, then, the equivalent
dynamics form in discrete time can be obtained [23], [26],
[27] as

(M(ξk)/T )(vk+1 − vk) = (M(ξk)−M(pk))vk

− f(pk, vk) + τk + τkd
(3)

where M(ξk) ∈ �n×n is also the inertia matrix with ξk ∼=
pk + Tvk ∈ �n, f(pk, vk) = C(pk, vk)vk + G(pk) ∈ �n,
C(pk, vk) ∈ �n×n is Coriolis-Centrifugal torque matrix and
G(pk) ∈ �n is gravitational synthetic torque vector in discrete
time, respectively.
According to Property 1, M(ξk) is also symmetric, positive
definite and bounded, satisfying m ≤ ||M(ξk)|| ≤ m̄ with
known constants m > 0 and m̄ > 0.

III. TRANSFERING TO FEEDBACK SYSTEM

To avoid possible noncausal problem in control design,
we extend our previous research works [24], [29], [30] to
a class of nonlinear time-varying MIMO robot manipulators
with uncertainty in discrete time.

The discrete-time dynamics in (3) can be transferred into the
output-feedback control system [31] as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pk+1 = pk + Tvk

vk+1 = [(1 + T )I[n] − TM−1(ξk)M(pk)

− TM−1(ξk)C(pk, vk)]vk − TM−1(ξk)G(pk)

+ TM−1(ξk)τk + TM−1(ξk)τkd

(4)

where τkd is bounded as ||τkd || ≤ τ̄d with an known constant
τ̄d
It is easily known that M−1(ξk) is also bounded, satisfying
m∗ ≤ ||M−1(ξk)|| ≤ m̄∗ with known constants m∗ > 0 and
m̄∗ > 0.

The control objective is to synthesize an adaptive RBFNN
control input τk for robot system (4), not only all signals
of closed-loop robot system are bounded, but also the joint
position signal pk is able to well track the ideal trajectory
signal of robot manipulators pkd ∈ Ωk

pd
, finally, the satisfied

control performance is able to be obtained, where Ωpd
is a

compact set.
It is noted that vk+1 depends on control output τk, while pk+1

is associated with pk and vk at the (k + 1)-th step in (4).
We can rewrite the first equation of the system (4) as pk+1 −
pk − Tvk = 0[n], and vk is designed as vk = 1

T (p
k+1 − pk).

To predict the (k + 2)th step of robot manipulators, we have

pk+2 = pk+1 + Tvk+1

= [(2 + T )I[n] − TM−1(ξk)M(pk)

− TM−1(ξk)C(pk, vk)]pk+1

− [(1 + T )I[n] − TM−1(ξk)M(pk)

− TM−1(ξk)C(pk, vk)]pk

− T 2M−1(ξk)G(pk)

+ T 2M−1(ξk)τk + T 2M−1(ξk)τkd

(5)

Furthermore, we need to move (5) back to the (k+1)-th step,
the output-feedback method is applied to get the pk+1 as

pk+1 = [(2 + T )I[n] − TM−1(ξk−1)M(pk−1)

− TM−1(ξk−1)C(pk−1, vk−1)]pk

− [(1 + T )I[n] − TM−1(ξk−1)M(pk−1)

− TM−1(ξk−1)C(pk−1, vk−1)]pk−1

− T 2M−1(ξk−1)G(pk−1)

+ T 2M−1(ξk−1)τk−1 + T 2M−1(ξk−1)τk−1
d

(6)

Substituting (6) to (5), we note that there is no more explicit
future outputs and input signals. For convenience, let us define

Lk = (2 + T )I[n] − TM−1(ξk)M(pk)− TM−1(ξk)C(pk, vk)

Rk = (1 + T )I[n] − TM−1(ξk)M(pk)− TM−1(ξk)C(pk, vk)

Mk
τ = T 2M−1(ξk), Gk = G(pk)

Considering equation (6), we know that future state at the
(k+1)-th step is able to be obtained by getting values of the



current k-th step and the past (k−1)-th step. Then, the output
pk+2 is obtained as

pk+2 = (LkLk−1 −Rk)pk − LkRk−1pk−1

− LkMk−1
τ Gk−1 −Mk

τ G
k + LkMk−1

τ τk−1

+Mk
τ τ

k + LkMk−1
τ τk−1

d +Mk
τ τ

k
d

(7)

and we further define

Lk
p = (LkLk−1 −Rk)pk − LkRk−1pk−1 + LkMk−1

τ τk−1

Lk
G = LkMk−1

τ Gk−1 +Mk
τ G

k

Lk
d = LkMk−1

τ τk−1
d +Mk

τ τ
k
d

Thus, equation (7) can be rewritten as

pk+2 = Lk
p − Lk

G +Mk
τ τ

k + Lk
d

= ψ(pk−1, pk, τk, τk−1, τk−1
d , τkd )

(8)

It is easily known that the function ψ(·, ·, ·, ·, 0, 0) in (8) is
continuous for all the arguments and continuously differen-
tiable.

Lemma 1: Mk
τ is symmetric positive definite matrix, and

is bounded as mτ ≤ Mk
τ ≤ m̄τ with mτ = T 2m∗ and m̄τ =

T 2m̄∗.
According to Lemma 1, we know that Lk

d is bounded and
||Lk

d|| ≤ (3 + 2T + Tm̄∗kc)m̄τ τ̄d := τ̄∗d .

IV. ADAPTIVE RBFNN CONTROLLER DESIGN

A. RBFNN Approximation

The RBFNN can approximate any nonlinear function F (z),
which can be expressed as [25]:

F (z) = WTS(z), W ∈ �Ns×No , S(z) ∈ �Ns (9)

where z = [z1, z2, · · · , zNn
] ∈ �Nn in Ωz is the input

vector of RBFNN, Ns is neuron node number, No is out-
put dimension of RBFNN, W is weight matrix, S(z) =
[s1(z), s2(z), ..., sNs(z)]

T is hidden layer output function of
RBFNN, and si(z) is the i-th neuron output function, the
Gaussian RBFNN function is chosen as follows

si(z) = e−||zi−cij ||/2b2i (10)

where i = 1, 2, · · · , Nn, j = 1, 2, · · · , Ns, cij is the center
of the j-th neuron node for the i-th input signal, bi is the width
of the j-th neuron.
A number of research results have shown that for any con-
tinuous smooth function ϕ(z) : Ωz → R over a compact
set Ωz ⊂ RNn [32], [33], we can apply RBFNN (9) to
approximate ϕ(z). In particular, if Ns is chosen a sufficiently
large value, such that the ideal bounded weight W ∗ exists, we
have

ϕ(z) = W ∗TS(z) + μ(z) (11)

where μ(z) is the approximation error, which is bounded as
|μ(z)| < μ∗ with a given small constant μ∗.
RBFNN in (9) or in (11) has the following property, which
will be used in the control design:

S(z)TS(z) < Ns (12)

Noting the ideal RBFNN weight W ∗ is unknown in practice,
we often use Ŵ as estimate weight of ideal weight W ∗ to ap-
proximate the unknown nonliear function ϕ(z). By designing
an appropriate learning rule, the estimate Ŵ can be renewed.
Then, equation (11) can be rewritten as

ϕ(z) ≈ ŴTS(z) (13)

B. Desired Control

The ideal system tracking output is pk+2
d . The dynamics of

tracking error ek+2 ∈ �n can be obtained as

ek+2 = pk+2 − pk+2
d = Lk

p −Lk
G +Mk

τ τ
k +Lk

d − pk+2
d (14)

where pk+2 is defined in the (8).
There exists a continuous ideal control input τ∗n

k [29], such
that

Lk
p − Lk

G +Mk
τ τ

∗
n
k − pk+2

d = 0 (15)

Lemma 2: There are positive constants m∗
τ = 1/m̄τ and

m̄∗
τ = 1/mτ , and Mk−1

τ is bounded as m∗
τ ≤ ||Mk−1

τ || ≤ m̄∗
τ .

Thus, the predictor for two-step trajectory error ek+2 can be
constrained as

||ek+2|| = ||Lk
d|| ≤ τ̄∗d (16)

It is noted that the desired control τ∗kn is not obtained with the
unkown Mk−1

τ , Lk
p and Lk

G. We apply the adaptive RBFNN
to learn and to approximate the desired input τ∗n

k, such that
tracking error ek+2 = 0 after 2 steps can be achieved, if τkd =
0 and τk−1

d = 0 in (14).

C. RBFNN Based Control

From Section IV-A, an ideal weight matrix W ∗
τ exists, we

apply RBFNN Gaussian function Sτ (z̄
k) to approximate the

ideal control input τ∗n
k as follows

τ∗n(z̄
k) = W ∗T

τ Sτ (z̄
k) + ετ (z̄

k) (17)

where Sτ (z̄
k) ∈ �Nτ is the regression matrix, Nτ is neuron

node number, ||ετ (z̄k)|| ≤ ε∗τ with ετ
∗ > 0 is the approxima-

tion error, the ideal weight matrix W ∗
τ =∈ �Nτ×n, and the

RBFNN input vector z̄ is designed as

z̄ = [pk
T

, pk−1T , vk
T

, vk−1T , τk−1T , pk+2T

d ]T ∈ Ωz̄

where Ωz̄ is a sufficient large compact set corresponding
to Ωpd

. It is easy to verify the ideal control τ∗n(z̄
k) is bounded.

According to (14) and (15), we apply RBFNN to approxi-
mate the ideal control input τ∗n(z̄

k), and introduce PD method
to improve control performance, the system control input is
designed as:

τk = −kpde
k + kde

k−1 + τ̂n(z̄
k)

τ̂n(z̄
k) = Ŵ kT

τ Sτ (z̄
k)

(18)

where kpd = kp + kd > 0, and kp > 0, kd > 0 are scaling
factors, Ŵ k

τ ∈ �Nτ×n is used to approximate the ideal control
input τ∗n(z̄

k) in (17) with the compact set Ωz̄ .



According to equation (15), we have pk+2
d = Lk

p − Lk
G +

Mk
τ τ

∗
n
k. Then, equation (14) is rewritten as follows

ek+2 = Lk
p − pk+2

d = Mk
τ (τ

k − τ∗n
k) + Lk

d (19)

For convenience, we define:

Sk
τ = Sτ (z̄

k), εkτ = ετ (z̄
k)

From Lemma 1, it is obvious that Mk
τ is bounded with mτ

and m̄τ . Noting W̃ k
τ = Ŵ k

τ − W ∗k
τ , we substitute (17) and

(18) into (19), then,

ek+2 = Mk
τ (−kpde

k + kde
k−1) +Mk

τ W̃
kT

τ Sk
τ + τkdp (20)

where τkdp = −Mk
τ ε

k
τ + Lk

d .
It is easy to show that ||τkdp|| ≤ ||Mk

τ ε
k
τ ||+ ||Lk

d|| ≤ m̄τ ε
∗
τ +

τ̄∗d := τ∗dp.
Then, the error equation in (20) can be converted as:

ek+2 +Mk
τ kpde

k −Mk
τ kde

k−1 = Mk
τ W̃

kT

τ Sk
τ + τkdp (21)

We define a new error function as follows

ek+2
1 = ek+2 +Mk

τ kpde
k −Mk

τ kde
k−1 (22)

Substitute (20) into (22), the error function ek+2
1 is rewritten

as
ek+2
1 = Mk

τ W̃
kT

τ Sk
τ + τkdp (23)

It is noted that the error function based on the adaptive
RBFNN algorithms (23) is the (k + 2)th step error for robot
system, then, we can obtain the kth step system error by
defining k2 = k − 2

ek1 = Mk2
τ W̃ k2

T

τ Sk2
τ + τk2

dp (24)

where mτ ≤ ||Mk2
τ || ≤ m̄τ according to Lemma 1, and

ek1 = ek +Mk2
τ kpde

k2 −Mk2
τ kde

k2−1

Based on system tracking error ek1 , RBFNN update rule ΔŴ k2
τ

for (18) is given by

ΔŴ k2
τ = −ΓτS

k2
τ ek1

T

Ŵ k+1
τ = Ŵ k2

τ +ΔŴ k2
τ

(25)

where Γτ = γτ I[Nτ ] ∈ �Nτ×Nτ is a diagonal action system
learning rate matrix with γτ > 0.

D. Stability Analysis

It has been shown that an ideal control input τ∗n(z̄
k) exists

and can guarantee ek+2 = 0, if the unknown disturbance τkdp =
0. Based on above all assumptions are only valid in compact
set Ωz̄ , the system all outputs and inputs signal must be prove
remain in corresponding compact sets.
A positive definite Lyapunov function V k for the system (8)
is chosen as

V k =
n∑

j=0

tr[W̃ k−2+iT

τ Γ−1
τ W̃ k−2+i

τ ] (26)

where W̃ k
τ = Ŵ k

τ −W ∗k
τ .

Note the error function in (24), it is obvious that the Lyapunov

function V k contains system tracking error, strategic signal
error and parameter adaptation for RBFNN weights. The
difference of (26) is given by

ΔV k = −ek
T

1 W̃ k2
T

τ Sk2
τ + bek

T

1 ek1 (27)

where b = Sk2
T

τ ΓτS
k2
τ .

Defining Ak2
w = Mk2

τ W̃ k2
T

τ Sk2
τ and substituting (24) into

(27), we have

ΔV k = −2(Ak2
w + τk2

dp )
TMk2

−1

τ Ak2
w

+ b(Ak2
w + τk2

dp )
T (Ak2

w + τk2

dp )

≤ −(Ak2
w + τk2

dp )
T (Mk2

−1

τ − bI[n])

× (Ak2
w + τk2

dp )−AkT

w Mk2
−1

τ Ak2
w

+ ||Jk||2

(28)

where ||Jk||2 = 2τk2
T

dp Mk2
−1

τ τk2

dp ≤ ||Jk
τ∗ ||2 =

2τ∗2
dp

m∗
τ

.

According to Lemma 2, it is easy to know that Mk2
−1

τ is
symmetric positive definite matrix, and it can be bounded
with m∗

τ ≤ ||Mk2
−1

τ || ≤ m̄∗
τ . If the eigenvalues of Mk2

−1

τ are
λk2
i , i = 1, 2, · · · , n, it is obvious that λk2

i > 0.
We further define λk2

max = max(λk2
i ) and λk2

min = min(λk2
i ),

then, nλ
k2
2

min ≤ ||Mk2
−1

τ ||2 =
∑n

i=1 λi(M
k2

−1T

τ Mk2
−1

τ ) ≤
nλ

k2
2

max, i = 1, 2, · · · , n.
For convenience, we define P k

τ = Mk2
−1

τ − bI[n]. The matrix
P k
τ being symmetric positive definite can be satisfied under

following condition:

1− b
m̄∗

τ√
n
> 0

Accord to the property in (12), it is obvious that b =
SkT

τ ΓτS
k
τ = γτS

kT

τ Sk
τ < γτNτ . Analyse the difference of

Lyapunov function in (28), the design parameter of controller
are selected as

0 < γτ <

√
n

Nτm̄∗
τ

(29)

Furthermore, the following theorem is presented to analyze
stability of the system in (8), such that the closed-loop system
stability and the trajectory tracking performance can be
guaranteed by choosing appropriate parameters and adaptive
weight gain of the controller.

Theorem 1: Assume that the conditions set above are
satisfied, and define Bk2

w = Ak2
w + τk2

dp , then, we have

ΔV k ≤ −Bk2
T

w P k
τ B

k2
w + ||Jk

τ∗ ||2 (30)

Proof. There exists an invertible matrix Qk
τ so that P k

τ =

QkT

τ Qk
τ . Accordingly, ΔV k ≤ 0 can be satisfied under

following conditions:

||Bk2
w ||2 > ||Jk

τ∗ ||||Qk
τ ||−1 (31)

A discrete-time delay factor z−1 is introduced in (23), we have

ek = (I[n] +Mk
τ kpdz

k−2 −Mk
τ kdz

k−3)−1ek1 (32)



According to (31) and (32), we know there exists a finite
running step Kτ , which makes ||Bk2

w ||2 ≤ ||Jk
τ∗ ||||Qk

τ ||(−1),
then, ||ek|| ≤ ||ek1 || under (I[n]+Mk

τ kpdz
k−2−Mk

τ kdz
k−3)−1

being Hurwitz-stable for all k > Kτ .
Consider the boundedness of Mk

τ and τ∗dp, Bk2
w = Ak2

w + τk2

dp ,
such that the error ek1 is bounded as

||ek1 ||2 = ek
T

1 ek1 ≤ 2Ak2
T

w Ak2
w + 2τk2

T

dp τk2

dp

< 4||Jk
τ∗ ||||Qk

τ ||(−1) + 6τ∗
2

dp

(33)

or, we can get

||ek|| ≤ ||ek1 || <
√
4||Jk

τ∗ ||||Qk
τ ||(−1) + 6τ∗2

dp (34)

the proof is complete.

V. SIMULATION STUDIES

To verify the above developed adaptive RBFNN control
approach, a testing example, 2-DOF robot manipulator inter-
acting is used in this section.

A. Robot Manipulator Dynamics Model

The following parameters of robot manipulator are speci-
fied.
The mass are m1 = m2 = 1.0kg, the length are l1 = l2 =
0.2m, the inertia are I1 = I2 = 0.003kgm2, the distance are
lc1 = lc2 = 0.1m.
Then, dynamics of the robot manipulator with G(q) = 0[2] is
given as

M(q) = [M11 M12;M21 M22]

C(q) = [C11 C12;C21 C22]
(35)

where

M11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2cos(q2)) + I1 + I2

M12 = M21 = m2(l
2
c2 + l1lc2cos(q2) + I2

M22 = m2l
2
c2 + I2

C11 = −m2l1lc2sin(q2)q̇2

C12 = −m2l1lc2sin(q2)(q̇1 + q̇2)

C21 = m2l1lc2sin(q2)q̇1, C22 = 0

The external force torque may be caused by disturbance, a
smaller and a larger amplitude force torque τds and τdb are
assumed as, respectively,

τds = [0.05cos(0.01t)cos(q1), 0.05cos(0.01t)cos(q2)]
T

τdb = [40cos(0.01t)cos(q1), 40cos(0.01t)cos(q2)]
T

Two different types of desired trajectory qdd and qdg are
assumed as

qdd = [qdd1 , qdd2 ]
T =

[
1.5 + 0.5(sin(0.3t) + sin(0.2t))
1.5 + 0.5(cos(0.4t) + sin(0.3t))

]

qdg = [qdg1 , qdg2 ]
T =

[
0.6sign(cos(πt/200)) + 0.4

0.5sign(sin(πt/200))

]
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Fig. 1. Position trajectory for tracking qdd using adaptive RBFNN and PD
for a small disturbance τds
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Fig. 2. Error curve for tracking ideal qdd using adaptive RBFNN and PD for
a small disturbance τds
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Fig. 3. Position trajectory for tracking qdg using adaptive RBFNN and PD
for a large disturbance τdb

B. Test Results

The initial states of robot manipulator in (35) are
q(0) = [0, 0]T and q̇(0) = [0, 0]T . We construct the adaptive
RBFNN Ŵ kT

τ Sk
τ , which approximates system tracking error

using Nτ = 4096 with all the centres of Gaussian function
evenly in [−1; 1] and all the widths b = 1. The design
parameters are chosen as γτ = 0.01, kp = 6.5, kd = 115,
The initial weights Ŵτ (0) = 0[2×Nτ ]. Simulation results are
presented with the controller sampling interval T = 0.01s.
To show the effectiveness, we use the above same design
parameters, and compare the position trajectory accuracy
and capability between the adaptive RBFNN control and
traditional PD control τk = −kpe

k − kd(e
k − ek−1) for the

robot manipulator (4) with τds and τdb in Figs. 1-3.
Fig.1-2 show trajectory tracking trajectories and error

trajectories of q1 and q2 for the desired qdd with added



external disturbance torque τds, respectively. Fig.3 shows
trajectory tracking trajectories of q1 and q2 for the desirable
qdg with added external disturbance torque τdb.

Comparing with a traditional PD control based on the above
simulation results with a small disturbance signal τds, the first
joint of the proposed discrete-time adaptive RBFNN control
has an initial error and deviates from the desired trajectory
for less than 8s, but it can adjust itself quickly to achieve
the desired trajectory; and the second joint using the proposed
control has also an excellent tracking performance than the
traditional PD control. Furthermore, a large disturbance signal
τdb added to test tracking performance of the proposed control
for the desired trajectory qdg , the simulation results are given
in Fig.3, which shows that two joints of robot manipulator have
achieved satisfied tracking trajectories using adaptive RBFNN
control.

VI. CONCLUSION

An discrete-time adaptive RBFNN has been developed for
a class of uncertain robot manipulators to achieve precise
tracking control performance. The adaptive RBFNN controller
is designed to estimate system error, where the control law is
adaptively tuned online. Two different types of given trajectory
and two kinds of external disturbances are used to test the
performance of the proposed approach in the simulation. The
proposed discrete-time adaptive RBFNN control is able to
overcome effects of external disturbances and internal uncer-
tainties. Not only the closed-loop system stability is guaranteed
via Lyapunov stability analysis, but also excellent tracking
performance is achieved.
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